126-TRC-11-006

SAFETY COMPLIANCE TESTING FOR FMVSS 126 Electronic Stability Control Systems

> Bayerische Motorenwerke 2011 BMW 128i NHTSA No. CB0514

TRANSPORTATION RESEARCH CENTER INC. 10820 State Route 347 East Liberty, Ohio 43319

October 10, 2011

FINAL REPORT

Prepared Under Contract No.: DTNH22-08-D-00097

U. S. DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Enforcement Office of Vehicle Safety Compliance 1200 New Jersey Avenue, SE West Building, 4th Floor (NVS-221) Washington, DC 20590 Prepared for the Department of Transportation, National Highway Traffic Safety Administration, under Contract No. <u>DTNH22-08-D-00097</u>.

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products of manufacturers.

Prepared By:	Slan Dh
	Alan Ida
Approved By:	for with
Approval Date:	
FINAL REPORT	CEPTANCE, BY OVSC:
///	
Accepted By:	ncillus
C	Tidali
Acceptance Date:	<u> </u>

i

1.	Report No.	2. Government Accession No.	3.	Recipient's Catalog No).
	126-TRC-11-006				
4.	Title and Subtitle		5.	Report Date	
	Final Report of FMVSS 126	Compliance Testing of 2011 BMW		October 10, 2011	
	1201, 11110/110. 000014		6.	Performing Organization	on Code
				TPC 20090724 / 1106	
7.	Author(s)		8.	Performing Organization	on Report No.
	Alan Ida, Project Engineer Ken Webster, Manager, DD	O Project Operations		TRC-DOT-126-11-006	
9.	Performing Organization Na	me and Address	10	. Work Unit No.	
	Transportation Research Co	enter Inc			
	10820 State Route 347		11	. Contract or Grant No.	
	East Liberty, OH 43319				
12.	Sponsoring Agency Name a	nd Address	13	. Type of Report and Pe	riod Covered
U.S. Department of Transportation National Highway Traffic Safety Administration Enforcement Office of Vehicle Safety Compliance 1200 New Jersey Avenue, SE.			Final test report June 24, 2011 to Octol	ber 10, 2011	
	West Building, 4 th Floor (NV	S-221)			
	Washington, D.C. 20090		14	. Sponsoring Agency Co	ode
15.				Supplementary Not	es
16	Abstract				
A te Sat	est was conducted on a 2011 fety Compliance Test Proced st failures identified were as f	BMW 128i, NHTSA No. CB0514, in a ure No. TP-126-02 for the determina ollows: None	acco tion o	rdance with the specifica of FMVSS 126 complian	ations of the Office of Vehicle ce.
17.	Key Words		18	. Distribution Statement	
	Compliance Testing			Copies of this report ar	e available from:
FMVŚS 1Ž6			NHTSA Technical Infor (NPO 411) 1200 New Jersey Aver Washington, D.C. 2059 Email: tis@nhtsa.dot.g FAX: (202) 493-2833	rmation Services (TIS) nue, SE 90 gov	
19. ren	Security Classif. (of this	20. Security Classif. (of this page)	21	. No. of Pages 60	22.
	Unclassified	Unclassified			

TABLE OF CONTENTS

SECTION		PAGE
1.0	PURPOSE OF COMPLIANCE TEST	1
2.0	TEST PROCEDURE AND DISCUSSION OF RESULTS	1
3.0	TEST DATA	5
4.0	TEST EQUIPMENT LIST AND CALIBRATION INFORMATION	27
5.0	PHOTOGRAPHS	28
6.0	DATA PLOTS	45
7.0	OTHER DOCUMENTATION 7.1 Owner's Manual Pages 7.2 Vehicle Arrival Condition Report 7.3 Vehicle Completion Condition Report 7.4 Sine with Dwell Test Results 7.5 Slowly Increasing Steer Test Results 7.6 Inertial Sensing System Location Coordinates	50 51 55 56 57 59 60

1.0 PURPOSE OF COMPLIANCE TEST

The purpose of this test is to determine if the test vehicle, a MY 2011 BMW 128i meets the minimum equipment and performance requirements stated in Federal Motor Vehicle Safety Standard (FMVSS) 126, "Electronic Stability Control Systems."

This standard establishes performance and equipment requirements for Electronic Stability Control (ESC) Systems installed in passenger cars, multipurpose passenger vehicles, trucks, and buses with a gross vehicle weight rating of 4,536 kilograms or less.

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS

Testing of the MY 2011 BMW 128i was conducted at Transportation Research Center Inc. (TRC Inc.) in accordance with NHTSA TP-126-02, dated November 19, 2008.

The vehicle was inspected to ensure it was equipped with an ESC System that:

- Augments vehicle directional stability by applying and adjusting brake torques individually at each wheel to induce a correcting yaw moment to a vehicle;
- Is computer controlled with the computer using a closed-loop algorithm to limit vehicle oversteer and to limit vehicle understeer;
- Has a means to determine the vehicle's yaw rate and to estimate its side slip or side slip derivative with respect to time;
- Has a means to monitor driver steering inputs;
- Has an algorithm to determine the need, and a means to modify engine torque, as necessary, to assist the driver in maintaining control of the vehicle, and
- Is operational over the full speed range of the vehicle (except at vehicle speeds less than 20km/h (12.4mph), when being driven in reverse, or during system initialization).

The vehicle was subjected to a 0.7Hz Sine with Dwell (SWD) Steering Maneuver to ensure that it would meet the stability and responsiveness requirements of the standard as follows:

- At 1.0 second after completion of a required sine with dwell steering input, the yaw rate of the vehicle must not exceed 35 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).
- At 1.75 seconds after completion of a required sine with dwell steering input, the yaw rate of the vehicle must not exceed 20 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).
- The lateral displacement of the vehicle center of gravity with respect to its initial

straight path must be at least 1.83 m (6 feet) (for vehicles with a GVWR of 3,500kg (7,716 lb) or less) when computed 1.07 seconds after the Beginning of Steer (BOS) at the specified steering wheel angles.

System malfunction simulations were executed to verify vehicle could identify and indicate a malfunction.

The vehicle's ESC System appears to meet the performance and equipment requirements as required by FMVSS 126. The test results are summarized on the following summary sheet.

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS ... continued

DATA SUMMARY (Sheet 1 of 2)

 VEHICLE MAKE/MODEL/BODY STYLE:
 BMW / 128i / Passenger Car

 VEHICLE NHTSA NO.:
 CB0514
 VIN:
 WBAUP7C56BVP21469

 VEHICLE TYPE:
 Passenger Car
 DATE OF MANUFACTURE:
 10/10

 LABORATORY:
 Transportation Research Center Inc.

REQUIREMENTS

PASS/FAIL

ESC Equipment and Operational Characteristics (Data Sheet 2)

The vehicle is to be equipped with an ESC System that meets the equipment <u>PASS</u> and operational characteristics requirements. (S126, S5.1, S5.6)

ESC Malfunction Telltale (Data Sheet 3)

The vehicle is equipped with a telltale that indicates one or more	PASS
ESC System malfunctions. (S126, S5.3)	

"ESC Off" and other System Controls and Telltale (Data Sheet 3 & 4)

The vehicle is equipped with an ESC off telltale indicating the vehicle	PASS
has been put into a mode that renders the ESC System unable to	
satisfy the performance requirements of the standard, if such a mode	
exists. (S5.5.1)	

If provided, off control and other system controls as well as the ESC	PASS
off telltale meets the operational requirements (S126, S5.4, S5.4.1,	
S5.4.2, S5.5.4, and S5.5.9)	

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS ... continued

DATA SUMMARY (Sheet 2 of 2)

REQUIREMENTS	PASS/FAIL
If provided, off control and other system controls as well as the ESC off telltale meets the operational requirements (S126, S5.4, S5.4.1, S5.4.2, S5.5.4, and S5.5.9)	PASS
Vehicle Lateral Stability (Data Sheet 8)	
Yaw Rate Ratio at 1 second after COS is less than 35% of peak value. (S126, S5.2.1)	PASS
Yaw Rate Ratio at 1.75 seconds after COS is less than 20% of peak value. (S126, S5.2.2)	PASS
Vehicle Responsiveness (Data Sheet 8)	
Lateral displacement at 1.07 seconds after BOS is at least 1.83 m (6 feet) for vehicles with a GVWR of 3,500 kg (7,716 lbs.) or less, and 1.52 m (5 feet) for vehicles with a GVWR greater than 3,500 kg (7,716 lbs.). (S126 S5.2.3)	PASS
ESC Malfunction Warning (Data Sheet 9)	
Warning is provided to driver after malfunction occurrence. (S126. S5.3)	PASS
Malfunction telltale stayed illuminated as long as malfunction existed and must extinguish after malfunction was corrected. (S126, S5.3.7)	PASS

REMARKS

DATA SHEET 1 (Sheet 1 of 2) TEST VEHICLE INSPECTION AND TEST PREPARATION

VEHICLE MAKE/MODEL/B	ODY STYLE:	BMW / 128i /	Passenger Car
NHTSA No.: CB0514	TEST	DATE:	6-28-11
VIN: WBAUP7C56BVF	21469	MANUFACTU	JRE DATE: 10/10
GVWR: <u>1,910</u> KG FROI	NT GAWR: 920	KG REAR	GAWR <u>1,040</u> KG
SEATING POSITIONS:	RONT <u>2</u>	REAR <u>2</u>	
ODOMETER READING AT	START OF TEST:	71 (114)	Miles (Kilometers)
DESIGNATED TIRE SIZE(S) FROM VEHICLE LABELING:			
Front Axle P205 /	50R 17	Rear Axle	P205 / 50R 17
INSTALLED TIRE SIZE(S)	ON VEHICLE:		
From Tire Sidewall	Front Axle		<u>Rear Axle</u>
Manufacturer and Model	Goodyear Eagle	LS2	Goodyear Eagle LS2
Tire Size Designation	P205 / 50R 17	<u>89H</u>	P205 / 50R 17 89H

Are installed tire sizes same as labeled tire sizes? <u>X</u> Yes <u>No</u> If no, contact COTR for further guidance.

