126-DRI-10-003 SAFETY COMPLIANCE TESTING FOR FMVSS 126 **Electronic Stability Control Systems**

> Honda of America Manufacturing, Inc 2010 Honda Accord NHTSA No. CA5307

DYNAMIC RESEARCH, INC.

355 Van Ness Avenue, STE 200 Torrance, California 90501

29 November, 2010

Final Report

Prepared Under Contract No.: DTNH22-08-D-00098

U. S. DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Enforcement **Office of Vehicle Safety Compliance** 1200 New Jersey Avenue, SE West Building, 4th Floor (NVS-221) Washington, DC 20590

Prepared for the Department of Transportation, National Highway Traffic Safety Administration, under Contract No. DTNH22-08-D-00098.

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings, and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturer's names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products of manufacturers.

Prepared By: Brien K. Kebe

Approved By: MM

Approval Date: 29 November, 2010

FINAL REPORT ACCEPTANCE BY OVSC:

Jun Furmen Accepted By: _ Acceptance Date: ____

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.	
1. Report No.	2. Government Accession No.	5. Recipient's Catalog No.	
126-DRI-10-003			
4. Title and Subtitle		5 Depart Data	
4. The and Subline		5. Report Date	
Final Report of FMVSS 126 Complian	ce Testing of 2010 Honda Accord	29 November, 2010	
passenger car, NHTSA No. CA5307		6. Performing Organization Co	de
		••••••••••••••••••••••••••••••••••••••	
		DRI	
7. Author(s)		8. Performing Organization Re	port No.
John F. Lenkeit, Technical Director Brian Kebschull, Principal Engine			
		DRI-TM-10-04	
9. Performing Organization Name an	id Address	10. Work Unit No.	
Dynamic Research, Inc. 355 Van Ness Ave, STE 200		11. Contract or Grant No.	
Torrance, CA 90501		The Contract of Grant No.	
		DTNH22-08-D-00098	
12. Sponsoring Agency Name and A	ddress	13. Type of Report and Period	Covered
U.S. Department of Transportation			
National Highway Traffic Safety Office of Vehicle Safety Complia	Administration Enforcement	Final Test Report	
1200 New Jersey Avenue, SE,	lince	19 February,2010 to 29 No	vember, 2010
West Building, 4th Floor (NVS-2)	21)		
Washington, D.C. 20590			
		14. Sponsoring Agency Code	
		NVS-220	
15. Supplementary Notes			
16. Abstract			
A test was conducted on a 2010 Hond	a Accord , NHTSA No. CA5307, in accord	dance with the specifications of the Of	fice of Vehicle Safety
Compliance Test Procedure No. TP-1	26-02 for the determination of FMVSS 12		
Test failures identified were as follows	:: None		
17. Key Words		18. Distribution Statement	
17. Rey Words		16. Distribution Statement	
Compliance Testing		Copies of this report are av	ailable from:
Safety Engineering			
FMVSS 126		NHTSA Technical Informat	ion Services (TIS)
		(NPO 411)	
		1200 New Jersey Avenue, Washington, D.C. 20590	SE
		Email: tis@nhtsa.dot.gov	
		FAX: (202) 493-2833	
19. Security Classif. (of this	20. Security Classif. (of this page)	21. No. of Pages	22.
report) Unclassified			
Uliciassilleu	Unclassified	62	

TABLE OF CONTENTS

	AGE
PURPOSE OF COMPLIANCE TEST	1
TEST PROCEDURE AND DISCUSSION OF RESULTS	2
TEST DATA	5
TEST EQUIPMENT LIST AND CALIBRATION INFORMATION	27
PHOTOGRAPHS	29
DATA PLOTS	43
OTHER DOCUMENTATION	47
 7.1 Owner's Manual Pages 7.2 Vehicle Arrival Condition Report 7.3 Vehicle Completion Condition Report 7.4 Sine with Dwell Test Results 7.5 Slowly Increasing Steer Test Results 7.6 Inertial Sensing System Location Coordinates 	48 53 54 55 57 58
	PURPOSE OF COMPLIANCE TEST TEST PROCEDURE AND DISCUSSION OF RESULTS TEST DATA TEST EQUIPMENT LIST AND CALIBRATION INFORMATION PHOTOGRAPHS DATA PLOTS OTHER DOCUMENTATION 7.1 Owner's Manual Pages 7.2 Vehicle Arrival Condition Report 7.3 Vehicle Completion Condition Report 7.4 Sine with Dwell Test Results

1.0 PURPOSE OF COMPLIANCE TEST

The purpose of this test is to determine if the test vehicle, a 2010 Honda Accord, meets the minimum equipment and performance requirements stated in Federal Motor Vehicle Safety Standard (FMVSS) 126, "Electronic Stability Control Systems."

