126-DRI-11-003 **SAFETY COMPLIANCE TESTING FOR FMVSS 126 Electronic Stability Control Systems**

Mazda Motor Corporation 2012 Mazda 5 NHTSA No. CC5403

DYNAMIC RESEARCH, INC.

355 Van Ness Avenue, STE 200 Torrance, California 90501

4 November 2011

Final Report

Prepared Under Contract No.: DTNH22-08-D-00098

U. S. DEPARTMENT OF TRANSPORTATION **National Highway Traffic Safety Administration Enforcement** Office of Vehicle Safety Compliance 1200 New Jersey Avenue, SE West Building, 4th Floor (NVS-221) Washington, DC 20590

Prepared for the Department of Transportation, National Highway Traffic Safety Administration, under Contract No. DTNH22-08-D-00098.

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings, and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturer's names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products of manufacturers.

Prepared	By: Buen	n K.	lebtel	ed (
		11.5	/ /	_

Approved By: M

Approval Date: 4 November 2011

FINAL REPORT ACCEPTANCE BY OVSC:

Accepted By:

Acceptance Date: 8 Nov 2011

1.	Report No.	Government Accession No.	Recipient's Catalog No.	
	126-DRI-11-003			
4.	Title and Subtitle		5. Report Date	
	al Report of FMVSS 126 Compliand	ce Testing of a 2012 Mazda 5, NHTSA No.	4 November 2011	
	0.700		6. Performing Organization Co	de
7	Author(s)		DRI 8. Performing Organization Re	nort No
	John F. Lenkeit, Technical Directo Brian Kebschull, Principal Enginee		DRI-TM-11-31	port rec.
9.	Performing Organization Name and	d Address	10. Work Unit No.	
	Dimensia Decembra Inc			
	Dynamic Research, Inc. 355 Van Ness Ave, STE 200 Torrance, CA 90501		11. Contract or Grant No.	
	,		DTNH22-08-D-00098	
12.	Sponsoring Agency Name and Ac U.S. Department of Transportation		13. Type of Report and Period	Covered
	National Highway Traffic Safety A	Administration Enforcement	Final Test Report	
	Office of Vehicle Safety Compliar 1200 New Jersey Avenue, SE,	nce	20 May 2011 to 4 Novembe	r 2011
	West Building, 4th Floor (NVS-22	21)		
	Washington, D.C. 20590		14. Sponsoring Agency Code	
			14. Sponsoning Agency Code	
45	0 1 1 11		NVS-220	
15.	Supplementary Notes			
16.	Abstract			
A te	est was conducted on a 2012 Mazda	a 5 , NHTSA No. CC5403, in accordance with	the specifications of the Office of	Vehicle Safety
Cor	mpliance Test Procedure No. TP-12	26-02 for the determination of FMVSS 126 co		volució calloty
res	t failures identified were as follows:	None		
17.	Key Words		18. Distribution Statement	
	Compliance Testing		Copies of this report are ava	ailable from:
Safety Engineering			Copies of the report are ave	
	FMVSS 126		NHTSA Technical Information (NPO 411)	on Services (TIS)
			1200 New Jersey Avenue, S	SE
			Washington, D.C. 20590 Email: tis@nhtsa.dot.gov	
			FAX: (202) 493-2833	
19.	Security Classif. (of this	20. Security Classif. (of this page)	21. No. of Pages	22.
rep	ort)		, and the second	
	Unclassified	Unclassified	64	

TABLE OF CONTENTS

SECTION	<u>P/</u>	AGE
1.0	PURPOSE OF COMPLIANCE TEST	1
2.0	TEST PROCEDURE AND DISCUSSION OF RESULTS	1
3.0	TEST DATA	5
4.0	TEST EQUIPMENT LIST AND CALIBRATION INFORMATION	27
5.0	PHOTOGRAPHS	29
6.0	DATA PLOTS	44
7.0	OTHER DOCUMENTATION	48
	 7.1 Owner's Manual Pages 7.2 Vehicle Arrival Condition Report 7.3 Vehicle Completion Condition Report 7.4 Sine with Dwell Test Results 7.5 Slowly Increasing Steer Test Results 7.6 Inertial Sensing System Location Coordinates 	49 55 56 57 59 60

1.0 PURPOSE OF COMPLIANCE TEST

The purpose of this test is to determine if the test vehicle, a 2012 Mazda 5, meets the minimum equipment and performance requirements stated in Federal Motor Vehicle Safety Standard (FMVSS) 126, "Electronic Stability Control Systems."

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS

Testing of the 2012 Mazda 5 was conducted at Dynamic Research, Inc (DRI) in accordance with NHTSA TP-126-02, dated November 19, 2008.

The vehicle was inspected to ensure it was equipped with an ESC system that:

- Augments vehicle directional stability by applying and adjusting brake torques individually at each wheel to induce a correcting yaw moment to a vehicle;
- Is computer controlled with the computer using a closed-loop algorithm to limit vehicle oversteer and to limit vehicle understeer;
- Has a means to determine the vehicle's yaw rate and to estimate its side slip or side slip derivative with respect to time;
- Has a means to monitor driver steering inputs;
- Has an algorithm to determine the need, and a means to modify engine torque, as necessary, to assist the driver in maintaining control of the vehicle; and
- Is operational over the full speed range of the vehicle (except at vehicle speeds less than 20 km/h (12.4 mph), when being driven in reverse, or during system initialization).

The vehicle was subjected to a 0.7 Hz Sine with Dwell steering maneuver to ensure that it would meet the stability and responsiveness requirements of the standard as follows:

 At 1.0 second after completion of a required Sine with Dwell steering input, the yaw rate of the vehicle must not exceed 35 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTINUED)

- At 1.75 seconds after completion of a required Sine with Dwell steering input, the yaw rate of the vehicle must not exceed 20 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).
- For steering inputs of scalar 5 and greater, the lateral displacement of the vehicle center of gravity with respect to its initial straight path must be at least 1.83 m (6 feet) (for vehicles with a GVWR of 3,500 kg (7,716 lb) or less) when computed 1.07 seconds after the Beginning of Steer (BOS) at the specified steering wheel angles.

System malfunction simulations were executed to verify vehicle could identify and indicate a malfunction.

The vehicle's ESC System appears to meet the performance and equipment requirements as required by FMVSS 126. The test results are summarized on the following summary sheet.

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTD)

Data Summary Sheet (Page 1 of 2)

Vehicle: 2012 Mazda 5

NHTSA No. *CC5403* VIN: *JM1CW2CL3CO105648*

Vehicle Type: Passenger Car Manufacture Date: 12/10

Laboratory: Dynamic Research, Inc.

REQUIREMENTS: PASS/FAIL

ESC Equipment and Operational Characteristics (Data Sheet 2)

The vehicle is to be equipped with an ESC system that meets the equipment and operational characteristics requirements. (S126, S5.1, S5.6)

ESC Malfunction Telltale (Data Sheet 3)

Vehicle is equipped with a telltale that indicates one or more ESC system malfunctions. (S126, S5.3)

"ESC Off" and other System Controls and Telltale (Data Sheet 3,4)

Vehicle is equipped with an ESC off telltale indicating the vehicle has been put into a mode that renders the ESC system unable to satisfy the performance requirements of the standard, if such a mode exists. (S5.5.1)

If provided, off control and other system controls as well as the <u>PASS</u> ESC off telltale meets the operational requirements (S126, S5.4, S5.4.1,S5.4.2, S5.5.4, and S5.5.9)

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTD)

Data Summary Sheet (Page 2 of 2)

REQUIREMENTS:	PASS/FAIL
Vehicle Lateral Stability (Data Sheet 8) Yaw Rate Ratio at 1 second after COS is less than 35% of peak value. (S126, S5.2.1)	<u>PASS</u>
Yaw Rate Ratio at 1.75 seconds after COS is less than 20% of peak value. (S126, S5.2.2)	<u>PASS</u>
Vehicle Responsiveness (Data Sheet 8) Lateral displacement at 1.07 seconds after BOS is at least 1.83 m (6 feet) for vehicles with a GVWR of 3,500kg (7,716 lb) or less, and 1.52 m (5 feet) for vehicles with a GVWR greater than 3,500 Kg (7,716 lb). (S126, S5.2.3)	<u>PASS</u>
ESC Malfunction Warning (Data Sheet 9) Warning is provided to driver after malfunction occurrence. (S126. S5.3)	<u>PASS</u>
Malfunction telltale stayed illuminated as long as malfunction existed and must extinguish after malfunction was corrected. (S126, S5.3.7)	<u>PASS</u>

3.0 TEST DATA

Data Sheet 1 (Page 1 of 2) TEST VEHICLE INSPECTION AND TEST PREPARATION

Vehicle:	2012 Mazd	a 5 Passenger	Car		
NHTSA No. CC5403 Data Sheet Completion Date: 5/31/2011					
VIN <i>JM1CW2CL3CO105648</i> Manufacture Date: 12/10					
	GVWR (kg): 2125 Front GAWR (kg): 1056 Rear GAWR (kg): 1084				
	<u> </u>	ront: 2	_		<u></u>
Odomete	r reading at ti	me of inspecti	on: <u></u>	59 miles (94.4	<u>km)</u>
DESIGNA	TED TIRE SIZ	ZE(S) FROM VI	EHICLE L	ABELING:	
Fro	ont axle: <u>205/</u>	<u>/50 R17</u>	Rear a	xle: <u>205/50 R1</u>	<u>'7</u>
INSTALL	ED TIRE SIZE	(S) ON VEHICL	E (from	tire sidewall)	
			Front	Axle	Rear Axle
	Tire Manufa	acturer:	<u>To</u>	<u>yo</u>	<u>Toyo</u>
	Tire	Model:	Proxes	s A18	Proxes A18
	Ti	re Size:	205/5	0 R17	205/50 R17
TIN	Left Front:	N3H4 CC2 4	710	Right Front:	N3H4 CC2 4710
	Left Rear:	N3H4 CC2 4	710	Right Rear:	N3H4 CC2 4710
Are insta	lled tire sizes	same as labele	ed tire siz	zes? Yes	
If no, con	tact COTR for	further guidance	ce		
		-			
DRIVE CO	NFIGURATION	(S):(mark all tha	at apply)		_
X Two \	Wheel Drive (2WD) X	Front WI	neel Drive	Rear Wheel Drive
All Wheel Drive (AWD)					
Four Wheel Drive Automatic - differential no locked full time (4WD Automatic)					
Four Wheel Drive (High Gear Locked Differential 4WD HGLD)					
Four V	Vheel Drive Lo	w Gear (4WD L	ow)		
Other	(Describe)				

