126-TRC-11-001

SAFETY COMPLIANCE TESTING FOR FMVSS 126 Electronic Stability Control Systems

Ford Motor Company 2011 Ford Transit Connect NHTSA No. CB0206

TRANSPORTATION RESEARCH CENTER INC. 10820 State Route 347 East Liberty, Ohio 43319

April 20, 2011

FINAL REPORT

Prepared Under Contract No.: DTNH22-08-D-00097

U. S. DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Enforcement Office of Vehicle Safety Compliance 1200 New Jersey Avenue, SE West Building, 4th Floor (NVS-221) Washington, DC 20590 Prepared for the Department of Transportation, National Highway Traffic Safety Administration, under Contract No. <u>DTNH22-08-D-00097</u>.

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products of manufacturers.

Prepared By:

Alan Ida

Approved By:

Ken Webster

Approval Date:

3/ 6////

FINAL REPORT ACCEPTANCE BY OVSC:

Accepted By:

Acceptance Date:

1. Report No.	Government Accession No.	3. Recipient's Catalog No.	
126-TRC-11-001			
4. Title and Subtitle		5. Report Date	
Final Report of FMVSS 126 Compli Connect, NHTSA No. CB0206	iance Testing of 2011 Ford Transit	April 20, 2011	
Comicot, Willey No. CB0200		6. Performing Organization	n Code
		TRC 20080734 / 1101	
7. Author(s)		Performing Organization	Report No.
Alan Ida, Project Engineer	Dunit of On anations	TDO DOT 400 44 004	
Ken Webster, Manager, DDO F	,	TRC-DOT-126-11-001	
9. Performing Organization Name	e and Address	10. Work Unit No.	
Transportation Research Cent	er Inc.		
10820 State Route 347		11. Contract or Grant No.	
East Liberty, OH 43319		DTNH22-08-D-00097	
12. Sponsoring Agency Name and		13. Type of Report and Peri	od Covered
U.S. Department of Transporta National Highway Traffic Safet		Final test report	
Enforcement		March 3, 2011 to April 2	0, 2011
Office of Vehicle Safety Compl	iance		
1200 New Jersey Avenue, SE, West Building, 4 th Floor (NVS-	221)		
Washington, D.C. 20590	,		
		14. Sponsoring Agency Cod	de
		NVS-220	
15. Supplementary Notes			
16. Abstract			
	LT '' O LANGTON N. ODOOG	20 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	
	ord Transit Connect, NHTSA No. CB020 No. TP-126-02 for the determination of		fications of the Office of Venicle
Test failures identified were as follo		, , , , , , , , , , , , , , , , , , , ,	
17. Key Words		18. Distribution Statement	
•		0 : (11:	9.11.7
Compliance Testing Safety Engineering		Copies of this report are	avaliable from:
FMVŠS 126		NHTSA Technical Inform	nation Services (TIS)
		(NPO 411) 1200 New Jersey Avenu	ie SE
		Washington, D.C. 20590)
		Email: tis@nhtsa.dot.go	OV
		FAX: (202) 493-2833	
19. Security Classif. (of this	20. Security Classif. (of this page)	21. No. of Pages 61	22.
report) Unclassified	Unclassified		
	1		

TABLE OF CONTENTS

SECTION		<u>PAGE</u>
1.0	PURPOSE OF COMPLIANCE TEST	1
2.0	TEST PROCEDURE AND DISCUSSION OF RESULTS	1
3.0	TEST DATA	5
4.0	TEST EQUIPMENT LIST AND CALIBRATION INFORMATION	l 27
5.0	PHOTOGRAPHS	28
6.0	DATA PLOTS	44
7.0	OTHER DOCUMENTATION 7.1 Owner's Manual Pages 7.2 Vehicle Arrival Condition Report 7.3 Vehicle Completion Condition Report 7.4 Sine with Dwell Test Results 7.5 Slowly Increasing Steer Test Results 7.6 Inertial Sensing System Location Coordinates	49 50 56 57 58 60 61

1.0 PURPOSE OF COMPLIANCE TEST

The purpose of this test is to determine if the test vehicle, a MY 2011 Ford Transit Connect meets the minimum equipment and performance requirements stated in Federal Motor Vehicle Safety Standard (FMVSS) 126, "Electronic Stability Control Systems."

This standard establishes performance and equipment requirements for Electronic Stability Control (ESC) Systems installed in passenger cars, multipurpose passenger vehicles, trucks, and buses with a gross vehicle weight rating of 4,536 kilograms or less.

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS

Testing of the MY 2011 Ford Transit Connect was conducted at Transportation Research Center Inc. (TRC Inc.) in accordance with NHTSA TP-126-02, dated November 19, 2008.

The vehicle was inspected to ensure it was equipped with an ESC System that:

- Augments vehicle directional stability by applying and adjusting brake torques individually at each wheel to induce a correcting yaw moment to a vehicle;
- Is computer controlled with the computer using a closed-loop algorithm to limit vehicle oversteer and to limit vehicle understeer;
- Has a means to determine the vehicle's yaw rate and to estimate its side slip or side slip derivative with respect to time;
- Has a means to monitor driver steering inputs;
- Has an algorithm to determine the need, and a means to modify engine torque, as necessary, to assist the driver in maintaining control of the vehicle, and
- Is operational over the full speed range of the vehicle (except at vehicle speeds less than 20km/h (12.4mph), when being driven in reverse, or during system initialization).

The vehicle was subjected to a 0.7Hz Sine with Dwell (SWD) Steering Maneuver to ensure that it would meet the stability and responsiveness requirements of the standard as follows:

- At 1.0 second after completion of a required sine with dwell steering input, the yaw rate of the vehicle must not exceed 35 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).
- At 1.75 seconds after completion of a required sine with dwell steering input, the yaw rate of the vehicle must not exceed 20 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).

The lateral displacement of the vehicle center of gravity with respect to its initial straight path must be at least 1.83 m (6 feet) (for vehicles with a GVWR of 3,500kg (7,716 lb) or less) when computed 1.07 seconds after the Beginning of Steer (BOS) at the specified steering wheel angles.

System malfunction simulations were executed to verify vehicle could identify and indicate a malfunction.

The vehicle's ESC System appears to meet the performance and equipment requirements as required by FMVSS 126. The test results are summarized on the following summary sheet.

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS ... continued

DATA SUMMARY (Sheet 1 of 2)

VEHICLE MAKE/MODEL/BODY STYLE: Ford / Transit Connect / Tr	<u>uck</u>
VEHICLE NHTSA NO.: CB0206 VIN: NM0LS7DN6BT0505	535
VEHICLE TYPE: <u>Truck</u> DATE OF MANUFACTURE:	11/10
LABORATORY: Transportation Research Center Inc.	
REQUIREMENTS	PASS/FAIL
ESC Equipment and Operational Characteristics (Data Sheet 2)	
The vehicle is to be equipped with an ESC System that meets the equipme and operational characteristics requirements. (S126, S5.1, S5.6)	ent <u>PASS</u>
ESC Malfunction Telltale (Data Sheet 3)	
The vehicle is equipped with a telltale that indicates one or more ESC System malfunctions. (S126, S5.3)	PASS
"ESC Off" and other System Controls and Telltale (Data Sheet 3 & 4)	
The vehicle is equipped with an ESC off telltale indicating the vehicle has been put into a mode that renders the ESC System unable to satisfy the performance requirements of the standard, if such a mode exists. (S5.5.1)	See Remarks
If provided, off control and other system controls as well as the ESC off telltale meets the operational requirements (S126, S5.4, S5.4.1, S5.4.2, S5.5.4, and S5.5.9)	See Remarks

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS ... continued

DATA SUMMARY (Sheet 2 of 2)

REQUIREMENTS	PASS/FAIL
If provided, off control and other system controls as well as the ESC off telltale meets the operational requirements (S126, S5.4, S5.4.1, S5.4.2, S5.5.4, and S5.5.9)	See Remarks
Vehicle Lateral Stability (Data Sheet 8)	
Yaw Rate Ratio at 1 second after COS is less than 35% of peak value. (S126, S5.2.1)	<u>PASS</u>
Yaw Rate Ratio at 1.75 seconds after COS is less than 20% of peak value. (S126, S5.2.2)	<u>PASS</u>
Vehicle Responsiveness (Data Sheet 8)	
Lateral displacement at 1.07 seconds after BOS is at least 1.83 m (6 feet) for vehicles with a GVWR of 3,500 kg (7,716 lbs.) or less, and 1.52 m (5 feet) for vehicles with a GVWR greater than 3,500 kg (7,716 lbs.). (S126 S5.2.3)	PASS
ESC Malfunction Warning (Data Sheet 9)	
Warning is provided to driver after malfunction occurrence. (S126. S5.3)	<u>PASS</u>
Malfunction telltale stayed illuminated as long as malfunction existed and must extinguish after malfunction was corrected. (S126, S5.3.7)	PASS

REMARKS

The 2011 Ford Transit Connect does not have an ESC Off Control, therefore it does not have an ESC Off telltale.

3.0 TEST DATA

DATA SHEET 1 (Sheet 1 of 2) TEST VEHICLE INSPECTION AND TEST PREPARATION

VEHICLE MAKE/MODEL/BODY STYLE:	Ford / Tra	nsit Connect / Truck
NHTSA No.: CB0206 T	EST DATE:	3-07-11
VIN: NM0LS7DN6BT050535	MANUFACTURE	EDATE: 11/10
GVWR: 2,270 KG FRONT GAWR:	<u>1,130</u> KG RE	AR GAWR <u>1,243</u> KG
SEATING POSITIONS: FRONT 2	MID <u>0</u>	REAR0
ODOMETER READING AT START OF T	EST: <u>20 (32</u>	2) Miles (Kilometers)
DESIGNATED TIRE SIZE(S) FROM VEH Front Axle P205 / 65R 15 95T		
INSTALLED TIRE SIZE(S) ON VEHICLE	:	
From Tire Sidewall Front A	<u>de</u>	Rear Axle
Manufacturer and Model Continental C	ontiProContact	Continental ContiProContact
Tire Size Designation P205 / 65	R 15 95T	P205 / 65R 15 95T
Are installed tire sizes same as labeled tire on, contact COTR for further guidance.		<u>(</u>
DRIVE CONFIGURATIONS (MARK ALL	THAT APPLY):	
X Two Wheel Drive (2WD): (X) Fror All Wheel Drive (AWD) Four Wheel Drive Automatic – diff Four Wheel Drive High Gear Unlock Four Wheel Drive High Gear Lock Four Wheel Drive Low Gear Unlock	erential not lock cked Center Diff ed Center Differ	ed full time (4WD Automatic) erential ential
Four Wheel Drive Low Gear Locke Other (define		
		j.

DATA SHEET 1 (Sheet 2 of 2) TEST VEHICLE INSPECTION AND TEST PREPARATION

DRIVE CONFIGURATIONS AND MODES: (ex. default, performance for each of the vehicle's drive configurations identify available and the configurations identify available for each of the vehicle's drive configurations.)		
Drive Configuration 2WD Mode(s) default		
Drive Configuration Mode(s)		
Drive Configuration Mode(s)		
VEHICLE STABILITY SYSTEMS (Check applicable technol	logies):
X ESC X Traction Control	<u>X</u>	Roll Stability Control
Active SuspensionX_Electronic Throttle Control		Active Steering
X_ABS		
List other systems;		
REMARKS:		
	DATE: DATE:	3-07-11 3-28-11

DATA SHEET 2 (Sheet 1 of 2) ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

VEHICLE MAKE/MODEL/BODY STYLE:	Ford / Transit C	Jonnect / Truck
NHTSA No.: CB0206	TEST DATE:_	3-09-11
ESC SYSTEM IDENTIFICATION:		
Manufacturer / Model <u>Continental Teve</u>	s – MK60EC ESC Sy	stem Diagonal Brake Split
ESC SYSTEM HARDWARE (Check application of the control Unit of the	draulic Control Unit eering Angle Sensor teral Acceleration Se	nsor
List other components;		
ESC SYSTEM OPERATIONAL CHARAC	CTERISTICS:	
System is capable of generating brake to	rques at each wheel	XYes (PASS) No (FAIL)
List and describe component(s): <u>Hydra</u>	ulic Control Unit	
System is capable of determining yaw ra	te	XYes (PASS) No (FAIL)
List and describe component(s): Yaw Ra sensor	ate Sensor in RSC03 cluster	NO (FAIL)
System is capable of monitoring driver st	eering input	XYes (PASS) No (FAIL)
List and describe component(s): <u>Steerir</u> <u>based</u>		ng wheel angle signal
System is capable of estimating side slip	or side slip derivation	X Yes (PASS) No (FAIL)
List and describe component(s): The ES steering angle, wheel speed, yaw rate, an vehicle deviation by comparing the driver the actual vehicle behavior deviates from suitable measures to maintain the vehicle	d lateral acceleration 's input with the actua the expected vehicle	sensors and calculates the I behavior of the vehicle. I

