126-DRI-10-010 SAFETY COMPLIANCE TESTING FOR FMVSS 126 **Electronic Stability Control Systems**

> Hyundai Motor Manufacturing Alabama LLC 2010 Hyundai Santa Fe AWD NHTSA No. CA0518

DYNAMIC RESEARCH, INC.

355 Van Ness Avenue, STE 200 Torrance, California 90501

22 November, 2010

Final Report

Prepared Under Contract No.: DTNH22-08-D-00098

U. S. DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Enforcement Office of Vehicle Safety Compliance 1200 New Jersey Avenue, SE West Building, 4th Floor (NVS-221) Washington, DC 20590

Prepared for the Department of Transportation, National Highway Traffic Safety Administration, under Contract No. DTNH22-08-D-00098.

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings, and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturer's names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products of manufacturers.

Prepared By: <u>Brien K. Lebelu</u> Approved By: <u>M. M. C. M. C. Lebelu</u>

Approval Date: 22 November, 2010

FINAL REPORT ACCEPTANCE BY OVSC:

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.	
T. Treport No.	2. Obvernment Accession No.	5. Recipient's Catalog No.	
126-DRI-10-010			
4. Title and Subtitle	•	5. Report Date	
	ce Testing of 2010 Hyundai Santa Fe AWD	22 November, 2010	
multipurpose passenger vehicle, NHT	SA No. CA0518	6. Performing Organization Co	de
		DRI	
7. Author(s)		8. Performing Organization Re	port No.
John F. Lenkeit, Technical Directo			
Brian Kebschull, Principal Enginee	er	DRI-TM-10-05	
9. Performing Organization Name an	d Address	10. Work Unit No.	
Dynamic Research, Inc.			
355 Van Ness Ave, STE 200 Torrance, CA 90501		11. Contract or Grant No.	
Tomance, CA 90301		DTNH22-08-D-00098	
12. Sponsoring Agency Name and A	ddress	13. Type of Report and Period	Covered
U.S. Department of Transportation	on		
National Highway Traffic Safety Office of Vehicle Safety Complia	Administration Enforcement	Final Test Report	
1200 New Jersey Avenue, SE,		18 May, 2010 to 22 Novem	ber, 2010
West Building, 4th Floor (NVS-22	21)		
Washington, D.C. 20590		14 Crossering Assess Code	
		14. Sponsoring Agency Code	
		NVS-220	
15. Supplementary Notes			
16. Abstract			
A test was conducted on a 2010 Hyun	dai Santa Fe AWD , NHTSA No. CA0518, in	accordance with the specifications	s of the Office of Vehicle
Safety Compliance Test Procedure No	b. TP-126-02 for the determination of FMVSS	126 compliance.	
Test failures identified were as follows	: None		
17. Key Words		18. Distribution Statement	
Operation of Table		Operation of the land	- United as free service
Compliance Testing Safety Engineering		Copies of this report are av	allable from:
FMVSS 126		NHTSA Technical Informati	on Services (TIS)
		(NPO 411)	
		1200 New Jersey Avenue, Washington, D.C. 20590	SE
		Email: tis@nhtsa.dot.gov	
		FAX: (202) 493-2833	
19. Security Classif. (of this	20. Security Classif. (of this page)	21. No. of Pages	22.
report)		-	
Unclassified	Unclassified	80	

TABLE OF CONTENTS

SECTION	<u>F</u>	PAGE
1.0	PURPOSE OF COMPLIANCE TEST	1
2.0	TEST PROCEDURE AND DISCUSSION OF RESULTS	1
3.0	TEST DATA	5
4.0	TEST EQUIPMENT LIST AND CALIBRATION INFORMATION	35
5.0	PHOTOGRAPHS	37
6.0	DATA PLOTS	51
7.0	OTHER DOCUMENTATION	59
	 7.1 Owner's Manual Pages 7.2 Vehicle Arrival Condition Report 7.3 Vehicle Completion Condition Report 7.4 Sine with Dwell Test Results 7.5 Slowly Increasing Steer Test Results 7.6 Inertial Sensing System Location Coordinates 	60 68 70 72 74 76

1.0 PURPOSE OF COMPLIANCE TEST

The purpose of this test is to determine if the test vehicle, a 2010 Hyundai Santa Fe AWD, meets the minimum equipment and performance requirements stated in Federal Motor Vehicle Safety Standard (FMVSS) 126, "Electronic Stability Control Systems."

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS

Testing of the 2010 Hyundai Santa Fe AWD was conducted at Dynamic Research, Inc (DRI) in accordance with NHTSA TP-126-02, dated November 19, 2008.

The vehicle was inspected to ensure it was equipped with an ESC system that:

- Augments vehicle directional stability by applying and adjusting brake torques individually at each wheel to induce a correcting yaw moment to a vehicle;
- Is computer controlled with the computer using a closed-loop algorithm to limit vehicle oversteer and to limit vehicle understeer;
- Has a means to determine the vehicle's yaw rate and to estimate its side slip or side slip derivative with respect to time;
- Has a means to monitor driver steering inputs;
- Has an algorithm to determine the need, and a means to modify engine torque, as necessary, to assist the driver in maintaining control of the vehicle; and
- Is operational over the full speed range of the vehicle (except at vehicle speeds less than 20 km/h (12.4 mph), when being driven in reverse, or during system initialization).

The vehicle was subjected to a 0.7 Hz Sine with Dwell steering maneuver to ensure that it would meet the stability and responsiveness requirements of the standard as follows:

 At 1.0 second after completion of a required Sine with Dwell steering input, the yaw rate of the vehicle must not exceed 35 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTINUED)

- At 1.75 seconds after completion of a required Sine with Dwell steering input, the yaw rate of the vehicle must not exceed 20 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).
- The lateral displacement of the vehicle center of gravity with respect to its initial straight path must be at least 1.83 m (6 feet) (for vehicles with a GVWR of 3,500kg (7,716 lb) or less) when computed 1.07 seconds after the Beginning of Steer (BOS) at the specified steering wheel angles.

System malfunction simulations were executed to verify vehicle could identify and indicate a malfunction.

The vehicle was tested in both the AWD "automatic" and AWD "locked" drive configurations. The vehicle's ESC System appears to meet the performance and equipment requirements as required by FMVSS 126. The test results are summarized on the following summary sheet.

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTD)

Data Summary Sheet (Page 1 of 2)

Vehicle: <u>2010 Hyundai Santa F</u>	e AWD	
NHTSA No. <u><i>CA0518</i></u>	VIN: <i>5NMSHDAG2AH346041</i>	
Vehicle Type: <u>MPV</u>	Manufacture Date: <u>11/09</u>	
Laboratory: <u>Dynamic Research</u>	, Inc.	
REQUIREMENTS:		PASS/FAIL
	Characteristics (Data Sheet 2) I with an ESC system that meets al characteristics requirements.	<u>PASS</u>
ESC Malfunction Telltale (Data S Vehicle is equipped with a te ESC system malfunctions. (S	Illale that indicates one or more	<u>PASS</u>
Vehicle is equipped with an l vehicle has been put into a n	Atrols and Telltale (Data Sheet 3,4) ESC off telltale indicating the mode that renders the ESC system nance requirements of the standard, .1)	<u>PASS</u>
-	ther system controls as well as the rerational requirements (S126, , and S5.5.9)	<u>PASS</u>

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTD)

Data Summary Sheet (Page 2 of 2)

REQUIREMENTS: PASS/FAIL Vehicle Lateral Stability (Data Sheet 8) Yaw Rate Ratio at 1 second after COS is less than 35% of PASS peak value. (S126, S5.2.1) Yaw Rate Ratio at 1.75 seconds after COS is less than 20% of PASS peak value. (S126, S5.2.2) Vehicle Responsiveness (Data Sheet 8) Lateral displacement at 1.07 seconds after BOS is at least 1.83 PASS m (6 feet) for vehicles with a GVWR of 3,500kg (7,716 lb) or less, and 1.52 m (5 feet) for vehicles with a GVWR greater than 3,500 Kg (7,716 lb). (S126, S5.2.3) ESC Malfunction Warning (Data Sheet 9) Warning is provided to driver after malfunction occurrence. PASS (S126. S5.3) Malfunction telltale stayed illuminated as long as malfunction PASS existed and must extinguish after malfunction was corrected.

(S126, S5.3.7)

3.0 TEST DATA

Data Sheet 1 (Page 1 of 2)

TEST VEHICLE INSPECTION AND TEST PREPARATION Vehicle: 2010 Hyundai Santa Fe AWD MPV NHTSA No. CA0518 Data Sheet Completion Date: 5/27/2010 VIN 5NMSHDAG2AH346041 Manufacture Date: 11/09 GVWR (kg): 2360.0 Front GAWR (kg): 1350.0 Rear GAWR (kg): 1450.0 Seating Positions Front: 2 Mid: Rear: 3 <u>95 mil</u>es (152 km) Odometer reading at time of inspection:

DESIGNATED TIRE SIZE(S) FROM VEHICLE LABELING:

Front axle: <u>P235/60 R18</u>

Rear axle: <u>P235/60 R18</u>

INSTALLED TIRE SIZE(S) ON VEHICLE (from tire sidewall)

				Front A	<u>Axle</u>	Rear Axle
	Tire Manufa	acturer:		Kuml	<u>ho</u>	<u>Kumho</u>
	Tire	Model:		<u>Solus</u> K	<u>[L21</u>	Solus KL21
	Ti	re Size:		<u>P235/60</u>) <i>R18</i>	<u>P235/60 R18</u>
TIN	Left Front:	<u>27CO</u>	YPL9 4	<u>209</u>	Right Front:	<u>27CO YPL9 4209</u>
	Left Rear:	<u>27CO</u>	YPL9 4	<u>209</u>	Right Rear:	<u>27CO YPL9 4209</u>

Are installed tire sizes same as labeled tire sizes? <u>Yes</u> If no, contact COTR for further guidance

DR	DRIVE CONFIGURATION(S):(mark all that apply)				
	Two Wheel Drive (2WD) Front Wheel Drive Rear Wheel Drive				
Χ	All Wheel Drive (AWD)				
	Four Wheel Drive Automatic - differential no locked full time (4WD Automatic)				
	Four Wheel Drive (High Gear Locked Differential 4WD HGLD)				
	Four Wheel Drive Low Gear (4WD Low)				
Χ	Other (Describe) <u>AWD Locked</u>				

Data Sheet 1 (Page 2 of 2) TEST VEHICLE INSPECTION AND TEST PREPARATION

DRIVE CONFIGURATIONS AND MODES: (ex. default, performance, off)

(For each of the vehicle's drive configurations identify available operating modes)

Drive Configuration:	Automatic AWD
Mode:	ESC on
Drive Configuration:	Automatic AWD
Mode:	ESC off
Drive Configuration:	AWD Locked
Mode:	ESC on
Drive Configuration:	AWD Locked
Mode:	ESC off

VEHICLE STABILITY SYSTEMS (Check applicable technologies):

List other systems:

X ESC	X Traction Control	X Roll Stability Control
Active Suspension	Electronic Throttle Control	Active Steering
X ABS		

REMARKS:

RECORDED BY:	P Broen	DATE RECORDED:	5/27/2010
APPROVED BY:	J Lenkeit	DATE APPROVED:	6/7/2010

Data Sheet 2 (Page 1 of 2) ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

NHTSA No CA0518 Data Sheet Completion Date: 5/21/2010

ESC SYSTEM IDENTIFICATION

Manufacturer/Model Mobis, Bosch ESP 8.1

ESC SYSTEM HARDWARE (Check applicable hardware)

X Electronic Control Unit **X** Hydraulic Control Unit

XModel Speed SensorsXSteering Angle Sensor

X Yaw Rate Sensor X Lateral Acceleration Sensor

List other Components:

ESC OPERATIONAL CHARACTERISTICS

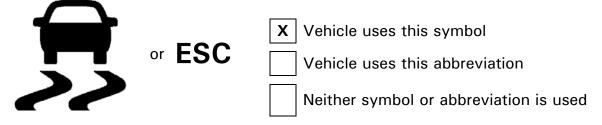
System is capable of generating brake torque at each wheel	Χ	Yes (Pass)
Brief explanation: <u>The outputs of the brake slip controller are</u> <u>transformed to the required pressure values in the wheel brake</u> <u>cylinders with due consideration of the engine management for</u> <u>engine drag reduction. These nominal pressure values are then</u> <u>converted to adequate actuation commands for the hydraulic unit.</u>		No (Fail)
System is capable of determining yaw rate	Х	Yes (Pass)
Brief explanation: <i>Measured by the yaw rate sensor.</i>	_	No (Fail)
System is capable of monitoring driver steering input	Х	Yes (Pass)
Brief explanation: <i>Measured by the steering sensor.</i>		No (Fail)
System is capable of estimating side slip or side slip derivative	Х	Yes (Pass)
Brief explanation: <u>The ESC ECU collects information from the</u> <u>steering angle sensor, wheel speed sensor and yaw rate sensor, and</u> <u>are used to calculate an estimated side slip or the side slip</u> <u>derivative.</u>		No (Fail)

Data Sheet 2 (Page 2 of 2) ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

ESC OPERATIONAL CHARACTERISTICS (continued)		
System is capable of modifying engine torque during ESC activation. Method used to modify torque: <u>In the case of gasoline engines</u> <u>electronic throttle control, ignition spark timing and fuel delivery are</u>	<u>X</u>	Yes (Pass) No (Fail)
controlled to reduce the torque		
System is capable of activation at speeds of 20 km/h (12.4 mph) and higher	<u>x</u>	Yes (Pass) No (Fail)
Speed system becomes active: <u>14.4 km/h</u>		
System is capable of activation during the following driving phases: – acceleration – during activation of ABS or – braking traction control – coasting	<u>X</u>	Yes (Pass) No (Fail)
Driving phases during which ESC is capable of activation: Acceleration, braking, coasting, during activation of ABS or traction control.		
Vehicle manufacturer submitted documentation explaining how the ESC mitigates understeer	<u>x</u>	Yes (Pass) No (Fail)
DATA INDICATES COMPLIANCE:	<u>X</u>	Yes (Pass) No (Fail)
REMARKS:		

RECORDED BY:	Joe Kelly	DATE RECORDED:	5/21/2010
APPROVED BY:	Brian Kebschull	DATE APPROVED:	5/28/2010

3.0 TEST DATA (CONTD) Data Sheet 3 (Page 1 of 2) ESC MALFUNCTION AND OFF TELLTALES


Vehicle: 2010 Hyundai Santa Fe AWD MPV

NHTSA No. CA0518Data Sheet completion date: 5/21/2010

ESC Malfunction Telltale

Vehicle is equipped with malfunction telltale? <u>Yes</u> Telltale Location: <u>The malfunction telltale is located in the instrument cluster, to</u> <u>the left and above the speedometer, which is located in the center of the</u> <u>instrument cluster. (Figure 5.6)</u> Telltale Color: Amber

Telltale symbol or abbreviation used

If different than identified above, make note of any message, symbol or abbreviation used.