Data Sheet 1 (Page 2 of 2) TEST VEHICLE INSPECTION AND TEST PREPARATION

DRIVE CONFIGURATION	NS AND MODE	ES: (ex. default, perfo	rmance, off)
(For each of the vehicle	e's drive config	urations identify availa	able operating modes)
Drive Configuration Mode Drive Configuration Mode Drive Configuration	: Default, ESC : Front wheel : ESC off	on	
Mode	:		
VEHICLE STABILITY S	YSTEMS (Chec	k applicable technolog	ies):
List other systems:			
X ESC	X Traction	on Control	Roll Stability Control
Active Suspensi	ion X Electro	onic Throttle Control [Active Steering
X ABS			
REMARKS:			
RECORDED BY: J	Lenkeit	DATE RECORDE	D: <u>5/31/2011</u>
APPROVED BY: B	Kebschull	DATE APPROVE	D: <u>6/2/2011</u>

Data Sheet 2 (Page 1 of 2) ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

Vehicle: 2012 Mazda 5 Passel	nger Car			
NHTSA NoCC5403 Data Sheet Completion Date: 5/31/2011				
ESC SYSTEM IDENTIFICATION Manufacturer/Model Continer	N otal Automotive Systems/MK60EC			
ESC SYSTEM HARDWARE (Check applicable hardware)			
X Electronic Control UnitX Wheel Speed SensorsX Yaw Rate Sensor	X Hydraulic Control UnitX Steering Angle SensorX Lateral Acceleration Sensor			
List other Components:				
ESC OPERATIONAL CHARACT	TERISTICS			
brake torque for each wheel b	ic control unit is able to control the y adjusting the hydraulic pressure. To SC system controls the valve and	<u>X</u>	Yes (Pass No (Fail)	
System is capable of determin Brief explanation: <u>The actual y</u> sensor which resides in the RC	yaw rate signal is supplied by yaw rate	<u>X</u>	Yes (Pass No (Fail)	
System is capable of monitoring Brief explanation: The driver steering wheel and	teering input is calculated based on	<u>X</u>	Yes (Pass No (Fail)	
Brief explanation: The side slip control unit which calculates to wheel speed inputs, the steeri signal inputs, and the lateral a derivative is calculated by the speed signal is supplied by active.	ng side slip or side slip derivative be angle is estimated by the hydraulic the vehicle behavior based on the ing wheel angle inputs, the yaw rate cceleration input. The side slip hydraulic control unit. The wheel tive wheel speed sensor. The actual lateral G sensor which resides in the	<u>x</u>	Yes (Pass) No (Fail)	

Data Sheet 2 (Page 2 of 2) ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

ESC OPERATIONAL (CHARACTERISTIC	S (continued)		_
Method used to modi	fy torque: <i>The en</i> g	torque during ESC activ gine control will be activ ngine torque is modified	<u>'ated</u>	Yes (Pass) No (Fail)
- Controlling the thro - Reducing the spark				
System is capable of and higher	activation at spee	eds of 20 km/h (12.4 mp	oh) <u>)</u>	Yes (Pass) No (Fail)
Speed system becom	es active:	4.4 km/h		_ ` '
System is capable of - acceleration - braking - coasting	– du	the following driving pha ring activation of ABS o ction control	-	Yes (Pass) No (Fail)
Driving phases during All of the above.	y which ESC is cap	pable of activation:		
Vehicle manufacturer ESC mitigates unders		entation explaining how	the	Yes (Pass) No (Fail)
	DA	TA INDICATES COMPLIA	ANCE: >	Yes (Pass) No (Fail)
REMARKS:				
RECORDED BY:	B Kebschull	DATE RECORDED:	5/31/20	

Data Sheet 3 (Page 1 of 2) ESC MALFUNCTION AND OFF TELLTALES

Vehicle: 2012 Mazda 5 Passenger Ca	a <u>r</u>
NHTSA No. <i>CC5403</i>	Data Sheet completion date: 5/31/2011
ESC Malfunction Telltale	
Vehicle is equipped with malfunction	telltale? Yes
Telltale Location: <u>Center of instrum</u>	ent panel (IP)
Telltale Color: <u>Yellow</u>	
Telltale symbol or abbreviation used	
or ESC	Vehicle uses this symbol Vehicle uses this abbreviation Neither symbol or abbreviation is used
If different than identified above, mal abbreviation used.	ke note of any message, symbol or
Is telltale part of a common space?	<u>Vo</u>
Is telltale also used to indicate activa	tion of the ESC system? <u>Yes</u>
If yes explain telltale operation during	ESC activation:
Telltale flashes when DSC (ESC) syst	tem activates

Data Sheet 3 (Page 2 of 2) **ESC MALFUNCTION AND OFF TELLTALES**

"ESC OFF" Telltale	(if provided)		
Vehicle is equipped	with "ESC OFF" te	elltale? <u>Yes</u>	
Is "ESC Off" telltale telltale? <u>No</u>	e combined with "	ESC Malfunction" telltal	e utilizing a two part
Telltale Location: Lo	ower right corner o	of IP	
Telltale Color: Yei	<u>llow</u>		
Telltale symbol or al	obreviation used		
OFF or I	ESC OFF	X Vehicle uses the Vehicle uses the Neither symbol used	•
If different than identiused.	fied above, make n	ote of any message, sym	ool or abbreviation
Is telltale part of a c	ommon space? <i>No</i>	<u>.</u>	
DATA INDICATES C		<u>s</u> a malfunction telltale)	
Remarks:			
RECORDED BY:	B Kebschull	DATE RECORDED:	5/31/2011
APPROVED BY:	P Broen	DATE APPROVED:	6/1/2011

Data Sheet 4 (Page 1 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

Vehicle: 2012 Mazda 5 Passenger Car					
NHTSA No. <u>CC5403</u>		Data Sheet completion date: 5/31/2011			
"ESC OFF" Contro	ols Identification and	d Operational Chec	<u></u> <u>ck:</u>		
the ESC system o	ipped with a control or place the ESC sys performance require	tem in a mode or i	•		
Type of control controls provide (mark all that a dentify each cont	ed? Multi-	r (describe)	vith an "ESC Off" mode		
First Control:	Location On dash	board to the left of	of the driver		
Second Control:		icon is shown (ca	r with slip lines, "OFF") ion control also)		
dentify standard	or default drive conf	figuration <i>FWD</i>			
Verify standard or	r default drive config	guration	X Yes No		
	ff" telltale illuminate on of the "ESC Off"	mode on the multi	f the dedicated ESC off i-function control? X Yes No (Fail)		
	•	when the ignition	n is cycled from "on" 'On" ("Run") position?		
f no, describe ho	w the "Off" control		X Yes No (Fail)		

Data Sheet 4 (Page 2 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

If a multi-function control is provided, cycle through each mode setting on the control and record which modes illuminate the "ESC Off" telltale. Also, for those modes that illuminate the ESC Off" telltale identify if the telltale extinguishes upon cycling the ignition system.

"ESC Off" telltale "ESC Off" telltale

		illuminates upon activation of	extinguishes
Conti	rol Mode	control? (Yes/No)	upon cycling ignition? (Yes/No)
NA			
For each mode that illuminates the "ESC when the ignition was cycled from "On" again to the "On" ("Run") position?		("Run") to "Lock" or '	_
Other System Con	trols that have an ancil	lary effect on ESC Op	eration:
deactivate the ESC	oped with any ancillary C system or place the E he performance require	SC system in a mode	or modes that may
Ancillary Control:	System NA		
	Control Description		
	Labeling		
Ancillary Control:	System		
	Control Description		
	Labeling		
Ancillary Control:	System		
	Control Description		
	Labolina		

Data Sheet 4 (Page 3 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

Activate each ancillary control listed above and record whether the control illuminates the "ESC Off" telltale. Also, record warnings or messages provided regarding the ESC system.

	1	
	Control	
	Activates "ESC Off"	
Ancillary Control	Telltale? (Yes/No)	Warnings or Messages Provided
NA		

For those controls that illuminate the "ESC Off" telltale above identify if the "ESC Off" telltale extinguishes upon cycling the ignition system.

	"ESC Off" telltale extinguishes
Ancillary Control	upon cycling ignition? (Yes/No)
NA	

For each ancillary control that illuminates the "ESC Off" telltale, did the telltale extinguish when the ignition is cycled from "On" ("Run") to "Lock" or "Off" and then back again to the "On" ("Run") position? If activating the control places the vehicle into a low-range four-wheel drive configuration designed for low-speed, off—road driving, the ESC system may remain turned off after the ignition has been cycled off and then back on and therefore the "ESC Off" telltale may not extinguish.

		Yes	No (Fail) X NA
	DATA	INDICATES COMPLIAN	ICE: PASS
Remarks:			
RECORDED BY:	B Kebschull	DATE RECORDED:	5/31/2011
APPROVED BY:	P Broen	DATE APPROVED:	6/1/2011

Data Sheet 5 (Page 1 of 3) TEST TRACK AND VEHICLE DATA

Vehicle: 2012 Mazda 5 Passenger Car NHTSA No. CC5403 Data Sheet completion date: 6/1/2011 **Test Track Requirements:** Test surface slope (0-1%): 0.5% Peak Friction Coefficient (at least 0.9) 0.96 Test track data meets requirements: Yes If no, explain: **Full Fluid Levels:** Fuel Yes Other Fluids Yes (specify) Coolant Yes Oil, Washer Fluid, Brake Fluid Tire Pressures: Required; Front Axle 230 kPa Rear Axle 230 kPa Actual; LF *230* kPa RF *230* kPa LR 230 kPa RR 230 kPa **Vehicle Dimensions:** Front Track Width 151.8 cm Wheelbase 275.0 cm Rear Track Width 150.5 cm **Vehicle Weight Ratings:** GAWR Front 1056 GAWR Rear 1084 kg kg Unloaded Vehicle Weight (UVW): Front Axle 894.0 kg Left Front *451.3* kg Right Front 442.7 kg Rear Axle 693.1 Left Rear *346.1* kg kg Right Rear 347.0 kg Total UVW 1587.1 kg Baseline Weight and Outrigger Selection (only for MPVs, Trucks, Buses) Calculated baseline weight (UVW + 73kg) *1660.1* kg Outrigger size required ("Standard" or "Heavy") None Standard - Baseline weight under 2772 kg (6000 lb) Heavy - Baseline weight equal to or greater than 2772 kg (6000 lb)

Data Sheet 5 (Page 2 of 3) TEST TRACK AND VEHICLE DATA

UVW with Outriggers: (only for MPVs, Trucks, Buses)

Front axle
$$NA$$
 kg Left front NA kg Right front NA kg Rear axle NA kg Left rear NA kg Right rear NA kg Total UVW with outriggers NA kg

Loaded Vehicle Weight w/Driver and Instrumentation (no Ballast)

Total Loaded Vehicle Weight w/Driver and Instrumentation and Ballast

Data Sheet 5 (Page 3 of 3) TEST TRACK AND VEHICLE DATA

Center of Gravity and Inertial Sensing System Location at Loaded Vehicle Condition:

x-distance (longitudinal) Point of reference is the front axle centerline.

