
DOT HS 813 226 June 2022

Foundations of
Automotive Software

DISCLAIMER

This publication is distributed by the U.S. Department of Transportation, National
Highway Traffic Safety Administration, in the interest of information exchange.
The opinions, findings, and conclusions expressed in this publication are those of
the authors and not necessarily those of the Department of Transportation or the
National Highway Traffic Safety Administration. The United States Government
assumes no liability for its contents or use thereof. If trade or manufacturers’
names or products are mentioned, it is because they are considered essential to the
object of the publication and should not be construed as an endorsement. The
United States Government does not endorse products or manufacturers.

NOTE: This report is published in the interest of advancing motor vehicle safety
research. While the report may provide results from research or tests using specif-
ically identified motor vehicle models, it is not intended to make conclusions
about the safety performance or safety compliance of those motor vehicles, and
no such conclusions should be drawn.

Suggested APA Format Citation:

Arthur, D., Becker, C., Epstein, A., Uhl, B., & Ranville, S. (2022, June). Foundations of
automotive software (Report No. DOT HS 813 226). National Highway Traffic Safety
Administration.

i

Technical Report Documentation Page
1. Report No.
DOT HS 813 226

2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle
Foundations of Automotive Software

5. Report Date
June 2022

6. Performing Organization Code

7. Authors
David Arthur, Christopher Becker, Alex Epstein, Bill Uhl, and Scott
Ranville

8. Performing Organization Report No.
DOT-VNTSC-NHTSA-20-03

9. Performing Organization Name and Address
John A Volpe National Transportation Systems Center
55 Broadway
Cambridge, MA 02142-1093

10. Work Unit No. (TRAIS)

11. Contract or Grant No.

51HS2EA100/DTNH2217V00020

12. Sponsoring Agency Name and Address
National Highway Traffic Safety Administration
1200 New Jersey Avenue SE
Washington, DC 20590

13. Type of Report and Period Covered
Final Report

14. Sponsoring Agency Code

15. Supplementary Notes
Bill Uhl and Scott Ranville of OrangeWire Systems LLC contributed to this report. Paul Rau was contracting
officer representative for this project.
16. Abstract
This report chronicles the history as well as the current state-of-the-art practices of software development within
the automotive sector. Key concepts, approaches, trends, and knowledge of automotive software development
were collected to benchmark industry practices as well as to compare these to non-automotive industry sectors.
The report provides a conceptual framework and taxonomy to articulate the relationships among relevant factors
driving the evolution of automotive software development, which can be updated to incorporate new classifica-
tions and/or sub-classifications as the automotive software development landscape evolves. The automotive soft-
ware industry’s current practices are documented to enable high-level, future comparisons to similar
domains―for example, to the aerospace industry where the primary overlap is in complex safety-critical sys-
tems and safety-critical software; and to the consumer electronics industry where the primary overlap is a prod-
uct that is marketed, purchased, operated, and maintained by private, independent consumers. Actual practices
across the automotive industry are diverse and the product of an evolutionary amalgamation of thousands of
published consensus standards, internally developed processes, tools, practices, nomenclatures, architectures,
and taxonomies. Vehicle software architectures and features have evolved over time, and this report explores the
related factors in this evolution.
17. Key Words
ISO 26262, automotive open system architecture, AUTOSAR, auto-
motive grade, Linux, model-based development, automatic code gen-
eration, automotive ECU, software complexity, ASPICE, V-Cycle,
communications bus, software security, software safety, software de-
pendability, critical systems, safety systems, software system require-
ments, software scheduling (OS technology), hardware (hardware
technology), computer control (control technology and control sys-
tems), communication (communications technology, network architec-
ture and topology), and software implementation (tools and
programming languages and models of computation).

18. Distribution Statement
Document is available to the public
from the DOT, BTS, National
Transportation Library, Repository &
Open Science Access Portal,
rosap.ntl.bts.gov.

19. Security Classif. (of this report)

 Unclassified

20. Security Classif. (of this page)

Unclassified

21. No. of Pages

142

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

https://rosap.ntl.bts.gov/

ii

Table of Contents
List of Abbreviations ... iv

1 Brief History of Automotive Software ... 1

1.1 Hand-Coded Software .. 4
1.2 Model-Based Development .. 5
1.3 Automatic Code Generation ... 6
1.4 Emerging Artificial Intelligence Applications .. 7

2 Key Themes in Automotive Software ... 8

2.1 Critical Systems and Safety Systems .. 8

2.1.1 Dependability .. 8
2.1.2 Safety ... 9
2.1.3 Security .. 11
2.1.4 Real Time .. 12
2.1.5 Fault Tolerance and Fault Recovery .. 13

2.2 Complexity ... 14
2.3 Business Factors ... 18

2.3.1 Ownership Models .. 18
2.3.2 Business Factors Today ... 19

2.4 Current State-of-the-Art ... 25

2.4.1 Challenges for Software Requirements ... 25
2.4.2 Challenge of Resolving Lifecycle Practices against Requirements .. 26
2.4.3 Key Software Development Approaches .. 26
2.4.4 Models of Computation ... 27
2.4.5 Architectural Standards ... 28
2.4.6 Common Processes and Practices ... 33
2.4.7 Tools and Implementations ... 36
2.4.8 Application of MBD to Automotive ECU Software Development ... 36

2.5 Comparison to Approaches in Other Industries .. 39
2.6 Future Challenges ... 43

3 Automotive Software Evolution Framework .. 45

3.1 Introduction .. 45
3.2 First-Pass Checklist .. 46
3.3 Taxonomy ... 47

3.3.1 Taxonomy of Process Change Factors .. 51
3.3.2 Business and Market Factors ... 58
3.3.3 Consensus Standards Research Theme ... 61
3.3.4 Software Type, Technology, Tools and Programming Languages Research Theme 68
3.3.5 Process Requirements Research Theme .. 93
3.3.6 Software Development Lifecycle Practices Taxonomy .. 97
3.3.7 Taxonomy Reduction and Comparative Framework... 102

4 Conclusion .. 103

4.1 Research Summary ... 104
4.2 Research Findings .. 104

iii

Framework Sources .. 106

Appendix A .. A-1

Appendix B .. B-1

Example .. B-2

Step 1: Framework Reduction by Subclassification ... B-2
Step 1a: Framework Reduction by Characteristics of the Subclassification B-2
Step 1b: Framework Reduction by Framework Generation ... B-3
Step 2: Comparative Analysis .. B-3

iv

List of Abbreviations

Abbreviation Term
ABS antilock braking system

ACG automatic code generation

ADL architecture description language

ADAS advanced driver assistance system

ADS Automated Driving Systems

ADC analog to digital converter

AEC Automotive Electronics Council

AGL automotive grade Linux

ALM application lifecycle management

API application programming interface

ASIL Automotive Safety Integrity Level

ASPICE automotive software process improvement and capability determination

AUTOSAR automotive open system architecture

BEV battery electric vehicle

CAFE Corporate Average Fuel Economy

CAN controller area network

COTS commercial off-the-shelf

CV connected vehicle

DAC digital to analog converter

DAL design assurance levels

DFP data flow processor

DMCA Digital Millennium Copyright Act

ECU electronic control unit

E/E electrical and electronic

EMS engine management systems

FCEV fuel cell electric vehicle

FMVSS Federal Motor Vehicle Safety Standards

HIL hardware-in-the-loop

HMI human-machine interface

HPC High-performance computing

v

IC internal combustion

IO input/output

ISO International Organization for Standardization

IoT internet of things

lidar light detection and ranging

LIN local interconnected network

LoC lines of code

MaaS mobility as a service

MBD model-based development

MDSD model-driven systems development

MIDI multiple instruction multiple data

MISRA Motor Industry Software Reliability Association

MIL model-in-the-loop

MoC model of computation

NCAP New Car Assessment Program

NoC network operations center

OBD onboard diagnostics

OS operating system

PWM pulse width modulation

QM quality management

RAM random access memory

RNN recurrent neural network

ROM read-only memory

RTE runtime environment

RTOS real-time operating system

RCP rapid control prototyping

SAE SAE International (formerly Society of Automotive Engineers)

SIL software–in-the-loop

SOA service-oriented architecture

SoC system on a chip

SOTIF safety of the intended functionality

SDLC software development lifecycle

SBD simulation based development

vi

SPEM software process engineering meta-model

SPICE software process improvement and capability determination

SR synchronous reactive

STPA systems theoretic process analysis

TSN time sensitive network

UUT unit under test

V&V validation and verification

V2I vehicle-to-infrastructure

V2V vehicle-to-vehicle

V2X vehicle to “x” where x is everything connected (e.g., vehicles, infrastructure,
pedestrians, bicyclists)

1

1 Brief History of Automotive Software
The modern vehicle has been undergoing a transformation from the mechanical platform of the
20th century into a highly integrated system of “mechatronic”1 subsystems. These subsystems
are progressively defined by software-based (virtual2) controls that can emulate behavior of a
physical interface or external system controller.3 Vehicle manufacturers and suppliers are
increasingly self-identifying as software companies as the industry has been shifting its focus
from mechanical design and manufacturing to computer hardware and software development.4

In terms of software application, the motor vehicle is unique and complex. As an integrated
system, it incorporates:

• Real-time control systems,

• Complex networks of communications busses and sensors,

• Application-specific embedded hardware and software,

• Safety systems,

• Maps and navigation software,

• Entertainment and communications systems,

• Connectivity with other consumer devices, and

• Emerging safety and driving automation systems that may leverage artificial intelligence
(AI) techniques and machine learning technology (see Sections 1.4 and 3.3.3.1.3 for more
information on AI).

The pace of innovation in vehicle design and electronic control of critical systems has
accelerated in recent years. As software enhancements are added, such as driver automation,
driver assistance, and security systems, automotive product designers must constantly assess
their effects on the performance, safety, and reliability of the vehicle that features several other
software-based technologies. Several of the sources cited within this document make arguments
that automotive software and mechatronics systems are among the most complex systems
engineered today that are challenging to analyze, verify and validate.5 Due to the complex
attributes of automotive software mentioned previously, vehicle production practices, software
development lifecycles, systems engineering practices, and maintenance and sustainment
practices are complex and specialized.

This report provides a foundation covering the basics of automotive software, including the
historical evolution of vehicular software development including the build, test, and validation

1 A mechatronic subsystem is the integration of a mechanical, electrical, computer, robotic, controls, and telecom-

munication subsystem. www.sciencedirect.com/topics/engineering/mechatronics
2 Analog Devices, Inc. (2012, December 14). Virtual control interface [Web page]. https://wiki.analog.com/re-

sources/tools-software/sigmastudio/usingsigmastudio/virtualcontrolinterface
3 A controller is a hardware device or software program that manages or directs the flow of data between two enti-

ties. https://whatis.techtarget.com/definition/controller
4 Ziegler, C., & Patel, N. (2016, April 7). Meet the new Ford, a Silicon Valley software company. The Verge.

www.theverge.com/2016/4/7/11333288/ford-ceo-mark-fields-interview-electric-self-driving-car-software
5 Molotnikov, Z., Schorp, K., Aravantinos, V., & Schaetz, B. (2016). Future programming paradigms in the auto-

motive industry. Forschungsvereinigung Automobiltechnik e.V.

https://www.sciencedirect.com/topics/engineering/mechatronics
https://wiki.analog.com/resources/tools-software/sigmastudio/usingsigmastudio/virtualcontrolinterface
https://wiki.analog.com/resources/tools-software/sigmastudio/usingsigmastudio/virtualcontrolinterface
https://whatis.techtarget.com/definition/controller
http://www.theverge.com/2016/4/7/11333288/ford-ceo-mark-fields-interview-electric-self-driving-car-software

2

activities associated with the lifecycle, development, production, and maintenance of automotive
control system software.

Automotive software complexity has surged during the past 15 years (Table 1). Early
implementations of electronic controls were driven by the need to meet emissions regulations
such as the Clean Air Act, and Corporate Average Fuel Economy. As computer processors
became less expensive and more commonplace, manufacturers increasingly started to use
computer systems to deliver competitive products to the market, resulting in advances in
performance, value, comfort, entertainment, maintenance, diagnostics, and safety.

The drive for innovation has led to the replacement of mechanical control components with
digital, electrically-actuated, computer-controlled systems, led by:

• Low-cost, miniaturized, and specialized electronic control unit and related technology for
highly specialized, purpose-built, embedded computing;

• Advancements in actuation and sensing technology; and

• Advancements in communications networks.

Many factors have influenced (and will continue to influence) the use of software in automotive
systems that include decreasing costs and increasing capabilities of electronic controllers,
sensors, and actuators, market acceptance of innovative control applications and communication
systems, published industry consensus standards, and regulations. As systems became more
complex, new tools and processes have emerged to help manage the development of software.

3

Table 1. A timeline of representative E/E advancements and system complexity, correlated with emissions and safety regulations

Year 1950s and 1960s 1970s and 1980s 1990s 2000 2005 2010 2015
Lines of Code//
vehicle6 7 0 ~100,000 ~1,000,000 ~15,000,000 ~100,000,000

ECUs8per vehicle 0 1 ~5 ~15 ~40 ~100

Notable E/E
Advancement
Introductions9 10

All

Transistor Car
Radio Alternator

Electronic Ignition

Antilock Braking

Invented 11

Engine Control

Airbag

Lambda (Air -Fuel)

Sensor

Antilock Braking
Production

Transmission
Control

Cluster

Body
Electronics

Wired
Controller Area

Network
(CAN) Buses

Electronic
Stability
Control

Advanced
Restraints

GPS
Navigation

Adaptive Cruise
Control

Infotainment

Electric Power
Assisted Steering

Telematics

Displays

Zero Emission
Vehicles

Vehicle to Infrastructure

Remote Diagnostics

Adaptive Headlamps

Steer by Wire

Brake by Wire

Fuel Cell

Battery
Management System

NCAP (side impact and

rollover sensors, backup
cameras, collision

avoidance [ESC, LDW,
FCW])

Collision
Avoidance

Systems

Crosswind
Stabilization

Automotive Night
Vision

Automatic Parking

Wireless Buses

6 Rough order of magnitude
7 Antinyan, V. (2018). Revealing the complexity of automotive software. Volvo Car Corporation.DOI: 10.13140/RG.2.2.34697.29286.
8 Ibid.
9 E/E refers to Electrical and Electronics. The E/E Advancements section of the table provides a sampling of key electrical and electronics advancements for a

representation of the evolution of automotive software electronics A complete list of electronics advancements would include hundreds of E/E features
and capabilities.

10 Davey, C. (2013, January 26-27). Automotive software systems complexity: Challenges and opportunities. INCOSE International MBSE Workshop, Jackson-
ville, FL.

11 Invented in 1952 and ready for production in 1978: https://media.daimler.com/marsMediaSite/en/instance/ko/Mercedes-Benz-and-the-invention-of-the-anti-
lock-braking-system-ABS-ready-for-production-in-1978.xhtml?oid=9913502

https://media.daimler.com/marsMediaSite/en/instance/ko/Mercedes-Benz-and-the-invention-of-the-anti-lock-braking-system-ABS-ready-for-production-in-1978.xhtml?oid=9913502
https://media.daimler.com/marsMediaSite/en/instance/ko/Mercedes-Benz-and-the-invention-of-the-anti-lock-braking-system-ABS-ready-for-production-in-1978.xhtml?oid=9913502

4

As described throughout this document, vehicle computing architectures are implemented using
specialized embedded systems consisting of optimized processing for the intended functionality
(to save cost), input/output, peripherals, real-time operating systems, and communication
networks. They are designed to solve closed-loop controls with precision timing (see Section
2.4), and are defined by their associated model of computation (see Models of Computation,
Section 2.4.4).

In the 1980s and 1990s, prior to the widespread availability of tools built around specific MoC,
software engineers typically used general purpose programming tools for vehicle ECU
programming (see Section 1.1). However, the evolution of MoC-specific developmental tools,
such as model-based development (MBD), has had a transformational impact on the automotive
industry. These improved developmental tools were instrumental in lowering technical and
resource barriers to developing automotive control software.

The evolution of coding software is defined by three distinct phases, beginning with hand
coding, then MBD, and culminating in the current practice of combining MBD with automatic
code generation.

1.1 Hand-Coded Software
In the early years of computer programming, specialized tools designed to aid in development of
software were unavailable. The first large mechatronics software projects (e.g., the software on
the space shuttle) were “hand-coded” and static.12 Unlike today’s systems which can be re-
flashed with new software by either physically plugging into a controller or receiving the update
over-the-air, in static systems, it was impossible to alter the system once it was on the vehicle
without replacing hardware.

Hand coding refers to a variety of editing practices used in software development where source
code for a computer program was entered as lines of text using a (text) editor. When hand
coding, a computer scientist, software engineer, or someone with a similar skillset, manually
converted algorithms or mathematical models into textual computer language (such as C, C++,
or Ada) for interpretation by the compiler.13

There were obvious inefficiencies that must be overcome when mathematical models and
scientific notation must be translated into textual programming languages and syntax in order to
be executed and solved on a computer. Hand coding tended to require more highly skilled
programmers that stretched development budgets, was more prone to errors from easily missed
syntax or coding mistakes, generated code that was more difficult to revise and maintain over
time and was less conducive to collaborative environments with several programmers working in
parallel.

As software engineering practices have evolved, engineers recognize that productivity can be
greatly improved through the advancement of specialized tools built around domain specific
language, notation, and MoC. One particular area where this occurred was in the field of
mechatronics and control systems.

12 Tomayko, J. E. (1988, March). Computers in spaceflight: The NASA experience. National Aeronautics and Space

Administration. https://history.nasa.gov/computers/Ch4-5.html
13 A compiler is a program that converts instructions into a machine-code or lower-level form so that they can be

read and executed by a computer.www.lexico.com/en/definition/compiler

https://history.nasa.gov/computers/Ch4-5.html
https://www.lexico.com/en/definition/compiler

5

1.2 Model-Based Development
Model-based, graphical programming allows engineers to create programs from mathematical
models using familiar notation, syntax, and formatting. Closed loop, feedback control systems
are traditionally drawn in block diagrams by controls engineers (see Figure 3 in Section 2.4.8).
Feedback control diagramming techniques lend themselves naturally to MBD methods.

In the 1980s the introduction of graphical languages such as MatrixX and Simulink allowed
engineers to create computer programs by drawing control systems and transfer functions in
block- and signal-based diagrams without converting them into text-based syntax, which is
required when hand coding.14

The models are executable, meaning that as graphical elements are built into the model editor,
the underlying software is configured as a program that may be run. The first graphical
programming editors allowed models of closed-loop control systems to execute, mathematically,
within the model editor.

Graphical programming methods introduced efficiencies in several areas over hand coding:

• Models reduce the need for cross domain specialization in computer programming
languages. With MBD, software can be developed by engineers who are not specialized
in computer science; the controls engineer does not need to have highly refined
knowledge of programming syntax.

• Models are less prone to error than hand coding in textual programs because they are
more easily inspected for correctness.

• Models are easily parameterized so that transfer function coefficients, values for physical
properties, and other coefficients are stored in tables. Parameterization promotes reuse
and refactoring15 of software.

Models are intuitively understood by domain specialists and may be used for purposes other than
software development, including documentation and analysis.

There is evidence that MBD yields 50 percent efficiency gains in coding software alone, and the
benefits are leveraged across the entire SDLC.16 MBD practices allow system architects to create
libraries of parameterized, graphical software components (e.g., control strategies, actuators, and
sensors) that may be quickly refactored and reused, yielding productivity gains each time the
software is reused. MBD also allows ECU developers to separate and isolate software
development practices from hardware development, thereby compressing and streamlining the
respective development lifecycles while facilitating portability of software components across
vehicle architectures.17

14

 Mohler, C. (n.d.). A brief history of MATLAB. MathWorks.www.mathworks.com/company/newsletters/articles/a-
brief-history-of-matlab.html

15 Refactoring is the process of changing a software system in such a way that it does not alter the external behavior
of the code yet improves its internal structure. www.sciencedirect.com/topics/computer-science/refactoring

16 Broy, M. (2012). What is the benefit of a model-based design of embedded software systems in the car industry?
IGI-Global. doi: 10.4018/978-1-61350-438-3.ch013.

17 Ibid.

http://www.mathworks.com/company/newsletters/articles/a-brief-history-of-matlab.html
http://www.mathworks.com/company/newsletters/articles/a-brief-history-of-matlab.html
https://www.sciencedirect.com/topics/computer-science/refactoring

6

1.3 Automatic Code Generation
The introduction of automatic code generation in the 1990s took model-based development a
step further. With ACG it became possible to use graphical system models (as explained in
Section 1.2) to generate source code in order to run on hardware controllers outside of the
graphical model editor (e.g., Simulink). ACG existed before 2000 but was not as memory
efficient as hand coding and was limited to specialty applications.18 Beginning in 1999 ACG
from Simulink models was efficient enough to be a viable replacement of hand-written code. At
that time, ECUs were also changing to support floating point operations19 and ROM and RAM
costs were coming down, which also contributed to a change in how automotive software was
developed.

When combined with automatic code generation, model based software may be executed on a
variety of embedded computing devices found in mechatronics applications (e.g., ECUs).20

ACG allows domain specialists, such as control system engineers, mechanical engineers, or
system engineers, to create software from graphical representations of closed-loop feedback
controls, state machines, sequence diagrams, and other abstractions of engineered systems. ACG
tools automatically generate (textual) source code so that a software engineer can integrate the
control code with low-level code on an ECU, including the RTOS, device drivers and IO,
communications busses, and other hardware and software on the embedded system.21 Prior to the
invention of ACG, models developed in MBD editors were converted to code “by hand” for use
on an ECU.

While MBD allowed control algorithm designers to test their control theory, ACG allowed MBD
to overcome a significant hurdle that prevented graphical models from being used in production
without first being translated into the programming language of the environment. Models created
in MBD editors usually execute within the model editor on a personal computer. The operating
environment is much different on an ECU however, where tasks are normally executed in
discrete time steps managed by an RTOS, and so code from an MBD environment still needed
some manual (hand coding) to operate on the ECUs.

The first implementations of ACG did not generate optimized code for use within the constrained
resources on production (usually with less-expensive ECU hardware), but they did allow models
to run on “unconstrained” rapid control prototyping hardware in order to test control strategies
onboard developmental vehicles.22 While RCP hardware was typically cost-prohibitive for a
production vehicle, its benefit was especially realized in development and prototyping phases.

As ACG tools have evolved, code performance has improved and optimized so that today’s ACG
tools are capable of generating highly optimized code for production deployment on nearly any
automotive ECU. Today, MBD/ACG processes provide seamless, automated, development

18 ACG required more ROM/RAM than hand-coding, but was quicker to implement, resulting in a trade-off.
19 Floating point numbers have decimal points. A floating point operation is the ability of a software system to per-

form mathematical calculations using floating point numbers.
20 Liao, H. (2010, May 31-June 2). A study of automatic code generation. International Conference on Computa-

tional and Information Sciences, Amsterdam.
21

 Ibid.
22 RCP systems are “unconstrained,” high performance, MoC specific, prototype ECUs with high performance pro-

cessors and large amounts of onboard memory and other resources, designed to run control code that has
not been optimized for resource constrained production hardware.

7

capabilities from prototype to RCP to production. These capabilities have also led researchers to
be able to train increasingly complex Automated Driving Systems that use machine learning with
real-world observations. Sometimes, instead of a calibration engineer or domain specialist
manually tuning the inputs and watching for a desired output as has been traditionally practiced,
newer methods involve only providing output goals to control systems. Using a machine learning
approach with training data, the software gathers its own response data while varying tuning
parameters and essentially performs its own tuning and final calibration.

1.4 Emerging Artificial Intelligence Applications
As indicated in the bulleted list of software applications in the prior section, artificial intelligence
(AI) techniques are among many applications increasingly being used within automotive
software. It is beyond the scope of this report to comprehensively cover AI theory or detailed
implementations, (see Section 3.3.3.1.3 for more information on AI beyond this section). To date
AI is generally not considered foundational or a primary contributor to the evolution of
automotive software and coding.

8

2 Key Themes in Automotive Software
Given the purpose of this study is to understand factors that drive lifecycle practices for control
systems, it is important to understand how wide-ranging technical, industry, business, and safety
requirements influence the processes and practices of the SDLC.

2.1 Critical Systems and Safety Systems
This section describes two related characteristics of automotive software—safety and criticality.
Reliability is an important characteristic of critical systems. Reliability may describe different
aspects of the system including dependability, safety, security, location awareness, or
trustworthiness. As mechanical controls are replaced with mechatronic systems (see Table 1),
and as new features are continuously added, there are an increasing number of critical software
systems onboard vehicles.

Vehicle systems incorporate a range of critical systems properties and often incorporate several
modes of criticality. The most notable and prevalent of these properties are listed below.

2.1.1 Dependability
A system is described as dependable when the system can be justifiably relied upon for correct
and continuous service. Motor vehicle owners expect a high degree of dependability from
mechatronic systems. It is important that a powertrain ECU provides expected levels of
performance and economy when managing and controlling timing, ignition, and other functions.
It is also important that the ECU meets performance expectations every time the vehicle is in
operation.

Dependability often determines the success or failure of a vehicle in the marketplace. Consumers
are influenced by numerous survey-based, test-based, and/or ratings-based publications, such as
New Car Assessment Program (NCAP) ratings, Consumer Reports, and the JD Powers
Dependability Ratings, which ranks vehicles based on the type and number of problems that
owners have experienced with their 3-year-old vehicle in the preceding 12 months.

Incorporation of increased electrical and electronic content onboard motor vehicles has led to
specific E/E requirements for reliability and robustness, as well as for related mechanical
componentry. In the 1980s the Automotive Electronics Council was formed for the purpose of
establishing common part-qualification and quality-system consensus standards. The AEC
Component Technical Committee establishes consensus standards for reliable, high-quality
electronic components. This committee has developed consensus standards, such as AEC-Q100,
to ensure the advancement of reliable and robust connectors, mechanical components, enhanced
plastics, semiconductors and complex integrated circuits (ICs) rated for high temperatures and
harsh environments, etc.23 24 25

23 Ardebili, H., & Pecht, M. G. (2000). Encapsulation technologies for electronic applications. 1st edition. Elsevier.
24 Zarr, R.. (2018, April 11). The future of high-reliability electronics. Electronic Design. www.elec-

tronicdesign.com/technologies/analog/article/21806380/the-future-of-highreliability-electronics
25 Automotive Electronics Council. (n.d.) [Untitled web page]. www.aecouncil.com/

http://www.electronicdesign.com/technologies/analog/article/21806380/the-future-of-highreliability-electronics
http://www.electronicdesign.com/technologies/analog/article/21806380/the-future-of-highreliability-electronics
http://www.aecouncil.com/

9

For automotive software, dependability helps ensure that the driver interacts with a vehicle
running software that operates correctly, robustly, and securely. According to Meyer,26
correctness refers to the vehicle software’s ability to perform according to its specification for
uses within that specification. Robustness is the vehicle software’s ability to prevent damage in
cases of erroneous use outside of its specification. Finally, security is the vehicle software’s
ability to prevent damage in cases of hostile use27 outside of its specification.

2.1.2 Safety
The word “safety” has specific meanings in the context of different consensus standards and
regulations.
Within automotive E/E architectures, the following definitions are used in order to categorize
safety systems and safety management activities.28 29 30

• Passive safety mechanisms minimize the severity of a crash and remain “passive” until
needed. Examples of passive safety E/E systems include occupant and pedestrian
protection systems (e.g., inflatable seat belts, air bags).

• Active safety mechanisms are designed to avoid crashes or to minimize crash severity
and are intended to always be “active.” Examples include predictive automatic
emergency braking, antilock braking systems, traction control systems, and tire pressure
monitoring systems.

Increasing levels of safety-critical and safety-engineered E/E content onboard vehicles has led to
a host of safety consensus standards related to automotive hardware and software and E/E
systems including the following.31

• ISO 26262

• AUTomotive Open System ARchitecture (AUTOSAR)32 Guidelines for the use of the
C++14 language in critical and safety-related systems.

26 Meyer, B. (2006). “Dependable Software.” In J. Kohlas, B. Meyer, & Schiper, A., eds., Dependable Systems:

Software, Computing, Networks. Lecture Notes in Computer Science, Springer-Verlag.
http://se.ethz.ch/~meyer/publications/lncs/dependability.pdf

27 Hostile use implies an intentional use outside of the item’s specified operating parameters, often with active cir-
cumvention of preventative mechanisms (as opposed to erroneous use, which is unintentional and does not
involve active circumvention).

28 Smith, D. J., & Simpson, K. G. L. The Safety Critical Systems Handbook: A Straightforward Guide to Functional
Safety: IEC 61508, 4th edition. Butterworth-Heinemann.

29 See the AUTOSAR document Explanation of Application Interfaces of Occupant and Pedestrian Safety Systems
Domain for more information on the relevance of active and passive safety mechanisms related to E/E ar-
chitectures.

30 Kumar, A. (2017, July 18). Active and passive automotive safety systems. Electronic Specifier. https://automo-
tive.electronicspecifier.com/safety/active-and-passive-automotive-safety-systems

31 Van Eikema Hommes, Q. D. (2016, June). Assessment of safety standards for automotive electronic control sys-
tems (Report No. DOT HS 812 285). National Highway Traffic Safety Administration.
www.nhtsa.gov/sites/nhtsa.gov/files/812285_electronicsreliabilityreport.pdf

32 AUTOSAR provides a set of architectural consensus standards designed to allow interoperability between system
hardware and software by describing and defining basic software modules, application interfaces, and a
common development methodology based on standardized exchange formats.

http://se.ethz.ch/%7Emeyer/publications/lncs/dependability.pdf
https://automotive.electronicspecifier.com/safety/active-and-passive-automotive-safety-systems
https://automotive.electronicspecifier.com/safety/active-and-passive-automotive-safety-systems
https://www.nhtsa.gov/sites/nhtsa.gov/files/812285_electronicsreliabilityreport.pdf

10

• Motor Industry Software Reliability Association (MISRA) C (and C++) Guidelines for
the Use of the C Language in Critical Systems.

One key safety concept for automotive E/E systems is functional safety. In the automotive
industry, functional safety is typically addressed through the ISO 26262 standard (November
2011, revised December 2018).33 ISO 26262 defines functional safety as ensuring “absence of
unreasonable risk due to hazards caused by malfunctioning behavior of E/E systems.” As of
2012 all European OEMs and many of the rest of the world’s OEMs were reportedly using ISO
26262 to some degree; full integration of ISO 26262 into internal processes is still on-going. One
industry expert interviewed as part of this study indicated that their organization is estimated to
be only 40 percent compliant with ISO 26262 within a few of the product lines as of 2019 U.S.
OEMs initially resisted the standard but increasingly followed suit due to concerns about legal
liability. The standard was developed by a working group that included most of the largest global
OEMs.34

Safety engineered systems are concerned with avoidance of crashes or mishaps, or protecting
occupants in the event of a crash, and are often defined in terms of external consequences.35 As
systems such as automatic emergency braking, active suspension, and electronic stability control
increasingly implement active interventions to assist drivers to better control the behavior of the
car, a wide range of interconnected sensors, actuators, and ECUs may affect the performance of
the vehicle. In addition, there is the potential to cause harm should these systems fail to perform
properly, including when they interact simultaneously with each other.36

Safety engineering involves implementing process steps throughout the development lifecycle in
order to ensure that:

• hazards and risks are correctly identified,

• automotive safety integrity levels (ASILs) 37 or similar risk evaluation metrics, and
safety goals are correctly specified,

• safety requirements flow down into the appropriate design processes (e.g., hardware,
software), and

33 ISO 26262-2:2018 - Road vehicles -- Functional safety is a derivative of IEC 61508, the generic functional safety

standard for E/E systems.
34 Czerny, B. J., D’Ambrosio, J., Debouk, R., & Stashko, K. (2010, August 30-September 3). ISO 26262: Functional

safety draft international standard for road vehicles: Background, status, and overview [PowerPoint
presentation]. 28th International System Safety Conference 2010, Minneapolis, MN. http://sesamo-pro-
ject.eu/sites/default/files/downloads/publications/iso-26262-dis-tutorial-2010-final.pdf

35 Rushby, J. (1994). Critical system properties: survey and taxonomy. Reliability Engineering and System Safety,
Vol. 43, No. 2, pp. 189–219. www.csl.sri.com/users/rushby/papers/csl-93-1.pdf

36 Ebert, C., Burton, S., Amsler, K., & Lederer, D. (2011). Introducing automotive E/E safety engineering: Chal-
lenges and solutions. Vector. https://assets.vector.com/cms/content/consulting/publications/Safety_White-
Paper_Ebert.pdf

37 Note that the concept of ASILs are specific to the ISO 26262 “Road vehicles – Functional Safety” standard.

https://www.iso.org/standard/43464.html
https://www.iso.org/standard/43464.html
https://www.iso.org/standard/43464.html
http://sesamo-project.eu/sites/default/files/downloads/publications/iso-26262-dis-tutorial-2010-final.pdf
http://sesamo-project.eu/sites/default/files/downloads/publications/iso-26262-dis-tutorial-2010-final.pdf
http://www.csl.sri.com/users/rushby/papers/csl-93-1.pdf
https://assets.vector.com/cms/content/consulting/publications/Safety_WhitePaper_Ebert.pdf
https://assets.vector.com/cms/content/consulting/publications/Safety_WhitePaper_Ebert.pdf

11

• V&V is performed against the safety requirements to measure success or failure of the
design and process.

○ A given safety requirement is verified if the associated test cases show a software
product properly reflects a specified requirement, demonstrating the software was
“built right” to satisfy a written requirement.

○ By contrast, a given safety requirement is validated if the software fulfills its
intended use in the intended environment, i.e., the software engineers “built to the
right requirement.” Therefore, it is possible to have verified safety requirements
that do not result in an intended safety benefit expected by end users—for
instance, if the item does not operate in the intended environment.

Risk assessment and safety engineering processes are typically implemented for any system that
has potential to impact vehicle safety. For example, an emissions control system may undergo a
safety engineering process if it has potential to create an unsafe operating condition (e.g., fire) in
a vehicle. The term “safety system” (e.g., active or passive safety system) is used to describe
systems that are explicitly designed with the objective of improving vehicle safety.

2.1.3 Security
Vehicles today include a large number of interconnected ECUs, either physically through wired
busses or wirelessly. With the trend of rising interconnectivity, in-vehicle networks are
increasingly exchanging information with other vehicles, road infrastructure, and the internet. A
growing need for networked E/E systems on motor vehicles has led to development and use of: 38

• Mechanisms to manage the security of in-vehicle networks as part of the system design,

• Mechanisms to facilitate secure, efficient network traffic through authentication and
authorization at runtime, and

• Mechanisms to enable security on legacy communication systems.

Security implications have led to a wide range of rapidly evolving technical advancements and
consensus standards related to cryptography, software integrity, and anomaly detection, such as:

• ISO/IEC 27034-1, Information technology: Security techniques – Application Security.

• ISO/IEC 27036-1, 2, 3:2014, Information technology: Security techniques – Information
security for supplier relationships.

• ISO/IEC 20243:2015, Information Technology: Open Trusted Technology Provider
Standard (O-TTPS) – Mitigating maliciously tainted and counterfeit products.

• SAE International (SAE) AS6462A - AS5553A, Fraudulent/Counterfeit Electronic Parts:
Avoidance, Detection, Mitigation, and Disposition Verification Criteria.

38 Mundhenk, P. (2017). Security for automotive electrical/electronic (E/E) architectures [Dissertation, Technische

Universität München]. Cuvillier Verlag. www.mundhenk.org/files/SecurityForAutomotiveEEArchitec-
tures_PhilippMundhenk_Dissertation.pdf

https://www.mundhenk.org/files/SecurityForAutomotiveEEArchitectures_PhilippMundhenk_Dissertation.pdf
https://www.mundhenk.org/files/SecurityForAutomotiveEEArchitectures_PhilippMundhenk_Dissertation.pdf

12

• ISO 3011, Information technology – Security techniques: Vulnerability handling
processes.

• ISO/SAE DIS 21434, Road Vehicles - Cybersecurity Engineering.

2.1.4 Real Time
Real-time systems are systems that rely on both (1) their input and output values and (2) on the
timeliness with which those values are received and produced. In addition to other types of
malfunctions, failures also occur when outputs are not produced before their deadline or
produced with high variability.

Closed-loop feedback control of physical systems require real-time criticality. Ignition, for
example, in an internal combustion engine, must occur within tight time tolerances with little
variability (“jitter”) to maintain the level of expected performance and avoid damaging the
engine or generating unexpected emissions.

