126-DRI-10-009 **SAFETY COMPLIANCE TESTING FOR FMVSS 126 Electronic Stability Control Systems**

General Motors LLC 2010 GMC Acadia NHTSA No. CA0111

DYNAMIC RESEARCH, INC.

355 Van Ness Avenue, STE 200 Torrance, California 90501

10 November, 2010

Final Report

Prepared Under Contract No.: DTNH22-08-D-00098

U. S. DEPARTMENT OF TRANSPORTATION **National Highway Traffic Safety Administration Enforcement** Office of Vehicle Safety Compliance 1200 New Jersey Avenue, SE West Building, 4th Floor (NVS-221) Washington, DC 20590

Prepared for the Department of Transportation, National Highway Traffic Safety Administration, under Contract No. <u>DTNH22-08-D-00098</u>.

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings, and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturer's names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products of manufacturers.

Prepared By: Buen C. lebeled

Approved By:

Approval Date: 10 November, 2010

FINAL REPORT ACCEPTANCE BY OVSC:

Accepted By:

Acceptance Date:

1. Report No.	Government Accession No.	Recipient's Catalog No.	
126-DRI-10-009			
4. Title and Subtitle		5. Report Date	
Final Report of FMVSS 126 Compliance Testing of 2010 GMC Acadia multipurpose passenger vehicle, NHTSA No. CA0111		10 November, 2010	
multipurpose passenger venicle, NH1	SA No. CAUTTI	6. Performing Organization Co	de
		DRI	
7. Author(s)		8. Performing Organization Re	port No.
John F. Lenkeit, Technical Director Brian Kebschull, Principal Engineer		DRI-TM-10-10	
9. Performing Organization Name ar	d Address	10. Work Unit No.	
Dynamic Research, Inc.			
355 Van Ness Ave, STE 200 Torrance, CA 90501		11. Contract or Grant No.	
		DTNH22-08-D-00098	
12. Sponsoring Agency Name and A		13. Type of Report and Period	Covered
U.S. Department of Transportati National Highway Traffic Safety		Final Test Report	
Office of Vehicle Safety Complia		5 May,2010 to 10 November	er, 2010
1200 New Jersey Avenue, SE, West Building, 4th Floor (NVS-2	21)		
Washington, D.C. 20590	,		
		14. Sponsoring Agency Code	
		NVS-220	
15. Supplementary Notes			
16. Abstract			
	Acadia, NHTSA No. CA0111, in accordance 26-02 for the determination of FMVSS 126 co		ce of Vehicle Safety
Test failures identified were as follows			
17. Key Words		18. Distribution Statement	
Tr. Rey Words		10. Distribution Statement	
Compliance Testing Safety Engineering		Copies of this report are av	ailable from:
FMVŚS 126		NHTSA Technical Informati	on Services (TIS)
		(NPO 411) 1200 New Jersey Avenue,	· ee
		Washington, D.C. 20590	3E
		Email: tis@nhtsa.dot.gov	
		FAX: (202) 493-2833	
19. Security Classif. (of this	20. Security Classif. (of this page)	21. No. of Pages	22.
report) Unclassified	Unclassified	62	
	Oliciassilien	U2	l

TABLE OF CONTENTS

<u>SECTION</u>	<u>P4</u>	\GE
1.0	PURPOSE OF COMPLIANCE TEST	1
2.0	TEST PROCEDURE AND DISCUSSION OF RESULTS	1
3.0	TEST DATA	5
4.0	TEST EQUIPMENT LIST AND CALIBRATION INFORMATION	28
5.0	PHOTOGRAPHS	30
6.0	DATA PLOTS	44
7.0	OTHER DOCUMENTATION	48
	 7.1 Owner's Manual Pages 7.2 Vehicle Arrival Condition Report 7.3 Vehicle Completion Condition Report 7.4 Sine with Dwell Test Results 7.5 Slowly Increasing Steer Test Results 7.6 Inertial Sensing System Location Coordinates 	49 57 58 59 61 62

1.0 PURPOSE OF COMPLIANCE TEST

The purpose of this test is to determine if the test vehicle, a 2010 GMC Acadia, meets the minimum equipment and performance requirements stated in Federal Motor Vehicle Safety Standard (FMVSS) 126, "Electronic Stability Control Systems."

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS

Testing of the 2010 GMC Acadia was conducted at Dynamic Research, Inc (DRI) in accordance with NHTSA TP-126-02, dated November 19, 2008.

The vehicle was inspected to ensure it was equipped with an ESC system that:

- Augments vehicle directional stability by applying and adjusting brake torques individually at each wheel to induce a correcting yaw moment to a vehicle;
- Is computer controlled with the computer using a closed-loop algorithm to limit vehicle oversteer and to limit vehicle understeer;
- Has a means to determine the vehicle's yaw rate and to estimate its side slip or side slip derivative with respect to time;
- Has a means to monitor driver steering inputs;
- Has an algorithm to determine the need, and a means to modify engine torque, as necessary, to assist the driver in maintaining control of the vehicle; and
- Is operational over the full speed range of the vehicle (except at vehicle speeds less than 20 km/h (12.4 mph), when being driven in reverse, or during system initialization).

The vehicle was subjected to a 0.7 Hz Sine with Dwell steering maneuver to ensure that it would meet the stability and responsiveness requirements of the standard as follows:

 At 1.0 second after completion of a required Sine with Dwell steering input, the yaw rate of the vehicle must not exceed 35 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTINUED)

- At 1.75 seconds after completion of a required Sine with Dwell steering input, the yaw rate of the vehicle must not exceed 20 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).
- The lateral displacement of the vehicle center of gravity with respect to its initial straight path must be at least 1.83 m (6 feet) (for vehicles with a GVWR of 3,500kg (7,716 lb) or less) when computed 1.07 seconds after the Beginning of Steer (BOS) at the specified steering wheel angles.

System malfunction simulations were executed to verify vehicle could identify and indicate a malfunction.

The vehicle's ESC System appears to meet the performance and equipment requirements as required by FMVSS 126. The test results are summarized on the following summary sheet.

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTD)

Data Summary Sheet (Page 1 of 2)

Vehicle: 2010 GMC Acadia

NHTSA No. <u>CA0111</u> VIN: <u>1GKLRLED2AJ180906</u>

Vehicle Type: <u>MPV</u> Manufacture Date: <u>01/10</u>

Laboratory: <u>Dynamic Research, Inc.</u>

REQUIREMENTS: PASS/FAIL

ESC Equipment and Operational Characteristics (Data Sheet 2)

The vehicle is to be equipped with an ESC system that meets the equipment and operational characteristics requirements. (S126,

S5.1, S5.6)

ESC Malfunction Telltale (Data Sheet 3)

Vehicle is equipped with a telltale that indicates one or more ESC system malfunctions. (S126, S5.3)

"ESC Off" and other System Controls and Telltale (Data Sheet 3,4)

Vehicle is equipped with an ESC off telltale indicating the vehicle has been put into a mode that renders the ESC system unable to satisfy the performance requirements of the standard, if such a mode exists. (S5.5.1)

If provided, off control and other system controls as well as the ESC off telltale meets the operational requirements (S126, S5.4, S5.4.1,S5.4.2, S5.5.4, and S5.5.9)

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTD)

Data Summary Sheet (Page 2 of 2)

REQUIREMENTS:	PASS/FAIL
Vehicle Lateral Stability (Data Sheet 8) Yaw Rate Ratio at 1 second after COS is less than 35% of peak value. (S126, S5.2.1)	<u>PASS</u>
Yaw Rate Ratio at 1.75 seconds after COS is less than 20% of peak value. (S126, S5.2.2)	<u>PASS</u>
Vehicle Responsiveness (Data Sheet 8) Lateral displacement at 1.07 seconds after BOS is at least 1.83 m (6 feet) for vehicles with a GVWR of 3,500kg (7,716 lb) or less, and 1.52 m (5 feet) for vehicles with a GVWR greater than 3,500 Kg (7,716 lb). (S126, S5.2.3)	<u>PASS</u>
ESC Malfunction Warning (Data Sheet 9)	
Warning is provided to driver after malfunction occurrence. (S126. S5.3)	<u>PASS</u>
Malfunction telltale stayed illuminated as long as malfunction existed and must extinguish after malfunction was corrected. (S126, S5.3.7)	<u>PASS</u>

3.0 TEST DATA

Data Sheet 1 (Page 1 of 2) TEST VEHICLE INSPECTION AND TEST PREPARATION Vehicle: 2010 GMC Acadia MPV CA0111 NHTSA No. Data Sheet Completion Date: <u>5/24/2010</u> 1GKL<u>RLED2AJ180906</u> VIN Manufacture Date: 01/10 GVWR (kg): 2908.0 Front GAWR (kg): Rear GAWR (kg): 1600.0 1450.0 Seating Positions Front: 2 Mid: 3 Odometer reading at time of inspection: 27 miles (43.2 km) **DESIGNATED TIRE SIZE(S) FROM VEHICLE LABELING:** Front axle: *P255/65 R18* Rear axle: *P255/65 R18* **INSTALLED TIRE SIZE(S) ON VEHICLE (from tire sidewall)** Front Axle Rear Axle Tire Manufacturer: Goodyear Goodyear Tire Model: Fortera HL Edition Fortera HL Edition Tire Size: P255/65 R18 P255/65 R18 TIN Left Front: 4BXM ARDR 0210 Right Front: 4BXM ARDR 0310 Left Rear: 4BXM ARDR 0210 Right Rear: 4BXM ARDR 0210 Are installed tire sizes same as labeled tire sizes? Yes If no, contact COTR for further guidance DRIVE CONFIGURATION(S):(mark all that apply) X | Front Wheel Drive Rear Wheel Drive X | Two Wheel Drive (2WD) All Wheel Drive (AWD) Four Wheel Drive Automatic - differential no locked full time (4WD Automatic) Four Wheel Drive (High Gear Locked Differential 4WD HGLD)

Four Wheel Drive Low Gear (4WD Low)

Other (Describe)

Data Sheet 1 (Page 2 of 2) TEST VEHICLE INSPECTION AND TEST PREPARATION

DRIVE CONFIGURATION	NS AND MODES:	(ex. default, per	formance, off)
(For each of the vehicle's	drive configuratior	ns identify availab	le operating modes)
Drive Configuration:	FWD Standard		. o operaning investory
	STEMS (Chack a	nnlicable techno	ologios):
VEHICLE STABILITY SY List other systems:	STEINIS (CHECK a	pplicable technic	ologies).
X ESC	X Traction Co	ontrol	X Roll Stability Control
Active Suspension	X Electronic	Throttle Control	Active Steering
X ABS			
REMARKS:			
RECORDED BY: PE	Broen	DATE RECOR	DED: 5/24/2010
APPROVED BY: JL	enkeit	DATE APPROV	/ED: 6/2/2010