(Positive from front axle toward rear of vehicle.)

y-distance (lateral) Point of reference is the vehicle centerline.

(Positive from the center toward the right.)

z-distance (vertical) Point of reference is the ground plane.

(Positive from the ground up.)

Locations:

Center of Gravity			Inertia	l Sensing System	<u>l</u>	
x-distance	<i>47.8</i> _ in	<i>121.5</i> cm	_	66.0	in <u>167.7</u> cn	n
y-distance	in	<i>-0.7</i> cm	_	-0.6	_ in cn	n
z-distance	<u>24.2</u> in	<i>61.5</i> cm	_	17.1	_ in cn	n
		Roof Height _	63.717	n	<u>161.8</u> cm	
Distance between ultrasonic sensors			81.0	n	205.7 cm	

Remarks:

RECORDED BY: B Kebschull DATE RECORDED: 6/1/2011
APPROVED BY: J Lenkeit DATE APPROVED: 6/3/2011

Data Sheet 6 (Page 1 of 3) BRAKE AND TIRE CONDITIONING

Vehicle: 2012 Mazda 5 Passenger Car

NHTSA No. CC5403

Measured tire pressure: LF 240 kPa RF 237 kPa

LR 238 kPa RR 234 kPa

Wind Speed <u>1</u> m/s (10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 18 °C

Brake Conditioning Time: 10:20:00 AM Date: 6/1/2011

56 km/h (35 mph) Brake Stops

Number of stops executed (10 required) <u>10</u> Stops

Observed deceleration range (0.5g target) <u>0.5- 0.52</u> g

72 km/h (45 mph) Brake Stops

Number of stops executed (3 required) 3 Stops

Number of stops ABS activated (3 required) <u>3</u> Stops

Observed deceleration range 0.8-0.9 g

72 km/h (45 mph) Brake Cool Down Period

Duration of cool down period (5 minutes min.) 5 Minutes

Data Sheet 6 (Page 2 of 3) BRAKE AND TIRE CONDITIONING

Tire Conditioning series No. 1 Time: $\underline{10:37:00 \text{ AM}}$ Date: $\underline{6/1/2011}$

Measured cold tire pressure LF <u>256</u> kPa RF <u>256</u> kPa

LR <u>252</u> kPa RR <u>248</u> kPa

Wind Speed ___1 _ m/s (10 m/sec (22 mph) max for passenger cars;

5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 19.8°C

30 meter (100 ft) Diameter Circle Maneuver						
Test Run	Run Steering Target Lateral Observed Lateral Observed Vehicle Acceleration (g) Acceleration (g) Speed (Km/h)					
1-3	Clockwise	0.5 - 0.6	<u> 0.5 - 0.6</u>	<u> 28.8 - 32</u>		
4-6	Counterclockwise	0.5 - 0.6	<u>0.5 - 0.6</u>	<u> 28.8 - 32</u>		

	5-1 Hz Cycle Sinusoidal Steering Maneuver to Determine Steering Wheel Angle for 0.5-0.6 g Lateral Acceleration					
Test Run	Data File	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)			
1	2	56 ± 2 (35 ± 1)	<u>60</u>	0.5 - 0.6	<u>0.39</u>	
2	3	56 ± 2 (35 ± 1)	<u>80</u>	0.5 - 0.6	<u>0.51</u>	
3		56 ± 2 (35 ± 1)		0.5 - 0.6		
4		56 ± 2 (35 ± 1)		0.5 - 0.6		

Steering wheel angle that corresponds to a peak 0.5-0.6 g lateral acceleration: 80__ degrees

	10-1 Hz Cycle Sinusoidal Steering Maneuver				
Test Run	Data File	Vehicle Speed Km/h (mph)	Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)
1-3	<u>4-6</u>	56 ± 2 (35 ± 1)	80 (cycles 1-10)	0.5 - 0.6	<u>0.52</u>
4	7	FC + 2 (2F + 1)	<u>80</u> (cycles 1-9)	0.5 - 0.6	<u>0.52</u>
4 7 5	56 ± 2 (35 ± 1)	<u>160</u> (cycle10)*	NA	<u>0.75</u>	

^{*} The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9

Data Sheet 6 (Page 3 of 3) BRAKE AND TIRE CONDITIONING

Tire Conditioning series No. 2 Time: 12:00:00 PM Date: 6/1/2011

Measured cold tire pressure LF <u>263</u> kPa RF <u>260</u> kPa

LR <u>252</u> kPa RR <u>246</u> kPa

Wind Speed <u>2.9</u> m/s (10 m/sec (22 mph) max for passenger cars;

5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 22 °C

30 meter (100 ft) Diameter Circle Maneuver					
Test Run Steering Direction Target Lateral Acceleration (g) Acceleration (g) Observed Lateral Acceleration (g) Speed (Km/h)					
1-3	Clockwise	0.5 - 0.6	<u>0.5 - 0.6</u>	<u> 30.4 - 32</u>	
4-6	Counterclockwise	0.5 - 0.6	<u>0.5 - 0.6</u>	<u> 30.4 - 32</u>	

Steering wheel angle that corresponds to a peak 0.5 - 0.6 g lateral acceleration:

80 degrees

	10-1 Hz Cycle Sinusoidal Steering Maneuver				
Test Data Vehicle Speed Steering Wheel Lateral Lateral Lateral					Observed Peak Lateral Acceleration (g)
1-3	<u>16-18</u>	56 ± 2 (35 ± 1)	<u>80</u> (cycles 1-10)	0.5 - 0.6	<u>0.52</u>
4	10	FC + 2 (2F + 1)	<u>80</u> (cycles 1-9)	0.5 - 0.6	<u>0.52</u>
4	4 $\frac{19}{1}$ 56 ± 2 (35 ± 1)		<u>160</u> (cycle 10)*	NA	<u>0.75</u>

^{*} The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9

Remarks:

RECORDED BY: P Broen DATE RECORDED: 6/1/2011
APPROVED BY: J Lenkeit DATE APPROVED: 6/3/2011

Data Sheet 7 (Page 1 of 2) SLOWLY INCREASING STEER (SIS) MANEUVER

Vehicle: 2012 Mazda 5 Passenger Car

NHTSA No. CC5403

Measured tire pressure: LF 259 kPa RF 257 kPa

LR <u>255</u> kPa RR <u>249</u> kPa

Wind Speed 5 m/s

(10 m/sec (22 mph) max for passenger cars; 5 m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 23 °C

Selected drive configuration __Default-FWD

Selected Mode: Default- ESC on

Preliminary Left Steer Maneuver:

Lateral Acceleration measured at 30 degrees steering wheel angle

$$a_{y,30 \text{deg}rees} =$$
 0.35 g

Assuming a linear relationship the following ratio should be used to calculate the steering wheel angle at 0.55g:

$$\frac{30 \text{ degrees}}{a_{y,30 \text{ degrees}}} = \frac{\delta_{SIS}}{0.55 \text{ g}}$$

$$\frac{\delta_{sis}}{\delta_{sis}} = \frac{47.1}{50} \text{ degrees (@.55g)}$$

$$\delta_{sis} = \frac{50}{50} \text{ degrees (rounded)}$$

Steering Wheel Angle at Corrected 0.3g Lateral Acceleration:

	J	Time Clock	Steering Wheel Angle		
	Initial Steer	(5 min max	to nearest	Data	
Maneuver	Direction	between runs)	0.1° (degrees)	Run	Good/NG
1	Left	<u>11:38</u>	<u>-27.3</u>	<u>10</u>	<u>Good</u>
2	Left	<u>11:38</u>	<u>-27.5</u>	<u>11</u>	Good
3	Left	<u>11:39</u>	<u>-28.1</u>	<u>12</u>	Good
4	Left				<u>Good</u>
5	Left				
1	Right	<u>11:40</u>	<u>27.6</u>	<u>13</u>	Good
2	Right	<u>11:43</u>	<u>26.8</u>	<u>14</u>	Good
3	Right	<u>11:46</u>	<u>26.8</u>	<u>15</u>	Good
4	Right				
5	Right				

Remarks:

Data Sheet 7 (Page 2 of 2) SLOWLY INCREASING STEER (SIS) MANEUVER

Average Overall Steering Wheel Angle:

$$\delta_{0.3 \ g, \ overall} = (\mid \delta_{0.3 \ g, \ left \ (1)} \mid + \mid \delta_{0.3 \ g, \ left \ (2)} \mid + \mid \delta_{0.3 \ g, \ left \ (3)} \mid + \delta_{0.3 \ g, \ right \ (1)} + \delta_{0.3 \ g, \ right \ (2)} + \delta_{0.3 \ g, \ right \ (3)}) \ / \ 6$$

$$\delta_{0.3 \ g, \ overall} = \underline{27.3} \qquad \text{degrees}$$
[to nearest 0.1 degree]

RECORDED BY: PBroen DATE RECORDED: 6/1/2011 APPROVED BY: JLenkeit DATE APPROVED: 6/3/2011

Data Sheet 8 (Page 1 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Vehicle: 2012 Mazda 5 Passenger Co	a <u>r</u>		
NHTSA No. <u>CC5403</u>	Data sheet comp	oletion date:_	6/1/2011
Tire conditioning completed		X Yes	No
ESC system is enabled		X Yes	No
On track calibration checks have	e been completed	X Yes	No
On track static data file for each	n sensor obtained	X Yes	No
Selected Drive Configuration:	Default- FWD		
Selected Mode: Default- ESC	C on		
Overall steering wheel angle (δο.	3 g, overall) 27.3	degrees	