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS

Testing of the 2010 Honda Accord was conducted at Dynamic Research, Inc (DRI) in accordance with NHTSA TP-126-02, dated November 19, 2008.

The vehicle was inspected to ensure it was equipped with an ESC system that:

- Augments vehicle directional stability by applying and adjusting brake torques individually at each wheel to induce a correcting yaw moment to a vehicle;
- Is computer controlled with the computer using a closed-loop algorithm to limit vehicle oversteer and to limit vehicle understeer;
- Has a means to determine the vehicle's yaw rate and to estimate its side slip or side slip derivative with respect to time;
- Has a means to monitor driver steering inputs;
- Has an algorithm to determine the need, and a means to modify engine torque, as necessary, to assist the driver in maintaining control of the vehicle; and
- Is operational over the full speed range of the vehicle (except at vehicle speeds less than 20 km/h (12.4 mph), when being driven in reverse, or during system initialization).

The vehicle was subjected to a 0.7 Hz Sine with Dwell steering maneuver to ensure that it would meet the stability and responsiveness requirements of the standard as follows:

 At 1.0 second after completion of a required Sine with Dwell steering input, the yaw rate of the vehicle must not exceed 35 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTINUED)

- At 1.75 seconds after completion of a required Sine with Dwell steering input, the yaw rate of the vehicle must not exceed 20 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).
- The lateral displacement of the vehicle center of gravity with respect to its initial straight path must be at least 1.83 m (6 feet) (for vehicles with a GVWR of 3,500kg (7,716 lb) or less) when computed 1.07 seconds after the Beginning of Steer (BOS) at the specified steering wheel angles.

System malfunction simulations were executed to verify vehicle could identify and indicate a malfunction.

The vehicle's ESC System appears to meet the performance and equipment requirements as required by FMVSS 126. The test results are summarized on the following summary sheet.

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTD)

Data Summary Sheet (Page 1 of 2)

Vehicle: 2010 Honda Accord		
NHTSA No. <u>CA5307</u> VIN	I: <u>1HGCP2F80AA083721</u>	
Vehicle Type: <u>Passenger Car</u>	Manufacture Date: 1/	<u>′10</u>
Laboratory: <u>Dynamic Research, Inc</u>	<u>-</u>	
REQUIREMENTS:		PASS/FAIL
ESC Equipment and Operational Char The vehicle is to be equipped wit the equipment and operational ch (S126, S5.1, S5.6)	h an ESC system that meets	<u>PASS</u>
ESC Malfunction Telltale (Data Sheet Vehicle is equipped with a telltale ESC system malfunctions. (S126	e that indicates one or more	<u>PASS</u>
"ESC Off" and other System Control Vehicle is equipped with an ESC vehicle has been put into a mode unable to satisfy the performance if such a mode exists. (S5.5.1)	off telltale indicating the that renders the ESC system	<u>PASS</u>
If provided, off control and other ESC off telltale meets the operat S5.4, S5.4.1,S5.4.2, S5.5.4, an	ional requirements (S126,	<u>PASS</u>

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTD)

Data Summary Sheet (Page 2 of 2)

REQUIREMENTS: PASS/FAIL Vehicle Lateral Stability (Data Sheet 8) Yaw Rate Ratio at 1 second after COS is less than 35% of PASS peak value. (S126, S5.2.1) Yaw Rate Ratio at 1.75 seconds after COS is less than 20% of PASS peak value. (S126, S5.2.2) Vehicle Responsiveness (Data Sheet 8) Lateral displacement at 1.07 seconds after BOS is at least 1.83 PASS m (6 feet) for vehicles with a GVWR of 3,500kg (7,716 lb) or less, and 1.52 m (5 feet) for vehicles with a GVWR greater than 3,500 Kg (7,716 lb). (S126, S5.2.3) ESC Malfunction Warning (Data Sheet 9) Warning is provided to driver after malfunction occurrence. PASS (S126. S5.3) Malfunction telltale stayed illuminated as long as malfunction PASS existed and must extinguish after malfunction was corrected.