Data Sheet 2 (Page 1 of 2) ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

Vehicle: <u>2010 GMC Acadia MPV</u>			
NHTSA No <u>CA0111</u>	Data Sheet Completion Date: 5/21/201	<u>0</u>	
ESC SYSTEM IDENTIFICATION Manufacturer/Model Robert Bos ESC SYSTEM HARDWARE (C X Electronic Control Unit X Wheel Speed Sensors X Yaw Rate Sensor List other Components:	ch LLC/Bosch ESP Gen 8		
<u>solenoids that open and close va</u> <u>controlling brake fluid pressure th</u> System is capable of determining	brake torque at each wheel ronic control unit modulates electrical lives within the hydraulic control unit, ne brake calipers. I yaw rate asured by a combination gyroscopic	<u>x</u> x	Yes (Pass No (Fail) Yes (Pass No (Fail)
System is capable of monitoring of Brief explanation: <i>Driver steering</i> angle sensor that is mounted on	input is measured by a steering wheel	<u>X</u>	Yes (Pass No (Fail)
within the ESC electronic control inputs: four independent wheel someounted at each wheel), yaw rate acceleration sensor mounted uncleased acceleration (from the consensor mounted underneath the	side slip or side slip derivative ide slip derivative are calculated values unit based on the following sensor peeds (from the wheel speed sensors e (from the combination yaw/lateral derneath the front center console), abination yaw/lateral acceleration front center console), and steering heel angle sensor mounted on the	<u>x</u>	Yes (Pass No (Fail)

Data Sheet 2 (Page 2 of 2) ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

ESC OPERATIONAL CHARACTERISTICS (continued)	
System is capable of modifying engine torque during ESC activation. Method used to modify torque: The ESC electronic control unit sends a signal to the powertrain control module requesting an appropriate percent reduction in engine torque. Torque is modified using a combination of ignition timing and throttle angle.	X Yes (Pass) No (Fail)
System is capable of activation at speeds of 20 km/h (12.4 mph) and higher	X Yes (Pass) No (Fail)
Speed system becomes active: 14.4 km/h	
System is capable of activation during the following driving phases: - acceleration - during activation of ABS or - braking traction control - coasting	X Yes (Pass) No (Fail)
Driving phases during which ESC is capable of activation: The ESC system is active under driving phases of acceleration, deceleration, coasting, and during activation of ABS or traction control, except if the vehicle is being driven in reverse or if the forward vehicle speed is less than 14.4 km/h.	
Vehicle manufacturer submitted documentation explaining how the ESC mitigates understeer	X Yes (Pass) No (Fail)
DATA INDICATES COMPLIANCE:	X Yes (Pass) No (Fail)
REMARKS:	
RECORDED BY: <u>Joe Kelly</u> DATE RECORDED: <u>5/21/</u> APPROVED BY: J. Lenkeit DATE APPROVED: <u>6/2/2</u>	

Data Sheet 3 (Page 1 of 2) ESC MALFUNCTION AND OFF TELLTALES

Vehicle: 2010 GMC Acadia MPV	
NHTSA No <u>. CA0111</u>	Data Sheet completion date: 5/21/2010
ESC Malfunction Telltale	
Vehicle is equipped with malfunction	on telltale? <u>Yes</u>
Telltale Location: Lower right corn	er of the instrument panel cluster(Figure 5.6).
Telltale Color: <u>Amber</u>	
Telltale symbol or abbreviation use	d
or ESC	Vehicle uses this symbol Vehicle uses this abbreviation X Neither symbol or abbreviation is used
If different than identified above, mused.	ake note of any message, symbol or abbreviation
·	shown above, but also includes an equilateral uette of the vehicle (Figure 5.6). It remains illuminated
Is telltale part of a common space?	<u>No</u>
Is telltale also used to indicate activ	vation of the ESC system? Yes
If yes explain telltale operation duri	ng ESC activation:
This telltale flashes when the ESC	system is active.

Data Sheet 3 (Page 2 of 2) ESC MALFUNCTION AND OFF TELLTALES

"ESC OFF" Telltale	(if provided)	
Vehicle is equipped	with "ESC OFF" tellta	le? <u>No</u>
Is "ESC Off" telltale <u>NA</u>	combined with "ESC	Malfunction" telltale utilizing a two part telltale?
Telltale Location: N.	<u>A_</u>	
Telltale Color: NA	<u>Ī</u>	
Telltale symbol or ab	breviation used	
OFF or I	ESC OFF	Vehicle uses this symbol Vehicle uses this abbreviation X Neither symbol or abbreviation is used
If different than identused.	tified above, make no	te of any message, symbol or abbreviation
Is telltale part of a co	ommon space? <u><i>NA</i></u>	
	COMPLIANCE <u>Yes</u> t if equipped with a m	
other information. The ESC malfunction (see	ne message "SERVIC	mation Center (DIC) that can display ESC and EE STABILITRAK" is displayed if there is an ge 5-41 in Section 7.1). The vehicle Acadia off telltale.
RECORDED BY:	Joe Kelly Brian Kebschull	DATE RECORDED: <u>5/21/2010</u> DATE APPROVED: 6/1/2010

Data Sheet 4 (Page 1 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

Vehicle: <u>2010 GM</u>	C Acadia MPV				
NHTSA No. <u>CA01</u>	<u>11</u>	Data Sh	eet compl	letion date:_	<u>6/1/2010</u>
"ESC OFF" Conti	rols Identification a	nd Opera	tional Ch	eck:	
ESC system or pla	pped with a control of ace the ESC system performance requires	in a mode	or modes	that may n	
Type of control controls provide (mark all that ap	or Multi oply) Othe	er (describe	control with	n an "ESC Of	f" mode
Identify each conti	rol location, labeling	and select	able mode	es.	
First Control: Second Control:	Location NA Labeling Modes Location Labeling				
	Modes				
Identify standard o	or default drive confiç	guration	Standard	d	
Verify standard o	or default drive conf	figuration		X Yes	No
	f" telltale illuminate u SC Off" mode on the	•			ESC off control or
		X	NA _	Yes	_ No (Fail)
	f" telltale extinguish the factor of the fac		_	•	"on" ("Run") to
If no, describe hov	v the "Off" control fur	nctions		Yes	_ No (Fail)

Data Sheet 4 (Page 2 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

If a multi-function control is provided, cycle through each mode setting on the control and record which modes illuminate the "ESC Off" telltale. Also, for those modes that illuminate the ESC Off" telltale identify if the telltale extinguishes upon cycling the ignition system.

		"ESC Off" telltale illuminates upon activation of	"ESC Off" telltale extinguishes upon cycling
Control Mode		control? (Yes/No)	ignition? (Yes/No)
NA			
	at illuminates the "ESC O I from "On" ("Run") to "Lo		•
(Run) position?		X NA	Yes No
Other System Co	ntrols that have an anc	illary effect on ESC (Operation:
the ESC system or	oped with any ancillary con place the ESC system in ance requirements of the	n a mode or modes the	at may no longer
comery and personal			Yes X No
Ancillary Control:	System None		
	Control Description		
	Labeling		
Ancillary Control:	System		
	Control Description		
	Labeling		
Ancillary Control:	System		
	Control Description		
	Labeling		

RECORDED BY:

Data Sheet 4 (Page 3 of 3) **ESC AND ANCILLARY SYSTEM CONTROLS**

Ancillary (Control	Contr Activates "E Telltale? (Y	SC Off"	Warı	nings or	Messages P	Provided
None			,				
		illuminate the on cycling the			above id	dentify if the	"ESC Off"
·			"ESC Of	f" telltal	e extingu	uishes upon]
		ary Control	сус	cycling ignition? (Yes/No)			
		None					_
							-
							_
he ignition is "Run") posit drive configu emain turne	s cycled fro ion? If acti ration des ed off after	uminates the form "On" ("Run vating the con igned for low-sthe ignition had nay not extingu	") to "Lock strol places speed, off is been cy	c" or "Of s the ve -road d cled off	f" and th hicle into riving, th	en back aga o a low-rang e ESC syste	ain to the "Ce four-wheem may
the ignition is ("Run") posit drive configu remain turne	s cycled fro ion? If acti ration des ed off after	om "On" ("Run vating the con igned for low-s the ignition ha nay not extingu	") to "Lock strol places speed, off is been cy	c" or "Of s the ve -road d cled off X	f" and th hicle into riving, th and the NA	en back aga o a low-rang e ESC syste n back on ar Yes	e four-whe may and therefore

Brian Kebschull DATE RECORDED: 6/1/2010

		_	
APPROVED BY:	J Lenkeit	DATE APPROVED:	6/3/2010

Data Sheet 5 (Page 1 of 3) TEST TRACK AND VEHICLE DATA

Vehicle: 2010 GMC Acadia MPV NHTSA No. CA0111 Data Sheet completion date: 6/1/2010 **Test Track Requirements:** Test surface slope (0-1%): 0.5% Peak Friction Coefficient (at least 0.9) 0.936 Test track data meets requirements: Yes If no, explain: **Full Fluid Levels:** Fuel Yes Other Fluids Yes (specify) Coolant <u>Yes</u> Oil, washer fluid, brake fluid **Tire Pressures:** Required; **KPA KPA** Front Axle 240 Rear Axle 240 Actual; LF 240 **KPA** RF 240 **KPA** LR 240 **KPA** RR 240 **KPA** Vehicle Front Track Width 171.4 Wheelbase 302.5 cm cm Rear Track Width 170.4 cm **GAWR Vehicle Weight Ratings:** GAWR Front *1450.0* KG 1600.0 KG **Unloaded Vehicle Weight (UVW):** Front Axle 1196.5 KG Left Front 592.8 Right Front 603.7 KG KG 950.8 KG 489.0 KG KG Rear Axle Left Rear Right Rear 461.8 Total UVW 2147.3 Baseline Weight and Outrigger Selection (only for MPVs, Trucks, Buses) Calculated baseline weight (UVW + 73kg) 2220.3 KG Outrigger size required ("Standard" or "Heavy") Standard Standard - Baseline weight under 2772 kg (6000 lb) Heavy - Baseline weight equal to or greater than 2772 kg (6000 lb)

Data Sheet 5 (Page 2 of 3) TEST TRACK AND VEHICLE DATA

UVW with Outriggers: (only for MPVs, Trucks, Buses)

Front axle	1222.4	KG	Left front	610.5	KG	Right front	611.9	KG
Rear axle	993.9	KG	Left rear	507.6	KG	Right rear	486.3	KG
			Total UVW v	with outr	iggers	2216.3	KG	

Loaded Vehicle Weight w/Driver and Instrumentation (no Ballast)

= <u>24.7</u> KG

Total Loaded Vehicle Weight w/Driver and Instrumentation and Ballast

Data Sheet 5 (Page 3 of 3) TEST TRACK AND VEHICLE DATA

Center of Gravity and Inertial Sensing System Location at Loaded Vehicle Condition:

x-distance (longitudinal)	Point of reference is the front axle centerline. (Positive from front axle toward rear of vehicle.)
y-distance (lateral)	Point of reference is the vehicle centerline. (Positive from the center toward the right.)
z-distance (vertical)	Point of reference is the ground plane.

(Positive from the ground up.)