DRIVE CONFIGURATIONS (MARK ALL THAT APPLY):

X Two Wheel Drive (2WD): () Front Wheel Drive (X) Rear Wheel Drive All Wheel Drive (AWD)

_____ Four Wheel Drive Automatic – differential not locked full time (4WD Automatic)

- _____ Four Wheel Drive High Gear Unlocked Center Differential
- _____ Four Wheel Drive High Gear Locked Center Differential

Four Wheel Drive Low Gear Unlocked Center Differential

Four Wheel Drive Low Gear Locked Center Differential

Other (define

)

DATA SHEET 1 (Sheet 2 of 2) TEST VEHICLE INSPECTION AND TEST PREPARATION

DRIVE CONFIGURATIONS AND MODES: (ex. default, performance, off)

(For each of the vehicle's drive configurations identify available operating modes)

Drive Configuration Mode(s) <u>defau</u>	2WD It		
Drive Configuration			
Drive Configuration			
VEHICLE STABILITY SYS	STEMS (Check applicable techno	ologies):	
		- J /	
<u>X</u> ESC	X Traction Control	F	Roll Stability Control
Active Suspension	<u>X</u> Electronic Throttle Control	<u> </u>	Active Steering

<u>X</u>ABS

List other systems; Electronic Brake Force Distribution, Dynamic Brake Control

REMARKS:

RECORDED BY: _	Alan Ida	DATE:	6-28-11
APPROVED BY:	Ken Webster	DATE:	7-07-11

DATA SHEET 2 (Sheet 1 of 2) ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

VEHICLE MAKE/MODEL/BODY STYLE: BMW / 128i / Passe	nger Car
NHTSA No.: CB0514 TEST DATE: 7-6-	11
ESC SYSTEM IDENTIFICATION:	
Manufacturer / Model <u>Continental Corporation – MK60E5</u>	
ESC SYSTEM HARDWARE (Check applicable hardware):XElectronic Control UnitXHydraulic Control UnitXWheel Speed SensorsXSteering Angle SensorXYaw Rate SensorXLateral Acceleration Sensor	
List other components;	
ESC SYSTEM OPERATIONAL CHARACTERISTICS:	
System is capable of generating brake torques at each wheel	<u>X</u> Yes (PASS)
List and describe component(s): <u>Hydraulic Control Unit with</u> <u>Integrated Electronic Control Unit</u>	NO (FAIL)
System is capable of determining yaw rate	<u>X</u> Yes (PASS)
List and describe component(s): Yaw Rate Sensor and Lateral Acceleration Sensor Cluster	No (FAIL) - -
System is capable of monitoring driver steering input	<u>X</u> Yes (PASS)
List and describe component(s): Steering wheel angle sensor	
System is capable of estimating side slip or side slip derivation	X Yes (PASS) No (FAIL)
List and describe component(s): The yaw rate sensor, lateral acc	eleration sensor and

List and describe component(s): <u>The yaw rate sensor, lateral acceleration sensor and</u> steering angle sensor are used for side slip detection. The side slip correction base threshold depends on vehicle speed. There is a threshold correction if µ-split is detected. There is also a banking correction, depending on the estimated banking angle and a correction if the yaw rate sensor is not adjusted.

DATA SHEET 2 (Sheet 2 of 2) ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

ESC SYSTEM OPERATIONAL CHARACTERISTICS (continued):

System is capable of modifying engine torque during ESC activation. X Yes (PASS) No (FAIL)

Method used to modify engine torque: <u>The interface to the engine is a pure torque</u> interface via CAN. The ESC does command a reduction of engine torque and the digital motor electronically adjusts the torque accordingly. The digital motor electronically adjusts the commanded torque by fuel cut or ignition timing.

System is capable of activation at speeds of 20 km/h (12.4 mph)	Х	_Yes (PASS)
and higher.		_No (FAIL)

Speed system becomes active. 14.4 km/h (8.9 mph)

System is capable of activation during the following driving	
phases (acceleration, deceleration, coasting, and during	
activation of ABS or traction control).	

_____ Yes (PASS) _____ No (FAIL)

Driving phases that the system is capable of activation.	The ESC system is always
active.	

Vehicle manufacturer submitted documentation explaining how the <u>X</u> Yes (PASS) ESC system mitigates understeer? <u>No (FAIL)</u>

DATA INDICATES COMPLIANCE

PASS/FAIL PASS

RECORDED BY: _	Alan Ida	DATE:	7-06-11
APPROVED BY:	Ken Webster	DATE:	7-07-11

DATA SHEET 3 (Sheet 1 of 2) ESC MALFUNCTION AND OFF TELLTALES

VEHICLE MAKE/MODEL/BODY STYLE:	BMW / 128i / Passenger Car
VEHICLE NHTSA NO. <u>CB0514</u>	TEST DATE: 7-06-11
ESC Malfunction Telltale	
Vehicle is equipped with malfunction telltale?	X_Yes (Pass)No (Fail)
Telltale Location <u>Instrument cluster, center, k</u>	between speedometer and tachometer
Telltale Color <u>Yellow</u>	
Telltale symbol or abbreviation used.	
Or ESC X	_Vehicle uses this symbol _Vehicles uses this abbreviation _Neither symbol or abbreviation is used
If different than identified above, make note of a used.	any message, symbol or abbreviation
The DSC (ESC) malfunction telltale has a triang	le with an exclamation, surrounded by a
circular arrow.	
Is telltale part of a common space?	Yes <u>X</u> No
Is telltale also used to indicate activation of the I	ESC system? <u>X</u> Yes <u>No</u>
If yes, explain telltale operation during ESC activities the DSC telltale flashes.	vation: <u>During DSC (ESC) Activation,</u>

3.0 DATA SHEETS....continued

DATA SHEET 3 (Sheet 2 of 2) ESC MALFUNCTION AND OFF TELLTALES

"ESC OFF" Telltale (if provided)

Vehicle is equipped with "ESC Off" telltale?	<u>X</u>	_Yes		_No
Is "ESC OFF" telltale combined with "ESC Malfunction" tellt	ale utili	zing a tw	vo part	
		_Yes	X	No
Telltale Location <u>Instrument cluster, center, between sp</u>	eedome	eter and	tachor	neter
Telltale Color <u>Yellow</u>				
Telltale symbol or abbreviation used.				
Or ESC OFF Vehicle use Vehicle use X Neither syn	es this s es this a nbol or a	ymbol Ibbreviat abbrevia	ion tion is	used
If different than identified above, make note of any messag used. The ESC off telltale has a triangle with an exclamation, sur	e, symt rounded	ool or ab d by a ci	brevia <u>rcular :</u>	tion <u>arrow.</u>
Is telltale part of a common space? Yes	<u> </u>	_No		
DATA INDICATES COMPLIANCE (Vehicle is compliant if equipped with a malfunction telltale)	PASS	S/FAIL _	PA	<u>ISS</u>
REMARKS:				
The 2011 BMW 128i uses the same telltale for both ESC M	Alfunct	ion and)ff

The 2011 BMW 128i uses the same telltale for both ESC Malfunction and ESC Off. There is a redundant ESC Malfunction and ESC Off telltale which is digitally displayed in the common space.

RECORDED BY:	Alan Ida	DATE:	7-05-11
APPROVED BY:	Ken Webster	DATE:	7-07-11

DATA SHEET 4 (Sheet 1 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

"ESC OFF" Controls Identification and Operational Check:

Is the vehicle equipped with a control or controls whose purpose is to deactivate the ESC system or place the ESC system in a mode or modes that may no longer satisfy the performance requirements of the standard?

X Yes No

Type of control or controls provided?		Dedicated "ESC Off" control
(mark all that apply)	Х	Multi-functional control with an
		"ESC Off" mode
		Other (describe)

Identify each control location, labeling and selectable modes.

First Control: Location_	Center of instrument panel, between the center vents
Labeling	DTC
Modes	Dynamic Traction Control (DTC) Off (1 button press)
	Dynamic Traction Control (DTC) On (1 button press)
	Dynamic Stability Control (DSC) & DTC Off (press and hold
	button for 3 seconds)
	Dynamic Stability Control (DSC) & DTC On (1 button press)
· · · · · · · · · · · · · · · · · · ·	• • • • • • • •

Identify standard or default drive configuration	Default – 2WD

Verify standard or default drive configuration selected. X Yes No

Does the "ESC Off" telltale illuminate upon activation of the dedicated ESC off control or selection of the "ESC Off" mode on the multi-function control?

X Yes No (fail)

Does the "ESC Off" telltale extinguish when the ignition is cycled from "On" ("Run") to "Lock" or "Off" and then back again to the "On" ("Run") position?

If no, describe how the off control functions:

DATA SHEET 4 (Sheet 2 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

If a multi-function control is provided, cycle through each mode setting on the control and record which modes illuminate the "ESC Off" telltale. Also, for those modes that illuminate the ESC Off" telltale identify if the telltale extinguishes upon cycling the ignition system.

	"ESC Off" telltale	"ESC Off" telltale
Control Modes	illuminates upon	extinguishes upon
	activation of control?	cycling ignition?
	(Yes/No)	(Yes/No)
DTC Off	No	N/A
DSC & DTC Off	Yes	Yes

For each mode that illuminates the "ESC Off" telltale, did the telltale extinguish when the ignition was cycled from "On" ("Run") to "Lock" or "Off" and then back again to the "On" ("Run") position?

<u>X</u> Yes <u>No (fail)</u>

Other System Controls that have an ancillary effect on ESC Operation:

Is the vehicle equipped with any ancillary controls that upon activation may deactivate the ESC System or place the ESC System in a mode or modes that may no longer satisfy the performance requirements of the standard?

