FINAL REPORT NUMBER 226EM-MGA-15-02

SAFETY COMPLIANCE TESTING FOR FMVSS 226 Ejection Mitigation

FCA US LLC 2015 Chrysler 200S NHTSA No. C20150301

MGA RESEARCH CORPORATION 446 Executive Drive Troy, Michigan 48083

Test Dates: April 30-May 1, 2015 Report Date: May 6, 2015

FINAL REPORT

PREPARED FOR:

U.S. DEPARTMENT OF TRANSPORTATION
NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
ENFORCEMENT
OFFICE OF VEHICLE SAFETY COMPLIANCE
1200 New Jersey Avenue, SE
West Building
WASHINGTON, D.C. 20590

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof.

If trade or manufacturers' names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Prepared By:	Ryan Jones, Project Engineer
	Helen A. Kaleto, Project Manager
Approved By:	P. muchallate
Approval Date:	
FINAL REPORT AC	CCEPTANCE BY OVSC:
Accepted By:	K. Nuschler
Accentance Date:	8 31 2015

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. 226EM-MGA-15-02	2. Government Accession No.	3. Recipient's Catalog No.							
4. Title and Subtitle Final Report of FMVSS 226 2015 Chrysler 200S, NHTSA	5. Report Date May 6, 20156. Performing Organization Code								
		MGA MGA	dilization code						
7. Author(s) Helen A. Kaleto, Project Ma Ryan Jones, Project Engine	8. Performing Organization Report No. 226EM-MGA-15-02								
9. Performing Organization Na MGA Research Corporation 446 Executive Drive	10. Work Unit No.								
Troy, Michigan 48083		11. Contract or Gra DTNH22-11-D-							
12. Sponsoring Agency Name U.S. Department Of Transp National Highway Traffic Sa Enforcement Office of Vehicle Safety Co	portation afety Administration	13. Type of Report and Period Covered Final Test Report							
1200 New Jersey Avenue, West Building, 4 th Floor Washington, D.C. 20590		14. Sponsoring Agency Code NVS-220							
15. Supplementary Notes									
16. Abstract A compliance test series was conducted on the subject 2015 Chrysler 200S, NHTSA No. C20150301, ir accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP-226-00. The testing was conducted at MGA Research Corporation in Troy, Michigan on April 30-May 1, 2015. Test failures identified were as follows:									
	None								
17. Key Words Compliance Testing Safety Engineering FMVSS 226 2015 Chrysler 200S		18. Distribution Statement Copies of this report are available from: NHTSA Technical Reference Division, Mail Code: NPO-410 1200 New Jersey Avenue, SE West Building Washington, D.C. 20590 e-mail: tis@nhtsa.dot.gov Fax: 202-492-2833							
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 89	22. Price N/A						

Form DOT F 1700.7 (8-69)

TABLE OF CONTENTS

<u>SECTION</u>	DESCRIPTION	PAGE NO.
1.0	PURPOSE OF COMPLIANCE TEST	5
2.0	TEST PROCEDURE AND DISCUSSION OF TEST	6
3.0	TEST DATA AND PHOTOGRAPHS	19
4.0	TEST EQUIPMENT LIST AND CALIBRATION INFORMATION	53
5.0	OTHER DOCUMENTATION	54
	Appendix A - Calibration Certificates	57
	Appendix B - Temperature Trace	89

1.0 PURPOSE OF COMPLIANCE TEST

The FMVSS 226 Ejection Mitigation compliance test sponsored by the National Highway Traffic Safety Administration (NHTSA) was conducted under Contract DTNH22-11-D-00246. The purpose of this test was to evaluate ejection mitigation performance in a 2015 Chrysler 200S.

Tests were conducted on April 30-May 1, 2015 on a 2015 Chrysler 200S, manufactured by FCA USA LLC.

All tests were conducted in accordance with the U. S. Department of Transportation, National Highway Traffic Safety Administration's Laboratory Test Procedure TP-226-00 dated March 1, 2011 and the corresponding MGA Research Corporation's FMVSS 226 procedure numbers.

MGATP_226_EM_GOV_SETUP/TARGETING, dated 07/05/13 MGATP_226_EM_GOV_IMPACT TEST SERIES, dated 04/11/14

All tests were conducted at MGA Research Corporation in Troy, Michigan and were performed by MGA engineers and technicians. The FMVSS 226 Ejection Mitigation Impactor was used to conduct the testing.

2.0 TEST PROCEDURE AND DISCUSSION OF TEST

A 2015 Chrysler 200S was tested on April 30-May 1, 2015, by MGA Research Corporation, Troy, Michigan. The window targets tested as part of the compliance test are as follows:

- 2nd Row Right-Hand (RH) Front Upper Primary, 20 kph, 1.5 sec.
- 1st Row Left-Hand (LH) Front Lower Primary, 20 kph, 1.5 sec.
- 1st Row Left-Hand (LH) Front Lower Primary, 16 kph, 6.0 sec.
- 2nd Row Right-Hand (RH) Rear Lower Primary, 20 kph, 1.5 sec.

Pre-test and post-test photographs of the test vehicle, a 2015 Chrysler 200S, are included in this report.

An Ejection Mitigation Impactor was placed at each target location according to instructions in the OVSC Ejection Mitigation Laboratory Test procedure dated March 1, 2011. Each event was documented by three (3) cameras.

DATA SHEET NO. 1 REPORT OF VEHICLE CONDITION

CONTRACT NO. <u>DTNH22-11-D-00246</u>	Date: <u>April 29, 2015</u>
---------------------------------------	-----------------------------

From: MGA Research Corporation

To: NHTSA, OVSC, NVS-224
Purpose: □ Initial Receipt □ Received via Transfer ☑ Present Vehicle Condition
Model Year/Make/Model/Body Style: 2015 Chrysler 200S
MANUFACTURE DATE: <u>December</u> , 2014 NHTSA NO.: <u>C20150301</u> BODY COLOR: <u>Velvet Red Pearlcoat</u> VIN: <u>1C3CCCBB3FN647237</u> GVWR <u>2092.0 kg</u> GAWR (Fr) <u>1185.0 kg</u> GAWR (Rr) <u>1185.0 kg</u> Odometer Readings: ARRIVAL miles <u>13</u> DATE <u>February 17, 2015</u> COMPLETION miles <u>13</u> DATE <u>May 1, 2015</u> Dealer's name: <u>Palmen Motors Inc.</u>
A. All options listed on "window sticker" are present on the test vehicle. ☑YesNo
B. Tires and wheel rims are new and the same as listed. ☑YesNo
C. There are no dents or other interior or exterior flaws. ☑YesNo
D. The vehicle has been properly prepared and is in running condition. ☑YesNo
E. Keyless remote is available and working. ☑YesNoN/A
F. The glove box contains an owner's manual, warranty document, consumer information, and extra set of keys. ☑YesNo
G. Proper fuel filler cap is supplied on the test vehicle. ☑YesNo
H. Used permanent marker to identify vehicle with NHTSA number and FMVSS Test type(s) on roof line above driver door. ☑YesNo
I. Placed vehicle in storage area. ☑YesNo
J. Inspect the vehicle's interior and exterior, including all windows, seats, doors, etc., to confirm that each system is complete and functional per the manufacturer's specifications. Any damage, misadjustment, or other unusual condition that could influence the test program or test results shall be recorded. Report any abnormal condition to the NHTSA COTR before beginning any test.
☑Vehicle OKConditions reported below in comment section

Identify the letter above to which any of the following comments apply. Comments: There is a dent along the edge of the drivers side above the B-pillar.

REPORT OF VEHICLE CONDITION AT THE COMPLETION OF TESTING

LIST OF FMVSS TESTS PERFORMED BY THIS LAB:

Model Year/Make/Model/Body Style: 2015 Chrysler 200S

NHTSA No.C20150301

REMARKS: Four FMVSS 226 tests were performed on this vehicle.

Equipment that is no longer on the test vehicle as noted on previous page:

N/A

Explanation for equipment removal:

N/A

Test Vehicle Condition:

The headliner is damaged, both curtain airbags have been deployed, and the pillar trim has been dislodged.

RECORDED BY:

DATE: May 1, 2015

APPROVED BY:

DATA SHEET NO. 2 CERTIFICATION LABEL AND TIRE PLACARD INFORMATION

VEH. MOD YR/MAKE/MODEL/BODY: 2015 Chrysler 200S

VEH. NHTSA NO.: <u>C20150301</u> VIN: <u>1C3CCCBB3FN647237</u>

COLOR: Velvet Red Pearlcoat VEH. BUILD DATE: December, 2014

TEST DATES: April 30-May 1, 2015

TEST LABORATORY: MGA Research Corporation

OBSERVERS: <u>Helen Kaleto, Ryan Jones, Brian</u> Arsen

CERTIFICATION LABEL

Ford Motor Company

Date of Manufacture <u>December, 2014</u> VIN <u>1C3CCCBB3FN647237</u>

Vehicle certified as: X Passenger car MPV Truck Bus

GVWR: <u>2092.0</u> kg; GAWR FRONT: <u>1185.0</u> kg GAWR REAR: <u>1185.0</u> kg

TIRE PLACARD

Vehicle Capacity Weight (VCW) 408 kg

Designated Seating Capacity: Front 2; Rear 3; TOTAL 5

Recommended Cold Tire Pressure: FRONT: 260 kPa REAR: 260 kPa

Tire Pressure w/Maximum Capacity Vehicle Load:

FRONT: 260 kPa REAR: 260 kPa

Recommended Tire Size: 235/45R18; Load Range: 94

Tire size on Test Vehicle: 235/45R18

REMARKS:

RECORDED BY: Ryan Jones / Brian Arsen DATE: April 28, 2015

APPROVED BY: Helen A. Kaleto

APPROVED BY: Helen A. Kaleto

DATA SHEET NO. 3 READNESS INDICATOR AND OWNER'S MANUAL INFORMATION (S4 2.2, S4 2.3)

VEH. MOD YR/MAKE/MODEL/BODY: 2015 Chrysler 200S
VEH. NHTSA NO.: C20150301 VIN: 1C3CCCBB3FN647237
COLOR: Velvet Red Pearlcoat VEH. BUILD DATE: December, 2014
TEST DATES: April 30-May 1, 2015
TEST LABORATORY: MGA Research Corporation
OBSERVERS: <u>Helen Kaleto, Ryan Jones, Brian Arsen</u>
 Does the vehicle have an ejection mitigation countermeasure that deploys in the event of a rollover (Obtain the answer to this question from the COTR)? ☑Yes No – This data sheet is complete
 Readiness indicator: Does the vehicle have a readiness indicator for the ejection mitigation countermeasure (S4.2.2)? ☑Yes – Pass No – FAIL – Go to 3
2.2. Is the readiness indicator clearly visible from the driver's designated seating position (S4.2.2)?☑Yes – Pass No – FAIL
 2.3. Is a list of elements monitored by the indicator included in the vehicle's owner manual or in other written information provided to the consumer (S4.2.2)? ☑Yes – Pass No – FAIL
 Does the vehicle's owner manual or other written information provided by the manufacturer to the consumer describe the vehicle as having a deployable ejection mitigation countermeasure (S4.2.3(a))? ☑Yes – Pass No – FAIL
4. Does the written information (S4.2.3(b))
 4.1. Discuss the readiness indicator and specify a list of elements being monitored by the indicator? ☑ Yes – Pass No – FAIL
4.2. Discuss the purpose and location of the telltale?☑ Yes – Pass No – FAIL
4.3. Instruct the consumer on what steps to take if the telltale is illuminated?✓ Yes – Pass No – FAIL
RECORDED BY: Ryan Jones /Brian Arsen DATE: April 28, 2015

DATA SHEET NO. 4 VEHICLE TEST WEIGHT AND ATTITUDE

VEH. MOD YR/MAKE/MODEL/BODY: 2015 Chrysler 200S

VEH. NHTSA NO.: C20150301 VIN: 1C3CCCBB3FN647237

COLOR: Velvet Red Pearlcoat VEH. BUILD DATE: December, 2014

TEST DATES: <u>April 30-May 1, 2015</u>

TEST LABORATORY: MGA Research Corporation
OBSERVERS: Helen Kaleto, Ryan Jones, Brian Arsen

<u>BA</u>
1. After the test vehicle is received, add fluids to capacity and inflate tires to the manufacturer's specifications per tire placard. If no tire placard is available, inflate tires to the recommended pressure in the owner's manual.

Tire Placard Pressure (kpa): RF $\underline{260}$; LF $\underline{260}$; RR $\underline{260}$; LR $\underline{260}$; Owner's Manual Pressure (kpa): RF $\underline{260}$; LF $\underline{260}$; RR $\underline{260}$; LR $\underline{260}$; Actual Inflated Pressure (kpa): RF $\underline{260}$; LF $\underline{260}$; RR $\underline{260}$; LR $\underline{260}$

- <u>BA</u> 2. Place the vehicle on a flat, horizontal surface.
- BA 3. Weigh the vehicle to determine the "Unloaded Vehicle Weight" (UVW).

Right Front = $\underline{469.0}$ kg Right Rear = $\underline{314.5}$ kg

Left Front = $\underline{487.5}$ kg Left Rear = $\underline{321.0}$ kg

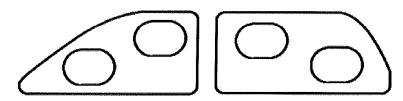
TOTAL FRONT = 956.5 kg TOTAL REAR = 635.5 kg

% Total Weight = <u>60.1</u>% % Total Weight = <u>39.9</u>%

UVW = TOTAL FRONT PLUS TOTAL REAR = 1592.0 kg

- BA 4. Place the vehicle on a flat, horizontal surface. Exercise the suspension, pushing up and down on all four corners of the vehicle at least 5 times in an interval not to exceed 40 seconds.
- BA 5. UVW Test Vehicle Attitude (all dimensions in degrees(°)):
- <u>BA</u> 5.1. Measure the pitch angle (front-to-rear) relative to a horizontal plane along a fixed reference on the driver's and passenger's door sill. Mark where the angle is measured on the door sill. Record on Table 4.1.

- <u>BA</u> 5.2. Measure the roll angle (left-to-right) relative to a horizontal plane along a fixed reference at the vehicle longitudinal centerline on the front and rear of the vehicle (such as the front and rear bumper or instrument panel and rear deck). Mark where each angle is measured. Record on Table 4.1.
- BA 6. Support the vehicle off of its suspension, so that it maintains the UVW test attitude angles ±0.5°. Record on Table 4.1. If the vehicle is lowered off of the support fixture to reposition the vehicle during testing, the "as tested" attitude must again be measured and recorded.


		Vehicle Attitude (deg)								
Table	4.1	UVW	As Tested 04/30/15	As Tested 04/30/15	As Tested 05/01/15					
Pitch Angle Nose Down	Right Door Sill	ND 0.6°	ND 0.7°	ND 0.7°	ND 0.6°					
(ND) Nose UP (NU)	Left Door Sill	ND 0.6°	ND 0.6°	ND 0.6°	ND 0.6°					
Roll Angle Left (L)	Front Bumper	RU 0.2°	RU 0.1°	LU 0.2°	RU 0.1°					
Right (R)	Rear Bumper	RU 0.2°	RU 0.1°	LU 0.2°	RU 0.1°					

The support for the vehicle must be capable of supporting the vehicle weight, loads applied and preventing movement of the vehicle. In addition, it must safely allow for the locating, testing and filming of the impacts per the requirements of the standard and this test procedure.