Locations:

	<u>Center o</u>	f Gravity		Inertial Sens	ing System
x-distance	<u>53.6</u> in	136.1 cm		<i>74.8</i> in _	<i>189.9</i> cm
y-distance	<i>-0.5</i> in	<i>-1.2</i> cm		<i>-0.7</i> in	<i>-1.7</i> cm
z-distance	<i>26.4</i> _ in	66.9 cm		<i>22.7</i> in _	<i>57.7</i> cm
		Roof Height	<i>69.4</i> in	17	76.2 cm
Distance between ultrasonic sensors			<i>91.8</i> in	23	33.0 cm

Remarks:				
RECORDED BY:	Peter Broen	DATE RECORDED:		
APPROVED BY:	Brian Kehschull	DATE APPROVED:	6/1/2010	

Data Sheet 6 (Page 1 of 3) BRAKE AND TIRE CONDITIONING

Vehicle: 2010 GMC Acadia MPV

NHTSA No. *CA0111*

Measured tire pressure: LF <u>249</u> KPA RF <u>248</u> KPA

LR 250 KPA RR 245 KPA

Wind Speed <u>2.4</u> m/s (10 m/sec (22 mph) max for passenger cars;

5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) <u>24.4</u> °C

Brake Conditioning Time: <u>11:08:00 AM</u> Date: <u>6/1/2010</u>

56 km/h (35 mph) Brake Stops

Number of stops executed (10 required) <u>10</u> Stops

Observed deceleration rate range (.5g target) <u>0.45-0.55</u> g

72 km/h (45 mph) Brake Stops

Number of stops executed (3 required) <u>3</u> Stops

Number of stops ABS activated (3 required) <u>3</u> Stops

Observed deceleration rate range <u>0.85-1.00</u> g

72 km/h (45 mph) Brake Cool Down Period

Duration of cool down period (5 minutes min.) 5 Minutes

Data Sheet 6 (Page 2 of 3) BRAKE AND TIRE CONDITIONING

Tire Conditioning series No. 1	Time:	<u>11:21:00 AM</u>			Date: 6		6/1/2	<u>6/1/2010</u>	
Measured cold tire pressure	LF	<u>263</u>	KPA	R	F	<u> 263</u>	3	KPA	
	LR	<u>266</u>	KPA	R	R	25	8	KPA	
Wind Speed <u>2.5</u> m/s	(10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)								

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 25.4°C

30 meter (100 ft) Diameter Circle Maneuver							
Test Run	Steering Direction	Target Lateral Acceleration (g)	Observed Lateral Acceleration (g)	Observed Vehicle Speed (Km/h)			
1-3	Clockwise	0.5 - 0.6	<u>0.5-0.6</u>	<u> 30.4 - 32</u>			
4-6	Counterclockwise	0.5 – 0.6	<u>0.5-0.6</u>	<u> 30.4 - 32</u>			

	5-1 Hz Cycle Sinusoidal Steering Maneuver to Determine Steering Wheel Angle for 0.5-0.6 g Lateral Acceleration								
Test Run	Data File	Vehicle Speed Km/h(mph)	Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)				
1	2	56 ± 2 (35 ± 1)	<u>60</u>	0.5 - 0.6	<u>0.38</u>				
2	3	56 ± 2 (35 ± 1)	<u>90</u>	0.5 - 0.6	<u>0.52</u>				
3		56 ± 2 (35 ± 1)		0.5 - 0.6					
4		56 ± 2 (35 ± 1)		0.5 - 0.6					

Steering wheel angle that corresponds to a peak 0.5-0.6 g lateral acceleration: 90 degrees

	10-1 Hz Cycle Sinusoidal Steering Maneuver							
Test Run	Data File	Vehicle Speed Km/h (mph)	Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)			
1-3	<u>4-6</u>	56 ± 2 (35 ± 1)	<u>90</u> (cycles 1-10)	0.5 - 0.6	<u>0.52</u>			
4	7 50 0 (05 4)	<u>90</u> (cycles 1-9)	0.5 - 0.6	<u>0.52</u>				
4 <u>7</u>	56 ± 2 (35 ± 1)	180 (cycle10)*	NA	<u>0.75</u>				

^{*} The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9

Remarks:____

Data Sheet 6 (Page 3 of 3) BRAKE AND TIRE CONDITIONING

Tire Conditioning series No. 2 Time: 1:30:00 PM Date: 6/1/2010

Measured cold tire pressure LF <u>253</u> KPA RF <u>257</u> KPA

LR <u>252</u> KPA RR <u>241</u> KPA

Wind Speed 3.1 m/s (10 m/sec (22 mph) max for passenger cars; 5m/sec

(11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) _27.2_ °C

30 meter (100 ft) Diameter Circle Maneuver							
Test Run Steering Direction Target Lateral Acceleration (g) Observed Lateral Acceleration (g) Speed (Km/h							
1-3	Clockwise	0.5 - 0.6	<u>0.5-0.6</u>	<u> 30.4 - 32</u>			
4-6	Counterclockwise	0.5 - 0.6	<u>0.5-0.6</u>	<u> 30.4 - 32</u>			

Steering wheel angle that corresponds to a peak 0.5-0.6 g lateral acceleration: <u>90</u> degrees

	10-1 Hz Cycle Sinusoidal Steering Maneuver							
Test Data Vehicle Speed Steeri Run File Km/h (mph)		Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)				
1-3	<u>16-18</u>	56 ± 2 (35 ± 1)	90 (cycles 1-10)	0.5 - 0.6	<u>0.52</u>			
4	10 50 0 (05 1)		90 (cycles 1-9)	0.5 - 0.6	<u>0.52</u>			
4 <u>19</u>	$56 \pm 2 (35 \pm 1)$	(cycle 10)*	NA	<u>0.75</u>				

^{*} The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9

RECORDED BY:	Brian Kebschull	DATE RECORDED:	6/1/2010
APPROVED BY:	J Lenkeit	DATE APPROVED:	6/4/2010

Data Sheet 7 (Page 1 of 2) SLOWLY INCREASING STEER (SIS) MANEUVER

Vehicle: 2010 GMC Acadia MPV

NHTSA No. *CA0111*

Measured tire pressure: LF 267 KPA RF 261 KPA

LR <u>268</u> KPA RR <u>254</u> KPA

Wind Speed <u>1.8</u> m/s

(10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 25.8 °C

Selected drive configuration _ FWD

Selected Mode: <u>Default- ESC on</u>

Preliminary Left Steer Maneuver:

Lateral Acceleration measured at 30 degrees steering wheel angle

$$a_{y,30 \text{deg} rees} = \underline{0.29}$$
 g

Assuming a linear relationship the following ratio should be used to calculate the steering wheel angle at 0.55g:

$$\frac{30 \text{ degrees}}{a_{y,30 \text{ degrees}}} = \frac{\delta_{SIS}}{0.55 \text{ g}}$$

$$\frac{\delta_{sis} = \underline{56.9} \text{ degrees (@.55g)}}{\delta_{sis} = \underline{60} \text{ degrees (rounded)}}$$

Steering Wheel Angle at Corrected 0.3g Lateral Acceleration:

	Initial Steer	Time Clock (5 min max	Steering Wheel Angle to nearest	Data	
Maneuver	Direction	between runs)	0.1° (degrees)	Run	Good/NG
1	Left	12:09:43 PM	<u>-33.8</u>	<u>10</u>	<u>Good</u>
2	Left	<u>12:12:46 PM</u>	<u>-32.8</u>	<u>11</u>	<u>Good</u>
3	Left	<u>12:16:30 PM</u>	<u>-33.3</u>	<u>12</u>	<u>Good</u>
4	Left				
5	Left				
1	Right	<u>12:20:55 PM</u>	<u>32.1</u>	<u>13</u>	<u>Good</u>
2	Right	<u>12:24:27 PM</u>	<u>32.1</u>	<u>14</u>	<u>Good</u>
3	Right	<u>12:27:18 PM</u>	<u>31.7</u>	<u>15</u>	<u>Good</u>
4	Right				
5	Right				

Data Sheet 7 (Page 2 of 2) SLOWLY INCREASING STEER (SIS) MANEUVER

Average Overall Steering Wheel Angle:

$$\delta_{0.3\;g,\;overall} = (\mid \delta_{0.3\;g,\;left\;(1)} \mid + \mid \delta_{0.3\;g,\;left\;(2)} \mid + \mid \delta_{0.3\;g,\;left\;(3)} \mid + \delta_{0.3\;g,\;right\;(1)} + \delta_{0.3\;g,\;right\;(2)} + \delta_{0.3\;g,\;right\;(3)}) / 6$$

$$\delta_{0.3\;g,\;overall} = \underline{32.7} \qquad \text{degrees}$$
 [to nearest 0.1 degree]

Remarks:			

RECORDED BY: Brian Kebschull DATE RECORDED: 6/1/2010
APPROVED BY: J Lenkeit DATE APPROVED: 6/3/2010

Data Sheet 8 (Page 1 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Vehicle: 2010 GMC Acadia MPV		
NHTSA No. <u>CA0111</u>	Data sheet comple	etion date: 6/1/2010
Tire conditioning completed		X Yes No
ESC system is enabled		X Yes No
On track calibration checks have	been completed	X Yes No
On track static data file for each s	sensor obtained	X Yes No
Selected Drive Configuration:	FWD	
Selected Mode: Default- ESG	C on	
Overall steering wheel angle (δ _{0.3}	(a overall) 32.7	degrees

Lateral Stability Test Series No. 1 – Counterclockwise Initial Steer Direction

	<u>.</u>	Comm						RR .	YRR	
	Clock Steering Wheel			Yaw Rates				sec after	at 1.75 sec after	
Maneuver	Time	Ang	_l le¹	(0	degrees/se	ec)		OS	COS	
#	(1.5 – 5.0	_			1			35%]		20%]
	min max	Scalar	Angle	$\dot{\psi}_{\scriptscriptstyle Peak}$	$\dot{\psi}_{1.0 \mathrm{sec}}$	$\dot{\psi}_{1.75\mathrm{sec}}$	%	Pass/Fail	%	Pass/Fail
	between	(* $\delta_{0.3 \text{ g}}$)	(degrees)	₹ Peak	Ψ 1.0 sec	Ψ 1.75 sec				
24	runs)	1.5	40	40.0	0.0	0.0	1.0	Dese	1 5	Doos
21	13:51	1.5	49	12.9	-0.3	-0.2	-1.9	Pass -	-1.5	Pass -
22	13:55	2.0	65	17.0	-0.2	-0.1	-0.9	Pass	-0.8	Pass
23	13:59	2.5	82	21.5	-0.2	-0.4	-1.0	Pass	-1.8	Pass
24	14:02	3.0	98	25.6	0.8	-0.1	3.3	Pass	-0.5	Pass
25	14:05	3.5	114	30.1	0.4	-0.1	1.2	Pass	-0.2	Pass
26	14:08	4.0	131	27.7	-0.2	-0.3	-0.5	Pass	-1.0	Pass
27	14:11	4.5	147	31.5	0.3	-0.3	1.0	Pass	-0.8	Pass
28	14:14	5.0	164	34.8	-0.4	-0.4	-1.1	Pass	-1.2	Pass
29	14:17	5.5	180	35.7	-0.3	-0.3	-0.8	Pass	-0.8	Pass
30	14:20	6.0	196	39.5	-0.3	-0.2	-0.7	Pass	-0.5	Pass
31	14:23	6.5	213	37.1	-0.3	-0.2	-0.9	Pass	-0.5	Pass
32	14:27	7.0	229	38.7	-0.4	-0.3	-1.0	Pass	-0.8	Pass
33	14:30	7.5	245	39.7	-0.5	-0.2	-1.1	Pass	-0.5	Pass
34	14:33	8.0	262	39.8	-0.2	-0.3	-0.5	Pass	-0.7	Pass
35	14:36	-	270	39.3	-0.4	-0.4	-0.9	Pass	-0.9	Pass

^{1.} Maneuver execution should continue until a steering wheel angle magnitude factor of $6.5^*\delta_{0.3~g,~overall}$ or 270 degrees is utilized, whichever is greater provided the calculated magnitude of $6.5^*\delta_{0.3~g,~overall}$ is less than or equal to 300 degrees. If $6.5^*\delta_{0.3~g,~overall}$ is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of $0.5^*\delta_{0.3~g,~overall}$ without exceeding the 270 degree steering wheel angle.