Is telltale part of a common space? <u>No</u>

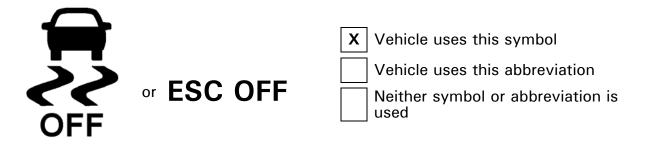
Is telltale also used to indicate activation of the ESC system? Yes

If yes explain telltale operation during ESC activation:

ESC malfunction telltale (shown above) blinks to indicate that the ESC is operating, remains solid when ESC malfunctions.

Data Sheet 3 (Page 2 of 2) ESC MALFUNCTION AND OFF TELLTALES

"ESC OFF" Telltale (if provided)


Vehicle is equipped with "ESC OFF" telltale? Yes

Is "ESC Off" telltale combined with "ESC Malfunction" telltale utilizing a two part telltale? <u>No</u>

Telltale Location: <u>The "ESC OFF" Telltale is located in the instrument cluster, to</u> <u>the left and above the speedometer, which is located in the center of the</u> *instrument cluster. (Figure 5.6)*

Telltale Color: Amber

Telltale symbol or abbreviation used

If different than identified above, make note of any message, symbol or abbreviation used.

Is telltale part of a common space? No

DATA INDICATES COMPLIANCE Yes

(Vehicle is compliant if equipped with a malfunction telltale)

Remarks:

RECORDED BY:	Joe Kelly	DATE RECORDED:	5/21/2010
APPROVED BY:	Brian Kebschull	DATE APPROVED:	5/28/2010

Data Sheet 4 (Page 1 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

Vehicle: 2010 Hyundai Santa Fe AWD MPV

NHTSA No. CAO	518	Data Sheet completion date: 5/28/2010				
"ESC OFF" Contr	ols Identific	ation and Operational Check:				
the ESC system of	or place the	a control or controls whose purpose is to deactivate ESC system in a mode or modes that may no ce requirements of the standard? <u>X</u> Yes <u>No</u>				
Type of contro controls provid (mark all that a Identify each con	ed? ipply)	X Dedicated "ESC Off" Control Multi-functional control with an "ESC Off" mode Other (describe) n, labeling and selectable modes.				
	Location	Left of the steering wheel, above the knee bolster				
First Control:		(Figure 5.7)				
	Labeling	Sliding car symbol with the word "OFF"				
	Modes	ESC is turned off when this button is pressed				
Second Control:	Location					
	Labeling					
	Modes					
Identify standard	or default c	Irive AWD (automatic)				
Verify standard o	r default dri	ve configuration X Yes No				
Does the "ESC Off" telltale illuminate upon activation of the dedicated ESC off control or selection of the "ESC Off" mode on the multi-function control?						
		X Yes No (Fail)				
		extinguish when the ignition is cycled from "on" nd then back again to the "On" ("Run") position?				
	X Yes No (Fail)					

If no, describe how the "Off" control functions

Data Sheet 4 (Page 2 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

If a multi-function control is provided, cycle through each mode setting on the control and record which modes illuminate the "ESC Off" telltale. Also, for those modes that illuminate the ESC Off" telltale identify if the telltale extinguishes upon cycling the ignition system.

Control Mode	"ESC Off" telltale illuminates upon activation of control? (Yes/No)	"ESC Off" telltale extinguishes upon cycling ignition? (Yes/No)
NA		

For each mode that illuminates the "ESC Off" telltale, did the telltale extinguish when the ignition was cycled from "On" ("Run") to "Lock" or "Off" and then back again to the "On" ("Run") position? X NA Yes No

Other System Controls that have an ancillary effect on ESC Operation:

Is the vehicle equipped with any ancillary controls that upon activation may deactivate the ESC system or place the ESC system in a mode or modes that may no longer satisfy the performance requirements of the standard? X Yes No

Ancillary Control:	System AWD Lock
	Control Description Push button to lock front and rear axles
	Labeling <u>Symbol of four tires, axles, driveshaft and the word</u> "Lock" (see figure 5.7)
Ancillary Control:	System
	Control Description
	Labeling

Remarks:

Data Sheet 4 (Page 3 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

Activate each control listed above and record whether the control illuminates the "ESC Off" telltale. Also, record warnings or messages provided regarding the ESC system.

	Control	
	Activates "ESC Off"	
Ancillary Control	Telltale? (Yes/No)	Warnings or Messages Provided
AWD Lock	No	None

For those controls that illuminate the "ESC Off" telltale above identify if the "ESC Off" telltale extinguishes upon cycling the ignition system.

	"ESC Off" telltale extinguishes				
Ancillary Control	upon cycling ignition? (Yes/No)				
NA					

For each ancillary control that illuminates the "ESC Off" telltale, did the telltale extinguish when the ignition is cycled from "On" ("Run") to "Lock" or "Off" and then back again to the "On" ("Run") position? If activating the control places the vehicle into a low-range four-wheel drive configuration designed for low-speed, off-road driving, the ESC system may remain turned off after the ignition has been cycled off and then back on and therefore the "ESC Off" telltale may not extinguish.

		Yes	No (Fa	il) X	NA
	DATA I	NDICATES COMPLI	ANCE:	PAS	S
ר פע	Rrian Kehschull		D· 5/28	/2010	

RECORDED BY:	Brian Kebschull	DATE RECORDED:	5/28/2010
APPROVED BY:	J Lenkeit	DATE APPROVED:	6/14/2010

Data Sheet 5 (Page 1 of 3) TEST TRACK AND VEHICLE DATA

Vehicle: 2010 Hyundai Santa Fe AWD MPV
NHTSA No.CA0518Data Sheet completion date:5/28/2010
Test Track Requirements:Test surface slope (0-1%):0.5%Peak Friction Coefficient (at least 0.9)0.941Test track data meets requirements:YesIf no, explain:
Full Fluid Levels: Fuel Yes Other Fluids Yes (specify) Coolant Yes Oil, brake fluid, washer fluid
Tire Pressures:
Required; Front Axle <u>230</u> KPA Rear Axle <u>230</u> KPA
Actual; LF <u>230</u> KPA RF <u>230</u> KPA
LR <u>230</u> KPA RR <u>230</u> KPA
Vehicle Dimensions:Front Track Width161.5cmWheelbase270.0cmRear Track Width162.1cm
Vehicle Weight Ratings: GAWR Front <u>1350.0</u> KG GAWR Rear <u>1450.0</u> KG
Unloaded Vehicle Weight (UVW):
Front Axle <u>1051.9</u> KG Left Front <u>533.9</u> KG Right Front <u>518.0</u> KG Rear Axle <u>762.4</u> KG Left Rear <u>377.8</u> KG Right Rear <u>384.6</u> KG Total UVW <u>1814.3</u> KG
Baseline Weight and Outrigger Selection (only for MPVs, Trucks, Buses)
Calculated baseline weight (UVW + 73kg)1887.3 KG
Outrigger size required ("Standard" or "Heavy")StandardStandard - Baseline weight under 2772 kg (6000 lb)Heavy - Baseline weight equal to or greater than 2772 kg (6000 lb)

Data Sheet 5 (Page 2 of 3) TEST TRACK AND VEHICLE DATA

UVW with Outriggers: (only for MPVs, Trucks, Buses)

Front axle	1088.2	KG	Left front	548.4	KG	Right front	539.8	KG
Rear axle	802.4	KG	Left rear	401.9	KG	Right rear	400.5	KG
			Total UVW w	vith outr	iggers	1890.6	KG	

Loaded Vehicle Weight w/Driver and Instrumentation (no Ballast)

Front axle	1159.8	KG	Left front	598.7	KG	Right front	561.1	KG
Rear axle	875.5	KG	Left rear	445.0	KG	Right rear	430.5	KG
			V	ehicle We	eight	2035.3	KG	

Ballast Required =	[Total U ^v Outriggers (i	+ <u>168</u>	KG	- [Loadeo w/Driv Instrume	er and	
=	<u>1890.6</u> KG		+ <u>168</u>	KG	- 2035.3	KG
		=	<u>23.3</u>	KG		

Total Loaded Vehicle Weight w/Driver and Instrumentation and Ballast

Front axle	1169.8	KG	Left front	599.2	KG	Right front	570.6	KG
Rear axle	889.5	KG	Left rear	447.7	KG	Right rear	441.8	KG
				Total l	JVW _	2059.3	KG	

Data Sheet 5 (Page 3 of 3) TEST TRACK AND VEHICLE DATA

Center of Gravity and Inertial Sensing System Location at Loaded Vehicle Condition:

x-distance (longitudinal)	Point of reference is the front axle centerline. (Positive from front axle toward rear of vehicle.)		
y-distance (lateral)	Point of reference is the vehicle centerline. (Positive from the center toward the right.)		
z-distance (vertical)	Point of reference is the ground plane. (Positive from the ground up.)		

Locations:

	Center of	of Gravity	Inert	ial Sensing System
x-distance	<u>45.9</u> in	<i>116.6</i> cm	67.	<u>6</u> in <u>171.6</u> cm
y-distance	<i>-0.5</i> in	<i>-1.4</i> cm	-0.	<u>5</u> in <u>-1.3</u> cm
z-distance	25.6_ in	<i>65.0</i> cm	23.	<u>4</u> in <u>59.3</u> cm
		Roof Height	67.3 in	<u>171.0</u> cm
Distance between ultrasonic sensors 88.0 i				<u>223.5</u> cm

Remarks:

RECORDED BY:	B Kebschull	DATE RECORDED:	5/28/2010
APPROVED BY:	J Lenkeit	DATE APPROVED:	6/14/2010

Data Sheet 6 (Page 1 of 6) BRAKE AND TIRE CONDITIONING

Vehicle: <u>2010 Hyundai Santa Fe_MPV AWD (Unlocked)</u>								
NHTSA No. <u><i>CA0518</i></u>								
Measured tire pressure:	LF	<u>236</u>	KPA	RF	<u>237</u>	KPA		
	LR	<u>234</u>	KPA	RR	<u>234</u>	KPA		
			mph) max f ph) max for	•	-			
Anabiant Tanananatura (700 (45)								
Ambient Temperature (7°C (45)	°F)-	40°C (104°F))		<u>17</u>	°C		
Brake Conditioning Time:	<u>8:0</u>	2:00 A	M	Da	te: <u>5/2</u>	28/201	<u>10</u>	
56 km/h (35 mph)	Brake	e Stops						
Number of s	stops	execu	ted (10 requ	ired)		<u>10</u>	Stops	
Observed decele	ratior	n rate ra	ange (.5g ta	rget)	<u>0.45</u>	-0.55	g	
72 km/h (45 mph)	Brake	e Stops						
Number of stops executed (3 required) <u>3</u> Stops						Stops		
Number of stops ABS activated (3 required) <u>3</u> Stops						Stops		
Observed deceleration rate range <u>0.9-1.0</u> g						g		
72 km/h (45 mph) Brake Cool Down Period								
Duration of cool down period (5 minutes min.) <u>5</u>							Minutes	

Data Sheet 6 (Page 2 of 6) BRAKE AND TIRE CONDITIONING

Tire Conditioning series No. 1	Time:	<u>8:18:00 AM</u>		D	Date: <u>5/28</u>		<u>3/2010</u>
Measured cold tire pressure	LF	<u>244</u>	КРА	RF	24.	<u>3</u>	КРА
	LR	<u>238</u>	КРА	RR	23	39	КРА
Wind Speed <u>2.1</u> m/s	(10 m/sec (22 mph) max for passenger cars;						
	5m/sec (11 mph) max for MPVs and trucks)						

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 17.1°C

30 meter (100 ft) Diameter Circle Maneuver					
Test Run	Steering	Target Lateral	Observed Lateral	Observed Vehicle	
Test Null	Direction	Acceleration (g)	Acceleration (g)	Speed (Km/h)	
1-3	Clockwise	0.5 - 0.6	<u>0.5-0.6</u>	<u> 31.2 - 32.8</u>	
4-6	Counterclockwise	0.5 – 0.6	<u>0.5-0.6</u>	<u>32 - 33.6</u>	

	5-1 Hz Cycle Sinusoidal Steering Maneuver to Determine Steering Wheel Angle for 0.5-0.6 g Lateral Acceleration							
Test Run	Data File	Vehicle Speed Km/h(mph)	Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)			
1	2	56 ± 2 (35 ± 1)	<u>60</u>	0.5 - 0.6	<u>0.41</u>			
2	3	56 ± 2 (35 ± 1)	<u>80</u>	0.5 - 0.6	<u>0.53</u>			
3		56 ± 2 (35 ± 1)		0.5 - 0.6				
4		56 ± 2 (35 ± 1)		0.5 - 0.6				

Steering wheel angle that corresponds to a peak 0.5-0.6 g lateral acceleration: 80____ degrees

	10-1 Hz Cycle Sinusoidal Steering Maneuver							
Test Run	Data File	Vehicle Speed Km/h (mph)	Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)			
1-3	<u>4-6</u>	$56 \pm 2 (35 \pm 1)$	<u>80 (</u> cycles 1-10)	0.5 - 0.6	<u>0.53</u>			
4	7 50 50 (05 5 4)	<u>80</u> (cycles 1-9)	0.5 - 0.6	<u>0.53</u>				
4 /	56 ± 2 (35 ± 1)	<u>160 (</u> cycle10) *	NA	<u>0.76</u>				

* The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9

Data Sheet 6 (Page 3 of 6) BRAKE AND TIRE CONDITIONING

Tire Conditioning series No. 2	Time: <u>9:49:00 AM</u> Date: <u>5/28/2010</u>				
Measured cold tire pressure	LF <u>247</u> KPA RF <u>236</u> KPA				
	LR <u>237</u> KPA RR <u>232</u> KPA				
Wind Speed <u>3.4</u> m/s	(10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)				

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 18.7 °C

30 meter (100 ft) Diameter Circle Maneuver						
Test Run	Steering Direction	Target Lateral Acceleration (g)	Observed Lateral Acceleration (g)	Observed Vehicle Speed (Km/h)		
1-3	Clockwise	0.5 - 0.6	<u>0.5-0.6</u>	<u>31.2 - 32.8</u>		
4-6	Counterclockwise	0.5 - 0.6	<u>0.5-0.6</u>	<u>31.2 - 32.8</u>		

Steering wheel angle that corresponds to a peak 0.5-0.6 g lateral acceleration:

80 degrees

	10-1 Hz Cycle Sinusoidal Steering Maneuver							
Test Run	Data File	Vehicle Speed Km/h (mph)	Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)			
1-3	<u>16-18</u>	56 ± 2 (35 ± 1)	<u>80</u> (cycles 1-10)	0.5 - 0.6	<u>0.53</u>			
4	10		<u>80</u> (cycles 1-9)	0.5 - 0.6	<u>0.53</u>			
4 <u>19</u> 56 ± 2	56 ± 2 (35 ± 1)	<u>160</u> (cycle 10)*	NA	<u>0.76</u>				

* The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9

Remarks:

RECORDED BY:	Brian Kebschull	DATE RECORDED:	5/28/2010
APPROVED BY:	J Lenkeit	DATE APPROVED:	6/14/2010

Data Sheet 6 (Page 4 of 6) BRAKE AND TIRE CONDITIONING

Vehicle: <i>2010 Hyundai Santa Fe MPV_AWD (Locked)</i> NHTSA No. <u>CA0518</u>							
Measured tire pressure:	LF	<u>237</u>	КРА	RF	<u>242</u>	KPA	
	LR	<u>234</u>	KPA	RR	<u>238</u>	KPA	
Wind Speed <u>4.1</u> m/s (10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)							
Ambient Temperature (7°C (45)	°F) -	40°C (104°F))		<u>18.2</u>	°C	
Brake Conditioning Time:	<u>1:1</u>	0:00 P	<u>2M</u>	Da	te: <u>5/2</u>	28/201	<u>10</u>
56 km/h (35 mph)	Brake	e Stops					
Number of s	stops	execu	ted (10 requ	ired)		<u>10</u>	Stops
Observed decele	ratior	n rate ra	ange (.5g ta	rget)	<u>.45</u>	- <i>.55</i>	g
72 km/h (45 mph)	Brake	e Stops					
Number of	stop	os exec	uted (3 requ	ired)		<u>3</u>	Stops
Number of stops ABS activated (3 required) <u>3</u> Stops						Stops	
Observed deceleration rate range <u>.9-1</u> g						g	
72 km/h (45 mph) Brake Cool Down Period							
Duration of cool down period (5 minutes min.) <u>5</u> M						Minutes	

Data Sheet 6 (Page 5 of 6) BRAKE AND TIRE CONDITIONING

Tire Conditioning series No. 1	Time:	<u>1:45:00 PM</u>		D	Date: <u>5/28</u>		<u>3/2010</u>
Measured cold tire pressure	LF	<u>253</u>	КРА	RF <u>251</u> KP		КРА	
	LR	<u>248</u>	КРА	RR	24	17	КРА
Wind Speed <u>2.4</u> m/s	(10 m/sec (22 mph) max for passenger cars;						
	5m/sec (11 mph) max for MPVs and trucks)						

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 18.5°C

30 meter (100 ft) Diameter Circle Maneuver						
Test Run	Steering Direction	Target Lateral Acceleration (g)	Observed Lateral Acceleration (g)	Observed Vehicle Speed (Km/h)		
1-3	Clockwise	0.5 – 0.6	<u>.56</u>	<u> 30.4 - 32</u>		
4-6	Counterclockwise	0.5 – 0.6	<u>.56</u>	<u> 30.4 - 32</u>		

	5-1 Hz Cycle Sinusoidal Steering Maneuver to Determine Steering Wheel Angle for 0.5-0.6 g Lateral Acceleration							
Test Run	Data File	Vehicle Speed Km/h(mph)	Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)			
1	2	56 ± 2 (35 ± 1)	<u>60</u>	0.5 - 0.6	<u>0.37</u>			
2	3	56 ± 2 (35 ± 1)	<u>90</u>	0.5 - 0.6	<u>0.53</u>			
3		56 ± 2 (35 ± 1)		0.5 - 0.6				
4		56 ± 2 (35 ± 1)		0.5 - 0.6				

Steering wheel angle that corresponds to a peak 0.5-0.6 g lateral acceleration: 90___ degrees

	10-1 Hz Cycle Sinusoidal Steering Maneuver							
Test Run	Data File	Vehicle Speed Km/h (mph)	Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)			
1-3	<u>4-6</u>	$56 \pm 2 (35 \pm 1)$	<u>90 (</u> cycles 1-10)	0.5 - 0.6	<u>0.53</u>			
4		<u>90</u> (cycles 1-9)	0.5 - 0.6	<u>0.53</u>				
4 <u>/</u>	<u>7</u> 56 ± 2 (35 ± 1)		<u>180 (</u> cycle10) *	NA	<u>0.74</u>			

* The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9

Data Sheet 6 (Page 6 of 6) BRAKE AND TIRE CONDITIONING

Tire Conditioning series No. 2	Time: <u>2:25:00 PM</u> Date: <u>5/28/2010</u>					
Measured cold tire pressure	LF <u>253</u> KPA RF <u>252</u> KPA					
	LR <u>248</u> KPA RR <u>247</u> KPA					
Wind Speed <u>4.3</u> m/s	(10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)					

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 22.5 °C

30 meter (100 ft) Diameter Circle Maneuver						
Test Run	Steering Direction	Target Lateral Acceleration (g)	Observed Lateral Acceleration (g)	Observed Vehicle Speed (Km/h)		
1-3	Clockwise	0.5 - 0.6	<u>.56</u>	<u> 30.4 - 32</u>		
4-6	Counterclockwise	0.5 - 0.6	<u>.56</u>	<u> 30.4 - 32</u>		

Steering wheel angle that corresponds to a peak 0.5-0.6 g lateral acceleration:

<u>90</u> degrees

	10-1 Hz Cycle Sinusoidal Steering Maneuver							
Test Run	Data File	Vehicle Speed Km/h (mph)	Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)			
1-3	<u>16-18</u>	56 ± 2 (35 ± 1)	<u>90_</u> (cycles 1-10)	0.5 - 0.6	<u>0.53</u>			
4		<u>90_</u> (cycles 1-9)	0.5 - 0.6	<u>0.53</u>				
4 <u>19</u> 5	56 ± 2 (35 ± 1)	<u>180</u> (cycle 10)*	NA	<u>0.74</u>				

* The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9

Remarks:____

RECORDED BY:	B Kebschull	DATE RECORDED:	5/28/2010
APPROVED BY:	J Lenkeit	DATE APPROVED:	6/14/2010

Data Sheet 7 (Page 1 of 4) SLOWLY INCREASING STEER (SIS) MANEUVER

Vehicle: 2010 Hyundai Santa Fe MPV AWD (Unlocked)

NHTSA No. *CA0518*

Measured tire pressure:	LF	246	КРА	RF	244	KPA
	LR	<u>241</u>	KPA	RR	<u>240</u>	KPA

Wind Speed <u>1.8</u> m/s

(10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 16.1 °C

Selected drive configuration <u>AWD (Unlocked)</u>

Selected Mode: <u>Standard-ESC on</u>

Preliminary Left Steer Maneuver:

Lateral Acceleration measured at 30 degrees steering wheel angle

 $a_{y,30 degrees} = 0.35$ g

Assuming a linear relationship the following ratio should be used to calculate the steering wheel angle at 0.55g:

30 degrees	δ_{SIS}	$\delta_{sis} =$	47.	<u>1</u> degrees (@.55g)
a _{y,30 degrees}	$0.55\mathrm{g}$	$\delta_{sis} =$	50	_degrees (rounded)

Steering Wheel Angle at Corrected 0.3g Lateral Acceleration:

		Time Clock	Steering Wheel Angle		
	Initial Steer	(5 min max	to nearest	Data	
Maneuver	Direction	between runs)	0.1° (degrees)	Run	Good/NG
1	Left	<u>9:02:09 AM</u>	<u>-28.5</u>	<u>10</u>	<u>Good</u>
2	Left	<u>9:06:11 AM</u>	<u>-28.7</u>	<u>11</u>	<u>Good</u>
3	Left	<u>9:10:00 AM</u>	<u>-28.2</u>	<u>12</u>	<u>Good</u>
4	Left				
5	Left				
1	Right	<u>9:13:41 AM</u>	<u>28.7</u>	<u>13</u>	<u>Good</u>
2	Right	<u>9:17:37 AM</u>	<u>28.1</u>	<u>14</u>	<u>Good</u>
3	Right	<u>9:21:01 AM</u>	<u>28.8</u>	<u>15</u>	<u>Good</u>
4	Right				
5	Right				

Data Sheet 7 (Page 2 of 4) SLOWLY INCREASING STEER (SIS) MANEUVER

Average Overall Steering Wheel Angle:

 $\delta_{0.3 g, overall} = \left(\left| \delta_{0.3 g, left (1)} \right| + \left| \delta_{0.3 g, left (2)} \right| + \left| \delta_{0.3 g, left (3)} \right| + \delta_{0.3 g, right (1)} + \delta_{0.3 g, right (2)} + \delta_{0.3 g, right (3)} \right) / 6$

 $\delta_{0.3 g, overall} = 28.5$ degrees

[to nearest 0.1 degree]

Remarks:

RECORDED BY:	Brian Kebschull	DATE RECORDED:	5/28/2010
APPROVED BY:	J Lenkeit	DATE APPROVED:	6/14/2010

Data Sheet 7 (Page 3 of 4) SLOWLY INCREASING STEER (SIS) MANEUVER

Vehicle: 2010 Hyundai Santa Fe MPV AWD (Locked)

NHTSA No. *CA0518*

Measured tire pressure:	LF	252	КРА	RF	<u>252</u>	КРА
	LR	249	КРА	RR	247	KPA

Wind Speed <u>3</u> m/s

(10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 20.9 °C

Selected drive configuration <u>AWD Lock</u>

Selected Mode: <u>Standard - ESC on</u>

Preliminary Left Steer Maneuver:

Lateral Acceleration measured at 30 degrees steering wheel angle

 $a_{y,30 degrees} = 0.34$ g

Assuming a linear relationship the following ratio should be used to calculate the steering wheel angle at 0.55g:

30 degrees	$\delta_{\scriptscriptstyle SIS}$	$\delta_{sis} =$	48.5	5_ degrees (@.55g)
a _{y,30 degrees}	$\overline{0.55\mathrm{g}}$	$\delta_{sis} =$	50	degrees (rounded)

Steering Wheel Angle at Corrected 0.3g Lateral Acceleration:

		Time Clock	Steering Wheel Angle		
	Initial Steer	(5 min max	to nearest	Data	
Maneuver	Direction	between runs)	0.1° (degrees)	Run	Good/NG
1	Left	<u>2:30:36 PM</u>	<u>-29.1</u>	<u>10</u>	<u>Good</u>
2	Left	<u>2:34:46 PM</u>	<u>-29.5</u>	<u>11</u>	<u>Good</u>
3	Left	<u>2:37:48 PM</u>	-29.4	<u>12</u>	Good
4	Left				
5	Left				
1	Right	<u>2:40:50 PM</u>	<u>28.9</u>	<u>13</u>	<u>Good</u>
2	Right	<u>2:43:51 PM</u>	<u>28.9</u>	<u>14</u>	<u>Good</u>
3	Right	<u>2:46:51 PM</u>	<u>28.6</u>	<u>15</u>	<u>Good</u>
4	Right				
5	Right				

Data Sheet 7 (Page 4 of 4) SLOWLY INCREASING STEER (SIS) MANEUVER

Average Overall Steering Wheel Angle:

 $\delta_{0.3 \ g, \ overall} = \left(\left| \delta_{0.3 \ g, \ left \ (1)} \right| + \left| \delta_{0.3 \ g, \ left \ (2)} \right| + \left| \delta_{0.3 \ g, \ left \ (3)} \right| + \delta_{0.3 \ g, \ right \ (1)} + \delta_{0.3 \ g, \ right \ (2)} + \delta_{0.3 \ g, \ right \ (3)} \right) / 6$

 $\delta_{0.3 g, overall} = 29.0$ degrees

[to nearest 0.1 degree]

Remarks:

RECORDED BY:	B Kebschull	DATE RECORDED:	5/28/2010
APPROVED BY:	J Lenkeit	DATE APPROVED:	6/14/2010

Data Sheet 8 (Page 1 of 6)

VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Vehicle: 2010 Hyundai Santa Fe MPV AWD (Unlocked) NHTSA No. CA0518 Data sheet completion date: 5/28/2010 Tire conditioning completed Yes No Х ESC system is enabled Х Yes No On track calibration checks have been completed Х Yes No On track static data file for each sensor obtained Х Yes No Selected Drive Configuration: AWD(Unlocked) Selected Mode: Default- ESC On Overall steering wheel angle ($\delta_{0.3 \text{ g}, \text{ overall}}$) 28.5 degrees

Lateral Stability Test Series No. 1 – Counterclockwise Initial Steer Direction

		Comm	anded		Yaw Rate	S	Y	′RR	```	/RR
	Clock	Steering	Wheel	(c	(degrees/sec)		at 1.0 sec after		at 1.75 sec after	
Maneuver	Time	Ang	le¹			C	OS	COS		
#							[<	35%]	[<	20%]
	(1.5 – 5.0 min max	Scalar	Angle	nic	nic	vic	%	Pass/Fail	%	Pass/Fail
	between	(* бо.з g)	(degrees)	$\dot{\psi}_{\it Peak}$	$\Psi_{1.0\text{sec}}$	$\psi_{1.75\text{sec}}$				
	runs)									
21	10:10	1.5	43	12.4	-0.2	-0.1	-1.2	Pass	-0.5	Pass
22	10:13	2.0	57	16.4	0.0	0.1	-0.1	Pass	0.3	Pass
23	10:16	2.5	71	19.8	0.0	0.0	0.0	Pass	-0.2	Pass
24	10:20	3.0	86	23.8	0.0	-0.1	0.0	Pass	-0.2	Pass
25	10:23	3.5	100	29.5	0.0	-0.1	0.0	Pass	-0.5	Pass
26	10:27	4.0	114	33.2	0.1	0.1	0.3	Pass	0.2	Pass
27	10:30	4.5	128	36.6	-0.1	-0.1	-0.3	Pass	-0.2	Pass
28	10:33	5.0	143	40.9	-0.2	0.0	-0.5	Pass	0.1	Pass
29	10:36	5.5	157	42.9	-0.1	0.0	-0.1	Pass	0.0	Pass
30	10:38	6.0	171	43.1	-0.2	-0.1	-0.4	Pass	-0.2	Pass
31	10:40	6.5	185	45.1	-0.2	0.0	-0.4	Pass	0.0	Pass
32	10:43	7.0	200	47.1	0.1	0.0	0.2	Pass	0.1	Pass
33	10:46	7.5	214	48.8	0.5	0.1	1.1	Pass	0.2	Pass
34	10:49	8.0	228	51.4	0.3	0.0	0.5	Pass	0.1	Pass
35	10:52	8.5	242	49.8	0.5	0.0	1.0	Pass	0.1	Pass
36	10:55	9.0	257	51.9	0.5	0.0	1.0	Pass	0.0	Pass
38*	11:05	-	270	53.4	1.6	-0.2	3.0	Pass	-0.4	Pass

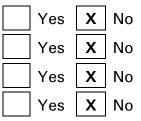
Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5 *δ_{0.3 g}, overall or 270 degrees is utilized, whichever is greater provided the calculated magnitude of 6.5 *δ_{0.3 g}, overall is less than or equal to 300 degrees. If 6.5 *δ_{0.3 g}, overall is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5 *δ_{0.3 g}, overall without exceeding the 270 degree steering wheel angle.