In automotive applications, real-time systems are characterized by:

• Real-Time Operating Systems, Schedulers, and Middleware;

• Discrete time domain control functions and algorithms and relevant MoC;

• Time-based state machines;39

• Event triggered or time triggered, deterministic, real-time communications busses, and

• Peripheral and IO architectures that support discrete and time domain-based models of
computation.

Depending upon the specific application, other system properties may have real-time criticality,
including:

• Trustworthiness,

• Location awareness,

• Maintainability, and

• Availability.

A safety critical system is a form of critical system that has direct influence over safety
outcomes. It is important to understand that not all critical systems are safety critical systems.
However, safety critical systems may be characterized by having both critical properties and
safety properties.40 The ability to incorporate high reliability, safety, security, and real-time
systems in automotive E/E applications has heavily influenced the types of processes, tools, and
technology used to develop automotive software.

A system’s critical properties have strong influence over the MoC and lifecycle practices used
during the development of the system, and they are significant drivers of overall system cost.

39 AUTOSAR [AUTomotive Open System ARchitecture] (2017.) Specification of time service (Document ID 624).

www.autosar.org/fileadmin/user_upload/standards/classic/4-4-0/AUTOSAR_SWS_TimeService.pdf
40 Rushby, 1994.

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-4-0/AUTOSAR_SWS_TimeService.pdf

13

The impact of safety criticality on the cost of commercial aircraft software development serves
as an example. In the study DO-178C Costs Versus Benefits Hilderman calculates that avionics
software written to the highest level of criticality (DO-178C Level A) is 65 percent more
expensive than software written to the lowest level of criticality.41

2.1.5 Fault Tolerance and Fault Recovery
An important concept related to critical systems is fault management. To manage risk, it is not
only necessary to understand system criticality, but also how the system should behave in the
event of faults, errors, or failures. The fault-management strategy is driven by the likelihood and
severity of hazardous events that could result from system failures.

Fault-management strategies for automotive systems are typically developed based on hazard
analysis according to ISO 26262.42 Previously, the IEC 61508 standard for functional safety of
E/E safety-related systems was employed, along with various internal processes developed over
time.43 For automotive E/E systems, fault-avoidance and human-intervention strategies have
historically been chosen over more costly strategies involving redundant systems and fault
isolation (see below and Table 4).44

This report does not provide a detailed analysis of failure recovery strategies. Rather, fault-
management classification will be used as a means to compare safety processes across industries
and domains, particularly as strategies relate to the SDLC. This report will define and use a high-
level classification scheme to make macro comparisons of failure handling costs and sensitivity
across industries and applications.

A fault-management taxonomy is not explicitly designated in AUTOSAR or ISO 26262―there
are varying uses of descriptive terminology across the industry used to describe fault-
management strategies (“fail gracefully,” “fail silently,” “fail over,” and “safe-to-fail”).

Safety systems incorporate a range of fault tolerance and recovery strategies, and often
incorporate several methods. Hammet, Dubrova, and Koren and Krishna provide classification
and definition for fault-tolerance techniques that are commonly used in today’s E/E systems.45 46
47 48

41 Hilderman, V. (2014). DO-178C Costs Versus Benefits. Afuzion.
42 Note that ISO 26262 is a derivative of IEC 61508. Hazard Analysis and Risk Assessment (HARA) for automobile

software is described in Part 3 of ISO 26262.
43 Czerny et al., 2010
44 Wolf, J. (2015). Is this What the future will look like? Implementing fault tolerant system architectures with AU-

TOSAR basic software. Vector. https://assets.vector.com/cms/content/know-how/_technical-articles/AU-
TOSAR/AUTOSAR_Safety_ElektronikAutomotive_PressArticle_201511_EN.pdf

45 Ibid.
46 Dubrova, E. (2013). Fault-tolerant design. Springer.,”
47 Hammett, R . (2016, August 8-12). Developing electronic systems for safety critical applications. 34th Interna-

tional System Safety Conference 2016, Orlando, FL.
48 Koren, I., & Krishna, C. M. (2007). Fault-tolerant systems, 1st edition. Elsevier.

https://assets.vector.com/cms/content/know-how/_technical-articles/AUTOSAR/AUTOSAR_Safety_ElektronikAutomotive_PressArticle_201511_EN.pdf
https://assets.vector.com/cms/content/know-how/_technical-articles/AUTOSAR/AUTOSAR_Safety_ElektronikAutomotive_PressArticle_201511_EN.pdf

14

• Fault Avoidance and Removal - Achieved through quality control, mature and
disciplined development processes, and conservative design.

• Human Monitoring and Intervention - System incorporation of self-tests, diagnostics,
and reporting strategies including fault detection and isolation to allow human
intervention in case of a failure.49

• Safety Mechanisms (e.g., “fail safe”) - Incorporation of design features that cause the
system to fail in a manner that allows for safety of the system to be maintained (e.g.,
circuit break, surge/over-speed protection, safety valve).50

• Fault-Tolerant Systems (e.g., “fail operational”) - Use strategies such as containment
and redundancy in order to tolerate faults and still deliver an acceptable level of service.

2.2 Complexity
Complexity, which will be defined throughout the forthcoming section, has become one of the
biggest challenges for system engineers. There is growing recognition that there are cost-benefit
limits in the implementation of systems of complex, interconnected, software defined E/E
systems.51 Redman describes this as the “Affordability Limit,” and predicts that, based on costs
and expected selling prices for commercial airplanes, there is a point at which developmental
costs may not be recaptured. For a commercial airplane, the report estimates this to occur at
~27M lines of code onboard with a software base cost of ~$7.8B.52

Wirthlin makes the case that different industries face different challenges when it comes to
measuring and managing complexity (see Figure 1). Reinforcing this point, a recent automotive
steer-by-wire system, whose function is to replace the mechanical steering linkage between the
steering wheel and the driving wheels with wiring, contains ~14M LoC, approximately the same
as the entire code base for the flight software on board the Boeing 787.53 54

Methods for robustly measuring software complexity are an ongoing topic for debate within the
software engineering community, whether within the automotive domain or elsewhere. LoC tend
to be used as the default measurement of complexity as it is easy to quantify. However, many

49 Note that “fail over” fault recovery is often used to describe the fault recovery case where a backup system takes

control during failure of the primary system. Human monitoring and intervention might be considered to be
an implementation of a fail over strategy.

50 Note that ISO 26262-1:2018 defines safety mechanism as “a technical solution implemented by E/E functions or
elements (3.41), or by other technologies (3.105), to detect and mitigate or tolerate faults (3.54) or control
or avoid failures (3.50) in order to maintain intended functionality (3.83) or achieve or maintain a safe
state (3.131).”

51 Sheard, S. (2015, June 15). Aircraft systems: Three principles for mitigating complexity [SEI blog post]. Software
Engineering Institute. https://insights.sei.cmu.edu/sei_blog/2015/06/aircraft-systems-three-principles-for-
mitigating-complexity.html

52 Redman, D. A., Ward, D. T., Chilenski, J., & Pollari, G. (2010). Virtual integration for improved system design.
Software Engineering Institute.

53 Nexteer Automotive. (2018, April 9.) Nexteer expands strategic software investment & global team [Web press
release]. www.nexteer.com/release/nexteer-expands-strategic-software-investment-global-team/

54 Norris, G., & Wagner, M. (2009). Boeing 787 Dreamliner. Zenith Press. The Boeing 787 Dreamliners’ avionics
and online support systems account for between 6 and 7 million LoC. The total flight software of the 787
amounts to ~14 million LoC.

https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en:term:3.41
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en:term:3.105
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en:term:3.54
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en:term:3.50
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en:term:3.83
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en:term:3.131
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en:term:3.131
https://insights.sei.cmu.edu/sei_blog/2015/06/aircraft-systems-three-principles-for-mitigating-complexity.html
https://insights.sei.cmu.edu/sei_blog/2015/06/aircraft-systems-three-principles-for-mitigating-complexity.html
http://www.nexteer.com/release/nexteer-expands-strategic-software-investment-global-team/

15

studies55 56 57 investigate whether LoC is truly a robust measurement of software complexity. In
the 1970s and 1980s, when software was predominantly hand coded, LoC often served as an
indicator of software complexity and effort. Today, many factors that influence overall
complexity are not reflected by the LoC indicator. High product volume and the potential for
tens of thousands of possible ECU permutations contribute to E/E lifecycle complexity. This
complexity is compounded by short lifecycles and variability across dozens of E/E subsystems,
which must be integrated into the vehicle (examples of powertrain and telematics ECUs are
shown). Non-safety-critical systems such as infotainment, navigation, telematics, and comfort
features, which interact among themselves and with other software subsystems, and which can
have off-the-shelf rather than tailored code bases, are largely driving the increase in automotive
software LoC.58, 59 As seen in Table 2, the LoC of telematics can be six times higher than the LoC
of safety-critical powertrain controllers. It is possible that with the introduction of ADS, portions
of the automotive code base that are currently non-critical, e.g., navigation, may become more
critical in the future.

At least two other metrics for complexity are worth noting, both of which are also somewhat
easy to compute: Halstead Complexity, which is a measurement of data flows, and Cyclomatic
Complexity, which is a measurement of control flows. While LoC is probably the most used and
well-known complexity metric, Cyclomatic Complexity is also commonly used, and it is
calculated by measuring the number of linearly independent paths through the source code.

Software can become complex for a variety of reasons. In addition to core functionality that
software must provide, complexity is also often added for testing, verification, and validation
purposes. This added LoC can be disabled in production, effectively reducing complexity before
customer use.

55 Tashtoush, Y., Al-Maolegi, M., & Arkok, B. (2014, June). The correlation among software complexity metrics

with case study. International Journal of Advanced Computer Research, 4(2), 2277-7970.
https://arxiv.org/ftp/arxiv/papers/1408/1408.4523.pdf

56 Bloom, J. (2015, March 24). Five reasons you MUST measure software complexity [Web page]. Software Intelli-
gence Pulse. www.castsoftware.com/blog/five-reasons-to-measure-software-complexity

57 Bhatia, S., & Malhotra, J. (2014, August 1-2). A survey on impact of lines of code on software complexity. 2014
International Conference on Advances in Engineering & Technology Research (ICAETR - 2014), Unnao,
India. doi 10.1109/ICAETR.2014.7012875 https://ieeexplore.ieee.org/document/7012875

58 Edelstein, S. (2015, May 14). The Ford GT has more lines of code than a Boeing passenger jet [Web press re-
lease]. Motor Authority. www.motorauthority.com/news/1098308_the-ford-gt-has-more-lines-of-code-
than-a-boeing-passenger-jet#:~:text=The%20Ford%20GT%20Has%20More%20-
Lines%20Of%20Code%20Than%20A%20Boeing%20Passenger%20Jet,-Stephen%20Edelstein%20May

59 Saracco, R. (2016, January 13). Guess what requires 150 million lines of code ... [Blog post]. IEEE Future Direc-
tions. https://cmte.ieee.org/futuredirections/2016/01/13/guess-what-requires-150-million-lines-of-code/

https://arxiv.org/ftp/arxiv/papers/1408/1408.4523.pdf
http://www.castsoftware.com/blog/five-reasons-to-measure-software-complexity
https://ieeexplore.ieee.org/document/7012875
http://www.motorauthority.com/news/1098308_the-ford-gt-has-more-lines-of-code-than-a-boeing-passenger-jet#:%7E:text=The%20Ford%20GT%20Has%20More%20Lines%20Of%20Code%20Than%20A%20Boeing%20Passenger%20Jet,-Stephen%20Edelstein%20May
http://www.motorauthority.com/news/1098308_the-ford-gt-has-more-lines-of-code-than-a-boeing-passenger-jet#:%7E:text=The%20Ford%20GT%20Has%20More%20Lines%20Of%20Code%20Than%20A%20Boeing%20Passenger%20Jet,-Stephen%20Edelstein%20May
http://www.motorauthority.com/news/1098308_the-ford-gt-has-more-lines-of-code-than-a-boeing-passenger-jet#:%7E:text=The%20Ford%20GT%20Has%20More%20Lines%20Of%20Code%20Than%20A%20Boeing%20Passenger%20Jet,-Stephen%20Edelstein%20May
https://cmte.ieee.org/futuredirections/2016/01/13/guess-what-requires-150-million-lines-of-code/

16

Figure 1. Comparison of several industries and products in terms of complexity and product volume

The term complexity is subject to varying definitions. In terms of product variants and volume
the automotive industry has become uniquely complex.60 In terms of complexity, the automotive
industry is rapidly differentiating itself from other industries, particularly those that develop
large systems with relatively long life cycles and small production volumes (see Figure 1). The
automotive industry in contrast can be characterized by high-production volumes, high variance
within production models (e.g., options, configurations), and high development life-cycle
variability within products.

Examples of automotive software lifecycle variability are shown in Table 2. Within the vehicle
lifecycle (an average light vehicle age of 11.8 years61) each subsystem has its own lifecycle and
associated complexities.

On one hand, increasing use of software benefits the automotive industry. With high production
volumes, software allows addition of features and functionality using existing hardware without
adding significantly to manufacturing costs. On the other hand, high volume and high variance
within models also means that there are greater permutations of configurable software that must
be developed, tested, and properly activated in production vehicles.

60 Wirthlin, R. (2018, March 29). Embedded software in products: The convergence of ALM with systems engineer-

ing [Powerpoint]. Exploring Application Lifecycle Management and Its Role in PLM, 2018 Spring Meet-
ing, PLM Center of Excellence, Purdue University [Powerpoint].
https://polytechnic.purdue.edu/sites/default/files/files/Embedded%20software%20in%20products%20-
%20the%20convergence%20of%20ALM%20with%20Systems%20Engineering.pdf

61 Bureau of Transportation Statistics. (n.d.) Average Age of Automobiles and Trucks in Operation in the United
States [Web page, embedded Excel dataset]. www.bts.gov/content/average-age-automobiles-and-trucks-
operation-united-states

Automotive

https://polytechnic.purdue.edu/sites/default/files/files/Embedded%20software%20in%20products%20-%20the%20convergence%20of%20ALM%20with%20Systems%20Engineering.pdf
https://polytechnic.purdue.edu/sites/default/files/files/Embedded%20software%20in%20products%20-%20the%20convergence%20of%20ALM%20with%20Systems%20Engineering.pdf
http://www.bts.gov/content/average-age-automobiles-and-trucks-operation-united-states
http://www.bts.gov/content/average-age-automobiles-and-trucks-operation-united-states

17

Table 2. Examples of automotive software lifecycle and complexity variation

Lifecycle Property and the Associated Complexity Considerations

Lifecycle Property Complexity Metric Complexity Measurement

Production Volume62 Units Produced (e.g. Ford F-150/250/350/450,
2018)

~ 75,000/Month

Variants and Options63

Variants (e.g. Ford CD Class)

~10,000 Vehicle-Series-Variants
(based on ECU component permuta-
tions per vehicle line)

Automotive (relative) Mechanical Domain Com-
plexity 10^3 Dependencies

Automotive (relative) Onboard and Off Board
Software Domain Complexity 10^6 Dependencies

Automotive Powertrain64
Controller Lifecycle

Memory 256 Kb

LoC 50,000

Time to Market ~24 Months

Development Effort 40 person-years

Validation Time 5 Months

Automotive Telematics
Unit Lifecycle65

Memory 8Mb

LoC 300,000

Time to Market ~12 Months

Development Effort 200 person-years

Validation Time 2 Months

62 Ford Authority. (n.d.) Ford F-Series sales numbers [Web page]. http:/fordauthority.com/fmc/ford-motor-com-

pany-sales-numbers/ford-sales-numbers/ford-f-series-sales-numbers/
63 Davey, 2013.
64 Ferrari, A. (n.d.). An overview of (electronic) system level design: beyond hardware-software software co-design

[PowerPoint]. Parades GEIE [Gruppo Europeo di Interesse Economico] Roma. www.sti.uni-
urb.it/events/sfm06hv/slides/Ferrari.pdf

65 Ibid.

http://fordauthority.com/fmc/ford-motor-company-sales-numbers/ford-sales-numbers/ford-f-series-sales-numbers/
http://fordauthority.com/fmc/ford-motor-company-sales-numbers/ford-sales-numbers/ford-f-series-sales-numbers/
http://www.sti.uniurb.it/events/sfm06hv/slides/Ferrari.pdf
http://www.sti.uniurb.it/events/sfm06hv/slides/Ferrari.pdf

18

Sheard, of the Software Engineering Institute, notes that, “While complexity is often blamed for
problems, the term is usually not defined. There is widely acknowledged lack of agreement as to
how to define system complexity.”66
A wide range of factors drive complexity across the automotive SDLC.67 Despite lack of
agreement on, or standardized approaches for, how to best define and measure complexity,
Antinyan (Volvo), Davey (Ford), and Wirthlin (GM) make similar observations related to the
most common sources of automotive software complexity.

Software complexity in the automotive domain can be classified into the following groups:

Process Complexity - Interconnections between requirements, code, tests, interface definitions,
hardware architecture, software variants, software versions, and development tools is the source
of prodigious complexity that builds up in automotive software over the software evolution.68

Code Complexity - Structure of the computer code can have different magnitudes of influence
on complexity, and different implementations of the same task can have substantially different
code complexities.

Architectural and Variant Complexity - Different architectural perspectives yield different
requirements sets that must be reconciled:

• Electrical architectures deal with ECUs and interconnections,

• Software architectures deal with software components and their interconnections, and

• Variant architectures deal with different software configurations that may run on the
same ECU.

Requirements Complexity - Complexity of requirements for automotive functional and
performance characteristics and also for related E/E SDLC processes is driven by a wide range
of technical requirements and market factors.

2.3 Business Factors
IEC 61508 (see Section 2.1.5 Fault Tolerance and Fault Recovery) addresses safety systems that
are predominantly owned, operated, and maintained by commercial or government entities.
Nuclear power plants, rail systems, medical devices, and commercial airplanes are typical
examples of safety systems within the power, healthcare and transportation domains.

2.3.1 Ownership Models
Ownership, maintenance, and operation of commercial and government safety systems are often
accompanied by:

• Design for maintainability, design for durability;

• High utilization (hours in operation per day);

• Long product and sustainment life cycles;

66 Sheard, 2015.
67 Antinyan, 2018
68 Ibid.

19

• Fewer “options” for product personalization, brand identity, comfort, entertainment;

• Maintenance by professional, certified technicians; and

• Required, regulated, and audited maintenance intervals.

Some motor vehicles, such as buses and commercial trucks, have ownership models more
closely aligned with commercial and industrial systems. However, in general, consumer
ownership and operation of vehicles are much different, characterized by independent
ownership,69 low utilization, widely varying models of private use, high levels of product
customization, and widely varying levels of individual vehicle care and maintenance.

The large variety of product offerings and configurations, along with direct-to-consumer
marketing, are more akin to smartphones and other consumer electronics. For example,

• 77 percent of vehicle owners drive themselves as their primary means of transportation to
work - total car utilization is typically 1 to 2 hours per day (see Table 3 and Table 4);
personal vehicles are parked for much of their lifespan.

• Vehicle advertising in 2011 contributed to nearly 25 percent of all advertising revenue,
emphasizing the direct-to-consumer marketing approach.70

This section describes how consumer-driven demands, particularly where they differ from safety
systems found in other industries or domains, influences SDLC requirements.

2.3.2 Business Factors Today
Automotive manufacturers are incorporating more technology in new vehicles. The data in Table
3 shows that software and electronics are a large and growing portion of a new vehicle purchase,
and analysts expect this portion to grow from 10 percent of the vehicle purchase in 2019 to as
much as 50 percent by 2030.71 72 Much of the projected growth in automotive software stems
from multi-billion dollar private sector investment in ADS technology and supporting software.

69 Note that fleet sales made up approximately 17 percent of the new-vehicle market in 2019. Bond, V. Jr. (2019,

October 7). Fleet gains keep sales pace above 17 million [restricted web press release]. Automotive News.
www.autonews.com/sales/fleet-gains-keep-sales-pace-above-17-million

70 Marketing Schools. (2020, December 3). Marketing cars: How successful car manufacturers market their vehicles
to you ... [Web page]. www.marketing-schools.org/consumer-psychology/marketing-cars.html

71 Grand View Research. (2019, July). Automotive electronic control unit market size, share, & trends analysis re-
port by application, by propulsion type, by capacity, by vehicle type, by region, and segment forecasts,
2019 - 2025 (Report ID: 978-1-68038-367-6). www.grandviewresearch.com/industry-analysis/automotive-
ecu-market

72Burkacky, O., Deichmann, J., Doll, G., & Knochenhauer, C. (2018, February 14). Rethinking car software and
electronics architecture. McKinsey & Company. www.mckinsey.com/industries/automotive-and-assem-
bly/our-insights/rethinking-car-software-and-electronics-architecture

http://www.autonews.com/sales/fleet-gains-keep-sales-pace-above-17-million
http://www.marketing-schools.org/consumer-psychology/marketing-cars.html
http://www.grandviewresearch.com/industry-analysis/automotive-ecu-market
http://www.grandviewresearch.com/industry-analysis/automotive-ecu-market
http://www.mckinsey.com/industries/automotive-and-assembly/our-insights/rethinking-car-software-and-electronics-architecture
http://www.mckinsey.com/industries/automotive-and-assembly/our-insights/rethinking-car-software-and-electronics-architecture

20

While individually-owned passenger vehicles are expected to continue to hold their position as
the largest automotive software submarket, emerging submarkets could create demand for
different models of vehicle ownership.73 For instance, some forecasts project that the market
share for mobility as a service (MaaS) (e.g., car clubs and shared-use services) will grow by
more than 30 percent per year through 2030.74 A shift from individual ownership to ride-sharing
and car-sharing services may have an impact on the ownership model discussed in the previous
section. For instance, vehicles may begin to experience higher utilization rates (hours-in-service).
Fleet-operated vehicles may also benefit from more regular maintenance service from certified
professionals. There may also be a decrease in vehicle models and configurations as fleet
operators opt for more standardized equipment to simplify maintenance. However, the effect of
fleet ownership has not yet manifested as reduced complexity for software development.

This rapid change in ownership model is further accelerated when the vehicle is viewed as a
software platform, creating a unique, growing market for consumer software that is integrated on
the vehicle with critical software. Software developers can expect that automotive software
practices will continuously evolve, driven by rapidly changing market factors, including:

• Non-traditional suppliers of new automotive software platforms (e.g., NVIDIA, Tesla,
Google/Waymo, Apple);

• Heavy investment in new mobility models by large start-up ventures (e.g., Uber, Lyft);

• Demand for increasing automation;

• New and emerging vehicle architectures (e.g., battery electric vehicle (BEV), fuel cell
electric vehicle (FCEV), hybrid);

• New and increasing data exchanges between vehicles and other data sources (e.g.
weather);

• Traditional vehicle manufacturers (e.g., Volkswagen, GM) expanding product offerings
and investing in software, AI, new mobility models; and

• Increasing market segmentation and diversification of automotive software domains
based on:

• Demographics and geographies (e.g., “Gen X”, “millennial”, rural, urban);

• Technology (e.g., BEV, hybrid vehicle (HV), V2X, ADS, fuel cell);

• Transportation model (e.g., consumer, MaaS);

73 Kumar, A., Manda, and Atreya, A. (2020, May). Automotive software market by application (ADAS & safety, con-

nected services, autonomous driving, HMI, V2X, infotainment), software layer (OS, middleware, applica-
tion), EV application (charging, battery, V2G), vehicle and region - Global forecast to 2025.
MarketsandMarkets. www.marketsandmarkets.com/Market-Reports/automotive-software-market-
200707066.html?gclid=EAIaIQobChMIwebBuP7o4AIVZB6tBh0ksAxHEAAYASAAEgJlN_D_BwE

74 Godbole, A. (2020, August). Mobility as a service market by service (ride hailing, car sharing, micro mobility,
bus sharing, train), solution, application, transportation, vehicle type, operating system, business model
and region - Global forecast to 2030. MarketsandMarkets. www.marketsandmarkets.com/Market-Re-
ports/mobility-as-a-service-market-78519888.html

http://www.marketsandmarkets.com/Market-Reports/automotive-software-market-200707066.html?gclid=EAIaIQobChMIwebBuP7o4AIVZB6tBh0ksAxHEAAYASAAEgJlN_D_BwE
http://www.marketsandmarkets.com/Market-Reports/automotive-software-market-200707066.html?gclid=EAIaIQobChMIwebBuP7o4AIVZB6tBh0ksAxHEAAYASAAEgJlN_D_BwE
http://www.marketsandmarkets.com/Market-Reports/mobility-as-a-service-market-78519888.html
http://www.marketsandmarkets.com/Market-Reports/mobility-as-a-service-market-78519888.html

21

• Propulsion energy supply and availability (e.g., electricity, gasoline, hydrogen, diesel,
natural gas, ethanol mixes, biodiesel, propane); and

• Automotive technology subdomain (e.g., ADS, ADAS).

Vehicle manufacturers are under growing pressure to innovate while containing costs. The
industry is increasingly investing in and relying upon software for vehicle innovation, while also
changing and adapting to new models of vehicle maintenance, delivery, and ownership. As a
result, the auto industry will continue to see pressure to vigorously improve the critical behavior
(reliability, dependability, security, safety, maintainability) of automotive E/E systems. 75 76 77

Table 3. Overview of Some Current Business and Market Statistics in the Automotive Sector

Ownership78

 Total vehicles registered in USA
~240M Vehicles
(2015)

 Total vehicles in fleets in USA
5.7M Vehicles
(2015)

 Number of vehicles per Household (USA) 1.95 (2015)

Contribution to Vehicle
Content79 80 81 82

Software as a Percent of Overall Vehicle Cost (Aver-
age) 10% (2018)

 Electronics parts as a Percent of Overall Vehicle Cost 30% (2018)

Forecasted Software as a Percent of Overall Vehicle
Cost 30% - 50% (2025)

 Global Automotive ECU Market $33.5B (2016)

 Forecasted Global Automotive ECU Market $60.5B (2025)

75 Glance, D. (2017, September 10). As your car becomes more like an iPhone, get ready to update its software reg-

ularly [Web page]. The Conversation US, Inc. https://theconversation.com/as-your-car-becomes-more-like-
an-iphone-get-ready-to-update-its-software-regularly-83780

76 Gelles, D., Tabuchi, & H. Dolan, M. (2015, September 26). “Complex car software becomes the weak spot under
the hood.” New York Times.

77 Hars, A. (2017, September 23). Self-driving vehicles: The “platform” business model [Web page]. Driverless car
market watch. www.driverless-future.com/?p=1091

78 Bronzini, M., Fletcher, W., Rick, C., Camp, J., Firestine, T., Schmitt, R., Beningo, S., Ford, C., Liu, M., Menegus,
D., Nazareth, R., Nguyen, L., Reschovsky, C., Riddle, J., Smallen, D., Smith-Pickel, S., & Tang, C. (2017).
Transportation Statistics Annual Report 2017. Bureau of Transportation Statistics.
https://cms7.bts.dot.gov/sites/bts.dot.gov/files/docs/browse-statistical-products-and-data/transportation-
statistics-annual-reports/215041/tsar-2017-rev-2-5-18-full-layout.pdf

79 Burkacky, et al., 2018.
80 Statista. (2021). Automotive electronics cost as a percentage of total car cost worldwide from 1970 to 2030 [Web

page]. www.statista.com/statistics/277931/automotive-electronics-cost-as-a-share-of-total-car-cost-world-
wide/

81 Grand View Research, 2019.
82 Ibid.

https://theconversation.com/as-your-car-becomes-more-like-an-iphone-get-ready-to-update-its-software-regularly-83780
https://theconversation.com/as-your-car-becomes-more-like-an-iphone-get-ready-to-update-its-software-regularly-83780
http://www.driverless-future.com/?p=1091
https://cms7.bts.dot.gov/sites/bts.dot.gov/files/docs/browse-statistical-products-and-data/transportation-statistics-annual-reports/215041/tsar-2017-rev-2-5-18-full-layout.pdf
https://cms7.bts.dot.gov/sites/bts.dot.gov/files/docs/browse-statistical-products-and-data/transportation-statistics-annual-reports/215041/tsar-2017-rev-2-5-18-full-layout.pdf
http://www.statista.com/statistics/277931/automotive-electronics-cost-as-a-share-of-total-car-cost-worldwide/
http://www.statista.com/statistics/277931/automotive-electronics-cost-as-a-share-of-total-car-cost-worldwide/

22

Product Lifecycle83 84 85 86

 Average Vehicle Age (USA) 11.5 years

 Average Vehicle Life Expectancy (USA) 11-17 years

 Average Vehicle Product Development Lifecycle 6.7 years

 Number of Light Vehicle Retail Sales in the US ~17M units (2018)

Usage and Mobility Model 87

Principal Means of Transportation to Work - Drives
Self 77% (2015)

 Principal Means of Transportation to Work - Carpool 9% (2015)

Principal Means of Transportation to Work - Public
Transportation, Cab, Bicycle, Motorcycle, Other 14.% (2015)

Emerging and Changing Business Environment

Automotive software incorporates the challenges of being complex and safety critical, while also
meeting consumer-driven demands for a variety of features and options. This trend is coupled
with an industry knowledge base that is still transitioning from mechanical to software-based
system development, following architectural consensus standards and software process
consensus standards that are themselves still maturing (e.g., ISO 26262 and AUTOSAR).

83 Bureau of Transportation Statistics (2015). Average age of automobiles and trucks in operation in the United

States, 2015.
84 Consumer Reports. (2018, November 6). Make your car last 200,000 miles: How to go the distance and save tens

of thousands of dollars [Web page]. www.consumerreports.org/car-repair-maintenance/make-your-car-last-
200-000-miles/

85 Center for Automotive Research. (2017, September 20). Automotive Product Development Cycles and the Need
for Balance with the Regulatory Environment [Web page]. www.cargroup.org/automotive-product-devel-
opment-cycles-and-the-need-for-balance-with-the-regulatory-environment/

86 Lassa, T. (2018, January 4). U.S. auto sales totaled 17.25-million in 2017: Trucks and SUVs now account for two-
thirds of the market, Toyota estimates [Web page]. Motortrend. www.automobilemag.com/news/u-s-auto-
sales-totaled-17-25-million-calendar-2017/

87 Bronzini et al., 2017.

http://www.consumerreports.org/car-repair-maintenance/make-your-car-last-200-000-miles/
http://www.consumerreports.org/car-repair-maintenance/make-your-car-last-200-000-miles/
http://www.cargroup.org/automotive-product-development-cycles-and-the-need-for-balance-with-the-regulatory-environment/
http://www.cargroup.org/automotive-product-development-cycles-and-the-need-for-balance-with-the-regulatory-environment/
http://www.automobilemag.com/news/u-s-auto-sales-totaled-17-25-million-calendar-2017/
http://www.automobilemag.com/news/u-s-auto-sales-totaled-17-25-million-calendar-2017/

23

The research for this study has identified several key business trends that are most likely to
impact SDLC practices:

• Growing demand for new software and technology features on traditional vehicle
platforms (including conversion of legacy mechanical systems into mechatronic systems).

• New mobility models.

• Demand for automation and ADAS.

• Connectivity.
Table 4 shows how these trends are likely to impact different requirements that drive developmental prac-
tices. 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

88 Wolski, C. (2016). How to leverage fleet vehicle purchases [Web page]. Fleet Financials. www.fleetfinan-

cials.com/156847/how-to-leverage-fleet-vehicle-purchases
89 Shin, D., Park, K., & Park, M. (2018). Effects of vehicular communication on risk assessment in automated driv-

ing vehicles. Applied Science, 8, 2632. doi.org/10.3390/app8122632
90 Saberi, A. K., Barbier, E., Benders, F., & van den Brand, M. (2018, April 24). On functional safety methods: A

system of systems approach. 12th Annual IEEE International Systems Conference (SysCon), Vancouver,
Canada. doi: 10.1109/SYSCON.2018.8369598

91 Ivanov, I., Maple, C., Watson, T., & Lee, S. (2016, March 28-29). Cyber security standards and issues in V2X
communications for Internet of Vehicles. Living in the Internet of Things: Cybersecurity of the IoT – 2018,
London.

92 Bernon-Enjalbert, V., Blazy-Winning, M., Gubian, R., Lopez, D., Meunier, J.-P., & O’Donnell, M. (n.d.) Safety-
integrated hardware solutions to support ASIL-D applications. Freescale.
https://www.nxp.com/docs/en/white-paper/FUNCSAFTASILDWP.pdf

93 Muehlhauser, L. (2013, August 25). Transparency in safety-critical systems [Web page]. Machine Intelligence
Research Institute. https://intelligence.org/2013/08/25/transparency-in-safety-critical-systems/

94 Dawson, N. (2017). Designing effective policies for safety-critical AI [Web page blog]. Bits and Atoms.
https://bitsandatoms.co/effective-policies-for-safety-critical-ai/

95 Hewitt, C. (2012). What is computation? Actor model versus Turing's model in a computable universe: Under-
standing computation & exploring nature as computation. World Scientific Publishing Company.

96 Koopman, P., & Wagner, M., (2016). Challenges in autonomous vehicle testing and validation. SAE International
Journal of Transportation Safety, 4(1). doi.org/10.4271/2016-01-0128

97 Silver, A. (2016, October 7). Why AI makes it hard to prove that self-driving cars are safe: Engineers weigh in on
the pitfalls of machine learning and autonomous driving [Web page]. IEEE Spectrum.

98 Aitrends. (2019, February 15). Current generation of self-driving cars AI needs a safety certification process [Web
page]. Cambridge Innovation Institute. www.aitrends.com/ai-world-2018/current-generation-of-self-driv-
ing-cars-ai-needs-a-safety-certification-process/

99 U.S. Department of Homeland Security. (2018). AI: Using standards to mitigate risks. www.dhs.gov/sites/de-
fault/files/publications/2018_AEP_Artificial_Intelligence.pdf

100 Muehlhauser, 2013.
101 Dawson, 2017.
102 Bernon-Enjalbert, et al., n.d.

http://www.fleetfinancials.com/156847/how-to-leverage-fleet-vehicle-purchases
http://www.fleetfinancials.com/156847/how-to-leverage-fleet-vehicle-purchases
http://doi.org/10.3390/app8122632
https://www.nxp.com/docs/en/white-paper/FUNCSAFTASILDWP.pdf
https://intelligence.org/2013/08/25/transparency-in-safety-critical-systems/
https://bitsandatoms.co/effective-policies-for-safety-critical-ai/
http://doi.org/10.4271/2016-01-0128
http://www.aitrends.com/ai-world-2018/current-generation-of-self-driving-cars-ai-needs-a-safety-certification-process/
http://www.aitrends.com/ai-world-2018/current-generation-of-self-driving-cars-ai-needs-a-safety-certification-process/
http://www.dhs.gov/sites/default/files/publications/2018_AEP_Artificial_Intelligence.pdf
http://www.dhs.gov/sites/default/files/publications/2018_AEP_Artificial_Intelligence.pdf

24

Table 4. High level analysis of how global business requirements impact development practices for
critical systems

Business Trends
Likely to Impact

Lifecycle Practices
Potential Impact on the Automotive Software Lifecycle

Increasing Number
of Mechatronic and
Software Features

● Increasing complexity (architectural, code, requirements, process, product vari-
ant) driven by more interconnected software features

● Increasing numbers of critical and safety critical systems
● Increasing numbers of mixed criticality systems (e.g., interactions between

telematics, entertainment, and ADAS systems)
● Continuing need to integrate legacy systems with new architectures
● Increasing criticality related to security, maintainability, reliability, etc.
● Increasing reliance on existing reference architectures (e.g., AUTOSAR, auto-

motive grade Linux [AGL])
● Increasing need for effective fault management, process maturity, quality in or-

der to drive down the number of E/E related defects

Mobility as a Service
(MaaS) and Shared

Use

● Decreasing product variant complexity - lower number of options and models
due to bulk/fleet sales

● Changing criticality related to security, maintainability, reliability, location
awareness, and availability due to increased utilization/duty cycle, commercial
use, fleet management system vulnerabilities

● Increasing need for fleet maintenance processes including health monitoring.

Automated Driving
Systems103

● Increased architectural, code, process, and requirements complexity due to
growing number of E/E systems, new/changing MoC, changing and increasing
criticality of E/E systems

● Changing MoC drive demand for new hardware architectures based on GPU,
high bandwidth busses, high bandwidth sensors, highly integrated/arbitrated
subsystems, etc.

● Changing failure management strategies with increasing numbers of critical E/E
systems, (e.g., arbitration and redundancy are used more)

● Changing criticality for systems related to trustworthiness, location awareness,
AI, ethics

● New and changing MoC including stochastic and machine learning, probabilis-
tic computing, arbitration

● Changing SDLC methodologies including AI-driven software development
● Need for consensus standards maturity related to AI, learning algorithms, prob-

abilistic computing, AI coding practices, and AI algorithms
● Evolution of existing reference architectures (e.g., AUTOSAR) to accommo-

date new MoC and architectures; introduction of new reference architectures

Software Intercon-
nectivity with

Systems Outside the
Vehicle

● Increasing risk management complexity due to more interconnections to other
software systems

● Changing risk models; likelihood and severity of failures are increased as vehi-
cle software integrates with other/larger systems.