_____Yes <u>X</u>No

List and describe each control (i.e. alternate drive configuration selection controls):

Ancillary Control:	System	N/A	
	Control Description		
	Labeling		
Ancillary Control:	System	N/A	
	Control Description		
	Labeling		

DATA SHEET 4 (Sheet 3 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

Activate each control listed above and record whether the control illuminates the "ESC Off" telltale. Also, record warnings or messages provided regarding the ESC System.

Ancillary Control	Control Activates "ESC Off" Telltale? (Yes/No)	Warnings or Messages Provided
N/A		

For those controls that illuminate the "ESC Off" telltale above identify if the "ESC Off" telltale extinguishes upon cycling the ignition system.

Ancillary Control	"ESC Off" telltale extinguishes upon cycling ignition? (Yes/No)
N/A	

For each control that illuminates the "ESC Off" telltale, did the telltale extinguish when the ignition is cycled from "On" ("Run") to "Lock" or "Off" and then back again to the "On" ("Run") position? If the control activated places the vehicle into a low-range four-wheel drive configuration designed for low-speed, off–road driving, the ESC System may remain turned off after the ignition has been cycled off and then back on and therefore the "ESC Off" telltale may not extinguish.

_____Yes _____No (fail)

DATA INDICATES COMPLIANCE:

PASS/FAIL <u>PASS</u>

REMARKS:

RECORDED BY:	Alan Ida	DATE:	7-05-11
APPROVED BY:	Ken Webster	DATE:	7-07-11

DATA SHEET 5 (Sheet 1 of 3) VEHICLE AND TEST TRACK DATA

VEHICLE MAKE/MODEL/BODY	STYLE:	BMW / 128i / F	assenger Ca	<u>. </u>	
NHTSA No.: CB0514		TEST DATE:	6-29-11		
Test Track Requirements: Test Surface Slope (0-1 %) 1					
	Peak Frictior	n Coefficient (at	least 0.9)	0.97	
Full Fluid Levels: Fuel X	Coolant	X Other	Fluids <u>Wasl</u>	<u>ner (</u> specify)	
Tire Pressures: Required:	Front Axle	<u>220_</u> kPa	Rear Axle	<u>240 </u> kPa	
Actual: LF: <u>220</u> kPa	RF: <u>220</u> kPa	a LR: <u>240 l</u>	kPa RR:	<u>240 </u> kPa	
Vehicle Dimensions: Track	Width <u>148.0</u>	_cm Wheelb	ase <u>265.9</u> c	m	
Roof	Height <u>141.0</u>	_cm			
Vehicle weight ratings: GAW	R Front <u>920</u>	KG GAWR	Rear <u>1,040</u>	_KG	
Unloa	aded Vehicle	Weight (UVW)			
Front Axle 759.0 KG	Left Front	<u>373.4</u> KG	Right Front	<u>385.6</u> KG	
Rear Axle <u>714.8</u> KG	Left Rear	<u>356.6</u> KG	Right Rear	<u>358.2</u> KG	
Total UVW <u>1,473.8</u> KG					

Baseline Weight and Outrigger Selection (only for MPVs, Trucks, Buses)

Calculated Baseline Weight (UVW+ 73 kg) 1,546.8 KG

Outrigger size required ("Standard" or "Heavy") <u>N/A</u> Standard - Baseline weight under 2,722 kg (6,000 lbs.) Heavy - Baseline weight equal to or greater than 2,722 kg (6,000 lbs.)

DATA SHEET 5 (Sheet 2 of 3) VEHICLE AND TEST TRACK DATA

Loaded Vehicle Weight w/ Driver and Instrumentation (No Ballast)

Total Loaded	Vehicle	Weight_	1,607.4	KG			
Rear Axle	781.0	_KG	Left Rear	395.6	_KG	Right Rear	<u>385.4</u> KG
Front Axle	826.4	_KG	Left Front	413.8	_KG	Right Front	<u>412.6</u> KG

Ballast Required = [Total Unloaded Vehicle Weight + 168 KG] - Total Loaded Weight w/ Driver and Instrumentation

> = [<u>1,473.8</u> KG + 168 KG] - <u>1,607.4</u> KG = <u>34.4</u> KG

Total Loaded Vehicle Weight

Total Loaded	l Vehicle Weig	ht <u>1,641.</u>	<u>8 K</u> G		
Rear Axle	<u>806.4</u> KG	Left Rear	<u>405.0</u> KG	Right Rear	<u>401.4</u> KG
Front Axle	<u>835.4</u> KG	Left Front	<u>412.6</u> KG	Right Front	<u>422.8</u> KG

DATA SHEET 5 (Sheet 3 of 3) VEHICLE AND TEST TRACK DATA

Center of Gravity and Inertial Sensing System Location at Loaded Vehicle Condition

x-distance (longitudinal)	Point of reference is the front axle centerline. (Positive from front axle toward rear of vehicle.)
y-distance (lateral)	Point of reference is the vehicle centerline. (Positive from the center toward the right.)
z-distance (vertical)	Point of reference is the ground plane. (Positive from the ground up.)

Locations:

	Center of Gravity	Inertial Sensing System
x-distance	<u> 130.6 </u> cm	<u> </u>
y-distance	<u> </u>	<u>-2.0</u> cm
z-distance	<u> </u>	<u> </u>

Distance Between Ultrasonic Sensors: 141.0 cm

TEST TRACK DATA MEETS	S REQUIREMENTS:	YES/NO	YES	
If no, explain:				

REMARKS:

RECORDED BY: _	Alan Ida	DATE:	6-29-11
APPROVED BY:	Ken Webster	DATE:	7-07-11

DATA SHEET 6 (Sheet 1 of 3) BRAKE AND TIRE CONDITIONING

VEHICLE MAKE/MODEL/BODY	STYLE:	BMW / 128i /	Passe	enger Ca	ar
VEHICLE NHTSA No.: CBO	0514				
Measured Cold Tire Pressures:	LF <u>220</u>	_kPa	RF	220	kPa
	LR <u>240</u>	_kPa	RR	240	kPa
Wind Speed <u>0.0</u> m/se (10m/sec (22mph) max for pass	c enger cars; 5i	m/s (11mph) r	nax. fo	r MPVs	and Trucks)
Ambient Temperature (7°C (45°F	F) - 40°C (104	°F))	<u>14.4</u> '	°C	
Brake Conditioning Time;	6:46 AM		Date;	6-30-	11
56 km/h (35 mph) Brake S	Stops				
Number of stops ex	cecuted (10 re	quired)		10	stops
Observed decelera	tion rate range	e (.5g target)	0.50	- 0.55	g
72 km/h (45 mph) Brake S	Stops				
Number of stops ex	ecuted (3 req	uired)		3	stops
Number of stops Al	3S activated (3 required)		3	stops
Observed decelera	tion rate range	Э	1.00 –	1.10	g
72 km/h (45 mph) Brake C	Cool Down Pe	riod			
Duration of cool do	wn period (5 r	ninutes min.)		6:00	minutes

DATA SHEET 6 (Sheet 2 of 3) BRAKE AND TIRE CONDITIONING

Tire Conditioning Series No. 1		Time:	7:06 AM	_	Date:	6-30-11
Measured Tire Pressures:	LF	241	kPa	RF	<u>241 k</u>	Pa
	LR	255	kPa	RR	255 k	Pa

Wind Speed ______ m/sec (10m/sec (22mph) max for passenger cars; 5m/s (11mph) max. for MPVs and Trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 15.6 °C

30 meter (100 ft) Diameter Circle Maneuver								
Test Runs	Steering Direction	Target Lateral	Observed Lateral	Observed Vehicle				
		Acceleration (g)	Acceleration (g)	Speed (km/h)				
1-3	Clockwise	0.5-0.6	0.55	32.2				
4-6	Counterclockwise	0.5-0.6	0.55	32.2				

1 Hz 5 Cycle Sinusoidal Steering Maneuver to Determine Steering Wheel Angle For 0.5-0.6g Lateral Acceleration					
Test Runs	Vehicle Speed	Steering Wheel	Target Peak	Observed Peak	
	Km/h(mph)	Angle (degrees)	Lateral	Lateral	
			Acceleration (g)	Acceleration (g)	
1	56 <u>+</u> 2 (35 <u>+</u> 1)	30	0.5-0.6	0.29	
2	56 <u>+</u> 2 (35 <u>+</u> 1)	50	0.5-0.6	0.46	
3	56 <u>+</u> 2 (35 <u>+</u> 1)	60	0.5-0.6	0.58	
4	56 <u>+</u> 2 (35 <u>+</u> 1)		0.5-0.6		

Steering wheel angle that corresponds to a peak 0.5–0.6g lateral acceleration; <u>60</u> degrees

1 Hz 10 Cycle Sinusoidal Steering Maneuver					
Test Runs	Vehicle Speed	Steering Wheel	Target Peak	Observed Peak	
	Km/h (mph)	Angle (degrees)	Lateral	Lateral	
			Acceleration (g)	Acceleration (g)	
1 - 3	56 <u>+</u> 2 (35 <u>+</u> 1)	60 (cycles 1-10)	0.5-0.6	0.57	
4	56 <u>+</u> 2 (35 <u>+</u> 1)	60 (cycles 1-9)	0.5-0.6	0.57	
		120 (cycle 10)*	N/A	0.98	

* The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9.