DATA SHEET 2 (Sheet 2 of 2) ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

ESC 5151EW OPERATIONAL CHARACTERISTICS (CONT	inuea):
System is capable of modifying engine torque during ESC a	ctivation. X Yes (PASS) No (FAIL)
Method used to modify engine torque: For the 2011 Force output is managed by reducing air flow, altering spark timing fuel injectors. This is also the standard order for reducing reduction request. Every torque reduction is independent based on the amount of torque reduction being requested reduction can be achieved by using air reduction only, then used.	, and/or selectively turning off torque output during a torque and the powertrain action is ed. If the requested torque
System is capable of activation at speeds of 20 km/h (12.4 and higher.	mph) X Yes (PASS) No (FAIL)
Speed system becomes active14.4 km/h (8.9 mpł	<u>n)</u>
System is capable of activation during the following driving phases (acceleration, deceleration, coasting, and during activation of ABS or traction control).	X Yes (PASS) No (FAIL)
Driving phases that the system is capable of activationsituations, except backwards, driving at low velocity (less disabled by optional ESC-off switch or ESC off-road switch.	than 14.4 km/h) or if ESC is
Vehicle manufacturer submitted documentation explaining hesC system mitigates understeer?	now theX_ Yes (PASS) No (FAIL)
DATA INDICATES COMPLIANCE PASS	S/FAIL <u>PASS</u>
RECORDED BY: Alan Ida APPROVED BY: Ken Webster	DATE: 3-22-11 DATE: 3-28-11

DATA SHEET 3 (Sheet 1 of 2) ESC MALFUNCTION AND OFF TELLTALES

VEHICLE MAKE/MODEL/BODY STYLE:	Ford / Transit Connect / Truck
VEHICLE NHTSA NO. <u>CB0206</u>	TEST DATE: 3-23-11
ESC Malfunction Telltale	
Vehicle is equipped with malfunction telltale?	X Yes (Pass) No (Fail)
Telltale Location <u>Instrument cluster, below</u>	the speedometer
Telltale Color Yellow	
Telltale symbol or abbreviation used.	
Or ESC	Vehicle uses this symbol Vehicles uses this abbreviation Neither symbol or abbreviation is used
If different than identified above, make note of used.	any message, symbol or abbreviation
Is telltale part of a common space? Is telltale also used to indicate activation of the	
If yes, explain telltale operation during ESC ac	

3.0 DATA SHEETS....continued

DATA SHEET 3 (Sheet 2 of 2) ESC MALFUNCTION AND OFF TELLTALES

"ESC OFF" Telltale (if provided)	
Vehicle is equipped with "ESC Off" telltale?	Yes <u>X</u> No
Is "ESC OFF" telltale combined with "ESC Malfunction" tel telltale?	Itale utilizing a two partYesX_No
Telltale LocationN/A	
Telltale Color N/A	
Telltale symbol or abbreviation used.	
	es this symbol es this abbreviation mbol or abbreviation is used
OFF	
If different than identified above, make note of any messa- used. N/A	.
Is telltale part of a common space? Yes	sNo
DATA INDICATES COMPLIANCE (Vehicle is compliant if equipped with a malfunction telltale	PASS/FAIL PASS
REMARKS: The 2011 Ford Transit Connect does not have an ESC Of have an ESC Off telltale.	f Control, therefore it does no
RECORDED BY: Alan Ida APPROVED BY: Ken Webster	DATE: 3-23-11 DATE: 3-28-11

DATA SHEET 4 (Sheet 1 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

"ESC OFF" Controls Identification and Operational Check:

Is the vehicle equipped with a control or controls whose purpose is to deactivate the ESC system or place the ESC system in a mode or modes that may no longer satisfy the performance requirements of the standard?

			Yes	XNo
Type of control or controls (mark all that apply)	s provided?	M "E	edicated "ESC O ulti-functional co SC Off" mode other (describe)	
Identify each control locat	tion, labeling a	nd selectable mo	odes.	
First Control:	Labeling	N/A		
Identify standard or defau	ılt drive config	uration	N/A	
Verify standard or default	drive configur	ation selected.	Yes	No
Does the "ESC Off" telltal selection of the "ESC Off"				
Does the "ESC Off" telltal "Lock" or "Off" and then b	ack again to th	ne "On" ("Run") p —		,

DATA SHEET 4 (Sheet 2 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

If a multi-function control is provided, cycle through each mode setting on the control and record which modes illuminate the "ESC Off" telltale. Also, for those modes that illuminate the ESC Off" telltale identify if the telltale extinguishes upon cycling the ignition system.

		_			_	
	Control Modes		"ESC Off" tell illuminates up activation of co (Yes/No)	oon	extinguis cycling	ff" telltale shes upon ignition? s/No)
	N/A				,	,
ign	r each mode that illumi ition was cycled from ' un") position?				I then back a	
ls t	ner System Controls to he vehicle equipped wi C System or place the formance requirement	th any and ESC Syste	illary controls to em in a mode o	nat upon	activation ma	ay deactivate the
					Yes	X_ No
Lis	t and describe each co	ntrol (i.e. a	alternate drive o	configura	tion selectior	n controls):
	Ancillary Control:	Control D	Description			
	Ancillary Control:	System_ Control D	Description	N/A		

Labeling

APPROVED BY: Ken Webster

DATA SHEET 4 (Sheet 3 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

Activate each control listed above and record whether the control illuminates the "ESC Off" telltale. Also, record warnings or messages provided regarding the ESC System.

Ancillary Control	Control Activates Telltale? (Ye		Warnings or Me	essages Provide
N/A	Tentale: (16	3/140/		
				. "
	at illuminate the "ESC cling the ignition sys		above identify if t	he "ESC Off" tell
	oming the ignition by	otom.		
A 10 0	:llam : Camtual		ff" telltale extingu	
Anc	illary Control N/A	Су	cling ignition? (Ye	es/No)
	1477		10//	
gnition is cycled from	n "On" ("Run") to "Loc	k" or "Off" a	nd then back agai	n to the "On" ("Rı
gnition is cycled from position? If the con configuration designe off after the ignition	n "On" ("Run") to "Loc atrol activated place ed for low-speed, off- has been cycled off	k" or "Off" a s the vehic -road drivin	nd then back agai e into a low-rang g, the ESC System	n to the "On" ("Ru ge four-wheel d n may remain tur
For each control that gnition is cycled from cosition? If the conconfiguration designed off after the ignition elltale may not extin	n "On" ("Run") to "Loc atrol activated place ed for low-speed, off- has been cycled off	k" or "Off" a s the vehic -road drivin	nd then back againg into a low-rang into a low-rang into the ESC System ack on and there	n to the "On" ("Ru ge four-wheel d n may remain tur
gnition is cycled from position? If the con configuration designe off after the ignition elltale may not extin	n "On" ("Run") to "Loc atrol activated place ed for low-speed, off- has been cycled off guish.	k" or "Off" a s the vehic -road drivin	nd then back againg into a low-ranger, the ESC System ack on and there	n to the "On" ("Ruge four-wheel don may remain turnefore the "ESC (
gnition is cycled from position? If the con configuration designer off after the ignition elltale may not extin	n "On" ("Run") to "Loc atrol activated place ed for low-speed, off- has been cycled off guish.	k" or "Off" a s the vehic -road drivin	nd then back againg into a low-ranger, the ESC System ack on and there	n to the "On" ("Ruge four-wheel donay remain turner the "ESC (
gnition is cycled from position? If the consonfiguration designed of after the ignition celltale may not extinuous DATA INDICATES C	n "On" ("Run") to "Loc atrol activated place ed for low-speed, off- has been cycled off guish.	k" or "Off" a s the vehic -road drivin	nd then back againg into a low-ranger, the ESC System ack on and there	n to the "On" ("Ruge four-wheel don may remain turnefore the "ESC (
gnition is cycled from position? If the consonition? If the consonfiguration designed off after the ignition celltale may not extinuous DATA INDICATES C	n "On" ("Run") to "Loc atrol activated place ed for low-speed, off- has been cycled off guish.	k" or "Off" a s the vehic -road drivin	nd then back againg into a low-ranger, the ESC System ack on and there	n to the "On" ("Ruge four-wheel don may remain turnefore the "ESC (
gnition is cycled from position? If the con configuration designe off after the ignition	n "On" ("Run") to "Loc atrol activated place ed for low-speed, off- has been cycled off guish.	k" or "Off" a s the vehic -road drivin	nd then back againg into a low-ranger, the ESC System ack on and there	n to the "On" ("Ruge four-wheel don may remain turnefore the "ESC (
gnition is cycled from position? If the consonition? If the consonfiguration designed off after the ignition celltale may not extinuous DATA INDICATES C	n "On" ("Run") to "Loc atrol activated place ed for low-speed, off- has been cycled off guish.	k" or "Off" a s the vehic -road drivin	nd then back againg into a low-ranger, the ESC System ack on and there	n to the "On" ("Rige four-wheel d n may remain ture fore the "ESC No (fail)

DATE: 3-28-11

DATA SHEET 5 (Sheet 1 of 3) VEHICLE AND TEST TRACK DATA

VEHICLE MAKE/MODEL/BODY	STYLE:	Ford / Transit	Connect / Truc	<u>k</u>
NHTSA No.: CB0206		TEST DATE:	3-17-11	
Test Track Requirements:	Test Surface	Slope (0-1 %)		1%
	Peak Friction	n Coefficient (a	t least 0.9)	0.94
Full Fluid Levels: Fuel X	Coolant _	X Other	r Fluids <u>Wash</u>	er (specify)
Tire Pressures: Required:	Front Axle	<u>276</u> kPa	Rear Axle	<u>338</u> kPa
Actual: LF: 276 kPa	RF: <u>276</u> kPa	a LR: <u>338</u>	_kPa RR: _	<u>338</u> kPa
Vehicle Dimensions: Track	Width 149.9	_cm Wheell	base <u>291.5</u> cr	n
Roof	Height <u>198.3</u>	_cm		
Vehicle weight ratings: GAW	R Front 1,130	KG GAWR	Rear <u>1,243</u>	KG
Unloa	aded Vehicle	Weight (UVW)	
Front Axle866.4_KG	Left Front_	437.8 KG	Right Front	428.6 KG
Rear Axle 670.4 KG	Left Rear	337.6 KG	Right Rear _	<u>332.8</u> KG
Total UVW1,536.8_KG				
Baseline Weight and Ou	trigger Selec	tion (only for N	IPVs, Trucks, B	uses)
Calculated Baseline Weight (UV	W+ 73 kg)		1,609.8 K	G
Outrigger size required ("Standar Standard - Baseline we Heavy - Baseline we	iaht under 2.7	22 kg (6.000 lb	os.)	

DATA SHEET 5 (Sheet 2 of 3) VEHICLE AND TEST TRACK DATA

UVW with Outriggers (only for MPVs, Trucks, Buses)

Front Axle 935.6 KG Left Front 469.0 KG Right Front 466.6 KG

Rear Axle 714.0 KG Left Rear 363.2 KG Right Rear 350.8 KG

Total UVW w/ Outriggers 1,649.6 KG

Loaded Vehicle Weight w/ Driver and Instrumentation (No Ballast)

 Front Axle
 1,014.2
 KG
 Left Front
 515.8
 KG
 Right Front
 498.4
 KG

 Rear Axle
 770.8
 KG
 Left Rear
 396.6
 KG
 Right Rear
 374.2
 KG

Total Loaded Vehicle Weight 1,785.0 KG

Ballast Required = [UVW w/ Outriggers + 168 KG] - Total Loaded Weight w/
Driver and Instrumentation

= [1,649.6 KG + 168 KG] - 1,785.0 KG

= <u>32.6</u> KG

Total Loaded Vehicle Weight

 Front Axle
 1,029.8
 KG
 Left Front
 518.2
 KG
 Right Front
 511.6
 KG

 Rear Axle
 787.8
 KG
 Left Rear
 401.6
 KG
 Right Rear
 386.2
 KG

Total Loaded Vehicle Weight 1,817.6 KG

DATA SHEET 5 (Sheet 3 of 3) VEHICLE AND TEST TRACK DATA

Center of Gravity and Inertial Sensing System Location at Loaded Vehicle Condition

x-distance (longitudinal) Point of reference is the front axle centerline. (Positive from front axle toward rear of vehicle.)				
y-distance (lateral)	Point of reference is the v (Positive from the center t			
z-distance (vertical)	Point of reference is the g (Positive from the ground			
Locations:				
	Center of Gravity	Inertial Sensing Sy	stem	
x-distance	<u>126.3</u> cm	<u>161.7</u> cm		
y-distance	<u>-0.9</u> cm	<u>-1.6</u> cm		
z-distance	<u>75.3</u> cm	<u>100.4</u> cm		
Distance Between Ultras	<u>171.5</u> cm			
TEST TRACK DATA MEE If no, explain:	TS REQUIREMENTS:	YES/NO	YES	
REMARKS:				
RECORDED BY: Alan I		DATE: DATE:	3-17-11 3-28-11	