● Changing criticality for systems related to security, geolocation, quality of ser-
vice

103 This is a reference to a wide range of system capabilities covered by implementation of software under the levels

of driving automation (3-5) as defined in SAE J3016, June 2018.

25

Business Trends
Likely to Impact

Lifecycle Practices
Potential Impact on the Automotive Software Lifecycle

● Changing failure management strategies with increasing numbers of intercon-
nected critical systems

● Need for consensus standards maturity related to security, communications pro-
tocols, interoperability, specific and appropriate for the intended use cases.

● Evolution of existing reference architectures (AUTOSAR, etc.) and the intro-
duction of new reference architectures

2.4 Current State-of-the-Art
Today, highly specialized processes are used for hardware and software development for
automotive E/E systems, driven by functional and performance requirements and global
considerations. The uniqueness of global, functional, and performance requirements across the
automotive industry has led to SDLC processes and tooling that are specialized and unique to the
industry.

The research indicates that best practices for today’s SDLC processes are designed to support the
following objectives:104

• Minimize software development time,

• Maximize model-based software,

• Use ACG in support of necessary MoC and languages,

• Use reference architectures to maximize reuse and interoperability, and to minimize
complexity,

• Maximize reuse of hand-written software components, and

• Minimize hardware platform change requests.

2.4.1 Challenges for Software Requirements
In order to understand current and future impacts on software development, production, and
maintenance practices for vehicular software, it is important to understand the demands on
software processes that are being used.

The study of requirements analysis and flow down is a complex field of study in and of itself.105
The SDLC process is designed by systems engineers with the goal of ensuring that as many of
the design requirements are captured and completed as possible.106 The ability to achieve this
goal is influenced by many factors outlined in this report, and engineers are continuously faced
with the challenges of requirements completeness, testability, traceability (of test results to

104 Ferrari, n.d.
105 Lee, S., & Duo, S. (2013, November 19-21). Safety analysis of software requirements: model and process. 3rd

International Symposium on Aircraft Airworthiness, Toulouse , France.
106 Jackson, S. (1997). Systems Engineering for Commercial Aircraft: a domain specific adaptation. Ashgate.

26

requirements and derived requirements to top-level requirements), “requirements creep” when
extra requirements that inadvertently expand scope are added to the core set, and a myriad of
other difficulties that make requirements management a highly complex endeavor. In 2014
Braun noted that “the growing complexity (of software intensive embedded systems in the
automotive industry) drives current requirements engineering practices to the limits.”107

For manufacturers of vehicles, requirements management across the entire product development
lifecycle and subdomains, including the software development lifecycle, is a great undertaking.
Correct and complete specification of requirements is particularly important for software.
Software safety is not driven by random failures. Rather, studies have shown that most errors in
software result from flawed or incomplete requirements,108 and system engineers often use three
categories for defining requirements.109

• Functional Requirements - the functional needs of the vehicle, without any performance
specifications.

• Performance Requirements - the measure of the extent to which the system performs a
function.

• Constraints - non-performance requirements that cannot be traced to a function (also
called global requirements).

Critical and safety systems impose further requirements and constraints on the SDLC. As part of
the item definition in Part 3 of ISO 26262, the functional and non-functional (e.g., performance)
requirements of a system must be known in order to determine whether an observed behavior is
malfunctioning:

“Absence of unreasonable risk due to hazards caused by malfunctioning behavior of
Electrical/Electronic systems.” (ISO 26262)110

2.4.2 Challenge of Resolving Lifecycle Practices against Requirements
The practice of developing automotive performance and functional requirements is complex and
subject to rapidly changing and contradictory demands that are often difficult to interpret. Usable
requirements can be extremely challenging to develop, particularly when trade-offs often emerge
among levels of costs, performance, safety, security, and other factors.

2.4.3 Key Software Development Approaches
Automotive software onboard the vehicle is predominantly described as embedded. Embedded
systems are dedicated computers that are built into the system; they are usually based on a
microcontroller programmed and controlled by an RTOS or task scheduler, with a dedicated

107 Braun, P., Broy, M., Houdek, F., Kirchmayr, M., Müller, M., Penzenstadler, B., Pohl, K., & Weyer, T. (2010).

Guiding requirements engineering for software-intensive embedded systems in the automotive indus-
try. Computer Science - Research and Development, 29, 21-43.

108 Leveson, N. (2012). Engineering a safer world. MIT Press.
109 Jackson, S. (1997). Systems engineering for commercial aircraft: A domain-specific adaptation. Ashgate.
110 Note: clause 5.4.1 of Part 3 of ISO 26262 explicitly states that: "The requirements of the item shall be made

available [as a prerequisite of the ISO 26262 functional safety process] Note: If the functional and non-
functional requirements are not already available, their generation can be triggered by the requirements of
this clause.”

27

function within a larger mechatronic or electronic system, often with real-time computing
resource constraints, such as limited ROM, EEPROM, etc.

2.4.4 Models of Computation
MoCs describe the types of mathematical functions that a computer architecture can process.
Many consumer devices are “general purpose” computing devices, such as personal computers,
which are designed to handle a broad range of MoCs. In vehicles, computer architectures are
dedicated embedded systems, designed around a specific MoC.

In automotive embedded software, concurrent tasks (processes) and threads are scheduled by the
RTOS. Tasks interact with each other and the environment, with behavior and interaction
mechanisms defined by the MoC.111 For automotive embedded systems, MoCs center on the
ability to run tasks that rely on the following.

• Concurrency

• Communication and synchronization

• Time

• Hierarchy

Models of computation for networked real-time control systems found in automotive software
applications are specialized. An examination of the MoC provides insight into how to classify
automotive software systems and compare them with other industries and domains.

Automotive MoC include:

• Communicating Finite State Machines - Used frequently for modeling communication
protocols;112

• Dataflow Process Networks - Used for visual dataflow programming and model based
design;113

• Discrete Event - Used for modeling and simulation of communication networks,
hardware architectures, systems of systems, and in the design of and software synthesis
for sensor networks, distributed real-time software, and hardware software systems;114

• Codesign Finite State Machines - Used for MBD of embedded software systems;115 and

• Synchronous Reactive - Used to model embedded control systems where safety must be
preserved.116

111 Lee, E. A. (2011). Concurrent models of computation [PowerPoint Slides for course of same name]. UC Berke-

ley.
112 Lee, 2011.
113 Lee, E. A., & Parks, T. M. (1995). Dataflow process networks. Proceedings of the IEEE 83(5):773-801. doi:

10.1109/5.381846,”
114 Lee, 2011.
115 Mahapatra, R. N. (2002). Co-design finite state machines [PowerPoint]. Texas A&M University.,”
116 Edwards, S. A., Lee, E. A., Tripakis, S., & Whitaker, P. (2014). Synchronous-reactive models. In Ptolemaeus, C.,

ed., System design, modeling, and simulation using Ptolemy II. Ptolemyy.org, Berkeley, CA.,”

28

2.4.5 Architectural Standards
The models of computation used in automotive software development rely on highly integrated
and structured lifecycle practices for safety, architecture, and design. The automotive industry
has developed several process consensus standards, including:

• Automotive software process improvement and capability determination (ASPICE) - A
standard for implementation of enterprise software capability that is specific to the
automotive domain. The ASPICE consensus standard is a process assessment and
capability model, and is older and more generic than ISO 26262, which is focused on
safety.

• AUTOSAR software process engineering meta-model (SPEM) an open and standardized
software architecture for automotive ECUs. SPEM is a meta-model for defining
processes and their components. (“Software Process Engineering Meta-model
Specification,” Object Management Group, 2001)

• Part 6 of ISO 26262 - "Road vehicles – Functional safety," an international standard for
functional safety of E/E systems in production automobiles defined by the International
Organization for Standardization in 2011, specifically deals with software.

A common thread among these consensus standards is the automotive industry’s view of the
SDLC. The V-Cycle is referenced as the prevailing SDLC methodology in each of the above
consensus standards.

Dvorak’s NASA Study on Flight Software Complexity identifies establishment of reference
architectures as critically important to address risks associated with the growth in size and
complexity of flight software.117

Vehicle manufacturers and suppliers have identified similar needs due to the complexity and
heterogeneity of wide-ranging, often proprietary, computing architectures; communications
protocols; and sensing and actuation technologies. The automotive ecosystem consists of
hundreds of suppliers across thousands of model variants and vehicle implementations.118 119

The challenge of maintaining real-time, dependable, and safe system architectures has led the
automotive industry to promote architectural consensus standards that allow interoperability
across platforms and across product development lifecycles that often extend across supply chain
boundaries. However, standardization can be a slow, inconsistent process, and it can be slowed
by conflicting interests and competitive factors.
Standards and Licensing

As mechanical systems are replaced by mechatronics, vehicle content is progressively being
defined by software-based control systems. Unlike mechanical and electrical components,
software is often licensed, and has the potential to be upgraded, monitored, and changed by the
software producer. Software content is beginning to be offered under end-user licensing that
more closely resembles the plan for a cell phone or personal computer than a traditional vehicle

117 Dvorak, D. L. (2009, April 6-9). NASA study on flight software complexity. AIAA Infotech Aerospace Confer-

ence, Seattle WA.
118 Davey, 2013.
119 Wirthlin, 2016.

29

purchase, lease, or maintenance agreement.120 121 Some models of automotive software licensing
are explicitly claiming acceptance of end-user licensing by the consumer.

Despite the competitive factors driving proprietary content, there are benefits to and activities
that target reducing complexity and facilitating open consensus standards for interoperability, for
example, to integrate supplier workflow, and to standardize component and subsystem interfaces
(e.g., AUTOSAR, Section 2.4.5.1).

Two of the most noteworthy standardization efforts with impacts on automotive software are
AUTOSAR and Automotive Grade Linux.

2.4.5.1 AUTOSAR

Perhaps the most widely used and accepted architectural standard for automotive E/E
architectures, AUTOSAR is a partnership of automotive manufacturers and suppliers working
together to develop and establish an open industry standard for automotive E/E architectures.122
123 Today, AUTOSAR core and premium partners constitute a large, cross section of vehicle
manufacturers, component, and tools suppliers.

The Verband der Automobilindustrie survey referenced in Future Programming Paradigms in
the Automotive Industry found that AUTOSAR is used in 82 percent of automotive software
projects and OSEK in 55 percent of automotive software projects.124 125

AUTOSAR provides a set of architectural consensus standards designed to allow interoperability
between system hardware and software by describing and defining basic software modules,
application interfaces, and a common development methodology based on standardized
exchange formats. It is designed to allow increased use of commercial-off-the-shelf hardware,
software, and tools, and increased use of model-based development practices by automotive
manufacturers and suppliers.

An in-depth study of AUTOSAR may provide more insight into how the automotive industry is
tackling the challenges of portability and composability of software components from a
multitude of suppliers with varying competitive interests, across automotive subdomains with
differing functional, safety, critical, and performance requirements.

120 Bloomberg, J. (2017, April 30). John Deere's digital transformation runs afoul of right-to-repair movement [Web

page]. Forbes. www.forbes.com/sites/jasonbloomberg/2017/04/30/john-deeres-digital-transformation-runs-
afoul-of-right-to-repair-movement/#3eaf04975ab9

121 Glance, 2017.
122 AUTOSAR. (2008). Technical overview V2.2.1 R3.0 Rev 0001 (Document ID 067).
123 Hurley, B. (2011, March 1). Global car platforms: Automotive design with the world in mind [Web page].

Techbriefs.
124 Molotnikov, A., Schorp, K., Aravantinos, V., & Schätz, B. (2016). Future programming paradigms in the auto-

motive industry; German Association of the Automotive Industry.www.vda.de/dam/vda/publica-
tions/2016/FAT/FAT-Schriftenreihe_287.pdf

125 OSEK (Offene Systeme und deren Schnittstellen für die Elektronik in Kraftfahrzeugen [Open Systems and their
Interfaces for the Electronics in Motor Vehicles])is a standards body that has produced specifications for
the embedded operating system ISO 17356-3; AUTOSAR “Specification of Operating System” uses OSEK
OS:ISO 17356-3 as the basis for the AUTOSAR OS.

http://www.forbes.com/sites/jasonbloomberg/2017/04/30/john-deeres-digital-transformation-runs-afoul-of-right-to-repair-movement/%233eaf04975ab9
http://www.forbes.com/sites/jasonbloomberg/2017/04/30/john-deeres-digital-transformation-runs-afoul-of-right-to-repair-movement/%233eaf04975ab9
http://www.vda.de/dam/vda/publications/2016/FAT/FAT-Schriftenreihe_287.pdf
http://www.vda.de/dam/vda/publications/2016/FAT/FAT-Schriftenreihe_287.pdf

30

AUTOSAR’s “classic platform” sets consensus standards for embedded real-time ECUs and
operating systems and for hardware and software components (including real-time elements) in
vehicle architectures.

The motivations126 and perceived benefits and drawbacks127 behind the development of key
AUTOSAR features and consensus standards are shown in Table 5 and Table 6.
Table 5. Reported motivations of automotive manufacturers and suppliers for using AUTOSAR solutions

AUTOSAR Solution Motivation

Standardization of specification ex-
change formats

● Improvement in specification (format and content).
● Opportunity for a seamless tool chain.

Basic Software Core ● Enhancement of software quality.
● Concentration on functions with competitive value.

Microcontroller Abstraction ● Microcontroller can be exchanged without the need for adapta-
tion of higher software layers.

Runtime Environment (RTE) ● Encapsulation of functions creates independence of communi-
cation technology.

● Communication easier through standardized mechanisms.
● Partitioning and relocation of functions possible.

Standardization of Interfaces ● Reduction/avoidance of interface proliferation within and
across vehicle manufacturers and suppliers.

● Eased implementation of hardware independent software func-
tionality by using generic interface catalogues.

● Simplifies the model-based development and allows the use of
standardized AUTOSAR code generation tools.

● Reusability of modules across several vehicle manufacturers.
● Exchangeability of components from different suppliers.

126 AUTOSAR, 2008.
127 Martínez-Fernández, S., Ayala, C. P., Franch, X., & Nakagawa, E. Y. (2015, May 4). A survey on the benefits

and drawbacks of AUTOSAR. doi: 10.1145/2752489.2752493

31

Table 6. Survey response summary of perceived benefits and drawbacks of using AUTOSAR by engineers
and managers within automotive tool suppliers, vehicle manufacturers, and component suppliers

AUTOSAR Benefits AUTOSAR Drawbacks and Risks

Standardization
Reuse
Interoperability
Improved Communication
Reduced Development Costs
Knowledge Repository
Reduced Time to Market
Reduced Maintenance Costs
Best Practices
Enhanced Quality
Increased Productivity
Risk Reduction
Mission and Strategy
Reputation

Complexity
Initial Investment
Learning Curve
Term Confusion
Abstractness
Dependency
Inefficient Instantiation
Bad Documentation

2.4.5.2 Automotive Grade Linux
Open Source Software

The future of proprietary versus open source software onboard vehicles has become a prominent
topic in the automotive industry.

Vehicle manufacturers, such as Tesla, have developed large amounts of software under Linux
open source licensing, and are required to publish much of their internally developed software
under the terms of the open licensing agreement. 128

While competition for share of the vehicle software platform drives many producers to create
proprietary intellectual property (IP), opposing requirements to lower cost and standardize
software architectures has led suppliers to use open source components. This in turn affects how
suppliers’ business models and views of proprietary rights are evolving, affecting the value of
the automotive software platform in terms of IP and data.

Beyond the need for standardization, one of the key motivations given by AGL collaborators for
contributing to the open-source code base concerns the belief that the value of the software is not
related to IP, but rather the ability to keep and control data that could otherwise be captured by
third-party applications and smartphone interfaces.129 Collaboration on the open-source platform
allows vehicle manufacturers to leverage collective resources in order to compete against
emerging In-Vehicle-Infotainment and Telematics offerings by “non-traditional” suppliers such
as Apple (CarPlay) and Google (Android Auto).

128 Vaughan-Nichols, S. (2018, May 30). Tesla starts to release its cars' open-source Linux software code. ZDNet.

http://www.zdnet.com/article/tesla-starts-to-release-its-cars-open-source-linux-software-code/
129 Tajitsu, N. (2017, May 31). Toyota uses open-source software in new approach to in-car tech [Restricted web page]. Automo-

tive News. www.autonews.com/article/20170531/OEM04/170539963/toyota-uses-open-source-software-in-
new-approach-to-in-car-tech

http://www.zdnet.com/article/tesla-starts-to-release-its-cars-open-source-linux-software-code/
http://www.autonews.com/article/20170531/OEM04/170539963/toyota-uses-open-source-software-in-new-approach-to-in-car-tech
http://www.autonews.com/article/20170531/OEM04/170539963/toyota-uses-open-source-software-in-new-approach-to-in-car-tech

32

The evolution of open-source software onboard vehicles has the potential to significantly impact
software lifecycle practices. As described elsewhere in this document, ISO 26262 processes and
software product liability are two leading contributors to the overall cost of critical software
development, and both are significantly impacted by the use of open-source safety software.

AGL Software Defined Connected Car Architecture
There is evidence that an increasing number of vehicle manufacturers and suppliers are looking
at open-source software for a wide range of automotive applications.130 131 132

AGL members comprise 120+ component makers, software developers, and vehicle
manufacturers, including Jaguar Land Rover, Mazda, Suzuki, Honda, Nissan, Ford, Toyota, and
Daimler.

Linux is attractive due to the industry’s desire to drive interoperability and standardization
around common backbone components (e.g., transport layer, security framework, network
interfaces, audio control interfaces), where there is little added value or possibility for brand
differentiation by “reinventing the wheel.”

As described by Vaughan-Nichols, as vehicle manufacturers develop more and more open-
source content, including “Autopilot” and other critical features, it is likely that open-source
platforms will quickly gain inertia as they have in cloud, industrial, and desktop computing
applications.

While AGL is still a relatively new platform architecture, the AGL roadmap plans to address all
software on the vehicle:

“Although initially focused on infotainment, AGL is the only organization planning to ad-
dress all software in the vehicle: infotainment, instrument cluster, heads-up-display,
telematics/connected car, advanced driver assistance systems, functional safety and au-
tonomous driving.”133

2.4.5.3 Communications Bus Standards

The evolution of automotive E/E architectures has led to increasingly complex distributed
systems with demanding requirements for determinism,134 reduced cycle times, and increased
bandwidth. Modern vehicles may integrate up to 150 ECUs on several Communications Bus
Networks. Busses are specified based on requirements for safety, performance/bandwidth, and
ECU application within the subdomain (see Table 7).135

130 Vaughan-Nichols, 2018.
131 Holmes, F. (2018, October 8). Auto industry’s thirst for software is quenched by open source. Automotive World.

www.automotiveworld.com/articles/auto-industrys-thirst-for-software-is-quenched-by-open-source/
132 Cauchy, D. (2018, September 5). How open source is transforming the automotive industry [Web page]. The

Linux Foundation.
133 The Linux Foundation. (2016). About automotive grade Linux [Web page]. www.automotivelinux.org/about
134 Determinism describes the predictability and repeatability of a software component when generating output from

a set of inputs.
135 Keskin, U. (2009). In-vehicle communication networks: A literature survey. Computer Science Reports, Vol. 0910.

Technische Universiteit Eindhoven.

http://www.automotiveworld.com/articles/auto-industrys-thirst-for-software-is-quenched-by-open-source/
http://www.automotivelinux.org/about

33

Table 7. Automotive communications bus classifications and correlated applications and performance
requirements

 Powertrain

Chassis
(Active

Safety)136 Body Telematics
Passive

Safety137

Program Size 2MB 4.5MB 2.5MB 100MB 1.5MB

Number of ECU 3-5 6-10 14-30 4-12 11-12

Bandwidth 500 Kb/s 500 Kb/s 100 Kb/s 200 Mb/s 10 Mb/s

Cycle Time 10ms - 10s 10ms - 10s 50ms - 2s 20ms - 5s 50ms

Safety Requirements high high low low very high

Bus Type Class C Class C Class A Class D Class D

 Class B

SAE has classified automotive bus138 applications into classes A, B, C, and D, in increasing order of criti-
cality for real-time and dependability constraints.139

• Class A denotes low-speed networks with data rates <10 kb/s, mostly in the body
domain.

• Class B networks operate at data rates between 10 and 125 kb/s, are used for general
information exchange and body domain networks.

• Class C networks operate from 125 to 1,000 kb/s and are used in powertrain and chassis
domains.

• Class D networks require high-speed communication data rates up to or higher than 1
Mb/s and are mainly used for telematics and x-by-wire applications.

2.4.6 Common Processes and Practices

2.4.6.1 The V – Cycle

The V-Cycle, shown in Figure 2, is the dominant software development lifecycle methodology
for safety and control systems in the automotive industry. It is a requirements-driven
methodology. As described above, it is the foundation of many consensus standards that are used
by the automotive industry for safety, enterprise process development, and functional and

136 E/E Active Safety systems are responsible for avoiding crashes, and are always “active.” Examples include elec-

tronic stability control, automated emergency braking, and lane keeping assistance.
137 E/E Passive Safety Systems remain passive until needed and act to lessen or prevent harm in the event of a crash,

– for example, air bags.
138 A bus is a special form of a communication network in which all of the various devices in the network are con-

nected to a single cable or line.
139 SAE International. (2006, September 12). Class A application/definition, J2057/1_200609 [Web page].

www.sae.org/standards/content/j2057/1_200609/

http://www.sae.org/standards/content/j2057/1_200609/

34

performance design (including ASPICE, ISO 26262, and AUTOSAR SPEM).140 The V-Cycle
methodology has become highly specialized in automotive applications, where it tightly
integrates hardware (ECU) and software development practices through component, unit, system
and vehicle development and test.

Figure 2. A simplified representation of the V-Cycle SDLC

The history of the systems engineering V-Cycle dates back to the early 1990s when it was
developed as an extension to the waterfall SDLC model, with steps for software validation and
verification added to the waterfall, forming the “right side of the V.”141 Requirements are
decomposed and flow down the left side of the V-Cycle through the development process.
Verification activities are typically integrated through the right side of the V-Cycle, including
unit, integration, and acceptance tests. Validation is typically considered to occur at the upper-
right part of the V-Cycle.

In the automotive V-Cycle, hardware and software development practices are tightly coupled in
accordance with the specialized nature of computing platforms used onboard vehicles.142 Over
the years, integrated V-Cycles have evolved in complexity as automotive electronics have
advanced. Today these individual processes integrate into a highly specialized SDLC that is
uniquely tailored to the automotive industry.

2.4.6.2 Simulation-Based Development and “In-the-Loop” Verification and Validation

The V-Cycle is often described in terms of developmental activities on the left and right side of
the V. MBD and requirements decomposition occur on the “left side of the V,” and design

140 Munassar, N. M. A., & Govardhan, A. (2010, September). A comparison between five models of software engi-

neering. IJCSI International Journal of Computer Science Issues, 7(5). www.ijcsi.org/papers/7-5-94-
101.pdf

141 ReQtest AB. (2016, April 1). V-Model vs scrum, who wins? [Web page]. https://reqtest.com/agile-blog/v-model-
versus-scrum-who-wins/

142 Hanselmann, H. (1993). Hardware-in-the loop simulation as a standard approach for development, customiza-
tion, and production test of ECU's (SAE Technical Paper 931953). Society of Automotive Engineers.
https://doi.org/10.4271/931953.

https://reqtest.com/agile-blog/v-model-versus-scrum-who-wins/
https://reqtest.com/agile-blog/v-model-versus-scrum-who-wins/
https://doi.org/10.4271/931953

35

verification against the requirements to check if the product was “built right” occur on the “right
side of the V.” Validation is typically understood to occur on the upper-right side of the V to
check if the developer “built the right thing,” which would mean that requirements reflected
what a customer actually wanted or needed. In-the-loop testing is a common validation and
verification strategy used in the automotive industry. “In-the-loop” testing methods are used to
test software functions against simulations of the required stimulus and loads, and are broken
into Model, Hardware, and Software in the loop (MIL, HIL, SIL) tests depending on whether the
device in the loop is a model, a piece of hardware (ECU, sensor, actuator), or code (e.g., “hand
coded” or code generated by an ACG process).143

MIL/HIL/SIL are called “simulation” because the behavior of the loads, sensors, and stimulus
are based on models of the dynamic systems. Figure 3 showed that there are dependencies
between blocks in the feedback control system (Closed Loop Control, Plant, Actuators). The
behavior of blocks in the feedback loop are dependent upon the respective inputs (W,U,Y,X,R)
and dynamic behavior of the subsystem under control and of various actuators and sensors.

In order to perform unit, integration, and system-level software tests, the block under
development, or unit under test, requires representative W, R, and U IO stimulus and loads in
order to properly exercise software functions. Simulations representing the external system
behavior (e.g., internal combustion engine, the environment, chassis dynamics, actuator
dynamics) drive MIL/HIL/SIL interfaces (W, R, and U -in hardware and software).144 The
success or failure of MIL/HIL/SIL strategies is highly dependent on availability and quality (or
“fidelity”) of models used in the simulation. Tests that cannot be performed in simulators are
often required to be performed on more expensive dynamometer test stands or in road tests.
Several vehicle manufacturers have introduced the term “digital twin” to refer to virtual models
and environments for developing, validating, and verifying their hardware and software
designs.145 Aircraft and vehicle manufacturers and suppliers are increasingly able to place models
of hardware and software that comprise their products into complete virtual worlds where virtual
tests can be conducted.

143 This differentiates between “model” and “code” where the code is typically the output of an ACG process or

handwritten and optimized for a specific target implementation, MoC, etc. MIL and SIL processes are de-
signed to incorporate “models” or highly optimized “code” depending on the requirements of the test.

144 King, P. J., & Copp, D. G. (2006, February 1). Hardware in the loop for automotive vehicle control systems de-
velopment and testing. Measurement and Control, 39(1). http://doi.org/10.1177/002029400603900103

145 O’Heron, P. J. & Chown, W. (2017, September 18-21). Aerospace product engineering & verification:: The digi-
tal twin [PowerPoint]. Global Product Data Interoperability Summit 2017, Los Angeles, CA. https://gpdi-
sonline.com/wp-content/uploads/2017/11/Siemens-OHERON_Chown-DigitalTwin-MBSE-
Open_9_14_2017.pdf

http://doi.org/10.1177/002029400603900103
https://gpdisonline.com/wp-content/uploads/2017/11/Siemens-OHERON_Chown-DigitalTwin-MBSE-Open_9_14_2017.pdf
https://gpdisonline.com/wp-content/uploads/2017/11/Siemens-OHERON_Chown-DigitalTwin-MBSE-Open_9_14_2017.pdf
https://gpdisonline.com/wp-content/uploads/2017/11/Siemens-OHERON_Chown-DigitalTwin-MBSE-Open_9_14_2017.pdf

36

2.4.7 Tools and Implementations
Automotive software development tool suppliers offer compliance packages for various
architectural, design, and developmental consensus standards such as MISRA, AUTOSAR, ISO
26262, and SPEM.

There are several integrated toolchains/methods on the market that map to specific models of
computation and are designed to support the automotive V-Cycle. The following are examples of
tools used in the automotive industry.

• IBM Rational is a visual construction and simulation platform incorporating simulation-
based testing, requirements engineering tools, and model-driven systems development
(MDSD).

• EAST-ADL is an architecture-descriptive language (ADL) for automotive embedded
systems developed in several European research projects.

• Mentor AUTOSAR is a family of AUTOSAR enabled products based on Mentor
Graphics Vehicle Systems Architect - a systems design tool for AUTOSAR-based sys-
tems.

• The MathWorks MATLAB/Simulink/Stateflow is a graphical programming environ-
ment for modeling, simulating, and analyzing multi-domain dynamical systems. Used in
Model-Based Design.

• dSPACE ControlDesk, SystemDesk, TargetLink is a toolchain that implements the V-
Cycle in hardware and software through an MDB process.

2.4.8 Application of MBD to Automotive ECU Software Development
For automotive mechatronic systems, MBD is based on underlying control theory, block
diagrams, and transfer functions that describe the relationships between components.

Figure 3 through Figure 5 show a system-level view of a generic feedback control block
diagram. The blocks represent different transfer functions and mathematical models of physics
and dynamics for each element of the system.146 While a closed-loop feedback control system
can be achieved without software, either mechanically or only with electrical circuits and
hardware, the information examines a system that does include software. Explanatory notes for
Figure 3 through Figure 5 are as follows:

• The closed-loop control block represents the ECU. Automotive ECUs often incorporate
“look up” tables to improve control loop speed by elimination of complex math and
transfer functions running on the ECU processor.

• Actuators represent different drives, motors, and machine components needed to exert
control over the subsystem (control systems engineering sometimes refer to this as the
plant, the combination of process and actuator).

• The subsystem represents the physical system under control (e.g., internal combustion en-
gine and transmission; braking system; or steering system).

146

 Phillips, C. L., & Parr, J. M. (2010). Feedback control systems, 5th edition. Prentice Hall..

37

• Sensors represent different instruments that provide dynamic data to the closed loop con-
trol in order to calculate command values for the actuators (e.g., engine speed sensor).

• The signals (W, U, Y, X, R) represent the flow of information between blocks.

• The system is called a feedback control system because the output of the system, R, is fed
back into the controller, allowing the control algorithm to correct for error (R - W), in or-
der to command the actuators with signal U.

Figure 3. Closed loop feedback control diagrams are used by control system engineers to design automo-

tive control systems in mechatronics applications

Figure 4. Simplified “Open Loop” (without feedback control) and “Closed Loop” (with feedback control)

diagrams for fuel control onboard an IC engine

38

Figure 5. Simplified “Fuel Flow Feedback” diagram that considers several inputs, including fault condi-
tions, to calculate a single fuel flow sensor signal for an IC engine. A fault-tolerant design would allow

for a fuel flow signal to remain usable despite one or more sensor faults

Several aspects of the above block diagram notation make it suitable for use in model-based
software design.

• The closed-loop control, subsystem, underlying models, and transfer functions can be
represented using similar symbolic notation. This allows MBD process to be used for the
development of control algorithms for MBD/ACG and also for development of subsys-
tem, actuator, and sensor simulation models for use with “in-the-loop” validation and ver-
ification (V&V) methods.

• Blocks and signals correspond to underlying software functions, arguments, and return
values.147

• The same graphical model may be used for different MoC during automatic code genera-
tion (e.g., continuous, discrete).

Control system engineers often create models of nested blocks within blocks to define the
behavior of each feedback control element. For example, an engine control model may contain
thousands of blocks. Since models represent the dynamics of the control system, actuators and
sensors, it is possible to test a control theory against a mathematical representation (simulation)
of the actuators and sensors in software without introducing any physical hardware into the
system.

(See Section 2.4.6.2 “Simulation Based Development and “In-the-Loop” Validation and
Verification.”)

147 Mbihi, J. (2018). Analog automation and digital feedback control techniques. Wiley.

39

The introduction of MBD opened the door to affordable simulation based testing of automotive
ECUs, reducing a need for costly field and test track trials. Moreover, simulation based
development (SBD) allows for automatic software testing against model-based requirements,
diminishing the need for tedious, error prone verification against written requirements. MBD and
SBD describe practices that are very similar, to a point that the terms are sometimes used
interchangeably. When the MBD approach to modeling a subsystem is used for development of
ECU software, including actuators, sensors, and even communications busses and outside
influences (the environment), the technique is called simulation based development (SBD).148

Simulation technology has accelerated E/E development and compressed design cycles by
reducing the need for in-vehicle testing. Simulations have also enabled component reuse through
development of libraries of parameterized and able-to-be-calibrated subsystem, actuator, and
sensor models.

2.5 Comparison to Approaches in Other Industries
To better understand challenges faced by the automotive industry related to software build, test,
and maintenance, particularly with regard to critical systems, it is beneficial to benchmark
practices against other comparable industries. The next chapter introduces a comparative
framework that shows one possible way to compare the automotive industry with other
industries.

To use the framework, it is important to understand different lifecycle practices and why they are
used. This is apparent in Table 8, which demonstrates that commercial aircraft and automotive
software share many similarities with regard to technical (functional and performance)
requirements. Looking further into the table and comparing business, risk, and certification
models and the overall safety approach, the data show differing requirements that lead to wide-
ranging and different requirements in SDLC practices. It is apparent from the table that
automotive software complexity, as measured by LoC, has surpassed that of aviation software.
Several factors help to explain this trend:

• Consumer-facing systems in cars, such as infotainment, navigation and comfort features,
which are software controlled and interact with yet other software driven subsystems, are
primarily driving the increase in automotive software LoC. OEMs offer every
conceivable permutation of features to the market, resulting in a massive code base even
though some features are never sold to consumers.

• Automotive OEMs are also using more off-the-shelf components rather than tailored
software developed from scratch, leading to more lines of code than is strictly necessary
when the components are combined.149, 150

148 Chrisofakis, E., Junghanns, A., Kehrer, C., & Rink, A. (2011, March 20-22). Simulation-based development of

automotive control software with Modelica. 8th International Modelica Conference, Technical University,
Dresden, Germany.

149 Edelstein, 2015.
150 Ibid.

40

• In contrast, standards require that aviation code is inspected to be free of dead code, i.e.,
code that is not reachable or is never used. Hence, the aircraft industry is motivated to
reduce software complexity, which has resulted in a decrease in the LoC in that industry
over the last ten years.151 For example, Boeing reportedly made significant cuts in the
amount of code used in the 787 Dreamliner compared to previous airliners.152

To use the framework, it is a must to identify and differentiate global requirements placed upon
the SDLC practices of the proxy industries versus the practices used in automotive industries.

As the vehicle has become increasingly specialized and complex, its associated SDLC processes
and methods have become unique, making it more difficult to compare consensus standards and
practices between the automotive domain and other comparable domains. Some challenges in
comparing the automotive domain with other domains include:

• Certain domains such as consumer electronics and medical devices are highly diversified
and heterogeneous and must be segmented before comparisons may be made. For exam-
ple, within the range of applications classified as “consumer electronics,” the SDLC prac-
tices and associated global, functional and performance requirements for televisions and
smartphones differ with respect to complexity, models of computation, criticality, etc.

• The SDLC practices in mature industries are hierarchical, consisting of layers of pro-
cesses and sub-processes. In mature industries where lifecycle practices share some simi-
larities (e.g., automotive and aerospace) the framework may require comparisons deep
within the SDLC process hierarchy in order to understand the differences between the
SDLC processes.

• In certain other domains, levels of accelerated growth, uniqueness, and complexity are
comparable to the automotive industry, leading to a need for deep industry analysis in or-
der to understand and establish functional, performance, and global requirements and
comparative framework practices. If, for example, the comparative framework is used to
compare MoC between vehicle and smartphone software practices, the framework shows
that critical software in smartphones relies on emerging MoCs. These include models of
trust and models of location that are not prevalent in automotive software.153

Table 8 provides an example of a comparative analysis between automotive onboard software
and civil and commercial aircraft onboard software using the global requirements described
above and constructed using a portion of the framework.

151 Saracco, 2016.
152 Edelstein, 2015.
153 National Research Council. (2001). Embedded, everywhere: A research agenda for networked systems of embed-

ded computers. The National Academies Press. https://doi.org/10.17226/10193

https://doi.org/10.17226/10193

41

Table 8. A comparison of global requirements and constraints for automotive onboard software versus
commercial aircraft onboard software, based on a literature review

 Automotive Onboard
Aerospace Onboard (Civil and

Commercial Aircraft)

Technical Model154

MoC155

Real Time, Distributed, Finite State
Machines, Dataflow Process Net-
works, Discrete Event, Synchronous
Reactive (SR)

Real Time, Distributed, Finite State Ma-
chines, Dataflow Process Networks, Dis-
crete Event, SR

Communications, Busses
Class A, B, C, D (e.g. CAN, LIN,
FlexRay, MOST)156

Class A,B,C,D (e.g. ARINC 429,
ARINC 664, AFDX, CAN)

Reference Architectures AUTOSAR/OSEK ARINC 653

Published Safety Standard &
Model157 158 Functional Safety System Safety Engineering

Types of Critical Systems Real Time Systems Real Time Systems

 Dependable Systems Dependable Systems

Functional Safety Engineered Sys-
tems System Safety Engineered Systems

 Secure Systems Secure Systems

Fault Tolerance159
Fault Avoidance, Human-Machine
Interface, Fail Safe Fault Avoidance, HMI, Fail Operational

Safety Characteristics

Fatalities/Billion Passenger
Miles160

7.8 (22,697 fatalities/year)
Passenger Vehicles161

0.038 (21 fatalities/year) Air Carrier
4.11 (42 fatalities/year) Commuter and
Air Taxi

 ~$22 Billion/year (recall costs) ~ $1.5 Billion/year (warranty claims)

154 Ramsey, J. W. (2005, June 1). Boeing 787: Integration’s next step. Aviation Today. www.aviationto-

day.com/2005/06/01/boeing-787-integrations-next-step/
155 Lee, 2011.
156 Malik, H., Avatefipour, O., Hafeez, A., & Raj,. P. (2017, April 4-6). Comparative study of CAN-bus and FlexRay

protocols for in-vehicle communication. SAE World Congress Experience WCX 17, Detroit, MI. doi:
10.4271/2017-01-0017 www.researchgate.net/publication/315781234_Comparative_Study_of_CAN-
Bus_and_FlexRay_Protocols_for_In-Vehicle_Communication

157 International Organization for Standardization. (2018, December). Road vehicles-Functional safety, ISO 26262-
2:2018.