DATA SHEET 8 (2 of 6) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

LAT	LATERAL STABILITY TEST SERIES NO. 2 – Clockwise Initial Steer Direction										
		Comm	anded		Yaw Rate	S	YRR		Y	/RR	
	Clock	Steering	g Wheel	(degrees/sec)		at 1.0 sec after		at 1.75	at 1.75 sec after		
Maneuver	Time	Ang	gle¹				C	COS	(COS	
#							[<	35%]	[<	20%]	
	(1.5 – 5.0 min max between runs)	Scalar (* δ _{0.3 g})	Angle (degrees)	$\dot{\psi}_{\scriptscriptstyle Peak}$	$\dot{\psi}_{1.0 m sec}$	$\dot{\psi}_{ m 1.75sec}$	%	Pass/Fail	%	Pass/Fail	
39	11:10	1.5	43	-13.0	0.0	0.0	-0.2	Pass	0.2	Pass	
40	11:14	2.0	57	-17.3	-0.1	0.0	0.3	Pass	-0.2	Pass	
41	11:16	2.5	71	-21.2	0.0	0.1	-0.1	Pass	-0.5	Pass	
42	11:20	3.0	86	-25.8	0.1	-0.1	-0.4	Pass	0.4	Pass	
43	11:23	3.5	100	-30.0	0.0	-0.1	-0.1	Pass	0.2	Pass	
44	11:26	4.0	114	-31.1	0.0	0.0	0.0	Pass	-0.1	Pass	
45	11:29	4.5	128	-38.9	0.0	0.2	0.0	Pass	-0.5	Pass	
46	11:32	5.0	143	-37.7	0.2	0.1	-0.4	Pass	-0.3	Pass	
47	11:35	5.5	157	-41.8	0.2	0.3	-0.5	Pass	-0.8	Pass	
48	11:38	6.0	171	-43.6	0.1	0.1	-0.3	Pass	-0.1	Pass	
52*	11:57	6.5	185	-47.2	0.3	0.2	-0.7	Pass	-0.5	Pass	
53	12:00	7.0	200	-46.8	0.1	0.1	-0.2	Pass	-0.2	Pass	
54	12:05	7.5	214	-48.4	0.0	0.0	0.0	Pass	0.0	Pass	
55	12:08	8.0	228	-49.7	0.1	0.1	-0.2	Pass	-0.2	Pass	
56	12:11	8.5	242	-51.0	0.1	0.1	-0.1	Pass	-0.2	Pass	
57	12:14	9.0	257	-51.6	-0.1	-0.1	0.1	Pass	0.3	Pass	
58	12:18	-	270	-53.2	-0.3	-0.1	0.5	Pass	0.2	Pass	

 Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5*δ_{0.3 g}, overall or 270 degrees is utilized, whichever is greater provided the calculated 6.5*δ_{0.3 g}, overall is less than or equal to 300 degrees. If 6.5*δ_{0.3 g}, overall is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5*δ_{0.3 g}, overall without exceeding the 270 degree steering wheel angle.

During execution of the Sine with Dwell maneuvers were any of the following events observed?


Rim-to-pavement contact

Tire debeading

Loss of pavement contact of vehicle tires

Did the test driver experience any vehicle

loss of control or spinout?

If "Yes" explain the event and consult with the COTR.

DATA SHEET 8 (3 of 6) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

			Steering Wheel	Calculate		
			ngle	Displacement ¹		
Maneuver	Initial Steer		arall or greater)	·		
#	Direction	Scalar	Angle	Distance	Pass/Fail	
		*δо.з g	(degrees)	(m)		
28	Counter Clockwise	5.0	143	-3.0	Pass	
29	Counter Clockwise	5.5	157	-3.1	Pass	
30	Counter Clockwise	6.0	171	-3.2	Pass	
31	Counter Clockwise	6.5	185	-3.2	Pass	
32	Counter Clockwise	7.0	200	-3.3	Pass	
33	Counter Clockwise	7.5	214	-3.3	Pass	
34	Counter Clockwise	8.0	228	-3.3	Pass	
35	Counter Clockwise	8.5	242	-3.3	Pass	
36	Counter Clockwise	9.0	257	-3.3	Pass	
38	Counter Clockwise	-	270	-3.3	Pass	
46	Clockwise	5.0	143	2.8	Pass	
47	Clockwise	5.5	157	2.9	Pass	
48	Clockwise	6.0	171	3.1	Pass	
52	Clockwise	6.5	185	3.1	Pass	
53	Clockwise	7.0	200	3.1	Pass	
54	Clockwise	7.5	214	3.2	Pass	
55	Clockwise	8.0	228	3.2	Pass	
56	Clockwise	8.5	242	3.3	Pass	
57	Clockwise	9.0	257	3.2	Pass	
58	Clockwise	-	270	3.2	Pass	

1. Lateral displacement should be \geq 1.83 m (6 ft) for vehicle with a GVWR of 3,500 kg (7,716 lb) or less; and \geq 1.52 m (5 ft) for vehicles with GVWR greater than 3,500 kg (7,716 lb).

DATA INDICATES COMPLIANCE:

🗹 PASS 🛛 🗌 FAIL

Remarks: <u>*Run 37 was no good, Runs 49-51 were no good due to a speed trigger</u> problem

RECORDED BY:	B Kebschull	DATE RECORDED:	5/28/2010
APPROVED BY:	J Lenkeit	DATE APPROVED:	6/14/2010

Data Sheet 8 (Page 4 of 6)

VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Vehicle: 2010 Hyundai Sana	a Fe MPV AWD (Locked)	Vehicle: 2010 Hyundai Santa Fe MPV AWD (Locked)								
NHTSA No. <u><i>CA0518</i></u>	letion date: <u>5/28/2010</u>									
Tire conditioning comp	eted	X Yes No								
ESC system is enabled		X Yes No								
On track calibration ch	ecks have been completed	X Yes No								
On track static data file	e for each sensor obtained	X Yes No								
Selected Drive Configu	ration: <u>AWD-Locked</u>									
Selected Mode: Sta	ndard -ESC on									
Overall steering wheel	angle (δο.3 g, overall) 29.0	degrees								

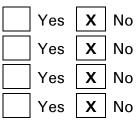
Lateral Stability Test Series No. 1 – Counterclockwise Initial Steer Direction

		Comm			Yaw Rate		Ŷ	′RR	YRR	
	Clock	Steering	Wheel	(c	degrees/se	ec)	at 1.0 sec after		at 1.75 sec after	
Maneuver	Time	Ang	le¹				C	OS	COS	
#							[<	35%]	[<	20%]
	(1.5 – 5.0 min max	Scalar	Angle	nic.	nic	nic	%	Pass/Fail	%	Pass/Fail
	between	(* бо.з g)	(degrees)	$\dot{\psi}_{\scriptscriptstyle Peak}$	$\Psi_{1.0\text{sec}}$	$\Psi_{1.75 m sec}$				
	runs)									
22	15:05	1.5	44	13.11	0.03	0.11	0.25	Pass	0.87	Pass
23	15:10	2.0	58	17.18	0.16	0.12	0.92	Pass	0.69	Pass
24	15:13	2.5	73	20.69	0.12	0.11	0.56	Pass	0.54	Pass
25	15:17	3.5	87	30.81	0.00	-0.12	0.00	Pass	-0.37	Pass
26	15:19	3.0	102	25.21	0.07	0.12	0.26	Pass	0.49	Pass
27	15:22	4.0	116	32.49	-0.04	0.12	-0.12	Pass	0.36	Pass
28	15:25	4.5	131	38.33	0.15	0.07	0.38	Pass	0.18	Pass
29	15:28	5.0	145	42.00	0.46	0.05	1.09	Pass	0.13	Pass
30	15:30	5.5	160	43.73	0.24	0.10	0.55	Pass	0.22	Pass
31	15:33	6.0	174	46.69	0.28	-0.05	0.61	Pass	-0.11	Pass
33*	15:52	6.5	189	47.50	0.64	0.15	1.35	Pass	0.32	Pass
34	15:56	7.0	203	47.86	0.30	-0.02	0.63	Pass	-0.03	Pass
35	15:57	7.5	218	49.65	0.51	0.03	1.03	Pass	0.05	Pass
36	16:01	8.0	232	52.29	0.48	0.08	0.92	Pass	0.15	Pass
37	16:04	8.5	247	52.76	1.43	-0.04	2.71	Pass	-0.08	Pass
38	16:05	9.0	261	54.08	2.32	0.18	4.29	Pass	0.33	Pass
39	16:08	9.3	270	55.23	0.78	0.18	1.41	Pass	0.33	Pass

Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5 *δ_{0.3 g}, overall or 270 degrees is utilized, whichever is greater provided the calculated magnitude of 6.5 *δ_{0.3 g}, overall is less than or equal to 300 degrees. If 6.5 *δ_{0.3 g}, overall is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5 *δ_{0.3 g}, overall without exceeding the 270 degree steering wheel angle.

DATA SHEET 8 (5 of 6)					
VEHICLE LATERAL STABILITY AND RESPONSIVENESS					

LATERAL STABILITY TEST SERIES NO. 2 – Clockwise Initial Steer Direction										
		Commanded		Yaw Rates			YRR		YRR	
Clock Maneuver Time		Steering Wheel Angle ¹		(degrees/sec)			at 1.0 sec after COS		at 1.75 sec after COS	
	(1.5 – 5.0 min max between runs)	Scalar (* δ _{0.3 g})	Angle (degrees)	$\dot{\psi}_{\scriptscriptstyle Peak}$	$\dot{\psi}_{1.0 m sec}$	$\dot{\psi}_{1.75 m sec}$	%	Pass/Fail	%	Pass/Fail
40	16:10	1.5	44	-13.21	0.02	0.05	-0.14	Pass	-0.36	Pass
41	16:13	2.0	58	-17.73	0.01	0.04	-0.05	Pass	-0.24	Pass
42	16:15	2.5	73	-22.09	-0.11	0.02	0.48	Pass	-0.11	Pass
43	16:18	3.0	87	-26.39	-0.17	-0.29	0.63	Pass	1.12	Pass
44	16:21	3.5	102	-30.27	-0.02	-0.01	0.06	Pass	0.04	Pass
45	16:23	4.0	116	-32.29	0.13	0.02	-0.40	Pass	-0.06	Pass
46	16:26	4.5	131	-37.23	0.16	0.22	-0.42	Pass	-0.60	Pass
47	16:29	5.0	145	-41.24	0.12	0.10	-0.29	Pass	-0.25	Pass
48	16:32	5.5	160	-43.21	0.14	0.12	-0.32	Pass	-0.28	Pass
49	16:35	6.0	174	-46.04	0.03	-0.07	-0.07	Pass	0.15	Pass
50	16:37	6.5	189	-47.95	0.34	0.14	-0.70	Pass	-0.30	Pass
51	16:40	7.0	203	-50.43	0.13	0.11	-0.26	Pass	-0.21	Pass
52	16:43	7.5	218	-49.37	0.21	0.19	-0.43	Pass	-0.39	Pass
53	16:46	8.0	232	-53.30	0.03	0.04	-0.05	Pass	-0.08	Pass
54	16:50	8.5	247	-54.91	-0.27	-0.11	0.50	Pass	0.20	Pass
55	16:52	9.0	261	-53.75	0.13	0.12	-0.25	Pass	-0.21	Pass
56	16:55	9.3	270	-55.75	-0.06	0.03	0.11	Pass	-0.05	Pass


 Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5*δ_{0.3 g}, overall or 270 degrees is utilized, whichever is greater provided the calculated 6.5*δ_{0.3 g}, overall is less than or equal to 300 degrees. If 6.5*δ_{0.3 g}, overall is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5*δ_{0.3 g}, overall without exceeding the 270 degree steering wheel angle.

During execution of the Sine with Dwell maneuvers were any of the following events observed?

- Rim-to-pavement contact
- Tire debeading

Loss of pavement contact of vehicle tires

Did the test driver experience any vehicle loss of control or spinout?

If "Yes" explain the event and consult with the COTR.

DATA SHEET 8 (6 of 6) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Responsiveness – Lateral Displacement								
Maneuver	Initial Steer	Aı	Steering Wheel ngle mail or greater)	Calculated Lateral Displacement ¹				
#	Direction	Scalar *δ₀.₃ ց	Angle (degrees)	Distance (m)	Pass/Fail			
29	Counter Clockwise	5.0	145	-3.0	Pass			
30	Counter Clockwise	5.5	160	-3.1	Pass			
31	Counter Clockwise	6.0	174	-3.2	Pass			
33	Counter Clockwise	6.5	189	-3.3	Pass			
34	Counter Clockwise	7.0	203	-3.3	Pass			
35	Counter Clockwise	7.5	218	-3.3	Pass			
36	Counter Clockwise	8.0	232	-3.3	Pass			
37	Counter Clockwise	8.5	247	-3.3	Pass			
38	Counter Clockwise	9.0	261	-3.5	Pass			
39	Counter Clockwise	9.3	270	-3.4	Pass			
47	Clockwise	5.0	145	2.9	Pass			
48	Clockwise	5.5	160	3.0	Pass			
49	Clockwise	6.0	174	3.1	Pass			
50	Clockwise	6.5	189	3.1	Pass			
51	Clockwise	7.0	203	3.1	Pass			
52	Clockwise	7.5	218	3.2	Pass			
53	Clockwise	8.0	232	3.2	Pass			
54	Clockwise	8.5	247	3.2	Pass			
55	Clockwise	9.0	261	3.2	Pass			
56	Clockwise	9.3	270	3.2	Pass			

1. Lateral displacement should be \geq 1.83 m (6 ft) for vehicle with a GVWR of 3,500 kg (7,716 lb) or less; and \geq 1.52 m (5 ft) for vehicles with GVWR greater than 3,500 kg (7,716 lb).

DATA INDICATES COMPLIANCE:

🗹 PASS 🛛 🗌 FAIL

Remarks: *Run 32 no good, equipment malfunction

RECORDED BY:	B Kebschull	DATE RECORDED:	5/28/2010
APPROVED BY:	J Lenkeit	DATE APPROVED:	6/14/2010

3.0 TEST DATA (CONTD)

Data Sheet 9 (Page 1 of 2) MALFUNCTION WARNING TESTS

Vehicle: 2010 Hyundai Santa Fe AWD MPV

NHTSA No. *CA0518*

Data Sheet Completion Date: 5/28/2010

TEST 1

MALFUNCTION SIMULATION: Describe method of malfunction simulation

Disconnected LF wheel speed sensor

MALFUNCTION TELLTALE ILLUMINATION:

Telltale illuminates and remains illuminated after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

X Yes

X Pass

No

Fail

Time for telltale to illuminate after ignition system is activated and vehicle speed of 48 ± 8 km/h (30 ± 5 mph) is reached.