Lateral Stability Test Series No. 1 - Counterclockwise Initial Steer Direction

		Comm			Yaw Rate			'RR		/RR
	Clock	Steering	Wheel	(c	(degrees/sec)		at 1.0 sec after		at 1.75 sec after	
Maneuver	Time	Ang	Jle¹				cos		cos	
#							[<	35%]	[<	20%]
	(1.5 - 5.0)	Scalar	Angle	. • .	• _	. • .	%	Pass/Fail	%	Pass/Fail
	min max	(* δ _{0.3 g})	(degrees)	$\psi_{{\scriptscriptstyle Peak}}$	$\psi_{1.0 \text{sec}}$	$\psi_{1.75 \mathrm{sec}}$,0	1 456/1 411	, ,	1 400/1 411
	between	(00.3 g)	(degrees)	. 1 0000	1.0500	1.,0000				
	runs)									
21	12:24	1.5	41	12.71	-0.07	0.10	-0.58	PASS	0.75	PASS
22	12:29	2.0	55	17.23	-0.12	-0.06	-0.71	PASS	-0.33	PASS
23	12:33	2.5	68	19.26	0.05	-0.01	0.26	PASS	-0.05	PASS
24	12:36	3.0	82	23.53	0.13	0.22	0.54	PASS	0.93	PASS
25	12:39	3.5	96	29.16	-0.24	-0.11	-0.82	PASS	-0.37	PASS
26	12:43	4.0	109	34.90	-0.25	-0.10	-0.72	PASS	-0.29	PASS
27	12:45	4.5	123	38.68	-0.22	-0.11	-0.57	PASS	-0.29	PASS
28	12:49	5.0	136	42.23	-0.46	-0.43	-1.09	PASS	-1.02	PASS
29	12:51	5.5	150	45.78	-0.55	-0.50	-1.19	PASS	-1.08	PASS
30	12:55	6.0	164	49.24	-0.17	-0.08	-0.34	PASS	-0.17	PASS
31	12:57	6.5	177	51.98	0.00	0.01	0.01	PASS	0.03	PASS
32	13:00	7.0	191	53.85	-0.07	-0.14	-0.13	PASS	-0.26	PASS
33	13:03	7.5	205	54.33	-0.25	-0.11	-0.46	PASS	-0.19	PASS
34	13:06	8.0	218	56.77	0.84	0.33	1.47	PASS	0.57	PASS
35	13:09	8.5	232	58.77	0.40	-0.06	0.67	PASS	-0.11	PASS
36	13:12	9.0	246	61.33	0.49	0.07	0.80	PASS	0.11	PASS
37	13:15	9.5	259	61.17	-0.06	-0.17	-0.10	PASS	-0.28	PASS
39	13:22	-	270	61.60	-0.24	0.21	-0.39	PASS	0.34	PASS

^{1.} Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5 *\delta_0.3 g, overall or 270 degrees is utilized, whichever is greater provided the calculated magnitude of 6.5 *\delta_0.3 g, overall is less than or equal to 300 degrees. If 6.5 *\delta_0.3 g, overall is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5 *\delta_0.3 g, overall without exceeding the 270 degree steering wheel angle.

DATA SHEET 8 (2 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

LATERAL STABILITY TEST SERIES NO. 2 - Clockwise Initial Steer Direction

	LATERAL STABILITY TEST SERIES NO. 2 - Clockwise initial Steer Direction									
		Comm	anded	•	Yaw Rate:	S	١	/RR	Υ	′RR
	Clock	Steering	y Wheel	(degrees/sec)		at 1.0 sec after		at 1.75 sec after		
Maneuver	Time	Ang	·	•	0	,		cos	COS	
#	'	,	,					35%]	[< 20%]	
π	(1.5 – 5.0									
	min max	Scalar	Angle	$\dot{\psi}_{\scriptscriptstyle Peak}$	$\dot{\psi}_{ m 1.0sec}$	$\dot{\psi}_{1.75 \mathrm{sec}}$	%	Pass/Fail	%	Pass/Fail
	between	(* δο.3 g)	(degrees)	Y Peak	7 1.0sec	Ψ 1./5sec				
	runs)									
40	13:28	1.5	41	-13.11	0.06	0.14	-0.46	<u>PASS</u>	-1.09	<u>PASS</u>
41	13:32	2.0	55	-18.13	-0.09	-0.19	0.48	<u>PASS</u>	1.05	<u>PASS</u>
42	13:35	2.5	68	-20.31	0.10	-0.10	-0.47	<u>PASS</u>	0.51	<u>PASS</u>
43	13:38	3.0	82	-25.65	-0.22	-0.32	0.86	<u>PASS</u>	1.23	<u>PASS</u>
44	13:41	3.5	96	-29.89	0.04	-0.02	-0.13	<u>PASS</u>	0.07	<u>PASS</u>
45	13:44	4.0	109	-35.96	-0.03	-0.04	0.09	<u>PASS</u>	0.11	<u>PASS</u>
46	13:46	4.5	123	-41.23	0.00	-0.08	0.01	<u>PASS</u>	0.19	<u>PASS</u>
47	13:49	5.0	136	-44.26	0.10	0.06	-0.23	<u>PASS</u>	-0.13	<u>PASS</u>
48	13:52	5.5	150	-47.61	-0.08	-0.17	0.16	<u>PASS</u>	0.36	<u>PASS</u>
49	13:55	6.0	164	-51.02	0.07	-0.06	-0.13	<u>PASS</u>	0.12	<u>PASS</u>
50	13:58	6.5	177	-54.41	0.31	0.13	-0.57	<u>PASS</u>	-0.23	<u>PASS</u>
51	14:00	7.0	191	-57.13	0.19	0.04	-0.33	<u>PASS</u>	-0.07	<u>PASS</u>
52	14:03	7.5	205	-58.78	-0.06	-0.13	0.10	PASS	0.22	PASS
53	14:06	8.0	218	-61.47	-0.26	-0.12	0.42	PASS	0.19	PASS
54	14:09	8.5	232	-63.85	-0.77	-0.28	1.20	PASS	0.44	PASS
55	14:12	9.0	246	-64.22	-0.34	-0.06	0.53	PASS	0.10	PASS
56	14:15	9.5	259	-66.90	-0.77	-0.23	1.15	PASS	0.34	PASS
57	14:18	-	270	-66.07	-0.76	-0.27	1.16	PASS	0.41	PASS

^{1.} Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5*\delta_{0.3 g, overall} or 270 degrees is utilized, whichever is greater provided the calculated 6.5*\delta_{0.3 g, overall} is less than or equal to 300 degrees. If 6.5*\delta_{0.3 g, overall} is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5*\delta_{0.3 g, overall} without exceeding the 270 degree steering wheel angle.

During execution of the Sine with Dwell maneuvers following events observed?	wer	e any	of tl	ne
5				
Rim-to-pavement contact		Yes	X	No
Tire debeading		Yes	X	No
Loss of pavement contact of vehicle tires		Yes	X	No
Did the test driver experience any vehicle loss of control or spinout?		Yes	X	No
loss of control of spinout?				
If "Yes" explain the event and consult with the	ne C0	OTR.		

DATA SHEET 8 (3 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Responsiveness - Lateral Displacement

Responsiveness – Lateral Displacement									
			Steering Wheel gle	Calculated Lateral Displacement ¹					
Maneuver	Initial Steer	(5.0* δ 0.3 g, over	or greater)						
#	Direction	Scalar	Angle	Distance	Pass/Fail				
		* δ 0.3 g	(degrees)	(m)					
28	Counter Clockwise	5.0	136	-3.1	PASS				
29	Counter Clockwise	5.5	150	-3.1	PASS				
30	Counter Clockwise	6.0	164	-3.3	PASS				
31	Counter Clockwise	6.5	177	-3.3	PASS				
32	Counter Clockwise	7.0	191	-3.3	PASS				
33	Counter Clockwise	7.5	205	-3.3	PASS				
34	Counter Clockwise	8.0	218	-3.4	PASS				
35	Counter Clockwise	8.5	232	-3.4	PASS				
36	Counter Clockwise	9.0	246	-3.4	PASS				
37	Counter Clockwise	9.5	259	-3.3	PASS				
39	Counter Clockwise	-	270	-3.4	<u>PASS</u>				
47	Clockwise	5.0	136	3.0	PASS				
48	Clockwise	5.5	150	3.1	PASS				
49	Clockwise	6.0	164	3.1	PASS				
50	Clockwise	6.5	177	3.2	PASS				
51	Clockwise	7.0	191	3.2	PASS				
52	Clockwise	7.5	205	3.3	PASS				
53	Clockwise	8.0	218	3.3	PASS				
54	Clockwise	8.5	232	3.3	PASS				
55	Clockwise	9.0	246	3.3	PASS				
56	Clockwise	9.5	259	3.3	PASS				
57	Clockwise	9.5	270	3.3	PASS PASS				
57	Ciockwise	П	270	ა.ა	FASS				

^{1.} Lateral displacement should be \geq 1.83 m (6 ft) for vehicle with a GVWR of 3,500 kg (7,716 lb) or less; and \geq 1.52 m (5 ft) for vehicles with GVWR greater than 3,500 kg (7,716 lb).