DATA SHEET 6 (Sheet 1 of 3) BRAKE AND TIRE CONDITIONING

VEHICLE MAKE/MODEL/BODY S	STYLE:	<u>Ford / Transi</u>	t Conne	ect / Tru	uck
VEHICLE NHTSA No.: CB02	206				
Measured Cold Tire Pressures:	LF <u>276</u>	_kPa	RF	276	kPa
	LR <u>338</u>	_kPa	RR	338	kPa
Wind Speed <u>5.0</u> m/sec (10m/sec (22mph) max for passe		n/s (11mph) r	nax. for	· MPVs	and Trucks)
Ambient Temperature (7°C (45°F)) - 40°C (104°	F))	9.4 °	С	
Brake Conditioning Time;_	10:45 AM		Date;_	3-17-1	1
56 km/h (35 mph) Brake St	ops				
Number of stops exe	ecuted (10 red	quired)		10	stops
Observed decelerati	on rate range	(.5g target)	0.50	<u> </u>	. g
72 km/h (45 mph) Brake St	ops				
Number of stops exe	ecuted (3 requ	uired)		3	stops
Number of stops AB	S activated (3	3 required)		3	stops
Observed decelerati	on rate range	. (<u>).90 – (</u>).97	. g
72 km/h (45 mph) Brake Co	ool Down Per	iod			
Duration of cool dow	n period (5 m	ninutes min.)		5:13	minutes

DATA SHEET 6 (Sheet 2 of 3) BRAKE AND TIRE CONDITIONING

Tire Conditioning Series No. 1 Time: 9:34 AM Date: 3-18-11

Measured Tire Pressures: LF 283 kPa RF 283 kPa

LR 345 kPa RR 341 kPa

Wind Speed 3.6 m/sec
(10m/sec (22mph) max for passenger cars; 5m/s (11mph) max. for MPVs and Trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 13.9 °C

30 meter (100 ft) Diameter Circle Maneuver						
Test Runs Steering Direction Target Lateral Observed Lateral Observed Verification (g) Acceleration (g) Speed (km						
1-3	Clockwise	0.5-0.6	0.55	32.2		
4-6	Counterclockwise	0.5-0.6	0.55	32.2		

1 Hz 5 Cycle Sinusoidal Steering Maneuver to Determine Steering Wheel Angle For 0.5-0.6g Lateral Acceleration							
Test Runs	Vehicle Speed Km/h(mph)	Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)			
1	56 <u>+</u> 2 (35 <u>+</u> 1)	30	0.5-0.6	0.24			
2	56 <u>+</u> 2 (35 <u>+</u> 1)	70	0.5-0.6	0.53			
3	56 <u>+</u> 2 (35 <u>+</u> 1)		0.5-0.6				
4	56+2 (35+1)		0.5-0.6				

Steering wheel angle that corresponds to a peak 0.5–0.6g lateral acceleration; _______ degrees

1 Hz 10 Cycle Sinusoidal Steering Maneuver							
Test Runs	Vehicle Speed	Steering Wheel	Target Peak	Observed Peak			
	Km/h (mph)	Angle (degrees)	Lateral	Lateral			
			Acceleration (g)	Acceleration (g)			
1 - 3	56 <u>+</u> 2 (35 <u>+</u> 1)	70 (cycles 1-10)	0.5-0.6	0.51			
4	56 <u>+</u> 2 (35 <u>+</u> 1)	70 (cycles 1-9)	0.5-0.6	0.51			
		140 (cycle 10)*	N/A	0.85			

^{*} The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9.

DATA SHEET 6 (Sheet 3 of 3) BRAKE AND TIRE CONDITIONING

Tire Conditioning Series No. 2 Time: 12:02 PM Date: 3-18-11						
Measured Tire P	ressures. I	F 290 kPa	RF 290) kPa		
Mcasarca Tire I	icoouico.	.i <u>250</u> Ki a	101 <u>250</u>	<u>/</u>		
	L	R <u>348</u> kPa	RR <u>352</u>	<u>k</u> Pa		
(10m/sec (22mp	2.7 m/sec oh) max for passer					
Ambient Temper	ature (7°C (45°F)	- 40 C (104 F))	10.	<u>1</u> °C		
	30 meter (100 ft) Diameter Circle Maneuver					
Test Runs	Steering Direction	Target Lateral	Observed Lateral	Observed Vehicle		
	_	Acceleration (g)	Acceleration (g)	Speed (km/h)		
1-3	clockwise	0.5-0.6	0.55	32.2		
4-6	counterclockwise	0.5-0.6	0.55	32.2		
1 Hz 5 Cycle Sinusoidal Steering Maneuver to Determine Steering Wheel Angle For 0.5-0.6g Lateral Acceleration						
Test Runs	Vehicle Speed	Steering Wheel	Target Peak	Observed Peak		
	Km/h (mph)	Angle (degrees)	Lateral	Lateral		
			Acceleration (g)	Acceleration (g)		
1	56 <u>+</u> 2 (35 <u>+</u> 1)	N/A	0.5-0.6	N/A		
2	56 <u>+</u> 2 (35 <u>+</u> 1)		0.5-0.6			
3	56 <u>+</u> 2 (35 <u>+</u> 1)		0.5-0.6			
4	56 <u>+</u> 2 (35 <u>+</u> 1)		0.5-0.6			
Steering wheel ang	le that corresponds	to a peak 0.5–0.6g la	teral acceleration; _	70 degrees		
		e Sinusoidal Steerin				
Test Runs	Vehicle Speed (mph)	Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)		
1 - 3	56 <u>+</u> 2 (35 <u>+</u> 1)	70 (cycles 1-10)	0.5-0.6	0.50		
4	56 <u>+</u> 2 (35 <u>+</u> 1)	70 (cycles 1-9)	0.5-0.6	0.50		
	_ , _ ,	140 (cycle 10)*	N/A	0.87		
* The steering wheel REMARKS:	l angle used for cycle	10 should be twice the	angle used for cycles	s 1-9.		
RECORDED BY:	: Alan Ida		_ DATE:	3-18-11		
APPROVED BY:	Ken Webster		_ DATE:	3-28-11		

DATA SHEET 7 (1 of 2) SLOWLY INCREASING STEER (SIS) MANEUVER

VEHICLE MAKE/MODEL/BODY STYLE:	Ford / Transit Connect / Truck
VEHICLE NHTSA No.: CB0206	TEST DATE: 3-18-11
Wind Speed3.1 _ m/sec (10m/sec (22mph) max for passenger ca	ars; 5m/s (11mph) max. for MPVs and Trucks)
Ambient Temperature (7°C (45°F) - 40°C	(104°F)) <u>13.9</u> °C
Static Data File Number:	0008
Selected Drive Configuration:	2WD
Selected Mode:	default

Preliminary Left Steer Maneuver:

Lateral Acceleration measured at 30 degrees steering wheel angle (a_{y,30 degrees})

$$a_{y,30 \text{ degrees}} = \underline{0.36} g$$

Assuming a linear relationship the following ratio should be used to calculate the steering wheel angle at .55g.

$$\frac{30\,\mathrm{degrees}}{a_{\mathrm{y,30\,degrees}}} = \frac{\delta_{\mathrm{SIS}}}{0.55\,\mathrm{g}}$$

$$\frac{\delta_{\mathrm{SIS}} = \underline{46}\,\,\mathrm{degrees}\,\,\mathrm{@}\,\,0.55\mathrm{g}}{\delta_{\mathrm{SIS}} = \underline{40^{\star}}\,\,\mathrm{degrees}\,\,\mathrm{(rounded)}}$$

Steering Wheel Angle at Corrected 0.3 g Lateral Acceleration:

		g		
Maneuver #	Initial Steer Direction	Time Clock	Steering Wheel Angle to nearest 0.1 degree	All Conditions
		(5 min max between runs)	(degrees)	Met?
0012	Left	9:52 am	-29.3	Yes
0014	Left	9:58 am	-28.8	Yes
0015	Left	10:01 am	-29.5	Yes
0021	Right	10:23 am	29.3	Yes**
0022	Right	10:26 am	29.7	Yes
0023	Right	10:29 am	29.7	Yes

DATA SHEET 7 (2 of 2) SLOWLY INCREASING STEER (SIS) MANEUVER

Average Overall Steering Wheel Angle:

$$\begin{split} \delta_{0.3 \text{ g, overall}} &= \left(\left| \ \delta_{0.3 \text{ g, left (1)}} \right| + \left| \ \delta_{0.3 \text{ g, left (2)}} \right| + \left| \ \delta_{0.3 \text{ g, left (3)}} \right| + \delta_{0.3 \text{ g, right (1)}} + \delta_{0.3 \text{ g, right (2)}} + \delta_{0.3 \text{ g, right (3)}} \right) / 6 \end{split}$$

$$\delta_{0.3 \text{ g, overall}} = \underbrace{ 29.4 \quad \text{degrees} }_{\text{[to nearest 0.1 degree]}}$$

REMARKS:

*The Slowly Increasing Steer maneuvers were initially rounded up to 50 degrees, which exceeded 0.6g lateral acceleration. Therefore, the SIS maneuvers were rounded down to 40 degrees in order to maintain a lateral acceleration between 0.5g to 0.6g.

* *The time clock between maneuvers 0015 and 0021 indicates more than 5 minutes since maneuvers 0016 through 0020 were omitted due to lateral acceleration and vehicle speed not meeting the requirements.

 RECORDED BY:
 Alan Ida
 DATE:
 3-18-11

 APPROVED BY:
 Ken Webster
 DATE:
 3-28-11

DATA SHEET 8 (1 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

VEHICLE MAKE/MODEL/BODY STYLE: <u>Fo</u>	ord / Transit Connect / Truck
VEHICLE NHTSA No.: CB0206	TEST DATE: 3-18-11
Tire conditioning completed ESC system is enabled On track calibration checks have been complet On track static data file for each sensor obtaine	
9	VD efault
Overall steering wheel angle $(\delta_{0.3~g,~overall})$	29.4 degrees
Static Data File Number	0028

Lateral Stability Test Series No. 1 - Counterclockwise Initial Steer Direction

	Clock	Commai	nded				YF	RR	Υ	RR
	Time	Steering \			Yaw Rate	es .	at 1.0 sec after		at 1.75	sec after
		Angle		(degrees/s	ec)	COS		COS	
	(1.5 – 5	(degre	es)				[<u><</u> 3	5%]	[<u><</u> 2	20%]
Maneuver #	min between each test run)	Scalar	Angle	$\dot{\psi}_{\it Peak}$	$\dot{\psi}_{ m 1.0sec}$	$\dot{\psi}_{ m 1.75sec}$	%	Pass/ Fail	%	Pass/ Fail
0030	12:33 pm	1.5* $\delta_{0.3 g}$	44	12.33	-0.01	-0.01	-0.05	Pass	-0.06	Pass
0031	12:38 pm	$2.0^* \delta_{0.3 g}$	59	16.82	-0.06	-0.03	-0.34	Pass	-0.15	Pass
0032	12:42 pm	$2.5^* \delta_{0.3 g}$	74	20.74	-0.18	-0.20	-0.89	Pass	-0.97	Pass
0038	1:14 pm	$3.0^* \delta_{0.3 g}$	88	24.23	0.01	0.03	0.05	Pass	0.13	Pass
0039	1:17 pm	3.5* $\delta_{0.3 g}$	103	28.22	0.01	0.01	0.04	Pass	0.03	Pass
0040	1:52 pm	4.0* $\delta_{0.3 g}$	118	31.68	0.15	-0.02	0.49	Pass	-0.07	Pass
0041	1:55 pm	4.5* $\delta_{0.3g}$	132	34.86	0.40	0.05	1.16	Pass	0.15	Pass
0042	1:59 pm	5.0* δ _{0.3 g}	147	37.39	0.24	-0.14	0.65	Pass	-0.37	Pass
0043	2:03 pm	5.5* $\delta_{0.3g}$	162	40.64	0.52	0.31	1.29	Pass	0.76	Pass
0044	2:07 pm	6.0* $\delta_{0.3 g}$	176	43.31	0.12	0.06	0.27	Pass	0.15	Pass
0045	2:11 pm	6.5* $\delta_{0.3 \text{ g}}$	191	47.59	0.32	0.17	0.66	Pass	0.35	Pass
0046	2:15 pm	$7.0^* \delta_{0.3 g}$	206	49.09	-0.07	-0.18	-0.13	Pass	-0.36	Pass
0047	2:19 pm	$7.5^* \delta_{0.3 g}$	221	50.74	0.44	0.06	0.88	Pass	0.12	Pass
0048	2:23 pm	8.0* $\delta_{0.3 g}$	235	50.46	0.26	-0.04	0.52	Pass	-0.09	Pass
0049	2:35 pm	8.5* $\delta_{0.3 g}$	250	50.26	-0.07	0.17	-0.15	Pass	0.35	Pass
0050	2:39pm	$9.0^* \delta_{0.3 g}$	265	49.32	0.18	0.16	0.36	Pass	0.32	Pass
0051	2:42 pm	9.2* $\delta_{0.3 g}$	270	50.06	0.16	0.09	0.32	Pass	0.19	Pass

Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5*δ_{0.3 g, overall} or 270 degrees is utilized, whichever is greater provided the calculated magnitude of 6.5*δ_{0.3 g, overall} is less than or equal to 300 degrees. If 6.5*δ_{0.3 g, overall} is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5*δ_{0.3 g, overall} without exceeding the 270 degree steering wheel angle.