O Seconds (must be within 2 minutes)

ESC SYSTEM RESTORATION

Telltale extinguishes after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

Χ	Yes		No
---	-----	--	----

Time for telltale to extinguish after ignition system is activated and vehicle speed of 48 \pm 8 km/h (30 \pm 5mph) is reached.

O Seconds (must be within 2 minutes)

TEST 1 DATA INDICATES COMPLIANCE: PASS

Remarks: <u>After malfunction was caused, malfunction telltale illuminated immediately</u> upon ignition. Also, the ABS telltale illuminated (steadily) and the AWD malfunction telltale flashed on and off continuously. After the system was restored, all telltales extinguished immediately upon vehicle ignition. No driving was required

RECORDED BY:Brian KebschullDATE RECORDED:5/28/2010APPROVED BY:J LenkeitDATE APPROVED 6/14/2010

3.0 TEST DATA (CONTD)

Data Sheet 9 (Page 2 of 2) MALFUNCTION WARNING TESTS

Vehicle: 2010 Hyundai Santa Fe AWD MPV

NHTSA No*. CA0518*

Data Sheet Completion Date: 5/28/2010

TEST 2

MALFUNCTION SIMULATION: Describe method of malfunction simulation

Disconnected brake switch

MALFUNCTION TELLTALE ILLUMINATION:

Telltale illuminates and remains illuminated after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

X Yes

X Pass

No

Fail

Fail

Time for telltale to illuminate after ignition system is activated and vehicle speed of 48 ± 8 km/h (30 ± 5 mph) is reached.

0 Seconds (must be within 2 minutes)

ESC SYSTEM RESTORATION

Telltale extinguishes after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

Χ	Yes		No
---	-----	--	----

Pass

Time for telltale to extinguish after ignition system is activated and vehicle speed of 48 \pm 8 km/h (30 \pm 5mph) is reached.

0 Seconds (must be within 2 minutes)

TEST	2	DATA	INDICATES	COMPLIANCE:	PASS
------	---	------	-----------	-------------	------

Remarks: <u>After the malfunction was caused, the ESC malfunction telltale did</u> not illuminate immediately upon vehicle ignition. Rather, the brake pedal had to be depressed and released two times. The only telltale that illuminated was the <u>ESC malfunction telltale</u>. After the system was restored, the telltale extinguished immediately upon vehicle ignition. No driving was required

RECORDED BY: Brian Kebschull	DATE RECORDED: 5/28/2010
APPROVED BY: J Lenkeit	DATE APPROVED 6/14/2010

4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION (1 OF 2)

Туре	Output	Range	Resolution	Accuracy	Specifics	Serial Number	Calibration
Tire Pressure Gauge	Vehicle Tire Pressure	0-100 psi 0-690 kPa	1 psi 6.89 kPa	0.5 psi 3.45 kPa	Ashcroft D1005PS	1039350	By: DRI Date:2/25/10 Due: 2/25/11
Platform Scales	Vehicle Total, Wheel, and Axle Load	8000 lb 35.6 kN	0.5 lb 2.2 N	±1.0% of applied load	Intercomp Model SWII	24032361	By: American Scale Date: 2/25/10 Due: 2/25/11
Automated Steering Machine with Steering Angle Encoder	Handwheel Angle	±800 deg	0.25 deg	$\pm 0.25 \text{ deg}$	Heitz Automotive Testing Model: Sprint 3	60304	By: DRI Date: 2/25/10 Due: 2/25/11
Multi-Axis Inertial Sensing System	Longitudinal, Lateral, and Vertical Acceleration Roll, Yaw, and Pitch Rate	Accelerometer s: ±2 g Angular Rate Sensors: ±100 deg/s	Accelerometers: ≤10 ug Angular Rate Sensors: ≤0.004 deg/s	Acceleromete rs: ≤0.05% of full range Angular Rate Sensors: 0.05% of full range	BEI Technologies Model: MotionPAK MP-1	0767	By: Systron Donner Date:11/23/09 Due: 11/23/10
Radar Speed Sensor and Dashboard Display	Vehicle Speed	0-125 mph 0-200 km/h	0.009 mph .014 km/h	±0.25% of full scale	A-DAT Corp. Radar Model: DRS- 6 Display Model: RD- 2	1400.604	By: DRI Date:3/2/10 Due:3/2/11
Ultrasonic Distance	Left and Right Side	5-24 inches	0.01 inches	±0.25% of	Massa Products Corporation	DOT-NHTSA D2646	By: DRI Date:2/26/10 Due: 2/26/11
Measuring System	Vehicle Height	127-610 mm	.254 mm	distance	Model: M- 5000/220	DOT-NHTSA D3272	By: DRI Date:2/26/10 Due: 2/26/11

TABLE 1. TEST INSTRUMENTATION

4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION (2 OF 2)

Туре	Output	Range	Resolution	Accuracy	Specifics	Serial Number	Calibration
Data Acquisition System [Includes amplification, anti-	stem [Includes Longitudinal, and meet or meet or vertical vertical exceed 200 Hz exceed	Sufficient to meet or	SoMat eDaq ECPU processor	MSHLB.03- 2476	By: DRI Date:2/9/10 Due: 2/9/11		
aliasing, and analog to digital conversion.] Vertical exceed 200 Hz Accelerations; Roll, Yaw, and Pitch Rates; Steering Wheel Angle.	individual sensors	SoMat High level Board EHLS	MSHLS.03- 3182	By: DRI Date: 2/9/10 Due: 2/9/11			
Load Cell	Vehicle Brake Pedal Force	0-300 lb 0-1.33 kN	1 lb 4.44 N	±0.05% of full scale	Lebow 3663-300	767	Operationally verified by DRI prior to test
Coordinate Measurement Machine	Inertial Sensing System Coordinates	0-8 ft 0-2.4 m	±.0020 in. ±.051 mm	±.0020 in. ±.051 mm (Single point articulation accuracy)	Faro Arm Fusion	UO8-05-08- 06636	By: Faro Date: 8/18/09 Due: 8/18/10
Outriggers	No output. Safety Item.	NA	NA	NA	DRI manufactured Aluminum meeting the weight and MOI specifications of Docket 2007- 27662-11	NA	NA

TABLE 1. TEST INSTRUMENTATION (CONTD)

5.0 PHOTOGRAPHS (1 of 14)

Figure 5.1. Front View of Test Vehicle

5.0 PHOTOGRAPHS (2 of 14)

Figure 5.2. Rear View of Test Vehicle

5.0 PHOTOGRAPHS (3 of 14)

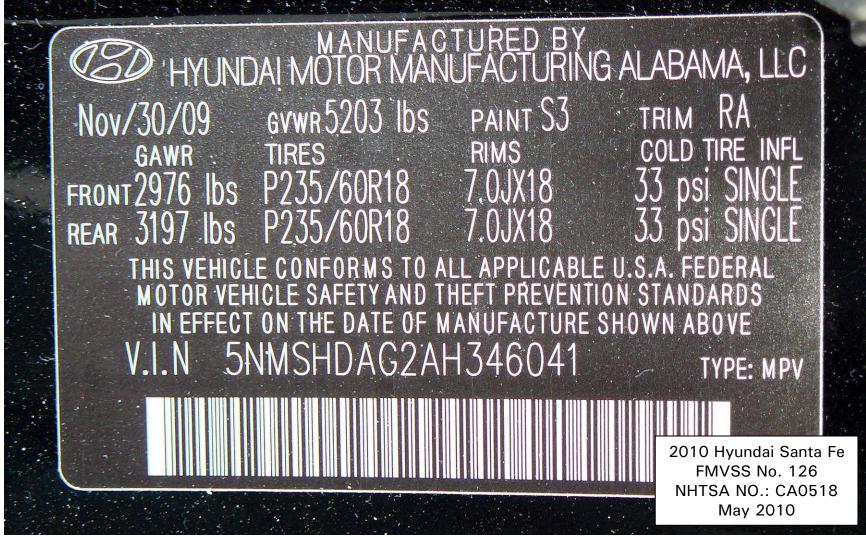


Figure 5.3. Vehicle Certification Label

5.0 PHOTOGRAPHS (4 of 14)

			DADING INFO		RGEMENT
	SEATING CA	PLACES	TOTAL 5 1 A	VANT 2 AI	REAR RRIÈRE 3
The combine Le poids total de	ed weight of occup is occupants et du	bants and carg	jo should never ne doit jamais di	epasser	g or ₉₃₀ lbs. Ig ou ⁹³⁰ lb.
TIRE	SIZE	COLD TIRI PRESS	E PRESSURE NON DES À FROID	SEE OV MANU/ ADDIT	AL FOR IONAL
FRONT	P235/60R18	230kPa, 33psi		And the second second	MATION E MANUEL
REAR	P235/60R18	230k	Pa, 33psi	DE L'	USAGER PLUS DE
ARRIÈRE	and the state of the			2010 Hyundai Sa	

Figure 5.4. Vehicle Placard

5.0 PHOTOGRAPHS (5 of 14)

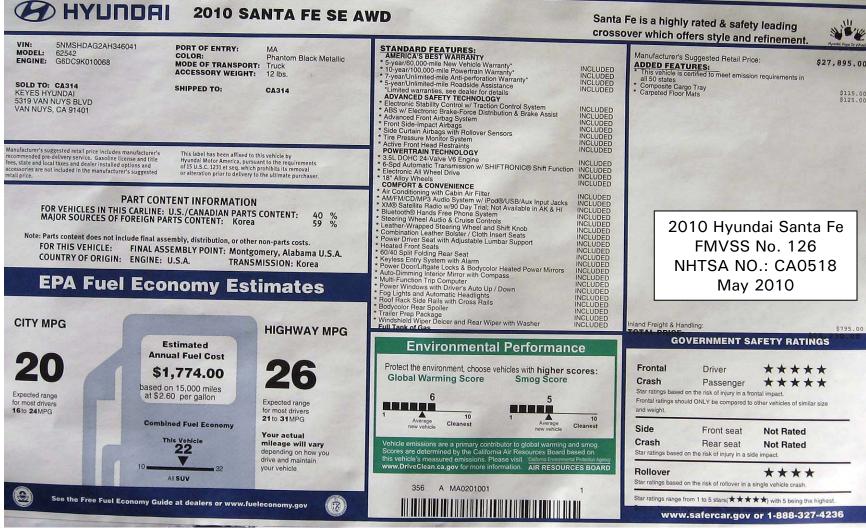


Figure 5.5. Window Sticker (Monroney Label)

5.0 PHOTOGRAPHS (6 of 14)

Figure 5.6. Telltale for ESC Malfunction and ESC Off

5.0 PHOTOGRAPHS (7 of 14)

Figure 5.7. ESC Off and AWD Lock Control Switches

5.0 PHOTOGRAPHS (8 of 14)

Figure 5.8. Front View of Vehicle As-Tested

5.0 PHOTOGRAPHS (9 of 14)

Figure 5.9. Rear View of Vehicle As-Tested

5.0 PHOTOGRAPHS (10 of 14)

Figure 5.10. Ultrasonic Height Sensor Mounted on Left Side of Vehicle for Determining Body Roll Angle

5.0 PHOTOGRAPHS (11 of 14)

Figure 5.11. Rear Outrigger, Mount and Speed Sensor

Figure 5.12. Steering Controller and Data Acquisition Computer

5.0 PHOTOGRAPHS (13 of 14)

Figure 5.13. Inertial Measurement Unit Mounted in Vehicle

5.0 PHOTOGRAPHS (14 of 14)

Figure 5.14. Brake Pedal Load Cell

6.0 DATA PLOTS (1 of 8)

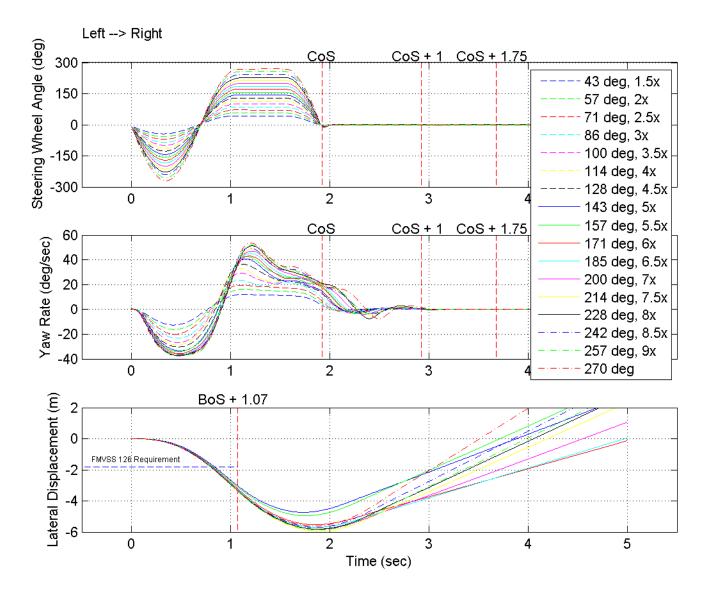


Figure 6.1. Steering Wheel Angle, Yaw Rate and Lateral Displacement for L-R Series (AWD Unlocked)

6.0 DATA PLOTS (2 of 8)

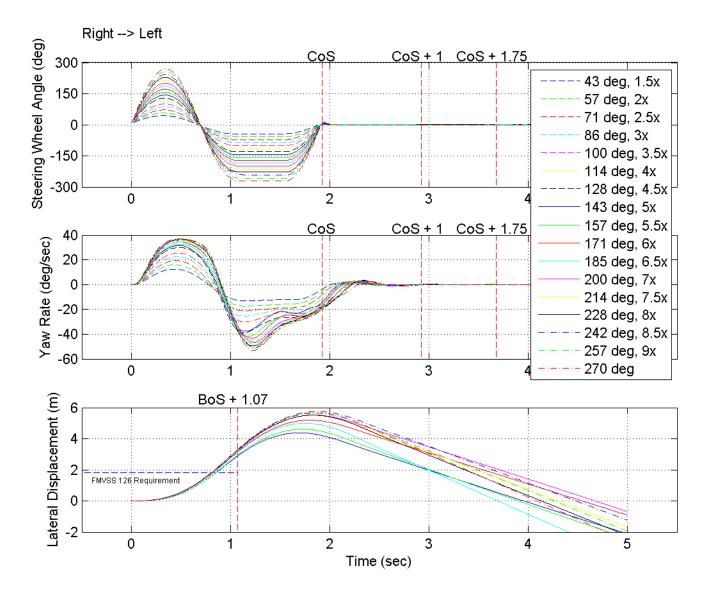


Figure 6.2. Steering Wheel Angle, Yaw Rate and Lateral Displacement for R-L Series (AWD Unlocked)