DATA INDICATES O	COMPLIANCE:	☑ PASS	☐ FAIL
Remarks:			
RECORDED BY:	P Broen	DATE RECORDED:	6/1/2011
APPROVED BY:	J Lenkeit	DATE APPROVED:	6/3/2011

Data Sheet 9 (Page 1 of 2) MALFUNCTION WARNING TESTS

Vehicle: <u>2012 Mazda 5 Passenger Car</u>	
NHTSA No. <u>CC5403</u> Da	ata Sheet Completion Date: 6/1/2011
TE	ST 1
MALFUNCTION SIMULATION: De	scribe method of malfunction simulation
Disconnected LF wheel speed sense	<u>or</u>
MALFUNCTION TELLTALE ILLUM	INATION:
Telltale illuminates and remains illumina activated and if necessary the vehicle is	<u> </u>
	<u>X</u> Yes No
Time for telltale to illuminate after ignit of 48 ± 8 km/h (30 ± 5 mph) is reached Seconds (must be within 2 m	
ESC SYSTEM RESTORATION	
Telltale extinguishes after ignition locking the vehicle is driven at least 2 minutes.	• .
	_ X _YesNo
Time for telltale to extinguish after ignitized speed of 48 \pm 8 km/h (30 \pm 5 mph) is r	•
O Seconds (must be within 2 m	inutes) X Pass Fail
TEST 1 DATA IN	DICATES COMPLIANCE: PASS
was necessary). After the wheel speed	(no driving was necessary). Note: The
and extinguished when it was reconnec	<u>:ted.</u>
RECORDED BY: B Kebschull	DATE RECORDED: <u>6/1/2011</u>
ADDDOVED DV. D Proop	DATE ADDDOVED 6/1/2011

Data Sheet 9 (Page 2 of 2) MALFUNCTION WARNING TESTS

Vehicle: 2012 Mazda 5 Passenger C	a <u>r</u>
NHTSA No <i>. CC5403</i>	Data Sheet Completion Date: 6/1/2011
	TEST 2
MALFUNCTION SIMULATION	Describe method of malfunction simulation
Disconnected ABS pump motor	<u>r fuse</u>
MALFUNCTION TELLTALE ILL	.UMINATION:
Telltale illuminates and remains illu activated and if necessary the vehi	minated after ignition locking system is cle is driven at least 2 minutes. X Yes No
Time for telltale to illuminate after of 48 ± 8 km/h (30 ± 5 mph) is rea	
ESC SYSTEM RESTORATION	
Telltale extinguishes after ignition I the vehicle is driven at least 2 minutes.	ocking system is activated and if necessary utes.
	<u>X</u> Yes No
Time for telltale to extinguish after speed of 48 \pm 8 km/h (30 \pm 5 mph	ignition system is activated and vehicle) is reached.
O Seconds (must be within	2 minutes) X Pass Fail
TEST 2 DAT	A INDICATES COMPLIANCE: PASS
was necessary). After the fuse wa	ninated immediately upon ignition (no driving as re-installed, the telltale did not extinguish and the apply.
RECORDED BY: B Kebschull	DATE RECORDED: <u>6/1/2011</u>
APPROVED BV: P Proon	DATE ADDROVED 6/1/2011

4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION (1 OF 2)

TABLE 1. TEST INSTRUMENTATION

Туре	Output	Range	Resolution	Accuracy	Specifics	Serial Number	Calibration
Tire Pressure Gauge	Vehicle Tire Pressure	0-100 psi 0-690 kPa	1 psi 6.89 kPa	0.5 psi 3.45 kPa	Ashcroft D1005PS	1039350	By: DRI Date:2/22/11 Due: 2/22/12
Platform Scales	Vehicle Total, Wheel, and Axle Load	8000 lb 35.6 kN	0.5 lb 2.2 N	±1.0% of applied load	Intercomp Model SWII	24032361	By: DRI Date: 2/23/11 Due: 2/23/12
Automated Steering Machine with Steering Angle Encoder	Handwheel Angle	±800 deg	0.25 deg	±0.25 deg	Heitz Automotive Testing Model: Sprint 3	60304	By: DRI Date: 3/30/11 Due: 3/30/12
Multi-Axis Inertial Sensing System	Longitudinal, Lateral, and Vertical Acceleration Roll, Yaw, and Pitch Rate	Accelerometer s: ±2 g Angular Rate Sensors: ±100 deg/s	Accelerometers: ≤10 ug Angular Rate Sensors: ≤0.004 deg/s	Acceleromete rs: ≤0.05% of full range Angular Rate Sensors: 0.05% of full range	BEI Technologies Model: MotionPAK MP-1	0767	By: Systron Donner Date: 3/8/11 Due: 3/8/12
Radar Speed Sensor and Dashboard Display	Vehicle Speed	0-125 mph 0-200 km/h	0.009 mph .014 km/h	±0.25% of full scale	A-DAT Corp. Radar Model: DRS-6 Display Model: RD-2	1400.604	By: DRI Date: 5/3/11 Due: 5/3/12
Ultrasonic Distance	Left and Right Side	5-24 inches	0.01 inches	±0.25% of	Massa Products Corporation	DOT-NHTSA D2646	By: DRI Date: 2/22/11 Due: 2/21/12
Measuring System	Vehicle Height	127-610 mm	.254 mm	distance	Model: M- 5000/220	DOT-NHTSA D3272	By: DRI Date: 2/22/11 Due: 2/22/12

4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION (2 OF 2)

TABLE 1. TEST INSTRUMENTATION (CONTD)

Туре	Output	Range	Resolution	Accuracy	Specifics	Serial Number	Calibration
Data Acquisition System [Includes amplification, anti-	Record Time; Velocity; Distance; Lateral, Longitudinal, and Vertical	Sufficient to meet or exceed	200 Hz	Sufficient to meet or exceed	SoMat eDaq ECPU processor	MSHLB.03- 2476	By: DRI Date: 3/29/11 Due: 3/29/12
aliasing, and analog to digital conversion.]	Accelerations; Roll, Yaw, and Pitch Rates; Steering Wheel Angle.	individual sensors		individual sensors	SoMat High level Board EHLS	MSHLS.03- 3182	By: DRI Date: 3/29/11 Due: 3/29/12
Load Cell	Vehicle Brake Pedal Force	0-300 lb 0-1.33 kN	1 lb 4.44 N	±0.05% of full scale	Lebow 3663-300	767	Operationally verified by DRI prior to test
Coordinate Measurement Machine	Inertial Sensing System Coordinates	0-8 ft 0-2.4 m	±.0020 in. ±.051 mm	±.0020 in. ±.051 mm (Single point articulation accuracy)	Faro Arm Fusion	UO8-05-08- 06636	By; DRI Date: 11/7/10 Due: 11/7/11
Outriggers	No output. Safety Item.	NA	NA	NA	DRI manufactured Aluminum meeting the weight and MOI specifications of Docket 2007- 27662-11	NA	NA

5.0 PHOTOGRAPHS (1 of 15)

Figure 5.1. Front View of Test Vehicle

5.0 PHOTOGRAPHS (2 of 15)

Figure 5.2. Rear View of Test Vehicle

5.0 PHOTOGRAPHS (3 of 15)

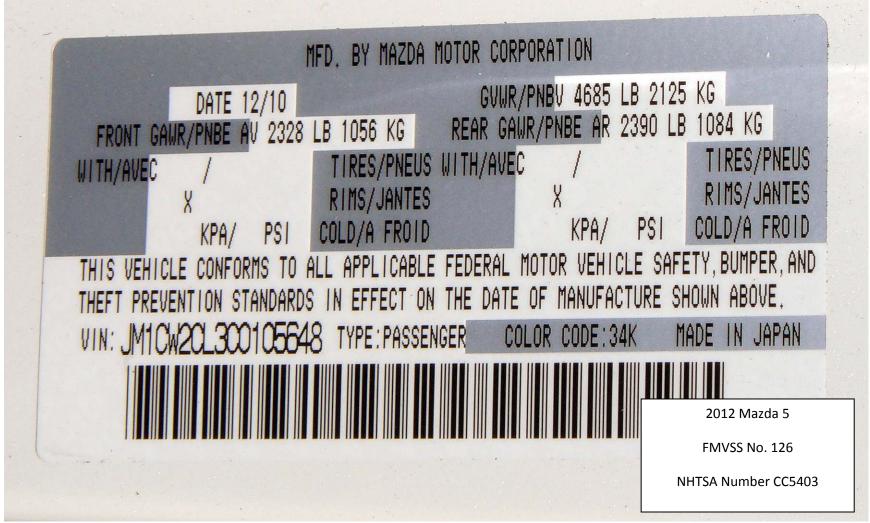


Figure 5.3. Vehicle Certification Label

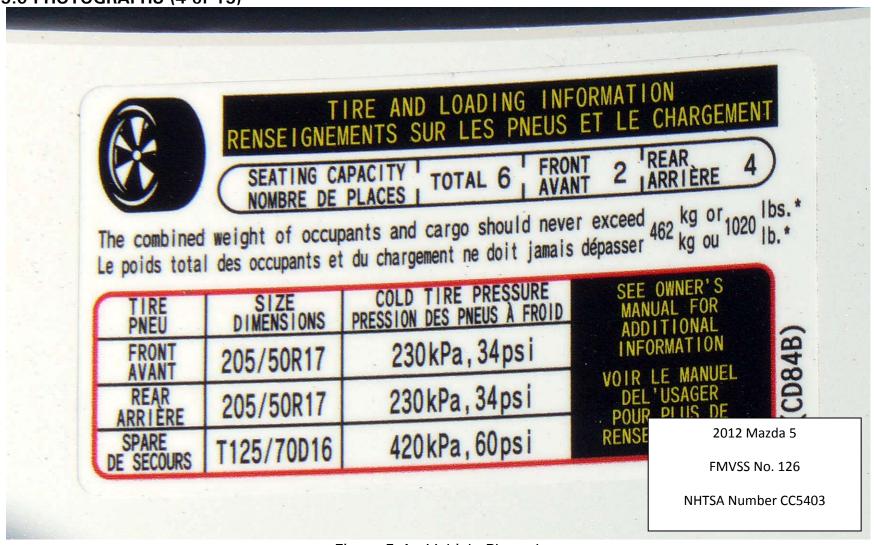


Figure 5.4. Vehicle Placard

5.0 PHOTOGRAPHS (5 of 15)

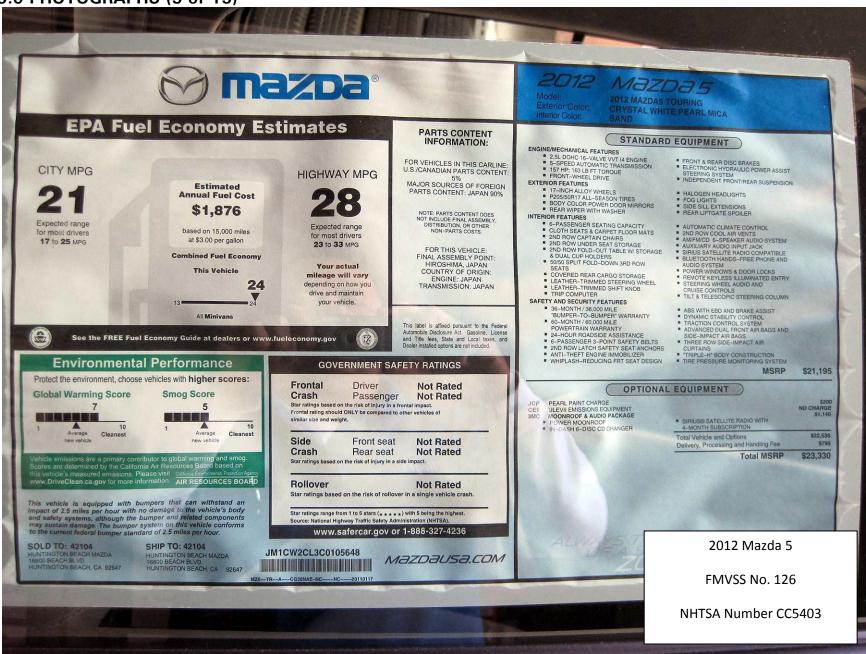


Figure 5.5. Window Sticker (Monroney Label)