DATA SHEET 8 (2 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Lateral Stability Test Series No. 2 - Clockwise Initial Steer Direction

Lateral Stability Test Series No. 2 - Clockwise Illitial Steel Direction											
	Clock	Commar					YRR		YRR		
Time		Steering \		Yaw Rates		at 1.0 sec after		at 1.75 sec after			
		Angle		(degrees/s	grees/sec)		COS		COS	
	(1.5 – 5	(degrees)					[<u><</u> 35%]		[<u><</u> 20%]		
Maneuver #	min between each test run)	Scalar	Angle	$\dot{\psi}_{{\scriptscriptstyle Peak}}$	$\dot{\psi}_{ m 1.0sec}$	$\dot{\psi}_{ m 1.75sec}$	%	Pass/ Fail	%	Pass/ Fail	
0052	2:46 pm	1.5* $\delta_{0.3 g}$	44	-13.34	0.09	-0.02	-0.68	Pass	0.16	Pass	
0053	2:50 pm	$2.0^* \delta_{0.3 g}$	59	-18.25	0.20	0.13	-1.10	Pass	-0.71	Pass	
0054	2:53 pm	$2.5^* \delta_{0.3 g}$	74	-22.19	0.03	-0.01	-0.12	Pass	0.03	Pass	
0055	2:57 pm	$3.0^* \delta_{0.3 g}$	88	-25.70	-0.17	-0.08	0.65	Pass	0.31	Pass	
0056	3:00 pm	$3.5^* \delta_{0.3 g}$	103	-30.54	-0.44	-0.27	1.43	Pass	0.87	Pass	
0057	3:03 pm	4.0* δ _{0.3 g}	118	-32.52	-0.27	-0.10	0.82	Pass	0.31	Pass	
0058	3:07 pm	4.5* δ _{0.3 g}	132	-36.44	-0.36	-0.13	0.98	Pass	0.35	Pass	
0059	3:10 pm	$5.0^* \delta_{0.3 g}$	147	-37.82	-0.29	-0.17	0.78	Pass	0.45	Pass	
0060	3:13 pm	5.5* δ _{0.3 g}	162	-41.09	-0.65	-0.37	1.58	Pass	0.89	Pass	
0061	3:16 pm	$6.0^* \delta_{0.3 g}$	176	-44.18	-0.30	-0.03	0.67	Pass	0.06	Pass	
0062	3:20 pm	6.5* $\delta_{0.3 g}$	191	-46.97	-0.36	-0.19	0.78	Pass	0.40	Pass	
0063	3:23 pm	$7.0^* \delta_{0.3 g}$	206	-49.44	-0.18	-0.05	0.37	Pass	0.10	Pass	
0064	3:26 pm	$7.5^* \delta_{0.3 g}$	221	-50.68	-0.43	-0.28	0.84	Pass	0.55	Pass	
0065	3:30 pm	8.0* $\delta_{0.3 g}$	235	-52.85	-0.41	-0.27	0.78	Pass	0.51	Pass	
0066	3:36 pm	8.5* $\delta_{0.3 g}$	250	-52.48	-0.55	-0.39	1.05	Pass	0.74	Pass	
0068	3:40 pm	$9.0^* \delta_{0.3 g}$	265	-51.49	-0.23	-0.22	0.44	Pass	0.42	Pass	
0069	3:44 pm	$9.2^*~\delta_{0.3~g}$	270	-51.90	-0.03	-0.33	0.05	Pass	0.64	Pass	

Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5*δ_{0.3 g, overall} or 270 degrees is utilized, whichever is greater provided the calculated 6.5*δ_{0.3 g, overall} is less than or equal to 300 degrees. If 6.5*δ_{0.3 g, overall} is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5*δ_{0.3 g, overall} without exceeding the 270 degree steering wheel angle.

During execution of the sine with dwell maneuvers were any of the following events

obser	ved?			
	Rim-to-pavement contact	Yes	<u>X</u> No	
	Tire debeading	Yes	X No	
	Loss of pavement contact of vehicle tires	Yes	X No	
	Did the test driver experience any vehicle loss of control or spinout?	Yes	X No	
f "Yes	s" explain the event and consult with the COTR.			

DATA SHEET 8 (3 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Responsiveness - Lateral Displacement

DATA INDICATES COMPLIANCE:

faneuver #		$(5.0^{\circ}\delta_{0.3}$ a overall	ng Wheel Angle or greater)	Calculated Lateral Displacement ¹		
π	Initial Steer Direction	Scalar	Angle (degrees)	Distance (m)	Pass/Fail	
0042	Counter Clockwise	$5.0^* \delta_{0.3 g}$	147	2.99	Pass	
0043	Counter Clockwise	5.5* δ _{0.3 g}	162	3.06	Pass	
0044	Counter Clockwise	6.0* δ _{0.3 g}	176	3.17	Pass	
0045	Counter Clockwise	6.5* δ _{0.3 g}	191	3.22	Pass	
0046	Counter Clockwise	7.0* δ _{0.3 g}	206	3.21	Pass	
0047	Counter Clockwise	7.5* δ _{0.3 g}	221	3.26	Pass	
0048	Counter Clockwise	8.0* δ _{0.3 g}	235	3.24	Pass	
0049	Counter Clockwise	8.5* δ _{0.3 g}	250	3.33	Pass	
0050	Counter Clockwise	9.0* δ _{0.3 g}	265	3.30	Pass	
0051	Counter Clockwise	9.2* $\delta_{0.3 g}$	270	3.29	Pass	
0059	Clockwise	5.0* δ _{0.3 g}	147	2.86	Pass	
0060	Clockwise	5.5* $\delta_{0.3 \text{ q}}$	162	2.96	Pass	
0061	Clockwise	6.0* δ _{0.3 g}	176	2.98	Pass	
0062	Clockwise	6.5* $\delta_{0.3 g}$	191	3.09	Pass	
0063	Clockwise	7.0* δ _{0.3 g}	206	3.15	Pass	
0064	Clockwise	$7.5^* \delta_{0.3 q}$	221	3.17	Pass	
0065	Clockwise	8.0* δ _{0.3 g}	235	3.24	Pass	
0066	Clockwise	8.5* δ _{0.3 g}	250	3.19	Pass	
0068	Clockwise	9.0* δ _{0.3 g}	265	3.34	Pass	
0069	Clockwise	9.2* δ _{0.3 g}	270	3.26	Pass	

^{1.} Lateral displacement should be ≥ 1.83 m (6 ft) for vehicles with a GVWR of 3,500 kg (7,716 lb) or less; and ≥ 1.52 m (5ft) for vehicles with a GVWR greater than 3,500 kg (7,716 lb).

PASS/FAIL PASS

REMARKS:		
RECORDED BY: _	DATE:	3-18-11
APPROVED BY: _	DATE:	3-28-11

DATA SHEET 9 (Sheet 1 of 2) MALFUNCTION WARNING TEST

VEHICLE MAKE/MODEL/BOD	DY STYLE:	Ford / Transit Connect / Truck			
VEHICLE NHTSA No.: CB	80206	TEST DATE	:3-23-1	1	
METHOD OF MALFUNCTION Describe method of malfunction			the Left Fron	t wheel speed	
sensor connector.					
MALFUNCTION TELLTALE I Telltale illuminates and remair necessary the vehicle is driver	ns illuminated a	fter ignition lock	ing system is:		
Time for telltale to illuminate a 0 Seconds (mus				Fail	
ESC SYSTEM RESTORATIO Telltale extinguishes after ignit driven at least 2 minutes.		em is activated	and if necessa <u>X</u> Yes		
Time for telltale to extinguish a	after ignition sv	stem is activate	ed and vehicle	speed of	
48 <u>+</u> 8 km/h (30 <u>+</u> 5mph) is read 0 Second (must b	ched.				
DATA INDICATES COMPLIA	NCE:		PASS/FAIL _	PASS	
REMARKS: The vehicle did not require dri When the wheel speed senso telltales illuminated. After the ESC and ABS malfunction tell	r was disconne wheel speed s	cted, both the E ensor connecto	SC and ABS	malfunction	
RECORDED BY: Alan Ida APPROVED BY: Ken Web	ster		DATE:	3-23-11 3-28-11	

DATA SHEET 9 (Sheet 2 of 2) MALFUNCTION WARNING TEST

VEHICLE MAKE/MODEL/BODY STYLE:	Ford / Transit	Connect / Tr	uck
VEHICLE NHTSA No.: CB0206	TEST DATE:_	3-23-1	1
METHOD OF MALFUNCTION SIMULATION: Describe method of malfunction simulation:	Disconnect the	e steering whe	eel angle sensor
connector.			
MALFUNCTION TELLTALE ILLUMINATION: Telltale illuminates and remains illuminated aft necessary the vehicle is driven at least 2 minu	•		activated and if
Time for telltale to illuminate after ignition system 0 Seconds (must be within 2 min			Fail
ESC SYSTEM RESTORATION: Telltale extinguishes after ignition locking syste driven at least 2 minutes.		nd if necessa	
Time for telltale to extinguish after ignition system 0 Second (must be within 2 minute)		X Pass	Fail
DATA INDICATES COMPLIANCE:		PASS	/FAIL <u>PASS</u>
REMARKS: The vehicle did not require driving to illuminate telltale. After the steering wheel angle sensor malfunction telltale extinguished.			
RECORDED BY: Alan Ida APPROVED BY: Ken Webster		DATE: DATE:	3-23-11 3-28-11

4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION

4.0	ILOI LQUII	IAIT IAI TI	OI AIND	OALIBITAT	ION INFORMA	11011	
Туре	Output	Range	Resolut ion	Accuracy	Specifics	Serial Number	Calibration
Tire Pressure Gauge	Vehicle Tire Pressure	0-60psi	0.5 psi	±0.5% of applied pressure	Moroso Model: 89562 0-60psi	_ <u>N/A</u> _	By: <u>TRC</u> Date: <u>1-12-11</u> Due: <u>4-12-11</u>
Platform Scales	Vehicle Total, Wheel, and Axle Load	0-2500 lb per each of four pads	0.5 lb	±1.0% of applied load	Mettler Toledo Model: JXGA1000	5225831- 5JC	By: <u>Mettler Toledo</u> Date: <u>2-14-11</u> Due: <u>5-14-11</u>
Automated Steering Machine with Steering Angle Encoder	Handwheel Angle	±800 deg	0.25 deg	±0.25 deg	Heitz Automotive Testing Model: Sprint 3	_60303_	By: <u>ATI-Heitz</u> Date: <u>2-18-11</u> Due: <u>2-18-12</u>
Multi-Axis Inertial Sensing System	Longitudinal, Lateral, and Vertical Acceleration Roll, Yaw, and Pitch Rate	Accelero meters: ±2 g Angular Rate Sensors: ±100 deg/ s	Acceler ometers : ≤10 ug Angular Rate Sensors : ≤0.004 deg/s	Acceleromet ers: ≤0.05% of full range Angular Rate Sensors: 0.05% of full range	BEI Technologies Model: MotionPAK MP- 1	_0768_	By: <u>BEI Tech.</u> Date: <u>1-10-11</u> Due: <u>1-10-12</u>
Radar Speed Sensor and Dashboard Display	Vehicle Speed	0-125 mph	0.009 mph	±0.25% of full scale	A-DAT Corp. Radar Model: DRS-6 Display Model: RD-2	<u>1400603</u>	By: <u>B+S Multidata</u> Date: <u>2-14-11</u> Due: <u>2-14-12</u>
Ultrasonic Distance Measuring System	Left and Right Side Vehicle Height	5-24 inches	0.01 inches	±0.25% of maximum distance	Massa Products Corporation Model: M- 5000/220	_ <u>104619</u> <u>& 104613</u>	By: Consumers Energy Laboratory Services Date: 1-20-11 Due: 1-20-12
Data Acquisition System [Amplify, Anti- Alias, and Digitize]	Record Time; Velocity; Distance; Lateral, Longitudinal, and Vertical Accelerations; Roll, Yaw, and Pitch Rates; Steering Wheel Angle.	Sufficient to meet or exceed individual sensors	200 Hz	Sufficient to meet or exceed individual sensors	Dewetron Sidehand DAS Model: DA-121-16 Digitizer Model: Dewe-Orion- 1616-100 Amplifier/AntiAli asing: MDAQ- FILT-10-S	<u>12060</u> <u>1105</u>	By: <u>Dewetron</u> Date: <u>12-02-10</u> Due: <u>12-02-11</u>
Load Cell	Vehicle Brake Pedal Force	0-300 lb	1 lb	±0.05% of full scale	DATRON Model: DTM- LPA	<u>4970-</u> 1103	By: TRC Date: per test Due: per test
Coordinate Measurement Machine	Inertial Sensing System Location	0-10 feet	0.001 inch	±0.003% of full scale	FARO International Model: Faro Arm N10	_ <u>U12-05-08-</u> <u>07108</u> _	By: <u>FARO</u> Date: <u>7-30-10</u> Due: <u>7-30-11</u>
Outriggers	No output. Safety Item.	N/A	N/A	N/A	NHTSA Titanium Outriggers Model: Docket 2007-27662-11	N/A	N/A