DATA SHEET 8 (2 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

LATERAL STABILITY TEST SERIES NO. 2 - Clockwise Initial Steer Direction

		Comm	anded		Yaw Rates	S	١	/RR	YRR	
	Clock		g Wheel	(0	(degrees/sec)		at 1.0 sec after		at 1.75 sec after	
Maneuver	Time	Anç	gle¹					cos		COS
#	(1.5 – 5.0		1		T			35%]	_	20%]
	min max between runs)	Scalar (* $\delta_{0.3 g}$)	Angle (degrees)	$\dot{\psi}_{{\scriptscriptstyle Peak}}$	$\dot{\psi}_{ m 1.0 sec}$	$\dot{\psi}_{1.75\mathrm{sec}}$	%	Pass/Fail	%	Pass/Fail
36	14:42	1.5	49	-13.5	0.1	0.0	-0.4	Pass	-0.2	Pass
37	14:47	2.0	65	-17.9	0.1	0.1	-0.4	Pass	-0.4	Pass
38	14:50	2.5	82	-23.2	-0.2	-0.2	1.0	Pass	0.7	Pass
39	14:53	3.0	98	-27.4	0.1	0.1	-0.3	Pass	-0.2	Pass
40	14:56	3.5	114	-29.7	0.3	0.2	-0.9	Pass	-0.6	Pass
41	14:59	4.0	131	-33.9	0.3	0.3	-0.8	Pass	-0.8	Pass
42	15:03	4.5	147	-29.4	0.3	0.1	-0.9	Pass	-0.4	Pass
43	15:06	5.0	164	-35.7	0.0	0.0	-0.1	Pass	-0.1	Pass
44	15:09	5.5	180	-33.9	0.2	0.2	-0.6	Pass	-0.5	Pass
<i>4</i> 5	15:12	6.0	196	-36.8	0.2	0.2	-0.4	Pass	-0.5	Pass
46	15:15	6.5	213	-38.1	0.3	0.3	-0.8	Pass	-0.9	Pass
47	15:18	7.0	229	-38.4	0.4	0.2	-1.0	Pass	-0.5	Pass
48	15:21	7.5	245	-41.7	0.2	0.2	-0.4	Pass	-0.5	Pass
49	15:24	8.0	262	-43.0	0.1	0.0	-0.3	Pass	0.1	Pass
50	15:28	-	270	-44.1	0.2	0.1	-0.5	Pass	-0.1	Pass

^{1.} Maneuver execution should continue until a steering wheel angle magnitude factor of $6.5^*\delta_{0.3~g, overall}$ or 270 degrees is utilized, whichever is greater provided the calculated $6.5^*\delta_{0.3~g, overall}$ is less than or equal to 300 degrees. If $6.5^*\delta_{0.3~g, overall}$ is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of $0.5^*\delta_{0.3~g, overall}$ without exceeding the 270 degree steering wheel angle.

During execution of the Sine with Dwell maneuvers were any of the following

events observed?

Rim-to-pavement contact

Tire debeading

Loss of pavement contact of vehicle tires

Did the test driver experience any vehicle
loss of control or spinout?

Yes X No

Yes X No

If "Yes" explain the event and consult with the COTR.

DATA SHEET 8 (3 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Responsiveness - Lateral Displacement

		Ar	Steering Wheel ngle	Calculated Lateral Displacement ¹		
Maneuver	Initial Steer	$(5.0^*\delta_{0.3~{ m g, over}}$	all or greater)			
#	Direction	Scalar	Angle	Distance	Pass/Fai	
		* $\delta_{ ext{0.3 g}}$	(degrees)	(m)		
28	Counter Clockwise	5.0	164	-2.7	PASS	
29	Counter Clockwise	5.5	180	-2.8	PASS	
30	Counter Clockwise	6.0	196	-2.9	PASS	
31	Counter Clockwise	6.5	213	-2.9	PASS	
32	Counter Clockwise	7.0	229	-2.8	PASS	
33	Counter Clockwise	7.5	245	-2.9	PASS	
34	Counter Clockwise	8.0	262	-2.9	PASS	
35	Counter Clockwise	-	270	-2.9	PASS	
43	Clockwise	5.0	164	2.6	PASS	
44	Clockwise	5.5	180	2.6	PASS	
45	Clockwise	6.0	196	2.6	PASS	
46	Clockwise	6.5	213	2.6	PASS	
47	Clockwise	7.0	229	2.7	PASS	
48	Clockwise	7.5	245	2.8	PASS	
49	Clockwise	8.0	262	2.8	PASS	
50	Clockwise	-	270	2.8	PASS	

Data Sheet 9 (Page 1 of 2) MALFUNCTION WARNING TESTS

Vehicle: <u>2010 GMC Acadia MPV</u>	
NHTSA No. <u>CA0111</u>	Data Sheet Completion Date: 6/1/2010
	TEST 1
MALFUNCTION SIMULATI	ON: Describe method of malfunction simulation
Disconnected EBCM (electro	nic brake control module).
MALFUNCTION TELLTALE	ILLUMINATION:
	lluminated after ignition locking system is activated iven at least 2 minutes as specified in
	X Yes No
Time for telltale to illuminate afte 48 ± 8 km/h (30 ± 5 mph) is reach	ignition system is activated and vehicle speed of ed.
0 Seconds (must be within	2 minutes) X Pass Fail
ESC SYSTEM RESTORATI	ON
Telltale extinguishes after ignition vehicle is driven at least 2 minute	locking system is activated and if necessary the s as specified in section 13.12.B
	X Yes No
Time for telltale to extinguish after 48 \pm 8 km/h (30 \pm 5mph) is reach	r ignition system is activated and vehicle speed of ed.
0 Seconds (must be within	2 minutes) X Pass Fail
TEST 1 D	ATA INDICATES COMPLIANCE: PASS
the key was placed in the accessor	aused, the vehicle could not be started. However, when position, the ESC malfunction telltale remained on.
extinguished without any driving req	rehicle was able to be started, and the telltale uired.
RECORDED BY: Brian Kebso	hull DATE RECORDED: 6/1/2010
APPROVED BY: J Lenkeit	DATE APPROVED 6/8/2010

Data Sheet 9 (Page 2 of 2) MALFUNCTION WARNING TESTS

Vehicle: 2010 GMC Acadia MPV	
NHTSA No <u>. CA0111</u>	Data Sheet Completion Date: 6/1/2010
	TEST 2
MALFUNCTION SIMULATION:	Describe method of malfunction simulation
Disconnected RF wheel speed se	ensor.
MALFUNCTION TELLTALE IL	LUMINATION:
Telltale illuminates and remains illum and if necessary the vehicle is driven section 13.12.B.	ninated after ignition locking system is activated at least 2 minutes as specified in
	X Yes No
Time for telltale to illuminate after ign 48 ± 8 km/h (30 ± 5 mph) is reached.	nition system is activated and vehicle speed of
O Seconds (must be within 2	minutes) X Pass Fail
ESC SYSTEM RESTORATION	
Telltale extinguishes after ignition loc vehicle is driven at least 2 minutes as	
	X Yes No
Time for telltale to extinguish after igr 48 ± 8 km/h (30 ± 5 mph) is reached.	nition system is activated and vehicle speed of
0 Seconds (must be within 2	minutes) X Pass Fail
TEST 2 DATA	A INDICATES COMPLIANCE: PASS
caused. Also, in common area, vario "Traction Control Off", "Service Stabi	diately upon ignition, after the malfunction was ous warning messages appeared, including, iliTrak", and "Service Traction Control". Telltale on, after the system was restored. No driving
RECORDED BY: Brian Kebschull	DATE RECORDED: 6/1/2010
APPROVED BY: J Lenkeit	DATE APPROVED 6/8/2010

4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION (1 OF 2)

TABLE 1. TEST INSTRUMENTATION

Туре	Output	Range	Resolution	Accuracy	Specifics	Serial Number	Calibration
Tire Pressure Gauge	Vehicle Tire Pressure	0-100 psi 0-690 kPa	1 psi 6.89 kPa	0.5 psi 3.45 kPa	Ashcroft D1005PS	1039350	By: DRI Date:2/25/10 Due: 2/25/11
Platform Scales	Vehicle Total, Wheel, and Axle Load	8000 lb 35.6 kN	0.5 lb 2.2 N	±1.0% of applied load	Intercomp Model SWII	24032361	By: American Scale Date: 2/25/10 Due: 2/25/11
Automated Steering Machine with Steering Angle Encoder	Handwheel Angle	±800 deg	0.25 deg	±0.25 deg	Heitz Automotive Testing Model: Sprint 3	60304	By: DRI Date: 2/25/10 Due: 2/25/11
Multi-Axis Inertial Sensing System	Longitudinal, Lateral, and Vertical Acceleration Roll, Yaw, and Pitch Rate	Accelerometers : ±2 g Angular Rate Sensors: ±100 deg/s	Accelerometers: ≤10 ug Angular Rate Sensors: ≤0.004 deg/s	Accelerometer s: ≤0.05% of full range Angular Rate Sensors: 0.05% of full range	BEI Technologies Model: MotionPAK MP-1	0767	By: Systron Donner Date:11/23/09 Due: 11/23/10
Radar Speed Sensor and Dashboard Display	Vehicle Speed	0-125 mph 0-200 km/h	0.009 mph .014 km/h	±0.25% of full scale	A-DAT Corp. Radar Model: DRS-6 Display Model: RD-2	1400.604	By: DRI Date:3/2/10 Due:3/2/11
Ultrasonic Distance	Left and Right Side	5-24 inches	0.01 inches	±0.25% of maximum	Massa Products Corporation	DOT-NHTSA D2646	By: DRI Date:2/26/10 Due: 2/26/11
Measuring System	•	127-610 mm	.254 mm	distance	Model: M-5000/220	DOT-NHTSA D3272	By: DRI Date:2/26/10 Due: 2/26/11

4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION (2 OF 2)

TABLE 1. TEST INSTRUMENTATION (CONTD)