(S126, S5.3.7)

3.0 TEST DATA

Data Sheet 1 (Page 1 of 2)

TEST VEHICLE INSPECTION AND TEST PREPARATION Vehicle: 2010 Honda Accord Passenger Car NHTSA No. CA5307 Data Sheet Completion Date: 2/19/2010 VIN 1HGCP2F80AA083721 Manufacture Date: 1/10 Rear GAWR (kg): 935 2010 Front GAWR (kg): 1090 GVWR (kg): Seating Positions Front: 2 Mid: Rear: 3 Odometer reading at time of inspection: 19 miles (30.4 km)

DESIGNATED TIRE SIZE(S) FROM VEHICLE LABELING:

Front axle: <u>P225/50 R17</u>

Rear axle: <u>P225/50 R17</u>

INSTALLED TIRE SIZE(S) ON VEHICLE (from tire sidewall)

			Front A	xle	Rear Axle
	Tire Manufa	acturer:	Michel	lin	<u>Michelin</u>
	Tire	Model:	<u>Pilot HXM</u>	IXM4	Pilot HXMXM4
	Ti	re Size:	<u>P225/50</u>	<u>R17</u>	<u>P225/50 R17</u>
TIN	Left Front:	<i>B90A</i>	VJLX 0210	Right Front:	<u>B90A VJLX 0210</u>
	Left Rear:	<u>B90A</u>	VJLX 0210	Right Rear:	<u>B90A VJLX 0210</u>

Are installed tire sizes same as labeled tire sizes? <u>Yes</u> If no, contact COTR for further guidance

DRIVE CONFIGURATION(S):(mark all that apply)
X Two Wheel Drive (2WD) X Front Wheel Drive Rear Wheel Drive
All Wheel Drive (AWD)
Four Wheel Drive Automatic - differential no locked full time (4WD Automatic)
Four Wheel Drive (High Gear Locked Differential 4WD HGLD)
Four Wheel Drive Low Gear (4WD Low)
Other (Describe)

Data Sheet 1 (Page 2 of 2) TEST VEHICLE INSPECTION AND TEST PREPARATION

DRIVE CONFIGURATIONS AND MODES: (ex. default, performance, off)

(For each of the vehicle's drive configurations identify available operating modes)

Mode: Drive Configuration: Mode:	Drive Configuration:	Front Wheel Dri	ive - Default		
Mode:	Mode:	Default - ESC o	n		
Drive Configuration:	Drive Configuration:				
Drive Configuration:	Mode:				
Mode:					
VEHICLE STABILITY SYSTEMS (Check applicable technologies): List other systems: X ESC X Traction Control Active Suspension X Electronic Throttle Control Active Steering X ABS	-				
List other systems: X ESC X Traction Control Roll Stability Control Active Suspension X Electronic Throttle Control Active Steering X ABS	10000.				
X ESC X Traction Control Roll Stability Control Active Suspension X Electronic Throttle Control Active Steering X ABS ABS Active Steering	VEHICLE STABILITY SY	STEMS (Check a	pplicable technol	ogies):
Active Suspension X Electronic Throttle Control Active Steering X ABS	List other systems:				
X ABS	X ESC	X Traction (Control		Roll Stability Control
	Active Suspensio	n X Electronic	: Throttle Control		Active Steering
REMARKS:	X ABS				
	REMARKS:				
RECORDED BY: JLenkeit DATE RECORDED: 2/19/2010					
APPROVED BY: <u>B Kebschull</u> DATE APPROVED: <u>2/22/2010</u>	APPROVED BY: <u>B /</u>	Kebschull	_ DATE APPROV	/ED:	2/22/2010

Data Sheet 2 (Page 1 of 2) ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

|--|

Data Sheet Completion Date: 3/2/2010 NHTSA No CA5307

ESC SYSTEM IDENTIFICATION

Manufacturer/Model Nissin Kogyo CO, Ltd/NK21V

ESC SYSTEM HARDWARE (Check applicable hardware)

X Electronic Control Unit **X** Hydraulic Control Unit

 X
 Wheel Speed Sensors
 X
 Steering Angle Sensor

X Yaw Rate Sensor X Lateral Acceleration Sensor

List other Components:

ESC OPERATIONAL CHARACTERISTICS

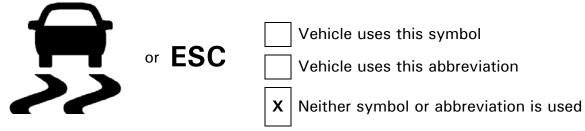
System is capable of generating brake torque at each wheel List and describe Components: <u>Brake control modulator - controls</u> <u>pressure to each wheel independently</u>	X Yes (Pass)
System is capable of determining yaw rate List and describe Components: <i>Yaw Rate Sensor</i>	X Yes (Pass) No (Fail)
System is capable of monitoring driver steering input List and describe Components: <i>Steering Wheel Sensor</i>	X Yes (Pass) No (Fail)
System is capable of estimating side slip or side slip derivative List and describe Components: <u>VSA Modulator (ESC Computer) collects</u> <u>actual vehicle data as follows: Vehicle speed from wheel speed sensor;</u> <u>Steering angle from steering angle sensor; Lateral acceleration and Yaw</u> <u>rate from yaw rate – lateral acceleration sensor.</u> <u>Vehicle side slip derivative (with respect to time) is calculated from these</u> <u>signals.</u>	X Yes (Pass) No (Fail)