DATA SHEET 6 (Sheet 3 of 3) BRAKE AND TIRE CONDITIONING

Tire Conditioning Series No. 2		Time:	9:35 AM	_	Date: 6-30-11
Measured Tire Pressures:	LF	238	kPa	RF	<u>241 </u> kPa
	LR	255	kPa	RR	<u>255 </u> kPa

Wind Speed _____0.9 m/sec (10m/sec (22mph) max for passenger cars; 5m/s (11mph) max. for MPVs and Trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 25.0 °C

30 meter (100 ft) Diameter Circle Maneuver					
Test Runs	Steering Direction	Target Lateral	Observed Lateral	Observed Vehicle	
	_	Acceleration (g)	Acceleration (g)	Speed (km/h)	
1-3	clockwise	0.5-0.6	0.55	32.2	
4-6	counterclockwise	0.5-0.6	0.55	32.2	

1 Hz 5 Cycle Sinusoidal Steering Maneuver to Determine Steering Wheel Angle For 0.5-0.6g Lateral Acceleration						
Test Runs	Vehicle Speed	Steering Wheel	Target Peak	Observed Peak		
	Km/h (mph)	Angle (degrees)	Lateral	Lateral		
	Acceleration (g) Acceleration (g)					
1	56 <u>+</u> 2 (35 <u>+</u> 1)	N/A	0.5-0.6	N/A		
2	56 <u>+</u> 2 (35 <u>+</u> 1)		0.5-0.6			
3	56 <u>+</u> 2 (35 <u>+</u> 1)		0.5-0.6			
4	56 <u>+</u> 2 (35 <u>+</u> 1)		0.5-0.6			

Steering wheel angle that corresponds to a peak 0.5–0.6g lateral acceleration; <u>60</u> degrees

1 Hz 10 Cycle Sinusoidal Steering Maneuver					
Test Runs	Vehicle Speed	Steering Wheel	Target Peak	Observed Peak	
	(mph)	Angle (degrees)	Lateral	Lateral	
			Acceleration (g)	Acceleration (g)	
1 - 3	56 <u>+</u> 2 (35 <u>+</u> 1)	60 (cycles 1-10)	0.5-0.6	0.55	
4	56 <u>+</u> 2 (35 <u>+</u> 1)	60 (cycles 1-9)	0.5-0.6	0.55	
	1 '	120 (cycle 10)*	N/A	0.93	

* The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9.

REMARKS:

RECORDED BY:	Alan Ida	DATE:	6-30-11
APPROVED BY:	Ken Webster	DATE:	7-07-11

DATA SHEET 7 (1 of 2) SLOWLY INCREASING STEER (SIS) MANEUVER

VEHICLE MAKE/MODEL/BODY STYLE: BMW / 128i / Passenger Car
VEHICLE NHTSA No.: CB0514 TEST DATE: 6-30-11
Wind Speed0.0_ m/sec (10m/sec (22mph) max for passenger cars; 5m/s (11mph) max. for MPVs and Trucks)
Ambient Temperature (7°C (45°F) - 40°C (104°F)) <u>18.3</u> °C
Static Data File Number: 0010
Selected Drive Configuration: <u>2WD</u>
Selected Mode: default

Preliminary Left Steer Maneuver:

Lateral Acceleration measured at 30 degrees steering wheel angle (a_{y,30 degrees})

 $a_{y,30 \text{ degrees}} = 0.43 \text{ g}$

Assuming a linear relationship the following ratio should be used to calculate the steering wheel angle at .55g.

30 degrees	δ_{SIS}	δ_{SIS}	=_	38.4	degrees @ 0.55g
$a_{\rm y,30degrees}$	0.55 g	$\delta_{ m SIS}$	=_	40	_ degrees (rounded)

Steering Wheel Angle at Corrected 0.3 g Lateral Acceleration:

Maneuver #	Initial Steer Direction	Time Clock (5 min max between runs)	Steering Wheel Angle to nearest 0.1 degree (degrees)	All Conditions Met?
0012	Left	7:34 am	-24.5	Yes
0013	Left	7:38 am	-25.1	Yes
0016	Left	7:50 am	-24.1	Yes
0017	Right	7:53 am	25.5	Yes
0018	Right	7:56 am	25.8	Yes
0019	Right	8:00 am	26.3	Yes

DATA SHEET 7 (2 of 2) SLOWLY INCREASING STEER (SIS) MANEUVER

Average Overall Steering Wheel Angle:

$$\begin{split} \delta_{0.3 \text{ g, overall}} &= \left(\left| \delta_{0.3 \text{ g, left (1)}} \right| + \left| \delta_{0.3 \text{ g, left (2)}} \right| + \left| \delta_{0.3 \text{ g, left (3)}} \right| + \delta_{0.3 \text{ g, right (1)}} + \delta_{0.3 \text{ g, right (2)}} + \delta_{0.3 \text{ g, right (3)}} \right) \\ &= \delta_{0.3 \text{ g, right (3)}} + \delta_{0.3 \text{ g, right (3)}} + \delta_{0.3 \text{ g, right (2)}} + \delta_{0.3 \text{ g, right (3)}} + \delta_{0.3 \text{ g, right (3$$

 $\delta_{0.3 \text{ g, overall}} = \underline{25.2}$ degrees [to nearest 0.1 degree]

REMARKS:

Files 0014 and 0015 were omitted due to a spike in the steering angle signal. The problem was corrected and testing resumed. Therefore, the time clock indicates more than 5 minutes between maneuvers.

RECORDED BY: _	Alan Ida	DATE:	6-30-11
APPROVED BY:	Ken Webster	DATE:	7-07-11

DATA SHEET 8 (1 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

VEHICLE MAKE/MODEL/BODY STYLE: <u>BMW / 128i / Passenger Car</u>

VEHICLE NHTSA No.:	CB0514	TEST DATE:	6-30-11	
Tire conditioning complete ESC system is enabled On track calibration checks On track static data file for	d s have been completed each sensor obtained	X Yes X Yes X Yes X Yes		No No No No
Selected Drive Configuration	on: <u>2WD</u>	_		

Selected Mode: <u>default</u>

Overall steering wheel angle ($\delta_{0.3 \text{ g, overall}}$) 25.2 degrees

Static Data File Number 0025

Lateral Stability Test Series No. 1 – Counterclockwise Initial Steer Direction

	Clock	Commar	nded			YRR		YRR		
	Time	Steering V	Nheel	Yaw Rates		at 1.0 s	ec after	at 1.75	sec after	
		Angle) ¹	(degrees/s	ec)	COS		COS	
	(1.5 – 5	(degree	es)		-		[<u><</u> 35%]		[<u><</u> 20%]	
Maneuver #	min between each test _run)	Scalar	Angle	$\dot{\psi}_{\scriptscriptstyle Peak}$	$\dot{\psi}_{ m 1.0sec}$	$\dot{\psi}_{1.75 m sec}$	%	Pass/ Fail	%	Pass/ Fail
0027	10:05 am	1.5* δ _{0.3 g}	38	13.18	-0.04	-0.02	-0.34	Pass	-0.17	Pass
0028	10:08 am	2.0* δ _{0.3 g}	50	17.48	-0.07	-0.11	-0.41	Pass	-0.62	Pass
0029	10:11 am	2.5 * δ _{0.3 g}	63	21.90	-0.04	-0.08	-0.20	Pass	-0.37	Pass
0032	10:23 am	3.0* δ _{0.3 g}	76	25.82	0.00	-0.04	-0.02	Pass	-0.16	Pass
0033	10:28 am	3.5 * δ _{0.3 q}	88	29.20	-0.02	-0.06	-0.07	Pass	-0.20	Pass
0034	10:31 am	4.0* δ _{0.3 q}	101	34.31	0.22	0.14	0.65	Pass	0.41	Pass
0035	10:34 am	4.5* δ _{0.3 g}	113	38.52	0.11	0.17	0.30	Pass	0.45	Pass
0036	10:37 am	5.0* δ _{0.3 g}	126	43.49	0.07	0.08	0.16	Pass	0.19	Pass
0037	10:40 am	5.5* δ _{0.3 q}	139	47.69	-0.03	0.03	-0.05	Pass	0.06	Pass
0038	10:43 am	6.0* δ _{0.3 q}	151	53.25	0.07	0.18	0.13	Pass	0.34	Pass
0039	10:46 am	6.5* δ _{0.3 g}	164	55.39	0.00	-0.05	0.00	Pass	-0.09	Pass
0040	10:49 am	7.0* δ _{0.3 g}	176	58.55	0.03	-0.02	0.05	Pass	-0.03	Pass
0041	10:52 am	7.5* δ _{0.3 q}	189	59.75	0.03	-0.03	0.05	Pass	-0.06	Pass
0042	10:55 am	8.0* δ _{0.3 q}	202	63.12	0.24	0.18	0.38	Pass	0.28	Pass
0043	10:58 am	8.5* δ _{0.3 g}	214	66.28	0.20	0.08	0.31	Pass	0.12	Pass
0044	11:01 am	9.0* δ _{0.3 g}	227	66.82	0.25	-0.21	0.37	Pass	-0.31	Pass
0045	11:04 am	9.5* δ _{0.3 q}	239	67.92	0.14	0.15	0.20	Pass	0.22	Pass
0046	11:07 am	10.0* δ _{0.3 q}	252	68.08	0.31	-0.12	0.46	Pass	-0.18	Pass
0047	11:10 am	10.5* δ _{0.3 g}	265	69.00	0.13	0.15	0.18	Pass	0.21	Pass
0048	11:13 am	10.7* δ _{0.3 α}	270	66.27	0.07	-0.12	0.11	Pass	-0.18	Pass

 Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5^{*}δ_{0.3 g, overall} or 270 degrees is utilized, whichever is greater provided the calculated magnitude of 6.5^{*}δ_{0.3 g, overall} is less than or equal to 300 degrees. If 6.5^{*}δ_{0.3 g, overall} is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5^{*}δ_{0.3 g, overall} without exceeding the 270 degree steering wheel angle.