158 Society of Automotive Engineers. (1996, December 1). Guidelines and methods for conducting the safety assess-
ment process on civil airborne systems and equipment, (SAE No. ARP4761).

159 Dubrova, 2013.
160 Waycaster, G. C., Matsumura, T., Bilotkach, V., Haftka, R. T., & Kim, N. H. (2017, January 17). Review of reg-

ulatory emphasis on transportation safety in the United States, 2002–2009: Public versus private modes;
Risk Analysis, 38(5). doi: 10.1111/risa.12693

161 National Center for Statistics and Analysis. (2020, October). Passenger vehicles: 2018 data (Traffic Safety Facts.
Report No. DOT HS 812 962). National Highway Traffic Safety Administration.
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812962

http://www.aviationtoday.com/2005/06/01/boeing-787-integrations-next-step/
http://www.aviationtoday.com/2005/06/01/boeing-787-integrations-next-step/
http://www.researchgate.net/publication/315781234_Comparative_Study_of_CAN-Bus_and_FlexRay_Protocols_for_In-Vehicle_Communication
http://www.researchgate.net/publication/315781234_Comparative_Study_of_CAN-Bus_and_FlexRay_Protocols_for_In-Vehicle_Communication
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812962

42

 Automotive Onboard
Aerospace Onboard (Civil and

Commercial Aircraft)

SDLC Process Standards

Software Safety Guidelines ISO 26262 DO-178C

Hardware Safety Guidelines ISO 26262 DO-254

Hardware Software
Certification/Compliance

Certification Authority
Supplier/vehicle manufacturer,
Self-Certification FAA, Type Certification

Business Model

Design Philosophy
Performance, Comfort, Safety,
Consumer Features

Safety, Reliability, Performance,
Maintainability

Product Life162 163 164 150,000 miles/10 Years
40,000 Pressurization Cycles (Take-Off
and Landing Cycles)//25 Years

 150,000 Flight Hours

Utilization165 Individual Use: 1-2 hours/day Shared/Fleet Use: 9-10 hours/day

Cost Per Passenger-Mile166 ~$1.00 (Passenger Vehicle) ~$0.10 (Air Carrier)

Operator
Owner Operator Driver
State Driver’s License

Commercial Operator Pilot
Commercial Pilot License

Business Model - Maintenance

Responsibility Owner/Operator/Individual Government/Fleet

Performed By
Variable/vehicle manufacturer/
Independent Certified Maintenance Technicians

Software Complexity

High - Limited in complexity by ve-
hicle manufacturer risk model,
driven by volume, variants

High - Limited in complexity by cost of
certification, driven by demand for new
capabilities

 ~15 - 100 MLoC167 ~5 - 15 MLoC168 169 170

162 Weiss, M. A., Heywood, J. B., Drake, E. M., Schafer, A., & AuYeung, F. F.. (2000, October). On the road in

2020: A life-cycle analysis of new automobile technologies (Energy Laboratory Report No. MIT EL 00-
003). Energy Laboratory, Massachusetts Institute of Technology. https://web.mit.edu/sloan-auto-lab/re-
search/beforeh2/files/weiss_otr2020.pdf

163 Airline Data Project. (n.d.). Aircraft and related [Web page]. Massachusetts Institute of Technology.
http://web.mit.edu/airlinedata/www/Aircraft&Related.html

164 Berla Corporation. (n.d.). [Untitled web page and portal]. https://berla.co/average-us-vehicle-lifespan/
165 Morris, D. Z. (2016, March 16). Today’s cars are parked 95% of the time [Web page]. Fortune. http:/for-

tune.com/2016/03/13/cars-parked-95-percent-of-time/
166 Condon, P. M., & Dow, K. (2009, November). A cost comparison of transportation modes. Foundational Re-

search Bulletin, 7.
167 Edelstein, 2015.
168 Redman et al., 2010.
169 Nexteer Automotive, 2018.
170 Norris & Wagner, 2009.

https://web.mit.edu/sloan-auto-lab/research/beforeh2/files/weiss_otr2020.pdf
https://web.mit.edu/sloan-auto-lab/research/beforeh2/files/weiss_otr2020.pdf
http://web.mit.edu/airlinedata/www/Aircraft&Related.html
https://berla.co/average-us-vehicle-lifespan/
http://fortune.com/2016/03/13/cars-parked-95-percent-of-time/
http://fortune.com/2016/03/13/cars-parked-95-percent-of-time/

43

2.6 Future Challenges
Changing technology and market demands can be at odds with suppliers’ ability to manage cost,
complexity, and safety. Functional and performance requirements are derived from these
changing constraints and drive the SDLC requirements. Market factors can often change more
rapidly than vehicle manufacturers are able to modify developmental practices. For instance, the
automotive industry is still adjusting to changes in current automotive developmental practices
stemming from ISO 26262, but it must now also look forward to new software challenges
introduced by ADS.

It will be important to consider how these changes will impact critical systems and the
automotive SDLC. For instance, some questions raised by these changes include:

• How will changes in requirements impact the functional and performance requirements
required of software?

• What are the impacts on functional and performance requirements of critical systems (re-
liability, security, safety and real-time)?

• What are the impacts on complexity?

The automotive industry is changing, particularly with regard to technology and software
onboard vehicles. Existing, highly evolved V&V practices for automotive control systems that
incorporate MBD, ACG, MIL/HIL/SIL, and dynamometer testing are designed to validate
deterministic control systems against defined requirements by producing repeatable test results.

Moving forward, the following are examples of what may continue to occur (see Table 4).

• Industry struggles with an “affordability limit” and “wall of complexity.”171

• Growing and progressively varying software content and increased pressure to improve
software reliability.

• Emerging technology driving new models of computation, system criticality, and archi-
tectures.

• Vehicles as subsystems within larger critical systems and infrastructure, yielding new risk
models.

• Changing models for vehicle ownership, shared use, commercial management and
maintenance.

• Increasing use of new technology and an increasing number of software systems that are
safety critical.

• Incorporation of probabilistic and non-deterministic subsystems into safety-critical sys-
tems (e.g., vision subsystems for driving automation systems).

• New consensus standards as emerging technologies are introduced.

• Changing risk models and changing fault management strategies.

171 This refers to the “affordability limit” cited by Redman and “complexity limit” (wall of complexity) cited by

Davey, where the authors identify diminishing returns for onboard software value versus developmental
costs with limits defined by what the market will pay for the finished product.

44

• Increasing need to ensure that legacy automotive and infrastructure systems are compati-
ble with emerging systems and technology.

• An evolution in lifecycle practices and increasing use of methodologies other than, or in
addition to, the V-Cycle.

45

3 Automotive Software Evolution Framework

3.1 Introduction
Due to automotive electrical and electronic systems’ rapid evolution over the past three decades,
the automotive industry is facing a host of software-related challenges that were absent during
the industry’s first century of evolution.172 As a result of rapid software proliferation in vehicles,
a number of the authors and documents cited throughout this work note that software processes
and methods are approaching the capability limits of what these processes and methods are able
to handle in terms of managing complexity and criticality, emerging architectures, automation,
affordability, and adaptability.173

Challenges faced by the industry are compounded by the fact that the vehicle could become
connected to infrastructure, smart highways, etc. In the future, it is likely that software onboard a
vehicle may need to be viewed from the larger Internet of Things and connected infrastructure.

For these reasons, capturing the essence of the evolution of the build, test, and validation
activities associated with the development, production, and maintenance of automotive software
is complex and challenging. The scope of onboard vehicle software, including software that is
connected with off-board systems (e.g., OTA updates, V2X), is large and rapidly changing. This
study established a framework to help understand and categorize the challenges facing
automotive software development. One fundamental goal of the study is to use the framework to
identify unique characteristics of automotive software used in modern motor vehicles.

The framework described herein is derived from a matrix of “best-fit” evidence compiled by the
authors. The research questions assigned to the study formed the basis for research and synthesis.
An initial step was examining these questions through the lens of a number of change factors
over time, i.e., drivers for change arising from either the external or internal environment of the
industry. The goal of the framework is to develop a structured approach that can be used to
compare and contrast automotive software development practices over time, as well as to other
transportation sectors and other industry domains.

One way of interpreting the framework is to consider it an aggregation of many consensus
standards, practices, processes, and tooling into a representation that captures the state of practice
across the industry for development, production, and maintenance of automotive software.

The actual practices used across the industry are diverse and are the product of an evolutionary
amalgamation of thousands of published consensus standards, internally developed processes,
tools, practices, nomenclatures, architectures, and taxonomies practiced across hundreds of
original equipment manufacturers and suppliers.

172 The introduction of the gasoline-powered automobile is often credited to Karl Benz in 1885. Steam-powered au-

tomobiles were introduced as early as 1769. See Eckermann, E. (2001, August 1). World history of the au-
tomobile. Society of Automotive Engineers.

173 For further information see Antinyan, 2018; Davey, 2013.

46

3.2 First-Pass Checklist
The framework is a checklist of major development process steps and technologies used in the
creation of automotive software. The first-pass checklist came from analyzing two commonly
used consensus standards, ASPICE and ISO 26262. The ASPICE consensus standard is a process
assessment and capability model, and is older and more generic than ISO 26262, which is
focused on safety.

The ISO 26262 standard was first published in 2011 and first revised in December 2018. ISO
26262 adds functional safety to automotive product development, including software. Functional
safety as a general concept has been employed in the automotive industry for many decades, as
safety has been a high priority for automotive companies. However, the more formal definition
and standardization of functional safety is relatively new to the industry. At the systems level,
ISO 26262 is sometimes implemented within software companies to define systems that are
functionally safe or not. However, as of early 2019, companies were still in the process of
integrating formal functional safety activities into their software development processes.

It has become clear that a first pass checklist is not ideal for being able to differentiate between
companies and industries. For example, the consensus standards do not care how the software is
implemented. The consensus standards are more solution-neutral, and they care only whether
requirements are met and whether the development is done with appropriate quality control in
place. For example, the requirement may be for the vehicle to respond within a specified time
with a defined performance characteristic. The standard is not concerned if this is accomplished
with a simple scheduler, a minimal RTOS, or a desktop-like RTOS. However, from a historical,
current practice, and future projections perspective, the RTOS is a key differentiator between
systems within a given vehicle and also between different industries.

Table 9 shows the overarching themes of the framework.

While the “Traditional Automotive - Current” era continues from 2002 to today, the automotive
industry is undergoing the next major shift, to the “Projected Automotive (i.e., Automated)” era.
This next era is centered on ADSs. While ADSs are being tested on roads today, they are
prototypes and experimental rather than mass production vehicles. Because ADSs are
undergoing rapid change and development/testing, consensus standards around software
practices either do not exist or are only in discussion stages, and not all the framework fields can
be filled in at this time.

47

The framework is refined and fully developed with additional data in the following sections:
Table 9. Evolution of Automotive Software Development Process

Software Development
Process Step Historical Current Projected

(e.g., automated)
Documentation management

plan
Ad Hoc Ad Hoc Ad Hoc

Continuous Improvement
Functionality: Yes
Process: Ad hoc

Functionality: Yes
Process: Recommended
by ASPICE/ISO 26262,

but implementation more
ad hoc

Functionality: Yes
Process: Too soon to know

Change Management Minimal
Becoming more standard

(supporting tools)
Common

Configuration Management Some
Common (supporting

tools)
Common

Trace all artifacts from initial
requirements

through final test results
No

On the rise with tool sup-
port, but still not univer-

sally implemented

Comprehensive trace of all arti-
facts

Distributed Development
(i.e. Suppliers)

No → Common Common Common

3.3 Taxonomy
The framework incorporates thematic, inductive synthesis in order to address guiding research
questions.174 175 176 The source material and process for developing the material is shown in
Figure 6 and the decomposition process of this source material; is shown in Figure 7. Iterations
of the process yield “frames” that integrate new evidence in response to research questions, as
shown in Figure 6.

174 The numbers in parentheses refer to the current and future framework versions. The current version of the frame-

work is Version 1.0 (“Frame 1”).
175 ISO 26262:2018, Road vehicles – Functional safety, was released during the research phase of this project. Refer-

ences used throughout this report refer to ISO 26262:2011 unless explicitly specified.
176 ISO/SAE CD 21434, Road Vehicles -- Cybersecurity engineering, was unreleased during the research phase of

this project. References to ISO 21434 refer to pre-release material and are subject to change. Concepts from
ISO/SAE CD 21434 could be incorporated into future iterations of the framework.

48

Figure 6. Summary of framework sources and roadmap by framework (FW) version. Figure 9 provides a

closer view of the Framework & Taxonomy section.

In order to synthesize the common threads of change factors that have affected evolution of
control systems, the research team investigated industry, market, government, and technical
requirements and influences on automotive software development lifecycle practices.

The resulting framework taxonomy from Figure 6, shown in Figure 7, consists of four levels177
(with an example slice from the research on the right):

Figure 7. Framework taxonomy levels

177 One of the fundamental goals of the study is to understand what is unique about modern motor vehicle software.

For this reason, the study focuses primarily on critical software and the uniqueness of practices associated
with automotive critical software development. The framework taxonomy identifies and establishes various
modes of criticality and the types of control systems used in automobiles which may be used to identify and
characterize the specialized software processes used for the development of related software.

Evidence

49

The framework was established by using a conceptual model.178 179 “Frame 0” of the
comparative framework was established using a priori consensus standards. The framework then
consists of two components: (1) a categorization of change factors and (2) key elements of the
SDLC derived from the a priori standard. This approach produces a comprehensive framework
that can be used to compare across both change factors and the specific resulting SDLC
practices.

ISO 26262 and ASPICE were selected as the a priori consensus standards since they closely and
directly impact the criticality, process steps, process assurance, and enforcement of lifecycle
practices for today’s automotive-critical systems. These consensus standards were chosen not
only for their relevance to the research questions, but also because they are reliable sources of
industry definitions, methods, and relationships that may be used as the basis for taxonomy.
Process models, ISO 26262 and ASPICE, were considered most relevant to the automotive
industry.

ISO 26262 is a widely accepted standard for functional safety in the automotive industry and
provides guidelines for the development of safety critical software.180 ASPICE provides a
process reference model for automotive software development and related management
functions. It also provides a process assessment methodology that allows automotive software
suppliers to determine the capabilities and maturity level of their software development
processes.181 By incorporating these two consensus standards in the initial framework taxonomy,
a baseline is set for classifying the reference processes, concepts, and terminology that establish
the foundation for critical software and related automotive development practices.182

Framework Scope, Use Cases, and Objectives
The objective of this section is to develop a framework that can be applied to compare
automotive software development practices over time and relative to both other transportation
sectors and other industries. The SDLC practices used in the development of commercial
airplanes, vehicles, nuclear power plants, and consumer electronics share many things in
common, including similar (and in many cases, identical) process steps, computing architectures,
models of computation, and programming languages. A comparative framework must provide a
broad taxonomic basis for a user to establish common definitions between comparative targets. It
must also provide a mechanism to reduce the broad taxonomy into smaller, manageable
groupings for comparative analysis.

178 A priori within the context of the best-fit framework synthesis research method is defined as knowledge that is

known prior to, and independent of the research. The framework begins with a “frame 0 seed frame” based
on a priori standards that are known by the research team to be widely used across the automotive industry

179 The study team was provided a set of high-level “a priori” research questions by a diverse team of automotive
engineers, researchers, and transportation professionals. The questions were designed to seed the frame-
work with topics and research objectives in order to establish frame 0 and thematic research topics

180 ISO-26262: 2011, Road vehicles – Functional safety, is an international industry standard for functional safety of
electrical and/or electronic systems in production automobiles developed by the International Organization
for Standardization

181 ASPICE: VDA QMC Working Group 13 Automotive SIG. (2015) is a widely recognized reference model for the
disciplined evaluation of an organizational unit’s processes against a process assessment model.

182 Frame 0, driven by the a priori research questions and study guidelines, is focused on software practices related
to control systems and critical software.

50

To accomplish these objectives, the framework was developed under the following guidelines:

• It is intended to provide a comparative taxonomy for automotive SDLC processes and
practices, rather than a comprehensive taxonomy.
o It was agreed at the outset that the research would look across a broad range of themes rather

than perform a deep dive on select topics.
• The study is qualitative.

• The best-fit framework is adaptive and driven by research questions and guided by the
research team.

• Successive iterations (“frames”) may be required in order to provide clarification, detail,
and to map relationships in the taxonomy. Subsequent frames will yield more classifica-
tion layers in the taxonomy. It is possible that the taxonomy will change as automotive
technology evolves, and thus the framework may require maintenance or revisions.

• The industry consensus standards that are referenced as framework sources throughout
this document are in and of themselves taxonomies. The comparative framework is not
intended to reclassify or provide definitions for information that is already published, but
rather it is meant to extract the defining characteristics that allow for a comparative anal-
ysis.

• The framework must provide a chronological taxonomy in order to reflect the continu-
ously changing nature of supporting consensus standards, methods, and definitions. Soft-
ware lifecycle practices across the automotive industry may change considerably during a
vehicle product development lifecycle (e.g., four to seven years).

Taxonomy and Comparative Framework
The concepts of “taxonomy” and “framework” are closely related. In order to differentiate
between the two, the following definitions have been used for the study:

• The “taxonomies” are the classification schemes that articulates the relationships among
factors that influence automotive SDLC practices.

• The “framework” is the underlying structure that allows the taxonomy to be used for
comparative analysis.

The framework taxonomy is broken into two separate parts (Figure 8):

• The “taxonomy of process change factors” synthesizes common threads that impact
SDLC practices for automotive software.

• The “taxonomy of software development lifecycle practices” synthesizes SDLC practices
(e.g., architecture, design, validation, and verification) associated with the development,
production, and maintenance of automotive software.

In Figure 8, the taxonomy reduction process allows the large taxonomy to be reduced into a
smaller taxonomy comprised of elements of interest for comparative analysis. A taxonomic
reduction may be useful for reasons such as (1) interest in conducting a comparative analysis
along one research theme (e.g., the consensus standards research theme), or (2) removing sub-
classifications that are irrelevant to the target industry.

51

The organization of the rest of this document maps to the four levels of the framework hierarchy,
organized consistent with the framework organization shown in Figure 8.

Figure 8. A block representation of the framework taxonomy, comparative framework and the relation-

ship with process change factors. This block diagram also serves as a document map for subsequent sec-
tions, tables, and figures.

3.3.1 Taxonomy of Process Change Factors
The research team previously identified unique lifecycle constraints (e.g., non-functional
requirements) that are imparted on automotive software development processes. For example,
since demand for vehicles is consumer-driven in nature, this market factor results in a lifecycle
constraint that promotes ever-increasing product complexity. Not only has the number of vehicle
variants supported by vehicle manufacturers increased throughout the last decade, but the
number and complexity of electronic features demanded by consumers has also dramatically
increased during this time. These electronic features must function properly and coexist with
each other on every single unique variant that the vehicle manufacturers produce.

Table 10 and Table 11 provide a chronological view of the framework taxonomy, capturing
influential process change factors identified by the study. The research team has divided the
timeline into three eras, described in this application of the framework as “Generations” (e.g.,

52

Gen 1, Gen 2, and Gen 3). Each era has defining characteristics based on the elements of the
framework taxonomy, as described in Table 10.

Throughout this document, tables capturing the evolutionary aspects of the framework taxonomy
will be provided to give a chronological perspective that could be used during a comparative
analysis. The tables describe defining characteristics for each generation of the framework.

Table 10. Key high-level characteristics that define each framework generation

Summarized Framework Taxonomy by Generation

Gen 1
(circa 1950-2002)

Emergence of isolated (e.g., not networked) automotive electrical and elec-
tronic systems; emerging E/E-related developmental tools and consensus
standards; emergence of E/E-related SDLC processes; emergence of critical
software practices for real-time embedded systems and digital control theory.

Gen 2
(circa 2002-2017)

Widespread use and standardization of networked and distributed E/E architec-
tures (e.g., electronic control units); widespread use and standardization of de-
velopmental tools and SDLC processes and practices for E/E systems;
widespread use and standardization of critical software practices for real-time
embedded systems; emerging vehicle and powertrain architectures (e.g., hybrid
and electric vehicles) affecting E/E implementation and critical software mo-
dalities.

Gen 3
(circa 2017-Present)

Legacy support for distributed and networked real-time embedded systems;
emergence of integrated and service-oriented software architectures; integra-
tion of features resulting in fewer overall ECUs within the vehicle; emergence
of connected vehicle pilots (e.g., V2X) and automation architectures; emer-
gence of developmental tools and software practices for ADS and connected
vehicles; emerging critical modalities related to automation, cybersecurity.183

183 The terms “automation” and “autonomy” are both widely used by engineers to describe supervisory control sys-

tems (also described as authority control systems), and both are included in the taxonomy. SAE J3016de-
fines “automation,” and the framework will incorporate the definitions provided by SAE 3016 for levels of
driving automation.

53

Table 11. Evolution of process change factors and lifecycle practices influencing automotive critical E/E system development
(fill colors correspond to SDLC taxonomy from Figure 8)

Evolution of Process Change Factors on Automotive Industry by Framework Generation

Chronological
References and

Benchmarks Re-
lated to

E/E Evolution

Year 1950s &
1960s

1970s &
1980s

1990s

2000s 2015 2017 to present

Framework
 Era Gen 1 Gen 2 Gen 3

Vehicle Lines of
Code 184 0 100,000 1,000,000 15,000,000 100,000,000 TBD

Vehicle ECUs185 1 5 15 (2005) 40 (2010) 100 75

Commoditization
of HW: Cost of
Computer Memory
($/MB)186

$400M $700K
$30 (early

1990s)
$1 (2000) $0.12 (2005) $0.02 (2010) $0.01 TBD

Framework Subclassification Example Characteristics//Unclassified Categories (not exhaustive)

Macro Factors

Changing mobility model; changing demographics and geographies; improving propulsion technology; concerns with energy supply and availability; chang-
ing maintenance and sustainment; increasing product feedback; evolving consumer requirements; changing supply chain; increasing number of mechatronic
and software features; increasing use of automation and connectivity; concerns over environmental impact; concentration on innovation/first to market with
intellectual property; increasing commoditization of E/E hardware and components; increasing manufacturability of E/E systems; increasing capability for in
field software updates and influence of an end user licensing agreement

Design Philosophy Consumer product; cost optimized around performance, comfort; safety and consumer features TBD

Utilization Predominantly individual use (< 8% of registered vehicles in the US are fleet), 1-2 hours/day TBD

Properties of Relevant Standards Continuously evolving; self-certification by producers (US) or type-certification (Europe)

Software Complexity
Process complexity; code complexity; architectural complexity; variant complexity; requirements complexity; no accepted consensus standards for measuring
complexity.

184 Antinyan, 2018.
185 Davey, 2013.
186 The cost of memory metric is used as a representation of the overall cost and commoditization of E/E hardware that contributes to the proliferation of automo-

tive E/E systems. For more information and metrics (e.g., microprocessor cost per transistor, microprocessor clock speed, miniaturization of mechanical
components).

54

Year 1950s & 1960s 1970s &
1980s 1990s 2000 2005 2010 2015 2017 to present

Framework Era Gen 1 Gen 2 Gen 3

Framework Subclassification Example Characteristics//Unclassified Categories (not exhaustive)

Hardware
Standards Proprietary Proprietary; AUTomotive Open System Architecture

Classic Platform
Proprietary; AUTOSAR Classic; Adaptive
AUTOSAR

Software and Logical Standards Proprietary AUTOSAR Classic Platform Automotive Grade Linux; AUTOSAR
Classic Platform; Adaptive AUTOSAR

Network (Bus) and Protocol Stand-
ards

Controller Area Network Specification: 1991; Local Interconnect Network Specification: ~2003; Media Oriented Systems
Transport Specification: ~2008; Time-Triggered Ethernet Specification: ~2008; FlexRay/ISO 17458-1:2013; Time-Synchro-
nous Networking/IEEE 802.1AS: 2018

Network Class Standards Class A, B, C, D187

Machine Learning and AI Stand-
ards

Emerging computational approaches and
architectures; emerging trustworthiness;
emerging use cases and applications;
emerging foundational consensus stand-
ards; emerging system consensus stand-
ards

Language, Style, Syntax Standards
Motor Industry Software Reliability Association (C, C++,
ACG); AUTOSAR 068;188 Mathworks Automotive Advisory
Board189

MISRA (C, C++, ACG); AUTOSAR 068; MAAB; Emerging
AUTOSAR C++14;190 Emerging High Integrity C/C++;191
Emerging Computer Emergency Response Team;192 Secure
Coding Standards193

187 For more information, see Hall, E. (2000, February). Internet Core Protocols: The Definitive Guide: Help for Network Administrators [Web page]. O’Reilly

Online Catalog. https://web.archive.org/web/20110401192204/ http://oreilly.com/catalog/coreprot/chapter/appb.html
188 AUTOSAR. (2008). AUTOSAR methodology. V2.2.1 R3.0 Rev 0001 (Document ID 068). www.autosar.org/fileadmin/user_upload/standards/classic/3-2/AU-

TOSAR_Methodology.pdf
189 MathWorks. (n.d.). MathWorks Advisory Board (MAB) guidelines.www.mathworks.com/solutions/mab-guidelines.html
190 AUTOSAR. (2017, March 31). Guidelines for the use of the C++14 language in critical and safety-related systems (Document Identification No 839).

www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
191 Perforce Software, Inc. (2021). High integrity C++ is a coding standard developed by experts at PRQA (Now part of Perforce). www.perforce.com/re-

sources/qac/high-integrity-cpp-coding-standard
192 ScienceDirect. (2021). Computer emergency response team [Web page]. www.sciencedirect.com/topics/computer-science/computer-emergency-response-

team
193 Schiela, R. (2020, Nov. 18). SEI CERT coding standards [Web page]. Carnegie Mellon University Software Engineering Institute.

https://wiki.sei.cmu.edu/confluence/display/seccode

https://web.archive.org/web/20110401192204/
http://oreilly.com/catalog/coreprot/chapter/appb.html
http://www.autosar.org/fileadmin/user_upload/standards/classic/3-2/AUTOSAR_Methodology.pdf
http://www.autosar.org/fileadmin/user_upload/standards/classic/3-2/AUTOSAR_Methodology.pdf
http://www.mathworks.com/solutions/mab-guidelines.html
http://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
http://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard
http://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard
http://www.sciencedirect.com/topics/computer-science/computer-emergency-response-team
http://www.sciencedirect.com/topics/computer-science/computer-emergency-response-team
https://wiki.sei.cmu.edu/confluence/display/seccode

55

Year 1950s &
1960s

1970s &
1980s 1990s 2000 2005 2010 2015 2017 to present

Framework Era Gen 1 Gen 2 Gen 3

Framework Subclassification Example Characteristics//Unclassified Categories (not exhaustive)

Process Assurance and Assessment
Standards ASPICE TBD

Process Reference Model Ad-hoc; emerging generic V-Cycle ASPICE V-Cycle; ISO 26262 V-Cycle; ISO
21434 V-Cycle; emerging agile TBD

Environmental
Regulations and Standards

Motor Vehicle Air Pollution Act
(1965); Air Quality Act (1967);
Clean Air Act (1963 and 1970);
Clean Air Amendments (1990)

California Emissions Standards (Various); Clean Fuels Alternatives; Natural
Low Emissions Vehicles; Tier 2 Tailpipe Emissions (2004 - 2009)

One National Program on Federal
Preemption of State Fuel Economy
Standards (2019)194

Programming
Languages Assembly; emerging C Assembly; C; emerging C++

C; C++; Accelerated Massive Par-
allelism; SYCL; Open CL; com-
pute unified device architecture;
very high definition language

Modes of Criticality Reliability; emerging real time;
emerging safety

Reliability; real time; safety; emerging cybersecurity; emerging
mixed criticality

Reliability; real time; safety;
mixed criticality onboard compu-
ting; integrated cybersecurity;
mixed criticality ad-hoc networks;
location awareness;

Hardware
Architecture Dedicated (predominantly fixed);

emerging standardized
Standardized ECU elements (memory, processing elements, input
output, dedicated peripheral and communications bus interfaces)

Adaptive and multi-purpose; high-
performance computing; sensor
fusion; several and heterogeneous
processing units (e.g., micropro-
cessor units, graphics processing
unit, data flow processor, field
programmable gate array); adap-
tive peripheral interface ;Ethernet
bus backbone

Software
Architecture Dedicated proprietary

Independent subdomain architectures (e.g., body electronics,
powertrain, chassis, occupant and pedestrian safety, multimedia,
telematics, and human-machine interface); functional/dedicated
applications; fixed applications; virtual interfaces (e.g., applica-
tion layer; Runtime Environment; service layer (e.g., OS, Mode,
Diagnostic, Firmware, Memory, communications); ECU abstrac-
tion layer, microcontroller abstraction layer)

Emerging Service Oriented Archi-
tecture; integrated domain archi-
tectures (e.g., integrated ADAS);
functional clusters; adaptive appli-
cations

194 Environmental Protection Agency. (n.d.). R Regulations for greenhouse gas emissions from passenger cars and trucks [Web page and portal].

/www.epa.gov/regulations-emissions-vehicles-and-engines/regulations-greenhouse-gas-emissions-passenger-cars-and

https://www.epa.gov/regulations-emissions-vehicles-and-engines/regulations-greenhouse-gas-emissions-passenger-cars-and

56

Year 1950s &
1960s

1970s &
1980s 1990s 2000 2005 2010 2015 2017 to present

Framework Era Gen 1 Gen 2 Gen 3

Framework Subclassification Example Characteristics//Unclassified Categories (not exhaustive)

Fault
Management Strategy Human monitoring and intervention; safety mechanisms; fault avoidance and removal

Human monitoring and intervention; safety mechanisms; fault
avoidance and removal; fail safe; fail operational (including re-
dundancy, mitigation)

Modes of
Software Safety Criticality

Emerging functional safety
(Automotive Software Safety Integrity Level); "Bottom-
Up" approach based on Element out of Context (EooC);
bottom-up risk assessment (e.g., failure mode and effects
analysis from Society of Automotive Engineers Recom-
mended Practice 1739)

Functional safety; emerging system safety model ("top-down")
and top-down safety analysis (e.g., System Theoretic Process
Analysis (STPA)); emerging Safety of the Intended Functional-
ity

OS Technology Proprietary Open Systems and their Interfaces for the Electronics in Motor Vehi-
cles; proprietary

OSEK; proprietary; emerging
thread safe and Portable Operat-
ing System Interface for Unix
compliant including Linux195

Hardware
Technology

Emerging PU, 8 and 16 bit single core
PU; proprietary and custom IO; rati-
ometric (output directly proportional
to an input) and differential sensors,
electromechanical actuators

Emerging 32 bit PU, reduced instruction set computing, complex in-
struction set (CISC) and multiple instruction multiple data processor in-
struction sets on single core PU (advanced RISC machine,
microprocessor without interlocked pipelined stages, power PC architec-
tures); ASIC; inter-ECU communications/dedicated busses; standard-
ized IO and peripheral interfaces (DIO, analog to digital, digital to
analog converter, PWM, pulse width demodulation, capture compare
unit, watchdog timer, timer); differential and ratiometric sensors; emerg-
ing multi-core PU; emerging solid state and smart sensors and actuators.

Legacy support; emerging HPC
and System on Chip; emerging
heterogeneous microcontroller
unit, GPU, field-programmable
gate array (FPGA) processing ar-
chitectures; emerging Network on
Chip; Ethernet backbone; inertial
sensors; global positioning sys-
tem; wideband sensors (e.g., cam-
era(s), radar, light detection and
ranging, ultrasonic); solid state
sensors and actuators; smart sen-
sors and actuators; emerging sys-
tems on ECU (e.g., integrated
Advanced Driver Assistance Sys-
tem controller)

195 Zahir, A., & P. Palmieri, P. (1998, November 13). OSEK/VDX-operating systems for automotive applications. IEE Seminar on OSEK/VDX Open Systems in

Automotive Networks (Ref. No. 1998/523), London. doi: 10.1049/ic:19981075. https://ieeexplore.ieee.org/document/744164

https://ieeexplore.ieee.org/document/744164

57

Year 1950s &
1960s

1970s &
1980s 1990s 2000 2005 2010 2015 2017 to present

Framework Era Gen 1 Gen 2 Gen 3

Framework Subclassification Example Characteristics//Unclassified Categories (not exhaustive)

Control Strategies and Control
Systems

Open loop; closed loop digital (e.g.,
Proportional/Integral/Derivative con-
trol); dedicated (foundational) controls
(e.g., closed loop motor control)

Closed loop digital; functional control systems (e.g., Electronic Fuel In-
jection, engine management system, antilock braking system, Traction
Control System, Adaptive Transmission Control, Electronic Climate
Control, ACC, Power Assisted Steering); emerging ADAS

Closed loop digital; guidance;
trajectory; functional control sys-
tems; supervisory and authority
control systems (e.g., ADS;
ADAS; integrated control sys-
tems

Communications Strategy, Net-
work Architecture and Topology

Sensors directly
connected to
ECU; emerging
communications
bus and ECU -
ECU

In-vehicle communications bus and ECU- ECU (e.g., CAN); emerging V2V; emerging smart
and networked sensors and actuators; emerging wireless and RF communications (e.g.,
3/4,DSRC)

ECU-ECU; networked smart sen-
sors and actuators; emerging
V2V and V2X; in-vehicle back-
bone bus (e.g., TSN196); emerg-
ing NoC197; wireless and RF
communications (e.g., 3/4/5G,
DSRC)

Model of
Computation Real time; distributed; finite state machines; dataflow process networks; discrete event; syn-

chronous reactive

Concurrent and parallel; multi
thread; pragma based198; acceler-
ator; service-oriented architecture
(SOA); real time; distributed; fi-
nite state machines; dataflow pro-
cess networks; discrete event;
SR; AI

Development Tools

Modeling ISO 26262 concepts; requirements management; architecture (definition); model-
ing tools; modeling style guide enforcement; model metrics; model debugging; data diction-
ary; model diff and model merge; automatic test vector generation; test
execution/management; model coverage measurement; model viewers; model documentation;
automatic code generation; ACG - low level drivers; static code analyzers; HIL; calibration;
requirements traceability; compilers; real-time operating system; version control; issue track-
ing; product languages; process tools; reviews

TBD

196 Institute of Electrical and Electronics Engineers, Inc. (2017). Time-Sensitive Networking Task Group [Web page]. www.ieee802.org/1/pages/tsn.html
197 Arteris IP. (2020, November 4). Application driven network-on chip architecture exploration & refinement for a complex SoC: How to identify bottlenecks

and converge towards the NoC implementation [Web page]. Semiconductor Engineering. https://semiengineering.com/application-driven-network-on-
chip-architecture-exploration-refinement-for-a-complex-soc/

198 Pragma (from “pragmatic”) is a language construct that specifies how a compiler (or other translator) should process its input.

http://www.ieee802.org/1/pages/tsn.html
https://semiengineering.com/application-driven-network-on-chip-architecture-exploration-refinement-for-a-complex-soc/
https://semiengineering.com/application-driven-network-on-chip-architecture-exploration-refinement-for-a-complex-soc/

58

3.3.2 Business and Market Factors
Table 12 presents the framework taxonomy classifications for business and market factors that
act as process change factors for the automotive SDLC.
Table 12. Taxonomy of business and market factors with impacts on SDLC constraints and requirements.