RECORDED BY: Ryan Jones / Brian Arsen DATE: April 29, 2015

APPROVED BY: Helen A. Kaleto

C20150301 - 2015 Chrysler 200 Final Target Coordinates

LH (Driver) Side										
1st Row	X (mm)	Z (mm)								
Front Lower Primary [R]	1112	822.5								
Rear Upper Primary [R]	1404.5	885.2								
2nd Row	X (mm)	Z (mm)								
Front Upper Primary [R]	1883.7	886.6								
Rear Lower Primary [R]	2137.8	852.2								

RH (Passenger) Side										
1st Row	X (mm)	Z (mm)								
Front Lower Primary [R]	1103.7	822.9								
Rear Upper Primary [R]	1394.6	885.2								
2nd Row	X (mm)	Z (mm)								
Front Upper Primary [R]	1880.3	886.5								
Rear Lower Primary [R]	2129.3	852.7								

 $^{^{*}}$ [R] indicates targets $\it rotated$ to horizontal position

DATA SHEET NO. 5 IMPACT TARGET LOCATION DETERMINATION FORM

Window 1	Гуре	☑ Left Outboard,			☑ 1 st Row, □ 2 nd Row, □ 3 rd Row, □ 4 th Row							
		taken from ☐ Front l ner = X <u>714.7 mm</u> , Z		r of Da	aylight Opening	, 	Vehicle Coor	rdinates	3,			
Rearward	Edge	of Daylight Opening	J	sian	n Angle <u>N/A</u> ° Opening Geome			Geometric Center				
☑ 1400 mr	n ber	nind SgRP last row (<	3 rows)		Cour Baok Bo	oigii	7 angio <u>147 t</u>			opog		
□ 600 mm	behir	d SgRP 3rd row (≥ 3	rows)									
☐ 1400 mn	n beh	ind non-fixed seat (< 3	3 rows)		Seat Back Te	st Ar	igle <u>N/A</u> °			X <u>1179.1</u>	<u>mm</u>	
		id non-fixed seat (≥ 3	,									
		•	10003)		Seat Adjustme	ent <u>N</u>	<u>l/A</u> °			Z <u>856.4 m</u>	<u>ım</u>	
		d partition / bulkhead										
Primary Ta	arget	☑ Lower-Front					☑ Upper-Re	ear				
Center	'S	□ Upper-Front	X <u>1306.7 mr</u>	<u>n</u> , Z	<u>854.4 mm</u>		☐ Lower-Re	ear	X <u>14</u>	<u>17.9 mm</u>	Z <u>866.3 mm</u>	
Horizontal	Dista	nce Between Prima	ry Targets		<u>111.2</u> mm		☑ Forward o	of B-Pill	ar	□ F	Rearward of B-Pillar	
Second	ary	☑ Upper-Front					☑ Lower-Re	ear				
Target Ce	nters	□ Lower-Front	X <u>1343</u> .	3 mm	, Z <u>860.3 mm</u>		☐ Upper-Re	ear	X <u>13</u>	<u>80.9 mm</u> ,	Z <u>857.5 mm</u>	
		Upper Secondary to	Lower							☑ Elimin	ate Upper	
		Secondary		H <u>37.1</u> mm, V <u>2.8</u> mm H <u>37.0</u> mm, V <u>8.8</u> mm						Seconda	ry?	
Target		Upper Primary to Up Remaining Seconda								☑ Eliminate Upper or Remaining Secondary?		
Elimination	on	Lower Primary to Lo		<u>_</u>	<u></u> , . <u></u> .					☐ Eliminate Lower or		
		Remaining Seconda		H <u>N/A</u> mm, V <u>N/A</u> mm						Remaining Secondary?		
		Upper Primary to Lo Primary	ower	H 1	H 111.2 mm, V 11.9 mm ☑ Eliminate Upper Primary						nate Upper Primary?	
Bisect		☐ Only 2 Targets R	emaining?		Bisect Target						☑ Less Than 4	
Target		☐ Absolute Distance	•		Location:					Targets?		
[R] Prim	ary	☑ Lower-Front					☑ Upper-Rear					
Target Ce				mm, Z <u>822.5 mm</u>			☐ Lower-Rear X <u>1404.5</u> , Z <u>885.2</u>			<u>85.2</u>		
Targets		Pistance Between Pri	imary	292.5 mm ☑ Forward o			of B-Pil	of B-Pillar ☐ Rearward of B-Pillar				
[R] Secon	dary	☑ Upper-Front					☑ Lower-R	ear				
Target Ce	nters	☐ Lower-Front	X <u>1209</u>	9.5, Z <u>852.1</u>			□ Upper-R	☐ Upper-Rear X <u>1307.0</u> , Z <u>827.9</u>			<u>27.9</u>	
		Upper Secondary to	Lower					ı			nate Upper	
		Secondary Upper Primary to Up	nor or	H <u>9</u>	97.5 mm, V <u>24.</u>	<u>2</u> mr	n			Seconda	ary? nate Upper or	
[R] Targe	et	Remaining Seconda		ня	97.5 mm, V 57.	3 mr	n				ng Secondary?	
Elimination	on	Lower Primary to Lo	wer or							☐ Elimin	ate Lower or	
		Remaining Seconda		1 H	<u>V/A</u> mm, V <u>N/A</u>	mm				Remaining Secondary?		
		Upper Primary to Lo Primary	wer	Н	292.5 mm, V 6	2.7 r	nm			LI Elimin	ate Upper Primary?	
[R]	[☑ Only 2 Targets		_	-				D		Targets ≥ Rotated	
Bisect	Danasining Diagrat Tage				i l			Ta	argets?			
Target		Absolute Distance >	Location	on:	X_		_, Z			Yes = Us	e Original Targets	
	<u> </u>	360 mm?				1				☑ No = Use Rotated Targets		
Increment		☐ Do no targets fit?	Target A	nale			Target		X		Z	
Rotation		3			Location:		^	······································				

RECORDED BY: Ryan Jones / Brian Arsen DATE: April 29, 2015
APPROVED BY: Helen A. Kaleto

DATA SHEET NO. 5 IMPACT TARGET LOCATION DETERMINATION FORM

Window T	ype	☑ Left Outboard,	☑ Left Outboard, □ Right Outboard							□1 st Row, ☑ 2 nd Row, □ 3 rd Row, □ 4 th Row			
		taken from ☐ Front ner = X <u>1725.6 mm</u> , 2			of Da	aylight Opening	, ☑	Vehicle Coor	dinates	,			
Rearward Edge of Daylight Opening ☑ 1400 mm behind SgRP last row (< 3 rows)						Seat Back Design Angle <u>N/A</u> °					Opening	Geometric Center	
 □ 600 mm behind SgRP 3rd row (≥ 3 rows) □ 1400 mm behind non-fixed seat (< 3 rows) □ 600 mm behind non-fixed seat (≥ 3 rows) 						Seat Back Test Angle <u>N/A</u> °					X <u>2020.5</u>	<u>mm</u>	
□ 25 mm fc	orwar	d partition / bulkhead		5)		Seat Adjustme	ent <u>N</u>	<u>I/A</u> °			Z <u>853.5 r</u>	<u>nm</u>	
Primary Ta Center	_	☐ Lower-Front☐ Upper-Front☐		<u>/A</u> ,Z <u>N</u> vertical ta		fit opening		☐ Upper-Ro ☑ Lower-Ro		X <u>N//</u> No ve	A , Z <u>N/A</u> ertical targ	ets fit opening	
Horizontal	Dist	ance Between Prima	ary T	argets		mm		☐ Forward o	of B-Pill	ar	Ø F	Rearward of B-Pillar	
Seconda Target Cer	-	☐ Upper-Front ☐ Lower-Front		X <u>N/A</u> , No vertic		A gets fit opening		☐ Lower-Ro		X <u>N//</u> No ve	A , Z <u>N/A</u> ertical targ	ets fit opening	
		Upper Secondary to Secondary	o Lov	ver	Н	mm, V	mr	n			☐ Eliminate Upper Secondary?		
Target		Upper Primary to U		or	Hmm, Vmm					☐ Eliminate Upper or Remaining Secondary?			
Elimination	on	Remaining Second Lower Primary to L		or							ate Lower or		
		Remaining Second Upper Primary to L		,	H mm, V mm						Remaining Secondary? □ Eliminate Upper Primary?		
		Primary	owei		Н_	H mm, V mm						late Opper Primary?	
Bisect		☐ Only 2 Targets Re	emair	ning?		Bisect Target					☑ Less Than 4		
Target		Absolute Distance	> 360) mm?		Location: X <u>mm</u> , Z				<u>mm</u>	Targets?		
[R] Prim	ary	☐ Lower-Front						□ Upper-R				7.050.0	
Target Ce					<u>ım</u> , 2	<u>m</u> , Z <u>886.6 mm</u> ☑ [wer-Rear X <u>2137.8 mm</u> , Z <u>852.2 mm</u>			Z <u>852.2 mm</u>	
Targets		Distance Between P	rima	ry	2	254.1 mm ☐ Forward of B-Pillar			llar	ØR	earward of B-Pillar		
[R] Secon	dary	☐ Upper-Front						☐ Lower-R	ear				
Target Ce	nters				.4 mn	n, Z <u>846.8 mm</u>	☑ Upper-R	ear	X <u>20</u>		Z <u>867.6 mm</u>		
		Upper Secondary to Secondary			H <u>8</u>	H <u>84.7 mm</u> , V <u>20.8</u> mm				Seconda	nate Upper ary?		
[R] Targe	et	Upper Primary to U Remaining Second		or	μα	4.7 mm, V <u>39.8</u>	mm					nate Upper or ng Secondary?	
Eliminatio	on	Lower Primary to Lo		or								nate Lower or	
		Remaining Second Upper Primary to Lo			H <u>N</u>	<u>/A</u> mm, V <u>N/A</u> r	nm				Remaining Secondary? □ Eliminate Upper Primary?		
		Primary	OWCI		H 2	254.1 mm, V <u>34</u>	<u>.4</u> m	m					
[R]		☑ Only 2 Targets		.						Do		Targets ≥ Rotated argets?	
Bisect	_	ŭ	Remaining? Bisect Target Location: X				mn	n, Z <u>mr</u>	m	_			
Target	□.	Absolute Distance > 360 mm?						-, <u></u>			☐ Yes = Use Original Targets☑ No = Use Rotated Targets		
Increment	al	☐ Do no targets fit?		Toract A	agla			Target				J	
Rotation		Do no targeto iit:		rarget Ar	igie _			Location:		^ <u> </u>	,	Z	

RECORDED BY: <u>Ryan Jones / Brian Arsen</u> DATE: <u>April 29, 2015</u> APPROVED BY: <u>Helen A. Kaleto</u>

IMPACT TARGET LOCATION DETERMINATION FORM

Window T	Гуре	☐ Left Outboard,	ØR	Right Outb	oard			☑ 1 st Row, □ 2 nd Row, □ 3 rd Row, □ 4 th Row					
		taken from ☐ Front ner = X <u>710.2 mm</u> , Z			of Da	aylight Opening	, 	Vehicle Coor	dinates	5,			
	of Daylight Opening aind SgRP last row (<		Seat Back De	sign	Angle <u>N/A</u> °			Opening	Geometric Center				
☐ 600 mm behind SgRP 3rd row (≥ 3 rows) ☐ 1400 mm behind non-fixed seat (< 3 rows)						Seat Back Te	st Ar	igle <u>N/A</u> °			X <u>1174.6</u>	<u>mm</u>	
☐ 600 mm behind non-fixed seat (≥ 3 rows)☐ 25 mm forward partition / bulkhead						Seat Adjustme	ent <u>N</u>	<u>I/A</u> °			Z <u>856.2 m</u>	n <u>m</u>	
Primary Ta	arae	t ☑ Lower-Front						☑ Upper-R	oor	<u> </u>			
Center	_	□ Upper-Front	X <u>1</u>	310.2 mm	<u>1</u> , Z	<u>855.0 mm</u>		☐ Lower-R		X <u>14</u>	<u>07.0 mm</u>	Z <u>867.3 mm</u>	
		ance Between Prima	ry T	Targets		<u>96.8</u> mm		☑ Forward	of B-Pi	llar		Rearward of B-Pillar	
Seconda	ary	☑ Upper-Front						☑ Lower-R	ear				
Target Cer	nter				mm.	, Z <u>860.2 mm</u>		□ Upper-R	ear	X <u>13</u>		Z <u>857.9 mm</u>	
		Upper Secondary to Secondary			wer H <u>32.3</u> mm, V <u>2.3</u> mm						☑ Eliminate Upper Secondary?		
Target		Upper Primary to U									☑ Eliminate Upper or		
Eliminatio	n.	Remaining Secondary Lower Primary to Lo		H <u>32.2</u> mm, V <u>9.4</u> mm								ng Secondary? late Lower or	
Lillination	J11	Remaining Secondary		01	H <u>N</u>	<u>I/A</u> mm, V <u>N/A</u> r	nm					ng Secondary?	
		Upper Primary to Lo Primary	ower	r		96.8 mm, V 12.3 mm ☑ Eliminate Upper Pi					nate Upper Primary?		
Bisect		☐ Only 2 Targets Re	mai	ning?		Bisect Target					•	☑ Less Than 4	
Target		☐ Absolute Distance	> 36	0 mm?		Location:		X, Z			_	Targets?	
[R] Prim	ary	☑ Lower-Front				☑∪			er-Rear				
Target Ce					mm, Z <u>822.9 mm</u>			□ Lower-Rear			Z <u>885.2 mm</u>		
[R] Horizor Targets	ntal	Distance Between Pr	rima	ry 290.9 mm			☑ Forward of B-Pillar			□R	earward of B-Pillar		
[R] Secon	dary	✓ Upper-Front						☑ Lower-R	ear	ar			
Target Ce	nter	Lower-Front		X <u>1200</u>	.7 mn	n, Z <u>852.6 mm</u>	□ Upper-R	per-Rear X <u>1297.7 mm</u> , Z <u>828.8 mm</u>			Z <u>828.8 mm</u>		
		Upper Secondary to Secondary) Lo	wer	H 9	7.0 mm, V <u>23.8</u>	mm				Seconda	nate Upper ary?	
[R] Targe	ıt 1	Upper Primary to U		ror							☑ Elimi	nate Upper or	
Elimination		Remaining Seconda Lower Primary to Lo		or	H <u>9</u>	<u>6.9 mm,</u> V <u>56.4</u>	mm				Remaini	ng Secondary? nate Lower or	
Ellilliauc)II	Remaining Secondary		Oi	ΗN	<u>I/A</u> mm, V <u>N/A</u> r	nm					ng Secondary?	
		Upper Primary to Lo	ower	ſ							☐ Elimir	nate Upper Primary?	
[P1		Primary ☑ Only 2 Targets			Π 2	2 <u>90.9</u> mm, V <u>62</u>	<u>.၁</u> III	111		D	o Original	Targets ≥ Rotated	
Bisect	Description O. Discret Toward											argets?	
Target		Absolute Distance > 360 mm?		Locatio	n:	_ ×_		, Z				e Original Targets e Rotated Targets	
Increment	al		1			<u> </u>		Tanat					
Rotation		☐ Do no targets fit?		Target Ar	ngle _			Target Location:		x	,	Z	

RECORDED BY: <u>Ryan Jones / Brian Arsen</u> DATE: <u>April 29, 2015</u> APPROVED BY: <u>Helen A. Kaleto</u>

IMPACT TARGET LOCATION DETERMINATION FORM

Window T	Nindow Type ☐ Left Outboard, ☑ Right Outboard					□ 1 st Row, ☑ 2 nd Row, □ 3 rd Row, □ 4 th Row					v, □ 4 th Row		
		taken from ☐ Front ner = X <u>1723.0 mm</u> , 2			of Da	aylight Opening	, 	Vehicle Coor	dinates	5,			
Rearward Edge of Daylight Opening ☑ 1400 mm behind SgRP last row (< 3 rows)						Seat Back Design Angle <u>N/A</u> °					Opening	Geometric Center	
☐ 600 mm behind SgRP 3rd row (≥ 3 rows) ☐ 1400 mm behind non-fixed seat (< 3 rows)					Seat Back Test Angle <u>N/A</u> °					X <u>2017.9 mm</u>			
☐ 600 mm behind non-fixed seat (≥ 3 rows) ☐ 25 mm forward partition / bulkhead					Seat Adjustme	ent <u>N</u>	√ /A °			Z <u>856.7 m</u>	<u>nm</u>		
Primary Ta	arget	☐ Lower-Front	X N/A	A, ZN	/A			□ Upper-R	ear	X N/A	4 , Z N/A		
Center	s	☑ Upper-Front	No ve	ertical ta	argets	fit opening		☑ Lower-R	ear	No ve	ertical targ	gets fit opening	
		ance Between Prima	ary Ta	rgets		<u>00.0</u> mm		☐ Forward o	of B-Pil	llar	Ø l	Rearward of B-Pillar	
Seconda	ary	□ Upper-Front	×	ΚN/A,	Z N/A	A		☐ Lower-R	Rear	X N/A	A, Z <u>N/A</u>		
Target Cer					tical targets fit opening			☐ Upper-Rear No v			vertical targets fit opening		
Upper Secondary to Lower Secondary			er	Н	mm, V r	mm	•	<u>.</u>		☐ Eliminate Upper Secondary?			
_ ,		Upper Primary to U	lpper c	er or H mm, V mm						☐ Eliminate Upper or			
Target		Remaining Second	ary								ng Secondary?		
Elimination	on	Lower Primary to L	ower c	or	Hmm, Vmm			-				ate Lower or	
		Remaining Second Upper Primary to L								ng Secondary? nate Upper Primary?			
		Primary	OWC		н_	· · · · · · · · · · · · · · · · · · ·					nate Opper i innary:		
Bisect		☐ Only 2 Targets Re	emaini	ing?		Bisect Target					☑ Less Than 4		
Target		Absolute Distance	> 360	mm?		Location:	X, Z			•	Targets?		
[R] Prim	ary	☐ Lower-Front					☐ Upper-R	ear					
Target Ce					<u>ım</u> , 2	Z <u>886.5 mm</u>	☑ Lower-R	ear	X <u>21</u>	<u>29.3 mm</u> ,	Z <u>852.7 mm</u>		
[R] Horizor Targets	ntal [Distance Between P	rimary	'	<u>2</u>	<u>49.0</u> mm	☐ Forward	of B-Pil	llar	☑ Rearward of B-Pillar			
[R] Secon	dary	☐ Upper-Front					☐ Lower-Rear						
Target Ce	nters	☑ Lower-Front		X <u>1963</u>	.3 mn	n, Z <u>847.6 mm</u>	☑ Upper-Rear X 2			<u>046.3 mm</u> , Z <u>867.8 mm</u>			
		Upper Secondary to Secondary	o Lowe	er	H 8	83.0 mm, V 20.2 mm			☑ Eliminate Upper Secondary?				
[R] Targe	st.	Upper Primary to U		or							☑ Elimi	nate Upper or	
Elimination		Remaining Second Lower Primary to Lo	ary	\r_	H <u>8</u>	3.0 mm, V <u>38.9</u>	mm					ng Secondary? nate Lower or	
Ellillillaud	ווע	Remaining Second		ונ	H <u>N</u>	<u>/A</u> mm, V <u>N/A</u> r	nm					ng Secondary?	
Upper Primary to Lower					249.0 mm, V <u>33</u>		m			☐ Elimir	nate Upper Primary?		
[R]		Primary ☑ Only 2 Targets			112	. 	<u>.u</u> III	111		Do	DO Original	Targets ≥ Rotated	
Bisect		Remaining?	В	isect Ta	•						Targets?		
Target		Absolute Distance > 360 mm?		Locatio	n:	×_		, Z				e Original Targets e Rotated Targets	
Increment	al		T _					Target					
Rotation Do no targets fit? Target Angle Target Location:				•		x	,	Z					