DATA SHEET 8 (2 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

	Clock	Commar	nded				YF	R	Y	RR
	Time	Steering V	Vheel	Yaw Rates		at 1.0 sec after		at 1.75 sec after		
		Angle	9 ¹	(degrees/s	ec)	COS		COS	
	(1.5 – 5	(degree	es)				[<u><</u> 35%]		[<u><</u> 20%]	
Maneuver #	min between each test run)	Scalar	Angle	$\dot{\psi}_{\scriptscriptstyle Peak}$	$\dot{\psi}_{ m 1.0sec}$	$\dot{\psi}_{ m 1.75sec}$	%	Pass/ Fail	%	Pass/ Fail
0049	11:16 am	1.5* δ _{0.3 g}	38	-13.47	0.22	0.17	-1.62	Pass	-1.28	Pass
0050	11:19 am	2.0* δ _{0.3 g}	50	-17.61	-0.13	-0.07	0.74	Pass	0.41	Pass
0051	11:22 am	2.5 * δ _{0.3 g}	63	-21.74	-0.12	0.02	0.56	Pass	-0.08	Pass
0052	11:25 am	3.0* δ _{0.3 g}	76	-27.37	-0.11	-0.12	0.40	Pass	0.44	Pass
0053	11:28 am	3.5* δ _{0.3 g}	88	-29.79	-0.12	-0.05	0.41	Pass	0.18	Pass
0054	11:31 am	4.0* δ _{0.3 g}	101	-34.74	-0.22	-0.27	0.65	Pass	0.77	Pass
0055	11:34 am	4.5 * δ _{0.3 g}	113	-38.80	-0.39	-0.19	1.02	Pass	0.49	Pass
0056	11:38 am	5.0* δ _{0.3 g}	126	-43.77	0.10	0.23	-0.23	Pass	-0.52	Pass
0057	11:41 am	5.5* δ _{0.3 g}	139	-48.58	-0.08	-0.13	0.16	Pass	0.27	Pass
0058	11:45 am	6.0* δ _{0.3 g}	151	-51.91	-0.06	-0.06	0.12	Pass	0.12	Pass
0059	11:48 am	6.5 * δ _{0.3 g}	164	-56.55	-0.22	-0.18	0.39	Pass	0.31	Pass
0060	11:51 am	7.0* δ _{0.3 g}	176	-58.43	-0.14	-0.29	0.24	Pass	0.50	Pass
0061	11:54 am	7.5* δ _{0.3 g}	189	-62.82	-0.29	-0.01	0.46	Pass	0.01	Pass
0062	11:57 am	8.0* δ _{0.3 g}	202	-64.71	-0.14	0.00	0.22	Pass	0.00	Pass
0063	12:00 pm	8.5 * δ _{0.3 g}	214	-66.72	0.02	-0.02	-0.02	Pass	0.04	Pass
0064	12:03 pm	9.0* δ _{0.3 g}	227	-68.08	-0.38	-0.15	0.56	Pass	0.23	Pass
0065	12:06 pm	9.5* δ _{0.3 g}	239	-68.56	-0.47	-0.03	0.69	Pass	0.05	Pass
0066	12:09 pm	10.0* δ _{0.3 g}	252	-70.47	0.12	-0.35	-0.18	Pass	0.50	Pass
0067	12:12 pm	10.5* δ _{0.3 g}	265	-70.04	-0.40	0.02	0.56	Pass	-0.03	Pass
0068	12:15 pm	10.7* δ _{0.3 g}	270	-70.71	-0.46	-0.17	0.65	Pass	0.25	Pass

Lateral Stability Test Series No. 2 – Clockwise Initial Steer Direction

 Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5^{*}δ_{0.3 g, overall} or 270 degrees is utilized, whichever is greater provided the calculated 6.5^{*}δ_{0.3 g, overall} is less than or equal to 300 degrees. If 6.5^{*}δ_{0.3 g, overall} is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5^{*}δ_{0.3 g, overall} without exceeding the 270 degree steering wheel angle.

During execution of the sine with dwell maneuvers were any of the following events observed?

Rim-to-pavement contact
Tire debeading
Loss of pavement contact of vehicle tires
Did the test driver experience any vehicle
loss of control or spinout?

Yes	X	_No
Yes	Х	No
Yes	Х	No
Yes	Х	No

If "Yes" explain the event and consult with the COTR.

DATA SHEET 8 (3 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Responsiveness – Lateral Displacement

		Commanded Steering Wheel Angle (5.0*δ _{0.3 g, overall} or greater)		Calculated Lateral Displacement ¹	
Maneuver #	Initial Steer Direction	Scalar	Angle (degrees)	Distance (m)	Pass/Fail
0036	Counter Clockwise	5.0* δ _{0.3 g}	126	3.40	Pass
0037	Counter Clockwise	5.5* δ _{0.3 g}	139	3.51	Pass
0038	Counter Clockwise	6.0* δ _{0.3 g}	151	3.58	Pass
0039	Counter Clockwise	6.5* δ _{0.3 g}	164	3.56	Pass
0040	Counter Clockwise	7.0 * δ _{0.3 g}	176	3.62	Pass
0041	Counter Clockwise	7.5 * δ _{0.3 g}	189	3.64	Pass
0042	Counter Clockwise	8.0* δ _{0.3 g}	202	3.71	Pass
0043	Counter Clockwise	8.5* δ _{0.3 g}	214	3.70	Pass
0044	Counter Clockwise	9.0* δ _{0.3 g}	227	3.65	Pass
0045	Counter Clockwise	9.5 * δ _{0.3 g}	239	3.72	Pass
0046	Counter Clockwise	10.0* δ _{0.3 g}	252	3.63	Pass
0047	Counter Clockwise	10.5* δ _{0.3 g}	265	3.67	Pass
0048	Counter Clockwise	10.7 * δ _{0.3 g}	270	3.59	Pass
0056	Clockwise	5.0* δ _{0.3 g}	126	3.31	Pass
0057	Clockwise	5.5* δ _{0.3 g}	139	3.40	Pass
0058	Clockwise	6.0* δ _{0.3 g}	151	3.52	Pass
0059	Clockwise	6.5* δ _{0.3 g}	164	3.55	Pass
0060	Clockwise	7.0* δ _{0.3 g}	176	3.58	Pass
0061	Clockwise	7.5 * δ _{0.3 g}	189	3.59	Pass
0062	Clockwise	8.0 * δ _{0.3 g}	202	3.66	Pass
0063	Clockwise	8.5 * δ _{0.3 g}	214	3.61	Pass
0064	Clockwise	9.0* δ _{0.3 g}	227	3.63	Pass
0065	Clockwise	9.5* δ _{0.3 g}	239	3.68	Pass
0066	Clockwise	10.0 * δ _{0.3 g}	252	3.76	Pass
0067	Clockwise	10.5* δ _{0.3 g}	265	3.65	Pass
0068	Clockwise	10.7* δ _{0.3 g}	270	3.66	Pass

1. Lateral displacement should be ≥ 1.83 m (6 ft) for vehicles with a GVWR of 3,500 kg (7,716 lb) or less; and ≥ 1.52 m (5ft) for vehicles with a GVWR greater than 3,500 kg (7,716 lb).

DATA INDICATES COMPLIANCE:

PASS/FAIL PASS

REMARKS:

RECORDED BY: _	Alan Ida	DATE:	6-30-11
APPROVED BY:	Ken Webster	DATE:	7-07-11

DATA SHEET 9 (Sheet 1 of 2) MALFUNCTION WARNING TEST

VEHICLE MAKE/MODEL/BODY STYLE:	BMW / 128i / Passenger Car
VEHICLE NHTSA No.: CB0514	TEST DATE: 7-05-11
METHOD OF MALFUNCTION SIMULATION: Describe method of malfunction simulation: sensor connector.	Disconnect the Left Front wheel speed
MALFUNCTION TELLTALE ILLUMINATION: Telltale illuminates and remains illuminated after necessary the vehicle is driven at least 2 minut	er ignition locking system is activated and if esX_YesNo
Time for telltale to illuminate after ignition system 0 Seconds (must be within 2 mine	em is activated. utes) <u>X</u> Pass Fail
ESC SYSTEM RESTORATION: Telltale extinguishes after ignition locking syster driven at least 2 minutes.	n is activated and if necessary the vehicle is <u>X</u> YesNo
Time for telltale to extinguish after ignition syster 48 <u>+</u> 8 km/h (30 <u>+</u> 5mph) is reached. 2 Seconds (must be within 2 minut	em is activated and vehicle speed of tes) <u>X</u> Pass Fail
DATA INDICATES COMPLIANCE:	PASS/FAIL <u>PASS</u>
REMARKS: The vehicle did not require driving to illuminate of the wheel speed sensor was disconnected, the l telltales illuminated. After the wheel speed sensor	or extinguish the malfunction telltales. When ESC, ABS, and (yellow) BRAKE malfunction sor connector was restored, the ESC, ABS,

RECORDED BY:Alan IdaDATE:7-05-11APPROVED BY:Ken WebsterDATE:7-07-11

and (yellow) BRAKE malfunction telltales had extinguished.

DATA SHEET 9 (Sheet 2 of 2) MALFUNCTION WARNING TEST

VEHICLE MAKE/MODEL/BODY STYLE:	BMW / 128i / Passe	enger Car	_
VEHICLE NHTSA No.: CB0514	TEST DATE:	7-05-11	
METHOD OF MALFUNCTION SIMULATION: Describe method of malfunction simulation: from the fuse box	Remove the 40-am	p ESC / ABS fu	<u>se (F90)</u>
MALFUNCTION TELLTALE ILLUMINATION: Telltale illuminates and remains illuminated after necessary the vehicle is driven at least 2 minut	er ignition locking system	stem is activate	ed and if
	<u>X</u>	Yes	_No
Time for telltale to illuminate after ignition syste 0 Seconds (must be within 2 min	em is activated. utes) <u>X</u>	_ Pass	_ Fail
ESC SYSTEM RESTORATION: Telltale extinguishes after ignition locking system driven at least 2 minutes.	m is activated and if n X	ecessary the v	ehicle is _No
Time for telltale to extinguish after ignition syst 2 Seconds (must be within 2 minut	em is activated. tes) <u>X</u>	_Pass	_ Fail
DATA INDICATES COMPLIANCE:		PASS/FAIL _	PASS

REMARKS:

The vehicle did not require driving to illuminate the malfunction telltales. When the 40-amp ESC / ABS fuse was removed, the ESC, ABS, and (yellow) BRAKE malfunction telltales illuminated. After the 40-amp ESC / ABS fuse was restored, the vehicle required driving in the forward direction to extinguish the telltales. After driving at approximately 20 mph, the ESC, ABS, and (yellow) BRAKE malfunction telltales extinguished.