Туре	Output	Range	Resolution	Accuracy	Specifics	Serial Number	Calibration
Data Acquisition System [Includes amplification, anti- aliasing, and analog to digital conversion.]	Record Time; Velocity; Distance; Lateral, Longitudinal, and Vertical	Sufficient to meet or exceed individual sensors	200 Hz	Sufficient to meet or	SoMat eDaq ECPU processor	MSHLB.03- 2476	By: DRI Date:2/9/10 Due: 2/9/11
	Accelerations; Roll, Yaw, and Pitch Rates; Steering Wheel Angle.			exceed individual sensors	SoMat High level Board EHLS	MSHLS.03- 3182	By: DRI Date: 2/9/10 Due: 2/9/11
Load Cell	Vehicle Brake Pedal Force	0-300 lb 0-1.33 kN	1 lb 4.44 N	±0.05% of full scale	Lebow 3663-300	767	Verified by DRI prior to test
Coordinate Measurement Machine	Inertial Sensing System Coordinates	0-8 ft 0-2.4 m	±.0020 in. ±.051 mm	±.0020 in. ±.051 mm (Single point articulation accuracy)	Faro Arm Fusion	UO8-05-08- 06636	By: Faro Date: 8/18/09 Due: 8/18/10
Outriggers	No output. Safety Item.	NA	NA	NA	DRI manufactured Aluminum meeting the weight and MOI specifications of Docket 2007-27662- 11	NA	NA

5.0 PHOTOGRAPHS (1 of 14) GMC 2010 GMC Acadia

Figure 5.1. Front View of Test Vehicle

FMVSS No. 126 NHTSA NO.: CA0111 June 2010 5.0 PHOTOGRAPHS (2 of 14) 2010 GMC Acadia FMVSS No. 126 NHTSA NO.: CA0111 June 2010

Figure 5.2. Rear View of Test Vehicle

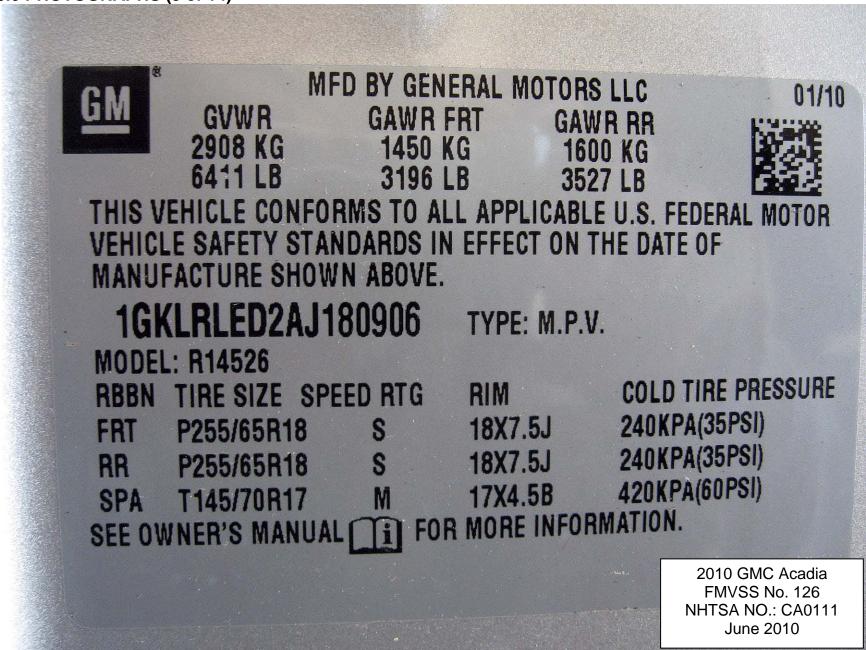


Figure 5.3. Vehicle Certification Label

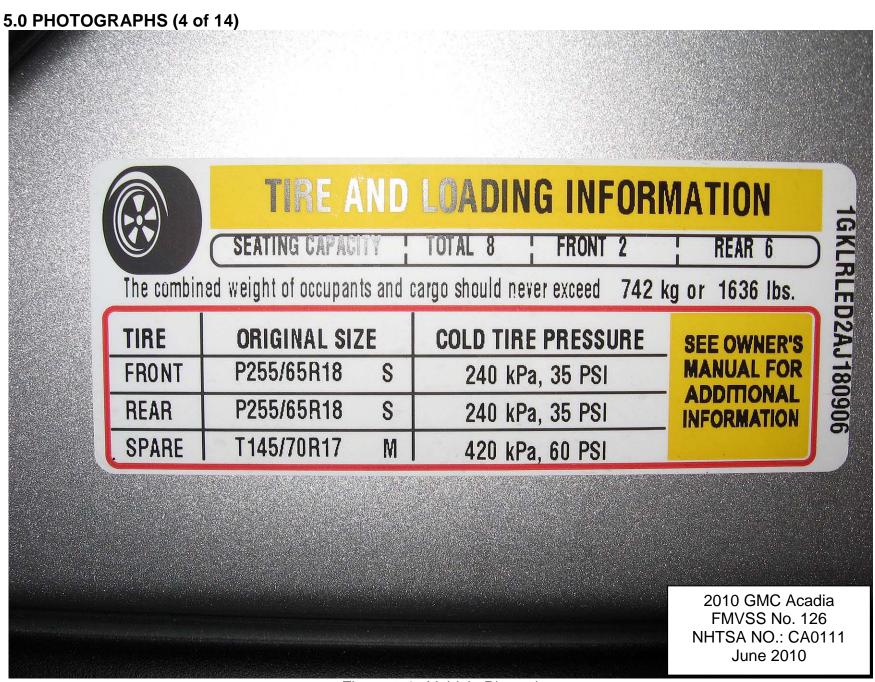


Figure 5.4. Vehicle Placard

5.0 PHOTOGRAPHS (5 of 14)

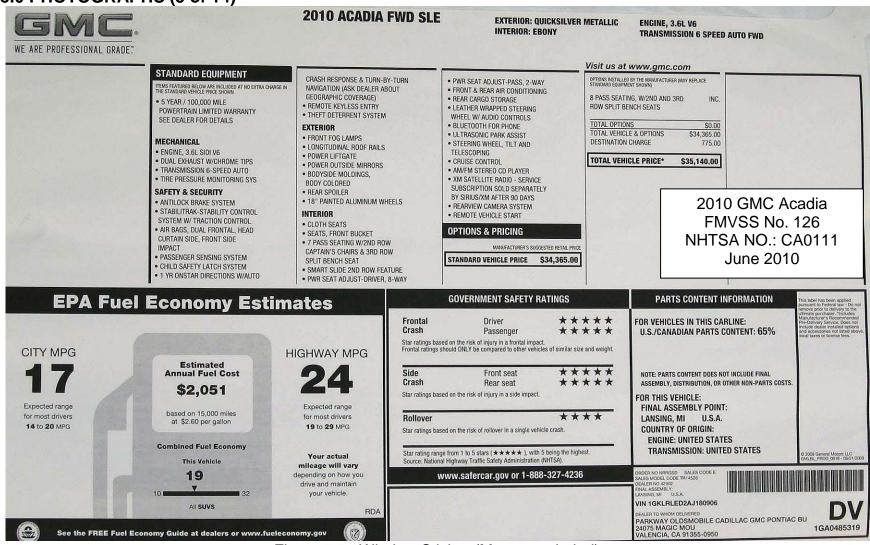


Figure 5.5. Window Sticker (Monroney Label)

5.0 PHOTOGRAPHS (6 of 14)

Figure 5.6. Telltale for ESC Malfunction

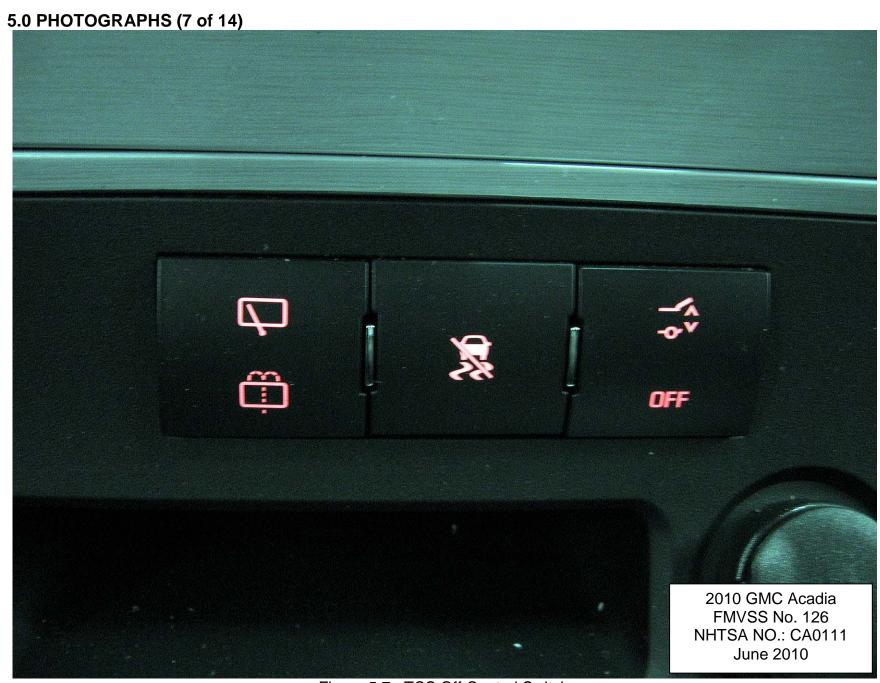


Figure 5.7. TCS Off Control Switch

5.0 PHOTOGRAPHS (8 of 14)

Figure 5.8. Front View of Vehicle As-Tested

5.0 PHOTOGRAPHS (9 of 14)

Figure 5.9. Rear View of Vehicle As-Tested

5.0 PHOTOGRAPHS (10 of 14) 2010 GMC Acadia FMVSS No. 126 NHTSA NO.: CA0111 June 2010

Figure 5.10. Ultrasonic Height Sensor Mounted on Left Side of Vehicle for Determining Body Roll Angle