RECORDED BY: <u>Ryan Jones / Brian Arsen</u> DATE: <u>April 29, 2015</u> APPROVED BY: <u>Helen A. Kaleto</u>

TEST SUMMARY SHEET

VEH. MOD YR/MAKE/MODEL/BODY: 2015 Chrysler 200S

VEH. NHTSA NO.: <u>C20150301</u> VIN: <u>1C3CCCBB3FN647237</u>

COLOR: Velvet Red Pearlcoat VEH. BUILD DATE: December, 2014

TEST DATES: April 30-May 1, 2015

TEST LABORATORY: MGA Research Corporation

OBSERVERS: Helen Kaleto, Ryan Jones, Brian Arsen

Test No.	Date	Temp / RH	Target & Vehicle Side	Velocity (Speed Trap) (km/h)	Time to Impact (s)	Excursion (mm) (Reqt ≤100 mm)
EM5116	04/30/15	21.8°C 37.0% RH	2 nd Row Right-Hand (RH) Front Upper Primary [R]	20.01	1.503	-5.5
EM5117	04/30/15	21.9°C 37.0% RH	1 st Row Left-Hand (LH) Front Lower Primary [R]	20.08	1.500	35.4
EM5118	05/01/15	21.8°C 35.0% RH	1 st Row Left-Hand (LH) Front Lower Primary [R]	16.05	6.008	32.2
EM5119	05/01/15	22.7°C 32.0% RH	2 nd Row Right-Hand (RH) Rear Lower Primary [R]	20.13	1.502	-12.5

RECORDED BY: Ryan Jones / Brian Arsen DATE: May 1, 2015

APPROVED BY: Helen A. Kaleto

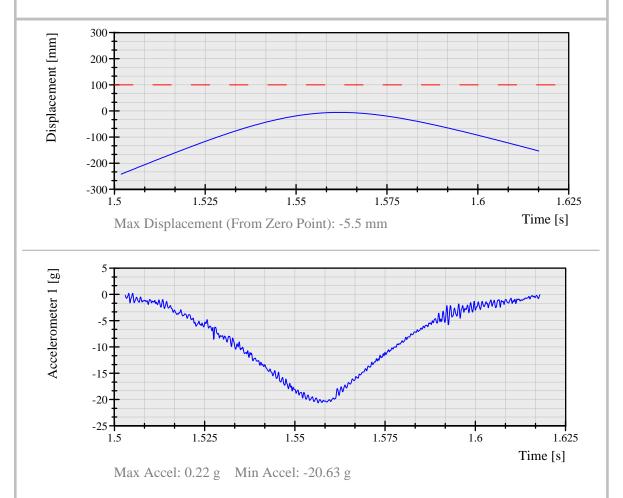
3.0 TEST DATA AND PHOTOGRAPHS

FMVSS 226 Ejection Mitigation

Test Date: 04/30/2015 Impact Velocity (Speed Trap): 20.01 km/h

Job Number: G15I7-002.2 Test Number: EM5116

Impact Location: 2nd Row - Upper Front Primary (R)


Time to First Contact: 1.503 sec

Test Type: 20 km/h with 1.5 second delay

Vehicle/Model: 2015 Chrysler 200

Airbag Description: RH

Comments:

MICHIGAN OPERATIONS DATE: 04/11/2014 SUPERCEDES: 0

DOC. NO.: MGATP_226_EM_GOV_IMPACT TEST REVISION NO.: 0
PAGE 4 OF 7

	h
6.	איינורים
	 _
	/

Remove the window or place it in the fully retracted position. Remove any other obstructions in the path of the head form travel.

Window Removed: Window Fully Retracted:

Manufacturer's Selected Option:

7. Py

Per the vehicle or airbag manufacturer, record the offset distance that the airbag will reach at maximum inflation, D_A . Calculate the distance the impactor will travel from fully retracted to initial contact with the airbag, D_I . If no information is provided, assume 200 mm.

Using a pre-established pressure, perform a speed check by firing the impactor into its own end stops at the desired impact velocity with zero time delay. Ensure all test personnel are at a safe distance away from the test setup prior to firing the impactor! Record the data using the DTS, and process the data using the DIAdem script "Ejection Mitigation". View the following channel.

LVDT Displacement

Using the data collected from the speed check, find the time value T_1 that corresponds to the LVDT displacement D_1 . Subtract T_1 from the test requirement time T_R to find the amount of time to offset firing the impactor, T_{OFF} .

Time Delay calculation:

LVDT Value at Window, D _L (mm)		Airbag Maximum Inflation, D _A (mm)
582	=	280
Test Requirement Time, T _R (ms)		T ₁ , the Time at D ₁ (ms)
1300° or 6000	-	120

Contact with the Airbag, D₁ (mm)

302

System Offset Time, T_{OFF} (ms)

Repeat the speed check process ensuring that both the velocity and time achieved at D_1 is within the desired parameters. Repeat as necessary. For each test, note both the LVDT Value at Window, D_L , and Time Delay, $T_{\rm off}$, in the summary table.

Initial Position	X	1884.4	Y	145.5	Z	888.2
Zero Displacement	X	1880.8	Y	727,8	Z	885.6
Reference Point	Х	1896.9	Y	725.6	\overline{z}	930,0

Pre-Test Photograph No. 1 of Test EM5116

Pre-Test Photograph No. 2 of Test EM5116

Pre-Test Photograph No. 3 of Test EM5116

Pre-Test Photograph No. 4 of Test EM5116

Pre-Test Photograph No. 5 of Test EM5116

Post-Test Photograph No. 1 of Test EM5116

Post-Test Photograph No. 2 of Test EM5116

Post-Test Photograph No. 3 of Test EM5116

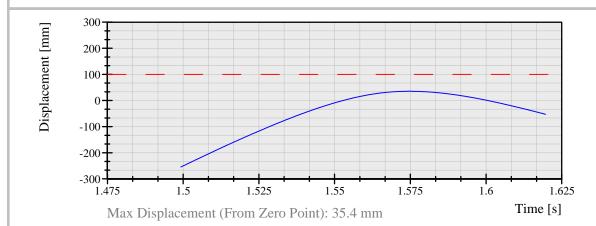
Post-Test Photograph No. 4 of Test EM5116

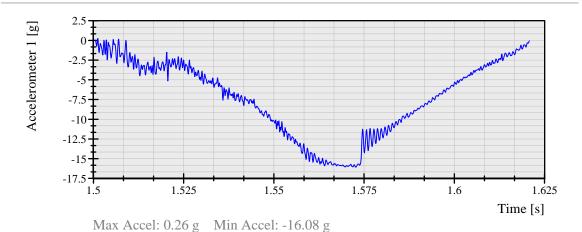
Post-Test Photograph No. 5 of Test EM5116

FMVSS 226 Ejection Mitigation

Test Date: 04/30/2015 Impact Velocity (Speed Trap): 20.08 km/h

Job Number: G15I7-002.2 Test Number: EM5117


Impact Location: 1st Row - Lower Front Primary (R)


Time to First Contact: 1.5 sec

Test Type: 20 km/h with 1.5 second delay Vehicle/Model: 2015 Chrysler 200

Airbag Description: LH

Comments:

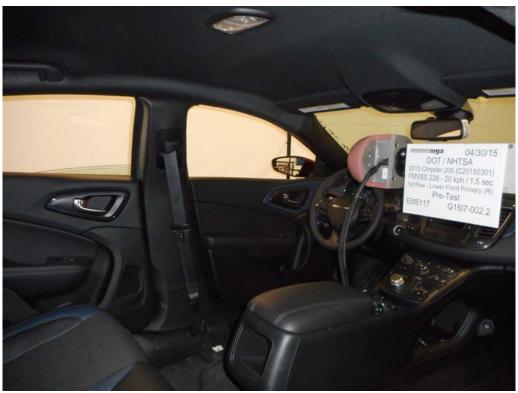
MICHIGAN OPERATIONS

DOC. NO.: MGATP_226_EM_GOV_IMPACT TEST

DATE: 04/11/201 SUPERCEDES: 0				REVISION NO.: 0 PAGE 4 OF 7							
6. <i>B</i>		Remove the window or place it in the fully retracted position. Remove any other obstructions in the path of the head form travel.									
	Wi	ndow Removed:	Window Fully	Retracted:							
	Ma	nufacturer's Selected	f Option:								
7. By	reac full	ch at maximum infla	g manufacturer, record tion, D _A . Calculate the contact with the airbag,	distance the impactor	r will travel from						
8. By	owr pers Rec	Using a pre-established pressure, perform a speed check by firing the impactor into its own end stops at the desired impact velocity with zero time delay. Ensure all tes personnel are at a safe distance away from the test setup prior to firing the impactor Record the data using the DTS, and process the data using the DIAdem script "Ejection Mitigation". View the following channel.									
		LVDT Displace.	ment								
o. By	the	LVDT displacement	from the speed check, t D ₁ . Subtract T ₁ from firing the impactor, T _O	the test requirement							
Time Dela	ıy calc	ulation:									
LVDT Value Window, D _L (Airbag Maximum Inflation, D _A (mm)		Contact with the Airbag, D ₁ (mm)						
580		-	280	=	300						
Test Requiren Time, T _R (m			T ₁ , the Time at D ₁ (ms)		System Offset Time, T _{OFF} (ms)						
1500 or 60	1	-	120	=	1380						

Repeat the speed check process ensuring that both the velocity and time achieved at D_1 is within the desired parameters. Repeat as necessary. For each test, note both the LVDT Value at Window, D_L , and Time Delay, T_{offs} in the summary table.

Initial Position	X	1111.9	Y	-170.8	Z	826,9
Zero Displacement	X	1112,2	Y	-75 1.0	Z	823,9
Reference Point	X	1091.2	Y	-748.4	Z	864.8


Pre-Test Photograph No. 1 of Test EM5117

Pre-Test Photograph No. 2 of Test EM5117

Pre-Test Photograph No. 3 of Test EM5117

Pre-Test Photograph No. 4 of Test EM5117

Pre-Test Photograph No. 5 of Test EM5117

Post-Test Photograph No. 1 of Test EM5117

Pre-Test Photograph No. 2 of Test EM5117

Pre-Test Photograph No. 3 of Test EM5117

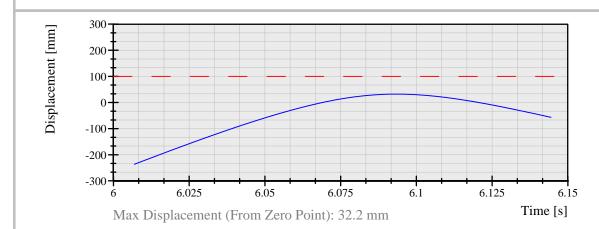
Pre-Test Photograph No. 4 of Test EM5117

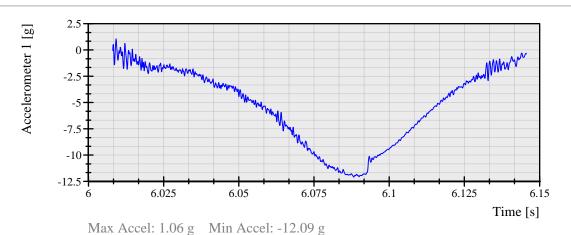
Pre-Test Photograph No. 5 of Test EM5117

FMVSS 226 Ejection Mitigation

Test Date: 05/01/2015 Impact Velocity (Speed Trap): 16.05 km/h

Job Number: G15I7-002.2 Test Number: EM5118


Impact Location: 1st Row - Lower Front Primary (R)


Time to First Contact: 6.008 sec

Test Type: 16 km/h with 6.0 second delay Vehicle/Model: 2015 Chrysler 200

Airbag Description: LH

Comments:

MICHIGAN OPERATIONS DATE: 04/11/2014 SUPERCEDES: 0 DOC. NO.: MGATP_226_EM_GOV_IMPACT TEST REVISION NO.: 0 PAGE 4 OF 7

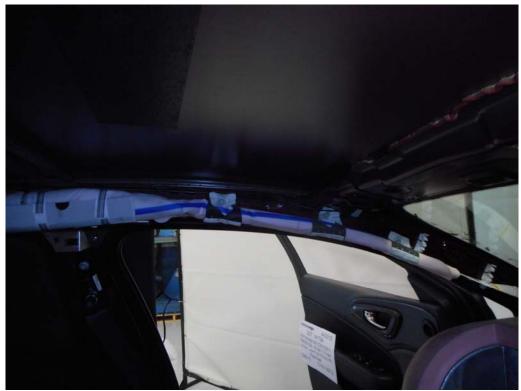
SUPE	RCEDES: 0	PAGE 4 OF 7
6.	By	Remove the window or place it in the fully retracted position. Remove any other obstructions in the path of the head form travel.
		Window Removed: Window Fully Retracted:
		Manufacturer's Selected Option:
7.	By	Per the vehicle or airbag manufacturer, record the offset distance that the airbag will reach at maximum inflation, D_A . Calculate the distance the impactor will travel from fully retracted to initial contact with the airbag, D_1 . If no information is provided, assume 200 mm.
8.	3	Using a pre-established pressure, perform a speed check by firing the impactor into it own end stops at the desired impact velocity with zero time delay. Ensure all tes

• LVDT Displacement

Mitigation". View the following channel.

Using the data collected from the speed check, find the time value T_1 that corresponds to the LVDT displacement D_1 . Subtract T_1 from the test requirement time T_R to find the amount of time to offset firing the impactor, T_{OFF} .

personnel are at a safe distance away from the test setup prior to firing the impactor! Record the data using the DTS, and process the data using the DIAdem script "Ejection


Time Delay calculation:

LVDT Value at Window, D _L (mm)		Airbag Maximum Inflation, D_A (mm)		Contact with the Airbag, D ₁ (mm)
Test Requirement Time, T _R (ms)	-	C C C C C C C C C C	=	System Offset Time, T _{OFF} (ms)
1500 of 6000)	-	136	=	5864

Repeat the speed check process ensuring that both the velocity and time achieved at D_1 is within the desired parameters. Repeat as necessary. For each test, note both the LVDT Value at Window, D_L , and Time Delay, T_{off} , in the summary table.