RECORDED BY:	Alan Ida	DATE:	7-05-11
APPROVED BY:	Ken Webster	DATE:	7-07-11

Туре	Output	Range	Resolut ion	Accuracy	Specifics	Serial Number	Calibration
Tire Pressure Gauge	Vehicle Tire Pressure	0-60psi	0.5 psi	±0.5% of applied pressure	Moroso Model: 89562 0-60psi	_ <u>N/A</u>	By: <u>TRC</u> Date: <u>6-14-11</u> Due: <u>9-12-11</u>
Platform Scales	Vehicle Total, Wheel, and Axle Load	0-2500 lb per each of four pads	0.5 lb	±1.0% of applied load	Mettler Toledo Model: JXGA1000	<u>5225831-</u> _5JC	By: <u>Mettler Toledo</u> Date: <u>5-16-11</u> Due: <u>8-16-11</u>
Automated Steering Machine with Steering Angle Encoder	Handwheel Angle	±800 deg	0.25 deg	±0.25 deg	Heitz Automotive Testing Model: Sprint 3	_60303_	By: <u>ATI-Heitz</u> Date: <u>2-18-11</u> Due: <u>2-18-12</u>
Multi-Axis Inertial Sensing System	Longitudinal, Lateral, and Vertical Acceleration Roll, Yaw, and Pitch Rate	Accelero meters: ±2 g Angular Rate Sensors: ±100 deg/ s	Acceler ometers : ≤10 ug Angular Rate Sensors : ≤0.004 deg/s	Acceleromet ers: ≤0.05% of full range Angular Rate Sensors: 0.05% of full range	BEI Technologies Model: MotionPAK MP- 1	_0768_	By: <u>BEI Tech.</u> Date: <u>1-10-11</u> Due: <u>1-10-12</u>
Radar Speed Sensor and Dashboard Display	Vehicle Speed	0-125 mph	0.009 mph	±0.25% of full scale	A-DAT Corp. Radar Model: DRS-6 Display Model: RD-2	<u>1400603</u>	By: <u>B+S Multidata</u> Date: <u>2-14-11</u> Due: <u>2-14-12</u>
Ultrasonic Distance Measuring System	Left and Right Side Vehicle Height	5-24 inches	0.01 inches	±0.25% of maximum distance	Massa Products Corporation Model: M- 5000/220	_ <u>104619</u> _& 104613_	By: <u>Consumers Energy</u> <u>Laboratory Services</u> Date:_ <u>1-20-11</u> Due: _ <u>1-20-12</u>
Data Acquisition System [Amplify, Anti- Alias, and Digitize]	Record Time; Velocity; Distance; Lateral, Longitudinal, and Vertical Accelerations; Roll, Yaw, and Pitch Rates; Steering Wheel Angle.	Sufficient to meet or exceed individual sensors	200 Hz	Sufficient to meet or exceed individual sensors	Dewetron Sidehand DAS Model: DA-121-16 Digitizer Model: Dewe-Orion- 1616-100 Amplifier/AntiAli asing: MDAQ- FILT-10-S	<u>12060</u> 1105	By: <u>Dewetron</u> Date: <u>12-02-10</u> Due: <u>12-02-11</u>
Load Cell	Vehicle Brake Pedal Force	0-300 lb	1 lb	±0.05% of full scale	DATRON Model: DTM- LPA	_ <u>4970-</u> 1103_	By: <u>TRC</u> Date: <u>per test</u> Due: <u>per test</u>
Coordinate Measurement Machine	Inertial Sensing System Location	0-10 feet	0.001 inch	±0.003% of full scale	FARO International Model: Faro Arm N10	_ <u>U12-05-08-</u> 07108_	By: <u>FARO</u> Date: <u>7-30-10</u> Due: <u>7-30-11</u>
Outriggers	No output. Safety Item.	N/A	N/A	N/A	NHTSA Titanium Outriggers Model: Docket 2007-27662-11	N/A	N/A

4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION

5.0 PHOTOGRAPHS

- 5.1 ³/₄ FRONT VIEW FROM LEFT SIDE OF VEHICLE
- 5.2 ¾ REAR VIEW FROM RIGHT SIDE OF VEHICLE
- 5.3 VEHICLE CERTIFICATION LABEL
- 5.4 TIRE AND LOADING INFORMATION LABEL
- 5.5 WINDOW STICKER (MONRONEY LABEL)
- 5.6 ESC OFF AND ESC MALFUNCTION TELLTALE
- 5.7 ESC OFF CONTROL
- 5.8 ¾ FRONT VIEW TEST VEHICLE INSTRUMENTED
- 5.9 ¾ REAR VIEW TEST VEHICLE INSTRUMENTED
- 5.10 STEERING WHEEL CONTROLLER AND DATA ACQUISITION SYSTEM
- 5.11 STEERING CONTROLLER BATTERY BOX
- 5.12 INERTIA MEASUREMENT UNIT
- 5.13 VEHICLE SPEED SENSOR
- 5.14 BODY ROLL SENSOR (DRIVER SIDE)
- 5.15 BODY ROLL SENSOR (PASSENGER SIDE)
- 5.16 BRAKE PEDAL FORCE TRANSDUCER

5.1 ¾ FRONT VIEW FROM LEFT SIDE OF VEHICLE

5.2 ¾ REAR VIEW FROM RIGHT SIDE OF VEHICLE

5.3 VEHICLE CERTIFICATION LABEL

5.4 TIRE AND LOADING INFORMATION LABEL

5.5 WINDOW STICKER - MONRONEY LABEL

5.6 ESC OFF AND ESC MALFUNCTION TELLTALE

5.7 ESC OFF CONTROL

5.8 ¾ FRONT VIEW - TEST VEHICLE INSTRUMENTED

5.9 ¾ REAR VIEW - TEST VEHICLE INSTRUMENTED

5.10 STEERING WHEEL CONTROLLER AND DATA ACQUISITION SYSTEM

5.11 STEERING CONTROLLER BATTERY BOX

5.12 INERTIA MEASUREMENT UNIT

5.13 VEHICLE SPEED SENSOR

5.14 BODY ROLL SENSOR (DRIVER SIDE)

5.15 BODY ROLL SENSOR (PASSENGER SIDE)

5.16 BRAKE PEDAL FORCE TRANSDUCER

6.0 DATA PLOTS

Figure 1.	Steering Angle and Yaw Rate Time History, Counter-Clockwise Initial Steer Tests
Figure 2.	Steering Angle, Lateral Acceleration, and Lateral Displacement Time History, Counter-Clockwise Initial Steer Tests
Figure 3.	Steering Angle and Yaw Rate Time History, Clockwise Initial Steer Tests

Figure 4. Steering Angle, Lateral Acceleration, and Lateral Displacement Time History, Clockwise Initial Steer Tests

6.0 2011 BMW 128i DATA PLOTS...continued

47

Figure 2. Steering Angle, Lateral Acceleration, and Lateral Displacement Time History, Counter-Clockwise Initial Steer Tests

6.0 2011 BMW 128i DATA PLOTS...continued

Figure 3. Steering Angle and Yaw Rate Time History, Clockwise Initial Steer Tests

48

Figure 4. Steering Angle, Lateral Acceleration, and Lateral Displacement Time History, Clockwise Initial Steer Tests

49

7.0 OTHER DOCUMENTATION

- 7.1 OWNER'S MANUAL PAGES
- 7.2 VEHICLE ARRIVAL CONDITION REPORT
- 7.3 VEHICLE COMPLETION CONDITION REPORT
- 7.4 SINE WITH DWELL TEST RESULTS
- 7.5 SLOWLY INCREASING STEER TEST RESULTS
- 7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES

Driving stability control systems

Your BMW has a number of systems that help to maintain the vehicle's stability even in adverse driving conditions.

Antilock Brake System ABS

ABS prevents locking of the wheels during braking. Safe steering response is maintained even during full braking. Active safety is thus increased.

ABS is operational every time you start the engine. Braking safely, refer to page 106.

Electronic brake-force distribution EBV

The system controls the brake pressure in the rear wheels to ensure stable braking behavior.

Dynamic Brake Control DBC

When you apply the brakes rapidly, this system automatically produces the maximum braking force boost and thus helps to achieve the shortest possible braking distance during full braking. At the same time, all the benefits provided by ABS are exploited.

Do not reduce the pressure on the brake for the duration of the full braking application.

Dynamic Stability Control DSC

DSC prevents the driving wheels from losing traction when you pull away from rest or accelerate. The system also recognizes unstable driving conditions, for example if the rear of the car is about to swerve or if momentum is acting at an angle past the front wheels. In these cases, DSC helps the vehicle maintain a safe course within physical limits by reducing engine output and through braking actions at the individual wheels.

The laws of physics cannot be repealed, even with DSC. An appropriate driving style always remains the responsibility of the driver. Therefore do not reduce the additional safety margin by engaging in hazardous driving thereby running the risk of an accident.

Deactivating DSC

Press the button for at least 3 seconds; the indicator lamps for DSC in the instrument cluster light up. Dynamic Traction Control DTC and DSC have been simultaneously deactivated. Stabilizing and drive-output promoting actions are no longer executed.

In the same way as with a differential interlock*, even if DSC is deactivated, brake actions are still performed on the rear axle to enhance drive output if the drive wheels experience a significant loss of traction.

To increase vehicle stability, activate DSC again as soon as possible.

Activating DSC

Press the button again; the indicator lamps for DSC in the instrument cluster go out.

For better control

If the indicator lamp flashes: The DSC controls the driving and breaking forces.

If the indicator lamps are on: DSC is deactivated.

Dynamic Traction Control DTC

DTC is a version of DSC in which the drive output is optimized for particular road conditions, e.g. unplowed snow-covered roads. The system ensures maximum propulsion though with restricted driving stability. You therefore need to drive with suitable caution.

> 2011 BMW 128i FMVSS 126 VEHICLE No.: CB0514 JUNE 2011

.