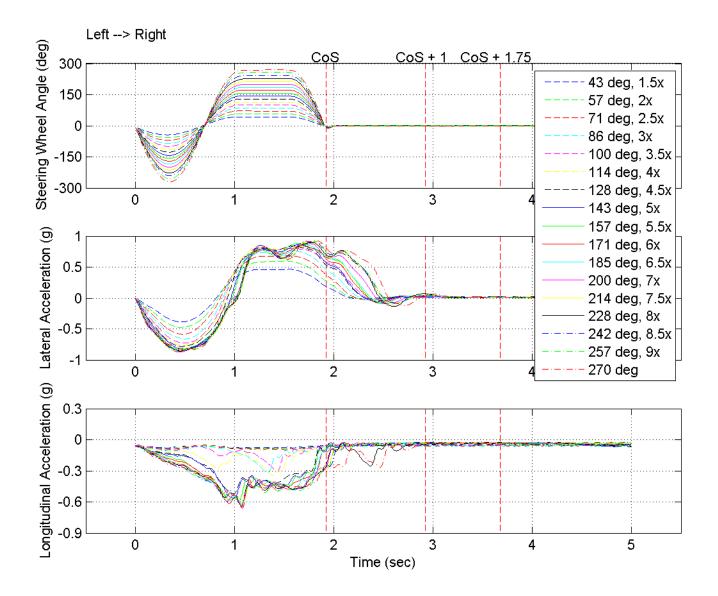


Figure 6.3. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for L-R Series (AWD Unlocked)

6.0 DATA PLOTS (4 of 8)

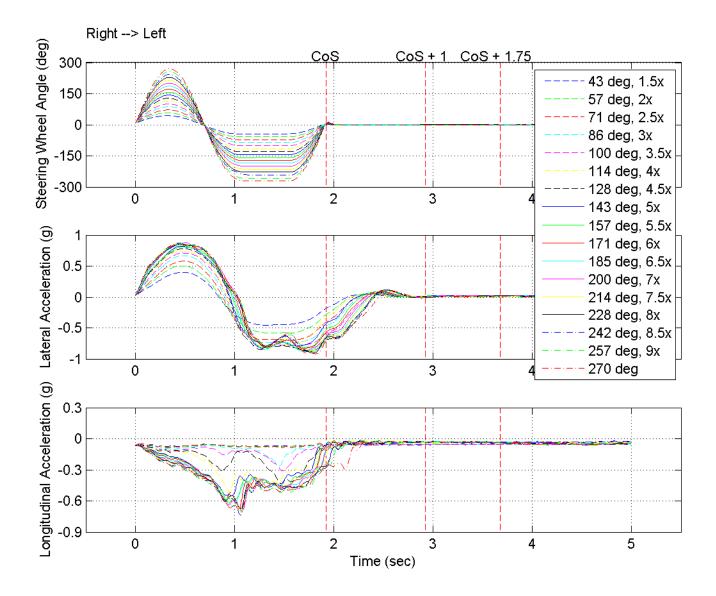


Figure 6.4. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for R-L Series (AWD Unlocked)

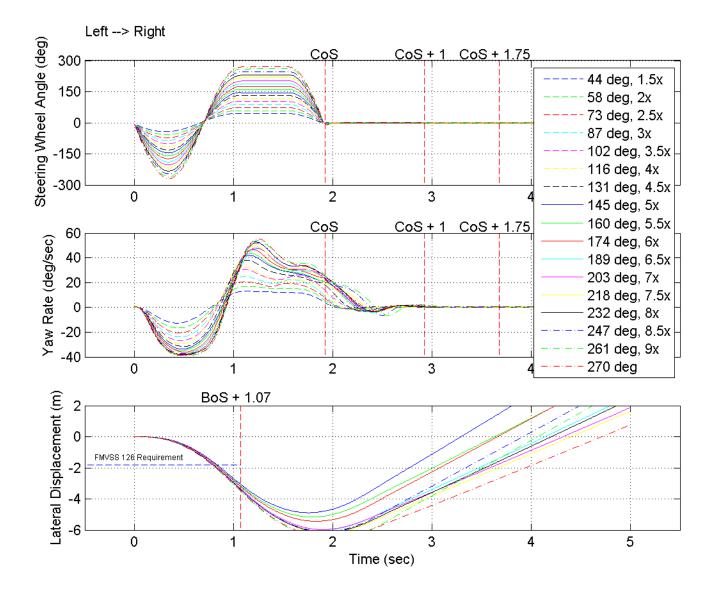


Figure 6.5. Steering Wheel Angle, Yaw Rate and Lateral Displacement for L-R Series (AWD Locked)

6.0 DATA PLOTS (6 of 48)

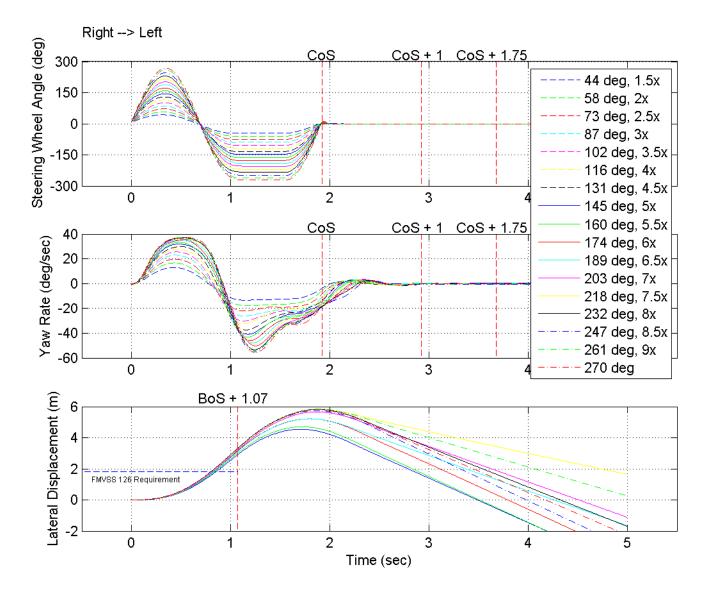


Figure 6.6. Steering Wheel Angle, Yaw Rate and Lateral Displacement for R-L Series (AWD Locked)

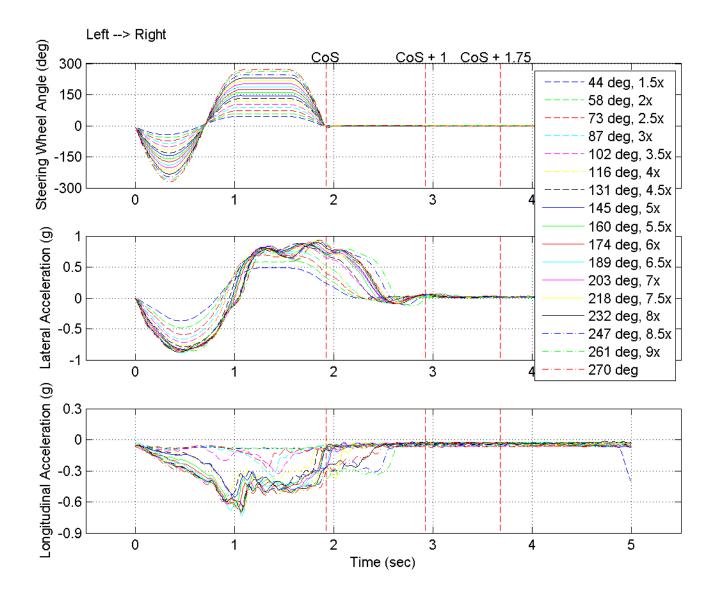


Figure 6.7. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for L-R Series (AWD Locked)

6.0 DATA PLOTS (8 of 8)

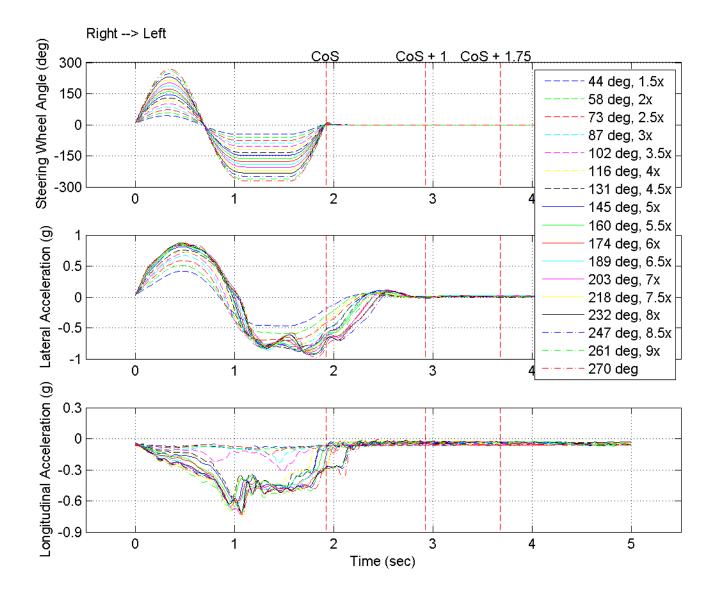


Figure 6.8. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for R-L Series (AWD Locked)

7.0 OTHER DOCUMENTATION

- 7.1 OWNER'S MANUAL PAGES
- 7.2 VEHICLE ARRIVAL CONDITION REPORT
- 7.3 VEHICLE COMPLETION CONDITION REPORT
- 7.4 SINE WITH DWELL TEST RESULTS
- 7.5 SLOWLY INCREASING STEER TEST RESULTS
- 7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES

7.1 OWNER'S MANUAL PAGES

Features of your vehicle

INSTRUMENT CLUSTER

- 1. Tachometer
- 2. Engine coolant temperature gauge
- 3. Fuel gauge
- 4. Speedometer
- 5. Turn signal indicators
- 6. Warning and indicator lights (if equipped)
- 7. Odometer/Trip computer (if equipped)

* The actual cluster in the vehicle may differ from the illustration. For more details refer to the "Gauges" in the next pages.

OCM040050N

7.1 OWNER'S MANUAL PAGES

Features of your vehicle

A CAUTION

Prolonged driving with the Emission Control System Malfunction Indicator Light illuminated may cause damage to the emission control systems which could effect drivability and/or fuel economy.

If the Emission Control System Malfunction Indicator Light illuminates, potential catalytic converter damage is possible which could result in loss of engine power. Have the Engine Control System inspected as soon as possible by an authorized HYUNDAI dealer. ESC (Electronic Stability Control) indicator (if equipped)

The ESC indicator will illuminate when the ignition switch is turned ON, but should go off after approximately 3 seconds. When the ESC is on, it monitors the driving conditions. Under normal driving conditions, the ESC indicator will remain off. When a slippery or low traction condition is encountered, the ESC will operate, and the ESC indicator will blink to indicate the ESC is operating. But, if the ESC system malfunctions the indicator illuminates and stays on. Take your vehicle to an authorized HYUNDAI dealer and have the system checked.

ESC OFF indicator (if equipped) OFF

The ESC OFF indicator will illuminate when the ignition switch is turned ON, but should go off after approximately 3 seconds. To switch to ESC OFF mode, press the ESC OFF button. The ESC OFF indicator will illuminate indicating the ESC is deactivated.

Cruise indicator (if equipped)

CRUISE indicator

The indicator illuminates when the cruise control system is enabled.

The cruise indicator in the instrument cluster is illuminated when the cruise control ON-OFF button on the steering wheel is pushed.

The indicator goes off when the cruise control ON-OFF button is pushed again. For more information about the use of cruise control, refer to "Cruise control system" in section 5.

4 54

Driving your vehicle

ALL WHEEL DRIVE (AWD) (IF EQUIPPED)

Engine power can be delivered to all front and rear wheels for maximum traction. AWD is useful when extra traction is required on road, such as, when driving on slippery, muddy, wet, or snow-covered roads. These vehicles are not designed for challenging off-road use. Occasional off-road use such as established unpaved roads and trails are OK. It is always important when traveling off-highway that the driver carefully reduces the speed to a level that does not exceed the safe operating speed for those condi-tions. In general, off-road conditions provide less traction and braking effectiveness than normal road conditions. The driver must be especially alert to avoid driving on slopes which tilt the vehicle to either side.

These factors must be carefully considered when driving off-road. Keeping the vehicle in contact with the driving surface and under control in these conditions is always the driver's responsibility for the safety of him/herself and his or her passengers. A WARNING - Off road driving

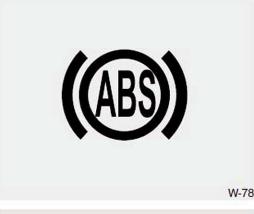
This vehicle is designed primarily for on road use although it can operate effectively off road. However, it was not designed to drive in challenging off-road conditions. Driving in conditions that exceed the vehicle's intended design or the driver's experience level may result in severe injury or death. Tight corner brake effect

A CAUTION - AWD

When turning sharply on a paved road at low speed while in all wheel drive, steering control will be difficult.

Tight corner brake effect is a unique characteristic of all wheel drive vehicles caused by the difference in tire rotation at the four wheels and the zero-degree alignment of the front wheels and suspension.

Sharp turns at low speeds should be carried out with caution.


5 16

AWD AUTO (AWD LOCK is deactivated)		(Indicator light is not illuminated)	 When driving in AWD AUTO mode, the vehicle operates similar to conventional 2WD vehicles under normal operating conditions. However, if the system determines that there is a need for the AWD mode, the engine's driving power is distributed to all four wheels automatically without driver intervention. When driving on normal roads and pavement, the vehicle moves similar to conventional 2WD vehicles.
AWD LOCK	Į.× I.×	LOCK (Indicator light is illuminated)	 This mode is used for climbing or descending sharp grades, off-road driving, driving on sandy and muddy roads, etc., to maximize traction. This mode automatically begins to deactivate at speeds above 30 km/h (19 mph) and is shifted to AWD AUTO mode at speed above 40 km/h (25 mph). If the vehicle decelerates to speeds below 30 km/h (19 mph), however, the transfer mode is shifted into AWD LOCK mode again.

7.1 OWNER'S MANUAL PAGES

Driving your vehicle

- If the ABS warning light is on and stays on, you may have a problem with the ABS. In this case, however, your regular brakes will work normally.
- The ABS warning light will stay on for approximately 3 seconds after the ignition switch is ON. During that time, the ABS will go through self-diagnosis and the light will go off if everything is normal. If the light stays on, you may have a problem with your ABS. Contact an authorized HYUNDAI dealer as soon as possible.

⚠ CAUTION

- When you drive on a road having poor traction, such as an icy road, and operate your brakes continuously, the ABS will be active continuously and the ABS warning light may illuminate. Pull your vehicle over to a safe place and stop the engine.
- Restart the engine. If the ABS warning light is off, then your ABS system is normal. Otherwise, you may have a problem with the ABS. Contact an authorized HYUNDAI dealer as soon as possible.