Initial Position	X	11119.	Y	-170.8	Z	826,9
Zero Displacement	X	1112,2	Y	-751.0	Z	823.9
Reference Point	X	1091.2	Y	-748.9	Z	864.8

Pre-Test Photograph No. 1 of Test EM5118

Pre-Test Photograph No. 2 of Test EM5118

Pre-Test Photograph No. 3 of Test EM5118

Pre-Test Photograph No. 4 of Test EM5118

Pre-Test Photograph No. 5 of Test EM5118

Pre-Test Photograph No. 6 of Test EM5118

Pre-Test Photograph No. 7 of Test EM5118

Post-Test Photograph No. 1 of Test EM5118

Pre-Test Photograph No. 2 of Test EM5118

Pre-Test Photograph No. 3 of Test EM5118

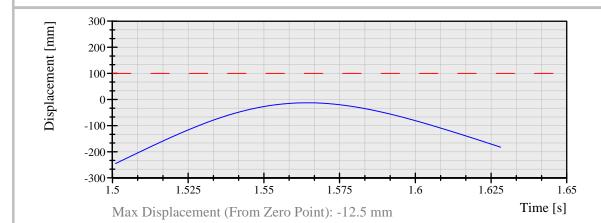
Pre-Test Photograph No. 4 of Test EM5118

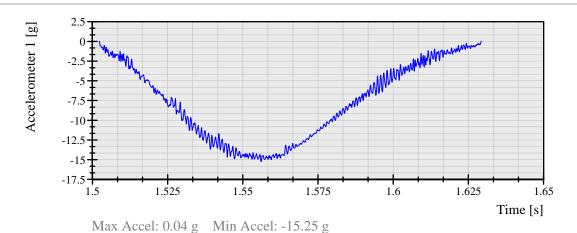
Pre-Test Photograph No. 5 of Test EM5118

FMVSS 226 Ejection Mitigation

Test Date: 05/01/2015 Impact Velocity (Speed Trap): 20.13 km/h

Job Number: G15I7-002.2 Test Number: EM5119


Impact Location: 2nd Row - Lower Rear Primary (R)


Time to First Contact: 1.502 sec

Test Type: 20 km/h with 1.5 second delay Vehicle/Model: 2015 Chrysler 200

Airbag Description: RH

Comments:

MICHIGAN OPERATIONS

DOC. NO.: MGATP_226_EM_GOV_IMPACT TEST

	TE: 04/11/2014 PERCEDES: 0	REVISION NO.: 0 PAGE 4 OF 7
6.	By	Remove the window or place it in the fully retracted position. Remove any other obstructions in the path of the head form travel.
		Window Removed: Window Fully Retracted:
		Manufacturer's Selected Option:
7.	By	Per the vehicle or airbag manufacturer, record the offset distance that the airbag will reach at maximum inflation, D_A . Calculate the distance the impactor will travel from fully retracted to initial contact with the airbag, D_1 . If no information is provided, assume 200 mm.
8.	-	Using a pre-established pressure, perform a speed check by firing the impactor into its own end stops at the desired impact velocity with zero time delay. Ensure all test personnel are at a safe distance away from the test setup prior to firing the impactor! Record the data using the DTS, and process the data using the DIAdem script "Ejection Mitigation". View the following channel.
		LVDT Displacement
9.	B	Using the data collected from the speed check, find the time value T_I that corresponds to the LVDT displacement D_I . Subtract T_I from the test requirement time T_R to find the amount of time to offset firing the impactor, T_{OFF} .

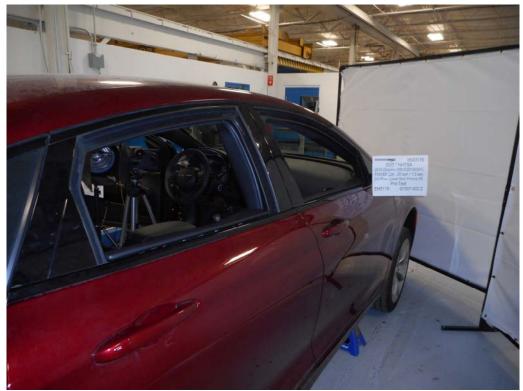
Time Delay calculation:

LVDT Value at Window, D _L (mm)	-	Airbag Maximum Inflation, D _A (mm)	=	Contact with the Airbag, D ₁ (mm)
Test Requirement Time, T _R (ms)		T ₁ , the Time at D ₁ (ms)		System Offset
1500 or 6000	-	120	=	Time, T _{OFF} (ms)

Repeat the speed check process ensuring that both the velocity and time achieved at D_1 is within the desired parameters. Repeat as necessary. For each test, note both the LVDT Value at Window, D_L , and Time Delay, T_{off} , in the summary table.


Initial Position	X	2/31.8	Y	154.4	Z	853.2
Zero Displacement	X	2128.7	Y	735.4	Z	852.7
Reference Point	X	2/53.9	Y	732.1	Z	894.4

Pre-Test Photograph No. 1 of Test EM5119


Pre-Test Photograph No. 2 of Test EM5119

Pre-Test Photograph No. 3 of Test EM5119


Pre-Test Photograph No. 4 of Test EM5119

Pre-Test Photograph No. 5 of Test EM5119

Pre-Test Photograph No. 6 of Test EM5119

Pre-Test Photograph No. 7 of Test EM5119

Post-Test Photograph No. 1 of Test EM5119

Post-Test Photograph No. 2 of Test EM5119

Post-Test Photograph No. 3 of Test EM5119

Post-Test Photograph No. 4 of Test EM5119

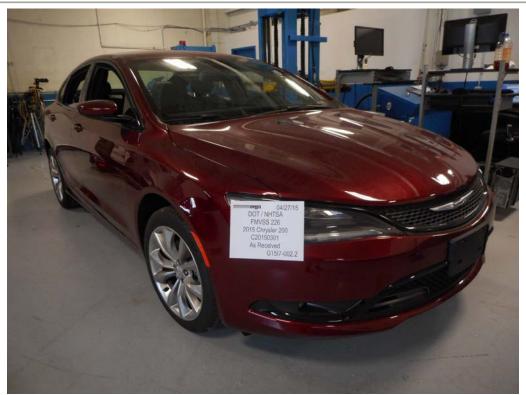
Post-Test Photograph No. 5 of Test EM5119

4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION

The following section lists the test equipment for the compliance test series. Items marked with an asterisk are calibrated by an external lab. The temperature trace to confirm testing was conducted between 65° F and 84° F (18° C -29° C). Calibration certificates can be found in Appendix A.

TABLE 4-1 LIST OF ITEMS USED

	TABLE 4-1 LIST OF THEMS OSED								
DEVICE	MANUFACTURER NAME	SERIAL#	FUNCTION OF ITEM	SENSITIVITY	CAL. INTERNAL				
Ejection Mitigation Impactor	MGA	EM-02	Testing Impactor	±0.05kg	6 months				
Accelerometer	Endevco	P71518	Acceleration Data	±0.5%	6 months				
Accelerometer	Endevco	P59218	Acceleration Data	±0.5%	6 months				
LVDT	MTS	90425350	Displacement Data	±0.5%	6 months				
DTS Data System	DTS	LM0212	Data Collection		Annual				
Digital Protractor	Mitutoyo	MGA00712	Setup/ Horizontal Measurement	0.1°	Annual				
Digital Scale	Detecto	MGA00783	Weigh FMH Headform	± 0.01 lb	Annual				
Tape Measure	Stanley	TPM001-71	Measurement	1mm	Annual				
*FARO™	Faro Technologies	C12-d2-05- 03364	Target/Impact Location	±0.1%	Annual				
MGA Velocity Measurement System	MGA Research Corporation	VMS MPS1	Measurement	±0.2%	Annual				
Timed Output Module	DTS	TOM-041	Airbag Timing Trigger		Annual				
Vehicle Scale	Intercomp	26032389	Weighing Vehicle	± .5 kg	Annual				

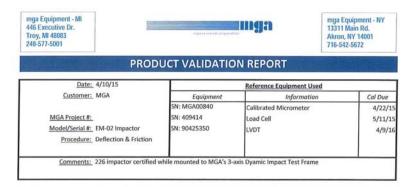

5.0 OTHER DOCUMENTATION

As Delivered - Left Side View

As Delivered - Right Side View

As Delivered – ¾ Front View From Right Side

As Delivered - 3/4 Rear View From Left Side



As Delivered - Vehicle's Certification Label

As Delivered - Vehicle's Tire Information Label

Appendix A - Calibration Certificates

RADIAL DEFLECTION & FRICTION MEASUREMENTS

Test Requirements

- 100kg mass to be used, 100Hz minimum sampling rate
- Deflection and frictional characteristics are to be measured in all 4 rotational axes (in 90 degree increments)
- Radial deflection < 20mm
- Dynamic coefficient of friction < 0.25

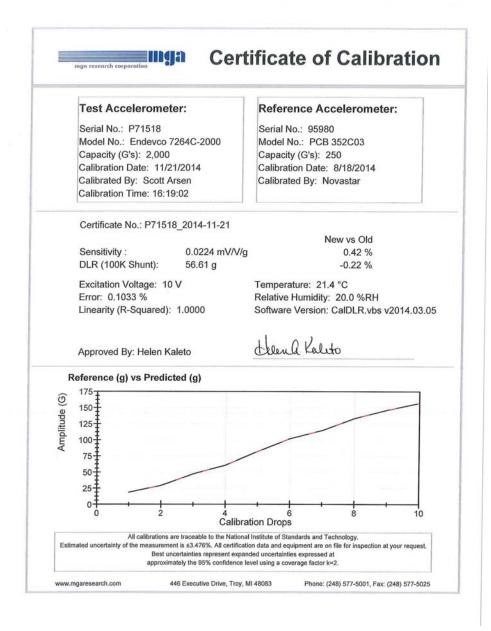
Test Results						
Test Description	Limi	its				
	Upper	Lower	Value	Unit	Pass/Fail	
Radial Deflection	20	N/A	17.63	mm	PASS	
Dyanmic Coefficient of Friction	0.250	N/A	0.187		PASS	

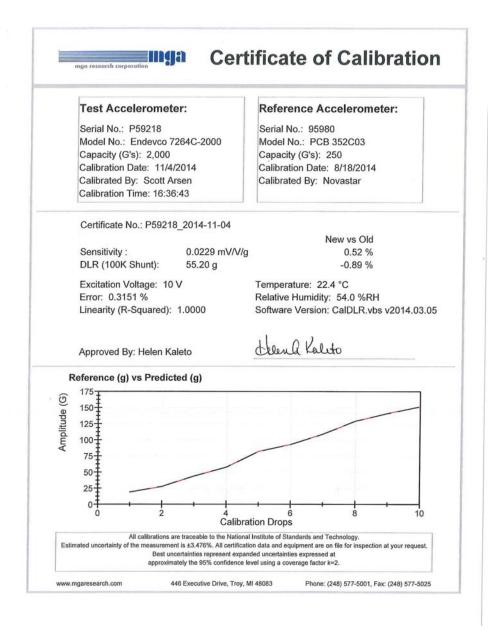
Performed by: Brian Arsen Test Date: 04/10/15

This report applies only to the Item(s) listed within this document. These item(s) are validated using approved equipment and within their intended rformance tolerances. Performance outside set tolerances cannot be guaranteed. This report shall not be reproduced except in full, without the writting approval of MGA.

EM-02_2015-04-10.xlsx

Page 1


TITLE TEST DATA


Model/Serial #: EM-02 Impactor Project #: 0 Test Date: 4/10/15

<u>Loading Mass (kg):</u> 100 <u>Impactor Moving Mass (kg):</u> 18

Ac	tion	Run	+Z (0 degrees)	+X (90 degrees)	-Z (180 degrees)	-X (270 degrees)	Maximum
Radial Deflection	D [mm]	N/A	12.5	17.63	15.44	17.17	17.63
		1	190.83	173.09	168.98	182.44	
1		2	218.24	170.12	178.22	169.12	
İ	F2(d) [N]	3	210.79	177.38	178.32	186.69	243.15
Loaded Dynamic	rz(u) [iv]	4	221.99	174.43	179.86	183.37	
Friction Force	1	5	243.15	175.66	186.26	184.66	
(nominal force		Average	217.00	174.13	178.33	181.25	
needed to maintain		1	35.36	28.67	23.70	33.30	
motion)		2	30.11	39.13	14.98	24.22	
i i	F2(dev) [N]	3	35.11	22.12	26.08	31.10	39.13
i		4	35.62	24.99	27.53	34.13	
		5	38.90	24.64	16.86	33.77	
Dynamic Coefficient of Friction	μ_k		0.1875	0.1504	0.1541	0.1566	0.1875

Stroke (mm): 947.0000 250 Hz

Calibration Certificate

35200 Plymouth Rd. / Livonia, MI 48150

Certificate # Z54778:103835

PCB 352C03 ACCELEROMETER

SERIAL NUMBER: 95980 ASSET NUMBER: Z54778

CUST ASSET NUMBER: N/A PROCEDURE NAME: MOD 9150

PROCEDURE REV: D

CALIBRATED BY: Thomas Cairns

CUSTOMER: MGA RESEARCH 446 EXECUTIVE DRIVE

TROY, MI 48083

PRIMARY CONTACT: SCOTT ARSEN

WORK ORDER: TC081814009

TEST RESULT: PASS PERFORMED ON: 08/18/14

CAL DUE DATE: 08/18/15 DATA TYPE: FOUND-LEFT

TEMPERATURE: 23.00 °C

HUMIDITY: 47 %

This instrument has been processed and calibrated in accordance with the NovaStar Solutions Quality System Manual and is traceable to the National Institute of Standards and Technology (NIST) or to NIST accepted intrinsic standards of measurement, or derived by the ratio type of self-calibration techniques. The NovaStar Solutions quality system is accredited ISO/IEC 17025:2005 and ANSI/NCSL Z540-1-1994.

The results reported herein apply only to the calibration of the item described above. No sampling plan was used for this calibration.

The ratio of the tolerance of the Instrument or parameter being calibrated to the expanded uncertainty of the standard (TUR) is greater than 4:1 unless otherwise specified, Expanded uncertainties are expressed at the approximate 95% level of confidence using a K=2. Due to any number of factors, the recommended due date on the item does not imply continuing conformance to specifications during the recommended interval. Unless otherwise stated the unit under test meets or exceeds manifacturer specifications.

For range and best measurement capability specifications for the standards used to perform this calibration, see the most recent calibration report maintained by this calibration laboratory (available upon request).

This report may not be reproduced, except in full, without written approval from NovaStar Solutions.

AS RECEIVED CONDITION: IN TOLERANCE

REMARKS:

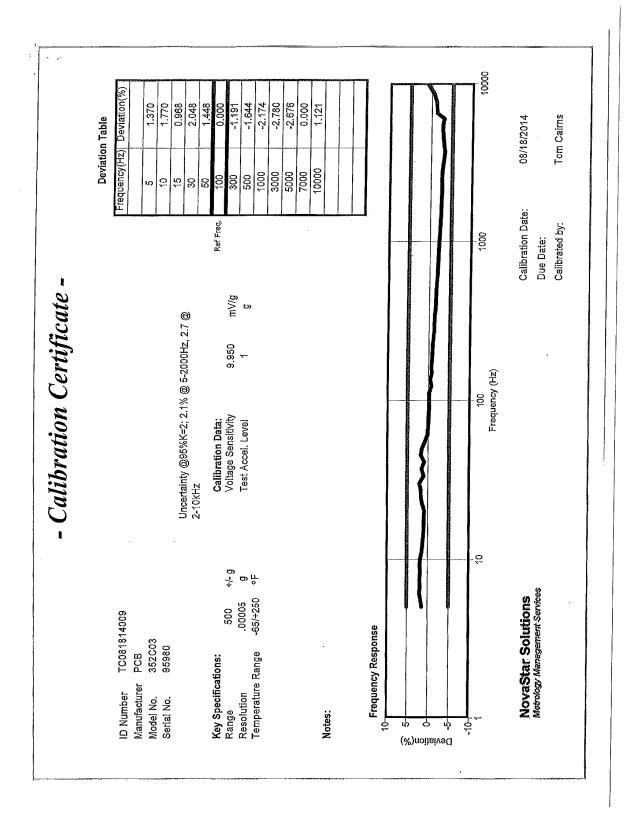
AS RETURNED CONDITION: IN TOLERANCE

ACTION TAKEN: FULL CALIBRATION

Standards Used

1727

Asset# 002664 002664:1091515041


1727:1193650836

Description

VERITEQ 5000A-RH/T RH/TEMPERATURE DATA LOGGER MODAL SHOP 9150C ACCELEROMETER CAL SYSTEM

Cal Date

Due Date 03/18/2014 03/18/2015

mga research corporation

CALIBRATION CERTIFICATE

Name: 226 Impactor LVDT Model: RHS0555UD60 S/N: 90425350 Range: 1000mm

Calibration Date: 4/9/2015

Scale Factor: 3.5622481 mV/mm

	Reproduced from Calculated Slope		Measured Values	
Scale factor Best Fit L (max/mV)	% Error *	Calculated Distance (mm)	Voltage (mV)	Distance (mm)
0.2807216	0.136	-1,288	985.037	0.00
Intercept	0.083	99.211	1343.038	100.00
-277,8090	0.001	200.009	1702.106	200,00
	0.115	301.093	2062.192	300.00
Scale Factor (mV/mn	0.192	401.819	2421.003	400.00
3.5622481	0.013	499.880	2770.321	500.00
	0.063	600.592	3129.084	600.00
	0,037	700.351	3484.449	700.00
	0.009	799.914	3839.118	800.00
Meximum Error	0,085	899.197	4192,788	900.00
0.192	0.082	946.223	4360,304	947.00

MFG Model Number Celesco SE1-50

standards used
Serial Number Description
4910 String Encoder

Cal Due Date 4/07/2016

Performed By:

Approved By:

446 executive drive • troy, mi 48083 248 / 577-5001 • fax 248 / 577-5025 www.mgarescarch.com

Humidity: 24 %

Troy, MI 48083

Certificate of Calibration

Model #: Sensor Input Module
Serial #: LM0212
Date Received: 11 February 2015
Firmware: 07E4
Procedure Name: SIM Calibration Revision: 2.2
Order Number: RA26649
Customer: MGA
2807 Elliott Drive

Certificate #: 2015217LM0212
Date Received: 11 February 2015
Next Calibration: 17 February 2016
Item Received: In Tolerance
Item Returned: In Tolerance
Temperature: 77°F/25.0°C

DTS has been audited by the American Association for Laboratory Accreditation (A2LA) and found in compliance with ISO/IEC 17025:2005. Accredited calibrations performed within the DTS Scope of Accreditation are indicated by the presence of the A2LA Logo and Certificate Number on this Certificate of Calibration.