Business and Market Factors with Influences on the Automotive SDLC

Research Theme Classification Subclassification Change Factors Framework Sources

Business and Market
Factors

Business and
Market Factors

Macro Factors

Mobility model; demographics and
geographies; propulsion technology;
energy supply and availability;
maintenance and sustainment; prod-
uct feedback; consumer requirements;
supply chain; increasing number of
mechatronic and software features;
increasing use of automation and con-
nectivity (V2X); environmental im-
pact; innovation/first to market with
IP including from new entrants; com-
moditization of E/E hardware and
components; manufacturability of E/E
systems

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
[11]

Design Philosophy
Consumer product; cost optimized
around performance; comfort; safety
and consumer features

Utilization
Predominantly individual use (< 8%
of registered vehicles in the US are
fleet), 1-2 hours/day

[12] [13] [14]

Complexity Software Complexity

Process complexity; code complexity;
architectural complexity; variant
complexity; requirements complexity;
no accepted consensus standards for
measuring complexity

[15] [16] [17]

The following sections summarize classifications and sub-classifications within the business and
market factors theme.

3.3.2.1.1 Business and Market Factors Taxonomy
Section 2.3 provided an overview of business and market factors that shape the automotive
industry and heavily influence software practices. The following section captures these
influences in terms of their impact on critical lifecycle practices.

3.3.2.1.1.1 Macro Factors
Macro factors include non-functional requirements such as business and economic factors,
demographics, legal, social, supply chain, and natural forces that influence the SDLC.
Additionally, competitive decisions come into play, such as when the development pace for
ADSs increased significantly following Google’s automated vehicle debut in 2014.199 This had a

199 Glon, R., & Edelstein, S. (2020, July 31). The history of self-driving cars. Digital Trends. www.digital-

trends.com/cars/history-of-self-driving-cars-milestones/

http://www.digitaltrends.com/cars/history-of-self-driving-cars-milestones/
http://www.digitaltrends.com/cars/history-of-self-driving-cars-milestones/

59

significant impact on automotive software development as traditional vehicle manufacturers
shifted focus to developing ADS technologies (i.e., starting the shift from Gen 2 to Gen 3).

3.3.2.1.1.2 Design Philosophy
Design philosophy classifies fundamental requirements related to style, performance, safety,
consumer demand, economics, manufacturing processes, and end use. Among producers of
critical software, the automotive industry is, perhaps uniquely, characterized by heavy influences
on requirements related to consumer driven utilization, stylistic, and performance characteristics.

3.3.2.1.1.3 Utilization
Utilization describes the end-use model and duty cycle of the vehicle during daily operation. The
utilization model influences requirements and costs related to durability and longevity. It thereby
influences functional performance requirements related to dependability and availability, design
margins, and overall life of the vehicle.

Emerging “last mile” delivery services (e.g., FedEx Freight Direct) and mobility as a service
providers (e.g., Uber, Lyft) have provided evidence of changing business models that may
influence utilization.

3.3.2.1.2 Complexity Taxonomy
Complexity describes the “state of complication” of the software, processes, architectures, and
other aspects of automotive E/E systems. There is widely acknowledged lack of agreement as to
how to define and measure complexity related to the growing software content on modern
vehicles. Still, many of the research sources cite “complexity” as a key driver behind SDLC
process costs.

This research identified process, code, and architectural complexity as three of the leading
sources of overall complexity for critical E/E software.

60

Table 13. Impacts on SDLC practices due to business and market constraints and non-functional requirements

Influences due to Business and Market Constraints on the Automotive SDLC

 Generation 1 Generation 2 Generation 3

Business and
Market
Factors

● Evolving and increasing use of E/E control systems onboard motor vehicles drives con-
straints for software criticality (e.g., safety, reliability, security, dependability)

● Expanding product variability introduces added software complexity due to variant and
configuration management (e.g., models and model variants, software options and configu-
rations)

● Consumer use cases drive private, independent and consumer managed maintenance and
operation of motor vehicles impacting requirements for usability, maintainability, reliabil-
ity, and robustness of E/E systems

● Consumer driven mobility models and limited utilization impact requirements for reliabil-
ity, robustness and dependability for automotive E/E components, and result in E/E sys-
tems that are designed for ~10 years/150,000 miles of service

● Energy supply and availability influence vehicle E/E architectures and propulsion (e.g.,
electric drive versus internal combustion engine)

● Increasing demand for ADAS drives complexity, changing risk models, changing MoC,
changing failure management strategies, and changing criticality for onboard software

● Changing mobility models (e.g., MaaS) drive requirements for in-
creasing utilization and duty cycles, commercial maintenance and re-
pair, and changing critical software constraints

● Changing control strategies and paradigms (e.g., ADS, ADAS) drive
changing critical software constraints (e.g., location awareness, trust-
worthiness)

● Changing communications strategies and connectivity (e.g., telemat-
ics) drive increasing complexity and exposure to cybersecurity
threats

Impact on
SDLC

● Emerging processes, consensus standards, and MoC for critical software development
● Process complexity and variant management drive costs and limits to affordability of

onboard software
● Changing failure management strategies with increasing numbers of interconnected criti-

cal systems
● Need for consensus standards maturity related to security, communications protocols,

interoperability
● Evolution of reference architectures (AUTOSAR, etc.)
● Evolution of distributed critical software development and critical element out of context

for software development across automotive supply chain boundaries

● Emerging safety paradigms (e.g., safety of the intended functionality
(SOTIF)) and increasing need for top-down/system safety approach,
(e.g., STPA)

● Changing criticality for systems related to security, location aware-
ness, quality of service

● Lifecycle impacts on municipalities, other entities, possessing limited
experience managing large safety critical software systems

● New and changing MoC, including stochastic and machine learning,
probabilistic computing, indeterminate concurrency, arbitration.

● Increasing use of statistical testing, road testing, “game play testing”
● Changing SDLC methodologies including software development lev-

eraging ML techniques
● Need for consensus standards maturity related to learning algorithms,

probabilistic computing, ML Coding Practices, ML algorithms, trust
● Evolution of reference architectures to accommodate new MoC and

architectures

61

3.3.3 Consensus Standards Research Theme
In highly regulated industries, such as aviation, software processes and architectural consensus
standards are often driven by regulatory agencies to be well defined, harmonized, and
consistently applied across many applications.200 Automotive manufacturers and suppliers use
voluntary industry oversight and market discipline to inform consensus standards. Automotive
consensus standards often originate from proprietary documentation and integrate a wide range
of internally developed protocols, external consensus standards, and ad-hoc process definitions.
Various standards bodies and associations (e.g., AUTOSAR, SAE) have been organized by the
industry to maintain public consensus standards.

During the research, several conversations with vehicle manufacturers and other industry
experts201 indicated that the automotive industry’s position of standardization through self-
certification (both to regulations and consensus standards) and voluntary market discipline in the
United States provides a level of resistance to widespread acceptance of universal consensus
standards. The conversations revealed a full spectrum of approaches to standardization related to
industry reference models. Some companies have evolved their processes internally with no
explicit effort to look at external consensus standards, others pick and choose portions from
several consensus standards, and some strive to fully implement published consensus standards.

An example of the gap between consensus standards and practice can be seen in a response an
expert provided during a research conversation, where the respondent described the
organization’s view that ISO 26262 is widely accepted as the leading consensus standard for
functional safety in automotive E/E systems. The respondent’s organization has publicly
established the goal of becoming completely ISO 26262 compliant across all product lines yet is
estimated to be only 40 percent compliant within a few of the product lines as of 2019. That is,
while vehicle manufacturers may recognize ISO 26262 as the state-of-the-art for functional
safety, a gap exists where internal processes still might not be updated to comply with ISO
26262.

200 For example, the FAA released an advisory circular describing implementation of the DO-178 consensus stand-

ard, but notes that adherence to DO-178 is one way, but not the only way, to satisfy applicable airworthi-
ness regulations.

201 To elicit more complete and candid responses, the contractor interviewed industry experts anonymously.

62

Table 14. Taxonomy of key regulations and consensus standards that influence SDLC constraints and requirements

Regulations and Standards with Influences on the Automotive SDLC

Research Theme Classification Sub
classification Change Factors Framework Sources

Regulation

Regulatory
Jurisdiction

N/A International, Federal, regional [109] [110]

Regulatory
Standards

Environmental
Motor Vehicle Air Pollution Act (1965); Air Quality Act (1967); Federal Motor Vehicle Safety Standards
(1967 to present); Clean Air Act (1970); Clean Air Amendments (1990); California Emissions Standards
(Various); Clean Fuels Alternatives; Natural Low Emissions Vehicles; Tier 2 Tailpipe Emissions (2004 -
2009)

[50]

Standards

Architectural

Hardware Software
and Logical

AUTOSAR Classic Platform; Adaptive AUTOSAR; Proprietary; AGL; Proprietary [18] [19] [20] [21] [22]

Network and Com-
munications

CAN Specification: 1991; LIN Specification: ~2003; MOST Specification: ~2008; TTEthernet Specifica-
tion: ~2008; FlexRay/ISO 17458-1:2013; TSN/IEEE 802.1AS: 2018 (deterministic Ethernet); Class A, B, C,
D

[23] [24] [25] [26] [27] [28]
[29] [30]

Machine Learning
and AI

Emerging computational approaches and architectures; emerging trustworthiness; emerging use cases and
applications; emerging foundational consensus standards; emerging system consensus standards (e.g., ADSs)

[31] [32] [33] [34] [35] [36]
[37] [38] [39] [40] [41] [42]

Programming
Language; Style;
Syntax

MISRA (C, C++, ACG); AUTOSAR 068; MAAB; AUTOSAR C++14; HIC/HIC++; CERT
Appendix A Table 8
[43]

Process

Process Assurance
and Assessment

ASPICE process reference model; measurement framework; Process Assessment Model; performance indi-
cators

[44]

Process Reference
Model

ISO 26262; ISO/SAE 21434; ASPICE; SAE J3061; ISO PAS 21448 [45] [46] [47] [48] [49]

63

Table 15. Impacts on SDLC practices due to regulations and consensus standards

Influences due to Regulations and Standards on the Automotive SDLC202

 Generation 1 Generation 2 Generation 3

Regulations and Standards

● Continuously evolving
● Governed by voluntary market discipline; private litigation using

public rules/consensus standards; performance based regulation
(e.g., FMVSS beginning in 1967)

● Emerging consensus standards driven by automation, connectivity, and evolv-
ing MoC

● Changing reference architectures and consensus standards
● Specialized consensus standards and processes related to application specific

HW/SW (e.g., system on a chip (SoC))

Impact on SDLC

● Market discipline and self-certification drives the implementation of
widely varying processes and methods across the industry

● Emerging critical consensus standards provide process reference
models for critical software

● Widely varying processes across supply drive increasing interde-
pendence between SDLC processes and architectural consensus
standards

● Emerging architectures and programming languages drive changing and new
reference models, programming syntax and style guides

202 Because the regulations and standards in the taxonomy provide industry definitions and taxonomies that define products, software, programming languages,

architectures, and other aspects of E/E systems and software, the influences shown in Table 15 are given for the regulations and standards theme and not
the individual standards provided at the classification and sub-classification levels of the framework.

64

3.3.3.1 Architectural Standards Taxonomy

Automotive E/E systems are produced by distributed and vertically integrated suppliers that
progressively integrate components and subsystems through the supply hierarchy. SDLC
processes are often distributed across supply chain boundaries, a fact that affects requirements
management, validation and verification, process integration, release management, and nearly
every step of the SDLC. The distributed nature of SDLC processes makes it difficult to produce
an exact description of how the industry produces software; thousands of methods are practiced
by hundreds of vehicle manufacturers, Tier I suppliers, and other suppliers.

In order to achieve product and process compatibility, the industry produces a wide variety of
architectural consensus standards that define hardware, logical and software interfaces between
operating systems, middleware, interconnected electronic control units (ECUs), peripherals (e.g.,
sensors and actuators), and software applications that allow diverse, distributed networks of
suppliers to produce seamlessly integrated products (Figure 14).

As the “software-defined vehicle” takes form, E/E architectural definitions will increasingly
define and reflect the overall composition of the vehicle. Hardware and software architectures,
developmental processes, and consensus standards are interrelated. The corresponding
framework taxonomy may be required to capture complex relationships between classifiers due
to interdependencies between wide ranging factors, as described above.

Table 14 provides a taxonomic overview of regulations and consensus standards that influence
automotive critical software practices. Further information is available in Appendix A, Table 8.

3.3.3.1.1 Hardware, Software, and Logical Consensus Standards
Hardware, software, and logical consensus standards provide structural descriptions of system
architectures and give developers the necessary abstraction layers, interface definitions, and
logical structures to allow integration of E/E systems from distributed suppliers and developers.

Table 14 provides a classification for architectural consensus standards used in the automotive
industry.

Section 3.3.4.1.2 provides the taxonomy for architectural types used in the framework.

3.3.3.1.2 Network and Communications Consensus Standards
Network and communications consensus standards define protocols, use cases, and functional
specifications for busses and other communications mechanisms (e.g., NoC) that are used to
interconnect ECUs, actuators, sensors, and other devices on the vehicle.

Table 14 provides a classification for network and communication consensus standards used in
the automotive industry.

Section 3.3.4.3.1 provides a taxonomy of hardware technology that is used in automotive
networks and communications systems, and Section 3.3.4.5.1 describes a framework taxonomy
for communications strategies, network architecture, and topology.

3.3.3.1.3 Machine Learning and AI Standards
Table 14 provides a classification for AI and machine learning consensus standards based on
current consensus standards and from numerous working groups for upcoming consensus

65

standards.203 Appendix A, Table 8 provides a summary of emerging consensus standards related
to lifecycle processes, tools, and methods for nomenclature, trustworthiness, computational
approaches, and MoC in AI frameworks. As these approaches mature, the framework can be
updated to capture emerging machine learning and AI consensus standards.

The diversity of new automation-related technology and software methods, lack of existing
consensus standards, and variety of closely held, proprietary approaches to machine learning and
AI all presented challenges to developing a framework. This research revealed a wide range of
predictions and speculation related to how consensus standards and practices will evolve with
respect to the safety, trustworthiness, and morality of rapidly evolving AI software.

As “Gen 3” emerges, the landscape of tools, processes, consensus standards, and technology is
rapidly changing, particularly with respect to machine learning and AI, automated safety critical
systems, and cybersecurity. For example, in early 2020, UL 4600 became the first published
consensus standard specifically for documenting the safety evaluation of ADS.204 The framework
is adaptive and designed to be revised in order to reflect changes and trends across the
automotive industry. Table 29 provides a short-term roadmap to capture consensus standards that
have emerged during this study.

As consensus standards and practices emerge, additional frames will be required.

3.3.3.2 Programming Standards Taxonomy

The SDLC’s ability to meet requirements across the functional hierarchy is strongly influenced
by the coding practices, style, coding constructs, syntax, and conventions used during
construction of source code and models. For example, Part 6 of ISO 26262 describes different
modelling and coding guidelines needed to comply with the standard. Software programming
and modeling language consensus standards define best practices and use it to ensure that
software can meet requirements for performance, functionality, and criticality.

3.3.3.2.1 Language, Style, and Syntax Standards
Research conversations with experts revealed that the automotive industry uses a number of
well-established and mature consensus standards for language, style, and syntax. For “Gen 2”
development, MISRA-C is used for C code and MAAB and/or MISRA SL/SF, for model-based
development. Interviewees described widespread acceptance for both consensus standards and
indicated that company-specific extensions to the consensus standards are common, particularly
in large software organizations.

Rapidly evolving use of other programming languages in “Gen 3” applications indicate that a
number of new language-related consensus standards are on the horizon. Changes to the existing
consensus standards may also come as emerging languages and programming frameworks are
tailored to accommodate new HPC, GPU, and FPGA-based E/E platforms that incorporate
programs written in Open CL, CUDA, VHDL, and other languages.

203 For this document “AI” and “Machine Learning” are used to generally describe a wide range of algorithms, tech-

nologies, and automation techniques that are used in Gen 2 and emerging in Gen 3 in support of automa-
tion. Examples of machine learning techniques include supervised and unsupervised learning techniques,
classification and regression learning algorithms, route planning, sensor fusion and image classification.

204 Underwriters Laboratories Inc. (2021). Presenting the standard for safety for the evaluation of autonomous vehi-
cles and other products [Web page]. https://ul.org/UL4600

https://ul.org/UL4600

66

Table 14 provides a classification for programming language, style, and syntax consensus
standards used in the automotive industry.

3.3.3.3 Process Consensus Standards Taxonomy

Interdependencies between architectural consensus standards, models of computation,
standardized commercial tooling (e.g., MBD, ACG), and various consensus standards for
programming syntax and style drive the need for standardized SDLC process steps.

Standardized process models (“reference model”) have a profound impact on the way E/E
systems are conceived, designed, constructed, tested, and delivered to customers. Reference
models enable successful operations across geographic, cultural, and supply chain boundaries.205

3.3.3.3.1 Process Assurance and Assessment
Process assurance and assessment is related to an organization’s ability to ensure that process
steps are implemented correctly and are being followed according to the intent and requirements
of the process. Software process assessment examines whether implemented software processes
are effective and efficient in accomplishing the goals set forth in process requirements. A
software capability or software maturity assessment is performed against a process reference
model in order to determine the relative capability of an organization’s SDLC when measured
against the idealized process reference model.

Table 14 provides a classification for process assurance and assessment consensus standards that
are used in the automotive industry.

3.3.3.3.2 Process Reference Model
Process reference models provide abstractions of software lifecycle processes, including process
capabilities (e.g., process documentation), process steps (e.g., software validation and test), and
supporting process infrastructure (e.g., quality, culture, qualified personnel). Software producing
organizations may measure real, implemented enterprise SDLC processes against these models.

ASPICE and ISO 26262 are examples of consensus standards that provide process reference
models for the measurement of process maturity. For instance, the automotive industry
developed the ASPICE process reference model and process assessment methodology as a
generalized model for E/E systems development. Process reference models for critical modalities
(e.g., ISO 21434 and ISO 26262) establish idealized practices for the respective modalities (e.g.,
Hazard Analysis and Risk Assessment for safety critical systems, Threat Assessment and
Remediation Analysis for cybersecurity).

Table 14 provides a classification for process reference models that is used in the automotive
industry.

3.3.3.4 Environmental Regulations and Standards Taxonomy

Environmental regulations are highly influential over the evolution of E/E technology on motor
vehicles. Innovation related to electronically controlled fuel delivery (e.g., EFI), ignition and
ignition timing, and CO2 sensing (among others) has been at the forefront of the vehicle
industry’s efforts to reduce emissions and improve fuel efficiency. Emerging architectures for

205 Prikladnicki, R., Audy, J. L. N., & Evaristo, J. R. (2007, March). A reference model for global software develop-

ment. Working Conference on Virtual Enterprises, Guimarães, Portugal. doi: 10.1007/1-4020-8139-1_39.

67

high efficiency and reduced-emissions vehicles (e.g., H-EV, EV, and FCEV) are made possible
by digital control systems and vehicle electrification.

Onboard diagnostics consensus standards provide an example of how environmental regulations
may impact automotive architectures and lifecycle practices. Many of today’s OBD-related
automotive consensus standards, including establishing a common set of diagnostic trouble codes
(DTCs), originate in environmental regulations.206 Automotive software systems must be capable
of detecting and logging the faults that trigger these DTCs.

Various regulations for fuel economy, emissions, and diagnostics provide general constraints that
influence SDLC practices, which are shown in Table 15.

206 For example, see Environmental Protection Agency. (n.d.). Vehicle emissions on-board diagnostics (OBD) [Web

page and portal]. www.epa.gov/state-and-local-transportation/vehicle-emissions-board-diagnostics-obd

http://www.epa.gov/state-and-local-transportation/vehicle-emissions-board-diagnostics-obd

68

3.3.4 Software Type, Technology, Tools and Programming Languages Research Theme
Table 16 summarizes the taxonomy classifications for a wide range of technology, tools, programming languages, and other types
with strong influence over lifecycle practices for software on motor vehicles.

Table 16. Software typology and classification of technology, tools, and programming languages with impacts on SDLC constraints and
requirements

Software Type, Technology, Tools, and Programming Languages with Influences on the Automotive SDLC

Research Theme Classification Subclassification Change Factors Framework References

Software Type,
Technology,
Tools & Pro-
gramming Lan-
guages

Type

Modes of Criticality
(Table 17)

Reliability; real time; safety (e.g., functional safety, system safety, SOTIF); cybersecurity; mixed criti-
cality onboard computing; emerging mixed criticality within ad-hoc (off board) V2X networks; location
awareness criticality; trustworthiness ; emerging morality criticality

[51] [52] [53] [54] [46] [47] [51]
[52] [53] [54] [55] [56] [57] [58]
[59] [60]

 Architecture

(Table 18)

Logical, software, and hardware architectures; standardized; dedicated (predominantly fixed); standard-
ized ECU elements (e.g., memory, processing elements, IO/peripherals); distributed/decentralized con-
troller networks; dedicated and standardized peripheral and communications bus interfaces; emerging
adaptive and multi-purpose peripheral interfaces; emerging HPC architectures; emerging sensor fusion;
multiple and heterogeneous PUs (including multicore microprocessor unit (MPU), graphics processing
unit (GPU), data flow processor (DFP), FPGA); emerging adaptive peripheral interfaces; emerging
Ethernet bus backbone; emerging integrated domain controllers (e.g., ADAS); independent subdomain
architectures (e.g., body electronics, powertrain, chassis, occupant and pedestrian safety, multimedia,
telematics, and HMI); functional/dedicated applications; fixed applications; virtual interfaces (e.g., ap-
plication layer, RTE, service layer (e.g., OS, Mode, Diagnostic, Firmware, Memory, COM); ECU ab-
straction layer; microcontroller abstraction layer); emerging SOAs; emerging functional clusters and
adaptive applications (integrated subdomains, integrated foundational/functional applications)

Fault Management
(Table 19 and Table
20)

Human monitoring and intervention; fault avoidance and removal; safety mechanisms; fail safe; fail op-
erational (including redundancy, mitigation)

[62] [63] [64] [65] [66] [67] [68]
[69] [70]

69

Research
Theme

Classification
Sub
classification

Change Factors
Framework
References

Software Type,
Technology,
Tools & Pro-
gramming
Languages

Software Sched-
uling

OS Technology
(Table 21)

Simple scheduler, OSEK; proprietary; emerging POSIX compliant including Linux
[18] [19] [22] [71] [72
][73] [74]

Hardware
Hardware Tech-
nology
(Table 22)

8, 16, and 32 bit single core PU; proprietary and custom IO; ratiometric and differential sensors; electromechani-
cal actuators; RISC, standard instruction set computing and MIMD processor instruction sets on single core PU
(ARM, MIPS, PPC architectures); inter-ECU communications/dedicated busses); standardized IO and peripheral
interfaces (DIO, ADC, DAC, PWM, PWD, CCU, WDT, timer); emerging multi-core PU; emerging solid state
and smart sensors and actuators; HPC/SoC: MCU, GPU, FPGA; NoC; Ethernet backbone; inertial sensors; GPS;
wideband sensors (e.g., camera(s), radar, LIDAR, ultrasonic); solid state sensors and actuators; smart sensors and
actuators; emerging systems on ECU (e.g., integrated ADAS controller)

[51] [59] [60] [75]

Computer Con-
trol

Control Technol-
ogy and Control
Systems
(Table 23)

Open loop; closed loop (digital); guidance and trajectory; functional and foundational; supervisory and authority
(e.g., automation and autonomy)

[76] [51] [52] [77] [78]
[79] [80] [81]

[113]

Communication

Communications
Technology, Net-
work Architecture
and Topology
(Table 24)

Sensors directly connected to ECU; ECU-ECU; V2X; in-vehicle shared inter-ECU bus (e.g., TSN); smart and net-
worked sensors and actuators, NoC [23] [24] [25] [26] [27]

[28] [29] [30] [83]

70

Research
Theme Classification

Sub
classification

Change Factors
Framework
References

Software Type,
Technology,
Tools & Pro-
gramming
Languages

Software Imple-
mentation

Tools and Pro-
gramming
Languages
(Table 33)

Modeling ISO 26262 concepts; requirements management, architecture (definition); modeling tools ; modeling style
guide enforcement; model metrics; model debugging; data dictionary; model diff and model merge; automatic test vec-
tor generation; test execution/management; model coverage measurement; model viewers; model documentation;
ACG; ACG - low level drivers; static code analyzers; MIL/Hardware in the Loop/SIL; calibration; requirements trace-
ability; compilers; RTOS; version control; issue tracking; product languages; process tools; reviews

[84] [85] [86]

Model of Compu-
tation (MoC)
(Table 25)

Real-time; distributed; finite state machines; dataflow process networks; discrete event; SR; concurrent and parallel;
multi thread; pragma based; accelerator; SOA; AI

[22] [19] [60] [53]

71

3.3.4.1 Software Type Taxonomy

The following sections provide a general typology for influences on automotive software
lifecycle practices.

3.3.4.1.1 Critical
Section 2.1 of this study provided an overview of critical modalities that affect the automotive
SDLC, e.g., dependability, safety, security, real time, trustworthiness, location awareness,
maintainability, and availability.

The “level of criticality” for a system is measured in terms of critical assurance levels, which are
based on mode of criticality. The critical assurance level (e.g., ASIL for functional safety) is
determined from the risk assessment process that has been designated for the specific modality of
criticality (e.g., Hazard Analysis and Risk Assessment (HARA) for functional safety, Threat
Assessment and Remediation Analysis (TARA) for cybersecurity). Reference models for
automotive software criticality are emerging and relatively new. For example, ISO 26262, Road
vehicles - Functional safety, was first released in 2011, and ISO 21434, Road Vehicles –
Cybersecurity engineering, was issued in February 2020.207

A detailed analysis of critical assurance levels and consensus standards associated with criticality
is outside of the scope of this paper. For this phase, the objective is to establish a high-level
typology and taxonomy for relevant process reference models related to the SDLC in order to
use them for comparison with other industries and domains.

Impacts of Criticality on SDLC Practices
The ASIL assignment process happens when an ASIL is calculated for hazardous events and is
assigned to system components. Hardware or software components may realize several functions
with different ASIL ratings. If this occurs, the hardware or software component inherits the most
critical ASIL, as described in ISO 26262. Appendix A, Table 10 provides an example of ASIL
ratings for automotive functional safety across various E/E systems.

The ASIL assignment process provides a method for developers to integrate systems from
elements with different levels of criticality. The benefit is that the number of developmental
process steps may be reduced across the integrated system through reduced process overhead for
elements with lower ASIL ratings. Benefits are realized, however, at the cost of increased
complexity in order to manage the ASIL assignment process.

ASIL classification has wide-ranging impacts on automotive E/E systems, production, and the
complexity and number of SDLC process steps. The assignment of an ASIL to a software
element within an automotive E/E system significantly impacts the level of effort and number of
process steps required for the software to be developed across the lifecycle (Appendix A, Table
11). As an example of this, one of the study experts revealed that the respondent’s organization
estimates approximately 25 percent in increased developmental costs for each ASIL level that
must be achieved for a software component. industry experts indicated that software
development practices that are designed to satisfy the highest levels of criticality (e.g., ASIL D)

207 See ISO 26262: 2011, Road Vehicles- Functional safety,; ISO 21434: 2019. Road Vehicles – Cybersecurity Engi-

neering for detailed information on the respective critical assurance levels and hazard, threat, and risk treat-
ment.

72

can cost up to 100 percent more than the lowest levels (e.g., quality management or ASIL A).
Analysis published by software development organizations indicate similar estimates of 50-80%
cost increases from the lowest to the highest levels of criticality, as well as one estimate of 10-
fold increased effort.208 Cost multipliers are expected to be higher for systems as the
requirements for mixed criticality become more complex (e.g., increasing number of critical
modalities for a system).

Various consensus standards, including ISO 26262 and ISO 21434, provide processes for
defining levels of criticality, not only for the software, but also for the entire electromechanical
system.
Emerging automotive E/E systems are susceptible to several, concurrent critical modalities (e.g.,
safety and security), which introduce demands on the SDLC for process harmonization and
integration. In order to provide a classification of the critical modalities encountered during
automotive software development it is necessary for the framework to address the increasing
occurrence of mixed criticality within automotive E/E systems. Mixed criticality occurs when
components with different levels of criticality coexist in the same system or in interacting
systems.209 Automotive E/E systems may be implemented with mixed criticality within a single
modality, such as safety critical subsystems constructed from items with different ASILs. Mixed
criticality may also occur when E/E systems are constructed from items with criticality across
several critical modalities, such as systems constructed from items with different ASIL and
cybersecurity assurance levels. Requirements for mixed criticality can conflict with each other.
For instance, security measures to satisfy cybersecurity assurance levels hypothetically may slow
down the system responsiveness to the extent that the functional safety requirements are no
longer met.

According to D’Ambrosio and Debouk, challenges related to mixed criticality are compounded
when criticality is considered vertically through the system hierarchy. The functional safety
approach used in the automotive industry is designed to allow for the “bottom-up” integration of
critical subsystems from a multitude of suppliers with the goal of achieving system-level (e.g.,
vehicle) safety assurance. System-level safety requirements developed by vehicle manufacturers
are often developed using “top-down” hazard, threat, and risk assessments. As a result of the
“bottom-up” nature of production across the automotive supply ecosystem, vehicle
manufacturers are increasingly faced with the challenge of integrating “top-down” and “bottom-
up” approaches to criticality in order to integrate safety systems vertically within the safety
hierarchy.210

208 Table 1, ASIL cost heuristics, in Gheraibia, Y., Kabir, S., Djafri, K. & Krimou, H. (2018). An overview of the

approaches for automotive safety integrity levels allocation. Journal of Failure Analysis and Prevention,
18, doi: 10.1007/s11668-018-0466-9 https://link.springer.com/article/10.1007/s11668-018-0466-9/tables/1;
Tom-M.[sic] (2019). What does it cost to implement functional safety? [Web page]. ADI EngineerZone.
https://ez.analog.com/b/engineerzone-spotlight/posts/what-does-it-cost-to-implement-functional-safetyand
Hilderman, 2014.

209 Crespo, A., Alonso, A., Marcos, M., de la Puente, J. A., & Balbastre, P. (2014, August 24-29). Mixed criticality
in control systems 19th World Congress, International Federation of Automatic Control, Cape Town, South
Africa. Also in IFAC Proceedings, 47(3)..

210 D'Ambrosio, J., & Debouk, R. (2013). ASIL decomposition: The good, the bad, and the ugly (SAE Technical
Paper 2013-01-0195). SAE International. https://doi.org/10.4271/2013-01-0195

https://link.springer.com/article/10.1007/s11668-018-0466-9/tables/1
https://ez.analog.com/b/engineerzone-spotlight/posts/what-does-it-cost-to-implement-functional-safety
https://www.sciencedirect.com/science/journal/14746670
https://www.sciencedirect.com/science/journal/14746670
https://doi.org/10.4271/2013-01-0195

73

Table 17. Modes of Criticality with impacts on SDLC

Criticality and Influences on the Automotive SDLC

 Generation 1 Generation 2 Generation 3

Modes of Criticality

● Emerging requirement
for real time perfor-
mance, safety and re-
liability in emerging
E/E systems

● Widespread use of E/E systems in automotive critical appli-
cations

● Development of consensus standards for reliability and func-
tional safety and the emergence of design assurance levels
(e.g., ASIL, design assurance levels (DAL))

● Emergence of multi-function/functional control systems
(e.g., engine management systems (EMS))

● Emergence of mixed criticality systems
● Emergence of V2X, networked vehicles, and requirements

for cybersecurity engineering
● Increasing presence of single mode mixed criticality (e.g.,

different levels of criticality (e.g., ASIL) within a system for
a single mode of criticality (e.g., safety)) driven by increas-
ing number of critical functions on distributed ECUs

● Increasing cybersecurity criticality due to OTA and V2X
threat surface/exposure

● Increasing presence and complexity of multi-mode mixed crit-
icality systems (e.g., systems with concurrent modes of criti-
cality)

● Emerging modes of criticality (e.g., SOTIF, AI) and associ-
ated Models of Computation (MoC) due to increasing use of
automation (e.g., ADS, ADAS, AI) and interconnectivity (e.g.,
V2X, OTA) across E/E systems

Impact on SDLC

● Development of foun-
dational practices for
critical software engi-
neering (e.g., consen-
sus standards for
language, style, syn-
tax, proprietary pro-
cess reference models)

● Emergence of critical reference models and consensus stand-
ards for criticality and critical software development (e.g.,
ISO 26262, ISO 21434)

● Increasing use of standardized MBD, MIL/HIL/SIL practices
across increasingly industry standardized V-Cycle and Agile

● Development of process assessment models, development of
standardized reference (HW/SW) architectures for critical
E/E systems

● Cybersecurity threat and remediation require changing end-
user license agreement (EULA) models and increasing use of
continuous updates for software in the field, including OTA
updates and Software as a Service

● Emerging and unknown lifecycle practices for systems with
new and emerging MoC and modes of criticality related to
ADS/ADAS, V2X, OTA

● Increased reliance on virtualized development and test (e.g.,
“game testing”) and road/field testing for increasingly indeter-
minate critical systems

● Increasingly difficult to execute deterministic V&V coverage
due to the complexity of test requirements related to mixed
criticality systems

74

Figure 9. Mixed criticality across several critical modalities 211

Figure 9 provides a graphical representation of the impacts of mixed criticality on E/E systems.
The complexities introduced by mixed criticality are compounded by the complexities of
automotive E/E supply chains. The automotive industry is heavily influenced by the need to
construct vehicles from interoperable subsystems from diverse networks of suppliers.212 The
industry addresses this requirement, as well as the associated challenge of constructing safety
systems from supplier-produced safety subsystems, by developing critical systems in vehicles
from the “bottom-up.” In this approach, the industry seeks to establish a target system-level
ASIL from component elements that have some notion of (mixed criticality) ASIL already
associated with them.213
D’Ambrosio and Debouk describe how this is achieved through the concept of “element out of
context”:

A Safety Element out of Context (SEooC) is a safety-related element which is not
developed for a specific system in the context of a particular vehicle. Assumptions are
made at the component level and requirements are developed that can meet a given safety
integrity level. This can be seen as a bottom up application of an ASIL decomposition
concept.214

They further note that:

Design teams need to explicitly consider the (expected) top down requirements
decomposition even when the system is being designed bottom up, where design elements
have preassigned ASIL215

It is likely that top-down requirements decomposition will become increasingly important and
relevant as the industry moves toward SOAs. This trend will drive system-level integration of ad
hoc integrated safety systems potentially introduced by V2X and V2V interoperability, where

211 D'Ambrosio& Debouk, 2013.
212 Ibid.
213 Ibid.
214 Ibid. See Appendix A, Table 10 for representative automotive E/E subsystems and their respective ASIL classifi-

cations.
215 Ibid.

75

top-down system-level criticality will have growing influence over the safety requirements of
subordinate E/E subsystems.

3.3.4.1.2 Architecture
Bach et al. developed A Taxonomy and Systematic Approach for Automotive System
Architectures, which provides a basis for the framework taxonomy’s classification of
architectural types with impacts on automotive SDLC practices.216 Mirroring the study, Table 16
captures change factors for logical, software, and hardware architectures.

Differentiation between distributed and integrated system architectures (e.g., centered on
distributed domain controllers versus integrated domain controllers) may be used to further sub-
classify the architectural taxonomy in future versions of the framework.

Emerging automation functions rely on object recognition, image processing, and other
specialized services that require general purpose graphics processing units, field-programmable
gate array (FPGA), and other advanced hardware technology. Moving into Gen 3, a shift toward
service-oriented architectures built around high-performance integrated domain controllers is
reversing the Gen 2 expansion of functions across distributed functional networks.

As an example of how architectural and logical consensus standards impact SDLC practices, one
expert described integration tests as modules that are increasingly developed for “plug and play
use.” For modules developed by suppliers, integration testing by the vehicle manufacturer may
end up being minimal, resulting in integration issues being found late in the development
process. The expert believed that some companies are outsourcing larger and larger subsystems
to suppliers to minimize the amount of integration testing that needs to be performed by the
vehicle manufacturer.

During separate conversations, study sources revealed that these practices could lead to
unintended results, including increasing levels of defects and problem reports during the latest
stages of testing, and during in-vehicle trials.

Table 18 provides a high-level summary of impacts on the SDLC due to architectural evolution.

216 Bach, J., Otten, S., & Sax, E. (2017, April 22-24). A taxonomy and systematic approach for automotive system

architectures: From functional chains to functional networks. Proceedings of the 3rd International Confer-
ence on Vehicle Technology and Intelligent Transport Systems (VEHITS 2017), Porto, Portugal.