5.0 PHOTOGRAPHS

- 5.1 ¾ FRONT VIEW FROM LEFT SIDE OF VEHICLE
- 5.2 34 REAR VIEW FROM RIGHT SIDE OF VEHICLE
- 5.3 VEHICLE CERTIFICATION LABEL
- 5.4 TIRE AND LOADING INFORMATION LABEL
- 5.5 WINDOW STICKER (MONRONEY LABEL)
- 5.6 ESC MALFUNCTION TELLTALE
- 5.8 34 REAR VIEW TEST VEHICLE INSTRUMENTED
- 5.9 STEERING WHEEL CONTROLLER AND DATA ACQUISITION SYSTEM
- 5.10 STEERING CONTROLLER BATTERY BOX
- 5.11 INERTIA MEASUREMENT UNIT
- 5.12 VEHICLE SPEED SENSOR
- 5.13 BODY ROLL SENSOR (DRIVER SIDE)
- 5.14 BODY ROLL SENSOR (PASSENGER SIDE)
- 5.15 BRAKE PEDAL FORCE TRANSDUCER

5.1 ¾ FRONT VIEW FROM LEFT SIDE OF VEHICLE

5.2 3/4 REAR VIEW FROM RIGHT SIDE OF VEHICLE

MFD. BY FORD MOTOR CO.

DATE: 11/10 GVWR: 2270 KG (5005 LB)

FRONT GAWR: 1130 KG REAR GAWR: 1243 KG

(2491 LB) WITH (2470 LB)

P205/65R15 95T TIRES P205/65R15 95T TIRES

15X6J RIMS 15X6J RIMS
AT 275 kPa / 40 PSI COLD AT 340 kPa / 49 PSI COLD

THIS VEHICLE CONFORMS TO ALL APPLICABLE FEDERAL MOTOR VEHICLE SAFETY STANDARDS IN EFFECT ON THE DATE OF MANUFACTURE SHOWN ABOVE

VIN: NMOLS7DN6BT050535

TYPE: TRUCK___

F0398 T0343

EXT PNT: Z2

WB 2912 INT TR 8K

ETU R

R AXLE TR

2011 FORD TRANSIT CONNECT FMVSS 126 VEHICLE No.: CB0206 MARCH 2011

WITH

32

TIRE AND LOADING INFORMATION RENSEIGNEMENTS SUR LES PNEUS ET LE CHARGEMENT

SEATING CAPACITY TOTAL 2 FRONT 2 REAR ANNIÈRE

The combined weight of occupants and cargo should never exceed Le poids total des occupants et du chargement ne doit jamais dépasser : 705 kg ou 1554 lb.

COLD TIRE PRESSURE TIRE SIZE **DIMENSIONS** PRESSION DES PNEUS À FROID **PNEU** FRONT/ 275KPA, 40PSI P205/65R15 95T AVANT REAR/ 340KPA, 49PSI P205/65R15 95T ARRIÈRE SPARE/ 340KPA, 49PSI P205/65R15 95T DE SECOURS

SEE OWNERS
MANUAL FOR
ADDITIONAL
INFORMATION

VOIR LE MANUEL
DE L'USAGER
POUR PLUS DE
RENSEIGNEMENTS

2011 FORD TRANSIT CONNECT FMVSS 126 VEHICLE No.: CB0206

MARCH 2011

VEHICLE DESCRIPTION

TRANSIT CONNECT

2011 XLT CARGO VAN 114" WHEELBASE 2.0L I4 DURATEC GAS ENGINE 4 SPD AUTO TRANSAXLE W/ O/D EXTERIOR FROZEN WHITE METALLIC INTERIOR DARK GRAY CLOTH

BT 050535

www.fordvehicles.com STANDARD EQUIPMENT INCLUDED AT NO EXTRA CHARGE

EXTERIOR

EXTERIOR

**BUMPERS, BODY COLOR

**DEFROSTER PACKAGE

**DOORS - DUAL SLIDING SIDE,

180-DEGREE HINGED, REAR

**INTEGRATED SPOTTER MIRRORS

**PRIVACY GLASS - REAR DOORS

**PRIVACY GLASS - REAR DOORS

**MOLDINGS - BODY SIDE, GREY

WHEEL LIP, GREY

WHEEL LIP, GREY

WHEELS, 15" STEEL W/COVER

INTERIOR

**AIR COND. MANUAL FRONT

INTERIOH.

AIR COND, MANUAL FRONT

AM/FM STEREO/CD, W/2 SPKRS

BUCKET SEATS-MANUAL 6-MAY

DRIVER, 4-WAY FRONT PASS

DOME LAMPS - FRT, MID & RR
FLOOR COVERING - CARPETED
FRONT, VINYL REAR

HEADLINER - FULL CLOTH

OVERHEAD STOWAGE SHELF

• POWER GROUP FUNCTIONAL

- ALTERNATOR - 150-AMP/HOUR
- MAINT FREE BATTERY W/SAVER
- FUEL TANK - 15.4 GALLOOK
- GRILLE - GREY 3-BAR W/LOCK
- POWERPOINT-2 FRNT/1 RR
- TILT/TELESCOPE WHEEL

• TILT/TELESCOPE WHEEL
• SPEED CONTROL
• TIRES - P205/65R-15 BSW
• FULL-SIZE SPARE TIRE

SAFETY/SECURITY
• AIR BAGS - FRONT AND SIDE
• COLLAPSIBLE STEER COLUMN
• 4-WHEEL ABS W/ TPMS

WARRANTY • 3YR/36,000 BUMPER / BUMPER • 5YR/60,000 POWERTRAIN • 5YR/60,000 ROADSIDE ASSIST

EPA Fuel Economy Estimates

CITY MPG

Expected range for most drivers 17 to 25 MPG

Estimated **Annual Fuel Cost**

\$1,957

based on 15,000 miles at \$3.00 per gallon

Combined Fuel Economy This Vehicle

All SUVe

HIGHWAY MPG

Expected range for most drivers 21 to 31 MPG

Your actual mileage will vary depending on how you drive and maintain your vehicle.

9

See the FREE Fuel Economy Guide at dealers or www.fueleconomy.gov

44A 127

METHOD OF TRANSP. RAIL ITEM #: 44-0080 O/T 2

SHIP TO (IF OTHER THAN SOLD TO) TWO

NMOLS7DN6BT050535

SHIP THROUGH

FINAL ASSEMBLY POINT

OTOSAN

AM163 N RB22X 120 002424 12 16 10

EXTENDED SERVICE PLAN

Ford Extended Service Plan is the only service contract backed by Ford and honored at all Ford and Lincoln Mercury Dealers. Ask your dealer for prices and additional details or see our website at www.ford-esp.com.

PRICE INFORMATION

Manufacturer's Suggested Retail Price

STANDARD VEHICLE PRICE

\$22,600.00

INCLUDED ON THIS VEHICLE ORDER CODE 210A

OPTIONAL EQUIPMENT RR CARGO DOOR CHECK ARMS 255 ROLL STABILITY CONTROL-RSC 240.00 545.00 280.00 REVERSE SENSING SYSTEM NO CHARGE 1,065.00 FRONT LICENSE PLATE BRACKET TOTAL OPTIONS

TOTAL VEHICLE & OPTIONS DESTINATION & DELIVERY

2011 FORD TRANSIT CONNECT **FMVSS 126** VEHICLE No.: CB0206 **MARCH 2011**

This vehicle qualifies for auto insurance discounts, call 1-866-367-3131 or visit www.fordautoinsurance.com for availability in your state.

TOTAL MSRP

\$24,470,00

GOVERNMENT SAFETY RATINGS

Frontal Crash

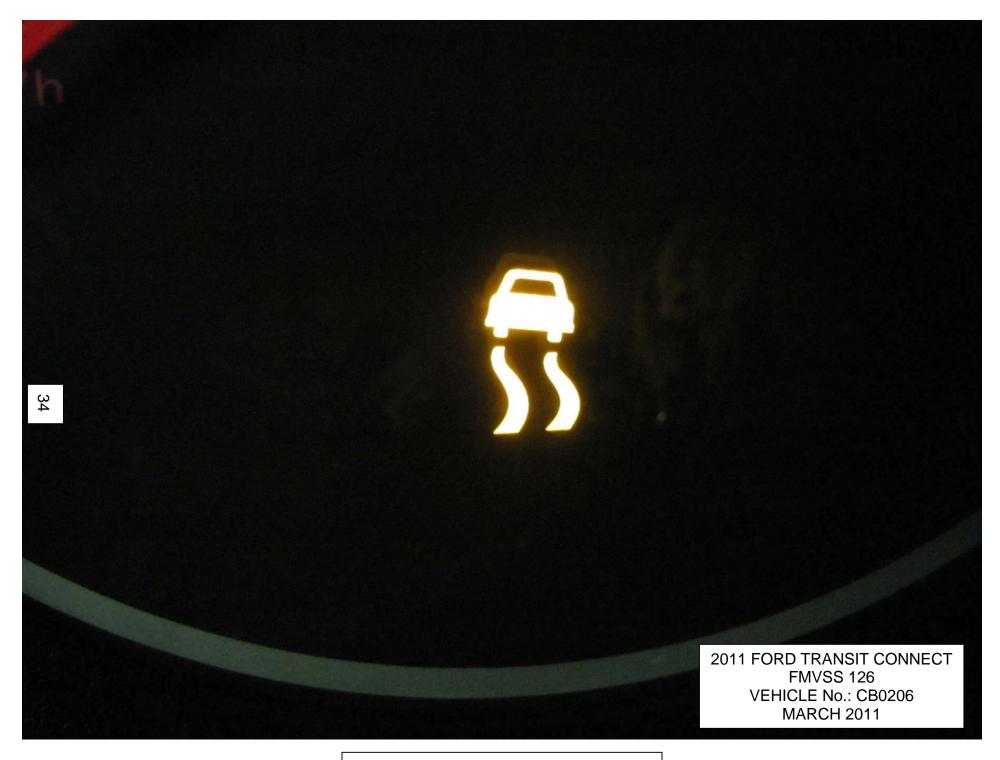
Driver Passenger Not Rated Not Rated

Star-ratings based on the risk of injury in a frontal impact. Frontal ratings should ONLY be compared to other vehicles of similar size and weight

Side

Front seat

Not Rated Not Rated

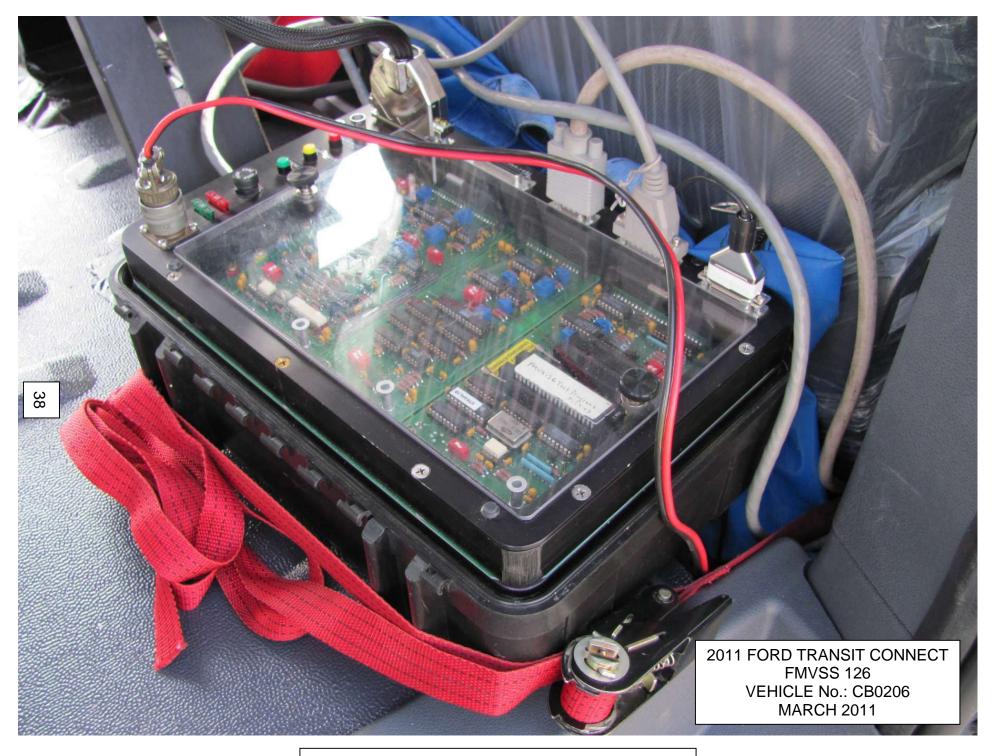

Crash Rear seat Star ratings based on the risk of injury in a side impact.