72

Online Edition for Part no. 01 40 2 605 420 - © 07/10 BMW AG

In the following exceptional situations, it can be useful to briefly activate DTC:

- When driving on snow-covered inclines, in slush, or on uncleared snowy roads
- When rocking the vehicle free, driving out of deep snow or on loose surfaces
- When driving with snow chains

Activating DTC

Press the button; the indicator lamps for DTC in the instrument cluster come on.

For better control

DIC

DTC

If the indicator lamp flashes: DTC controls the driving and breaking forces.

If the indicator lamps are on: DTC is activated.

Deactivating DTC

Press the button again; the DTC indicator lamps in the instrument cluster go out.

Drive-off assistant

The drive-off assistant enables you to drive off smoothly on uphill gradients. It is not necessary to use the parking brake for this.

- 1. Hold the car in place by depressing the brake.
- 2. Release the brake and drive off without delay.

The drive-off assistant holds the car in place for approx. 2 seconds after the

brake is released. Drive off without delay after releasing the brake. Otherwise, the drive-off assistant will no longer hold the car in place after approx. 2 seconds and the car will start to roll backwards.

Flat Tire Monitor FTM*

The concept

The system does not measure the actual inflation pressure in the tires.

The system detects a pressure loss in a tire by comparing the rotational speeds of the individual wheels while moving.

In the event of a pressure loss, the diameter and therefore the rotational speed of the corresponding wheel change. This is detected and reported as a flat tire.

Functional requirement

The system must have been initialized while the tire inflation pressure was correct; otherwise, reliable signaling of a flat tire is not ensured.

Each time a tire inflation pressure has been corrected or a wheel or tire has been changed, reinitialize the system.

System limitations

It is impossible to provide advance warning of sudden, severe tire damage caused by outside influences.

The system will not detect a natural, uniform pressure loss in all four tires. Therefore, check the tire inflation pressure regularly.

In the following situations, the system could be delayed or malfunction:

- System has not been initialized
- Driving on snowy or slippery road surface
- Performance-oriented style of driving: slip in the drive wheels, high lateral acceleration
- Driving with snow chains*

2011 BMW 128i FMVSS 126 VEHICLE No.: CB0514 73 **JUNE 2011**

Online Edition for Part no. 01 40 2 605 420 - © 07/10 BMW AG

tiously; otherwise, there is a risk of personal injury or property damage.◀

Driving stability control systems

Your BMW has a number of systems that help to maintain the vehicle's stability even in adverse driving conditions.

Antilock Brake System ABS

ABS prevents locking of the wheels during braking. Safe steering response is maintained even during full braking. Active safety is thus increased.

ABS is operational every time you start the engine. Braking safely, refer to page 116.

Electronic brake-force distribution EBV

The system controls the brake pressure in the rear wheels to ensure stable braking behavior.

Dynamic Brake Control DBC

When you apply the brakes rapidly, this system automatically produces the maximum braking force boost and thus helps to achieve the shortest possible braking distance during full braking. At the same time, all the benefits provided by ABS are exploited.

Do not reduce the pressure on the brake for the duration of the full braking application.

Dynamic Stability Control DSC

DSC prevents the driving wheels from losing traction when you pull away from rest or accelerate. The system also recognizes unstable driving conditions, for example if the rear of the car is about to swerve or if momentum is acting at an angle past the front wheels. In these cases, DSC helps the vehicle maintain a safe course within physical limits by reducing engine output and through braking actions at the individual wheels.

The laws of physics cannot be repealed, even with DSC. An appropriate driving style always remains the responsibility of the driver. Therefore do not reduce the additional safety margin by engaging in hazardous driving thereby running the risk of an accident.

Deactivating DSC

Press the button for at least 3 seconds; the indicator lamps for DSC in the instrument cluster light up. Dynamic Traction Control DTC and DSC have been simultaneously deactivated. Stabilizing and drive-output promoting actions are no longer executed.

In the same way as with a differential interlock*, even if DSC is deactivated, brake actions are still performed on the rear axle to enhance drive output if the drive wheels experience a significant loss of traction.

To increase vehicle stability, activate DSC again as soon as possible.

Activating DSC

Press the button again; the indicator lamps for DSC in the instrument cluster go out.

For better control

If the indicator lamp flashes: The DSC controls the driving and breaking forces.

If the indicator lamps are on: DSC is deactivated.

Dynamic Traction Control DTC

DTC is a version of DSC in which the drive output is optimized for particular road conditions, e.g. unplowed snow-covered roads. The system ensures maximum propulsion though with

7.2 VEHICLE ARRIVAL CONDITION REPORT

CONTRACT NO. <u>DTNH22-08-D-00097</u> DATE: <u>6/24/11</u>
FROM: Car Source LLC.
TO: TRC
PURPOSE:(X) Initial() Received() PresentReceiptvia Transfervehicle condition
MODEL YEAR/MAKE/MODEL/BODY STYLE: 2011 / BMW / 128i / Passenger Car
MANUFACTURE DATE: 10/10 NHTSA NO.: CB0514
BODY COLOR: Black VIN: WBAUP7C56BVP21469
ODOMETER READING:71_miles GVWR:1,910_KG
PURCHASE PRICE: \$ <u>rented / leased</u> DEALER'S NAME: <u>Car Source LLC.</u> , 1200 Stringtown Road, Grove City, OH 43123
X ALL OPTIONS LISTED ON "WINDOW STICKER" ARE PRESENT ON THE TEST VEHICLE X X TIRES AND WHEEL RIMS ARE NEW AND THE SAME AS LISTED
X THERE ARE NO DENTS OR OTHER INTERIOR OR EXTERIOR FLAWS
X THE VEHICLE HAS BEEN PROPERLY PREPARED AND IS IN RUNNING CONDITION
X THE GLOVE BOX CONTAINS AN OWNER'S MANUAL, WARRANTY DOCUMENT, CONSUMER INFORMATION, AND EXTRA SET OF KEYS
X PROPER FUEL FILLER CAP IS SUPPLIED ON THE TEST VEHICLE
X PLACE VEHICLE IN STORAGE AREA
X INSPECT THE VEHICLE'S INTERIOR AND EXTERIOR, INCLUDING ALL WINDOWS SEATS, DOORS, ETC., TO CONFIRM THAT EACH SYSTEM IS COMPLETE AND FUNCTIONAL PER THE MANUFACTURER'S SPECIFICATIONS. ANY DAMAGE, MISADJUSTMENT, OR OTHER UNUSUAL CONDITION THAT COULD INFLUENCE THE TEST PROGRAM OR TEST RESULTS SHALL BE RECORDED. REPORT ANY ABNORMAL CONDITION TO THE NHTSA COTR BEFORE BEGINNING ANY TEST

RECORDED BY:	Alan Ida	DATE:	6-24-11
APPROVED BY:	Ken Webster	DATE:	7-07-11

7.3 VEHICLE COMPLETION CONDITION REPORT

CONTRACT NO. DTNH22-08-D-00097	DATE: 7/06/11
MODEL YEAR/MAKE/MODEL/BODY STYLE	: <u>2011 / BMW / 128i / Passenger Car</u>
MANUFACTURE DATE: 10/10	NHTSA NO.: <u>CB0514</u>
BODY COLOR: Black VIN:	WBAUP7C56BVP21469
ODOMETER READING: <u>138</u> miles	GVWR: <u>1,910</u> KG
LIST OF FMVSS TESTS PERFORMED BY T	HIS LAB: <u>126, 135</u>

- X THERE ARE NO DENTS OR OTHER INTERIOR OR EXTERIOR FLAWS
- X THE VEHICLE HAS BEEN PROPERLY MAINTAINED AND IS IN RUNNING CONDITION
- X THE GLOVE BOX CONTAINS AN OWNER'S MANUAL, WARRANTY DOCUMENT, CONSUMER INFORMATION, AND EXTRA SET OF KEYS
- X PROPER FUEL FILLER CAP IS SUPPLIED ON THE TEST VEHICLE

REMARKS:

Equipment that is no longer on the test vehicle as noted on Vehicle Arrival Condition Report:

None.

Explanation for equipment removal: N/A

Test Vehicle Condition: Like new.

RECORDED BY: _	Alan Ida	DATE:	7-06-11
APPROVED BY:	Ken Webster	DATE:	7-07-11

7.4 SINE WITH DWELL TEST RESULTS 2011 BMW 128i NHTSA No.: CB0514

Date Created 30-Jun-11

LEFT-TO-RIGHT (INITIAL COUNTER-CLOCKWISE STEER)