76

Table 18. HW, SW, and logical architectures and effects on the SDLC

HW Architectures, SW Architectures, and Logical Architectures with Influences on the Automotive SDLC

 Generation 1 Generation 2 Generation 3

Architecture

● Emerging use of E/E
systems implementing
proprietary, non-stand-
ard, and dedicated ECU
elements (e.g., periph-
erals, IO)

● Emerging communica-
tions bus consensus
standards and distrib-
uted ECU architectures

● Proprietary, dedi-
cated/nonstandard pro-
gramming interfaces
and interface defini-
tions

● Emerging standardized peripheral interfaces (e.g., analog
to digital converter (ADC), digital to analog converter
(DAC), pulse-width modulation (PWM)), device driver in-
terfaces and architectural hardware (HW) consensus stand-
ards (e.g., AUTOSAR Classic Platform)

● Communications bus consensus standards and classifica-
tions (e.g., CAN, e.g., A,B,C,D) for standardized, distrib-
uted domain architectures

● Processor selection driven by requirements for closed loop
control

● Emergence of standardized, distributed domain architec-
tures (e.g., chassis, powertrain) (e.g., AUTOSAR Classic
Platform)

● Standardized programming and logical interfaces (e.g.,
AUTOSAR RTE)

● Scalable through standardized interfaces, scalable by add-
ing distributed functional ECUs

● Emergence and increasing use of calibration for software
modules [107]

● Emergence of integrated domain controller
● Emerging secure and fail safe hardware
● Emerging adaptive interfaces
● Processor selection driven by requirements for high volumes of data

(e.g., 64 bit microprocessing unit (MPU), general purpose graphics pro-
cessing unit (GPGPU))

● Emerging specialized, dedicated and application specific hardware archi-
tectures (e.g., SoC)

● Emergence of Ethernet backbone between integrated domain controllers
for time sensitive data

● Open, SOA software environment for “plug and play” services and po-
tential V2X networks

● Scalable through reuse, services/functional clusters
● Increased complexity for real time systems due to multi-threaded pro-

gramming and heterogeneous controller architectures
● Emergence of increasingly indeterminate systems due to SOA and ad-

hoc/multi-function software architectures

Impact on
SDLC

● Foundational and func-
tional programming

● Dedicated, purpose
built and hand pro-
grammed software

● Emergence of logical
software architectures

● Not scalable

● Hardware abstraction and middleware allowing distributed
development, reuse, standardization and interoperability
across suppliers

● Standardized models representing the logical architecture
(e.g., Simulink models for increasing use of standard archi-
tectural template libraries) and model based architectures
(e.g., Unified Modeling Language (UML), EAST-Archi-
tecture Description Language)

● Emergence and increasing use of RCP for ECU develop-
ment due to the availability of commercial RCP systems
based on standardized HW and SW architectures [107]

● Emergence of programming style guides and consensus
standards (e.g., MISRA ACG)

● Emergence and increasing use of standardized process ref-
erence models (e.g., ASPICE)

● Emerging use of object oriented programming and C++
● Scalable through reuse and standard block libraries (MBD)

● Emergence of SOA, multi-function programming
● Emergence of agile programming techniques for E/E systems
● Emergence of virtualized testing methods for guidance and trajectory

control
● Emergence of specialized programming languages for data and image

processing on specialized processors (e.g., SYCL, CUDA programming
languages and GPGPU processing architectures)

● Emergence of scene generation HIL testing and real time broadband sen-
sor simulation for HIL testing [108]

● Increasing use of object oriented programming
● Increasingly complex and indeterminate software and test conditions,

driven by potential V2V networks, wide ranging ADS driving scenarios,
and SOA

● Increasing use of road tests and less reliance on MIL/HIL/SIL due to test
complexity

● Emerging practices for developing redundant and multi-threaded critical
software processes

77

Evolution of Hardware, Software, and Logical E/E System Architectures With Impacts on the
SDLC
Figure 10, Figure 11, and Figure 12 provide graphical representations of the architectural
changes captured in Table 18.

Figure 10. Framework “Gen 1” is characterized by emerging automotive ECUs that incorporate iso-

lated, digital, foundational and functional controls (e.g., throttle body control, ABS).

Figure 11. Framework “Gen 2” ECU hardware is increasingly distributed and networked

(e.g., ECU-ECU via CAN).

78

Figure 12. The emergence of “Gen 3” domain controllers continues the trend of function aggregation but

reverses the trend of increasing numbers of distributed ECUs onboard the vehicle.

3.3.4.1.3 Fault Management
Section 2.1.5 for this study provided a taxonomy and overview of fault tolerance and fault-
recovery strategies with impacts on automotive SDLC practices (i.e., fault avoidance and
removal, human monitoring and intervention, safety mechanisms, and fault tolerant systems).

An understanding of the failure modes that are addressed by fault management strategies
provides insight into how fault management practices impact the SDLC.

ISO 26262 defines two categories of failures for E/E systems (Table 19). Table 20 provides
examples of impacts on the SDLC due to various fault management strategies and
implementations.

Table 19. Fault management - example failure modes for E/E systems

Fault Management - Example Failure Modes for E/E Systems217 218

Category Sub Category Example

Fault Management:
Systematic Failures

Process Related Incorrect specification

Software Related Programming error

Hardware Related Insufficient EMC immunity due to changing
environmental conditions

Fault Management:
Random Hardware Failures Hardware Related Degradation, wear, oxidation of components

217 Tyagi, R. (2018). Functional safety architectural challenges for autonomous drive. Infineon.
218 For reference on failure modes see ISO 26262-6, Annex D. Also see ISO 26262-1 (1.14), ISO 26262-9, ISO

26262-10.

79

Table 20. Effects of fault management strategies on software lifecycle practices

Fault Management Strategy Representative Influences on SDLC Constraints
and Requirements219

Fault avoidance and removal Added process steps to eliminate or reduce systematic failures that can be eliminated during
the development process (e.g., incorrect specification).

Human monitoring and
intervention Affects the number and complexity of process steps due to the level of criticality. For exam-

ple, elements such as driver warnings, control transitions, and fail safe mechanisms all con-
tribute to increased SDLC complexity to achieve the requisite level of criticality.

Affects the test and verification methodology that is used in order to verify the intervention
strategy.

Safety mechanism
Affects the number and complexity of process steps due to the level of criticality.

Affects the test and verification strategy to test the safety mechanism.

Fault tolerant system
Affects software reusability due to the use of specialized architectures (e.g., redundancy).

Affects the ASIL level (e.g., due to impact on operator controllability).

Affects the test and validation strategy due to the challenges of testing fail operational sys-
tems.

Affects the overall software complexity.

3.3.4.2 Software Scheduling Taxonomy

To implement software with the required MoC, criticality, and architecture, software functions
must be sequenced and scheduled to execute within the boundaries of functional and
performance requirements for timing and determinism, jitter, and latency.

Operating systems provide the foundation for standardized architectures and often implement
standardized service layers with industry-accepted APIs for memory access, timing and
synchronization, peripherals, device drivers, and communications.

In simpler applications, particularly where libraries of device drivers are not needed (e.g., Gen
1), “software schedulers” are used.

3.3.4.2.1 Operating Systems
Table 16 provides the framework classifications for software scheduling and OS technology.

Standardized operating systems (e.g., OSEK, AGL) implement architectural interfaces through
virtualization and abstraction layers between various service layers and the ECU. This allows
E/E suppliers to develop and innovate with rapidly changing designs, while using consistent
“plug-and-play” interfaces and APIs to integrate emerging technology within standard
architectures.

219 ISO 26262 classifies faults as single point, residual, detected multi-point, and latent-multi point; for further infor-
mation on fault management see ISO 26262-5:2011, Annex B, Figure B.2.

80

The ECU and system logical architectures, HW/SW architectures, and OS implementations are
tightly coupled and highly-integrated, and they share dependencies across the spectrum of
system requirements.

In support of standardized operating systems and abstraction layers, manufacturers use
calibration methods to implement parameterized software within automotive ECUs and to allow
ECU software to be targeted and tuned for a wide variety of applications. This allows delivery of
adaptable software from Tier I suppliers to a multitude of vehicle manufacturers, and it requires
minimal modification of the supplied software by the vehicle manufacturer to deploy the
supplier’s software.

Table 21 summarizes effects of operating system characteristics on lifecycle practices.

81

Table 21. Impacts of operating system characteristics on SDLC practices

Operating System Influences on the Automotive SDLC

Generation 1 Generation 2 Generation 3

OS Technology

● Undefined OS, simple
scheduler (one type of
software scheduler), pur-
pose built, proprietary
RTOSs

● Emerging commercial op-
erating systems

● Standardized RTOSs (e.g., OSEK)
● Standardized OS compatibility with standard-

ized HW/SW architectures (e.g., OSEK and
AUTOSAR CP)

● Abstraction layers (e.g., Virtual Function Bus
(VFB), ECU and Microcontroller abstraction)
allowing multipurpose/general purpose IO and
programming interfaces

● Standardized specifications for device drivers,
communications bus interfaces (See AU-
TOSAR Classic)

● Service oriented, multi-function programming in thread safe OS
(e.g., POSIX)

● Increasing use of function clusters and sensor fusion allow for
SOA

Impact on SDLC

● Lack of consensus stand-
ards for interoperability

● Dedicated programming
interfaces and interface
definitions

● Application specific de-
vice drivers

● Manual C & Assembly
language coding

● Standardized programming, device driver, and
logical interfaces allowing reuse and interoper-
ability (e.g., AUTOSAR CP, OSEK Operating
System)

● Integrates with model based design workflow

● Increasing use of POSIX standard programming interfaces and
multi-thread programming techniques for parallel programming
in heterogeneous processing architectures.

● Open software environment for “plug-and-play” services.
● Increasing use of multi-threaded and redundant MoC and OS.

82

3.3.4.3 Hardware Taxonomy

Automotive embedded systems are built so that the underlying hardware and software
architectures are tightly integrated, allowing the system to implement the required critical
modalities and MoC and to meet functional and performance requirements. Hardware technology
for automotive E/E systems has evolved to become increasingly specialized and is designed for
specific purposes and applications within the motor vehicle.

3.3.4.3.1 Hardware Technology
The recent architectural evolution of automotive E/E systems is driven by rapid innovation,
commercialization, and commoditization across a wide range of hardware and electronic
components, processors, FPGA, GPU, memory, peripherals, smart sensors, actuators, wideband
sensors (e.g., LIDAR, RF, radar, ultrasonic), and communications network technology.

Documented taxonomic sources for automotive E/E hardware are available in published
literature and were used for this study. The representative advancements shown in the framework
(Table 22) provide context for architectural changes and related effects on the SDLC and
lifecycle framework.

83

Table 22. Effects of hardware architecture and implementation on SDLC practices

Hardware Technology Influences on the Automotive SDLC

 Generation 1 Generation 2 Generation 3

Hardware Technology

● Sensors and actuators interface
with ECU through semi-custom
and dedicated peripheral inter-
faces including analog, dis-
crete//timing (e.g., for
ratiometric and differential sen-
sors, hall effect sensors,
switches, encoders)

● Dedicated communications
busses (ECU - ECU)

● 8 and 16 bit single core micro-
processors (e.g., Motorola
6802, 68HC11)

● Standardized peripheral, bus, and IO inter-
faces between sensors and actuators and
the ECU

● Emerging smart sensors and actuators (e.g.,
with onboard processing, FPGA, bus inter-
face with ECU)

● Increasing use of digital, integrated circuit-
based sensors (e.g., CMOS, MEMS)

● Distributed, decentralized control systems
organized by functional groups including
domain and bus classification

● Functional groupings by bus category
across bus endpoints (e.g., A, B, C, D) and
functional requirements (e.g., sensors and
actuators, ECU-ECU, broadband (e.g.,
camera, LIDAR))

● Functional groupings by vehicle subdo-
main (e.g., chassis, powertrain)

● Emerging multicore and heterogeneous
processors (e.g., microprocessor unit and
FPGA)

● Emergence of memory mapped IO for effi-
cient Real Time IO processing, increased
memory address space and low cost
memory for larger application size

● Adaptive interfaces
● Progression from distributed, networked ECU architecture to central-

ized architecture with integrated domain controllers integrated with
clusters of functional controllers

● Low level IO (feedback controls) through functional controllers (Gen
2), High level IO interfaces (Authority Guidance, and Trajectory)
through SoA

● Increasing use of Sensor Fusion and SoA
● Backbone integration of domain architectures (e.g., via TSN) between

integrated domain controllers and functional busses (e.g., low level and
closed loop control systems (CAN), broadband sensors (MOST))

● Reduced onboard ECU count and increased ECU complexity
● Emerging GPGPU, many core processors, System on Chip architec-

tures.
● Emerging specialized automotive processing architectures for deep

learning and sensor processing (e.g., data flow processor (DFP))

Impact on SDLC

● Hand coded, custom software,
custom device drivers, exten-
sive use of assembly language

● Increasing use of the C programming lan-
guage and MBD/ACG

● Standardized device drivers, standardized
function libraries

● Increasing use of MIL/HIL/SIL

● New MoC related to service-based architectures
● New lifecycle paradigms including increased use of virtualization and

“game testing”
● Increasing use of emerging programming languages (e.g., SYCL,

CUDA)
● Increasing use of agile programming techniques, increased use of re-

dundancy and fail safe development techniques
● Increasing use of multithreaded programming techniques

84

Sensors, Actuators and Peripherals
E/E systems in framework “Gen 1” and “Gen 2” incorporate a variety of ratiometric and
differential sensors for the measurement of various vehicle parameters (e.g., hall-effect sensors
for crank and cam position, thermocouple-based temperature sensors, air fuel sensors, and knock
sensors220). The evolution and commoditization of solid-state sensing technology, processing
and communications busses, and software/OS architectures has led to advancement of a host of
new sensing technologies across the full spectrum of automotive E/E applications.221

Automotive actuation technology has evolved in parallel with sensing technology and covers a
range of applications including active steering, power steering, electromechanical brakes, clutch
and shift actuators, suspension, damping and stabilization actuators, heating, ventilation, air
conditioning, starter-generators, and emerging x-by-wire (e.g., steer-by-wire, brake-by-wire).222

The evolution of E/E systems from “Gen 1” of the framework to “Gen 2” is partially
characterized by standardization of ECU peripheral interfaces (Table 9). During evolution from
framework Gen 1 to Gen 2, mechanical devices were replaced by open and closed loop
electromechanical devices, followed by “smart devices” with onboard controllers and integrated
communications busses. Moving into Gen 3, vehicle electromechanical architectures are
anticipated to continue to replace mechanical linkages and to incorporate emerging safety critical
“by wire” systems. In addition to the Gen 1 and Gen 2 sensor types, Gen 3 architectures are
increasingly implementing general-purpose sensors (e.g., RADAR, LIDAR). The implication for
the SDLC is that these general-purpose sensors require more complex software, such as “sensor
fusion” over service-oriented architectures and function clusters. To help address the increasing
complexity associated with sensor fusion, which will substantially impact the SDLC, there is
ongoing standardization activity. For example, the semantic interfaces of sensor systems is being
standardized in the ISO 23150, “Data communication between sensors and data fusion unit for
automated driving functions.” This consensus standard defines which sensor data or signals are
mandatory or optional and how are they defined, e.g., in terms of coordinate systems and units.
For each sensor type (radar, LIDAR or camera), ISO 23150 will specify many optional sensor
data or signals in addition to the required signals.223 To reduce development costs, especially in
terms of functional safety, the set of options must be fixed at design-time. The consensus
standard is used to specify logical sensor interfaces within AUTOSAR, including the AUTOSAR
Adaptive Platform Standard, which will provide a specification to handle the optional sensor data
and signals during design-time.224

220 Knock sensor detect vibrations that come from an irregularity in combustion and send a signal to the engine con-

trol computer, which then adjusts timing to compensate.
221 For more information on the evolution and application of automotive sensing technologies see First Sensor Inc..

(2021, February 03). Sensor technologies for automotive systems. AZoSensors. www.azosensors.com/arti-
cle.aspx?ArticleID=1241 and Fleming, W. (2001, December). Overview of automotive sensors; IEEE Sen-
sors Journal, 1(4).

222 Iles-Klumpner, D., Serban, I., & Risticevic, M. (2006, September 6-8). Automotive electrical actuation technolo-
gies. 2006 IEEE Vehicle Power and Propulsion Conference, Windsor, UK.
https://doi.org/10.1109/VPPC.2006.364364

223 van Driesten, C., & Schaller, T. (2019). Overall approach to standardize AD sensor interfaces: Simulation and
real vehicle. Springer Fachmedien Wiesbaden. www.springerprofessional.de/en/overall-approach-to-stand-
ardize-ad-sensor-interfaces-simulation-/16401376

224 AUTOSAR. (2019, November 28). Explanation of sensor interfaces (Document ID 913). www.au-
tosar.org/fileadmin/user_upload/standards/adaptive/19-11/AUTOSAR_EXP_SensorInterfaces.pdf

http://www.azosensors.com/article.aspx?ArticleID=124
http://www.azosensors.com/article.aspx?ArticleID=124
https://doi.org/10.1109/VPPC.2006.364364
http://www.springerprofessional.de/en/overall-approach-to-standardize-ad-sensor-interfaces-simulation-/16401376
http://www.springerprofessional.de/en/overall-approach-to-standardize-ad-sensor-interfaces-simulation-/16401376
http://www.autosar.org/fileadmin/user_upload/standards/adaptive/19-11/AUTOSAR_EXP_SensorInterfaces.pdf
http://www.autosar.org/fileadmin/user_upload/standards/adaptive/19-11/AUTOSAR_EXP_SensorInterfaces.pdf

85

Communications Busses
The rapid evolution of automotive communications busses is a key trend captured in the “Gen 2”
taxonomy and reflects the increasingly decentralized, distributed, and functionally organized
automotive E/E paradigm shift between “Gen 1” and “Gen 2.” Throughout the 1990s and 2000s,
communications busses were developed for specific applications and function groupings within
the vehicle (e.g., Class A, B, C, D [Table 13]).

The evolution of “Gen 3” architectures is reversing this, with architectural trends across the
industry moving toward increasingly centralized domain controllers, responsible for function
clusters implemented through SOA. Looking forward, through insight gained from the
emergence of “Gen 3” vehicles and from the Adaptive AUTOSAR framework, the
communications bus strategies deployed in “Gen 3” appear to be moving toward centralized
architectures based on networked domain controllers integrated using “backbone” bus structures
such as Ethernet-based TSN technology. Functional clusters (e.g., closed-loop control
systems/sensors/actuators) will continue to be integrated using lower-level busses (Class A, B),
while broadband and sensor fusion applications will be hosted on Class D networks.

Processors
Microprocessor capabilities have progressed throughout the history of the vehicle ECU.

During framework “Gen 1” and the beginning of “Gen 2”, processing capabilities were added
across the E/E architecture through addition of more decentralized, distributed, and networked
ECUs with increasingly standardized ECU and processing architectures. Microprocessing power
was applied based on a relatively limited number of processing options, and driven by
cost/volume sensitivity (e.g., 16- and 32-bit controllers for powertrain applications and 8- and
16-bit controllers for chassis applications).

Through the course of “Gen 2,” manufacturers began to produce specialized automotive
microcontrollers with progressively more power in terms of clock speed, instruction size,
instruction set and architecture (e.g., RISC, MIPS, PPC, and ARM architectures). The cost of
microcontrollers has decreased through the course of Gen 2, allowing greater use in vehicle
systems. Moving into Gen 3, specialized processors (e.g., GPGPU) used in integrated domain
controllers may reverse this trend.

As high-performance computing capabilities have become affordable over the past decade, an
increasing number of heterogeneous processing and SoC)options have become available,
contributing to the evolution of increasingly capable ADAS and ADS systems. Moreover, the
progression of hardware architectures into “Gen 3” has yielded specialized automotive
microcontroller architectures targeted at critical applications, with lockstep capability for
functional safety, “smart watchdog” capabilities, and dedicated peripherals for hardware-based
cybersecurity.225 External computing power (cloud computing) has also been used in order to
handle the

225 Fault-tolerant “lockstep” systems are designed to run parallel operations at the same time in order to ensure that

the operating state of the controller does not change until all required operations are complete.

86

increasing complexity and dataflow of non-safety-critical automotive software, such as
infotainment content, high-bandwidth map services, OTA functional upgrades, remote diagnosis,
emergency-call processing, and connectivity with external infrastructure.226 For example,
Amazon Web Services touts: “You can use [the Connected Vehicle Solution] to address a variety
of use cases such as voice interaction, navigation and other location-based services, remote
vehicle diagnostics and health monitoring, predictive analytics media streaming services, vehicle
safety and security services, head unit applications, and mobile applications.”227

Increased use of multicore MPUs, FPGA, GPGPU/GPU, and Dataflow processors has driven the
consolidation of Gen 3 ECU functions and the evolution of integrated domain controllers―and
the evolution from decentralized to centralized vehicle system architectures.228

3.3.4.4 Computer Control Taxonomy

The evolution of electromechanical control systems, and the progressive differences between
“Gen 1, 2, and 3” E/E implementations can be characterized in terms of control theory. The
following sections provide classifications for control systems and control strategies used in
automotive E/E systems.

3.3.4.4.1 Control Strategies and Control Systems
In the framework, “Gen 1” is characterized by the emergence and implementation of closed-loop
electromechanical control systems and by progressive replacement of mechanical components
with electromechanical systems.

As technologies related to sensors, actuators, processors and ECU architectures have evolved, so
have control strategies. Advancements in sensing and actuation technology, AI/Machine
Learning, and advanced broadband sensors have led to increasingly sophisticated hierarchical
control frameworks incorporating supervisory, trajectory, and real-time closed-loop control
layers. “Gen 2” and “Gen 3” control systems are increasingly characterized by high-level
supervisory functions performed by computers in place of human operators. This may include
both simple functions such as speed control and parking assist, and more advanced functions
such as route planning (e.g., guidance navigation and control) and collision avoidance (e.g.,
trajectory control). Supervisory control systems and associated fault management strategies are
tightly coupled and impact the ASIL rating for the system, complexity of the system, and cost.
Table 23 summarizes effects on lifecycle practices due to influences related to control systems
and control strategies.

226 Ebert, C., & Favaro, J. (2017, May-June). Automotive software. IEEE Software. https://ieeex-

plore.ieee.org/stamp/stamp.jsp?arnumber=7927926 ; Milani, F. & Beidl, C. (2018, December 5-7). Cloud-based vehicle
functions: Motivation, use-cases and classification. 2018 IEEE Vehicular Networking Conference, Taipei, Taiwan. doi:
10.1109/VNC.2018.8628342. https://ieeexplore.ieee.org/document/8628342

227 Amazon Web Services. (2021). Connected vehicle solution [Web page and portal]. https://aws.amazon.com/auto-
motive/solutions/?nc=sn&loc=3

228 For more information on integrated domain controllers and centralized vehicle control systems architectures see
Reinhardt, D., & Kucera, M. (2013, February 19-21). Domain controlled architecture - A new approach for
large scale software integrated automotive systems. Proceedings of the 3rd International Conference on
Pervasive Embedded Computing and Communication Systems, Barcelona, Spain. doi:
10.5220/0004340702210226.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7927926
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7927926
https://ieeexplore.ieee.org/document/8628342
https://aws.amazon.com/automotive/solutions/?nc=sn&loc=3
https://aws.amazon.com/automotive/solutions/?nc=sn&loc=3

87

Table 23. Impacts of control strategies and control systems on SDLC practices

Control Strategy Influences on the Automotive SDLC

 Generation 1 Generation 2 Generation 3

Control
Strategy

● Emerging open loop, closed loop digital controls
● Calibration of control systems allowing deployment on many model variants
● Evolution of digital control theory leading to increasing number of distributed digi-

tal systems onboard the vehicle.
● Evolution of MoC including real time, distributed, finite state machine, dataflow

process network, discrete event, SR.
● Emerging and evolving standardization and integration of closed loop digital con-

trol strategies, MoC (e.g., finite state machines), and associated tools (e.g., Sim-
ulink), and standardized process reference models (e.g., V-cycle)

● Evolution of sensors and actuators for closed loop control applications (e.g.,
crank/cam sensors, lambda sensors, electronic fuel injector and ignition actuators)

● Evolving use of supervisory and authority (e.g., guidance and
trajectory) control strategies

● Emerging use of AI and machine learning for supervisory con-
trol, with emerging MoC (e.g., adaptive control, model predic-
tive control, neural network) implemented using concurrent and
parallel, multi thread, pragma based, accelerator, SOA, and AI

● Increasingly integrated functions (e.g., function clusters, SOA),
and sensor fusion

● Emerging modes of criticality related to AI/machine learning
(e.g., trustworthiness, morality).

Impact on SDLC

● Evolution of model based programming and related V-Cycle process around MoC
for control systems development

● Reference models for the development of closed loop control systems
● Evolution of MBD/ACG and MIL/HIL/SIL practices for distributed control sys-

tems.

● Increasingly difficult to perform deterministic test coverage due
to the large number of widely varying use cases and scenarios

● Emerging MoC related to parallel and redundant control systems
and SOA

● Increasing levels of software complexity due to increasing ASIL
and fault management

● Emerging techniques for virtual V&V (e.g., game testing)
● Requirements for new consensus standards and defined MoC re-

lated to AI and Machine Learning.

88

3.3.4.5 Communication Taxonomy

This classification captures the overall strategy that is used to implement digital message and
signal passing mechanisms between control elements (e.g., controlled subsystem, controller) and
E/E subsystems.

3.3.4.5.1 Communications Strategy, Network Architecture, and Topology
Automotive E/E systems consist of integrated and networked subsystems including ECUs,
actuators, and sensors. The evolution of E/E communication strategies corresponds with the
evolution of logical and system architectures (Figure 10, Figure 11, and Figure 12).

Domain functions across Body Electronics, Powertrain, Chassis, Occupant and Pedestrian
Safety, Multimedia, and Telematics subdomains are constrained by performance characteristics
required of communications on each subdomain network. Network class specifications allow
networked E/E architectures to be partitioned to support performance and functional
requirements, including bandwidth, cycle time, determinism, and fault latency (Table 13).

A number of changes in “Gen 3” architectures have the potential to impact network and
communications consensus standards. Emerging ADAS and ADS applications are driving
demand for high bandwidth deterministic communication bus technology (e.g. TSN) and the
consolidation of distributed software functions within integrated domain controllers. In contrast
to traditional bus-based approaches, NoC strategies are emerging to address shortcomings
inherent in traditional bus architectures as developers integrate functions on integrated domain
controllers.

The research revealed that E/E engineers are anticipating that the number of onboard busses and
endpoints for class A and B busses will be reduced and simplified, since “Gen 3” vehicles use
fewer ECUs interconnected by deterministic Ethernet (e.g., TSN) “backbones.”229 Based on
conversations for this research, the consensus of E/E engineers seemed to be that any reduction
in architectural complexity that is achieved due to reductions in the number of onboard ECUs
will be more than offset by increased complexity of system architectures for the remaining
ECUs—for instance, incorporating SOA and function clusters, NoC, heterogeneous computing
(e.g., GPU, FPGA, and ECU), and sensor fusion.

Sensor proliferation and the emergence of networked “smart actuators,” is expected to increase
the number of bus endpoints and demands on class B and C busses. Several of the experts
indicated that they expect the automotive industry to continue to support LIN, CAN, and
FlexRay consensus standards for many years.

229 See Table 13 for classification of Type A, B, C, D busses and associated applications by subdomain.

89

Figure 13. Representation of a generic Gen 2 network strategy showing several connected ECUs.

Figure 14. Representation of a generic Gen 3 network architecture showing reduced network connections

through use of distributed domain controllers.

90

Table 24. Impacts of communications strategy and network architecture on SDLC practices

Communications Strategy, Network Architecture and Topology with Influences on the Automotive SDLC

Generation 1 Generation 2 Generation 3

Communications Strategy, Net-
work
Architecture, and Topology

● Emerging independent and isolated ECUs (e.g.,
limited or no ECU-ECU integration)

● Sensors directly connected to ECU
● Emerging automotive communications bus

consensus standards

● Decentralized, distributed control systems ar-
chitectures

● In-vehicle communications bus and ECU-ECU
(e.g., CAN) networks

● Emerging V2X networks
● Emerging smart and networked sensors and ac-

tuators

● Increasingly centralized control systems ar-
chitectures

● ECU-ECU, networked smart sensors and ac-
tuators connectivity between domain control-
lers

● In-vehicle backbone bus (TSN) and emerging
NoC between integrated domain controllers

● Integration of on and off board computing
(e.g., vehicle to vehicle, V2X) via wire-
less/RF (e.g., 4G, 5G, satellite)

Impact on SDLC

● Direct and proprietary IO interfaces using
hand coded device drivers (assembly lan-
guage)

● Limited reuse
● Emerging requirements for system level ar-

chitecture resulting from ECU-ECU net-
works

● System level software design, network design
● Rest bus testing/HIL integration testing
● Emergence of model based architectures and

systems engineering
● Increasing levels of single mode mixed criti-

cality on distributed ECUs

● Increasing support for infrastructure required
for in-field operation and sustaining engi-
neering for Software Defined Car with OTA
updates, including integration with cloud,
V2X

● Increasing levels of security criticality, de-
mand for system-level (“top-down”) ap-
proach for several critical modalities

● Increasing use of inter-process communica-
tion and multi thread programming tech-
niques within integrated domain controllers

● Increasing levels of mixed criticality across
several modalities due to integration of func-
tions into a single domain controller, SOA,
integration of on/off board functions

91

3.3.4.6 Software Implementation Taxonomy

This classification captures the programming languages, tooling, and programming and
computing theory that allow the software to be implemented in the E/E system.

3.3.4.6.1 Tools and Programming Languages
There is a close relationship between software tools, programming languages, and associated
SDLC practices.

Tools
Automotive software workflows are built around a combination of commercial off the shelf and
custom “homegrown” tools.230 Table 33 provides a representative list of some of the more
common tools used for automotive software development. ISO 26262 introduces the concept of
qualifying tools for use in the functional safety process to provide confidence in software tools
and ensure their suitability to support ISO 26262 activities.

Integration of COTS tools into an organizational workflow may require process changes, and
conversely, custom tools are often developed in order to facilitate process requirements. Often,
tool suppliers work closely with vehicle manufacturers in order to develop lifecycle tooling that
satisfies the automotive suppliers’ SDLC process requirements.

Programming Languages
Software development during Gen 1 and Gen 2 of the framework was primarily performed using
assembly language and C.231 Emerging models of computation and computing and processing
architectures (e.g., GPU, FPGA) have led to the emergence of a range of new programming
languages that are being used or are likely to be used as integrated domain controllers emerge
with increasing requirements for data and image processing and performance.

3.3.4.6.2 Models of Computation
MoC describe the types of mathematical functions that a computer architecture is capable of
processing.

Some of the most familiar computing devices, such as personal computers, are designed to
handle a broad range of MoC. In contrast, the computer architectures used in vehicles are
dedicated embedded systems, designed around specific MoC. Earlier in this report, we described
the MoC that are predominantly used in automotive software.

Table 25 provides a summary of MoC by framework generation, with impacts on the automotive
SDLC.

230 During the research phase of this project, one expert described a recent shift toward COTS functional safety tools

in order to avoid issues related to self-qualification of tools.
231 Model-based development may be defined as a third “programming language;” however, the models are used to

generate C source code.

92

Table 25. Impacts of Model of Computation on SDLC practices

Influences due to Models of Computation on the Automotive SDLC

 Generation 1 Generation 2 Generation 3

Model of Computation
● Evolution of real time, distributed, finite state machines, dataflow process networks, discrete

event, SR MoC

● Emerging MoC including multi thread,
pragma based, accelerator, SOA, AI

Impact on SDLC

● Emerging real time, discrete event, and SR MoC drive process reference model, RTOS and
tool selection (e.g., MBD/ACG with RTOS target and step-wise solver)

● Multi thread and SOA MoC drives re-
quirements for thread safe OS (e.g.,
POSIX), MBD tools with POSIX (or
similar) support, lockstep programming.

● Pragma based and accelerator MoC drive
SDLC requirements for tool/language
support (e.g., object oriented, CUDA)

93

3.3.5 Process Requirements Research Theme
Table 26 summarizes process requirements that act as non-functional requirements for the
automotive SDLC.

The table incorporates framework elements shown in Figure 8. As the framework evolves, this
section of the taxonomy can be expanded to include additional classifications and
subclassifications.

Section 3.3.3.3.2 presented taxonomy of various consensus standards that are used as software
process reference models across the automotive industry. The following sections classify these
consensus standards with respect to these processes.

3.3.5.1 Process Reference Model Taxonomy

Section 2.4.6.1 described the evolution of the V-Cycle used in automotive software development
processes.

ASPICE, ISO 26262, and emerging ISO 21434 are all based on the V-Cycle as the underlying
process reference model and share many common process groups and process steps. This can be
seen in the taxonomy of SDLC practices, which captures the first two, nearly identical levels of
the ASPICE and ISO 26262 consensus standards at the classification and subclassification levels.
This will hold true for ISO 21434 based on preliminary drafts of the standard. Deeper levels of
the taxonomy reflect increasing variability between reference processes, indicating that the
number of branches in the taxonomy will greatly increase as classification layers are added.

ASPICE may be viewed as the most general of the consensus standards because it is designed to
describe key attributes of a mature SDLC, and not specific process steps. Reference models for
critical lifecycle practices and for implementations of software development methods (e.g.,
critical reference models) provide more specific and detailed process steps.

3.3.5.2 Critical Reference Model Taxonomy

The framework differentiates between “critical” and “process” reference models because as
critical reference models emerge for cybersecurity (ISO 21434), trustworthiness, AI and machine
learning, and other modes of criticality, it is likely that the taxonomy will branch here, and a
classification system will be required in order to identify different characteristics of the various
reference models.

The critical reference taxonomy is likely to become the framework focus during the next
generation of vehicle development and corresponding framework frames. This is because the
evolution of criticality and associated SDLC process steps are key differentiators between
framework generations. Understanding the differences between critical process paradigms is
crucial for understanding the evolution and uniqueness of automotive software development
practices.

There is a relative harmonization between the few critical lifecycle processes used today in the
automotive industry. Process harmonization, however, is a growing concern as lifecycle practices
become more complex and as MoC, critical modalities, and automotive computing architectures
incorporate more and more dissimilar process paradigms.

94

Requirements for evolving MoC and critical modalities drive different process requirements. For
example, ISO 26262 requires hazard and risk analysis in the concept phase, and ISO 21434
(preliminary) requires threat and remediation assessment. As might be expected, the supporting
process steps for a threat surface analysis on a networked E/E system are much different than a
hazard analysis on a closed-loop, embedded control system. For this reason, as diverging process
methods are captured within deeper levels of the taxonomy of SDLC practices, the taxonomy is
expected to become more complex and more differentiated between classification elements.

95

Table 26. Taxonomy of process requirements with impacts on SDLC constraints and requirements

Processes with Influences on the Automotive SDLC

Research Theme Classification Subclassification Change Factors Framework
References

Process
Requirements

Process reference model (not classified)

V-Cycle SDLC (e.g., ASPICE), criti-
cal V-Cycle SDLC (e.g., ISO 26262
functional safety), emerging Agile,
"Bottom-Up" approach based on Ele-
ment out of Context (EooC), Bottom-
up critical analysis (e.g., FMEA),
Emerging system criticality model
("top-down") and top-down critical
analysis (e.g., STPA), emerging SO-
TIF

[44] [45] [46] [49]

Critical reference model (not classified)

96

Table 27. Impacts of software processes on SDLC practices

Process Influences on the Automotive SDLC

 Generation 1 Generation 2 Generation 3

Process reference model and Critical Refer-
ence model

● Ad-hoc, emerging generic and proprie-
tary V-Cycle

● Standardized process reference model
and V-Cycle including ASPICE, ISO
26262, ISO 21434

● Emerging Agile
● Emerging SOTIF

● Domain controllers developed using AS-
PICE V-Cycle, ISO 26262 V-Cycle, ISO
PAS 21434

● V-Cycle processes for domain controllers
using MBD/ACG techniques

● Agile programming practices on inte-
grated domain controllers for SOA and
parallelization, used with emerging MoC
including pragma, accelerator, and paral-
lel programming

Impact on SDLC

● Ad-hoc software development and
emerging process paradigms

● ASIL provisions for "bottom-up" ap-
proach based on Element out of Context
(EooC) and distributed development, 232

● Emerging system safety model ("top-
down") and top-down critical analysis
and assessment (e.g., STPA)233

● Emerging integration of V-Cycle and
Agile process models

● Integration of emerging MoC and pro-
cess reference models and tools

● Increasing need for process harmoniza-
tion between emerging and evolving crit-
ical process models

232 For more information on requirements decomposition, and top-down versus bottom-up considerations in mixed criticality systems, see D’Ambrosio & De-

bouk, 2013.
233 See “Risk Management” and the Taxonomy of Software Development Lifecycle Practices (Table 6). Risk analysis and assessment are part of the risk manage-

ment sub category in the risk management process group.