5.0 PHOTOGRAPHS (6 of 15)

Figure 5.6. Front View of Vehicle as Tested

5.0 PHOTOGRAPHS (7 of 15)

Figure 5.7. Rear View of Vehicle as Tested

Figure 5.8. Ultrasonic Height Sensor Mounted on Side of Vehicle for Determining Body Roll Angle

Figure 5.10. Steering Controller and Data Acquisition Computer

5.0 PHOTOGRAPHS (11 of 15) 2012 Mazda 5 FMVSS No. 126 NHTSA Number CC5403

Figure 5.11. Inertial Measurement Unit Mounted in Vehicle

5.0 PHOTOGRAPHS (12 of 15)

Figure 5.12. Brake Pedal Load Cell

5.0 PHOTOGRAPHS (13 of 15)

Figure 5.13. Telltale for DSC (ESC) Malfunction and DSC (ESC) Activation

Figure 5.14. Telltale for DSC (ESC) Off

Figure 5.15. DSC (ESC) Off Control Switch

6.0 DATA PLOTS (1 of 4)

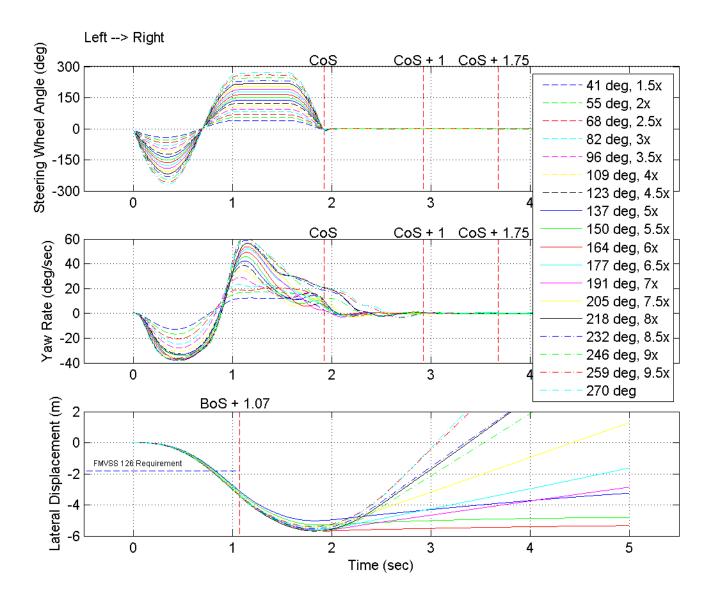


Figure 6.1. Steering Wheel Angle, Yaw Rate and Lateral Displacement for L-R Series

6.0 DATA PLOTS (2 of 4)

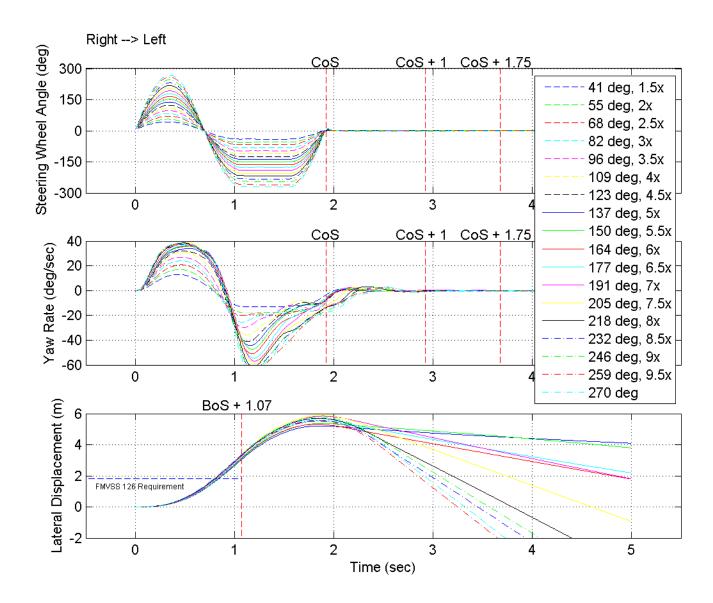


Figure 6.2. Steering Wheel Angle, Yaw Rate and Lateral Displacement for R-L Series

6.0 DATA PLOTS (3 of 4)

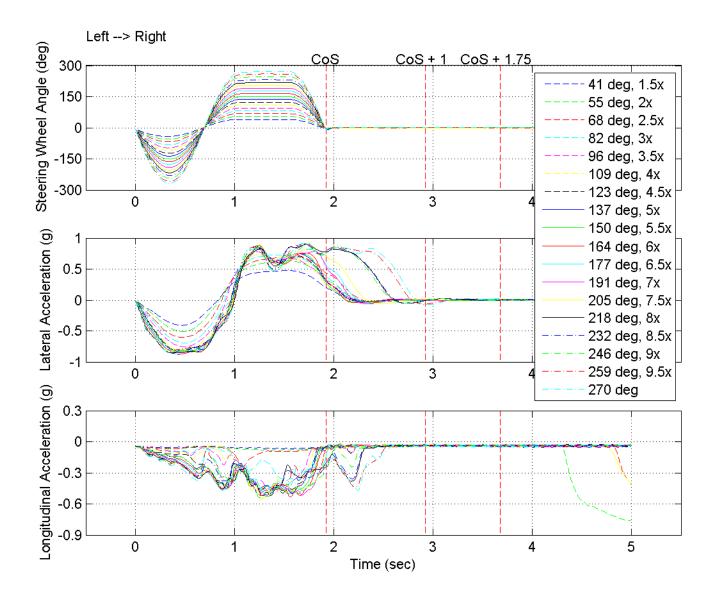


Figure 6.3. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for L-R Series

6.0 DATA PLOTS (4 of 4)

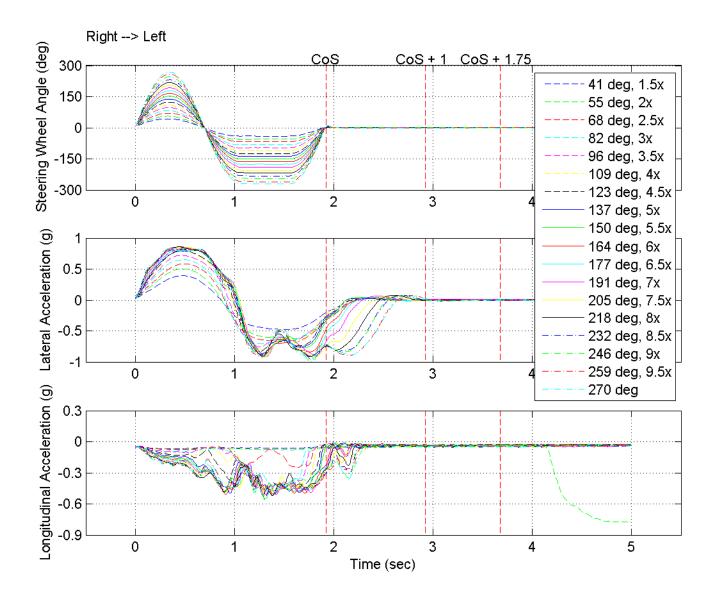


Figure 6.4. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for R-L Series

7.0 OTHER DOCUMENTATION

- 7.1 OWNER'S MANUAL PAGES
- 7.2 VEHICLE ARRIVAL CONDITION REPORT
- 7.3 VEHICLE COMPLETION CONDITION REPORT
- 7.4 SINE WITH DWELL TEST RESULTS
- 7.5 SLOWLY INCREASING STEER TEST RESULTS
- 7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES

Your Vehicle at a Glance

Interior Overview

Interior Equipment (View A) ③ DSC OFF switch page 5-24 ⑤ Turn and lane-change signal page 5-55

Starting and Driving

Traction Control System (TCS)

The Traction Control System (TCS) enhances traction and safety by controlling engine torque and braking. When the TCS detects driving wheel slippage, it lowers engine torque and operates the brakes to prevent loss of traction.

This means that on a slick surface, the engine adjusts automatically to provide optimum power to the drive wheels, limiting wheel spin and loss of traction.

WARNING

Do not rely on the traction control system as a substitute for safe driving:

The traction control system (TCS) cannot compensate for unsafe and reckless driving, excessive speed, tailgating (following another vehicle too closely), and hydroplaning (reduced tire friction and road contact because of water on the road surface). You can still have an accident.

Use snow tires or tire chains and drive at reduced speeds when roads are covered with ice and/or snow:

Driving without proper traction devices on snow and/or ice-covered roads is dangerous. The traction control system (TCS) alone cannot provide adequate traction and you could still have an accident.

NOTE

To turn off the TCS, press the DSC OFF switch (page 5-25).

▼TCS/DSC Indicator Light

This indicator light stays on for a few seconds when the ignition is switched ON. If the TCS or DSC is operating, the indicator light flashes.

If the light stays on, the TCS or DSC may have a malfunction and they may not operate correctly. Take your vehicle to an Authorized Mazda Dealer.

NOTE

- In addition to the indicator light flashing, a slight lugging sound will come from the engine. This indicates that the TCS is operating properly.
- On slippery surfaces, such as fresh snow, it will be impossible to achieve high rpm when the TCS is on.