DTS reference standards are processed and calibrated in accordance with the DTS Quality Assurance System, and traceable to the National Institute of Standards and Technology (NIST).

All calibrations have been performed using processes having a test uncertainty ratio of four or more times greater than the unit calibrated, unless otherwise noted on the report. Uncertainties have been estimated at a 95 percent confidence level (k=2). Calibration at a 4:1 TUR provides reasonable confidence that the instrument is within the manufacturer's published specifications.

The reported data is the raw recorded data and is not corrected for uncertainty or environmental effects. Any number of factors can cause a unit to drift out of tolerance at any time following its calibration.

This report only applies only to the item(s) identified above, and shall not be reproduced except in full, without the written approval of DTS. Limitations on the uses of this instrument are detailed in the manufacturer's operating instructions.

Remarks:

Standards Used										
Serial #	Manufacturer	Model #	Description Nano Volt, Micro-Ohm Meter, 7.5 Digit Function/Arbitrary Waveform Generator, 20 MHz TDAS Calibration Station	Cal Date	Due Date					
MY42006281	Agilent	34420A		1-Nov-2014	1-Nov-2015					
MY44062354	Agilent	33220A		28-Oct-2014	28-Oct-2015					
CAL012	DTS	CALSTAT		15-Nov-2014	15-Nov-2015					

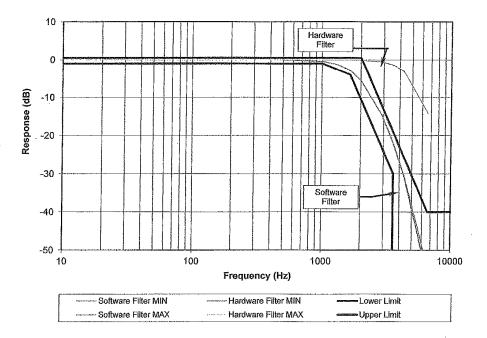
Results

Test Description	Test Result				
	As Received	As Returned			
Battery Changed	N/A.	N/A			
Visual Inspection	Pass	Pass			
Basic Channel Functions	Pass	Pass			
Calibration DAC Accuracy	Pass	Pass			
Shunt Resistor Accuracy	Pass	Pass .			
Excitation Sources	Pass	Pass			
Gain Accuracy	Pass	Pass			
Frequency Response	Pass	Pass			
Timebase Accuracy	Pass	Pass			
T=0 Trigger Function	Pass	Pass			
Time Skew	Pass	Pass			
Noise Level	Pass	Pass			

Calibration Site: 41204 Bridge St

Novi, MI 48375

Calibrated By: Bob Colenso
Bob Colenso


Technical Support Engineer

Page 1 of 11

Serial #: LM0212 Order #: RA26649 Date: 17 February 2015

Class 1000 System Response vs. SAE J211 (March 2014) All 8 channels typically overlap due to very tight control of component tolerances. Only the minimum and maximum response of the 8 channels are shown for clarity.

Test Description							
Filter Response-Soft		As Received/Returned					
	Lis	mit	Std	db	Uncertainty	Pass/	
Channel 1					(mV)	Fail	
10Hz	0.5db	-0.75db	1.414 mV	0.000	2.1E-04	Pass	
500Hz	0.5db	-0.96db	1.414 mV	-0.001	1.2E-03	Pass	
1000Hz	0.5db	-1db	1.346 mV	-0.429	2,3E-03	Pass	
1325Hz	0.5db	-2.69db	1.217 mV	-1.302	3.8E-03	Pass	
1650Hz	0.5db	-4db	1.014 mV	-2.890	2.7E-03	Pass	
2000Hz	0.5db	-10.66db	0.751 mV	-5.490	2.4E-03	Pass	
2900Hz	-12.37db	-23.53db	0.264 mV	-14,560	1.8E-03	Pass	
3575Hz	-19.61db	-999db	0.112 mV	-21.998	1.0E-03	Pass	
4300Hz	-26db	-999db	0.044 mV	-30.122	5.2E-04	Pass	
6600Hz	-40db	-999db	0.003 mV	-53.725	5.5E-04	Pass	

Date: 17 February 2015

Test Description						
Filter Response-Sof	tware			As Receive	d/Returned	
	Li	mit .	Std	db	Uncertainty	Pass/
Channel 2					(mV)	Fail
10Hz	0.5db	-0.75db	1.414 mV	0.000	2.0E-04	Pass
500Hz	0.5db	-0.96db	1.414 mV	0.001	1.3E-03	Pass
1000Hz	0.5db	-1db	1.347 mV	0.001	2.2E-03	Pass
1325Hz	0.5db	-2.69db	1.219 mV	-1.286	4.0E-03	Pass
1650Hz	0.5db	-4db	1.016 mV	-2.868	2.7E-03	Pass
2000Hz	0.5db	-10.66db	0.754 mV	-5.460	2,6E-03	Pass
2900Hz	-12.37db	-23.53db	0.266 mV	-14,499	2.0E-03	Pass
3575Hz	-19.61db	-999db	0.113 mV	-21.915	1.1E-03	Pass
4300Hz	-26db	-999db	0.045 mV	-30.012	6.3E-04	Pass
6600Hz	-40db	-999db	0.003 mV	-53.944	5.1E-04	Pass
Channel 3						
10Hz	0.5db	-0.75db	1.414 mV	0.000	2.1E-04	Pass
500Hz	0.5db	-0.96db	1.414 mV	0.000	1.3E-03	Pass
1000Hz	0.5db	-1db	1.346 mV	0.000	2.1E-03	Pass
1325Hz	0.5db	-2,69db	1.218 mV	-1.291	3.0E-03	Pass
1650Hz	0.5db	-4db	1.015 mV	-2.879	2.6E-03	Pass
2000Hz	0.5db	-10.66db	0.753 mV	-5.477	8.7E-04	Pass
2900Hz	-12.37db	-23,53db	0,265 mV	-14.532	1.6E-03	Pass
3575Hz	-19.61db	-999db	0.113 mV	-21.963	8.7E-04	Pass
4300Hz	-26db	-999db	0.044 mV	-30.067	5.8E-04	.Pass
6600Hz	-40db	-999db	0.003 mV	-54.920	4.5E-04	Pass
Channel 4						
10Hz	0.5db	-0.75db	1.414 mV	0.000	1.9E-04	Pass
500Hz	0.5db	-0.96db	1.413 mV	-0.003	1.3E-03	Pass
1000Hz	0.5db	-1db	1.344 mV	-0,003		Pass.
1325Hz	0.5db	-2.69db	1.216 mV	-1.308	3.7E-03	Pass
1650Hz	0.5db	~4db	1.012 mV	-2.907	2.4E-03	Pass
2000Hz	0.5db	10.66db	0.749 mV	-5.518	2.0E-03	Pass
2900Hz	-12.37db	-23.53db	0.263 mV	-14.606	1.7E-03	Pass
3575Hz	-19.61db	-999db	0.112 mV	-22.056	9.9E-04	Pass .
4300Hz	-26db	-999db	0.044 mV	-30,157	5.4E-04	Pass .
6600Hz	-40db	-999db	0.002 mV	-55.443	4.6E-04	Pass
Channel 5						
10Hz	0.5db	-0.75db	1.414 mV	0.000	2,3E-04	Pass
500Hz	0.5db	-0,96db	1.414 mV	0.000	1.3E-03	Pass
1000Hz	0.5db	-1db	1.346 mV	0.000	2.4E-03	Pass
1325Hz	0.5db	-2.69db	1.218 mV	-1.291	3.8E-03	Pass
1650Hz	0.5db	-4db	1.014 mV	-2.884	2.7E-03	Pass
2000Hz	0.5db	-10.66db	0.752 mV	-5.486	2.4E-03	Pass
2900Hz	-12.37db	-23.53db	0.265 mV	-14.546	1.8E-03	Pass
3575Hz	-19.61db	-999db	0.113 mV	-21.981	1.1E-03	Pass -
4300Hz	-26db	-999db .	0.044 mV	-30.064	5.9E-04	Pass
6600Hz	-40db	-999db	0.002 mV	-55.892	3.7E-04	Pass

Date: 17 February 2015

Test Description							
Filter Response-Sof	tware		P	s Received	l/Returned		
	Li	mlt	Std	db	Uncertaint		
Channel 6					(mV)	Fall	
10Hz	0.5db	-0.75db		0.000	2.4E-04	Pass	
500Hz	0.5db	-0.96db	1.414 mV	0,000	1.4E-03	Pass	
1000Hz	0.5db	-1db	1.345 mV	0.000	2.0E-03	Pass	
1325Hz	0.5db	-2.69db	1.219 mV	-1.289	3,8E-03	Pass	
1650Hz	0.5db	-4db	1.014 mV	-2.884	2.5E-03	Pass	
2000Hz	0.5db	-10.66di	0.752 mV	-5.486	2,3E-03	Pass	
2900Hz	-12.37db	-23.53di	0.265 mV	-14.540	1.9E-03	Pass	
3575Hz	-19.61db	-999db	0.113 mV	-21.969	1.2E-03	Pass	
4300Hz	-26db	-999db	0.045 mV	-30.029	6.6E-04	Pass	
6600Hz	-40db	-999db	0.002 mV	-56.077	4.0E-04	Pass	
Channel 7							
10Hz	0.5db	-0.75db	1.414 mV	0.000	1.9E-04	Pass	
500Hz	0.5db	-0.96db	1.413 mV	-0.001	1.2E-03	Pass	
1000Hz	0.5db	-1db	1.345 mV	-0.001	2.3E-03	Pass	
1325Hz	0,5db	-2.69db	1.218 mV	-1.292	3.6E-03	Pass	
1650Hz	0.5db	-4db	1.013 mV	-2.892	2.7E-03	Pass	
2000Hz	0.5db	-10.66db	0.751 mV	-5.498	2.4E-03	Pass	
2900Hz	-12,37db	-23.53db	0.264 mV	-14.564	1.7E-03	Pass	
3575Hz	-19.61db	-999db	0.112 mV	-22.005	1.0E-03	Pass	
4300Hz	-26db	-999db	0,044 mV	-30.071	6.1E-04	Pass	
6600Hz	~40db	-999db	0.002 mV	-56,226	4.9E-04	Pass	
Channel 8							
10Hz	0.5db	-0.75db	1.414 mV	0.000	2.2E-04	Pass	
500Hz	0.5db	-0.96db	1.413 mV	-0.004	1.3E-03	Pass	
1000Hz	0.5db	-1db	1.343 mV	-0.004	2.3E-03	Pass	
1325Hz	0,5db	-2,69db	1.216 mV	-1.308	3.9E-03	Pass	
1650Hz	0.5db	-4db	1.010 mV	-2,919	2.5E-03	Pass	
2000Hz	0,5db	-10.66db	0.747 mV	-5.537	2,7E-03	Pass	
2900Hz	-12,37db	-23,53db		-14.638	2.0E-03	Pass	
3575Hz	-19.61db	-999db	0,111 mV	-22.108	1,2E-03	Pass	
4300Hz	-26db	-999db	0.044 mV	-30.187	7.5E-04	Pass	
6600Hz	~40db	-999db	0.002 mV	-56.002	5.5E-04	Pass	
*****		•			***	•	
				А	s Received/	Returned	l
Cal DAC	Lower	Limit	Upper Limit	บบ		ertainty	Pass/
						Vdc)	Fail
0 Vdc	-0.000	5 Vdc	0.0005 Vdc	0.0000		2E-05	Pass
1.2 Vdc	1.197		1.2025 Vdc	1.2002		4E-05	Pass
2.4 Vdc	2.3975		2.4025 Vdc	2.4003		2E-04	Pass
10V Excitation Short	Circuit Recov	erv					
Channel 1	9.8 \	-	N/A	9.981	Vdc 1.	3E-02	Pass
Channel 2	9.8 \		N/A	9.974		0E-02	Pass
Channel 3	9.8 \		N/A	9.987		1E-02	Pass
Channel 4	9.8 \		N/A	10.013		2E-02	Pass
Channel 5	9.8 \		N/A	10.009		2E-02	Pass
Channel 6	9.8 \		N/A	9,976		3E-02	Pass
Channel 7	9.8 \		N/A	9.986		0E-02	Pass
Channel 8	9.8 \		N/A	9,973		3E-03	Pass
Chamber 0	0.0 1		****	0.070			. 000

Test Description

Serial #: LM0212 Order #: RA26649 Date: 17 February 2015

Date. († 10)

			As Received/Returned		
	Lower Limit	Upper Limit	UUT	Uncertainty	Pass/
10V Excitation 154 Ohm	Startup Load			(Vdc)	Fail
Channel 1	9.8 Vdc	N/A	9.981 Vdc	1.3E-02	Pass
Channel 2	9.8 Vdc	N/A	9.974 Vdc	9.9E-03	Pass
Channel 3	9.8 Vdc	N/A	9.987 Vdc	1.1E-02	Pass
Channel 4	9,8 Vdc	N/A	10.013 Vdc	1.1E-02	Pass
Channel 5	9,8 Vdc	N/A	10.009 Vdc	1.2E-02	Pass
Channel 6	9.8 Vdc	N/A	9.976 Vdc	1.4E-02	Pass
Channel 7	9.8 Vdc	N/A	9.986 Vdc	1.1E-02	Pass
Channel 8	9.8 Vdc	N/A	9.973 Vdc	9.7E-03	Pass
10V Excitation 350 Ohm I	₋oad Test				
Channel 1	9.95 Vdc	10.05 Vdc	9.982 Vdc	1.3E-02	Pass
Channel 2	9.95 Vdc	10.05 Vdc	9.976 Vdc	1.0E-02	Pass
Channel 3	9.95 Vdc	10.05 Vdc	9.987 Vdc	1.1E-02	Pass
Channel 4	9.95 Vdc	10.05 Vdc	10,013 Vdc	1.2E-02	Pass
Channel 5	9.95 Vdc	10.05 Vdc	10,010 Vdc	1,2E-02	Pass
Channel 6	9.95 Vdc	10.05 Vdc	9,977 Vdc	1.4E-02	Pass
Channel 7	9.95 Vdc	10.05 Vdc	9,986 Vdc	1.0E-02	Pass
Channel 8	9.95 Vdc	10.05 Vdc	9.974 Vdc	9.2E-03	Pass
10V Excitation 200 Ohm L	oad Test				
Channel 1	9.9 Vdc	10.1 Vdc	9.978 Vdc	1.3E-02	Pass
Channel 2	9.9 Vdc	10.1 Vdc	9.969 Vdc	1.0E-02	Pass
Channel 3	9.9 Vdc	10.1 Vdc	9.980 Vdc	1.1E-02	Pass
Channel 4	9.9 Vdc	10.1 Vdc	10.010 Vdc	1.2E-02	Pass
Channel 5	9.9 Vdc	10.1 Vdc	10.004 Vdo	1.2E-02	Pass
Channel 6	9.9 Vdc	10.1 Vdc	9.972 Vdc	1.4E-02	Pass
Channel 7	9,9 Vdc	10.1 Vdc	9.980 Vdc	1,0E-02	Pass
Channel 8	9.9 Vdc	10.1 Vdc	9.967 Vdc	9.5E-03	Pass
5V Excitation Short Circuit	Recovery				
Channel 1	4.9 Vdc	N/A	4,981 Vdc	1.2E-02	Pass
Channel 2	4.9 Vdc	N/A	4.979 Vdc	1.0E-02	Pass
Channel 3	4.9 Vdc	N/A	4.997 Vdc	1.0E-02	Pass
Channel 4	4.9 Vdc	N/A	5.007 Vdc	9.0E-03	Pass
Channel 5	4.9 Vdc	N/A	5.003 Vdc	1.0E-02	Pass
Channel 6	4.9 Vdc	N/A	4.978 Vdc	1.2E-02	Pass
Channel 7	4.9 Vdc	N/A	4.992 Vdc	1.0E-02	Pass
Channel 8	4.9 Vdc	N/A	4.977 Vdc	7.7E-03	Pass
5V Excitation 100 Ohm Loa	ad			•	
Channel 1	4.9 Vdc	5.1 Vdc	4.966 Vdc	1.3E-02	Pass
Channel 2	4.9 Vdc	5.1 Vdc	4.955 Vdc	1.2E-02	Pass
Channel 3	4.9 Vdc	5.1 Vdc	4,977 Vdc	1.1E-02	Pass
Channel 4	4.9 Vdc	5.1 Vdc	4.993 Vdc	9.0E-03	Pass
Channel 5	4.9 Vdc	5.1 Vdc	4.987 Vdc	1.2E-02	Pass
Channel 6	4.9 Vdc	5.1 Vdc	4.963 Vdc	1.3E-02	Pass
Channel 7	4.9 Vdc	5.1 Vdc	4.973 Vdc	1.0E-02	Pass
Channel 8	4.9 Vdc	5.1 Vdc	4.957 Vdc	9.1E-03	Pass