97

3.3.6 Software Development Lifecycle Practices Taxonomy
The following section provides a taxonomy of SDLC practices that are driven by process change
factors.

Table 28 summarizes the Framework Taxonomy of Software Lifecycle Practices for Framework
v1.0 (see also, Figure 8). The SDLC process and sub process categories are derived from ISO
26262 and ASPICE. The “characteristics” column in Table 28 provides unclassified concepts
and definitions that may be classified in future revisions of the framework.234 Further reading on
these concepts may be found in the literature cited in the references column.

The taxonomy of SDLC practices presented in this section supplements the taxonomy of process
change factors described in Section 3.3.1 . Together, the change factors and SDLC practices
taxonomies comprise the complete framework taxonomy. Once the complete framework
taxonomy is established, it may be reduced into comparative elements, allowing it to be
compared and contrasted with other transportation sectors and industries.

234 One of the key trends identified in the study is the increasing level of harmonization behind automotive software

standards ISO 26262, ISO 21434, and ISO PAS 21448 are designed with similar structure around a similar
process reference model based on the V-cycle. For these reasons, ISO 26262 and ASPICE were chosen as
the a priori models and form the foundation of frame 1 of the framework.

98

Table 28. Software development lifecycle practices for automotive software taxonomy

Software Development Lifecycle Practices Taxonomy - Version 1.0

SDLC Process
Category

SDLC Process Sub
Category Characteristics References

Management of Criticality Item Definition

Indirect SDLC activity

[45] [46] [48]

Supporting process group
Quality Assurance, Verification, Joint Review, Documentation,
Configuration Management, Problem Resolution Management,
Change Request Management

Management process group Project Management, Risk Management, Measurement Indirect SDLC activity

Process improvement group Process Improvement Indirect SDLC activity

Reuse process group Reuse Program Management

Model-based component libraries, parameterized
models, model repositories, data dictionary,
modular logical/functional architecture, supplier
interoperability/SEooC, software calibration,
open source software

[48] [87] [88] [89]

Concept phase Item Definition
Risk analysis, Impact assessment, Risk assess-
ment (or critical analysis and assessment (e.g.,
TARA, HARA)), risk treatment, item definition,
initiation of critical lifecycle, concept for criti-
cality

[45] [46] [48] [98] [99] [100] [101]

Risk management Risk Management

99

SDLC Process
Category

SDLC Process Sub
Category

Characteristics References

System engineering
process group

Requirements Elicitation Requirements engineering (needs analysis, requirements analysis and require-
ments specifications), requirements management and traceability and tools
(e.g., DOORS), model based requirements (e.g., Simulink/Stateflow, UML),
Written Requirements (e.g., word document, spreadsheet)

[45] [46] [48] [90] [91] [90] [91]
System Requirements Analysis

System Architectural Design

Model-based software architecture, UML/Simulink/Stateflow models and sys-
tem design models (software and hardware components (SWC), (HWC), net-
works, Interface Control Definitions (ICD)), Diagnostic Architecture,
integrated consensus standards based reference architecture (e.g., AUTOSAR
Basic Software, VFB, RTE), Architectural Description Language (e.g., EAST
ADL), integration with PLM Tools and behavior modeling tools (BMT), AU-
TOSAR XML description files (ARXML)

[45] [46] [48] [92] [93] [94]

System Integration and Integration Test MIL/HIL/SIL Simulation and Test, Dyno Test, Road/Field in-vehicle testing,
Virtual drive testing (e.g., Mechanical Simulation CarSIM, IPG CarMaker),
test automation (e.g., dSPACE AutomationDesk, National Instruments
TestStand), traceability and test integration with requirements tools (e.g., Au-
tomationDesk integration with DOORS), test reporting (e.g., TestStand, Auto-
mationDesk)

[45] [46] [48] [95] [96] [97]

System Qualification Test

Software engineering
process group

Software Requirements Analysis

Requirements engineering (needs analysis, requirements analysis and require-
ments specifications), requirements management and traceability and tools
(e.g., DOORS), model-based requirements (e.g., Simulink/Stateflow, UML),
written requirements (e.g., Word document, spreadsheet)

[45] [46] [48] [90] [91] [90] [91]

Software Architectural Design

MIL/SIL, UML, MBSE/Simulink/Stateflow, RCP, MBD/ACG

[45] [46] 48] [92] [93] [94]

Software Detailed Design and Unit Con-
struction

Software Unit Verification
MIL/HIL/SIL Simulation and Test, HIL unit and integration testing, virtual
drive testing, rest bus testing, test automation, traceability and test integration
with requirements tools, test reporting Software Integration and

 Integration Test

100

SDLC Process
Category

SDLC Process Sub
Category

Characteristics References

Software engineering
process group

Software Qualification Test

Develop software qualification test strategy
Develop specification for software qualification test
Select test cases
Test integrated software
Establish bidirectional traceability
Ensure consistency
Summarize and communicate results

[45] [46] [48] [95] [96] [97]

Product development at
the system level

System design

Initiation of product development at the system level, Specification of
critical requirements (e.g., requirements engineering (needs analysis, re-
quirements analysis and requirements specifications)), Requirements
management and traceability and tools (e.g., DOORS, model-based re-
quirements (e.g., Simulink/Stateflow, UML), Written requirements (e.g.,
word document, spreadsheet)) [45] [46] [48] [103] [91] [92] [93] [94]

Model based software architecture (e.g., UML/Simulink/Stateflow mod-
els and system design models (software and hardware components
(SWC), (HWC)), Network architecture, Interface Control Definitions
(ICD), Diagnostic architecture, Integrated consensus standards based ref-
erence architecture (e.g., AUTOSAR BSW, VFB, RTE), Architectural
Description Language (e.g., EAST ADL), Integration with PLM Tools
and behavior modeling tools (BMT), AUTOSAR XML description files
(ARXML)

Item integration and testing
MIL/HIL/SIL Simulation and Test, Dyno Test, Road/Field in-vehicle
testing, virtual drive testing (e.g., Mechanical Simulation CarSIM, IPG
CarMaker)), test automation (e.g., dSPACE AutomationDesk, National
Instruments TestStand), traceability and test integration with require-
ments tools (e.g., AutomationDesk integration with DOORS), Test re-
porting (e.g., TestStand, AutomationDesk)

[45] [46] [48] [95] [96] [97]

Validation of critical requirements

Critical assessment

Release for production

101

SDLC Process
Category

SDLC Process Sub
Category

Characteristics References

Product development at
the software level

Initiation of product development at the software
level

Specification of software requirements (e.g., requirements engineering
(needs analysis, requirements analysis and requirements specifications), re-
quirements management and traceability and tools (e.g., DOORS), model
based requirements (e.g., Simulink/Stateflow, UML), written requirements
(e.g., word document, spreadsheet)

[45] [46] [48] [90] [91]

Software architectural design
MIL/SIL, MBSE (e.g., Simulink/Stateflow/System Composer,), UML (e.g.,
SysML), RCP (e.g., Simulink/TargetLink), ACG (e.g., TargetLink,
SCADE)

[45] [46] [48] [92] [93] [94]

Software unit design and implementation
MIL/SIL, MBSE/Simulink/Stateflow, RCP, ACG (e.g., TargetLink,
SCADE)

[45] [46] [48] [95] [96] [97]

Software unit testing
MIL/HIL/SIL simulation and test, HIL unit and integration testing, virtual
drive testing, rest bus testing, test automation, traceability and test integra-
tion with requirements tools, test reporting

Software integration and testing

MIL/HIL/SIL Simulation and Test, Dyno Test, Road/Field in-vehicle test-
ing, virtual drive testing (e.g., Mechanical Simulation CarSIM, IPG Car-
Maker), Test automation (e.g., dSPACE AutomationDesk, National
Instruments TestStand), Traceability and test integration with requirements
tools (e.g., AutomationDesk integration with DOORS), test reporting (e.g.,
TestStand, AutomationDesk)

Verification of critical requirements

MIL/HIL/SIL simulation and test, HIL unit and integration testing, virtual
drive testing, rest bus testing, test automation, traceability and test integra-
tion with requirements tools, test reporting, critical assessment, release for
production

Production N/A
On and off board diagnostics (e.g., OBD, OBD-II), OTA updates, in field
service updates and installation

[101] [102] [103] [104]
Operation Operation, service, and repair

102

3.3.7 Taxonomy Reduction and Comparative Framework

3.3.7.1 Applications

The framework taxonomy provides a foundation for defining terminology, concepts, and
relationships between influencing “change factors,” non-functional requirements, constraints,
and related SDLC process steps, and the lifecycle practices used for automotive critical software.
The framework taxonomy can be used to identify fundamentally different approaches to the
SDLC, focusing on process steps, constraints, and non-functional requirements. It is possible to
describe and compare these approaches using a subset of the framework taxonomy. For instance,
this framework could be used to:

• Better understand the evolution of automotive software development, as shown by
comparing across Gen 1, Gen 2, and Gen 3 systems.

• Compare and benchmark automotive SDLC best practices against those in other
industries.

• Develop harmonized processes through comparative process analysis within the
automotive industry.

• Conduct process, cost, and complexity analysis.

Appendix B proposes and illustrates one such methodology for reducing the framework
taxonomy and developing a comparative framework. Examples are used from the evolution of
automotive software development across Gen 1, Gen 2, and Gen 3.

103

4 Conclusion
During this research activity, the team performed thematic framework synthesis and inductive
analysis activities resulting various technology development eras. The pictorial display on Figure
15 synthesizes the key concepts and governing factors of interest with respect to generations of
technology. Content within this report, including the various framework tables that can be used
to prompt comparisons in specific automotive software areas, are based on the following
activities:

• Developed an a priori reference framework (“Frame 0”) based on ASPICE and ISO
26262.

• Established Frame 1.0 research questions and themes by incorporating Volpe/NHTSA-
provided a priori questions and by generating sub-questions, developed and led by team
subject matter experts for each of the research themes. The framework developed from
Frame 1.0 can provide an initial starting point and can be revisited in the future as the
software development process in the automotive industry continues to evolve.

• Conversed with industry experts, including automotive functional safety engineers, sys-
tems and software engineers, engineering managers, consensus standards experts, soft-
ware architects, and process engineers.

• Performed a literature review of publications, conference presentations, industry reports,
consensus standards publications, journals, etc. (Publications that were used as part of the
literature review are captured in the Mendeley database at Mendeley.com.)

• Recorded evidence related to research questions in the inductive synthesis matrix.

• Created a traceability matrix allowing thematic evidence to trace to sources in the induc-
tive synthesis matrix.

• Performed a framework analysis and generated the “Frame 1.0” revision (Figure 15), in-
corporating evidence that was captured during research.

Figure 15. Frame 1.0 of the comparative framework

Driving automation
features

104

4.1 Research Summary
This document, provides a foundation for fundamentals of automotive software over various eras
of technology introduction. This document reflects the rapidly emerging and accelerating change
factors related to market demand, consensus standards, technology, and processes for the
automotive industry. The document presents a taxonomy of SDLC practices that resulted from
these change factors. The framework taxonomy is proposed as a potential tool to facilitate
comparison of automotive SDLC practices both over time as well with respect to other
industries.

Examples of how the comparative framework may be used include:

• Basis for better understanding the evolution of automotive software development and
what technologies were or are being used,

• Tool to compare and benchmark automotive SDLC best practices against best practices
applied in other industries, and

• Tool to be used in developing harmonized processes through analysis across various fac-
tors.

4.2 Research Findings
Uncertainty surrounding the implications of growing software complexity is compounded by the
expanding spectrum of novel E/E architectures, non-traditional sensing and computational
platforms, and increasing levels of automotive software automation and connectivity. As a result,
the impacts on criticality and safety have yet to be fully understood as the number of critical
software modalities on vehicles expands to bring more factors into consideration such as
machine learning, cybersecurity, trust, and morality.

Responses during discussions with industry experts for this project indicate that software
development practices that are designed to satisfy the highest levels of criticality (e.g., ASIL D)
can cost up to 100 percent more than the lowest levels (e.g., quality management or ASIL A).
Analysis published by software development organizations indicate similar estimates of 50-80%
cost increases from the lowest to the highest levels of criticality, as well as one estimate of 10-
fold increased effort.235 It is expected that mixed criticality software systems will amplify costs
through added layers of complexity (e.g., satisfying both safety and security criticality
requirements). Moreover, there is evidence that newer automotive business models driven by
MaaS and other commercialized automation models (e.g., last-mile delivery) may drive
requirements for criticality and complexity due to the differing models for utilization, reliability,
and availability for commercial fleet users versus private consumers.

For the reasons described above, future SDLC practices across the wide spectrum of automated
systems and SOA, emerging agile software frameworks, emerging process reference models,
legacy systems, and changing programming paradigms are expected to be increasingly diverse
and complex.

The growing integration of increasingly complex software in motor vehicles implies that cost
structures across the transportation industry will become increasingly dependent on the
complexity of underlying software, which is in turn highly sensitive to levels of software

235 Gheraibia et al., 2018 , Tom-M.[sic], 2019 ; Hilderman, 2014.

105

criticality and to mixed modes of criticality. As a result, pressure to understand and optimize
software practices that drive safe, reliable, and secure critical software will increase.

The need to perform comparative analytics on software processes will only increase, with the
objective of allowing automotive software developers and producers to study and design
harmonized, cost-effective lifecycle practices, to ultimately manage growth of the vehicle
industry’s software infrastructure. The framework contemplated in this study may be useful as a
foundation for software producers, automotive engineers, and transportation scientists to perform
comparative assessments and analysis on highly diverse and complex automotive software
processes.

106

Framework Sources
[1] Ziegler, C., & Patel, N. (2016, April 7). Meet the new Ford, a Silicon Valley software com-

pany. The Verge. www.theverge.com/2016/4/7/11333288/ford-ceo-mark-fields-inter-
view-electric-self-driving-car-software

[2] Grosse-Ophoff, A., Hausler, S., Heineke, K., & Möl, T. (2017, April 18). How shared mobil-
ity will change the automotive industry. McKinsey and Company. www.mckin-
sey.com/industries/automotive-and-assembly/our-insights/how-shared-mobility-will-
change-the-automotive-industry

[3] Hurley, B. (2011, March 1). Global car platforms: Automotive design with the world in mind.
Techbriefs. www.techbriefs.com/component/content/article/tb/pub/features/articles/9410

[4] Tajitsu, N. (2017, May 31). Toyota uses open-source software in new approach to in-car
tech. Reuters. www.reuters.com/article/us-toyota-tech/toyota-uses-open-source-software-
in-new-approach-to-in-car-tech-idUSKBN18R1CW

[5] Appel, T. (2016, April 25). How many different ways are there to build a Ford F-150? Would
you believe 2 billion? The Daily Drive. http://blog.consumerguide.com/how-many-differ-
ent-ways-are-there-to-build-an-f-150-would-you-believe-2-billion/

[6] Burkacky, O., Deichmann, J., Doll, G., & Knochenhauer, C. (2018, February 14). Rethinking
car software and electronics architecture. McKinsey & Company. www.mckin-
sey.com/industries/automotive-and-assembly/our-insights/rethinking-car-software-and-
electronics-architecture

[7] J. D. Power. (2018, February 14). Most owners still in love with their three-year-old vehicles,
J.D. Power finds [Press release]. www.jdpower.com/business/press-releases/jd-power-
2018-us-vehicle-dependability-study

[8] Steinkamp, N. (2017). 2017 Automotive Warranty and Recall Report. Stout Advisory.

[9] MarketsandMarkets. (2020, May). Automotive Software Market by Application (Infotain-
ment, Powertrain, ADAS & Safety), Vehicle Type (Passenger Vehicle, Commercial Ve-
hicle), EV Type (BEV, HEV, PHEV), and Region (Asia Pacific, Europe, North America,
and RoW) - Global Forecast to 2025. [Wep page] www.marketsandmarkets.com/Market-
Reports/automotive-software-market-200707066.html?gclid=EAIaIQobChMIweb-
BuP7o4AIVZB6tBh0ksAxHEAAYASAAEgJlN_D_BwE

[10] Clarence-Smith, T. How software will dominate the automotive industry. Toptal [Web
page] www.toptal.com/insights/innovation/how-software-will-dominate-the-automotive-
industry

[11] Glance, D. (2017, September 3). As your car becomes more like an iPhone, get ready to up-
date its software regularly. Futurism. https://futurism.com/as-your-car-becomes-more-
like-an-iphone-get-ready-to-update-its-software-regularly

[12] Bureau of Transportation Statistics. National Transportation Statistics 2015 [Web page].
www.bts.gov/product/national-transportation-statistics

[13] Statista. (2018, July). Number of light vehicles per household in the United States from
2006 to 2016. www.statista.com/statistics/551403/number-of-vehicles-per-household-in-
the-united-states/

http://www.theverge.com/2016/4/7/11333288/ford-ceo-mark-fields-interview-electric-self-driving-car-software
http://www.theverge.com/2016/4/7/11333288/ford-ceo-mark-fields-interview-electric-self-driving-car-software
http://www.mckinsey.com/industries/automotive-and-assembly/our-insights/how-shared-mobility-will-change-the-automotive-industry
http://www.mckinsey.com/industries/automotive-and-assembly/our-insights/how-shared-mobility-will-change-the-automotive-industry
http://www.mckinsey.com/industries/automotive-and-assembly/our-insights/how-shared-mobility-will-change-the-automotive-industry
http://www.techbriefs.com/component/content/article/tb/pub/features/articles/9410
http://www.reuters.com/article/us-toyota-tech/toyota-uses-open-source-software-in-new-approach-to-in-car-tech-idUSKBN18R1CW
http://www.reuters.com/article/us-toyota-tech/toyota-uses-open-source-software-in-new-approach-to-in-car-tech-idUSKBN18R1CW
http://blog.consumerguide.com/how-many-different-ways-are-there-to-build-an-f-150-would-you-believe-2-billion/
http://blog.consumerguide.com/how-many-different-ways-are-there-to-build-an-f-150-would-you-believe-2-billion/
http://www.mckinsey.com/industries/automotive-and-assembly/our-insights/rethinking-car-software-and-electronics-architecture
http://www.mckinsey.com/industries/automotive-and-assembly/our-insights/rethinking-car-software-and-electronics-architecture
http://www.mckinsey.com/industries/automotive-and-assembly/our-insights/rethinking-car-software-and-electronics-architecture
http://www.jdpower.com/business/press-releases/jd-power-2018-us-vehicle-dependability-study
http://www.jdpower.com/business/press-releases/jd-power-2018-us-vehicle-dependability-study
http://www.marketsandmarkets.com/Market-Reports/automotive-software-market-200707066.html?gclid=EAIaIQobChMIwebBuP7o4AIVZB6tBh0ksAxHEAAYASAAEgJlN_D_BwE
http://www.marketsandmarkets.com/Market-Reports/automotive-software-market-200707066.html?gclid=EAIaIQobChMIwebBuP7o4AIVZB6tBh0ksAxHEAAYASAAEgJlN_D_BwE
http://www.marketsandmarkets.com/Market-Reports/automotive-software-market-200707066.html?gclid=EAIaIQobChMIwebBuP7o4AIVZB6tBh0ksAxHEAAYASAAEgJlN_D_BwE
http://www.toptal.com/insights/innovation/how-software-will-dominate-the-automotive-industry
http://www.toptal.com/insights/innovation/how-software-will-dominate-the-automotive-industry
https://futurism.com/as-your-car-becomes-more-like-an-iphone-get-ready-to-update-its-software-regularly
https://futurism.com/as-your-car-becomes-more-like-an-iphone-get-ready-to-update-its-software-regularly
http://www.bts.gov/product/national-transportation-statistics
http://www.statista.com/statistics/551403/number-of-vehicles-per-household-in-the-united-states/
http://www.statista.com/statistics/551403/number-of-vehicles-per-household-in-the-united-states/

107

[14] Gross, A. (2015, April 16). New study reveals when, where and how much motorists drive.
AAA. https://newsroom.aaa.com/2015/04/new-study-reveals-much-motorists-drive/

[15] Antinyan, V. (2018). Revealing the complexity of automotive software. Volvo Car Corpora-
tion.

[16] Davey, C. (2013, January 26-27). Automotive software systems complexity: Challenges and
opportunities. INCOSE International MBSE Workshop, Jacksonville, FL.

[17] Wirthlin, R. (2018, March 29). Embedded Software In Products: The Convergence of ALM
with Systems Engineering [Powerpoint]. Exploring Application Lifecycle Management
and Its Role in PLM, 2018 Spring Meeting, PLM Center of Excellence, Purdue Univer-
sity [Powerpoint]. https://polytechnic.purdue.edu/sites/default/files/files/Embed-
ded%20software%20in%20products%20-
%20the%20convergence%20of%20ALM%20with%20Systems%20Engineering.pdf

[18] AUTOSAR Classic Platform [Web page]. www.autosar.org/standards/classic-platform/

[19] Adaptive AUTOSAR Platform [Web page]. www.autosar.org/standards/adaptive-platform/

[20] Cordes, J., & Zetlmeisl, M. (2012). AUTOSAR gets on the road - More and more (SAE
Technical Paper 2012-01-0014). SE International. doi: 10.4271/2012-01-0014.

[21] Martínez-Fernández, S., Ayala, C. P., Franch, X., & Nakagawa, E. Y. (2015). A survey on
the benefits and drawbacks of AUTOSAR. doi: 10.1145/2752489.2752493

[22] AGL Specification [Web page]; www.automotivelinux.org/software/agl-specification

[23] Tuohy, S., Glavin, M., Hughes, C., Jones, E., Trivedi, M., & Kilmartin, L. (2015, April). In-
tra-vehicle networks: A review. IEEE Transactions on Intelligent Transportation Sys-
tems, Volume 16, Issue 2. https://ieeexplore.ieee.org/document/6819448

[24] Robert Bosch GmbH. (1991). CAN Specification. http://esd.cs.ucr.edu/webres/can20.pdf

[25] LIN Consortium. (2003). LIN Specification Package, Revision 2.0.

[26] MOST Cooperation. (2008). MOST Specification, Revision 2.3.

[27] TTTech Computertechnik AG. (2008, November). TTEthernet Specification.

[28] Keskin, U. (2009, January). In-vehicle communication networks: A literature survey. Eind-
hoven University of Technology.

[29] IEEE 802.1 Working Group. Time-Sensitive Networking (TSN) Task Group [Web page].
https://1.ieee802.org/tsn/

[30] [Deleted, duplication]

[31] J2057/1_200609. (n.d.). SAE Class A application/definition. Society of Automotive Engi-
neers.

[32] ISO/IEC JTC 1/SC 42/SG 1. (n.d.). Computational approaches and characteristics of artifi-
cial intelligence systems.

[33] ISO/IEC WD 22989. (n.d.). Artificial intelligence -- Concepts and terminology.

[34] ISO/IEC WD 23053. (n.d.). Framework for artificial intelligence (AI) systems using ma-
chine learning (ML).

https://newsroom.aaa.com/2015/04/new-study-reveals-much-motorists-drive/
https://polytechnic.purdue.edu/sites/default/files/files/Embedded%20software%20in%20products%20-%20the%20convergence%20of%20ALM%20with%20Systems%20Engineering.pdf
https://polytechnic.purdue.edu/sites/default/files/files/Embedded%20software%20in%20products%20-%20the%20convergence%20of%20ALM%20with%20Systems%20Engineering.pdf
https://polytechnic.purdue.edu/sites/default/files/files/Embedded%20software%20in%20products%20-%20the%20convergence%20of%20ALM%20with%20Systems%20Engineering.pdf
http://www.autosar.org/standards/classic-platform/
http://www.autosar.org/standards/adaptive-platform/
http://www.automotivelinux.org/software/agl-specification
https://ieeexplore.ieee.org/document/6819448
http://esd.cs.ucr.edu/webres/can20.pdf
https://1.ieee802.org/tsn/

108

[35] ISO/IEC NP TR 24027. (n.d.). Information technology -- Artificial intelligence (AI) -- Bias
in AI systems and AI aided decision making.

[36] ISO/IEC NP TR 24028. (n.d.). Information technology -- Artificial intelligence (AI -- Over-
view of trustworthiness in artificial intelligence.

[37] ISO/IEC NP TR 24029-1. (n.d.). Artificial Intelligence (AI) -- Assessment of the robustness
of neural networks.

[38] ISO/IEC NP TR 24030. (n.d.). Information technology -- Artificial intelligence (AI) -- Use
cases.

[39] ISO/IEC NP 38507. (n.d.). Information technology -- Governance of IT -- Governance im-
plications of the use of artificial intelligence by organizations.

[40] [Deleted, duplication]

[41] IEEE P7008. (n.d.). Standard for ethically driven nudging for robotic, intelligent and auton-
omous systems.

[42] IEEE P7010. (n.d.). Wellbeing metrics standard for ethical artificial intelligence and autono-
mous systems.

[43] [Deleted, duplication]

[44] ASPICE: VDA QMC Working Group 13 Automotive SIG. (2015). Automotive SPICE, 132.

[45] ISO/SAE CD 21434. (n.d.). Road Vehicles -- Cybersecurity engineering.

[46] [Deleted, duplication]

[47] SAE J3061A. (n.d.). Cybersecurity Guidebook for Cyber-Physical Vehicle Systems.

[48] [Deleted, duplication].

[49] ISO 21448:2019. (n.d.). Road Vehicles — Safety of the intended functionality.

[50] National Highway Traffic Safety Administration. (n.d.) A drive through time.
https://one.nhtsa.gov/nhtsa/timeline/index.html

[51] AUTOSAR. (2017). Explanations of Adaptive Platform Design AUTOSAR, DID 706, (17-
03).

[52] Glas, B., Gebauer, C., Hänger, J., Heyl, A., Klarmann, J., Kriso, S., Vembar, P., & Wörz, P.
(2015). Automotive safety and security integration challenges. Lecture Notes in Informat-
ics, Proceedings - Series of the Gesellschaft Fur Informatik.

[53] Rushby, J. (1994). Critical system properties: Survey and taxonomy. Reliability Engineering
and System Safety, Vol. 43, No. 2. www.csl.sri.com/users/rushby/papers/csl-93-1.pdf

[54] Zarr, R.. (2018, April 11). The future of high-reliability electronics. Electronic Design.
www.electronicdesign.com/technologies/analog/article/21806380/the-future-of-highrelia-
bility-electronics

[55] Ardebili, H., & Pecht, M. G. (2000). Encapsulation technologies for electronic applications.
1st edition. Elsevier.

https://one.nhtsa.gov/nhtsa/timeline/index.html
http://www.csl.sri.com/users/rushby/papers/csl-93-1.pdf
http://www.electronicdesign.com/technologies/analog/article/21806380/the-future-of-highreliability-electronics
http://www.electronicdesign.com/technologies/analog/article/21806380/the-future-of-highreliability-electronics

109

[56] Mundhenk, P. (2017). Security for automotive electrical/electronic (E/E) architectures [Dis-
sertation, Technische Universität München]. Cuvillier Verlag.
https://www.mundhenk.org/files/SecurityForAutomotiveEEArchitectures_Philipp-
Mundhenk_Dissertation.pdf

[57] Van Eikema Hommes, Q. D. (2016, June). Assessment of safety standards for automotive
electronic control systems (Report No. DOT HS 812 285). National Highway Traffic
Safety Administration. www.nhtsa.gov/sites/nhtsa.gov/files/812285_electronicsreliabil-
ityreport.pdf

[58] Ebert, C., Amsler, K., Lederer, D., & Burton, S. (2011). Introducing automotive E/E safety
engineering: Challenges and solutions. Vector.

[59] AUTOSAR. (2017). AUTOSAR ECU Template (AUTOSAR), DID 060, (4.3.1).

[60] AUTOSAR, 2008.

[61] Pelliccione, P. (n.d.). Software architecture for automotive.

[62] Wanner, D., Trigell, A., Drugge, L., Jerrelind, J. (2012). Survey on fault-tolerant vehicle de-
sign. World Electric Vehicle Journal.

[63] Wolf, J. (2015). Is this what the future will look like? Implementing fault tolerant system ar-
chitectures with AUTOSAR basic software. Vector. https://assets.vector.com/cms/con-
tent/know-how/_technical-
articles/AUTOSAR/AUTOSAR_Safety_ElektronikAutomotive_PressAr-
ticle_201511_EN.pdf

[64] Czerny, B. J., D 'ambrosio. J. G., Murray, B. T., Sundaram, P. (2005, April). Effective ap-
plication of software safety techniques for automotive embedded control systems. doi:
10.4271/2005-01-0785.

[65] [Deleted, duplication]

[66] Molotnikov, Z., Schorp, K., Aravantinos, V., & Schaetz, B. (2016). Future programming
paradigms in the automotive industry. Forschungsvereinigung Automobiltechnik e.V.

[67] Tatourian, A. (2018). Highly-dependable automotive software [PowerPoint]. Intel Automo-
tive.

[68] Dubrova, E. (2013). Fault-tolerant design. Springer.

[69] Hammett, R . (2016, August 8-12). Developing electronic systems for safety critical appli-
cations. 34th International System Safety Conference 2016, Orlando, FL.

[70] Koren, I., & Krishna, C. M. (2007). Fault-tolerant systems, 1st edition. Elsevier.

[71] Berntsson, P. S., Strandén, L., & Warg, F. (2017). Evaluation of open source operating sys-
tems for safety-critical applications; Lecture Notes in Computer Science (Including Sub-
series Lecture Notes in Artificial Intelligence, Lecture Notes in Bioinformatics. doi:
10.1007/978-3-319-65948-0_8

[72] Shelly, P. (2013). Operating systems for cars [PowerPoint]. Mentor Graphics.
www.roadmapforth.org/program/presentations/PatShelly.pdf

https://www.mundhenk.org/files/SecurityForAutomotiveEEArchitectures_PhilippMundhenk_Dissertation.pdf
https://www.mundhenk.org/files/SecurityForAutomotiveEEArchitectures_PhilippMundhenk_Dissertation.pdf
http://www.nhtsa.gov/sites/nhtsa.gov/files/812285_electronicsreliabilityreport.pdf
http://www.nhtsa.gov/sites/nhtsa.gov/files/812285_electronicsreliabilityreport.pdf
https://assets.vector.com/cms/content/know-how/_technical-articles/AUTOSAR/AUTOSAR_Safety_ElektronikAutomotive_PressArticle_201511_EN.pdf
https://assets.vector.com/cms/content/know-how/_technical-articles/AUTOSAR/AUTOSAR_Safety_ElektronikAutomotive_PressArticle_201511_EN.pdf
https://assets.vector.com/cms/content/know-how/_technical-articles/AUTOSAR/AUTOSAR_Safety_ElektronikAutomotive_PressArticle_201511_EN.pdf
https://assets.vector.com/cms/content/know-how/_technical-articles/AUTOSAR/AUTOSAR_Safety_ElektronikAutomotive_PressArticle_201511_EN.pdf
https://doi.org/10.1007/978-3-319-65948-0_8
https://doi.org/10.1007/978-3-319-65948-0_8
http://www.roadmapforth.org/program/presentations/PatShelly.pdf

110

[73] Lardinois, F. (2018). With its new in-car operating system, BMW slowly breaks with tradi-
tion. TechCrunch. https://techcrunch.com/2018/06/15/with-its-new-in-car-operating-sys-
tem-bmw-slowly-breaks-from-tradition/

[74] Aroca, R., & Caurin, G. (2009). A real time operating systems (RTOS) comparison.
www.semanticscholar.org/paper/A-Real-Time-Operating-Systems-(-RTOS-)-Compari-
son-Aroca-Caurin/3dc51976f8fb9408f5c991d457fa27f7b5adb737

[75] Lee, J.-C., Han, T. & Kim, S.-H. (2009, August 27-29). Implementation of ECU configura-
tion framework based on AUTOSAR methodology. Conference: Proceedings of the 2009
International Conference on Hybrid Information Technology, Daejeon, Korea.

[76] Mbihi, J. (2018). Analog automation and digital feedback control techniques. Wiley

[77] SAE J3016 Levels of Driving Automation.

[78] U.S. Department of Transportation. (2018, October). Preparing for the Future of Transpor-
tation: Automated Vehicles 3.0. www.transportation.gov/sites/dot.gov/files/docs/policy-
initiatives/automated-vehicles/320711/preparing-future-transportation-automated-vehi-
cle-30.pdf

[79] General Motors Inc. (2018). 2018 Self-Driving Safety Report. www.gm.com/con-
tent/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf

[80] Waymo. (2018). On the road to fully self-driving. www.auto-mat.ch/wAs-
sets/docs/171019_waymo-safety-report-2017-10.pdf

[81] Fraade-Blanar, L., Blumenthal, M. S., Anderson, J. M., & Kalra, N. (2018). Measuring auto-
mated vehicle safety: Forging a framework. RAND Corporation. www.rand.org/pubs/re-
search_reports/RR2662.html

[82] AUTOSAR. (n.d.). Specification of Communication; AUTOSAR CP Release 4.3.1.

[83] Arteris. (2005). A comparison of network-on-chip and busses. Design and Reuse. www.de-
sign-reuse.com/articles/10496/a-comparison-of-network-on-chip-and-busses.html

[84] Bock, F., Homm, D., Siegl, S., & German, R. (2016). A taxonomy for tools, processes and
languages in automotive software engineering. Computer Science & Information Tech-
nology. doi: 10.5121/csit.2016.60121

[85] Molotnikov, Z., Schorp, K., Aravantinos, V., & Schaetz, B. (2016). Future programming
paradigms in the automotive industry. Forschungsvereinigung Automobiltechnik e.V.
https://trid.trb.org/view.aspx?id=1412727

[86] Voget, S. (2010, March 8). AUTOSAR and the automotive tool chain. Proceedings of the
Conference on Design, Automation and Test in Europe, Dresden, Germany.

 [87] Hardung, B., Koelzow, T. & Krüger, A. (2004, September 27-29). Reuse of software in dis-
tributed embedded automotive systems. 4th ACM International Conference On Embedded
Software, Pisa, Italy.

[88] Khalil, M. (2018, October 25). Design patterns to the rescue: Guided model-based reuse for
automotive solutions. 28th Conference on Pattern Languages of Programs .

https://techcrunch.com/2018/06/15/with-its-new-in-car-operating-system-bmw-slowly-breaks-from-tradition/
https://techcrunch.com/2018/06/15/with-its-new-in-car-operating-system-bmw-slowly-breaks-from-tradition/
https://www.semanticscholar.org/paper/A-Real-Time-Operating-Systems-(-RTOS-)-Comparison-Aroca-Caurin/3dc51976f8fb9408f5c991d457fa27f7b5adb737
https://www.semanticscholar.org/paper/A-Real-Time-Operating-Systems-(-RTOS-)-Comparison-Aroca-Caurin/3dc51976f8fb9408f5c991d457fa27f7b5adb737
https://www.gm.com/content/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf
https://www.gm.com/content/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf
http://www.auto-mat.ch/wAssets/docs/171019_waymo-safety-report-2017-10.pdf
http://www.auto-mat.ch/wAssets/docs/171019_waymo-safety-report-2017-10.pdf
http://www.rand.org/pubs/research_reports/RR2662.html
http://www.rand.org/pubs/research_reports/RR2662.html
https://www.design-reuse.com/articles/10496/a-comparison-of-network-on-chip-and-busses.html
https://www.design-reuse.com/articles/10496/a-comparison-of-network-on-chip-and-busses.html
https://doi.org/10.5121/csit.2016.60121
https://trid.trb.org/view.aspx?id=1412727

111

[89] Lewis, B. (2017, March 28). Automotive adopts Linux open source and software reuse prin-
ciples for IVI and autonomous drive. Embedded Computing Design. www.embedded-
computing.com/embedded-computing-design/automotive-adopts-linux-open-source-and-
software-reuse-principles-for-ivi-and-autonomous-drive

[90] Westman, J. (2013).; A reference example on the specification of safety requirements using
ISO 26262. Royal Institute of Technology (KTH)/Scania.

[91] Matsubara, M. & Aoyama, M. (2017). An analysis method of safety requirements for auto-
motive software systems. 24th Asia-Pacific Software Engineering Conference, Nanjing,
China. doi: 10.1109/APSEC.2017.47

[92] Halbach, S., Sharer, P., Pagerit, S., Rousseau, A., & Folkerts, C. (2010). Model architecture,
methods, and interfaces for efficient math-based design and simulation of automotive
control systems (SAE Technical Paper 2010-01-0241). SAE International.

[93] Giese H., Karsai G., Lee E., Rumpe B., & Schätz B. (2007). The EAST-ADL architecture
description language for automotive embedded software; Model-based engineering of
embedded real-time systems. Lecture Notes in Computer Science, vol. 6100. Springer.

[94] AUTOSAR. (2006). Layered software architecture. AUTOSAR CP Revision 4.3.1.