Driving Your Mazda

Starting and Driving

Dynamic Stability Control (DSC)

The Dynamic Stability Control (DSC) automatically controls braking and engine torque in conjunction with systems such as ABS and TCS to help control side slip when driving on slippery surfaces, or during sudden or evasive maneuvering, enhancing vehicle safety.

Refer to ABS (page 5-8) and TCS (page 5-23).

DSC operation is possible at speeds greater than 20 km/h (12 mph).

A WARNING

Do not rely on the dynamic stability control as a substitute for safe driving: The dynamic stability control (DSC) cannot compensate for unsafe and reckless driving, excessive speed, tailgating (following another vehicle too closely), and hydroplaning (reduced tire friction and road contact because of water on the road surface). You can still have an accident.

A CAUTION

- The DSC may not operate correctly unless the following are observed:
 - Use tires of the correct size specified for your Mazda on all four wheels.
 - Use tires of the same manufacturer, brand and tread pattern on all four wheels.
 - > Do not mix worn tires.
- The DSC may not operate correctly when tire chains are used or a temporary spare tire is installed because the tire diameter changes.

NOTE

After switching the ignition ON, a clicking sound may be heard behind the dashboard. This sound is the result of the DSC system self-check operation and does not indicate an abnormality.

▼TCS/DSC Indicator Light

This indicator light stays on for a few seconds when the ignition is switched ON. If the TCS or DSC is operating, the indicator light flashes.

If the light stays on, the TCS or DSC may have a malfunction and they may not operate correctly. Take your vehicle to an Authorized Mazda Dealer.

Starting and Driving

▼DSC OFF Indicator Light

This indicator light stays on for a few seconds when the ignition is switched ON.

It also illuminates when the DSC OFF switch is pressed and TCS/DSC is switched off (page 5-25).

If the light stays on when the TCS/DSC is not switched off, take your vehicle to an Authorized Mazda Dealer. The dynamic stability control may have a malfunction.

▼DSC OFF Switch

Press the DSC OFF switch to turn off the TCS/DSC. The DSC OFF indicator light will illuminate.

Press the switch again to turn the TCS/ DSC back on. The DSC OFF indicator light will go out.

NOTE

- When DSC is on and you attempt to free the vehicle when it is stuck, or drive it out of freshly fallen snow, the TCS (part of the DSC system) will activate. Depressing the accelerator will not increase engine power and freeing the vehicle may be difficult. When this happens, turn off the TCS/DSC.
- If the TCS/DSC is off when the engine is turned off, it automatically activates when the ignition is switched ON.
- Leaving the TCS/DSC on will provide the best stability.

Driving Your Mazda

Warning/Indicator Lights and Beep Sounds

▼ Headlight High-Beam Indicator Light



This light indicates one of two things:

- · The high-beam headlights are on.
- The turn signal lever is in the flash-topass position.

▼Shift Position Indicator Light (Automatic Transaxle)

This indicates the selected shift position.

In manual mode, the "M" of the shift position indicator illuminates and the numeral for the selected gear displays in the gear position indicator.

5-46

▼Low Engine Coolant Temperature Indicator Light (Blue)

When the ignition is switched ON, the light illuminates momentarily and then turns off.

The light illuminates continuously when the engine coolant temperature is low and turns off after the engine has reached normal operating temperature.

NOTE

If the low engine coolant temperature indicator light remains illuminated after the engine has been sufficiently warmed up, the temperature sensor could have a malfunction. Consult an Authorized Mazda Dealer.

▼TCS/DSC Indicator Light

This indicator light stays on for a few seconds when the ignition is switched ON. If the TCS or DSC is operating, the indicator light flashes.

If the light stays on, the TCS or DSC may have a malfunction and they may not operate correctly. Take your vehicle to an Authorized Mazda Dealer.

Driving Your Mazda

Warning/Indicator Lights and Beep Sounds

NOTE

- In addition to the indicator light flashing, a slight lugging sound will come from the engine. This indicates that the TCS is operating properly.
- On slippery surfaces, such as fresh snow, it will be impossible to achieve high rpm when the TCS is on.

▼DSC OFF Indicator Light

This indicator light stays on for a few seconds when the ignition is switched ON

It also illuminates when the DSC OFF switch is pressed and TCS/DSC is switched off (page 5-25).

If the light stays on when the TCS/DSC is not switched off, take your vehicle to an Authorized Mazda Dealer. The dynamic stability control may have a malfunction.

▼Cruise Main Indicator Light (Amber)/Cruise Set Indicator Light (Green) *

CRUISE

The indicator light has two colors.

Cruise Main Indicator Light (Amber)

The indicator light illuminates amber when the ON switch is pressed and the cruise control system is activated.

Cruise Set Indicator Light (Green)

The indicator light illuminates green when a cruising speed has been set.

▼Lights-On Indicator Light

This indicator light illuminates when the exterior lights and dashboard illumination are on.

▼Power Steering Malfunction Indicator Light

This indicator light illuminates when the ignition is switched ON, and turns off when the engine is started.

7.2 VEHICLE ARRIVAL CONDITION REPORT

CONTRACT NO.: DTNH22-08-D-00098 DATE: *5/20/2011* Purpose X Initial Receipt From: Automotive Allies Received via Transfer Present Vehicle Condition To: Dynamic Research, Inc. Vehicle VIN: *JM1CW2CL3CO105648* NHTSA NO.: CC5403 Model Year: 2012 Odometer Reading: *59* Miles Make Mazda Body Style: Passenger Car Model: Body Color: White 5 Manufacture Date: Dealer: Automotive Allies 12/10 GVWR (kg/lb) 2125/4685 Price: Leased X All options listed on the "Window Sticker" are present on the test vehicle Tires and wheel rims are new and the same as listed There are no dents or other interior or exterior flaws The vehicle has been properly prepared and is in running condition The glove box contains an owner's manual, warranty document, consumer information, and extra set of keys Representation Proper fuel filler cap is supplied on the test vehicle Right Place vehicle in storage area Inspect the vehicle's interior and exterior, including all windows, seats, doors, etc., to confirm that each system is complete and functional per the manufacturer's specifications. Any damage, misadjustment, or other unusual condition that could influence the test program or test results shall be recorded. Report any abnormal condition to the NHTSA COTR before beginning any test. NOTES: RECORDED BY: J Lenkeit DATE RECORDED: *5/20/2011*

DATE APPROVED: *6/2/2011*

APPROVED BY: B Kebschull

7.3 VEHICLE COMPLETION CONDITION REPORT

CONTRACT NO.: <u>DTNH22-08-D-00098</u> DATE: <u>6/13/2011</u>	<u>3</u>								
Vabiala VIII. 1441CW2CL2CO10564	10 NUTCA NO . CC5402								
Vehicle VIN: <u>JM1CW2CL3CO10564</u> Model Year: 2012	18 NHTSA NO.: <u>CC5403</u> Odometer Reading: 114 Miles								
Make: <i>Mazda</i>	Body Style: <i>Passenger Car</i>								
Model: <i>5</i>	Body Color: White								
Manufacture Date: 12/10	Dealer: Automotive Allies								
GVWR (kg/lb) <u>2125 (4685)</u>	Price: <u>Leased</u>								
LIST OF FMVSS TESTS PERFORMED BY									
_	RLY MAINTAINED AND IS IN RUNNING								
	OWNER'S MANUAL, WARRANTY MATION, AND EXTRA SET OF KEYS								
☑ PROPER FUEL FILLER CAP IS SU REMARKS:	PPLIED ON THE TEST VEHICLE								
Equipment that is no longer on the test vi Condition Report:	rehicle as noted on Vehicle Arrival								
Explanation for equipment removal:									
Test Vehicle Condition:									
As delivered, like new.									
RECORDED BY: J Lenkeit	DATE RECORDED: <u>6/13/2011</u>								
APPROVED BY: P Broen	DATE APPROVED: 6/13/2011								

7.4 SINE WITH DWELL TEST RESULTS

2012 Mazda 5 Passenger Car

NHTSA No.: <u>CC5403</u>
Date of Test: <u>6/1/2011</u>
Date Created: <u>6/1/2011</u>

Lateral Stability Test Series No. 1 - Counterclockwise Initial Steer Direction

File	SWA @ 5deg Ct	MES	Time @ 5deg	cos	Time @ COS	MO S	Time @ MOS	YRR1	YR1	YRR 1 Ct	YRR 175	YR175	YRR17 5 Ct	2nd Yaw Peak	2nd Yaw Peak Ct	Lat Disp	Lat. Acc. 1.07 s	1st SWA Peak	1st SWA Peak Ct	2nd SWA Mean
	(deg)	(mph)	(s)		(s)		(sec)	(%)	(deg/s)		(%)	(deg/s)		(deg/s)		(ft)	(g)	(deg)		(deg)
21	711	50.23	3.546	1091	5.446	847	4.227	-0.6	-0.07	1291	0.75	0.10	1441	12.71	948	-4.06	0.37	41.15	776	40.88
22	709	50.00	3.539	1090	5.444	847	4.226	-0.7	-0.12	1290	-0.33	-0.06	1440	17.23	961	-5.24	0.45	55.15	775	54.86
23	708	50.28	3.535	1090	5.444	846	4.225	0.3	0.05	1290	-0.05	-0.01	1440	19.26	919	-6.52	0.50	68.01	775	67.95
24	708	50.14	3.531	1090	5.444	846	4.225	0.5	0.13	1290	0.93	0.22	1440	23.53	920	-7.63	0.52	82.01	775	81.80
25	707	50.17	3.528	1090	5.444	846	4.225	-0.8	-0.24	1290	-0.37	-0.11	1440	29.16	924	-8.46	0.55	96.06	775	95.91
26	707	50.18	3.527	1090	5.445	846	4.225	-0.7	-0.25	1290	-0.29	-0.10	1440	34.90	927	-9.40	0.51	108.84	775	108.90
27	706	49.97	3.525	1090	5.444	846	4.225	-0.6	-0.22	1290	-0.29	-0.11	1440	38.68	930	-9.91	0.48	123.16	775	122.87
28	706	50.01	3.524	1090	5.444	846	4.225	-1.1	-0.46	1290	-1.02	-0.43	1440	42.23	931	-10.07	0.52	137.12	775	136.94
29	706	50.29	3.524	1090	5.445	846	4.225	-1.2	-0.55	1290	-1.08	-0.50	1440	45.78	933	-10.33	0.51	150.20	775	149.97
30	706	50.06	3.523	1090	5.443	846	4.225	-0.3	-0.17	1290	-0.17	-0.08	1440	49.24	936	-10.80	0.48	164.25	775	163.79
31	706	50.16	3.522	1090	5.443	846	4.225	0.0	0.00	1290	0.03	0.01	1440	51.98	937	-10.73	0.46	177.20	775	176.81
32	706	50.07	3.523	1090	5.441	847	4.226	-0.1	-0.07	1290	-0.26	-0.14	1440	53.85	937	-10.86	0.47	191.12	775	190.65
33	706	50.21	3.523	1090	5.443	847	4.226	-0.5	-0.25	1290	-0.19	-0.11	1440	54.33	936	-10.84	0.52	205.06	775	204.62
34	706	50.11	3.522	1090	5.442	846	4.225	1.5	0.84	1290	0.57	0.33	1440	56.77	937	-11.09	0.45	217.86	776	217.58
35	706	50.12	3.522	1090	5.442	846	4.225	0.7	0.40	1290	-0.11	-0.06	1440	58.77	933	-11.04	0.52	231.68	776	231.68
36	706	50.24	3.523	1090	5.443	846	4.225	0.8	0.49	1290	0.11	0.07	1440	61.33	933	-11.14	0.49	245.24	777	245.72
37	706	50.19	3.523	1090	5.443	847	4.226	-0.1	-0.06	1290	-0.28	-0.17	1440	61.17	932	-10.98	0.57	258.65	777	259.72
39	706	50.10	3.523	1090	5.442	846	4.225	-0.4	-0.24	1290	0.34	0.21	1440	61.60	931	-11.08	0.57	268.58	776	269.60