Data Sheet 2 (Page 2 of 2) ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

ESC OPERATIONAL CHARACTERISTICS (continued)	
System is capable of modifying engine torque during ESC activation. Method used to modify torque: <i>Engine torque is modified by</i> <i>modifying ignition timing and/or fuel delivery.</i>	X Yes (Pass) No (Fail)
System is capable of activation at speeds of 20 km/h (12.4 mph) and higher	X Yes (Pass) No (Fail)
Speed system becomes active: <u>15 km/h</u>	
System is capable of activation during the following driving phases: - acceleration - during activation of ABS or - braking traction control - - coasting	X Yes (Pass) No (Fail)
Driving phases during which ESC is capable of activation: <u>Acceleration, Deceleration, Coasting, ABS operation, Traction</u> <u>control operation. Not reverse driving</u>	
Vehicle manufacturer submitted documentation explaining how the ESC mitigates understeer	X Yes (Pass) No (Fail)
DATA INDICATES COMPLIANCE:	X Yes (Pass) No (Fail)
REMARKS:	
BECORDED BY: P. Brown DATE BECORDED: 3/2/20	010

RECORDED BY:	P Broen	DATE RECORDED:	3/2/2010
APPROVED BY:	J Lenkeit	DATE APPROVED:	3/8/2010

3.0 TEST DATA (CONTD) Data Sheet 3 (Page 1 of 2) ESC MALFUNCTION AND OFF TELLTALES


Vehicle: 2010 Honda Accord Passenger Car

NHTSA No. CA5307Data Sheet completion date: 3/5/2010

ESC Malfunction Telltale

Vehicle is equipped with malfunction telltale? <u>Yes</u> Telltale Location: <u>Instrument Cluster, lower center of tachometer (Fig 5.6).</u> Telltale Color: Amber

Telltale symbol or abbreviation used

If different than identified above, make note of any message, symbol or abbreviation used.

Two telltales illuminated simultaneously indicate a system malfunction. The first telltale "VSA" is the Vehicle Stability Assist indicator and the second is the VSA activation indicator represented by a triangle with an exclamation point inside (see Figure 5.6)

Is telltale part of a common space? <u>No</u>

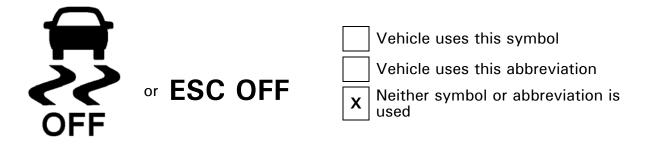
Is telltale also used to indicate activation of the ESC system? Yes

If yes explain telltale operation during ESC activation:

<u>The VSA activation indicator (triangle with exclamation) comes on during ESC</u> <u>activation</u>

Data Sheet 3 (Page 2 of 2) ESC MALFUNCTION AND OFF TELLTALES

"ESC OFF" Telltale (if provided)


Vehicle is equipped with "ESC OFF" telltale? Yes

Is "ESC Off" telltale combined with "ESC Malfunction" telltale utilizing a two part telltale? <u>No</u>

Telltale Location: Instrument Cluster, lower center of tachometer (Fig 5.6).

Telltale Color: <u>Amber</u>

Telltale symbol or abbreviation used

If different than identified above, make note of any message, symbol or abbreviation used. <u>The VSA activation indicator (triangle with exclamation point) comes on when</u> <u>the VSA system is turned off.</u>

Is telltale part of a common space? No

DATA INDICATES COMPLIANCE <u>Yes</u>

(Vehicle is compliant if equipped with a malfunction telltale)

Remarks:

RECORDED BY:	P Broen	DATE RECORDED:	3/5/2010
APPROVED BY:	J Lenkeit	DATE APPROVED:	3/12/2010

Data Sheet 4 (Page 1 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

Vehicle: 2010 Honda Accord Passenger Car

NHTSA No. <u>CA5307</u>	Data Sheet completion date: <u>3/4/2010</u>
-------------------------	---

"ESC OFF" Controls Identification and Operational Check:

Is the vehicle equipped with a control or controls whose purpose is to deactivate the ESC system or place the ESC system in a mode or modes that may no longer satisfy the performance requirements of the standard? X Yes No

Type of control or	Dedicated "ESC Off" Control	
controls provided?	Multi-functional control with an '	"ESC Off" mode
(mark all that apply)	Other (describe)	

Identify each control location, labeling and selectable modes.