Date: 17 February 2015

Test Description

tost pesonbrion					
			As Received/Returned		
	Lower Limit	Upper Limit	UUT	Uncertainty	Pass/
5V Excitation 350 Ohm Load Test				(Vdc)	Fail
Channel 1	4.95 Vdc	5.05 Vdc	4.981 Vdc	1.2E-02	Pass
Channel 2	4.95 Vdc	5.05 Vdc	4.979 Vdc	1.0E-02	Pass
Channel 3	4.95 Vdc	5.05 Vdc	4.997 Vdc	1.0E-02	Pass
Channel 4	4.95 Vdc	5.05 Vdc	5.007 Vdc	9.0E-03	Pass
Channel 5	4.95 Vdc	5.05 Vdc	5.003 Vdc	1.0E-02	Pass
Channel 6	4.95 Vdc	5.05 Vdc	4.978 Vdc	1.2E-02	Pass
Channel 7	4.95 Vdc	5.05 Vdc	4.992 Vdc	1.0E-02	Pass
Channel 8	4.95 Vdc	5.05 Vdc	4.977 Vdc	7.8E-03	Pass

Gain Response							
Gain of 5: 1000mV		As Received/Returned					
	Limit	Std	UUT	Deviation	Uncertainty	Pass/	
Channel 1		(mV)	(mV)	(%)	(mV)	Fail	
-70%	+/-0.5%	-700.05	-700.11	-0.006	2.6E-01	Pass	
-35%	+/-0,5%	-350.02	-350.06	-0.004	1.9E-01	Pass	
35%	+/-0.5%	349.87	349.93	0.006	1,9E-01	Pass	
70%	+/-0.5%	699.91	699.87	~0.004	1.7E-01	Pass	
Channel 2							
-70%	+/-0.5%	-700.05	-700.11	-0.006	2.1E-01	Pass	
-35%	+/-0.5%	-350.02	-350.01	0.001	1.7E-01	Pass	
35%	+/-0.5%	349.87	349.89	0.002	1.8E-01	Pass	
70%	+/-0.5%	699.91	699.90	-0.001	1.6E-01	Pass	
Channel 3							
-70%	+/-0.5%	~700.05	-700.18	-0.013	2.5E-01	Pass	
-35%	+/-0.5%	-350.02	-350.01	0.000	1.9E-01	Pass	
35%	4/-0.5%	349.87	349.92	0.005	1.7E-01	Pass	
70%	+/-0.5%	699.91	699.82	-0.009	2.1E-01	Pass	
Channel 4							
-70%	+/-0.5%	-700.05	-700.19	-0.014	2.1E-01	Pass	
-35%	+/-0.5%	-350.02	-350.05	-0.003	1.9E-01	Pass	
35%	+/-0.5%	349.87	349.93	0.005	1.8E-01	Pass	
70%	+/-0.5%	699.91	699.79	-0.012	2.5E-01	Pass	
Channel 5							
-70%	+/-0.5%	-700.05	-700.19	-0.014	2.7E-01	Pass	
-35%	+/-0.5%	-350.02	-350.02	0.000	2.1E-01	Pass	
35%	+/-0.5%	349.87	349.96	0.008	1.8E-01	Pass	
70%	+/-0.5%	699.91	699.88	-0.003	2.2E-01	Pass	
Channel 6							
-70%	+/-0.5%	-700.05	-700.16	-0.011	2.2E-01	Pass	
-35%	+/-0.5%	-350.02	-350.03	-0.002	1.3E-01	Pass	
35%	+/-0.5%	349.87	349.91	0.004	2.0E-01	Pass	
70%	+/-0,5%	699.91	699.83	-0.009	2.4E-01	Pass	
Channel 7							
-70%	+/-0.5%	-700.05	-700.22	-0.017	2.0E-01	Pass	
-35%	+/-0.5%	-350.02	-350.10	-0.008	1.6E-01	Pass	
35%	+/-0,5%	349.87	350.00	0.013	1.3E-01	Pass	
70%	+/-0.5%	699.91	699.83	-0.008	2,3E-01	Pass	

Serial #: LM0212 Order #: RA26649 Date: 17 February 2015

Test Descript Gain Respons							
Gain of 5: 10			As Received/Returned				
Channel 8	Limit	Std	UUT		Uncertainty	Pass	
		(mV)	(mV)		; (mV)	Fail	
-70%	+/-0.5%	-700.05	-700.22	-0.017	2.0E-01	Pass	
-35%	+/-0.5%	-350.02	-360.08	-0.006	1.7E-01	Pass	
35%	+/-0.5%	349.87	349.90	0.002	2.0E-01	Pass	
70%	+/-0.5%	699.91	699.80	-0.012	1.7E-01	Pass	
Gain Response	•						
Gain of 16: 31	2.5mV						
Channel 1							
-70%	+/-0.5%	-218.85	-218.85	0.001	1.1E-01	Pass	
-35%	+/-0.5%	-109.52	-109.51	0.005	8.3E-02	Pass	
35%	+/-0.5%	109.34	109.34	0.000	7.4E-02	Pass	
70%	+/-0.5%	218.71	218.68	-0.011	9.3E-02	Pass	
Channel 2							
-70%	+/-0.5%	-218.85	-218.84	0.005	8.4E-02	Pass	
-35%	+/-0.5%	-109.52	-109.51	0.003	8.7E-02	Pass	
35%	+/-0.5%	109.34	109.35	0.002	9.2E-02	Pass	
70%	+/-0.5%	218.71	218.69	-0.009	8.7E-02	Pass	
Channel 3							
-70%	+/-0.5%	-218.85	-218.88	-0.008	7.5E-02	Pass	
-35%	+/-0.5%	-109.52	-109.52	0.000	1.0E-01	Pass	
35%	+/-0.5%	109.34	109.35	0.002	8.1E-02	Pass	
70%	+/-0.5%	218.71	218.67	-0.015	1.0E-01	Pass	
Channel 4							
-70%	+/-0.5%	-218.85	-218.89	-0.011	1.3E-01	Pass	
-35%	+/-0.5%	-109.52	-109.52	-0.002	1.1E-01	Pass	
35%	+/-0.5%	109.34	109,37	0.009	1.0E-01	Pass	
70%	+/-0.5%	218.71	218.71	-0.002	1.3E-01	Pass	
Channel 5							
-70%	+/-0,5%	-218.85	-218,87	-0.005	1.0E-01	Pass	
-35%	+/-0.5%	-109.52	-109.51	0.005	1.1E-01	Pass	
35%	+/-0.5%	109.34	109.36	0.006	8.3E-02	Pass	
70%	+/-0.5%	218.71	218.68	-0.011	9.6E-02	Pass	
Channel 6							
-70%	+/-0.5%	-218.85	-218.83	0.008	1.1E-01	Pass	
-35%	+/-0.5%	-109.52	-109.51	0.003	9.0E-02	Pass	
35%	+/-0.5%	109.34	109.36	0.005	6.8E-02	Pass	
70%	+/-0.5%	218.71	218.67	-0.015	8.0E-02	Pass	
Channel 7							
-70%	+/-0.5%	-218.85	-218.90	-0.014	9.8E-02	Pass	
-35%	+/-0.5%	-109.52	-109.52	0.002	9.0E-02	Pass	
35%	+/-0.5%	109.34	109.35	0.003	9.5E-02	Pass	
70%	+/-0.5%	218.71	218.67	-0.015	8.9E-02	Pass	
Channel 8							
-70%	+/-0.5%	-218.85	-218.89	-0.011	9.6E-02	Pass	
-35%	+/-0.5%	-109.52	-109.53	-0.003	1.0E-01	Pass	
35%	+/-0.5%	109.34	109.38	0.011	9.6E-02	Pass	
70%	+/-0.5%	218,71	218.69	-0.008	8.5E-02	Pass	

Date: 17 February 2015

Gain of 32: 1	56 25mW		Ac D.	eceived/Re	furned	
Gaill of 32.	Limit	Std	UUT		Uncertainty	Pass/
Channel 1	LHITE	(mV)	(mV)	(%)	(mV)	Fail
-70%	+/-0.5%	-109.52	-109.54	-0,008	4.6E-02	Pass
-35%	+/-0.5%	-54.73	-54.74	~0.007	2.1E-02	Pass
35%	+/-0.5%	54,60	54.61	0.005	3,5E-02	Pass
70%	+/-0.5%	109.35	109.34	-0.007	3.7E-02	Pass
Channel 2	17 3.070	100.00	100.01	0,007	0.7.4. 04	, ,,,,,
-70%	+/-0.5%	-109,52	-109,53	-0.006	3.2E-02	Pass
-35%	+/-0.5%	-54.73	-54.74	-0.011	1.7E-02	Pass
35%	+/-0.5%	54.60	54.61	0.005	3.3E-02	Pass
70%	+/-0.5%	109.35	109.34	-0.006	3.6E-02	Pass
Channel 3	. 0,0,0	,,,,,,,	,,,,,,,			
-70%	+/-0.5%	~109.52	-109.54	-0.009	3.8E-02	Pass
-35%	+/-0.5%	-54.73	-54.74	-0.008	2.0E-02	Pass
35%	+/-0.5%	54.60	54.61	0.009	3.0E-02	Pass
70%	+/-0.5%	109.35	109.34	-0.003	3.2E-02	Pass
Channel 4	3, 0,075				*****	
-70%	+/-0.5%	-109.52	-109.55	-0.018	4.4E-02	Pass
-35%	+/-0.5%	-54.73	-54.74	-0.010	2.4E-02	Pass
35%	+/-0.5%	54.60	54.61	0.005	3.6E-02	Pass
70%	+/-0.5%	109,35	109.35	-0.001	3.3E-02	Pass
Channel 5	. 4.4.75					
-70%	+/-0.5%	-109.52	-109.53	-0.003	4.3E-02	Pass
-35%	+/-0.5%	-54.73	-54.73	0.000	2.2E-02	Pass
35%	+/-0.5%	54.60	54.61	0.004	4.1E-02	Pass
70%	+/-0.5%	109.35	109.34	-0.004	3.9E-02	Pass
Channel 6						
-70%	+/-0,5%	-109.52	-109.53	-0.002	4.3E-02	Pass
-35%	+/-0.5%	-54.73	-54.73	-0.001	2.0E-02	Pass
35%	+/-0.5%	54.60	54.60	-0.001	3.8E-02	Pass
70%	+/-0.5%	109.35	109.34	-0.008	3.5E-02	Pass
Channel 7						
-70%	+/-0.5%	-109.52	-109.55	-0.016	4.7E-02	Pass
-35%	+/-0.5%	-54.73	-54.73	-0.005	1.9E-02	Pass
35%	+/-0.5%	54.60	54.61	0.009	3.3E-02	Pass
70%	+/-0.5%	109.35	109.34	-0,005	3.2E-02	Pass
Channel 8						
-70%	+/-0.5%	-109.52	-109.54	-0.013	4.9E-02	Pass
-35%	+/-0.5%	-54.73	-54.74	-0.008	2.1E-02	Pass
35%	+/-0.5%	54.60	54.62	0.009	3.2E-02	Pass
70%	+1-0.5%	109.35	109.35	0.001	2.9E-02	Pass
Sain Response						
Gain of 128: 3	9,0625mV					
Channel 1						
-70%	+/-0.5%	-27.358	-27.411	-0.135	2.8E-02	Pass
-35%	+/-0.5%	-13.861	-13.874	-0.032	4.8E-02	Pass
35%	+/-0.5%	13.695	13.719	0.061	1.5E-02	Pass
70%	+/-0.5%	27.192	27.230	0.097	4.1E-02	Pass

Serial #: LM0212 Order #: RA26649 Date: 17 February 2015

Gain Respons				eceived/Ref		
Gain of 128: 3		Std	UUT		Uncertainty	
Channel 2	Limit	(mV)	(mV)	(%)	(mV)	Fail
-70% -35%	+/-0.5%	-27.358	-27.406	-0.123	2.7E-02	Pass
-35% 35%	+/-0.5% +/-0.5%	-13.861	-13.875	-0.035	5.2E-02	Pass
70%	+/-0.5%	13.695 27.192	13.719 27.227	0.061 0.091	1.6E-02 4.4E-02	Pass
Channel 3	T/-U,Q/0	21.182	21.221	0,081	4.4C-UZ	Pass
-70%	+/-0.5%	-27.358	-27.408	-0.129	2.6E-02	Pass
-35%	+/-0.5%	-13.861	-13.874	-0.123	4.6E-02	Pass
35%	+/-0.5%	13,695	13.719	0.061	1.6E-02	Pass
70%	+/-0.5%	27,192	27.229	0.094	4.5E-02	Pass
Channel 4				0.00		. 455
-70%	+/-0.5%	-27.358	-27.412	-0.138	2.8E-02	Pass
-35%	+/-0.5%	-13.861	-13.878	-0.043	5.1E-02	Pass
35%	+/-0.5%	13.695	13.721	0.066	1.7E-02	Pass
70%	+/-0.5%	27.192	27.229	0.095	4.1E-02	Pass
Channel 5						
-70%	+/-0,5%	-27.358	-27.410	-0.132 ·	2,5E-02	Pass
-35%	+/-0.5%	-13.861	-13.874	-0.032	4.6E-02	Pass
35%	+/-0.5%	13,695	13.719	0.061	1,5E-02	Pass
70%	+/-0.5%	27,192	27.229	0.095	4.1E-02	Pass
Channel 6						
-70%	+/-0.5%	-27,358	-27.409	-0.130	2.5E-02	Pass
-35%	+/-0.5%	-13,861	-13.875	-0.034	4.9E-02	Pass
35%	+/-0.5%	13.695	13.719	0.060	1.6E-02	Pass
70%	+/-0.5%	27.192	27.228	0.092	4.2E-02	Pass
Channel 7						
-70%	+/-0.5%	-27.358	-27,413	-0.142	2.6E-02	Pass
-35%	+/-0.5%	-13.861	-13.876	-0.038	5.0E-02	Pass
35%	+/-0,5%	13.695	13.721	0.066	1.5E-02	Pass
70%	+/-0.5%	27.192	27,229	0.096	4.2E-02	Pass
Channel 8						
-70%	+/-0.5%	-27.358	-27.412	-0.137	2.4E-02	Pass
-35%	+/-0.5%	-13.861	-13.878	-0.043	5.3E-02	Pass
35%	+/-0.5%	13.695	13.722	0.068	1.6E-02	Pass
70%	+/-0.5%	27.192	27.228	0.093	4.7E-02	Pass
Sain Response						
ain of 512: 9.7	765625mV					
Channel 1						
-70%	+/-1.5%	-6.849	-6.864	-0.158	1.5E-02	Pass
-35%	+/-1.5%	-3.509	-3.513	-0.041	2.6E-02	Pass
35%	4/-1.5%	3.336	3.338	0.023	1.7E-02	Pass
70%	+/-1.5%	6.702	6.708	0.062	2.9E-02	Pass
Channel 2						
-70%	+/-1.5%	-6.849	-6.864	-0.161	1.4E-02	Pass
-35%	+/-1.5%	-3.509	-3.514	-0.048	3.0E-02	Pass
35%	+/-1.5%	3.336	3.337	0.015	1.7E-02	Pass
70%	+/-1.5%	6.702	6.709	0.072	3.0E-02	Pass