[95] Fathy, H. K., Filipi, Z. S., Hagena, J., & Stein, J. L. (2006). Review of hardware-in-the-loop
simulation and its prospects in the automotive area. Proceedings, Defense and Security
Symposium, Orlando FL. doi: 10.1117/12.667794

[96] King, P. J. Whitley, C., & Copp,D. G. (2006, February). Hardware in the loop for automo-
tive vehicle control systems development and testing. Measurement+Control, 39.

[97] Conrad, M., Fey, I., & Sadeghipour, S. (2005). Systematic model-based testing of embedded
automotive software. Electronic Notes in Theoretical Computer Science, 111. doi:
10.1016/j.entcs.2004.12.005

[98] Ma, Z., & Schmittner, C. (2016). Threat modeling for automotive security analysis. Ad-
vanced Science and Technology Letters, 139. doi: 10.14257/astl.2016.139.68

[99] Macher G., Höller A., Sporer H., Armengaud E., Kreiner C; Koornneef F., & van Gulijk C.
A combined safety-hazards and security-threat analysis method for automotive systems;
Computer safety, reliability, and security. SAFECOMP 2014. Lecture Notes in Computer
Science, vol. 9338. Springer.

[100] Ward, D., & Ibarra, I. (2013, October 16-17). Practical experiences in applying the con-
cept phase of ISO 26262.8th IET International System Safety Conference Incorporating
the Cyber Security Conference 2013, Cardiff, UK[102] New Electronics. (2018, Novem-
ber 23). Software coding standards in automotive is [sic] becoming vital. www.newelec-
tronics.co.uk/electronics-technology/software-coding-standards-in-automotive-is-
becoming-vital/195498/

[102] Sax, E., Reussner, R., Guissouma, H., & Klare, H. (2017). A survey on the state and future
of automotive software release and configuration management. Karlsruhe Reports in In-
formatics.

[103] Jonston, B. (2016). Harman updates ECUs OTA with NXP Gateways. Auto Connected Car
News.

https://www.embedded-computing.com/embedded-computing-design/automotive-adopts-linux-open-source-and-software-reuse-principles-for-ivi-and-autonomous-drive
https://www.embedded-computing.com/embedded-computing-design/automotive-adopts-linux-open-source-and-software-reuse-principles-for-ivi-and-autonomous-drive
https://www.embedded-computing.com/embedded-computing-design/automotive-adopts-linux-open-source-and-software-reuse-principles-for-ivi-and-autonomous-drive
https://doi.org/10.1117/12.667794
http://www.doi.org/10.1016/j.entcs.2004.12.005
http://www.doi.org/10.1016/j.entcs.2004.12.005
http://www.newelectronics.co.uk/electronics-technology/software-coding-standards-in-automotive-is-becoming-vital/195498/
http://www.newelectronics.co.uk/electronics-technology/software-coding-standards-in-automotive-is-becoming-vital/195498/
http://www.newelectronics.co.uk/electronics-technology/software-coding-standards-in-automotive-is-becoming-vital/195498/

112

[104] Majeed, A. (2016). OTA software updates now serving ECUs for engine, brakes and steer-
ing. Embedded Computing.

[105] Taub, E. (2016). Your car’s new software is ready, Update now? The New York Times.

[106] Lang, K., Kropinski, M., & Foster, T. (2010). Virtual powertrain calibration at GM be-
comes a reality. SAE Technical Paper 2010-01-2323. doi.org/10.4271/2010-01-2323

[107] AUTOSAR. (2006). Specification of I/O hardware abstraction. AUTOSAR CP Release
4.3.0.

[108] Yan, Q.-Z., Williams, J. M., & Li, J. (2002). Chassis control system development using
simulation: software in the loop, rapid prototyping, and hardware in the loop. SAE Trans-
actions, 111 www.jstor.org/stable/44719352

[109] Knight, W. (n.d.). Self-driving cars can learn a lot by playing Grand Theft Auto. MIT
Technology Review.

[110] Schleifer, A. (2005). Understanding regulation. Harvard University. doi:
10.1080/09528822.2014.970769

[111] University of Pennsylvania Law School. (2016). Penn Program on Regulation.

[112] Wonham W. M. (2015). Supervisory control of discrete-event systems. In J. Baillieul, T.
Samad (eds), Encyclopedia of Systems and Control. Springer.

http://www.doi.org/10.4271/2010-01-2323
http://www.jstor.org/stable/44719352

A-1

Appendix A

A-2

The following section provides supplementary tables and supporting information related to the framework taxonomy.
Table 29. A representative list of industry consensus standards with potential impacts on automotive E/E software development practices

Representative List of Standards with Impacts on Automotive E/E SDLC Processes

Category Sub Category Standard Description Status

Environmental Diagnostics

Road vehicles Communication be-
tween vehicle and external equip-
ment for emissions-related
diagnostics

ISO15031-4:2014
A set of standard diagnostic services to be provided by vehicles (OBD ser-
vices)

Active Published 2014

Cybersecurity

Encryption
Information technology – Security
techniques – Lightweight Part 1:
General;

ISO/IEC 29192-1:
2012

Specifies two block ciphers suitable for lightweight cryptography Active Reviewed 2017

Hardware As-
surance

Requirements for Hardware-Pro-
tected Security for Ground Vehicle
Applications

SAE J3101
A common set of requirements for security to be implemented in hardware
for ground vehicles to facilitate security enhanced applications

Under Development

Counterfeit Electronic Parts;
Avoidance Protocol, Distributors.

SAE AS6081-
2012

Standardizes practices to identify reliable sources to procure parts, assess
and mitigate risk of distributing fraudulent/counterfeit parts, control suspect
or confirmed fraudulent/counterfeit parts, and report suspect and confirmed
fraudulent/counterfeit parts

Active Published 2012

Software Assur-
ance

Information technology -- Security
techniques – Application Security

ISO/IEC 27034-1
Provides guidance to assist organizations in integrating security into the pro-
cesses used for managing their applications

Active Reviewed 2017

Supply Chain
Risk Manage-

ment

Information Technology – Open
Trusted Technology Provider
Standard (O-TTPS) – Mitigating
maliciously tainted and counterfeit
products;

ISO/IEC
20243:2015

A set of guidelines, requirements, and recommendations that address spe-
cific threats to the integrity of hardware and software COTS ICT products
throughout the product life cycle. This release of the Standard addresses
threats related to maliciously tainted and counterfeit products

Active Published 2018

Information technology – Security
techniques – Information security
for supplier relationships

ISO/IEC 27036-3
Provides an overview of the guidance intended to assist organizations in se-
curing their information and information systems within the context of sup-
plier relationships

Active Published 2014

Fraudulent/Counterfeit Electronic
Parts; Avoidance, Detection, Miti-
gation, and Disposition Verifica-
tion Criteria;

SAE AS6462A -
AS5553A,

Establish compliance, and grant certification to AS5553, Aerospace Stand-
ard; Counterfeit Electronic Parts; Avoidance, Detection, Mitigation, and Dis-
position

Active Revised 2019

A-3

Category Sub Category Standard Description Status

Cybersecurity

Identity and Ac-
cess Manage-

ment

Information technology – Security
techniques – Vulnerability han-
dling processes;

ISO/IEC 15026-
2:2011

Specifies minimum requirements for the structure and contents of an assur-
ance case to improve the consistency and comparability of assurance cases

Active Published 2016

System Security
Engineering

Cybersecurity Guidebook for
Cyber-Physical Vehicle Systems

SAE J3061 Provides guidance on vehicle cybersecurity Active 2016

Road Vehicles – Cybersecurity en-
gineering

ISO/SAE DIS
21434

Automotive cybersecurity engineering for use of embedded controllers,
long lifecycle of vehicles, safety implications

Under Development

Architecture

General E/E

AUTOSAR Classic AUTOSAR
AUTOSAR Classic Platform architecture distinguishes on the highest ab-
straction level between three software layers which run on a microcontrol-
ler: application, RTE and BSW

Active 2003

Adaptive AUTOSAR AUTOSAR
AUTOSAR Adaptive Platform implements the AUTOSAR Runtime for
Adaptive Applications)

Active 2017

System/Vehicle

Taxonomy and Definitions for
Terms Related to Driving Automa-
tion Systems for On-Road Motor
Vehicles

SAE J3016
Describes motor vehicle driving automation systems that perform part or all
of the dynamic driving task by providing a taxonomy with detailed defini-
tions for six levels of driving automation

Active Revised 2018

Safety

Road Vehicles - Functional safety ISO 26262

ISO 26262 addresses possible hazards caused by malfunctioning behavior
of E/E safety-related systems, including interaction of these systems. It does
not address hazards related to electric shock, fire, smoke, heat, radiation,
toxicity, flammability, reactivity, corrosion, release of energy and similar
hazards, unless directly caused by malfunctioning behavior of E/E safety-
related systems.

Active Revised 2018

Standard for Safety for the Evalua-
tion of
Autonomous Products

UL 4600

Covers safety principles and processes for evaluation of autonomous prod-
ucts, specifically their ability to perform the intended function without hu-
man intervention based on their current state and sensing of the operating
environment. The standard also covers the reliability of hardware and soft-
ware necessary for machine learning, sensing of the operating environment,
and other safety aspects of autonomy.

Published

A-4

Category Sub Category Standard Description Status

Safety

Standard for Fail-Safe Design of
Autonomous and Semi-Autono-
mous Systems

IEEE P7009

Establishes a practical, technical baseline of specific methodologies and
tools for the development, implementation, and use of effective fail-safe
mechanisms in autonomous and semi-autonomous systems. The standard
includes (but is not limited to): clear procedures for measuring, testing, and
certifying a system's ability to fail safely on a scale from weak to strong,
and instructions for improvement in the case of unsatisfactory performance.
The standard serves as the basis for developers, as well as users and regula-
tors, to design fail-safe mechanisms in a robust, transparent, and accounta-
ble manner.

Working Group

Road vehicles -- SOTIF
ISO/Publicly
Available Specifi-
cation 21448:2019

Provides guidance on the applicable design, verification and validation
measures needed to achieve the SOTIF. This document does not apply to
faults covered by the ISO 26262 series or to hazards directly caused by the
system technology (e.g., eye damage from a laser sensor).

Active 2019

Machine
Learning/AI

Computational approaches and
characteristics of AI systems

ISO/IEC JTC
1/SC 42/SG 1

Standardization in the area of AI Technical Committee

AI -- Concepts and terminology
ISO/IEC WD
22989

Standardization in the area of AI Under Development

Framework for AI Systems Using
Machine Learning (ML)

ISO/IEC WD
23053

Standardization in the area of AI Under Development

Information technology -- AI --
Bias in AI systems and AI aided
decision making

ISO/IEC NP TR
24027

Standardization in the area of AI Under Development

Information technology -- AI
(Overview of trustworthiness in
AI)

ISO/IEC NP TR
24028

Standardization in the area of AI Under Development

AI -- Assessment of the robustness
of neural networks

ISO/IEC NP TR
24029-1

Standardization in the area of AI Under Development

A-5

Category Sub Category Standard Description Status

Machine
Learning/AI

Information technology -- AI --
Use cases

ISO/IEC NP TR
24030

Standardization in the area of AI Under Development

Information technology -- Govern-
ance of IT -- Governance implica-
tions of the use of AI by
organizations

ISO/IEC NP
38507

Standardization in the area of AI Under Development

Framework for AI Systems Using
Machine Learning (ML)

ISO/IEC AWI
23053

Standardization in the area of AI Under Development

Standard for Ethically Driven
Nudging for Robotic, Intelligent
and Autonomous Systems

IEEE P7008 Standardization in the area of AI Under Development

Wellbeing Metrics Standard for
Ethical AI and Autonomous Sys-
tems

IEEE P7010 Standardization in the area of AI Under Development

Coding
Style//Standard

MBD/ACG

Generic modeling design and style
guidelines

MISRA AC
GMG

Provides a set of rules, in a similar fashion to the MISRA C rules, which en-
courage good modeling practices and avoid poorly-defined features of the
modeling language. In light of automotive industry trends, some rules will
be aimed at the use of automatic code generators in safety-related systems.

Active 2009

Modeling design and style guide-
lines for the application of Sim-
ulink and Stateflow

MISRA AC SLSF

Modeling style guidelines for the
application of TargetLink in the
context of ACG

MISRA AC TL

Guidelines for the application of
MISRA-C:2004 in the context of
ACG

MISRA AC AGC

Programming
Guidelines for the use of the C lan-
guage in critical systems

MISRA C
Provides a "restricted subset of a standardized structured language" as re-
quired in the 1994 MISRA Guidelines for automotive systems being devel-
oped to meet the requirements of Safety Integrity Level (SIL) 2 and above.

Active Revised 2012

A-6

Category Sub Category Standard Description Status

Coding
Style//Standard

Guidelines for the use of the C++
language in critical systems

MISRA C++ Active 2008

MISRA Safety Analysis Guide-
lines

MISRA SA
Provide an extension to the original MISRA Development Guidelines for
Vehicle Based Software, in that they give extended detailed advice on the
sections on Integrity and Safety Analysis

Guidelines for the use of the
C++14 language in critical and
safety-related systems

AUTOSAR
Adaptive Docu-
ment 839

Specifies coding guidelines for the usage of the C++14 language as
defined by ISO/IEC 14882:2014 [3], in the safety-related and critical sys-
tems

Active 2017

Programming Language Secure
Coding Standard

CERT C Provides rules for secure coding in the C programming language Active Revised 2016

Process
Model//Ma-

turity

Automotive SPICE Process As-
sessment//Reference Model

ASPICE
For use when performing conformant assessments of the process capability
on the development of embedded automotive systems

Active Revised 2015

A-7

Table 30. Representative classification of ECU elements and subsystems [59]

AUTOSAR Classic - Taxonomy of ECU Elements and Subsystems236
ECU Memory Types ECU Memory Implementa-

tions
ECU
Processing Units by
Name

ECU
Processing Units by
Architecture

ECU Processing Units by
Implementation/
Technology

ECU
Peripherals

ECU
Electronics

Volatile: stores data and
program code only dur-
ing the operation of the
ECU.

ROM (Read Only Memory):
The program and constant data
are fixed onto the chip during
the manufacturing process.
This data cannot be modified.

ARM: A series of low-cost,
32-bit RISC microprocessor
cores for embedded control. It
was the first commercial
RISC.

RISC: A processor whose de-
sign is based on the rapid execu-
tion of a sequence of simple
instructions rather than on the
provision of a large variety of
complex instructions.

Microprocessor (μP): A micro-
processor is a PU without any pe-
ripherals and a significant amount
of memory.

Digital IO Oscillator

Non-volatile: stores data
and program code during
the operational and non-
operational mode of the
ECU.

PROM (Programmable
Read Only Memory): data
can only be written once. Pro-
gramming is not part of the op-
erational mode. Used for
program code and constant
data.

MIPS: A project at Stanford
University intended to sim-
plify processor design by elim-
inating hardware interlocks
between the five pipeline
stages.

CISC: A processor where each
instruction can perform several
low-level operations such as
memory access, arithmetic oper-
ations or address calculations.

ASIC: A chip that implements
dedicated functionality in hard-
ware, such as a transmission pro-
tocol or a lambda-IC.

ADC Clock

Shared: Memory that is
used from more than one
PU concurrently. The
memory resource is
available to all PUs con-
nected to that memory.

EPROM (Erasable Program-
mable Read Only Memory):
Data can be erased completely
by UV light and then written
one time until next erasure.
Erasure and programming is
not part of the operational
mode. Used for program code
and constant data.

PowerPC: The PowerPC
standard specifies a common
instruction set architecture
(ISA), allowing anyone to de-
sign and fabricate PowerPC
processors, which will run the
same code.

Vector PU; SIMD PU: Type of
a PU, which can process differ-
ent operands and instructions at
the same clock cycle.

FPGA: A reconfigurable chip,
which implements a digital func-
tion in hardware.

 DAC Communications
transceiver

Multi ported: Memory
that can be accessed by
more subscribers at one
time.

Flash: Electrically Erasable
Memory.

 MIMD PU: machines have a
number of processors that work
asynchronously and inde-
pendently.

Digital Signal Processor: A digi-
tal signal processor is a PU that is
specialized for limited functions
to process signals.

Pulse Width
Modulator

Power Driver

236 Definitions in this table are taken from the “AUTOSAR Specification of ECU Resource Template,” AUTOSAR Classic Platform 4.3.1; the table is provided

in order to show common ECU elements and subsystems found in Gen 2 ECU architectures.

A-8

ECU Memory Types ECU Memory Implementa-
tions

ECU
Processing Units by
Name

ECU
Processing Units by
Architecture

ECU Processing Units by
Implementation/
Technology

ECU
Peripherals

ECU
Electronics

Data retention: Data re-
tention time is the time
between programming a
sample of non-volatile
memory and the obser-
vation of a prescribed
failure rate when verify-
ing the programmed pat-
tern.

EEPROM (Electrical Erasa-
ble Memory): Data is stored
as the presence of electrical
charges via tunneling effects in
floating gates. The erasure and
programming use similar
physical effects. Erasure and
programming takes the same
amount of time approximately.
Each EEPROM cell represents
only a single bit. Depending
on the internal architecture
EEPROM can be erased and
programmed in bit, 4-bit, byte
or word size.

 PWD Power Supply

Architectural Quality:
Special hardware imple-
mentations can help to
improve the overall
quality of an ECU. Error
Correction Code and
Parity are usual technol-
ogies. The choices of the
storage media and the
according quality and re-
liability requirements
have to match.

RAM (Random access
memory): Data is stored in
electrical form either in the
switching state of a Flip-flop
or in the charge of a capacitor.
RAM is used for temporary
program code and variables
data. This is a volatile
memory.

 (CCU)

Dynamic Memory Al-
location: In embedded
real time systems dy-
namic memory alloca-
tion is not recommended
as no reliable and pre-
dictable system behavior
can be achieved and
guaranteed.

SRAM (Static Random Ac-
cess Memory): Data is stored
in the switching state of a Flip-
flop. Data can be accessed at
any time and very fast. The
data is valid as long as the
power is supplied. This is a
volatile memory.

 Watchdog
Timer (WDT)

A-9

ECU Memory Types ECU Memory Implementa-
tions

ECU
Processing Units by
Name

ECU
Processing Units by
Architecture

ECU Processing Units by
Implementation/
Technology

ECU
Peripherals

ECU
Electronics

Mass-Storage Devices:
Data stored on CD-
ROM, DVD, as well as
memory cards

DRAM (Dynamic Random
Access Memory): Data is
stored in a capacitor. DRAM
can be implemented cheaply
and in a high density. Due to
the leakage of the capacitor the
DRAM needs a refresh cycle
in a defined time frame. This is
a volatile memory.

 Timer

 Cache: Usually implemented
as fast SRAM. Caches are
used to increase performance
of memory implementations.

 Shadowed NV-RAM: A spe-
cial form of non-volatile
memory which uses extra
mechanisms to increase the
performance.

A-10

Table 31. Representative classification of automotive E/E systems by safety critical assurance level
(ASIL)

Classification of Representative E/E Systems by ASIL Rating237 238

Severity
Probability of

Exposure Controllability by Driver*

Light or Moder-
ate Injury

Very Low/Low
All Classes of
Controllability

Medium Difficult to Control

High Normally Controllable Difficult to Control

Severe
Injury/

Survival Proba-
ble

Very Low/Low
All Classes of
Controllability

Medium Normally Controllable Difficult to Control

High Difficult to Control

Life
Threatening

Injury

Very Low/Low
Simply

 Controllable
Normally Controllable Difficult to Control

Medium Simply Controllable
Normally Control-

lable
Difficult to Control

High
Simply

Controllable
Normally Controlla-

ble
Difficult to

Control

 Representative ASIL Ranking

 QM A B C D

Automotive E/E
Subsystem

 GPS/Navigation System

 Movie/Game Systems

 Connectivity (USB, etc.)

 Accent Lighting

 Rear Lights

 Headlights

 Body Control Units

 Instrument Clusters

 HVAC

 Body Gateway

 Rear Camera

 Active Suspension

 ACC

 EPS

237 MIPS. (n.d.) Functional Safety: Functional Safety, ISO 26262 and MIPS [Web page]. www.mips.com/mar-

kets/automotive/functional-safety/
238 Vincelli, R., & Yasumasu, T. (2012, October 22-25). Mastering functional safety and ISO 26262 [PowerPoint].

Renesas Electronics Corporation. DevCon 2012 Conference, Anaheim, CA.

http://www.mips.com/markets/automotive/functional-safety/
http://www.mips.com/markets/automotive/functional-safety/

A-11

 QM A B C D

 Transmission Control

 Engine Control

 Throttle Control

 Ignition

 Airbag

 ABS

Controllability (C class) represents the level of the ability to avoid harm and is one of the parameters that determine

the ASIL in the ISO 26262 functional safety standard, which applies to the electrical and/or electronic systems.

* Simply Controllable (>99% of Drivers are able to control)

* Normally Controllable (>90% of Drivers are able to control)

A-12

Table 32. Examples of the additional SDLC process steps that are required to achieve ASIL D (safety)
criticality over ASIL A criticality239

Process Considerations Required for ASIL D, but Optional in ASIL A

Defensive programming techniques (for example: divide by 0 protection)

Plausibility checks

Use of established design principles

Use of unambiguous graphical representation

Use of style guides for code/model

SW Architecture: High cohesion within a component

SW Architecture: Restricted coupling between components

SW Architecture verification via simulation of dynamic parts of the design

SW Architecture verification via prototype generation

Restricted use of interrupts

External monitoring facility (for example with hardware, such as a watchdog timer)

Control flow monitoring/analysis

Data flow analysis

Diverse software design/Independent parallel redundancy (for example two software development groups that do not
talk to each other develop software for the same set of requirements. An “arbitrator” software will need to decide which
one to use)

Graceful degradation

No dynamic objects or variables, or else online testing during their creation

No multiple use of variable names

Avoid global variables or else justify their usage

Limited use of pointers

No implicit type conversions

No hidden data flow or control flow

No recursions

Semi-formal verification of the unit design

Static code analysis

Fault injection testing

Resource usage tests (for example for memory and execution time)

Back-to-back comparison test between model and code (if using models)

Unit testing via equivalence classes

Unit testing via analysis of boundary values

Definition of done for Integration testing is Function and Call coverage

HIL testing of safety requirements

239 International Organization for Standardization, 2018

A-13

Table 33. Classification and representative examples of software tools used in the development of
automotive E/E systems

Classification/Examples of Representative Tools Used Across the SDLC

Process Function Representative Tools used in SDLC

Modeling ISO 26262 Concepts ANSYS' medini analyze, MetaCase

Requirements Management
Microsoft's Word/Excel/PowerPoint, IBM's DOORS, Polarion, Jama, VSEM, SimuQuest UniPhi,
Sparx Systems Enterprise Architect, PTC's Integrity, In House

Architecture (Definition)
UML/SysML, Word, Excel, PowerPoint, Matlab/Simulink, ASCET, UniPhi, ANSYS' medini ana-
lyze, ANSYS' SCADE Architect, IBM's Rhapsody, SPARK UML Architect

Modeling Tools (some are
simulatable) Altair's Embed, ANSYS' SCADE, ETAS' ASCET, Mathworks Simulink/Stateflow

Modeling Style Guide Enforcement Mathworks Model Advisor, MES' Model Examiner

Model Metrics Mathworks Model Metrics, MES' MXRAY

Model Debugging Mathworks Simulink/Stateflow, Reactive System's Reactis

Data Dictionary dSPACE TargetLink, Mathworks Simulink, SimuQuest UniPhi

Model Diff and Model Merge ANSYS' medini unite, DiffPlug, EnSoft SimDiff/SimMerge, Mathworks Report Generator

Automatic Test Vector Generation BTC, Mathworks Simulink Design Verifier, Piketec TASSIMO, Reactive System's Reactis

Test Execution/Management BTC, Mathworks Simulink Test, MES' Test Manager, Piketec TPT

Model Coverage Measurement Mathworks Simulink Coverage (formerly V&V), Reactive Systems' Reactis

Model Viewers DiffPlug, Reactive System's Reactis/Model Inspector

Model Documentation Mathworks Simulink Report Generator

Automatic Code Generation
Altair's Embed, ANSYS' SCADE, dSPACE TargetLink, ETAS' ASCET, Mathworks Embedded
Coder

Automatic Code Generation - Low Level
Drivers

Altair's Embed, Ecotrons EcoCoder, New Eagle's Rapture, SimuQuest QuantiPhi, Woodward Mo-
toHawk

Static Code Analyzers AbsInt, lint, LDRA, Polyspace, (many others)

HIL dSPACE, National Instruments, SpeedGoat, (numerous others)

Calibration ETAS' Inca, Vector tools

Requirements Traceability
ANSYS' medini analyze, Claytex Reqtify, Jama, Mathworks Requirements Management, MES'
Test Manager

Version Control SVN, git, Collabnet TeamForge

Issue Tracking Jira

Product Languages Assembler, C, C++, Java for informatics

Process Tools
MS Visual Studio, Eclipse, gcc, autoconf, binutils, clang, cmake, yocto, bitbake, powershell,
batch scripts, MS-Project, Jenkins, Python, Code Composer Studio

Reviews SmartBear Collaborator

A-14

Table 34. Classification of representative communications busses used in automotive E/E systems

Automotive Communications Busses by Class and Subdomain [23] [28] [31] [82]

Powertrain Chassis

(Active Safety)
Body Telematics Passive Safety

Program Size 2MB 4.5MB 2.5MB 100MB 1.5MB

Number of ECU 3-5 6-10 14-30 4-12 11-12

Bandwidth 500 Kb/s 500 Kb/s 100 Kb/s 200 Mb/s 10 Mb/s

Cycle Time 10ms - 10s 10ms - 10s 50ms - 2s 20ms - 5s 50ms

Safety Requirements high high low low very high

Bus Type (typical) Class C Class C Class A Class D Class D

 Class B

Busses Used (typical) CAN-C CAN-C LIN MOST MOST

 FlexRay FlexRay CAN-B

 J1850

B-1

Appendix B

B-2

Example
The following example demonstrates the framework reduction process in order to provide a
comparative framework. It may be done differently for different scenarios depending on the
comparison of interest. For example, different taxonomy elements may be used in one reduction
versus another.

Step 1: Framework Reduction by Subclassification
The first step is to start with the framework taxonomy (e.g., Taxonomy of Software
Development Lifecycle Practices, Taxonomy of Process Change Factors) classifications and
subclassifications.

Subclassifications that do not differentiate the framework taxonomy for comparative purposes
should be left out of the comparative framework. For example, “Supporting Processes,”
“Continuous Improvement - Functionality” is a potential subclassification. However, if all
generations of the comparative targets (e.g., the reference framework and the target framework
for comparison) use identical methods to try to continuously improve the functionality over time,
the subclassification does not differentiate the taxonomy and should be removed from the
comparison.

Table 30 through Table 33 provide a working example:
Table 35. The Framework Taxonomy reduced to comparative elements (a single element is shown)

Framework Reduction Example

Classification Subclassification

Software Implementation Programming Language

Step 1a: Framework Reduction by Characteristics of the Subclassification
For each subclassification, a list of “Possible Answers” or “characteristics” can be created. The
possible answers are ways that the subclassification can be implemented and compared.

Table 36. The Framework Taxonomy reduced into comparative elements with 4 comparative
characteristics

Framework Reduction Example

Classification Subclassification Possible Answers
(Characteristics)

Software Implementation Programming Language Assembler

 C

 C++

 Other

B-3

Step 1b: Framework Reduction by Framework Generation
To perform comparative analysis, it is important that the framework taxonomy provide a
chronological reference. This allows the framework to be used, for example, to compare the
varying lifecycle practices found in “Gen 1” versus “Gen 3” in the automotive industry with
changing practices of the comparative target.

For each “Possible Answer,” the probability that this answer (without knowledge of any other
subclassification answers) leads to classifying the overall software development process as a
given framework “generation” was estimated (Table 32).240
Table 37. Assignment of probabilities to isolated characteristics allows the comparative target to be com-

pared chronologically against reference framework.

Framework Isolation Example

Classification Subclassification Possible
Answers

Gen 1
Probability

Gen 2
Probability

Gen 3
Probability

Software
Implementation

Language Assembler 80 10 10

 C 10 80 10

 C++ 0 10 90

 Other 0 0 100

Step 2: Comparative Analysis
With the probabilities for each subclassification defined, the comparative framework can be
applied to specific scenarios (e.g., as a comparative framework). For any “Possible Answers”
that are not used, do not count these “points” in the total number of possible points. For each
generation, the number of points is the same as the probability for this generation.

The final result is a probability that the scenario fits each generation and the associated
framework taxonomy for that generation.

Example Scenario:
In order to see how the comparative framework could be used to evaluate and assess lifecycle
practices in other industries against the automotive industry, the following example is presented.

The scenario assumes that an aerospace software researcher is interested in understanding how
the automotive industry tackles the challenges faced by integrated modular avionics architectures
within hierarchical development processes that are distributed across a supply chain.

240 The probabilities used are engineering best guesses based on the qualitative analysis used for this study and are

for illustrative purposes.

B-4

The researcher has identified that the automotive industry uses harmonized consensus standards
that incorporate process steps for:

• Distributed Development,

• SEooC, and

• (Emerging) SOTIF

The researcher has determined that interrelated, relevant consensus standards between the
automotive and aerospace industries may be mapped as shown in Figure 15 and Figure 16.241

Figure 16. Example taxonomy of regulations and consensus standards used in automotive critical

software development.

241 Leveson, N., Wilkinson, C., Fleming, C., Thomas, J., & Tracy, I. (2014, October). A comparison of STPA and the

ARP 4761 safety assessment process. MIT PSAS Techynical Report. http://sunnyday.mit.edu/pa-
pers/ARP4761-Comparison-Report-final-1.pdf.

B-5

Figure 17. Example taxonomy of regulations and consensus standards used in commercial airplane

critical software development

Using a framework reduction process as described above, the researcher has identified the
elements shown in Table 33 to be used for comparative analysis between concepts used in the
two industries.

B-6

Table 38. Automotive comparative analysis using the isolated framework

Framework Comparative Analysis242

Classification Subclassification Possible Answers Gen 1 Proba-
bility

Gen 2 Proba-
bility

Gen 3
Probability

Supporting Pro-
cesses

Change Management Yes 0 50 50

Configuration Management Yes 0 50 50

Distributed Development Yes 10 80 20

Concept Phase Item Definition Yes 0 80 20

SEooC Yes 50 50

Product
Development at
the
Software Level

Development Process V 10 85 5

Code/Model Guidelines MAAB/MISRA/
Other; Simulink 0 95 5

Who does Software coding Embedded Software
Engineer 75 25 0

 Controls Engineer 0 90 10

Software Design Executable graphic
(e.g., Simulink) 0 95 5

Software
Implementation

Convert Software Design to Code Autocode 0 50 50

Language C 10 80 10

Language: Hardware Considerations Floating Point 0 50 50

 Limited
ROM/RAM/CPU 75 20 5

RTOS Embedded RTOS 0 95 5

Dynamic/Self Adapting Code No 45 45 10

Software Testing Software Unit Testing Yes 0 80 20

Unit Testing Definition of Done Structural Coverage 0 90 10

Software Integration Testing (without
hardware)

Yes 0 90 10

Post Release In-Field Updates Reflash ECU 0 95 5

Using the probabilities as defined (Table 33), a comparative analysis can be performed, and each
process category can be assessed in order to determine which framework generation the process

242 One of the goals of the example is to show the challenges with characterizing software practices in the automo-

tive industry due to the wide range of constantly changing processes and tools that are used. The probabili-
ties assigned were designated by the research team as “best guesses” and are used for illustrative purposes
only. In order to perform a reliable analysis further research should be performed in order to capture proba-
bilities that more accurately reflect industry practices.

B-7

category falls in. The results can be aggregated (e.g., weighted average) to classify the entire
target process. In this way, the context of the taxonomic elements is established, allowing
elements to be studied relative to other elements that are used in the same context.

Once the generational likelihood is established for the target process scenario, process steps and
characteristics of the comparative target may be compared with the reduced framework, allowing
a researcher to analyze the target process against other aspects of the reference taxonomy by
generation.

Note: In this example, unused “Possible Answers” are not shown.

The a priori framework in this report only addresses the first two layers of detail. However, for
the comparative framework, some interesting differentiators occurred at “lower levels” of detail
that the a priori framework did not cover, such as what programming language is used. Some of
these lower levels of detail were included in the comparative framework to allow for better
differentiation of fundamentally different approaches.

DOT HS 813 226
June 2022

15352-061622-v3

	List of Abbreviations
	1 Brief History of Automotive Software
	1.1 Hand-Coded Software
	1.2 Model-Based Development
	1.3 Automatic Code Generation
	1.4 Emerging Artificial Intelligence Applications

	2 Key Themes in Automotive Software
	2.1 Critical Systems and Safety Systems
	2.1.1 Dependability
	2.1.2 Safety
	2.1.3 Security
	2.1.4 Real Time
	2.1.5 Fault Tolerance and Fault Recovery

	2.2 Complexity
	2.3 Business Factors
	2.3.1 Ownership Models
	2.3.2 Business Factors Today

	2.4 Current State-of-the-Art
	2.4.1 Challenges for Software Requirements
	2.4.2 Challenge of Resolving Lifecycle Practices against Requirements
	2.4.3 Key Software Development Approaches
	2.4.4 Models of Computation
	2.4.5 Architectural Standards
	2.4.5.1 AUTOSAR
	2.4.5.2 Automotive Grade Linux
	2.4.5.3 Communications Bus Standards

	2.4.6 Common Processes and Practices
	2.4.6.1 The V – Cycle
	2.4.6.2 Simulation-Based Development and “In-the-Loop” Verification and Validation

	2.4.7 Tools and Implementations
	2.4.8 Application of MBD to Automotive ECU Software Development

	2.5 Comparison to Approaches in Other Industries
	2.6 Future Challenges

	3 Automotive Software Evolution Framework
	3.1 Introduction
	3.2 First-Pass Checklist
	3.3 Taxonomy
	3.3.1 Taxonomy of Process Change Factors
	3.3.2 Business and Market Factors
	3.3.2.1.1 Business and Market Factors Taxonomy
	3.3.2.1.1.1 Macro Factors
	3.3.2.1.1.2 Design Philosophy
	3.3.2.1.1.3 Utilization

	3.3.2.1.2 Complexity Taxonomy

	3.3.3 Consensus Standards Research Theme
	3.3.3.1 Architectural Standards Taxonomy
	3.3.3.1.1 Hardware, Software, and Logical Consensus Standards
	3.3.3.1.2 Network and Communications Consensus Standards
	3.3.3.1.3 Machine Learning and AI Standards

	3.3.3.2 Programming Standards Taxonomy
	3.3.3.2.1 Language, Style, and Syntax Standards

	3.3.3.3 Process Consensus Standards Taxonomy
	3.3.3.3.1 Process Assurance and Assessment
	3.3.3.3.2 Process Reference Model

	3.3.3.4 Environmental Regulations and Standards Taxonomy

	3.3.4 Software Type, Technology, Tools and Programming Languages Research Theme
	3.3.4.1 Software Type Taxonomy
	3.3.4.1.1 Critical
	3.3.4.1.2 Architecture
	3.3.4.1.3 Fault Management

	3.3.4.2 Software Scheduling Taxonomy
	3.3.4.2.1 Operating Systems

	3.3.4.3 Hardware Taxonomy
	3.3.4.3.1 Hardware Technology

	3.3.4.4 Computer Control Taxonomy
	3.3.4.4.1 Control Strategies and Control Systems

	3.3.4.5 Communication Taxonomy
	3.3.4.5.1 Communications Strategy, Network Architecture, and Topology

	3.3.4.6 Software Implementation Taxonomy
	3.3.4.6.1 Tools and Programming Languages
	3.3.4.6.2 Models of Computation

	3.3.5 Process Requirements Research Theme
	3.3.5.1 Process Reference Model Taxonomy
	3.3.5.2 Critical Reference Model Taxonomy

	3.3.6 Software Development Lifecycle Practices Taxonomy
	3.3.7 Taxonomy Reduction and Comparative Framework
	3.3.7.1 Applications

	4 Conclusion
	4.1 Research Summary
	4.2 Research Findings

	Framework Sources
	Appendix A
	Appendix B
	Example
	Step 1: Framework Reduction by Subclassification
	Step 1a: Framework Reduction by Characteristics of the Subclassification
	Step 1b: Framework Reduction by Framework Generation
	Step 2: Comparative Analysis

Accessibility Report

		Filename:

		15352_AutomotiveFoundations_061622_v3_tag.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 1

		Passed manually: 2

		Failed manually: 0

		Skipped: 2

		Passed: 26

		Failed: 1

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Skipped		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Needs manual check		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Failed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