5.0 PHOTOGRAPHS (11 of 14) 2010 GMC Acadia FMVSS No. 126 NHTSA NO.: CA0111 June 2010

Figure 5.11. Rear Outrigger, Mount and Speed Sensor

5.0 PHOTOGRAPHS (12 of 14)

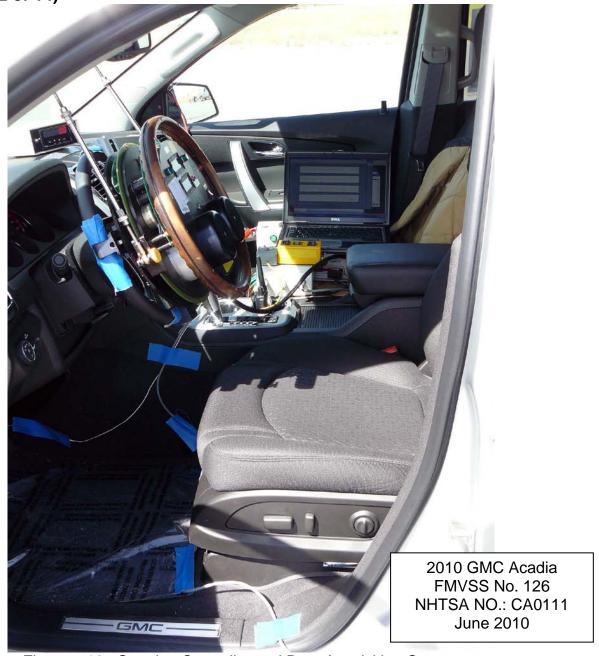


Figure 5.12. Steering Controller and Data Acquisition Computer

5.0 PHOTOGRAPHS (13 of 14)

Figure 5.13. Inertial Measurement Unit Mounted in Vehicle

5.0 PHOTOGRAPHS (14 of 14) 2010 GMC Acadia FMVSS No. 126 NHTSA NO.: CA0111 June 2010

Figure 5.14. Brake Pedal Load Cell

6.0 DATA PLOTS (1 of 4)

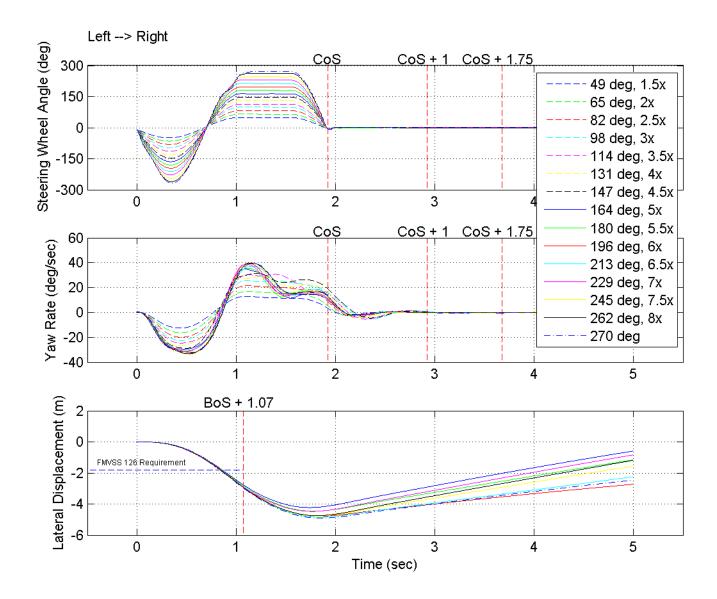


Figure 6.1. Steering Wheel Angle, Yaw Rate and Lateral Displacement for L-R Series

6.0 DATA PLOTS (2 of 4)

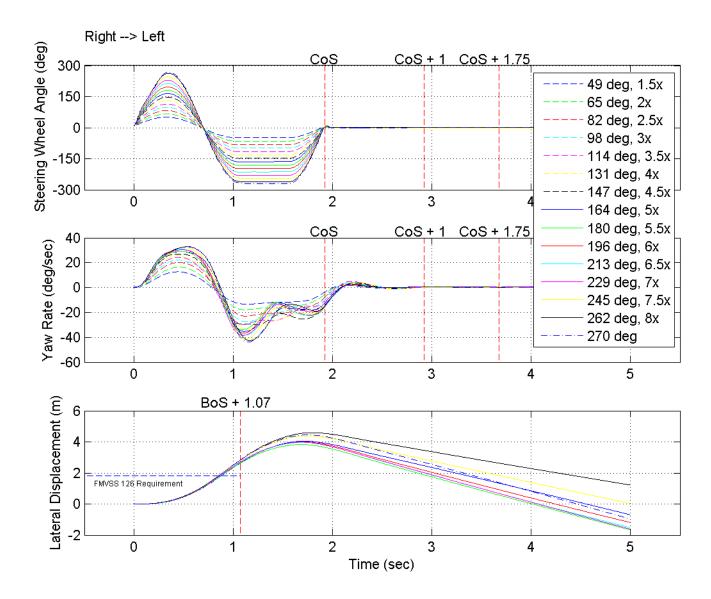


Figure 6.2. Steering Wheel Angle, Yaw Rate and Lateral Displacement for R-L Series

6.0 DATA PLOTS (3 of 4)

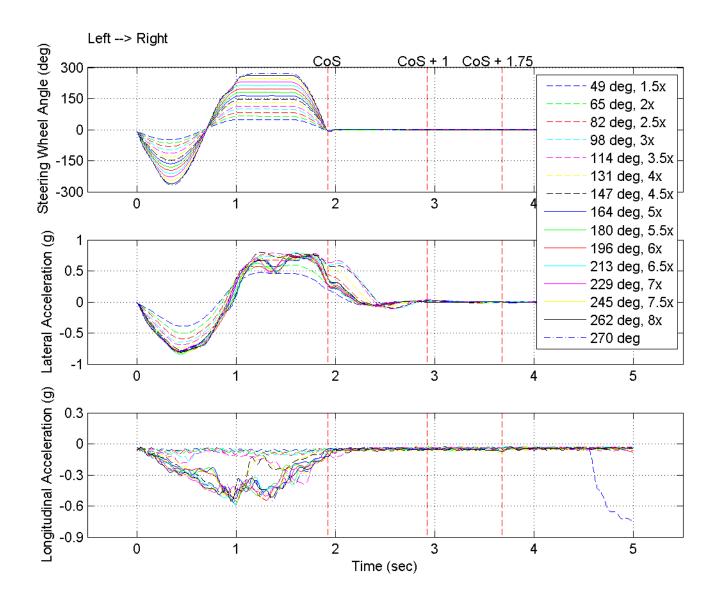


Figure 6.3. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for L-R Series

6.0 DATA PLOTS (4 of 4)

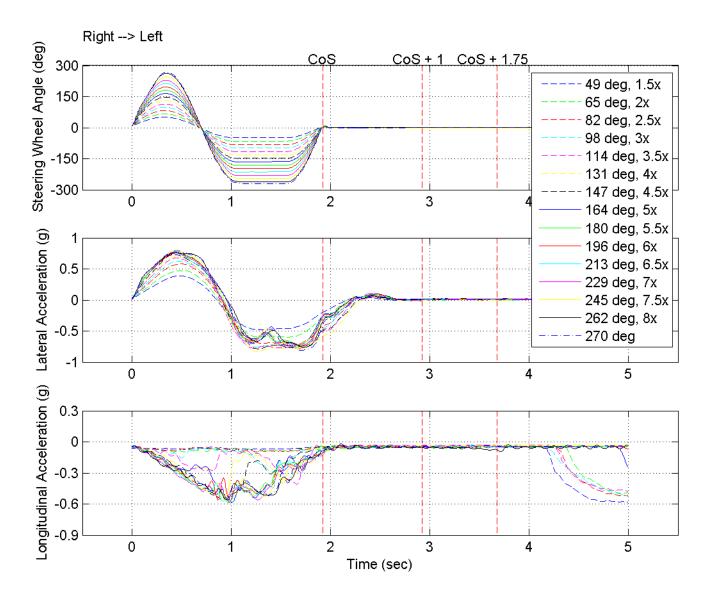


Figure 6.4. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for R-L Series

7.0 OTHER DOCUMENTATION

- 7.1 OWNER'S MANUAL PAGES
- 7.2 VEHICLE ARRIVAL CONDITION REPORT
- 7.3 VEHICLE COMPLETION CONDITION REPORT
- 7.4 SINE WITH DWELL TEST RESULTS
- 7.5 SLOWLY INCREASING STEER TEST RESULTS
- 7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES

1-20 In Brief

Performance and Maintenance

StabiliTrak®

The traction control system limits wheel spin and the StabiliTrak system assists with directional control of the vehicle in difficult driving conditions. Both systems turn on automatically every time the vehicle is started.

- To turn off the traction control part of StabiliTrak, press and release
 \$\overline{\text{located}}\$ located on the instrument panel below the climate controls.
 \$\overline{\text{illuminates}}\$ illuminates and the appropriate DIC message is displayed.
 See Vehicle Messages on page 5-36.
- The StabiliTrak system remains on.

For more information, see StabiliTrak System on page 9-30.

Tire Pressure Monitor

This vehicle may have a Tire Pressure Monitor System (TPMS).

The Tire Pressure Monitor System alerts you when a significant reduction in pressure occurs in one or more of your vehicle's tires by illuminating the low tire pressure warning light on the instrument cluster. If the warning light comes on, stop as soon as possible and inflate the tires to the recommended pressure shown on the tire loading information label located on the driver side center pillar (B pillar). See Vehicle Load Limits on page 9-12. The warning light will remain on until the tire pressure is corrected.

You may notice during cooler conditions that the low tire pressure warning light will appear when the vehicle is first started and then turn off as you drive. This may be an early indicator that your tire pressures are getting low and the tires need to be inflated to the proper pressure.

Note: The Tire Pressure Monitor System can alert you about low tire pressure, but it does not replace normal monthly tire maintenance. It is the driver's responsibility to maintain correct tire pressures.

See Tire Pressure Monitor System on page 10-44 and Tire Pressure Monitor Operation on page 10-46.

Tire Sealant and Compressor Kit

This vehicle may come with a jack and spare tire or a tire sealant and compressor kit. The kit can be used to seal small punctures in the tread area of the tire.

StabiliTrak[®] Indicator Light

This light comes on briefly while starting the engine. If it does not, have the vehicle serviced by your dealer/retailer. If the system is working normally the indicator light goes off.

If it stays on, or comes on while driving, there could be a problem with the StabiliTrak system and the vehicle might need service. When this warning light is on, the system is off and will not limit wheel spin.

This light flashes when the StabiliTrak system is active.

See StabiliTrak System on page 9-30 for more information.

Engine Coolant Temperature Warning Light

The engine coolant temperature warning light comes on briefly when the engine is started.

If it does not, have the vehicle serviced by your dealer/retailer. If the system is working normally the indicator light then goes off.

If the light comes on and stays on while driving, the vehicle may have a problem with the cooling system.

Stop the vehicle and turn off the engine to avoid damage to the engine. A warning chime sounds when this light is on.

See Engine Overheating on page 10-18 for more information.

Tire Pressure Light

For vehicles with a tire pressure monitoring system, this light comes on briefly when the engine is started. It provides information about tire pressures and the Tire Pressure Monitoring System.

HUD Display on the Vehicle Windshield

The HUD information appears as an image focused out toward the front of the vehicle.

When the ignition key is turned to ON/RUN, the HUD will display an introductory message for a short time, until the HUD is ready.

The following indicator lights come on the instrument panel when activated and also appear on the HUD:

- Turn Signal Indicators
- · High-Beam Indicator Symbol

The HUD temporarily displays CHECK GAGES and ICE POSSIBLE when these messages are on the DIC trip computer.

The HUD also displays the following messages on vehicles with these systems, when they are active:

- TRACTION CONTROL ACTIVE
- STABILITRAK ACTIVE

Notice: If you try to use the HUD image as a parking aid, you may misjudge the distance and damage your vehicle. Do not use the HUD image as a parking aid.

When the HUD is on, the speedometer reading is continually displayed. The current radio station or CD track number will display for a short period of time after the radio or CD track status changes. This happens whenever radio information is changed. The speedometer size is reduced when radio, CD information, wamings, or turn-by-turn navigation information are displayed on the HUD.

The HUD control is located to the right of the steering wheel.

Press the set/reset button or the trip odometer reset stem to acknowledge this message and clear it from the DIC display. For more information see *Ultrasonic* Parking Assist on page 9-35.

SERVICE PARK ASSIST

If your vehicle has the Ultrasonic Rear Parking Assist (URPA) system, this message displays if there is a problem with the URPA system. Do not use this system to help you park. See *Ultrasonic Parking Assist on page 9-35* for more information. See your dealer/retailer for service.