Serial #: LM0212 Order #: RA26649 Date: 17 February 2015

Test Descripti	on					
Gain Response	€		As R	eceived/Re	turned	
Gain of 512: 9	9.765625mV	Std	UUT	Deviation	Uncertainty	Pass/
Channel 3	Limit	(mV)	(mV)	(%)	(mV)	Fail
-70%	+/-1.5%	-6.849	-6.865	-0.164	1.2E-02	Pass
-35%	+/-1.5%	-3.509	-3.514	-0.053	3.0E-02	Pass
35%	+/-1.5%	3.336	3.338	0.023	1.8E-02	Pass
70%	+/-1.5%	6.702	6.709	0.069	3.0E-02	Pass
Channel 4						
-70%	+/-1.5%	-6.849	-6,865	-0.170	1.4E-02	Pass
-35%	+/-1.5%	-3.509	-3.514	-0.045	2.6E-02	Pass
35%	+/-1.5%	3.336	3.339	0.030	1.8E-02	Pass
70%	+/-1.5%	6.702	6.708	0.065	3.2E-02	Pass
Channel 5						
-70%	+/-1.5%	-6.849	-6.864	-0.159	1.4E-02	Pass
-35%	+/-1.5%	-3.509	-3.514	-0.052	2.7E-02	Pass
35%	+/-1.5%	3.336	3.338	0.022	1.5E-02	Pass
70%	+/-1.5%	6.702	6.709	0.070	3.0E-02	Pass
Channel 6						
-70%	+/-1.5%	-6.849	-6.864	-0.161	1.3E-02	Pass
-35%	+/-1.5%	-3.509	-3.514	-0.050	2.9E-02	Pass
35%	+/-1.5%	3.336	3.338	0.025	1.7E-02	Pass
70%	+/-1.5%	6.702	6.710	0.083	2.8E-02	Pass
Channel 7						
-70%	+/-1.5%	-6.849	~6.865	-0.162	1.2E-02	Pass
-35%	+/-1.5%	-3.509	-3.514	-0.046	2.4E-02	Pass
35%	+/-1.5%	3.336	3.338	0.022	1.7E-02	Pass
70%	+/-1.5%	6.702	6.710	0.079	3.4E-02	Pass
Channel 8						
-70%	+/-1.5%	-6.849	-6.864	-0.155	1.3E-02	Pass
-35%	+/-1.5%	-3.509	-3.514	-0.046	2.6E-02	Pass
. 35%	+/-1.5%	3.336	3.337	0.018	2.1E-02	Pass
70%	+/-1.5%	6.702	6.709	0.070	3.2E-02	Pass
Gain Response						
Gain of 2000; 2	2.5mV					
Channel 1						
-70%	+/-1.5%	-1.930	-1.932	-0.081	5.0E-02	Pass
-35%	+/-1.5%	-1.052	-1.054	-0.085	4.9E-02	Pass
35%	+/-1.5%	0.879	0.878	-0.030	8.1E-03	Pass
70%	+/-1.5%	1.769	1.773	0.132	1.1E-02	Pass
Channel 2						
-70%	+/-1.5%	-1.930	-1.929	0.048	5.2E-02	Pass
-35%	+/-1.5%	-1.052	-1.052	0.003	4.1E-02	Pass
35%	+/-1.5%	0.879	0.876	-0.110	4.2E-03	Pass
70%	+/-1.5%	1.769	1.770	0.012	1.0E-02	Pass
Channel 3						
-70%	+/-1.5%	-1.930	-1.931	-0.057	6.8E-02	Pass
-35%	+/-1.5%	-1.052	-1.053	-0.054	4.7E-02	Pass
35%	+/-1.5%	0.879	0.877	-0.071	6.3E-03	Pass
70%	+/-1.5%	1.769	1.772	0.104	1.3E-02	Pass

Serial #: LM0212 Order #: RA26649 Date: 17 February 2015

Test Descript	tion					
Gain Respons	se		As R	eceived/Ret	urned	
Gain of 2000	D: 2.5mV	Std	UUT	Deviation	Uncertainty	Pass/
Channel 4	Limit	(mV)	(mV)	(%)	(mV)	Fail
-70%	+/-1.5%	-1.930	-1.930	-0.004	5.1E-02	Pass
-35%	+/-1.5%	-1.052	-1.052	-0.027	4.4E-02	Pass
35%	+/-1.5%	0.879	0.877	-0.060	7.3E-03	Pass
70%	+/-1.5%	1.769	1.770	0.027	7.9E-03	Pass
Channel 5						
-70%	+/-1.5%	-1.930	-1.930	0.001	4.6E-02	Pass
-35%	+/-1.5%	-1.052	-1.053	-0.040	4.5E-02	Pass
35%	+/-1.5%	0.879	0.876	-0.109	5.6E-03	Pass
70%	+/-1.5%	1.769	1.771	0.045	1.6E-02	Pass
Channel 6						
-70%	+/-1.5%	-1.930	-1.933	-0.105	5.1E-02	Pass
-35%	+/-1.5%	-1.052	-1.054	-0.108	5.0E-02	Pass
35%	+/-1.5%	0.879	0.877	-0.056	9.3E-03	Pass
70%	+/-1.5%	1.769	1.772	0.085	8.0E-03	Pass
Channel 7						
-70%	+/-1.5%	-1.930	-1.932	-0.066	5.0E-02	Pass
-35%	+/-1.5%	-1.052	-1.053	-0.052	4.3E-02	Pass
35%	+/-1.5%	0.879	0.878	-0.054	4.1E-03	Pass
70%	+/-1.5%	1.769	1.771	0.054	9.9E-03	Pass
Channel 8						
-70%	+/-1.5%	-1.930	-1.934	-0.177	5.3E-02	Pass
-35%	+/-1.5%	-1.052	-1.054	-0.103	4.7E-02	Pass
35%	+/-1.5%	0.879	0.879	-0.004	1.0E-02	Pass
70%	+/-1.5%	1.769	1,775	0.220	1,2E-02	Pass

End of Report

Calibration Certificate

35200 Plymouth Rd. / Livonia, MI 48150

Certificate # Z54482:107387

MITUTOYO PRO 360 DIGITAL PROTRACTOR

SERIAL NUMBER: 06091641

ASSET NUMBER: Z54482

CUST ASSET NUMBER: MGA00712

PROCEDURE NAME: MIT - PRO 360 - MMC

PROCEDURE REV: 1.0

CALIBRATED BY: Joseph Glordano

CUSTOMER:

MGA RESEARCH

446 EXECUTIVE DRIVE TROY, MI 48083

PRIMARY CONTACT:

SCOTT ARSEN

WORK ORDER:

107387

TEST RESULT: PASS

PERFORMED ON: 10/27/14

CAL DUE DATE: 10/27/15

DATA TYPE: FOUND-LEFT

TEMPERATURE: 23.97 °C

HUMIDITY: 36 %

This Instrument has been processed and calibrated in accordance with the NovaStar Solutions Quality System Manual and is traceable to the National Institute of Standards and Technology (NIST) or to NIST accepted Intrinsic standards of measurement, or derived by the ratio type of self-calibration techniques. The NovaStar Solutions quality system is accredited ISO/IEC 17025:2005 and ANSI/NCSL Z540-1-1994.

The results reported herein apply only to the calibration of the item described above. No sampling plan was used for this calibration.

The ratio of the tolerance of the instrument or parameter being calibrated to the expanded uncertainty of the standard (TUR) is greater than 4:1 unless otherwise specified. Expanded uncertainties are expressed at the approximate 95% level of confidence using a K=2. Due to any number of factors, the recommended due date on the item does not imply continuing conformance to specifications during the recommended interval. Unless otherwise stated the unit under test meets or exceeds manufacturer specifications.

For range and best measurement capability specifications for the standards used to perform this calibration, see the most recent calibration report maintained by this calibration laboratory (available upon request).

This report may not be reproduced, except in full, without written approval from NovaStar Solutions,

AS RECEIVED CONDITION:

IN TOLERANCE

REMARKS:

AS RETURNED CONDITION:

IN TOLERANCE

ACTION TAKEN: FULL CALIBRATION

Standards Used

Asset # 1437

1577

Cert #

1437:1193650835

1577:1193650836

Description

PHASE 2 220-006 ROTARY TABLE RAHN SUPER 100 SURFACE PLATE Cal Date

Due Date

02/13/2013

02/13/2017

02/10/2014

02/10/2015

QA Signature: Duke Layre.

Date: 10/29/2014

Test Results for Calibration	with Certificate	#: Z54482:10	7387			
Test Procedure Results						
Test Description 60° 30° 5° 0°	Nominal 60.0 30.0 5.0 0.0	Test Resul 60.0 30.0 5.0 0.0	59.8 29.8 4.9 -0.1	Upper Limit 60.2 30.2 5.1 0.1	Units	Exp Uncert Pass/Fnil 0.02° + .6R Pass 0.02° + .6R Pass 0.02° + .6R Pass Pass 0.02° + .6R Pass
30° 60° 90° 5° 0°	30.0 60.0 90.0 60.0 30.0 5.0	30.0 60.0 90.0 60.0 30.0 5.0	29.8 59.8 89.9 59.8 29.8 4.9	30.2 60.2 90.1 60.2 30.2 5.1		0.02° + .6R Pass 0.02° + .6R Pass Pass
ABSOLUTE ZERO ANGLE	0.0	0.0	-0.1	0.1	٠	Pass

***** End of Report *****

Calibration Certificate

35200 Plymouth Rd. / Livonia, MI 48150

Certificate # Z54487:107382

DETECTO AP-20 SCALE

SERIAL NUMBER: E10807-0187

ASSET NUMBER: Z54487

CUST ASSET NUMBER: MGA00783 PROCEDURE NAME: 122-040

PROCEDURE REV: B

CALIBRATED BY: Joseph Glordano

CUSTOMER: MGA RESEARCH

446 EXECUTIVE DRIVE

TROY, MI 48083

PRIMARY CONTACT: SCOTT ARSEN

WORK ORDER: 107382

TEST RESULT: PASS

PERFORMED ON: 10/27/14

CAL DUE DATE: 10/27/15

DATA TYPE: FOUND-LEFT

TEMPERATURE: 23.00 ℃

HUMIDITY: 40 %

This instrument has been processed and calibrated in accordance with the NovaStar Solutions Quality System Manual and is traceable to the National Institute of Standards and Technology (NIST) or to NIST accepted intrinsic standards of measurement, or derived by the ratio type of self-calibration techniques. The NovaStar Solutions quality system is accredited ISO/IEC 17025:2005 and ANSI/NCSL Z540-1-1994.

The results reported herein apply only to the calibration of the item described above. No sampling plan was used for this calibration.

The ratio of the tolerance of the instrument or parameter being calibrated to the expanded uncertainty of the standard (TUR) is greater than 4:1 unless recommended due date on the item does not imply continuing conformance to specifications during the recommended interval. Unless otherwise stated the unit under test meets or exceeds manufacturer specifications.

For range and best measurement capability specifications for the standards used to perform this calibration, see the most recent calibration report maintained by this calibration laboratory (available upon request).

This report may not be reproduced, except in full, without written approval from NovaStar Solutions.

AS RECEIVED CONDITION:

IN TOLERANCE

REMARKS:

AS RETURNED CONDITION:

IN TOLERANCE

ACTION TAKEN:

FULL CALIBRATION

Standards Used

Asset#

Cert#

Description

RICE LAKE CLASS 6 18 PC WEIGHT SET

Cal Date

Due Date

1081 1633 1081:1193650835

03/18/2013

03/18/2015

1633:1193663229

RICE LAKE CLASS 6 17 PC WEIGHT SET

06/04/2013

12/04/2014

QA Signature: Duke Layre

Date: 10/29/2014

Calibration Data Sheet

35200 Plymouth Rd. Livonia, MI 48150 734-453-800 3

inst. Type	Scale	Mfr.	Detecto	w.o.	107382
Last Cal Date	10/21/2013	Mod.	AP-20	Date	
Form Number	25146 Rev A	S/N	E10807-0187	Test Eng'r	10/27/2014 JG
					30

Note Measurement Uncertainty = 0,008 lbs

Function	Calibration Point Unit		As Found	Note	As Left	Low Limit	Hi Limit	Unit
1 1	4.00 !!						en Limit	Unit
Linearity	1.00 lb 5.00 lbs	<u> </u>	1.00		1.00	0.96	1.05	lb
	10.00 lbs		5.00		5.00	4.95	5.05	lhe
	15.00 lbs		10.01		10.01	9.95	10.05	lhe
	20.00 lbs		15.01		15.01	14.95	15.05	the
	8dl 00,05		20.02		20.02	19.95	20.05	lhs
Shift Test	Center		10.01					-
@ 10lbs	Front		10.02		10.01	10.01	10.03	lbs
	Back		10.02		10.02	10.01	10.03	lbs
	Left		10,01		10,00	10.01	10,03	lbs
	Right		10.01	-	10.01	10.01	10,03	bs
			70.01	-	10.01	10,01	10.03	bs
				-				
				1				
				 				
				1				
				1-1				
				1				
								-
			<u></u>					\dashv
								\dashv
								-
								\neg
				_				\neg
								7
								7
								7
								7
								7
								٦
								7
								7
								7
								7
								7
								7

MICHIGAN OPERATIONS DATE: 4/4/2013 SUPERCEDES: MGATPTMC.6

DOC. NO.: MGATP_TMC REVISION NO.: 7 PAGE 3 OF 3

Tape Measure Calibration Certificate

Reference Steel Rule

Brand: SWANSON S/N: 146 A DO 799 Calibration Date: 5/21/2014

Subject Tape Measure

Brand; \$20424 \$7.001-71

Calibration Date: 1/27/7015

F	Reference	Sub	ject Tape			Reference	0.1			
	in (mm)	M	leasure		ference	in (mm)	Sub	ject Tape leasure	, D	ifference
<u> </u>		Pul	+		Push	1 (11111)	Pull		Pu	il Pus
	0 (0)	D	0	0	0	18 (450)	450	440		II Pus
	1 (25)	5.2	24	U	-1	19 (475)	475			1-1
	2 (50)	20	49	0	-1	20 (500)	500	499	0	
	3 (75)	7-5	74	O	-1	21 (525)	252	524		-1
	4 (100)	100	99	0	-)	22 (550)	320	549	0	- /
	5 (125)	125	174	0	-1	23 (575)	575	574	0	1-1
6	5 (150)	150	149	D	-1	24 (600)	600	599	0	1-/
7	7 (175)	17.5	174	O	-1	25 (625)	625		0	1-1
8	3 (200)	200	199	U	-1	26 (650)	650	649	0	
9	(225)	225	224	0	-)	27 (675)	675	 	0	-/
10	(250)	SSS	249	0	-1	28 (700)	700	674	0	-1
11	1 (275)	275	274	0	~)	29 (725)	725		<i>b</i>	-1
12	2 (300)	300	299	0	-)	30 (750)	750	724	0	-1
13	(325)	372	324	0	- 7	31 (775)		749	0	-)
14	(350)	350	349	v	1	32 (800)	775	774	0	-1
	(375)	37.5	374	0	-1	33 (825)	800	799	D	-)
	·	400	399	0	-1			824	D	-1
	(425)		424	0	-)	34 (850)		849	0	-1
				- 1		35 (875)	825	874	0	-1

then the tape measure is acceptable. Fail Maximum Difference

Date: 1/27/2015

Performed By:

All calibrations are traceable to the National Institute of Standards and Technology. Estimated uncertainty of the measurement is ± 0.2%. All certification data and equipment are on file for inspection at your request. Best uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor k=2.