File	SWA @ 5deg Ct	MES	Time@5deg	cos	Time@COS	MOS	Time@MOS	YRR1(%)	YR1 (deg/sec)	YRR1 Ct	YRR175(%)	YR175 (deg/sec)
0027	619	50.250	3.090	1000	4.991	755	3.769	-0.339	-0.045	1200	-0.171	-0.023
0028	618	50.195	3.082	999	4.987	755	3.768	-0.410	-0.072	1199	-0.615	-0.108
0029	617	50.379	3.075	999	4.985	755	3.766	-0.198	-0.043	1199	-0.374	-0.082
0032	617	50.438	3.076	999	4.989	756	3.770	-0.017	-0.004	1199	-0.164	-0.042
0033	616	50.411	3.073	999	4.989	755	3.770	-0.074	-0.022	1199	-0.203	-0.059
0034	615	50.249	3.068	999	4.985	755	3.766	0.653	0.224	1199	0.408	0.140
0035	615	50.414	3.067	998	4.985	755	3.767	0.297	0.114	1198	0.448	0.172
0036	615	50.449	3.066	998	4.984	755	3.767	0.165	0.072	1198	0.188	0.082
0037	615	50.352	3.069	999	4.988	755	3.770	-0.053	-0.025	1199	0.061	0.029
0038	615	50.543	3.065	998	4.984	755	3.767	0.130	0.069	1198	0.339	0.181
0039	615	50.386	3.067	999	4.986	755	3.768	0.002	0.001	1199	-0.089	-0.050
0040	615	50.533	3.067	999	4.986	755	3.769	0.048	0.028	1199	-0.026	-0.015
0041	615	50.296	3.065	998	4.984	755	3.767	0.052	0.031	1198	-0.058	-0.034
0042	614	50.358	3.063	998	4.982	754	3.765	0.378	0.239	1198	0.278	0.175
0043	615	50.535	3.067	999	4.987	755	3.769	0.309	0.205	1199	0.124	0.082
0044	615	50.304	3.065	998	4.984	755	3.768	0.374	0.250	1198	-0.311	-0.208
0045	615	50.379	3.067	999	4.985	755	3.769	0.203	0.138	1199	0.218	0.148
0046	615	50.731	3.068	999	4.987	756	3.770	0.460	0.313	1199	-0.177	-0.120
0047	615	50.404	3.068	999	4.987	756	3.770	0.184	0.127	1199	0.211	0.145
0048	614	50.349	3.064	998	4.983	755	3.766	0.113	0.075	1198	-0.177	-0.117
RIGHT-TO-	LEFT (INITIAL CLOC	WISE STEE	ER)									
0049	620	50.436	3.092	1000	4.993	756	3.771	-1.623	0.219	1200	-1.278	0.172
0050	618	50.491	3.081	999	4.987	755	3.767	0.742	-0.131	1199	0.409	-0.072
0051	617	50.485	3.079	999	4.988	755	3.770	0.556	-0.121	1199	-0.083	0.018
0052	617	50.357	3.076	999	4.989	755	3.770	0.400	-0.109	1199	0.440	-0.120
0053	616	50.325	3.072	999	4.988	755	3.769	0.414	-0.123	1199	0.179	-0.053
0054	616	50.441	3.071	999	4.988	755	3.769	0.648	-0.225	1199	0.771	-0.268
0055	615	50.182	3.067	998	4.985	755	3.766	1.017	-0.395	1198	0.494	-0.192
0056	615	50.335	3.066	998	4.984	755	3.767	-0.230	0.101	1198	-0.523	0.229
0057	615	50.539	3.067	999	4.985	755	3.768	0.162	-0.079	1199	0.266	-0.129
0058	615	50.452	3.066	999	4.985	755	3.768	0.125	-0.065	1199	0.121	-0.063
0059	615	50.569	3.068	999	4.987	755	3.769	0.388	-0.219	1199	0.315	-0.178
0060	1357	50.365	6.777	1741	8.697	1497	7.480	0.236	-0.138	1941	0.495	-0.289
0061	615	50.464	3.066	998	4.985	755	3.768	0.457	-0.287	1198	0.011	-0.007
0062	614	50.528	3.063	998	4.983	755	3.766	0.220	-0.142	1198	-0.003	0.002
0063	614	50.407	3.063	998	4.983	755	3.766	-0.024	0.016	1198	0.035	-0.024
0064	614	50.401	3.064	998	4.984	755	3.767	0.563	-0.383	1198	0.226	-0.154
0065	615	50.419	3.068	999	4.987	756	3.770	0.692	-0.474	1199	0.048	-0.033
0066	615	50.472	3.066	998	4.985	755	3.768	-0.175	0.124	1198	0.498	-0.351
0067	615	50.550	3.068	999	4.988	756	3.770	0.564	-0.395	1199	-0.028	0.020
0068	615	50.639	3.066	999	4.986	755	3.768	0.651	-0.461	1199	0.246	-0.174

7.4 SINE WITH DWELL TEST RESULTS 2011 BMW 128i NHTSA No.: CB0514

Date Created 30-Jun-11

LEFT-TO-RIGHT (INITIAL COUNTER-CLOCKWISE STEER)

File	YRR175 Ct	2nd Yaw Peak(deg/sec)	2nd Yaw Peak Ct	Lat Disp (ft)	Lat. Acc. 1.07s (g)	1st SWA Peak(deg)	1st SWA Peak Ct	2nd SWA Mean(deg)
0027	1350	13.185	896	-4.447	0.408	37.736	684	37.595
0028	1349	17.475	857	-5.783	0.524	50.101	684	49.876
0029	1349	21.899	869	-7.387	0.606	63.155	683	63.042
0032	1349	25.819	845	-8.497	0.654	75.956	684	75.874
0033	1349	29.204	834	-9.532	0.676	87.998	684	87.998
0034	1349	34.309	834	-10.247	0.681	101.044	683	101.247
0035	1348	38.523	832	-10.794	0.702	113.122	684	113.138
0036	1348	43.491	836	-11.152	0.688	126.109	684	126.136
0037	1349	47.694	837	-11.504	0.715	138.957	684	139.179
0038	1348	53.248	840	-11.738	0.601	151.376	683	151.444
0039	1349	55.393	838	-11.667	0.711	164.321	684	164.548
0040	1349	58.547	836	-11.874	0.722	176.377	684	176.267
0041	1348	59.749	836	-11.952	0.758	189.500	684	189.573
0042	1348	63.120	837	-12.165	0.740	202.721	683	202.592
0043	1349	66.278	839	-12.152	0.713	214.629	684	214.634
0044	1348	66.821	838	-11.977	0.776	227.815	684	227.511
0045	1349	67.925	838	-12.204	0.764	239.624	684	239.488
0046	1349	68.084	836	-11.914	0.874	253.075	684	252.623
0047	1349	68.998	836	-12.046	0.848	265.961	684	265.708
0048	1348	66.273	835	-11.792	0.943	271.087	683	270.784
RIGHT-TO-	LEFT (INITIAL	CLOCKWISE STEER)						
0049	1350	-13.465	890	4.094	-0.383	38.184	684	38.204
0050	1349	-17.612	860	5.507	-0.480	50.408	683	50.336
0051	1349	-21.736	849	6.965	-0.545	63.623	684	63.415
0052	1349	-27.367	843	8.028	-0.618	76.403	684	76.289
0053	1349	-29.794	835	9.018	-0.611	88.319	684	88.284
0054	1349	-34.736	835	9.691	-0.672	101.424	684	101.345
0055	1348	-38.799	834	10.249	-0.695	113.455	684	113.465
0056	1348	-43.771	835	10.869	-0.695	126.568	684	126.322
0057	1349	-48.585	838	11.142	-0.709	139.444	684	139.377
0058	1349	-51.912	838	11.543	-0.689	151.783	684	151.494
0059	1349	-56.553	842	11.648	-0.623	164.584	684	164.587
0060	2091	-58.431	1581	11.749	-0.716	176.596	1426	176.531
0061	1348	-62.815	841	11.779	-0.664	189.682	684	189.681
0062	1348	-64.712	840	11.993	-0.699	202.620	683	202.527
0063	1348	-66.718	839	11.847	-0.755	214.589	683	214.523
0064	1348	-68.076	839	11.917	-0.776	227.726	683	227.641
0065	1349	-68.556	840	12.082	-0.768	239.693	684	239.465
0066	1348	-70.474	839	12.338	-0.769	252.704	684	252.670
0067	1349	-70.036	838	11.988	-0.839	265.699	684	265.724
0068	1349	-70.705	838	11.998	-0.838	270.554	684	270.515

7.5 SLOWLY INCREASING STEER TEST RESULTS 2011 BMW 128i NHTSA No.: CB0514

Date Created 30-Jun-11

File	Vehicle	EventPt	DOS	MES [mph]	Mean SPD [mph]	AYcount_3	THETAENCF_3 [degree]	AYCG_CD2_3 [g]	r_squared	ZeroBegin	ZeroEnd
0012	2011 BMW 128i	703	1	49.983	50.104	1065	-24.536	-0.302	0.998	503	703
0013	2011 BMW 128i	704	1	50.460	49.546	1074	-25.058	-0.298	0.997	504	704
0016	2011 BMW 128i	703	1	50.274	50.496	1058	-24.072	-0.304	0.998	503	703
0017	2011 BMW 128i	705	0	50.140	50.213	1079	25.484	0.306	0.999	505	705
0018	2011 BMW 128i	698	0	49.816	49.591	1081	25.761	0.302	0.998	498	698
0019	2011 BMW 128i	698	0	49.699	49.362	1090	26.324	0.303	0.998	498	698
	Averages						25.2	0.302			

Scalars	Steering Angles (deg)						
1	.5	38					
	2	50					
2	.5	63					
	3	76					
3	.5	88					
	4	101					
4	.5	113					
	5	126					
5	.5	139					
	6	151					
6	.5	164					
	7	176					
7	.5	189					
	8	202					
8	.5	214					
	9	227					
9	.5	239					
1	0	252					
10	.5	265					
10	.7	270					

7.6 INERTIA SENSOR MEASUREMENTS 2011 BMW 128i NHTSA No.: CB0514

Device: U12-05-08device version: 2.24device certification date: 07/30/10today is: 6/29/2011units: Millimeters	3-07108				
Label C_DEVICEPOS001 M_PLANE001 M_LINE001 M_ORIGIN_FRT_AXLE_CENTER C_COORDSYS001 M_TIRE_TREAD_CENTER M_INERTIA_PACK M_ROOF M_GROUND	ActualX 1188.783 809.675 0.000 278.869 1712.278 1874.486 1874.471	ActualY -518.568 84.030 0.000 96.139 815.827 825.464 -106.754	ActualZ -303.318 34.927 0.000 0.000 -161.730 497.015 1108.371 -301.604		
Track Width		1479.550			
Roof Height (relative to ground)			1409.975		
Motion Pak - x-distance (mm) Motion Pak - y-distance (mm) Motion Pak - z-distance (mm)	1712.278	-20.087	754.169		
Motion Pak - x-distance (inches) Motion Pak - y-distance (inches) Motion Pak - z-distance (inches)	67.412	-0.791	29.692		
x-distance (longitudinal)	Point of reference is the front axle centerline. (Positive from front axle toward rear of vehicle.)				
y-distance (lateral)	Point of ref (Positive free	erence is th om the cent	e vehicle centerline. er toward the right.)		
z-distance (vertical)	Point of reference is the ground plane. (Positive from the ground up.)				