Not Rated

Star ratings based on the risk of rollover in a single vehicle crash.

Star ratings range from 1 to 5 stars (****), with 5 being the highest. Source: National Highway Traffic Safety Administration (NHTSA).

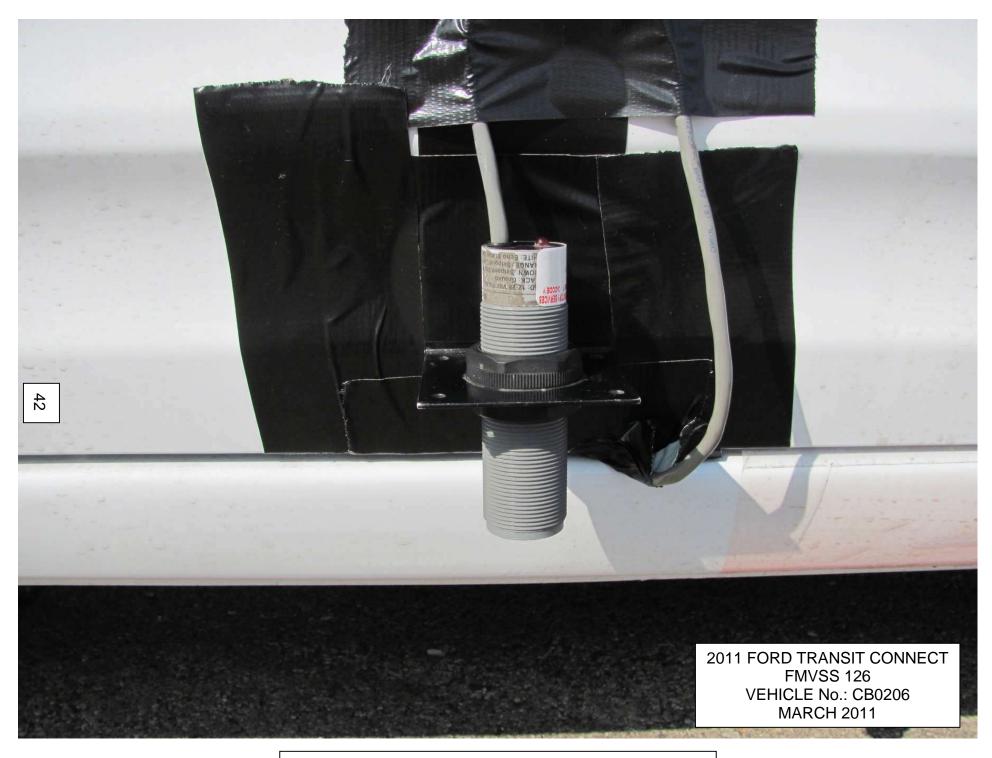
www.safercar.gov or call 1-888-327-4236

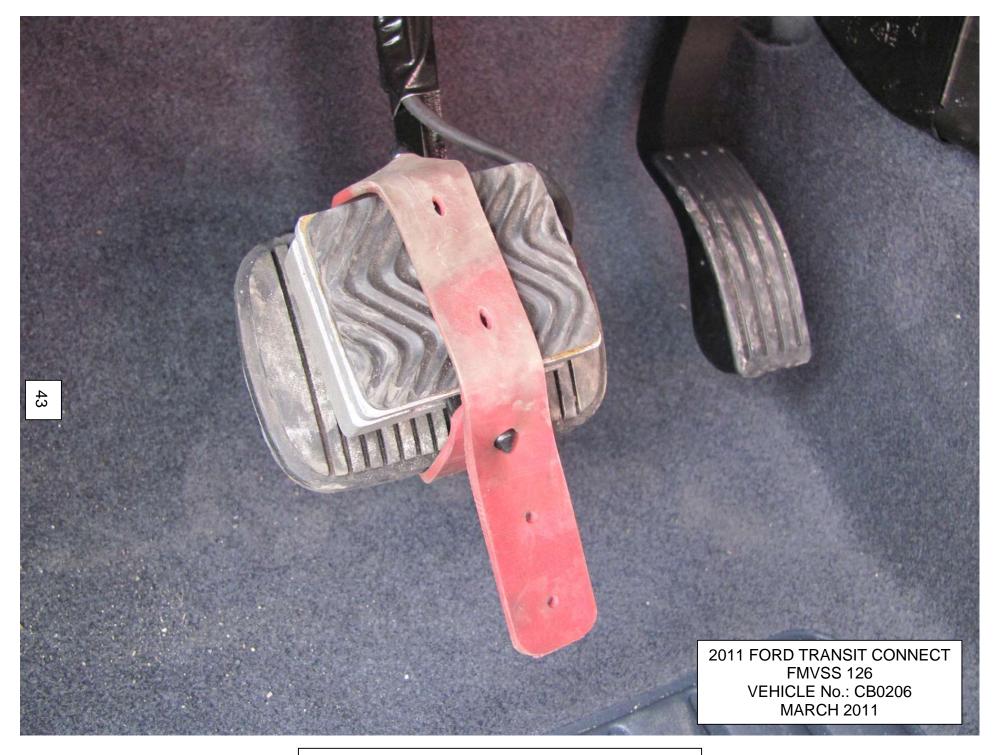

5.7 ¾ FRONT VIEW - TEST VEHICLE INSTRUMENTED

5.8 3/4 REAR VIEW - TEST VEHICLE INSTRUMENTED

5.9 STEERING WHEEL CONTROLLER AND DATA ACQUISITION SYSTEM

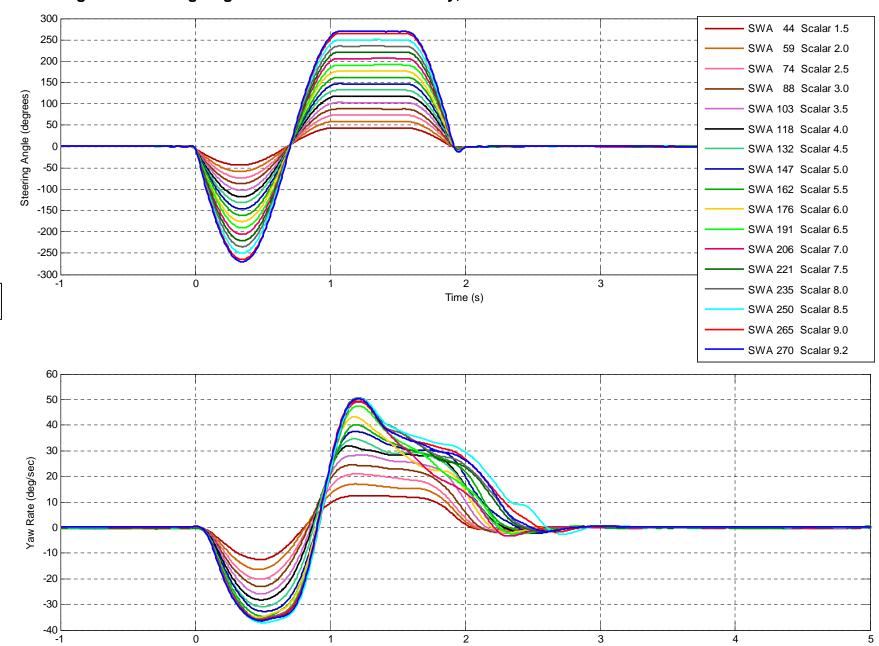
5.10 STEERING CONTROLLER BATTERY BOX


5.11 INERTIA MEASUREMENT UNIT


5.12 VEHICLE SPEED SENSOR

5.13 BODY ROLL SENSOR (DRIVER SIDE)

5.14 BODY ROLL SENSOR (PASSENGER SIDE)


5.15 BRAKE PEDAL FORCE TRANSDUCER

6.0 DATA PLOTS

Figure 1. Steering Angle and Yaw Rate Time History, Counter-Clockwise Initial Steer Tests
 Figure 2. Steering Angle, Lateral Acceleration, and Lateral Displacement Time History, Counter-Clockwise Initial Steer Tests
 Figure 3. Steering Angle and Yaw Rate Time History, Clockwise Initial Steer Tests
 Figure 4. Steering Angle, Lateral Acceleration, and Lateral Displacement Time History, Clockwise Initial Steer Tests

45

Figure 1. Steering Angle and Yaw Rate Time History, Counter-Clockwise Initial Steer Tests

Time (s)

6.0 2011 FORD TRANSIT CONNECT DATA PLOTS...continued

Figure 2. Steering Angle, Lateral Acceleration, and Lateral Displacement Time History, Counter-Clockwise Initial Steer Tests

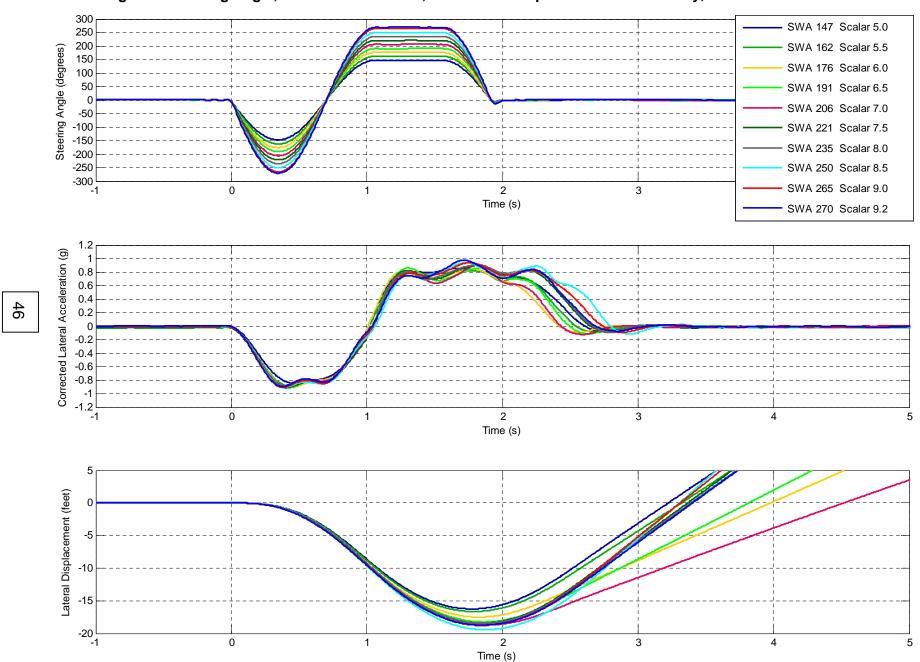
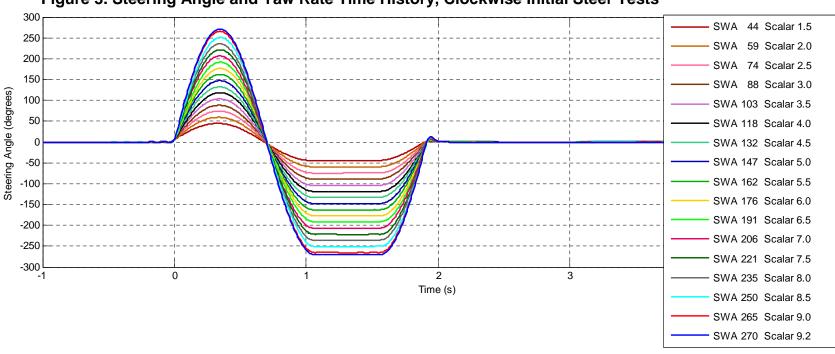
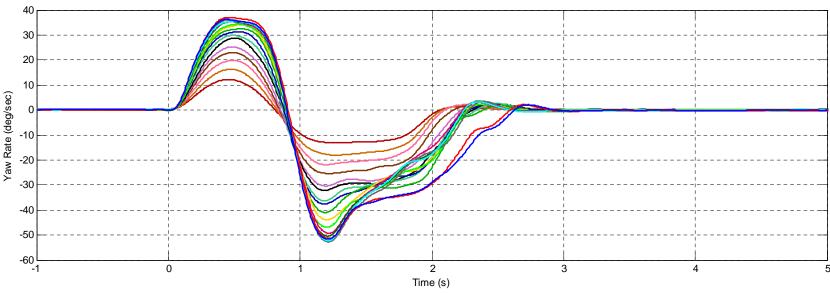
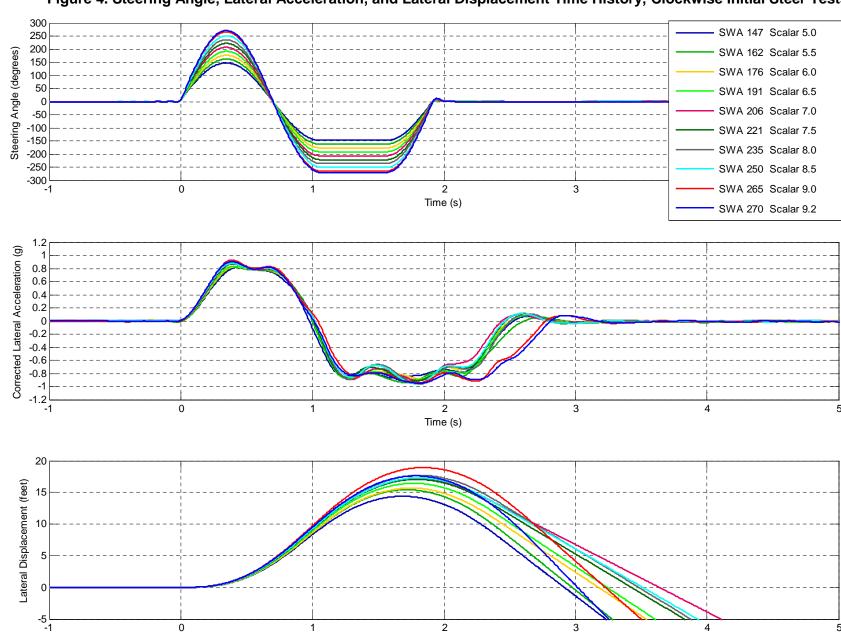