* NOTICE

When you jump start your vehicle because of a drained battery, the engine may not run as smoothly and the ABS warning light may turn on at the same time. This happens because of the low battery voltage. It does not mean your ABS is malfunctioning.

- · Do not pump your brakes!
- Have the battery recharged before driving the vehicle.

E070500AUN-EU Electronic stability control (ESC)

The Electronic Stability Control (ESC) system is designed to stabilize the vehicle during cornering maneuvers. ESC checks where you are steering and where the vehicle is actually going. ESC applies the brakes at individual wheels and intervenes in the engine management system to stabilize the vehicle.

A WARNING

Never drive too fast for the road conditions or too quickly when cornering. Electronic stability control (ESC) will not prevent accidents. Excessive speed in turns, abrupt maneuvers and hydroplaning on wet surfaces can still result in serious accidents. Only a safe and attentive driver can prevent accidents by avoiding maneuvers that cause the vehicle to lose traction. Even with ESC installed, always follow all the normal precautions for driving - including driving at safe speeds for the conditions. The Electronic Stability Control (ESC) system is an electronic system designed to help the driver maintain vehicle control under adverse conditions. It is not a substitute for safe driving practices. Factors including speed, road conditions and driver steering input can all affect whether ESC will be effective in preventing a loss of control. It is still your responsibility to drive and corner at reasonable speeds and to leave a sufficient margin of safety.

When you apply your brakes under conditions which may lock the wheels, you may hear a "tik-tik" sound from the brakes, or feel a corresponding sensation in the brake pedal. This is normal and it means your ESC is active.

* NOTICE

A click sound may be heard in the engine compartment when the vehicle begins to move after the engine is started. These conditions are normal and indicate that the Electronic Stability Control System is functioning properly.

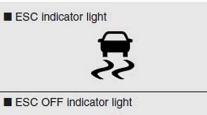
E070501AUN-EU ESC operation ESC ON condition

- When the ignition is turned ON, ESC and ESC OFF indicator lights illuminate for approximately 3 seconds, then ESC is turned on.
 - Press the ESC OFF button for at least half a second after turning the ignition ON to turn ESC off. (ESC OFF indicator will illuminate). To turn the ESC on, press the ESC OFF button (ESC OFF indicator light will go off).
 - When starting the engine, you may hear a slight ticking sound. This is the ESC performing an automatic system self-check and does not indicate a problem.

7.1 OWNER'S MANUAL PAGES

Driving your vehicle

When operating


When the ESC is in operation, ESC indicator light blinks.

- When the Electronic Stability Control is operating properly, you can feel a slight pulsation in the vehicle. This is only the effect of brake control and indicates nothing unusual.
- When moving out of the mud or slippery road, pressing the accelerator pedal may not cause the engine rpm (revolutions per minute) to increase.

E070502AUN-EE ESC operation off ESC OFF state

- To cancel ESC operation, press the ESC OFF button (ESC OFF indicator light illuminates).
- If the ignition switch is turned to LOCK position when ESC is off, ESC remains off. Upon restarting the engine, the ESC will automatically turn on again.

E070503BFD

Indicator light

When ignition switch is turned to ON, the indicator light illuminates, then goes off if the ESC system is operating normally.

The ESC indicator light blinks whenever ESC is operating or illuminates when ESC fails to operate.

The ESC OFF indicator light comes on when the ESC is turned off with the button.

Driving with varying tire or wheel sizes may cause the ESC system to malfunction. When replacing tires, make sure they are the same size as your original tires.

A WARNING

The Electronic Stability Control system is only a driving aid; use precautions for safe driving by slowing down on curved, snowy, or icy roads. Drive slowly and don't attempt to accelerate whenever the ESC indicator light is blinking, or when the road surface is slippery. E070504AUN-EE ESC OFF usage

When driving

- ESC should be turned on for daily driving whenever possible.
- To turn ESC off while driving, press the ESC OFF button while driving on a flat road surface.

A WARNING

Never press the ESC OFF button while ESC is operating (ESC indicator light blinks).

If ESC is turned off while ESC is operating, the vehicle may slip out of control.

* NOTICE

- When operating the vehicle on a dynamometer, ensure that the ESC is turned off (ESC OFF light illuminated). If the ESC is left on, it may prevent the vehicle speed from increasing, and result in false diagnosis.
- Turning the ESC off does not affect ABS or brake system operation.

E070600AFD Good braking practices

A WARNING

- Whenever you leave or park your vehicle, always set the parking brake as far as possible and fully engage the vehicle's transaxle into the P (Park) position. If the parking brake is not fully engaged, the vehicle may move inadvertently and injure yourself and others.
- All vehicles should always have the parking brake fully engaged when parking to avoid inadvertent movement of the vehicle which can injure occupants or pedestrians.
- After being parked, check to be sure the parking brake is not engaged and that the parking brake indicator light is out before driving away.
- Driving through water may get the brakes wet. They can also get wet when the vehicle is washed. Wet brakes can be dangerous! Your vehicle will not stop as quickly if the brakes are wet. Wet brakes may cause the vehicle to pull to one side.

7.2 VEHICLE ARRIVAL CONDITION REPORT

CONTRACT NO.: DTNH22-08-D-00098 DATE: *5/18/10*

From: <u>Automotive Allies</u>	Purpose 🗵 Initial	Receipt
	Recei	ved via Transfer
To: Dynamic Research, Inc	Prese	nt Vehicle Condition
Vehicle VIN: <u>5NMSHDAG2AH34604</u>	<u>1</u> NHTSA NO.:	<u>CA0518</u>
Model Year: <u>2010</u>	Odometer Reading:	<u>95</u> Miles
Make <u>Hyundai</u>	Body Style:	<u>MPV</u>
Model: Santa Fe AWD	Body Color:	<u>Black</u>
Manufacture Date: <u>11/09</u>	Dealer:	Automotive Allies

X All options listed on the "Window Sticker" are present on the test vehicle

Price:

Leased

X Tires and wheel rims are new and the same as listed

2360/5203

- X There are no dents or other interior or exterior flaws
- IThe vehicle has been properly prepared and is in running condition
- The glove box contains an owner's manual, warranty document, consumer information, and extra set of keys
- X Proper fuel filler cap is supplied on the test vehicle
- X Place vehicle in storage area
- Inspect the vehicle's interior and exterior, including all windows, seats, doors, etc., to confirm that each system is complete and functional per the manufacturer's specifications. Any damage, misadjustment, or other unusual condition that could influence the test program or test results shall be recorded. Report any abnormal condition to the NHTSA COTR before beginning any test.

NOTES: As new

GVWR (kg/lb)

RECORDED BY:	J Lenkeit	DATE RECORDED:	5/18/2010
APPROVED BY:	P Broen	DATE APPROVED:	5/19/2010

7.3 VEHICLE COMPLETION CONDITION REPORT

CONTRACT NO.: DTNH22-08-D-00098 DATE: *6/11/10*

Vehicle VIN: <u>5NMSHDAG2AH34604</u>	<u>1</u> NHTSA NO.: <u>CA0518</u>
Model Year: <u>2010</u>	Odometer Reading: <u>187</u> Miles
Make: <u>Hyundai</u>	Body Style: <u>MPV</u>
Model: Santa Fe AWD	Body Color: <u>Black</u>
Manufacture Date: <u>11/09</u>	Dealer: Automotive Allies
GVWR (kg/lb) <u>2360 (5203)</u>	Price: Leased

LIST OF FMVSS TESTS PERFORMED BY THIS LAB: 126

- ☑ THERE ARE NO DENTS OR OTHER INTERIOR OR EXTERIOR FLAWS
- ☑ THE VEHICLE HAS BEEN PROPERLY MAINTAINED AND IS IN RUNNING CONDITION
- ☑ THE GLOVE BOX CONTAINS AN OWNER'S MANUAL, WARRANTY DOCUMENT, CONSUMER INFORMATION, AND EXTRA SET OF KEYS

☑ PROPER FUEL FILLER CAP IS SUPPLIED ON THE TEST VEHICLE **REMARKS**:

Equipment that is no longer on the test vehicle as noted on Vehicle Arrival **Condition Report:**

Explanation for equipment removal:

Test Vehicle Condition: As new

RECORDED BY: *J Lenkeit* DATE RECORDED: 6/11/10

APPROVED BY: *B Kebschull*

DATE APPROVED: 6/15/10

2010 Hyundai Santa Fe MPV AWD (Unlocked) NHTSA No.: CA0518 Date of Test : 5/28/2010 Date Created: 5/28/2010

Lateral Stability Test Series No. 1 – Counterclockwise Initial Steer Direction

File	SWA @ 5deg Ct	MES	Time @ 5deg	COS	Time @ COS	MO S	Time @ MOS	YRR1	YR1	YRR 1 Ct	YRR 175	YR175	YRR17 5 Ct	2nd Yaw Peak	2nd Yaw Peak Ct	Lat Disp	Lat. Acc. 1.07 s	1st SWA Peak	1st SWA Peak Ct	2nd SWA Mean
	(deg)	(mph)	(s)		(s)		(sec)	(%)	(deg/s)		(%)	(deg/s)		(deg/s)		(ft)	(g)	(deg)		(deg)
21	710	49.88	3.545	1091	5.45	847	4.23	-1.20	-0.15	1291	-0.53	-0.07	1441	12.44	937	-3.97	0.37	43.14	775	42.86
22	709	49.89	3.538	1090	5.44	846	4.23	-0.06	-0.01	1290	0.29	0.05	1440	16.38	936	-5.15	0.45	57.14	775	56.80
23	708	49.82	3.533	1090	5.44	846	4.23	-0.04	-0.01	1290	-0.17	-0.03	1440	19.83	930	-6.21	0.51	71.07	775	70.83
24	707	50.31	3.53	1090	5.44	846	4.23	0.02	0.00	1290	-0.20	-0.05	1440	23.80	926	-7.30	0.55	86.07	775	85.82
25	707	50.25	3.528	1090	5.44	847	4.23	-0.04	-0.01	1290	-0.48	-0.14	1440	29.50	929	-8.22	0.58	99.87	775	99.67
26	707	50.34	3.527	1090	5.44	847	4.23	0.30	0.10	1290	0.20	0.07	1440	33.16	928	-8.68	0.62	113.98	775	113.63
27	706	50.18	3.525	1090	5.44	846	4.23	-0.27	-0.10	1290	-0.17	-0.06	1440	36.57	931	-9.29	0.56	128.08	775	127.79
28	706	50.24	3.523	1090	5.44	846	4.23	-0.45	-0.19	1290	0.06	0.02	1440	40.89	938	-9.77	0.48	143.12	775	142.62
29	706	50.29	3.523	1090	5.44	846	4.23	-0.11	-0.05	1290	0.02	0.01	1440	42.86	938	-10.04	0.45	157.07	775	156.58
30	706	50.27	3.523	1090	5.44	846	4.23	-0.36	-0.15	1290	-0.20	-0.09	1440	43.08	944	-10.42	0.21	171.04	775	170.49
31	706	50.34	3.522	1090	5.44	846	4.23	-0.36	-0.16	1290	0.04	0.02	1440	45.13	946	-10.58	0.17	185.08	775	184.56
32	706	50.19	3.523	1090	5.44	847	4.23	0.23	0.11	1290	0.09	0.04	1440	47.13	949	-10.72	0.13	199.98	775	199.54
33	706	49.98	3.522	1090	5.44	847	4.23	1.11	0.54	1290	0.22	0.11	1440	48.78	948	-10.87	0.11	214.03	775	213.61
34	706	50.19	3.523	1090	5.44	847	4.23	0.54	0.28	1290	0.05	0.03	1440	51.35	950	-10.78	0.14	228.16	775	227.71
35	706	50.09	3.523	1090	5.44	847	4.23	1.00	0.50	1290	0.07	0.04	1440	49.77	944	-10.81	0.21	241.96	776	241.61
36	706	50.17	3.523	1090	5.44	847	4.23	1.04	0.54	1290	-0.01	0.00	1440	51.93	949	-10.91	0.15	256.76	776	256.67
38	706	50.28	3.523	1090	5.44	847	4.23	3.04	1.62	1290	-0.35	-0.18	1440	53.41	948	-10.77	0.21	269.41	776	269.63

2010 Hyundai Santa Fe MPV AWD (Unlocked) NHTSA No.: CA0518 Date of Test : 5/28/2010 Date Created: <u>5/28/2010</u>

Late	eral St	ability	lest a	Series	No. 2	- Cic	ockwise	e Initia	Steer	Direc	tion									
File	SWA @ 5deg Ct	MES	Time @ 5deg	cos	Time @ COS	MO S	Time @ MOS	YRR1	YR1	YRR 1 Ct	YRR 175	YR175	YRR17 5 Ct	2nd Yaw Peak	2nd Yaw Peak Ct	Lat Disp	Lat. Acc. 1.07 s	1st SWA Peak	1st SWA Peak Ct	2nd SWA Mean
	(deg)	(mph)	(s)		(s)		(sec)	(%)	(deg/s)		(%)	(deg/s)		(deg/s)		(ft)	(g)	(deg)		(deg)
39	710	50.27	3.545	1091	5.45	847	4.23	-0.20	0.03	1291	0.17	-0.02	1441	-13.03	944	4.05	-0.36	43.73	775	43.61
40	709	50.36	3.538	1090	5.44	847	4.23	0.33	-0.06	1290	-0.18	0.03	1440	-17.29	940	5.09	-0.44	57.79	775	57.58
41	708	50.29	3.533	1090	5.44	847	4.23	-0.09	0.02	1290	-0.46	0.10	1440	-21.22	938	6.09	-0.50	71.72	775	71.52
42	707	50.27	3.53	1090	5.44	847	4.23	-0.44	0.11	1290	0.39	-0.10	1440	-25.79	935	7.09	-0.53	86.66	775	86.55
43	707	50.35	3.528	1090	5.44	846	4.23	-0.10	0.03	1290	0.22	-0.07	1440	-29.99	938	7.77	-0.54	100.46	775	100.39
44	707	50.27	3.526	1090	5.45	847	4.23	-0.02	0.01	1290	-0.08	0.02	1440	-31.07	934	8.34	-0.56	114.46	775	114.53
45	706	50.41	3.524	1090	5.44	846	4.23	0.03	-0.01	1290	-0.45	0.17	1440	-38.89	935	9.04	-0.56	128.55	775	128.58
46	706	50.26	3.523	1090	5.44	846	4.23	-0.43	0.16	1290	-0.27	0.10	1440	-37.70	937	9.33	-0.50	143.53	775	143.50
47	706	50.02	3.522	1090	5.44	846	4.23	-0.49	0.21	1290	-0.78	0.32	1440	-41.79	943	9.48	-0.41	157.59	775	157.48
48	706	50.3	3.522	1090	5.44	846	4.23	-0.33	0.14	1290	-0.14	0.06	1440	-43.59	950	10.10	-0.28	171.46	775	171.40
52	706	50.23	3.522	1090	5.44	846	4.23	-0.71	0.33	1290	-0.45	0.21	1440	-47.16	948	10.05	-0.36	185.65	775	185.40
53	706	50.08	3.522	1090	5.44	847	4.23	-0.20	0.09	1290	-0.24	0.11	1440	-46.83	955	10.33	-0.11	200.41	775	200.32
54	706	50.16	3.522	1089	5.44	846	4.23	0.03	-0.01	1289	0.03	-0.02	1439	-48.41	953	10.46	-0.14	214.44	775	214.45
55	706	50.07	3.522	1090	5.44	847	4.23	-0.20	0.10	1290	-0.23	0.11	1440	-49.70	952	10.50	-0.17	228.52	775	228.53
56	706	50.07	3.523	1090	5.44	847	4.23	-0.11	0.05	1290	-0.20	0.10	1440	-50.98	955	10.67	-0.14	242.28	775	242.56
57	706	50.26	3.523	1090	5.44	847	4.23	0.13	-0.07	1290	0.26	-0.13	1440	-51.56	955	10.55	-0.10	257.15	776	257.45
58	706	50.35	3.523	1090	5.44	847	4.23	0.52	-0.27	1290	0.24	-0.13	1440	-53.15	953	10.64	-0.11	269.69	776	270.54