Ride Control System Messages

SERVICE STABILITRAK

This message displays if there is a problem with the StabiliTrak® system. If this message appears, try to reset the system. Stop; turn off the engine for at least 15 seconds; then start the engine again.

If this message still comes on, it means there is a problem.
See your dealer/retailer for service.
The vehicle is safe to drive, however, you do not have the benefit of StabiliTrak, so reduce your speed and drive accordingly.

SERVICE TRACTION CONTROL

This message displays when there is a problem with the Traction Control System (TCS). When this message is displayed, the system will not limit wheel spin. Adjust your driving accordingly. See your dealer/retailer for service. See StabiliTrak System on page 9-30 for more information.

TRACTION CONTROL OFF

This message displays when the Traction Control System (TCS) is turned off. Adjust your driving accordingly. See StabiliTrak System on page 9-30 for more information. This message clears itself after 10 seconds.

Airbag System Messages SERVICE AIR BAG

This message displays if there is a problem with the airbag system. Have your dealer/retailer inspect the system for problems. See Airbag Readiness Light on page 5-15 and Airbag System on page 3-32 for more information.

Anti-Theft Alarm System Messages

SERVICE THEFT DETERRENT SYSTEM

This message displays when there is a problem with the theft-deterrent system. The vehicle may or may not restart so you may want to take the vehicle to your dealer/retailer before turning off the engine. See *Immobilizer Operation on page 2-14* for more information.

Medical research shows that alcohol in a person's system can make crash injuries worse, especially injuries to the brain, spinal cord, or heart. This means that when anyone who has been drinking — driver or passenger — is in a crash, that person's chance of being killed or permanently disabled is higher than if the person had not been drinking.

Control of a Vehicle

The following three systems help to control the vehicle while driving — brakes, steering, and accelerator. At times, as when driving on snow or ice, it is easy to ask more of those control systems than the tires and road can provide. Meaning, you can lose control of the vehicle. See StabiliTrak System on page 9-30.

Adding non-dealer/non-retailer accessories can affect vehicle performance. See Accessories and Modifications on page 10-3.

Braking

See Brake System Warning Light on page 5-19.

Braking action involves perception time and reaction time. Deciding to push the brake pedal is perception time. Actually doing it is reaction time.

Average reaction time is about three-fourths of a second. But that is only an average. It might be less with one driver and as long as two or three seconds or more with another. Age, physical condition, alertness, coordination, and eyesight all play a part. So do alcohol, drugs, and frustration. But even in three-fourths of a second. a vehicle moving at 100 km/h (60 mph) travels 20 m (66 ft). That could be a lot of distance in an emergency, so keeping enough space between the vehicle and others is important.

And, of course, actual stopping distances vary greatly with the surface of the road, whether it is pavement or gravel; the condition of the road, whether it is wet, dry, or icy; tire tread; the condition of the brakes; the weight of the vehicle; and the amount of brake force applied.

Avoid needless heavy braking. Some people drive in spurts — heavy acceleration followed by heavy braking — rather than keeping pace with traffic. This is a mistake. The brakes might not have time to cool between hard stops. The brakes will wear out much faster with a lot of heavy braking. Keeping pace with the traffic and allowing realistic following distances eliminates a lot of unnecessary braking. That means better braking and longer brake life.

9-30 Driving and Operating

Brake Assist

This vehicle has a brake assist feature designed to assist the driver in stopping or decreasing vehicle speed in emergency driving conditions. This feature uses the stability system hydraulic brake control module to supplement the power brake system under conditions where the driver has guickly and forcefully applied the brake pedal in an attempt to quickly stop or slow down the vehicle. The stability system hydraulic brake control module increases brake pressure at each comer of the vehicle until the ABS activates. Minor brake pedal pulsations or pedal movement during this time is normal and the driver should continue to apply the brake pedal as the driving situation dictates. The brake assist feature will automatically disengage when the brake pedal is released or brake pedal pressure is quickly decreased.

Ride Control Systems

StabiliTrak System

The vehicle has the StabiliTrak system which combines antilock brake, traction and stability control systems and helps the driver maintain directional control of the vehicle in most driving conditions.

When you first start the vehicle and begin to drive away, the system performs several diagnostic checks to ensure there are no problems. The system may be heard or felt while it is working. This is normal and does not mean there is a problem with the vehicle. The system should initialize before the vehicle reaches 32 km/h (20 mph). In some cases, it may take approximately 3.2 km (2 miles) of driving before the system initializes.

If the system fails to turn on or activate, the StabiliTrak light along with one of the following messages will be displayed on the Driver Information Center (DIC): TRACTION CONTROL OFF, SERVICE TRACTION CONTROL. SERVICE STABILITRAK. If these conditions are observed, turn the vehicle off, wait 15 seconds, and then turn it back on again to reset the system. If any of these messages still appear on the Driver Information Center (DIC), the vehicle should be taken in for service. For more information on the DIC messages, see Driver Information Center (DIC) (With DIC Buttons) on page 5-24 or Driver Information Center (DIC) (Without DIC Buttons) on page 5-29.

The StabiliTrak light will flash on the instrument panel cluster when the system is both on and activated.

The system may be heard or felt while it is working; this is normal.

The traction control disable button is located on the instrument panel below the climate controls.

The traction control part of StabiliTrak can be turned off by pressing and releasing the traction control disable button. Traction control can be turned on by pressing and releasing the traction control disable button if not automatically shut off for any other reason.

When the traction control system is turned off, the StabiliTrak light and the appropriate traction control off message will be displayed on the DIC to warn the driver. The vehicle will still have brake-traction control when traction control is off, but will not be able to use the engine speed management system. See "Traction Control Operation" next for more information.

When the traction control system has been turned off, system noises may be heard and felt as a result of the brake-traction control working.

It is recommended to leave the system on for normal driving conditions, but it may be necessary to turn the system off if the vehicle is stuck in sand, mud, ice or snow, and you want to "rock" the vehicle to attempt to free it. It may also be necessary to turn off the system when driving in extreme off-road conditions where high wheel spin is required. See *If the Vehicle is Stuck on page 9-11*.

Traction Control Operation

The traction control system is part of the StabiliTrak system. Traction control limits wheel spin by reducing engine power to the wheels (engine speed management) and by applying brakes to each individual wheel (brake-traction control) as necessary.

The traction control system is enabled automatically when the vehicle is started. It will activate and the StabiliTrak light will flash if it senses that any of the wheels are spinning or beginning to lose traction while driving.

7.1 OWNER'S MANUAL PAGES

9-32 Driving and Operating

If traction control is turned off, only the brake-traction control portion of traction control will work. The engine speed management will be disabled. In this mode, engine power is not reduced automatically and the driven wheels can spin more freely. This can cause the brake-traction control to activate constantly.

Notice: If the wheel(s) of one axle is allowed to spin excessively while the StabiliTrak, ABS and brake warning lights and any relevant DIC messages are displayed, the transfer case could be damaged. The repairs would not be covered by the vehicle warranty. Reduce engine power and do not spin the wheel(s) excessively while these lights and messages are displayed.

The traction control system may activate on dry or rough roads or under conditions such as heavy acceleration while turning or abrupt upshifts/downshifts of the transmission. When this happens, a reduction in acceleration may be noticed, or a noise or vibration may be heard. This is normal.

If cruise control is being used when the system activates, the StabiliTrak light will flash and cruise control will automatically disengage. Cruise control may be reengaged when road conditions allow. See *Cruise Control on page 9-32*.

StabiliTrak may also turn off automatically if it determines that a problem exists with the system. If the problem does not clear itself after restarting the vehicle, see your dealer/retailer for service.

Cruise Control

With cruise control, a speed of about 40 km/h (25 mph) or more can be maintained without keeping your foot on the accelerator. Cruise control does not work at speeds below about 40 km/h (25 mph).

When the brakes are applied, the cruise control is disengaged.

⚠ WARNING

Cruise control can be dangerous where you cannot drive safely at a steady speed. So, do not use the cruise control on winding roads or in heavy traffic.

Cruise control can be dangerous on slippery roads. On such roads, fast changes in tire traction can cause excessive wheel slip, and you could lose control. Do not use cruise control on slippery roads.

7.2 VEHICLE ARRIVAL CONDITION REPORT

CONTRACT NO.: DTNH22-08-D-00098 DATE: 5/5/2010 Purpose X Initial Receipt Automotive Allies From: Received via Transfer **Present Vehicle Condition** To: Dynamic Research, Inc. **Vehicle** VIN: 1GKLRLED2AJ180906 NHTSA NO.: CA0111 Model Year: 2010 Odometer Reading: 27 Miles Make **GMC** Body Style: MPV Model: Acadia Body Color: Silver Manufacture Date: 01/10 Dealer: Automotive Allies GVWR (kg/lb) 2908/6411 Price: Leased All options listed on the "Window Sticker" are present on the test vehicle Tires and wheel rims are new and the same as listed There are no dents or other interior or exterior flaws The vehicle has been properly prepared and is in running condition The glove box contains an owner's manual, warranty document, consumer information, and extra set of keys Proper fuel filler cap is supplied on the test vehicle Inspect the vehicle's interior and exterior, including all windows, seats, doors, etc., to confirm that each system is complete and functional per the manufacturer's specifications. Any damage, misadjustment, or other unusual condition that could influence the test program or test results shall be recorded. Report any abnormal condition to the NHTSA COTR before beginning any test. NOTES: RECORDED BY: J Lenkeit DATE RECORDED: 5/5/2010

DATE APPROVED: *5/6/2010*

APPROVED BY: B Broen

7.3 VEHICLE COMPLETION CONDITION REPORT

DATE: <u>6/8/2010</u>	
Vehicle VIN: <u>1GKLRLED2AJ180906</u>	NHTSA NO.: <i>CA0111</i>
Model Year: <u>2010</u>	Odometer Reading: <u>81</u> Miles
Make: <u>GMC</u>	Body Style: MPV
Model: <u>Acadia</u>	Body Color: Silver
Manufacture Date: 01/10	Dealer: Automotive Allies
GVWR (kg/lb) 2908 (6411)	Price: <u>Leased</u>
LIST OF FMVSS TESTS PERFORMED BY	THIS LAB: <u>126</u>
☑ THERE ARE NO DENTS OR OTHER	ER INTERIOR OR EXTERIOR FLAWS
	RLY MAINTAINED AND IS IN RUNNING
▼ THE GLOVE BOX CONTAINS AN DOCUMENT, CONSUMER INFOR	OWNER'S MANUAL, WARRANTY MATION, AND EXTRA SET OF KEYS
☑ PROPER FUEL FILLER CAP IS SUREMARKS:	JPPLIED ON THE TEST VEHICLE
Equipment that is no longer on the test vehi Report:	cle as noted on Vehicle Arrival Condition
Explanation for equipment removal:	
Test Vehicle Condition: <u>As delivered exception to the repaired at DRI expense</u>	t that steering wheel has slight damage, to
RECORDED J Lenkeit BY:	DATE RECORDED: 6/8/2010
APPROVED BY: P Broen	DATE APPROVED: 6/9/2010