7.4 SINE WITH DWELL TEST RESULTS

2012 Mazda 5 Passenger Car

NHTSA No.: <u>CC5403</u>
Date of Test: <u>6/1/2011</u>
Date Created: <u>6/1/2011</u>

Lateral Stability Test Series No. 2 - Clockwise Initial Steer Direction

										D 1100										
File	SWA @ 5deg Ct	MES	Time @ 5deg	cos	Time @ COS	MO S	Time @ MOS	YRR1	YR1	YRR 1 Ct	YRR 175	YR175	YRR17 5 Ct	2nd Yaw Peak	2nd Yaw Peak Ct	Lat Disp	Lat. Acc. 1.07 s	1st SWA Peak	1st SWA Peak Ct	2nd SWA Mean
	(deg)	(mph)	(s)		(s)		(sec)	(%)	(deg/s)		(%)	(deg/s)		(deg/s)		(ft)	(g)	(deg)		(deg)
40	711	49.77	3.546	1091	5.446	847	4.226	-0.5	0.06	1291	-1.09	0.14	1441	-13.11	938	4.05	-0.35	41.72	775	41.65
41	709	49.95	3.538	1090	5.444	847	4.226	0.5	-0.09	1290	1.05	-0.19	1440	-18.13	937	5.24	-0.44	55.86	775	55.58
42	708	50.11	3.534	1090	5.444	847	4.226	-0.5	0.10	1290	0.51	-0.10	1440	-20.31	922	6.36	-0.49	68.98	775	68.61
43	708	50.15	3.531	1090	5.445	846	4.225	0.9	-0.22	1290	1.23	-0.32	1440	-25.65	924	7.29	-0.52	82.87	775	82.54
44	707	50.07	3.528	1090	5.445	846	4.225	-0.1	0.04	1290	0.07	-0.02	1440	-29.89	927	8.19	-0.50	96.91	775	96.60
45	707	50.20	3.526	1090	5.444	846	4.225	0.1	-0.03	1290	0.11	-0.04	1440	-35.96	933	9.12	-0.40	109.72	775	109.45
46	706	50.03	3.525	1090	5.445	846	4.225	0.0	0.00	1290	0.19	-0.08	1440	-41.23	934	9.48	-0.41	123.80	775	123.60
47	706	50.25	3.524	1090	5.444	847	4.226	-0.2	0.10	1290	-0.13	0.06	1440	-44.26	938	9.86	-0.29	137.94	775	137.44
48	706	50.14	3.522	1090	5.442	846	4.225	0.2	-0.08	1290	0.36	-0.17	1440	-47.61	941	10.07	-0.24	150.85	775	150.40
49	706	50.12	3.522	1090	5.443	847	4.226	-0.1	0.07	1290	0.12	-0.06	1440	-51.02	941	10.23	-0.29	164.79	775	164.44
50	706	50.21	3.522	1090	5.442	847	4.226	-0.6	0.31	1290	-0.23	0.13	1440	-54.41	945	10.34	-0.18	177.74	775	177.47
51	706	50.11	3.522	1090	5.441	847	4.226	-0.3	0.19	1290	-0.07	0.04	1440	-57.13	947	10.66	-0.13	191.55	775	191.41
52	706	50.17	3.522	1090	5.442	847	4.226	0.1	-0.06	1290	0.22	-0.13	1440	-58.78	947	10.86	-0.10	205.38	775	205.42
53	706	50.22	3.522	1090	5.442	847	4.226	0.4	-0.26	1290	0.19	-0.12	1440	-61.47	944	10.74	-0.22	218.34	776	218.41
54	706	49.87	3.522	1090	5.443	847	4.226	1.2	-0.77	1290	0.44	-0.28	1440	-63.85	944	10.69	-0.27	232.15	776	232.52
55	706	50.05	3.522	1090	5.443	847	4.226	0.5	-0.34	1290	0.10	-0.06	1440	-64.22	944	10.97	-0.23	245.65	777	246.66
56	706	49.88	3.522	1090	5.443	847	4.226	1.2	-0.77	1290	0.34	-0.23	1440	-66.90	943	10.85	-0.34	259.28	777	260.52
57	706	50.07	3.523	1090	5.443	847	4.227	1.2	-0.76	1290	0.41	-0.27	1440	-66.07	942	10.97	-0.30	269.13	776	270.58

7.5 SLOWLY INCREASING STEER TEST RESULTS

2012 Mazda 5 Passenger Car

NHTSA No.: <u>CC5403</u>
Date of Test: <u>6/1/2011</u>
Date Created: <u>6/1/2011</u>

File	EventPt	DOS	MES (mph)	Mean SPD (mph)	AYcount_3	THETAENCF_3 (deg)	AYCG_CD2_3 (g)	r_squared	ZeroBegin	ZeroEnd
10	705	1	49.500	49.673	1108	-27.269	-0.309	0.993	505	705
11	700	1	49.768	49.730	1115	-27.524	-0.295	0.995	500	700
12	665	1	49.780	49.745	1123	-28.083	-0.298	0.996	465	665
13	700	0	49.781	49.760	1111	27.562	0.300	0.995	500	700
14	700	0	49.637	49.736	1099	26.774	0.305	0.996	500	700
15	700	0	49.753	49.880	1100	26.803	0.299	0.996	500	700

Averages 27.3

Scalars	Steering Angles (deg)
1.5	41
2.0	55
2.5	68
3.0	82
3.5	96
4.0	109
4.5	123
5.0	137

Scalars	Steering Angles
	(deg)
5.5	150
6.0	164
6.5	177
7.0	191
7.5	205
8.0	218
8.5	232
9.0	246

Scalars	Steering Angles
	(deg)
9.5	259
9.9	270

7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES

Vehicle: 2012 Mazda 5 Passenger Car NHTSA No.: CC5403

Wheelbase: 108.25 Inches Faro Arm S/N: U08-05-08-06636

Measurement date: 5/31/2011 Certification date: 11/7/10

CMM Measurements

Coordinate system: SAE (X,Y,Z positive forward, to the right, and downward, respectively)

Origin defined at 48" point on lateral arm of measurement fixture, projected onto the ground plane

	Ref X	Ref Y	Ref Z
M_PLANE001_Ground_Plane	-	-	0.000
M_Line_Y_Axis	2.519		0.000
M_Point_48_Ref	0.000	0.000	-
M_CIRCLE001_I_Left_Rear_Wheel_Axle	-31.301	14.398	-11.795
M_Point_IMU_side	10.926	45.865	-17.113
M_Point_ROOF	-	-	-63.717
Motion Pak reference point taken from mid height of unit left side			
Motion Pak Width = 3.05" ==> 1/2 W = 1.525			
Motion_PAK_Location	10.926	47.390	-17.113

Measurement Notes

- 1. The Faro arm is positioned just to the left of the vehicle, near the rear door.
- 2. A "centerline jig" is used in the Faro arm measurement. The jig consists of a long beam with a 4 ft lateral arm that is perpendicular to the beam. The jig is placed on the ground underneath the vehicle with the long beam positioned along the centerline of the vehicle, such that the lateral arm extends to the left, slightly forward of the left rear tire. The lateral arm has a marked indentation point which is located 48.00" from the edge of the centerline beam.
- 3. The Faro arm is used to make the following measurements:
 - Three points on the ground, which establishes the ground plane.
 - Two points along the lateral arm, and projected onto the ground plane. This establishes the y axis.
 - One point at the 48 inch reference point on the lateral arm. This establishes the origin.
 - Three points on the left rear wheel or wheel cover. The Faro arm then computes the center point of the wheel.
 - One point to establish the height of the highest point on the roof of the vehicle.

Coordinate Measurements Calculated for S7D (Matlab Program)

Coordinate system: X,Y,Z positive rearward, to the right, and upward, respectively

Origin defined as follows: X axis: front axle, Y axis: vehicle centerline, Z axis: ground plane

	nei A	nei i	nei Z
Motion_PAK_Location in S7D (Matlab program) coordinate system	66.023	-0.610	17.113

Dof V

Dof V

Dof 7

Calculation Notes:

- 1. X axis value is the difference between the wheelbase and the calculated distance from the rear axle centerline to the IMU (the value must be positive and less than the wheelbase).
- 2. Y axis value is -48.00 (the Y axis offset of the measurement origin in the S7D coordinate system) plus the measured Y axis value (a negative value indicates the IMU is to the left of the vehicle centerline, and a positive value indicates it is to the right)
- 3. Z axis value is from the ground plane up to the center of the IMU (value must be positive).