Outgoing Certification

Serial Number:

C12-D2-05-03364

Date:

2015-03-31

Effective Diameter Performance Test Results

Elifootivo B				to the second second second					
1		l	Reference		Measured	Adjusted		Diameter	
1	l	Calibrated	Temperature		Temperature	Diameter	Measured	Deviation	Test
Test	Quadrant	Diameter (Dcal)	(Tref)	CTE (PPM)	(Tmea)	(Dadj)*	Diameter (Dm)	(Dm-Dadj)	Results
1	3/4	25.4011	20.1	10.2	21.6	25.4015	25.3840	-0.0174	Passed
2	3/4	25.4011	20.1	10.2	21.6	25.4015	25.3904	-0.0110	Passed
3	3/4	25.4011	20.1	10.2	21.6	25.4015	25.4130	0.0116	Passed
* Dadj ≃ Doa	ix (1 + ((CTE	1,000,000) x (Tn	ıea - Tref)))		Maximum Deviation			0.0174	Passed
Measurement Uni	ertainly is 1 micron	neter		Effective Diameter Specification			0.1220		

Single Point Articulation Performance Test Results

Region	n Quadrant	(Max-Min)/2	Test Results	
< 20%	6 1/2	0.0597	Passed	
20-809	% 3/4	0.0398	Passed	
>80%	2/3	0.0538	Passed	
	Maximum 0.0597		Passed	
Single	Point Specification	0.2440		

Volumetric Performance Tost Results

		Calibrated	Reference		Measured	4.5		Length	
			Temperature	ave innes	Temperature	Adjusted	Measured	Deviation	Test
Quadrant	Position	Length (Lost)	(Tref)	CTE (PPM)	(Tmea)	Length (Ladj)**	Length (Lm)	(Lm-Ladj)	Results
1	Flat	2199.9734	19.8	0.1	21.5	2199.9739	2199.9795	0.0056	Passe
1	Flat	1149.8541	19.8	0.1	21.5	1149.8544	1149.8378	-0.0166	Passe
2	Flat	2199.9734	19.8	0.1	21.5	2199.9739	2199.9631	-0.0107	Passe
2	Flat	1149.8541	19.8	0.1	21.5	1149.8544	1149.8466	-0.0078	Passe
3	Flat	2199.9734	19.8	0.1	21.5	2199.9739	2199.9500	-0.0239	Passe
3	Flat	1149.8541	19.8	0.1	21.5	1149,8544	1149.8444	-0.0100	Passe
4	Flat	2199.9734	19.8	0.1	21.5	2199.9739	2199,9663	-0.0076	Passe
4	Flat	1149.8541	19.8	0.1	21.5	1149.8544	1149.8506	-0.0038	Passe
1	45°	2199.9734	19.8	0.1	21.5	2199.9739	2200.0320	0.0581	Passe
1	45°	1149.8541	19.8	0.1	21.5	1149.8544	1149.9037	0.0493	Passed
2	45°	2199.9734	19.8	0.1	21.5	2199.9739	2200.0098	0.0359	Passed
2	45°	1149.8541	19.8	0.1	21.5	1149.8544	1149.8997	0.0453	Passec
3	45°	2199,9734	19.8	0.1	21.5	2199.9739	2200.0320	0.0581	Passec
3	45°	1149.8541	19.8	0.1	21.5	1149.8544	1149.9058	0.0514	Passed
4	45°	2199.9734	19.8	0.1	21.5	2199.9739	2200.0027	0.0288	Passec
4	45°	1149.8541	19.8	0.1	21.5	1149.8544	1149.8853	0.0309	Passec
1	Vertical	950.0541	19.8	0.1	21.5	950,0543	950.0449	-0.0095	Passed
2	Vertical	950.0541	19.8	0.1	21.5	950.0543	950.0831	0.0288	Passed
3	Vertical	950.0541	19.8	0.1	21.5	950.0543	950.0388	-0.0156	Passed
4	Vertical	950.0541	19.8	0.1	21.5	950.0543	950.0831	0.0288	Passed
Ladj ≃ Lcal >	(1 + ((CTE/1	,000,000) x (Tme:	a - Tref)))			Maximu	m Deviation	0.0581	Passed
surement Unce	rlainty is 3.5 micro	nefer*			Ī	Volumetric S	pecification	0.3450	

Measurement Uncertainty is 3.5 micrometer
Uncertainty is expressed at approxymately a 95% Level of Confidence using k=2.00.

Revised: November 21, 2013 © 2013 FARO

Page 2 of 6

LM-07FRM129-017.xls

Summary Condition As Received: Inoperative Revised: November 21, 2013 © 2013 FARO Page 3 of 6 LM-07FRM129-017.xls

Outgoing - Single Point Articulation Test Quadrant 3-4, <20%	FAR:

FaroArm Serial Number:	C12-D2-05-03364		
Firmware Version:	312		
FaroArm Temperature:	23.52		
Probe: Ball Probe	X: 26.162	Y: 1.239	Z: 159.152
Probe 2*Sigma:	0.054766506		
Date of Test:	3/31/2015		
Number of Points Taken:	10		
Maximum X:	-302.1419983		
Minimum X:	-302.237915		
(Max-Min)/2:	0.047958374		
Maximum Y:	53.63430786		
Minimum Y:	53.55072021		
(Max-Min)/2:	0.041793823		
Maximum Z:	956.2320557		
Minimum Z:	956.1126709		
(Max-Min)/2:	0.059692383		
Index	X (mm)	Y (mm)	Z (mm)
1	-302.1419983	53.63430786	956.1610107
2	-302.1598816	53.59180832	956.1827393
3	-302.1870422	53.58802414	956.1679077
4	-302.2028503	53.56264496	956.1470337
5	-302.2011719	53.55584335	956,1126709
6	-302.1979675	53.56870651	956.2247314
7	-302.1771851	53.55690384	956.1625366
8	-302.1749268	53.55072021	956.1508179
9	-302.2268066	53.59379196	956.1957397
10	-302.237915	53.59745789	956.2320557

Revised: November 21, 2013 © 2013 FARO

Page 4 of 6

LM-07FRM129-017.xls

Revised: November 21, 2013 © 2013 FARO

LM-07FRM129-017.xls

•	Outgoing - Single Poir	FA		
FaroArm Serial Number:	C12-D2-05-03364			
Firmware Version:	312			
FaroArm Temperature:	23.57			
Probe: Ball Probe	X: 26.162	Y: 1.239	Z: 159.152	
Probe 2*Sigma:	0.054766506			
Date of Test:	3/31/2015			
Number of Points Taken:	10			
Maximum X:	341,4140625			
Minimum X:	341.3433533			
(Max-Min)/2:	0.035354614			
Maximum Y:	-86.62831116			
Minimum Y:	-86.66944885			
(Max-Min)/2:	0.020568848			
Maximum Z:	-65.18264008			
Minimum Z:	-65.26217651			
(Max-Min)/2:	0.039768219			
Index	X (mm)	Y (mm)	Z (mm)	
i	341.3993225	-86.62831116	-65.26217651	
2	341.3791199	-86.64588165	-65.22431946	
3	341.4140625	-86.66944885	-65.221138	
Į.	341.4000854	-86.66416931	-65.24797058	
i	341.3612366	-86.65323639	-65.19924164	
i e	341.3968506	-86.66278076	-65.18402863	
•	341.3433533	-86.62930298	~65.18264008	
	341.3875427	-86.66137695	-65.2046051	
	341.3831787	-86.66345978	-65.19826508	
)		-86.65211487	-65,19019318	

Page 5 of 6

•	Outgoing - Single Point	FARO		
FaroArm Serial Number:	C12-D2-05-03364			
Firmware Version:	312			
FaroArm Temperature:	23.59			
Probe: Ball Probe	X: 26.162	Y: 1.239	Z: 159.152	
Probe 2*Sigma:	0.054766506			
Date of Test:	3/31/2015			
Number of Points Taken:	10			
Maximum X:	-213.7299347			
Minimum X:	-213.8376312			
(Max-Min)/2:	0.053848267			
Maximum Y:	35.10113144			
Minimum Y:	35.01716995			
(Max-Min)/2:	0.041980743			
Maximum Z:	-1418,967529			
Minimum Z:	-1419,067017			
(Max-Min)/2:	0.049743652			•
Index	X (mm)	Y (mm)	Z (mm)	
1	-213,7299347	35.03325272	-1419.015747	
2	-213.7741089	35.06063843	-1419.03064	
3	-213.8027039	35.03982162	-1418.967529	
4	-213.7838745	35.07539368	-1418.999878	
5	-213.765976	35.07759094	-1419.041382	
6	-213.8026276	35.08253098	-1419.030151	
7	-213.8376312	35.02813339	-1418.97876	
8	-213.7653503	35.01716995	-1418.992554	
9	-213.7877808	35.10113144	-1419.067017	
10	-213.7380829	35.0691185	-1419.032593	

Revised: November 21, 2013 © 2013 FARO

Page 6 of 6

LM-07FRM129-017.xls

mga research corporation

CALIBRATION CERTIFICATE

Name: MGA Velocity Measurement System

Model: MGA VMS S/N: VMS MPS1 Temperature: 21.6°c Humidity: 35%

Calibration Date: 2/23/2015

Sensor Distance: 29.96mm (Tolerance 30 +/- 0.2mm)

Hz		46.3	92.6	138.9	185.2	231.5	277.8	463	694.4	925.9
Km/h		5	10	15	20	25	30	50	75	100
	1	5.000	10.001	15.002	20.001	25.003	30.001	50.001	75.003	100.030
	2	5.000	10.001	15.001	20.003	25.003	30.003	50.016	75.003	100.030
	3	5.000	10,001	15.002	20.002	25.003	30.003	50.001	75.020	100.000
	4	5.000	10.001	15.002	20.002	25.007	30.006	50.016	75.020	100.000
	5	5.000	10.001	15.001	20.000	24.997	30.003	49.996	75.003	100.030
	6	5.000	10.001	15.002	20.003	25.005	29.998	50.001	75.020	100.030
	7	5.000	10.001	15.003	20.002	25.001	30.003	50.001	75.003	100,000
	8	5.000	10.001	15.002	20.002	25.003	30.001	50.001	75.020	100.060
	9	5.000	10.001	15.002	20.001	25,005	30.001	50.016	75.020	100.030
	10	5.000	10.001	15.002	20.002	25.005	30.001	50.001	75.003	99.977
ave		5.000	10,001	15.002	20.002	25.003	30.002	50.005	75.012	100.019
std dev		0.000	0,000	0.001	0.001	0.003	0.002	0.008	0.009	0.024

standards used

Model Number MFG Agilent 8904A IP54

Fowler

56.28-01 131182141

Serial Number Description **Function Generator** Calipers

Cal Due Date 2/13/2016 9/17/2015

Performed By:

Approved By:

L'Elen a Kaleto

446 executive drive • troy, mi 48083 248 / 577-5001 • fax 248 / 577-5025 www.mgaresearch.com

Certificate of Calibration

Revision: 2.0

Model #: Timed Output Module

Serial #: TOML041

Procedure Name: TOM Calibration

Project Number: RA27091 Customer: MGA

er: MGA 446 Executive Drive

Troy, MI 48083

Certificate #: 2015319TOML041

Date Received: 13 March 2015

Date Calibrated: 19 March 2015 Next Calibration: 19 March 2016 Test Result: In Tolerance Temperature: 75 °F / 24.0 °C

Humidity: 29 %

This instrument has been processed and calibrated in accordance with the DTS Quality Assurance Manual, and traceable to National Institute of Standards and Technology (NIST). This report may not be reproduced except in full, without the written approval of DTS unless stated otherwise. The expanded measurement uncertainty of the measurement process does not exceed 95% (2 sigma) confidence limits, no sampling plan or other process was used for the calibration. The results reported herein apply to the calibration of the item described above, and no limitation of use apply to the calibrated unit. This test data is the raw recorded data that is not corrected for uncertainty or corrected for environmental effects.

Standards Use	ed								
Serial #	erial# Manufacturer Model#		Description			Cal	Date	Due Date	
MY47007610	Agilent	34401A	Digital Mult	lmeter, 6.5 Digi	t	9-Apr-2014		9-Apr-2015	
Results									
Test Descripti	ion					Test R	esult	Pass/Fai	
Visual Inspecti								Pass	
Squib Output F								Pass	
Digital Output f	-unctions							Pass	
Squib Resistan								Pass	
Squib Voltage								Pass	
Squib Current l								Pass	
Timebase Accı	•							Pass	
T≔0 Trigger Fu								Pass	
Sensor ID Fund								Pass	
Connector Shie	eld Grounding							Pass	
nput Current								Pass	
	s to Squib Resist	ance I		Upper Limit		UUT Resul	ts Units		
Channel 1			0 Ohms	0.5 Ohms		0.17280	Ohms	Pass	
Channel 2			0 Ohms	0.5 Ohms		0.17020	Ohms	Pass	
Channel 3			0 Ohms	0.5 Ohms		0.16880	Ohms	Pass	
Channel 4	•		0 Ohms	0.5 Ohms		0.16890	Ohms	Pass	
Squib DC Cu	rrent								
Channel 1			0.95 mA	1.05 mA		0.99812	mΑ	Pass	
Channel 2			0.95 mA	1.05 mA		0.99687	mΑ	Pass	
Channel 3			0.95 mA	1.05 mA		1.00339	mA	Pass	
Channel 4			0.95 mA	1.05 mA		0.99772	mA	Pass	
					0.13	Craig.	Nyuo		
Calibration Site:	41204 Bridge	Olusai			Calibrated by:				
	4 1 2014. Hridda	Street				Craig Myers			

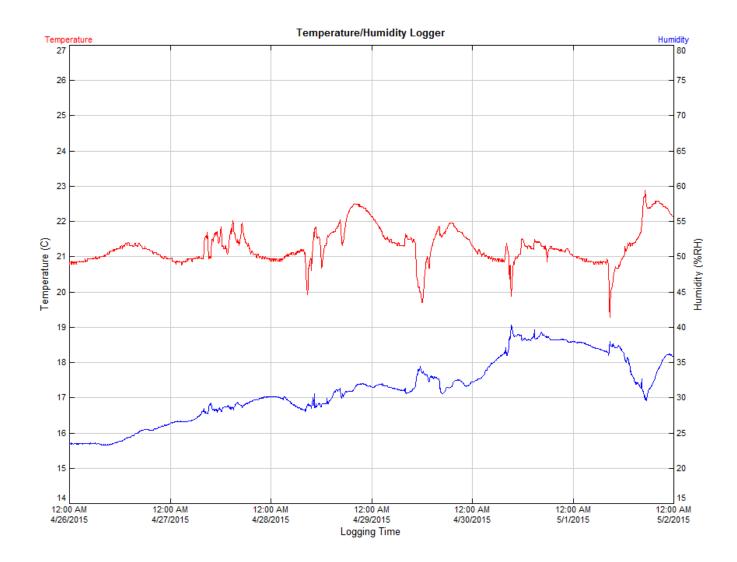
End of Certificate

B 3/24/15

Sterling Scale Co., Inc. 20950 Boening St. Southfield, MI 48075

Test report for commercial device

F410/12-4 Rev. Date 7/28/08



Customer:	MGA Research	Cert#	14-2713	Temp/Humidity;	accredited fo	or calibrat	ion 1448.01	
Location of Cali		2839 Elliot Ave.		rempiramony,	UK			
Calibration Date		4 Cal Due:		Condition of Item;	good			
Equipment Make	e; Intercomp	Model:	SW Deluxe	Serial:	-	Capacity	2 8800lb x 1lb	
NTEP:		Class:	;	COC#:	T	section- 22	00lb x 1lb	
Applied Test Wt	Before Adustment	Tolerance	In-Tolerance Y/N	After Adjustment	In-Tolerance Y/N	Unc		
100lb	100lb	1lb	у	100lb	у	.11lb	LF	
1000lb	1000lb	2lb	у	1000lb	у	.5lb	1	
100lb	100lb	1lb	у	100lb	у	.11lb	RF	
1000lb	1000lb	2lb	y	1000lb	у	.5lb	1	
100lb	100lb	1lb	у	100lb	у	.11lb	LR	
1000lb	1000lb	2lb	у	1000lb	y	.5lb]	
100lb	100lb	1ib	у	100lb	у	.11lb	RR	
1000lb	1000lb	2lb	у	1000lb	у	.5lb		
•							-	
shift test N/A Wheel Weigh		<i>Platform #1</i> □ Pass		<i>Platform #3</i> □ Pass				
	•	∏ Fail I	∏ Fail I	Fall				
Tests performed:	Repeatability	☑ Linearity 【	☐ Sensitivity Ì	☑ Discrimination				
Technician commen	its:	Scale passed a	all tests perfo	med				
Traceable certificate	for weights used:		50lb wts 1163	,1168 1k wt 10002				
☑ Scale Certified	ı			J.	î Scale Reje	oted		
	The above item has be Fraceable to internation Expanded uncertainty Results relate only to it	nal Systems of Un (k=2) confidence ems listed.	nits (SI), throug level of 95% as	h the Michigan Depart s reported.	ment of Agricul	weights		
The reported uncertainty is valid only for the environment in which it is determined. Any number of factors may cause the Item to drift out of calibration before recommended interval has expired for this reason Sterling Scale does not warranty calibration. This report shall not be reproduced, except in full without approval of the laboratory Tolerances followed are maintenance/acceptance per HB 44 or customer specific.								

Van Dent 8/15/12

Appendix B - Temperature Trace

C20150301 2015 Chrysler 200S FMVSS 226