Figure 3. Steering Angle and Yaw Rate Time History, Clockwise Initial Steer Tests



47

48

Figure 4. Steering Angle, Lateral Acceleration, and Lateral Displacement Time History, Clockwise Initial Steer Tests

Time (s)

7.0 OTHER DOCUMENTATION

- 7.1 OWNER'S MANUAL PAGES
- 7.2 VEHICLE ARRIVAL CONDITION REPORT
- 7.3 VEHICLE COMPLETION CONDITION REPORT
- 7.4 SINE WITH DWELL TEST RESULTS
- 7.5 SLOWLY INCREASING STEER TEST RESULTS
- 7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES

ADVANCETRAC® WITH ROLL STABILITY CONTROL™ (RSC®) STABILITY ENHANCEMENT SYSTEM

WARNING: Vehicle modifications involving braking system, aftermarket roof racks, suspension, steering system, tire construction and/or wheel/tire size may change the handling characteristics of the vehicle and may adversely affect the performance of the AdvanceTrac® with RSC® system. In addition, installing any stereo loudspeakers may interfere with and adversely affect the AdvanceTrac® with RSC® system. Install any aftermarket stereo loudspeaker as far as possible from the front center console, the tunnel, and the front seats in order to minimize the risk of interfering with the AdvanceTrac® with RSC® sensors. Reducing the effectiveness of the AdvanceTrac® with RSC® system could lead to an increased risk of loss of vehicle control, vehicle rollover, personal injury and death.

WARNING: Remember that even advanced technology cannot defy the laws of physics. It's always possible to lose control of a vehicle due to inappropriate driver input for the conditions. Aggressive driving on any road condition can cause you to lose control of your vehicle increasing the risk of personal injury or property damage. Activation of the AdvanceTrac® with RSC® system is an indication that at least some of the tires have exceeded their ability to grip the road; this could reduce the operator's ability to control the vehicle, potentially resulting in a loss of vehicle control, vehicle rollover, personal injury and death. If your AdvanceTrac® with RSC® system activates, SLOW DOWN.

WARNING: If a failure has been detected within the AdvanceTrac® with RSC® system, the "sliding car" icon will illuminate steadily. If the "sliding car" icon illuminates steadily, have the system service by an authorized dealer immediately. Operating your vehicle with the "sliding car" icon illuminated could lead to an increased risk of loss of vehicle control, vehicle rollover, personal injury and death.

The AdvanceTrac® with RSC® system provides the following stability enhancement features for certain driving situations:

 Traction Control (TCS), which functions to help avoid drive-wheel spin and loss of traction.

157

2011 FORD TRANSIT CONNECT FMVSS 126 VEHICLE No.: CB0206 MARCH 2011

- Electronic Stability Control (ESC), which functions to help avoid skids or lateral slides
- Roll Stability Control™ (RSC*), which functions to help avoid a vehicle roll-over.

The AdvanceTrac® with RSC® system automatically enables each time the engine is started. All features of the AdvanceTrac® with RSC® system (TCS, ESC, and RSC®) are active and monitor the vehicle from start-up. However, the system will only intervene if the driving situation requires it.

The "sliding car" icon in the instrument cluster will illuminate temporarily during start-up as part of a normal system self-check, or during driving if a driving situation causes the AdvanceTrac® with RSC® system to operate. If the "sliding car" icon in remains steadily illuminated, have the system serviced by an authorized dealer immediately.

When AdvanceTrac® with RSC® performs a normal system self-check, some drivers may notice a slight movement of the brake, and/or a rumble, grunting, or grinding noise after startup and when driving off.

When an event occurs that activates AdvanceTrac® with RSC® you may experience the following:

- · A slight deceleration of the vehicle
- The "sliding car"
 indicator light will flash.
- · A vibration in the pedal when your foot is on the brake pedal
- If the driving condition is severe and your foot is not on the brake, the brake pedal may move as the systems applies higher brake forces. You may also hear a whoosh of air from under the instrument panel during this severe condition.
- The brake pedal may feel stiffer than usual.

Traction Control (TCS)

Traction Control is a driver aid feature that helps your vehicle maintain traction of the wheels, typically when driving on slippery and/or hilly road surfaces, by detecting and controlling wheel spin.

Excessive wheel spin is controlled in two ways, which may work separately or in tandem: Engine Traction Control and Brake Traction Control. Engine Traction Control works to limit drive-wheel spin by momentarily reducing engine power. Brake Traction Control works to limit wheel spin by momentarily applying the brakes to the wheel that is

158

2011 FORD TRANSIT CONNECT FMVSS 126 VEHICLE No.: CB0206 MARCH 2011

slipping. Traction Control prevents the driven wheels from loss of traction due to excessive throttle or low road friction level.

During Traction Control events the "sliding car" icon \$\frac{\mathbf{\omega}}{\mathbf{\omega}}\$ in the instrument cluster will flash.

If the Traction Control system is activated excessively in a short period of time, the braking portion of the system may become temporarily disabled to allow the brakes to cool down. In this situation, Traction Control will use only engine power reduction or transfer to help control the wheels from over-spinning. When the brakes have cooled down, the system will regain all features. Anti-lock braking, RSC*, and ESC are not affected by this condition and will continue to function during the cool-down period.

Electronic Stability Control (ESC)

Electronic Stability Control (ESC) may enhance your vehicle's directional stability during adverse maneuvers, for example when cornering severely or avoiding objects in the roadway. ESC operates by applying brakes to one or more of the wheels individually and, if necessary, reducing engine power if the system detects that the vehicle is about to skid or slide laterally.

During Electronic Stability Control events the "sliding car" icon 🐧 in the instrument cluster will flash.

Certain adverse driving maneuvers may activate the Electronic Stability Control system, which include but are not limited to:

- Taking a turn too fast
- Maneuvering quickly to avoid an accident, pedestrian or obstacle
- Driving over a patch of ice or other slippery surfaces
- · Changing lanes on a snow-rutted road
- Entering a snow-free road from a snow-covered side street, or vice versa
- Entering a paved road from a gravel road, or vice versa
- Cornering while towing a heavily loaded trailer (refer to Trailer towing in the Tires, Wheels and Loading chapter).

Roll Stability ControlTM (RSC®)

Roll Stability Control™ (RSC®) may help to maintain roll stability of the vehicle during adverse maneuvers. RSC® operates by detecting the vehicle's roll motion and the rate at which it changes and by applying the brakes to one or more wheels individually.

159

2011 FORD TRANSIT CONNECT FMVSS 126 VEHICLE No.: CB0206 MARCH 2011

During an event that activates the Roll Stability ControlTM (RSC*) the "sliding car" icon $\hat{\Pi}$ in the instrument cluster will flash.

Certain adverse driving maneuvers may activate the Roll Stability Control system, which include:

- Emergency lane-change
- Taking a turn too fast
- Quick maneuvering to avoid an accident, pedestrian or obstacle

STEERING

To help prevent damage to the power steering system:

- Never hold the steering wheel at its furthest turning points (until it stops) for more than a few seconds when the engine is running.
- Do not operate the vehicle with a low power steering pump fluid level (below the MIN mark on the reservoir).
- Some noise is normal during operation. If the noise is excessive, check for low power steering pump fluid level before seeking service by your authorized dealer.
- Heavy or uneven steering efforts may be caused by low power steering pump fluid level. Check for low power steering pump fluid level before seeking service by your authorized dealer.
- Do not fill the power steering pump reservoir above the MAX mark on the reservoir, as this may result in leaks from the reservoir.

If the power steering system breaks down (or if the engine is turned off), you can steer the vehicle manually, but it takes more effort. If the steering wanders or pulls, check for:

- an improperly inflated tire
- · uneven tire wear
- loose or worn suspension components
- loose or worn steering components
- improper steering alignment

A high crown in the road or high crosswinds may also make the steering seem to wander/pull.

If the steering wheel vibrates check for:

improper wheel balance

160

2011 FORD TRANSIT CONNECT FMVSS 126 VEHICLE No.: CB0206 MARCH 2011

PREPARING TO DRIVE

WARNING: Utility vehicles have a significantly higher rollover rate than other types of vehicles.

WARNING: In a rollover crash, an unbelted person is significantly more likely to die than a person wearing a seat belt.

Utility vehicles and trucks have larger tires and increased ground clearance, giving the vehicle a higher center of gravity than a passenger car.

WARNING: Vehicles with a higher center of gravity such as utility vehicles and trucks handle differently than vehicles with a lower center of gravity. Utility vehicles and trucks are **not** designed for cornering at speeds as high as passenger cars any more than low-slung sports cars are designed to perform satisfactorily under off-road conditions. Avoid sharp turns, excessive speed or abrupt maneuvers in these vehicles. Failure to drive cautiously could result in an increased risk of loss of vehicle control, vehicle rollover, personal injury and death.

WARNING: Loaded vehicles, with a higher center of gravity, may handle differently than unloaded vehicles. Do not overload your vehicle and use extra precautions, such as driving at slower speeds, avoiding abrupt steering changes and allowing for increased stopping distance, when driving a heavily loaded vehicle. Over-loading or loading the vehicle improperly can deteriorate handling capability and contribute to loss of vehicle control and vehicle rollover.

Vehicle stability and handling

The risk of a rollover crash increases as the number of people and load in the vehicle increase. This increased risk occurs because the passenger weight and load raises the vehicle's center of gravity and causes it to shift rearward. As a result, the van has less resistance to rollover and handles differently from other commonly driven passenger vehicles, making it more difficult to control in an emergency situation. Placing any load on the roof also raises the center of gravity and increases the potential for rollover.