7.4 SINE WITH DWELL TEST RESULTS

2010 GMC Acadia MPV NHTSA No.: CA0111 Date of Test: 6/1/2010 Date Created: 6/2/2010

Lateral Stability Test Series No. 1 – Counterclockwise Initial Steer Direction

		asinity									~ -									
File	SWA @ 5deg Ct	MES	Time @ 5deg	cos	Time @ COS	MOS	Time @ MOS	YRR1	YR1	YRR1 Ct	YRR1 75	YR175	YRR17 5 Ct	2nd Yaw Peak	2nd Yaw Peak Ct	Lat Disp	Lat. Acc. 1.07s	1st SWA Peak	1st SWA Peak Ct	2nd SWA Mean
	(deg)	(mph)	(s)		(s)		(sec)	(%)	(deg/s)		(%)	(deg/s)		(deg/s)		(ft)	(g)	(deg)		(deg)
21	710	50.25	3.54	1090	5.45	847	4.23	-1.92	-0.25	1290	-1.52	-0.20	1440	12.88	933	-3.96	0.37	49.17	775	48.90
22	709	50.08	3.54	1090	5.45	847	4.23	-0.86	-0.15	1290	-0.82	-0.14	1440	16.95	934	-5.00	0.44	65.13	775	64.84
23	708	50.43	3.53	1090	5.44	846	4.23	-0.99	-0.21	1290	-1.84	-0.40	1440	21.49	930	-6.27	0.48	82.07	775	81.85
24	707	50.30	3.53	1090	5.44	847	4.23	3.27	0.84	1290	-0.46	-0.12	1440	25.55	929	-7.06	0.52	98.14	775	97.82
25	707	50.43	3.53	1090	5.44	846	4.23	1.17	0.35	1290	-0.17	-0.05	1440	30.10	933	-7.77	0.53	114.11	775	113.65
26	707	50.29	3.53	1090	5.44	846	4.23	-0.54	-0.15	1290	-1.02	-0.28	1440	27.66	918	-8.14	0.51	131.15	775	130.79
27	706	50.23	3.53	1090	5.44	847	4.23	1.01	0.32	1290	-0.78	-0.25	1440	31.52	947	-8.64	0.53	147.26	775	146.72
28	706	50.18	3.52	1090	5.44	846	4.23	-1.10	-0.38	1290	-1.15	-0.40	1440	34.80	924	-8.94	0.50	164.25	775	163.70
29	706	50.33	3.52	1090	5.44	847	4.23	-0.80	-0.28	1290	-0.81	-0.29	1440	35.73	931	-9.14	0.46	180.15	775	179.80
30	706	50.35	3.52	1090	5.44	846	4.23	-0.72	-0.28	1290	-0.50	-0.20	1440	39.52	932	-9.38	0.43	196.14	775	195.68
31	706	50.32	3.52	1090	5.44	847	4.23	-0.85	-0.31	1290	-0.51	-0.19	1440	37.13	938	-9.55	0.39	212.92	775	212.68
32	706	50.25	3.52	1090	5.44	847	4.23	-1.01	-0.39	1290	-0.76	-0.29	1440	38.69	928	-9.33	0.50	228.99	775	228.62
33	706	50.22	3.52	1090	5.44	847	4.23	-1.14	-0.45	1290	-0.52	-0.21	1440	39.66	939	-9.56	0.43	244.67	776	244.91
34	706	50.21	3.52	1090	5.44	847	4.23	-0.53	-0.21	1290	-0.70	-0.28	1440	39.79	937	-9.49	0.39	261.23	776	261.72
35	706	50.35	3.52	1090	5.44	847	4.23	-0.88	-0.35	1290	-0.91	-0.36	1440	39.25	941	-9.61	0.39	268.49	777	269.76

7.4 SINE WITH DWELL TEST RESULTS

2010 GMC Acadia MPV NHTSA No.: CA0111 Date of Test: 6/1/2010 Date Created: 6/2/2010

Lateral Stability Test Series No. 2 – Clockwise Initial Steer Direction

	Ciui Ot				110. 2		OKWIS		. 0.00.	Direct										
File	SWA @ 5deg Ct	MES	Time @ 5deg	cos	Time @ COS	MOS	Time @ MOS	YRR1	YR1	YRR1 Ct	YRR1 75	YR175	YRR17 5 Ct	2nd Yaw Peak	2nd Yaw Peak Ct	Lat Disp	Lat. Acc. 1.07s	1st SWA Peak	1st SWA Peak Ct	2nd SWA Mean
	(deg)	(mph)	(s)		(s)		(sec)	(%)	(deg/s)		(%)	(deg/s)		(deg/s)		(ft)	(g)	(deg)		(deg)
36	710	50.30	3.54	1090	5.45	847	4.23	-0.39	0.05	1290	-0.17	0.02	1440	-13.46	939	3.92	-0.36	49.91	775	49.58
37	708	50.16	3.54	1090	5.44	847	4.23	-0.44	0.08	1290	-0.38	0.07	1440	-17.94	933	4.95	-0.42	65.86	775	65.56
38	708	50.12	3.53	1090	5.44	847	4.23	0.96	-0.22	1290	0.67	-0.16	1440	-23.24	934	5.95	-0.47	82.76	775	82.52
39	707	50.39	3.53	1090	5.44	847	4.23	-0.33	0.09	1290	-0.22	0.06	1440	-27.44	934	6.79	-0.50	98.82	775	98.51
40	707	50.20	3.53	1090	5.44	847	4.23	-0.87	0.26	1290	-0.63	0.19	1440	-29.67	928	7.18	-0.57	114.71	775	114.42
41	706	50.37	3.52	1090	5.44	846	4.23	-0.80	0.27	1290	-0.82	0.28	1440	-33.89	939	7.68	-0.53	131.80	775	131.54
42	706	50.37	3.52	1090	5.44	847	4.23	-0.87	0.26	1290	-0.37	0.11	1440	-29.44	924	8.04	-0.49	147.82	775	147.51
43	706	50.30	3.52	1090	5.45	847	4.23	-0.08	0.03	1290	-0.12	0.04	1440	-35.72	930	8.53	-0.45	164.79	775	164.60
44	706	50.40	3.52	1090	5.44	847	4.23	-0.63	0.21	1290	-0.50	0.17	1440	-33.92	926	8.47	-0.53	180.88	775	180.40
45	706	50.43	3.52	1090	5.44	847	4.23	-0.40	0.15	1290	-0.49	0.18	1440	-36.78	928	8.63	-0.47	196.70	775	196.37
46	706	50.25	3.52	1090	5.44	847	4.23	-0.83	0.32	1290	-0.89	0.34	1440	-38.14	932	8.67	-0.50	213.71	775	213.25
47	706	50.40	3.52	1090	5.44	847	4.23	-0.95	0.36	1290	-0.48	0.18	1440	-38.37	927	8.76	-0.53	229.76	775	229.40
48	706	50.53	3.52	1090	5.44	847	4.23	-0.40	0.17	1290	-0.53	0.22	1440	-41.66	931	9.16	-0.43	245.44	776	245.57
49	706	50.18	3.52	1090	5.45	847	4.23	-0.28	0.12	1290	0.06	-0.03	1440	-43.02	941	9.17	-0.32	261.93	776	262.40
50	706	50.48	3.52	1090	5.45	847	4.23	-0.53	0.23	1290	-0.11	0.05	1440	-44.11	937	9.14	-0.39	268.82	777	270.44

7.5 SLOWLY INCREASING STEER TEST RESULTS

2010 GMC Acadia MPV NHTSA No.: <u>CA0111</u> Date of Test: <u>6/1/2010</u> Date Created: <u>6/1/2010</u>

File EventPt DOS MES Mean SPD AYcount 3 THETAENCF_3 AYCG_CD2_3 ZeroBegin ZeroEnd r_squared (mph) (mph) (deg) (g) 10 700 1 49.70 1206 -33.76 -0.30 1.00 500 700 49.73 716 50.93 50.60 1191 -32.83 -0.30 0.99 516 716 11 1 -0.31 12 656 1 50.04 49.99 1201 -33.31 1.00 456 656 13 700 0 50.08 49.92 1178 32.14 0.30 1.00 500 700 14 700 0 49.51 49.95 1180 32.14 0.30 1.00 500 700 1173 15 693 0 49.69 49.83 31.73 0.30 1.00 493 693

Averages

Scalars	Steering Angles (deg)
1.5	49
2.0	65
2.5	82
3.0	98
3.5	114
4.0	131
4.5	147
5.0	164

Scalars	Steering Angles
	(deg)
5.5	180
6.0	196
6.5	213
7.0	229
7.5	245
8.0	262
	270

7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES

Vehicle: **2010 GMC Acadia MPV** NHTSA No.: CA0111

Wheelbase: 119.1 Inches Faro Arm S/N: U08-05-08-06636

Measurement date: 5/17/2010 Certification date: 8/18/2009

CMM Measurements

Coordinate system: SAE (X,Y,Z positive forward, to the right, and downward, respectively)

Origin defined at 48" point on lateral arm of measurement fixture, projected onto the ground plane

	Ref X	Ref Y	Ref Z
M_PLANE001_Ground_Plane	-	-	0.000
M_Line_Y_Axis	-1.734	-3.274	0.000
M_Point_48_Ref	0.000	0.000	-
M_CIRCLE001_I_Left_Rear_Wheel_Axle	-37.554	9.672	-14.819
M_Point_IMU_side	6.763	45.788	22.734
M_Point_ROOF	-	-	-69.352
Motion Pak reference point taken from mid height of unit left side			
Motion Pak Width = 3.05" ==> 1/2 W = 1.525			
Motion_PAK_Location	6.763	47.313	22.734

Measurement Notes

- 1. The Faro arm is positioned just to the left of the vehicle, near the rear door.
- 2. A "centerline jig" is used in the Faro arm measurement. The jig consists of a long beam with a 4 ft lateral arm that is perpendicular to the beam. The jig is placed on the ground underneath the vehicle with the long beam positioned along the centerline of the vehicle, such that the lateral arm extends to the left, slightly forward of the left rear tire. The lateral arm has a marked indentation point which is located 48.00" from the edge of the centerline beam.
- 3. The Faro arm is used to make the following measurements:
 - Three points on the ground, which establishes the ground plane.
 - Two points along the lateral arm, and projected onto the ground plane. This establishes the y axis.
 - One point at the 48 inch reference point on the lateral arm. This establishes the origin.
 - Three points on the left rear wheel or wheel cover. The Faro arm then computes the center point of the wheel.
 - One point to establish the height of the highest point on the roof of the vehicle.

Coordinate Measurements Calculated for S7D (Matlab Program)

Coordinate system: X,Y,Z positive rearward, to the right, and upward, respectively

Origin defined as follows: X axis: front axle, Y axis: vehicle centerline, Z axis: ground plane

	Ref_X	Ref Y	Ref Z
Motion_PAK_Location in S7D (Matlab program) coordinate system	74.783	-0.687	22.734

Calculation Notes:

- 1. X axis value is the difference between the wheelbase and the calculated distance from the rear axle centerline to the IMU (the value must be positive and less than the wheelbase).
- 2. Y axis value is -48.00 (the Y axis offset of the measurement origin in the S7D coordinate system) plus the measured Y axis value (a negative value indicates the IMU is to the left of the vehicle centerline, and a positive value indicates it is to the right)
- 3. Z axis value is from the ground plane up to the center of the IMU (value must be positive).