Lateral Stability Test Series No. 2 Cleakwiss Initial St otic

2010 Hyundai Santa Fe MPV AWD (Locked) NHTSA No.: CA0518 Date of Test : <u>5/28/2010</u> Date Created: <u>5/28/2010</u>

Lateral Stability Test Series No. 1 – Counterclockwise Initial Steer Direction SWA 2nd Lat. 1st Time Time Time 2nd 1st 2nd @ MO SWA YRR YRR YRR17 Yaw Lat Acc. MES COS YR1 YR175 @ @ @ YRR1 Yaw SWA SWA File 5deg S 1 Ct 175 5 Ct Peak Disp 1.07 Peak COS MOS Peak Peak 5deg Mean Ct Ct Ct s (deg) (mph) (s) (s) (sec) (%) (deg/s) (%) (deg/s) (deg/s) (ft) (g) (deg) (deg) 4.23 0.25 0.03 1290 0.87 1440 13.11 -3.89 0.36 775 22 710 50.27 3.54 1090 5.45 846 0.11 938 44.05 43.92 23 709 50.38 3.54 1090 5.45 847 4.23 0.92 0.16 1290 0.69 0.12 1440 17.18 939 -5.19 0.43 58.13 775 57.88 24 708 50.36 3.53 1090 5.44 846 4.23 0.56 0.12 1290 0.54 0.11 1440 20.69 932 -6.55 0.47 73.04 775 72.79 4.23 26 707 50.31 3.53 1090 5.44 847 0.26 0.07 1290 0.49 0.12 1440 25.21 932 -7.33 0.50 87.08 775 86.77 25 707 50.24 3.53 1090 5.44 846 4.23 0.00 0.00 1290 -0.37 -0.12 1440 30.81 931 -8.27 0.54 101.86 775 101.70 27 50.47 4.23 0.12 32.49 775 707 3.53 1090 5.44 846 -0.12 -0.04 1290 0.36 1440 930 -8.81 0.57 116.01 115.68 28 706 50.25 3.53 1090 846 4.23 0.38 0.15 1290 0.18 0.07 1440 38.33 934 -9.39 0.53 131.00 775 130.76 5.44 29 -9.90 706 50.36 3.52 1090 5.44 847 4.23 1.09 0.46 1290 0.13 0.05 1440 42.00 939 0.46 145.03 775 144.66 30 4.23 0.55 0.24 1290 0.22 43.73 942 0.42 159.96 775 159.62 706 50.12 3.52 1090 5.44 846 0.10 1440 -10.19 31 -10.37 173.56 706 50.10 3.52 1090 5.44 846 4.23 0.61 0.28 1290 -0.11 -0.05 1440 46.69 946 0.33 173.97 775 33 50.64 4.23 1290 0.32 47.50 775 188.58 706 3.52 1090 5.44 846 1.35 0.64 0.15 1440 956 -10.72 0.07 189.11 34 706 50.29 3.52 1090 5.44 847 4.23 0.63 0.30 1290 -0.03 -0.02 1440 47.86 952 -10.80 0.09 202.83 775 202.51 35 4.23 775 706 50.43 3.52 1090 5.44 847 1.03 0.51 1290 0.05 0.03 1440 49.65 949 -10.96 0.10 217.90 217.75 36 706 49.69 3.52 1090 5.44 847 4.23 0.92 0.48 1290 0.15 0.08 1440 52.29 954 -10.98 0.07 231.77 776 231.73 37 1290 246.68 706 50.26 3.52 1090 5.44 847 4.23 2.71 1.43 -0.08 -0.04 1440 52.76 952 -10.99 0.12 246.86 776 38 706 50.23 3.52 1090 5.44 847 4.23 4.29 2.32 1290 0.33 0.18 1440 54.08 956 -11.34 0.05 260.54 776 260.65 39 706 50.16 3.52 1090 5.45 847 4.23 1.41 0.78 1290 0.33 0.18 1440 55.23 957 -11.22 0.00 269.23 777 269.52

72

2010 Hyundai Santa Fe MPV AWD (Locked) NHTSA No.: CA0518 Date of Test : 5/28/2010 Date Created: 5/28/2010

Lateral Stability Test Series No. 2 – Clockwise Initial Steer Direction

File	SWA @ 5deg Ct	MES	Time @ 5deg	COS	Time @ COS	MO S	Time @ MOS	YRR1	YR1	YRR 1 Ct	YRR 175	YR175	YRR17 5 Ct	2nd Yaw Peak	2nd Yaw Peak Ct	Lat Disp	Lat. Acc. 1.07 s	1st SWA Peak	1st SWA Peak Ct	2nd SWA Mean
	(deg)	(mph)	(s)		(s)		(sec)	(%)	(deg/s)		(%)	(deg/s)		(deg/s)		(ft)	(g)	(deg)		(deg)
40	710	50.35	3.54	1091	5.45	847	4.23	-0.14	0.02	1291	-0.36	0.05	1441	-13.21	941	4.10	-0.36	44.77	775	44.60
41	709	50.09	3.54	1090	5.44	847	4.23	-0.05	0.01	1290	-0.24	0.04	1440	-17.73	948	5.21	-0.43	58.80	775	58.59
42	708	50.49	3.53	1090	5.44	847	4.23	0.48	-0.11	1290	-0.11	0.02	1440	-22.09	937	6.31	-0.49	73.68	775	73.50
43	707	50.37	3.53	1090	5.44	846	4.23	0.63	-0.17	1290	1.12	-0.29	1440	-26.39	936	7.13	-0.52	87.70	775	87.51
44	707	50.36	3.53	1090	5.44	846	4.23	0.06	-0.02	1290	0.04	-0.01	1440	-30.27	935	7.76	-0.55	102.50	775	102.33
45	706	50.36	3.53	1090	5.45	846	4.23	-0.40	0.13	1290	-0.06	0.02	1440	-32.29	932	8.41	-0.53	116.46	775	116.45
46	706	50.22	3.52	1090	5.44	846	4.23	-0.42	0.16	1290	-0.60	0.22	1440	-37.23	939	8.87	-0.48	131.62	775	131.45
47	706	50.00	3.52	1090	5.44	846	4.23	-0.29	0.12	1290	-0.25	0.10	1440	-41.24	942	9.38	-0.41	145.59	775	145.42
48	706	50.13	3.52	1090	5.44	846	4.23	-0.32	0.14	1290	-0.28	0.12	1440	-43.21	942	9.70	-0.45	160.58	775	160.42
49	706	50.30	3.52	1090	5.44	846	4.23	-0.07	0.03	1290	0.15	-0.07	1440	-46.04	948	10.08	-0.30	174.55	775	174.37
50	706	50.25	3.52	1090	5.44	847	4.23	-0.70	0.34	1290	-0.30	0.14	1440	-47.95	952	10.05	-0.24	189.64	775	189.40
51	706	50.17	3.52	1090	5.44	847	4.23	-0.26	0.13	1290	-0.21	0.11	1440	-50.43	957	10.31	-0.11	203.41	775	203.23
52	706	50.45	3.52	1090	5.44	847	4.23	-0.43	0.21	1290	-0.39	0.19	1440	-49.37	959	10.48	-0.04	218.47	775	218.25
53	706	50.29	3.52	1090	5.44	847	4.23	-0.05	0.03	1290	-0.08	0.04	1440	-53.30	957	10.60	-0.06	232.48	775	232.29
54	706	50.35	3.52	1090	5.44	847	4.23	0.50	-0.27	1290	0.20	-0.11	1440	-54.91	955	10.64	-0.09	247.34	775	247.45
55	706	49.99	3.52	1090	5.44	847	4.23	-0.25	0.13	1290	-0.21	0.12	1440	-53.75	956	10.63	-0.06	261.00	776	261.49
56	706	50.44	3.52	1090	5.44	847	4.23	0.11	-0.06	1290	-0.05	0.03	1440	-55.75	957	10.60	-0.05	269.85	776	270.32

7.5 SLOWLY INCREASING STEER TEST RESULTS

2010 Hyundai Santa Fe MPV AWD (Unlocked) NHTSA No.: CA0518 Date of Test: 5/28/2010 Date Created: 5/28/2010

File	EventPt	DOS	MES	Mean SPD	AYcount_3	THETAENCF_3	AYCG_CD2_3	r_squared	ZeroBegin	ZeroEnd
			(mph)	(mph)		(deg)	(g)			
10	700	1	50.3	50.0	1122	-28.5	-0.30	0.997	500	700
11	700	1	50.1	50.2	1129	-28.7	-0.30	0.998	500	700
12	700	1	50.0	50.1	1124	-28.2	-0.29	0.996	500	700
13	700	0	50.2	50.4	1128	28.7	0.30	0.997	500	700
14	717	0	50.0	50.3	1120	28.1	0.29	0.996	517	717
15	700	0	50.3	50.3	1131	28.8	0.30	0.999	500	700
				Averages		28.5	0.30			

Averages

0.30	
------	--

Scalars	Steering Angles
	(deg)
1.5	43
2.0	57
2.5	71
3.0	86
3.5	100
4.0	114
4.5	128
5.0	143
5.5	157

Scalars	Steering Angles
	(deg)
6.0	171
6.5	185
7.0	200
7.5	214
8.0	228
8.5	242
9	257
9.3	270

7.5 SLOWLY INCREASING STEER TEST RESULTS

2010 Hyundai Santa Fe MPV AWD (Locked) NHTSA No.: CA0518 Date of Test: 5/28/2010 Date Created: 5/28/10

File	EventPt	DOS	MES (mph)	Mean SPD (mph)	AYcount_3	THETAENCF_3 (deg)	AYCG_CD2_3 (g)	r_squared	ZeroBegin	ZeroEnd
10	700	1	49.6	49.7	1138	-29.1	-0.31	0.997	500	700
11	701	1	49.8	49.7	1144	-29.5	-0.30	0.997	501	701
12	701	1	49.7	49.8	1143	-29.4	-0.30	0.996	501	701
13	705	0	49.6	49.7	1131	28.9	0.30	0.993	505	705
14	716	0	49.7	49.7	1131	28.9	0.30	0.997	516	716
15	716	0	49.6	49.6	1127	28.6	0.31	0.994	516	716
			1	Averages	l.	29.0	0.30	1	1	1

Averages

Scalars	Steering Angles (deg)
4 5	
1.5	44
2.0	58
2.5	73
3.0	87
3.5	102
4.0	116
4.5	131
5.0	145
5.5	160
6.0	174

Scalars	Steering Angles
	(deg)
6.5	189
7.0	203
7.5	218
8.0	232
8.5	247
9.0	261
9.3	270

7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES

Vehicle:	2010 Hyuno	dai Santa Fe AWD MPV	NHTSA No.:	CA0518
Wheelbase	: 106.3	Inches	Faro Arm S/N:	U08-05-08-06636
Measureme	ent date:		Certification date:	8/18/2009

CMM Measurements

Coordinate system: SAE (X,Y,Z positive forward, to the right, and downward, respectively)

Origin defined at 48" point on lateral arm of measurement fixture, projected onto the ground plane

	Ref X	Ref Y	Ref Z
M_PLANE001_Ground_Plane	-	-	0.000
M_Line_Y_Axis	-1.722	-3.381	0.000
M_Point_48_Ref	0.000	0.000	-
M_CIRCLE001_I_Left_Rear_Wheel_Axle	-32.477	11.966	13.605
M_Point_IMU_side	6.248	45.956	-23.351
M_Point_ROOF	-	-	-67.331
Motion Pak reference point taken from mid height of unit left side			
Motion Pak Width = 3.05" ==> 1/2 W = 1.525			
Motion_PAK_Location	6.248	47.481	-23.351

Measurement Notes

1. The Faro arm is positioned just to the left of the vehicle, near the rear door.

2. A "centerline jig" is used in the Faro arm measurement. The jig consists of a long beam with a 4 ft lateral arm that is perpendicular to the beam. The jig is placed on the ground underneath the vehicle with the long beam positioned along the centerline of the vehicle, such that the lateral arm extends to the left, slightly forward of the left rear tire. The lateral arm has a marked indentation point which is located 48.00" from the edge of the centerline beam.

3. The Faro arm is used to make the following measurements:

- Three points on the ground, which establishes the ground plane.
- Two points along the lateral arm, and projected onto the ground plane. This establishes the y axis.
- One point at the 48 inch reference point on the lateral arm. This establishes the origin.
- Three points on the left rear wheel or wheel cover. The Faro arm then computes the center point of the wheel.

- One point to establish the height of the highest point on the roof of the vehicle.

Coordinate Measurements Calculated for S7D (Matlab Program)

Coordinate system: X,Y,Z positive rearward, to the right, and upward, respectively

Origin defined as follows: X axis: front axle, Y axis: vehicle centerline, Z axis: ground plane

	Ref X	Ref Y	Ref Z
Motion_PAK_Location in S7D (Matlab program) coordinate system	67.575	-0.519	23.351

Calculation Notes:

1. X axis value is the difference between the wheelbase and the calculated distance from the rear axle centerline to the IMU (the value must be positive and less than the wheelbase).

2. Y axis value is -48.00 (the Y axis offset of the measurement origin in the S7D coordinate system) plus the measured Y axis value (a negative value indicates the IMU is to the left of the vehicle centerline, and a positive value indicates it is to the right)

3. Z axis value is from the ground plane up to the center of the IMU (value must be positive).