The van should be operated by an experienced driver. An organization that owns a van should select one or two experienced drivers to drive

161

2011 FORD TRANSIT CONNECT FMVSS 126 VEHICLE No.: CB0206 MARCH 2011

7.2 VEHICLE ARRIVAL CONDITION REPORT

CONTRACT NO. <u>DTNH22-08-D-00097</u>	DATE: <u>3/03/11</u>
FROM: Automotive Allies	
TO: TRC	
PURPOSE: (X) Initial () Receipt via Transfe	
MODEL YEAR/MAKE/MODEL/BODY STYLE: _	2011 / Ford / Transit Connect / Truck
MANUFACTURE DATE: 11/10 NHT	ΓSA NO.: <u>CB0206</u>
BODY COLOR: White VIN: N	M0LS7DN6BT050535
ODOMETER READING: miles	GVWR: <u>2,270</u> KG
PURCHASE PRICE: \$ rented / leased DEA US 42 South, London, OH 43140	LER'S NAME: <u>Buckeye Ford, 110</u>
X ALL OPTIONS LISTED ON "WINDOW STICK VEHICLE X TIRES AND WHEEL RIMS ARE NEW AND TO	
X THERE ARE NO DENTS OR OTHER INTERI	OR OR EXTERIOR FLAWS
X THE VEHICLE HAS BEEN PROPERLY PREF	PARED AND IS IN RUNNING
X THE GLOVE BOX CONTAINS AN OWNER'S CONSUMER INFORMATION, AND EXTRA S	
X PROPER FUEL FILLER CAP IS SUPPLIED C	ON THE TEST VEHICLE
X PLACE VEHICLE IN STORAGE AREA	
X INSPECT THE VEHICLE'S INTERIOR AND ISEATS, DOORS, ETC., TO CONFIRM THE FUNCTIONAL PER THE MANUFACTURES MISADJUSTMENT, OR OTHER UNUSUAL COTEST PROGRAM OR TEST RESULTS SI ABNORMAL CONDITION TO THE NHTSA CO	AT EACH SYSTEM IS COMPLETE AND R'S SPECIFICATIONS. ANY DAMAGE ONDITION THAT COULD INFLUENCE THE HALL BE RECORDED. REPORT ANY
RECORDED BY: Alan Ida APPROVED BY: Ken Webster	DATE: 3-03-11 DATE: 3-28-11

7.3 VEHICLE COMPLETION CONDITION REPORT

CONTRACT NO. <u>DTNH22-08-D-00097</u> DATE: <u>3/23/11</u>
MODEL YEAR/MAKE/MODEL/BODY STYLE: 2011 / Ford / Transit Connect / Truck
MANUFACTURE DATE: 11/10 NHTSA NO.: CB0206
BODY COLOR: White VIN: NM0LS7DN6BT050535
ODOMETER READING: <u>106</u> miles GVWR: <u>2,270</u> KG
LIST OF FMVSS TESTS PERFORMED BY THIS LAB: 126, 135
X THERE ARE NO DENTS OR OTHER INTERIOR OR EXTERIOR FLAWS
X THE VEHICLE HAS BEEN PROPERLY MAINTAINED AND IS IN RUNNING CONDITION
X THE GLOVE BOX CONTAINS AN OWNER'S MANUAL, WARRANTY DOCUMENT, CONSUMER INFORMATION, AND EXTRA SET OF KEYS
X PROPER FUEL FILLER CAP IS SUPPLIED ON THE TEST VEHICLE
REMARKS:
Equipment that is no longer on the test vehicle as noted on Vehicle Arrival Condition Report: None.
Explanation for equipment removal: N/A
Test Vehicle Condition: Like new.
RECORDED BY: Alan Ida DATE: 3-23-11 APPROVED BY: Ken Webster DATE: 3-28-11

7.4 SINE WITH DWELL TEST RESULTS

2011 Ford Transit Connect

NHTSA No.: CB0206

Date Created 18-Mar-11

LEFT-TO-RIGHT (INITIAL COUNTER-CLOCKWISE STEER)

File	SWA @ 5deg Ct	MES	Time@5deg	cos	Time@COS	MOS	Time@MOS	YRR1(%)	YR1 (deg/sec)	YRR1 Ct	YRR175(%)	YR175 (deg/sec)
0030	618	50.420	3.084	999	4.988	755	3.767	-0.047	-0.006	1199	-0.055	-0.007
0031	618	50.432	3.081	1000	4.991	756	3.771	-0.341	-0.057	1200	-0.149	-0.025
0032	616	50.233	3.073	999	4.988	755	3.768	-0.887	-0.184	1199	-0.975	-0.202
0038	616	50.166	3.071	999	4.988	755	3.768	0.054	0.013	1199	0.131	0.032
0039	615	50.300	3.069	999	4.988	755	3.768	0.043	0.012	1199	0.030	0.008
0040	615	50.409	3.066	999	4.987	755	3.767	0.487	0.154	1199	-0.073	-0.023
0041	615	50.343	3.065	999	4.986	755	3.767	1.161	0.405	1199	0.149	0.052
0042	614	50.337	3.063	998	4.984	755	3.766	0.646	0.242	1198	-0.375	-0.140
0043	614	50.421	3.063	998	4.984	755	3.767	1.291	0.525	1198	0.764	0.310
0044	615	50.395	3.065	999	4.986	755	3.769	0.273	0.118	1199	0.148	0.064
0045	614	50.391	3.065	999	4.986	755	3.769	0.664	0.316	1199	0.350	0.166
0046	614	50.582	3.062	998	4.983	755	3.767	-0.134	-0.066	1198	-0.363	-0.178
0047	614	50.283	3.063	998	4.984	755	3.767	0.876	0.445	1198	0.124	0.063
0048	614	50.438	3.062	998	4.982	755	3.766	0.519	0.262	1198	-0.085	-0.043
0049	614	50.371	3.062	998	4.982	755	3.766	-0.147	-0.074	1198	0.345	0.174
0050	614	50.512	3.064	998	4.983	755	3.768	0.365	0.180	1198	0.316	0.156
0051	614	50.483	3.063	998	4.982	755	3.767	0.325	0.163	1198	0.189	0.095
RIGHT-TO-LE	EFT (INITIAL CLOCK	WISE STE	ER)									
0052	618	50.125	3.083	999	4.987	755	3.767	-0.675	0.090	1199	0.160	-0.021
0053	617	50.676	3.079	999	4.989	755	3.769	-1.100	0.201	1199	-0.714	0.130
0054	616	50.260	3.074	999	4.988	755	3.768	-0.119	0.026	1199	0.029	-0.006
0055	616	50.465	3.073	999	4.990	755	3.770	0.651	-0.167	1199	0.306	-0.079
0056	615	50.358	3.067	999	4.986	755	3.766	1.430	-0.437	1199	0.874	-0.267
0057	614	50.157	3.065	998	4.985	755	3.766	0.815	-0.265	1198	0.313	-0.102
0058	615	50.527	3.066	999	4.987	755	3.768	0.975	-0.355	1199	0.350	-0.127
0059	614	50.289	3.062	998	4.983	754	3.765	0.778	-0.294	1198	0.450	-0.170
0060	614	50.443	3.063	998	4.984	755	3.766	1.583	-0.651	1198	0.894	-0.367
0061	614	50.297	3.064	999	4.985	755	3.768	0.673	-0.297	1199	0.064	-0.028
0062	614	50.287	3.064	999	4.985	755	3.768	0.777	-0.365	1199	0.400	-0.188
0063	615	50.354	3.065	999	4.987	755	3.769	0.365	-0.181	1199	0.105	-0.052
0064	614	50.368	3.063	998	4.985	755	3.767	0.843	-0.427	1198	0.553	-0.280
0065	615	50.310	3.067	999	4.988	756	3.771	0.780	-0.412	1199	0.508	-0.268
0066	614	50.199	3.065	998	4.985	755	3.769	1.045	-0.549	1198	0.735	-0.386
0068	615	50.474	3.066	999	4.986	756	3.770	0.442	-0.227	1199	0.418	-0.215
0069	615	50.450	3.067	999	4.986	756	3.771	0.048	-0.025	1199	0.641	-0.333

7.4 SINE WITH DWELL TEST RESULTS

2011 Ford Transit Connect

NHTSA No.: CB0206

Date Created 18-Mar-11

LEFT-TO-RIGHT (INITIAL COUNTER-CLOCKWISE STEER)

File		2nd Yaw Peak(deg/sec)						
0030	1349	12.332	869	-3.894	0.320	44.045	684	43.785
0031	1350	16.826	856	-5.206	0.385	58.977	684	58.855
0032	1349	20.743	855	-6.366	0.433	73.886	684	73.806
0038	1349	24.231	848	-7.133	0.481	87.851	684	87.818
0039	1349	28.221	863	-7.908	0.481	102.949	684	103.070
0040	1349	31.684	843	-8.747	0.466	117.982	684	118.057
0041	1349	34.862	850	-9.254	0.433	131.910	684	131.925
0042	1348	37.394	851	-9.819	0.330	147.021	683	146.967
0043	1348	40.643	852	-10.024	0.317	161.915	683	161.898
0044	1349	43.315	851	-10.388	0.360	175.909	684	176.039
0045	1349	47.591	855	-10.558	0.279	190.843	684	190.982
0046	1348	49.091	856	-10.538	0.228	206.158	683	206.296
0047	1348	50.742	857	-10.705	0.277	221.156	684	221.135
0048	1348	50.460	855	-10.623	0.242	235.123	683	235.190
0049	1348	50.261	857	-10.913	0.153	250.181	683	250.032
0050	1348	49.320	855	-10.829	0.193	265.187	684	265.110
0051	1348	50.062	855	-10.798	0.200	270.124	683	269.962
	•	LOCKWISE STEER)						
0052	1349	-13.343	882	3.670	-0.312	44.460	684	44.377
0053	1349	-18.253	871	4.928	-0.377	59.418	684	59.419
0054	1349	-22.193	855	5.833	-0.437	74.284	684	74.429
0055	1349	-25.699	860	6.828	-0.472	88.212	684	88.445
0056	1349	-30.544	854	7.473	-0.482	103.420	684	103.608
0057	1348	-32.517	850	8.288	-0.454	118.452	683	118.653
0058	1349	-36.438	852	8.928	-0.449	132.355	684	132.547
0059	1348	-37.823	850	9.372	-0.433	147.410	683	147.643
0060	1348	-41.087	852	9.711	-0.391	162.320	683	162.604
0061	1349	-44.183	854	9.787	-0.370	176.443	684	176.576
0062	1349	-46.967	854	10.152	-0.390	191.385	684	191.538
0063	1349	-49.438	859	10.340	-0.351	206.725	684	206.882
0064	1348	-50.678	856	10.411	-0.393	221.647	684	221.844
0065	1349	-52.850	858	10.622	-0.375	235.674	684	235.852
0066	1348	-52.479	856	10.479	-0.371	250.664	684	250.795
0068	1349	-51.489	859	10.948	-0.219	265.678	684	265.692
0069	1349	-51.903	857	10.691	-0.311	270.628	684	270.713

7.5 SLOWLY INCREASING STEER TEST RESULTS 2011 Ford Transit Connect NHTSA No.: CB0206

Date Created	18-Mar-11

.....

File	Vehicle	EventPt	DOS	MES [mph]	Mean SPD [mph]	AYcount_3	THETAENCF_3 [degree]	AYCG_CD2_3 [g]	r_squared	ZeroBegin	ZeroEnd
0012	2011 Ford Transit Connect	664	1	50.058	50.151	1139	-29.296	-0.303	0.998	464	664
0014	2011 Ford Transit Connect	697	1	50.242	50.485	1130	-28.764	-0.290	0.996	497	697
0015	2011 Ford Transit Connect	705	1	50.474	50.295	1143	-29.548	-0.304	0.998	505	705
0021	2011 Ford Transit Connect	702	0	50.533	50.200	1132	29.298	0.298	0.999	502	702
0022	2011 Ford Transit Connect	701	0	50.303	50.187	1137	29.669	0.303	0.996	501	701
0023	2011 Ford Transit Connect	702	0	50.646	50.326	1138	29.739	0.304	0.997	502	702
	Averages						29.4	0.300			

Scalars	Ste	ering Angles (deg)
	1.5	44
	2	59
	2.5	74
	3	88
	3.5	103
	4	118
	4.5	132
	5	147
	5.5	162
	6	176
	6.5	191
	7	206
	7.5	221
	8	235
	8.5	250
	9	265
	9.2	270

60

7.6 INERTIA SENSOR MEASUREMENTS 2011 Ford Transit Connect NHTSA No.: CB0206

Device : U12-05-08-07108

device version : 2.24
device certification date : 07/30/10
today is : 3/17/2011
units : Millimeters

Label	ActualX	ActualY	ActualZ
C_DEVICEPOS001			
M_PLANE001	1561.553	-601.913	-302.675
M_LINE001	414.551	108.791	-107.437
M_FRONT_AXLE_CENTER	0.000	0.000	0.000
C_COORDSYS001	0.000	0.000	0.000
M_TIRE_TREAD_CENTER	292.417	64.918	-145.467
M_INERTIA_PACK	1617.075	798.193	747.977
M_ROOF	3123.236	689.831	1682.422
M_GROUND	3123.709	-170.019	-300.281
Track Width		1498.600	
Roof Height (relative to ground)			1982.703
Motion Pak - x-distance (mm)	1617.075		
Motion Pak - y-distance (mm)		-16.025	
Motion Pak - z-distance (mm)			1003.808
Motion Bak, v. distance (inches)	63.664		
Motion Pak - x-distance (inches) Motion Pak - y-distance (inches)	03.004	-0.631	
Motion Pak - z-distance (inches)		-0.031	39.520
			00.020
x-distance (longitudinal)	Point of ref	erence is th	e front axle

x-distance (longitudinal) Point of reference is the front axle centerline.

(Positive from front axle toward rear of vehicle.)

y-distance (lateral) Point of reference is the vehicle centerline.

(Positive from the center toward the right.)

z-distance (vertical) Point of reference is the ground plane.

(Positive from the ground up.)