First Control:	Location	Lower left of dash (Fig 5.7)
	Labeling	VSA OFF
	Modes	ESC off/on
Second Control:	Location	
	Labeling	
	Modes	
Identify standard or	[.] default driv	ve configuration FWD
Verify standard or o	default drive	e configuration selected X Yes No
		minate upon activation of the dedicated ESC off control or de the multi-function control?
		X Yes <u>No</u> (Fail)
		inguish when the ignition is cycled from "on" ("Run") to again to the "On" ("Run") position?
If no, describe how	the "Off" co	ontrol functions

Data Sheet 4 (Page 2 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

If a multi-function control is provided, cycle through each mode setting on the control and record which modes illuminate the "ESC Off" telltale. Also, for those modes that illuminate the ESC Off" telltale identify if the telltale extinguishes upon cycling the ignition system.

Control Mode	"ESC Off" telltale illuminates upon activation of control? (Yes/No)	"ESC Off" telltale extinguishes upon cycling ignition? (Yes/No)
NA		

For each mode that illuminates the "ESC Off" telltale, did the telltale extinguish when the ignition was cycled from "On" ("Run") to "Lock" or "Off" and then back again to the "On" ("Run") position?

X NA Yes No

Other System Controls that have an ancillary effect on ESC Operation:

Is the vehicle equipped with any ancillary controls that upon activation may deactivate the ESC system or place the ESC system in a mode or modes that may no longer satisfy the performance requirements of the standard? Yes X No

Ancillary Control:	System <u>NA</u>
	Control Description
	Labeling
Ancillary Control:	System
	Control Description
	Labeling
Ancillary Control:	System
	Control Description
	Labeling

Data Sheet 4 (Page 3 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

Activate each control listed above and record whether the control illuminates the "ESC Off" telltale. Also, record warnings or messages provided regarding the ESC system.

	Control Activates "ESC Off"	
		Mariana an Massana Dravidad
Ancillary Control	Telltale? (Yes/No)	Warnings or Messages Provided
NA		

For those controls that illuminate the "ESC Off" telltale above identify if the "ESC Off" telltale extinguishes upon cycling the ignition system.

	"ESC Off" telltale extinguishes				
Ancillary Control	upon cycling ignition? (Yes/No)				
NA					

For each control that illuminates the "ESC Off" telltale, did the telltale extinguish when the ignition is cycled from "On" ("Run") to "Lock" or "Off" and then back again to the "On" ("Run") position? If activating the control places the vehicle into a low-range four-wheel drive configuration designed for low-speed, off-road driving, the ESC system may remain turned off after the ignition has been cycled off and then back on and therefore the "ESC Off" telltale may not extinguish.

X Yes No (Fail)

DATA INDICATES COMPLIANCE: PASS

Remarks:

RECORDED BY:	P Broen	DATE RECORDED:	3/4/2010
APPROVED BY:	J Lenkeit	DATE APPROVED:	3/12/2010

Data Sheet 5 (Page 1 of 3) TEST TRACK AND VEHICLE DATA

Vehicle: 2010 Honda Accord Passenger Car
NHTSA No.CA5307Data Sheet completion date:3/3/2010
Test Track Requirements: Test surface slope (0-1%): 0.5%
Peak Friction Coefficient (at least 0.9) <u>0.93</u> Test track data meets requirements: <u>Yes</u> If no, explain:
Full Fluid Levels: Fuel Yes Other Fluids Yes (specify)
Coolant <u>Yes</u> <u>Oil, Washer, transmission, brakes</u>
Tire Pressures:
Required; Front Axle <u>220</u> KPA Rear Axle <u>220</u> KPA
Actual; LF <u>220</u> KPA RF <u>220</u> KPA
LR <u>220</u> KPA RR <u>220</u> KPA
Vehicle Dimensions: Front Track Width <u>157.8</u> cm Wheelbase <u>279.9</u> cm Rear Track Width 157.8 cm
Vehicle Weight Ratings: GAWR Front <u>1090.0</u> KG GAWR Rear <u>935.0</u> KG
Unloaded Vehicle Weight (UVW):
Front Axle930.8KGLeft Front474.0KGRight Front456.8KGRear Axle608.3KGLeft Rear302.1KGRight Rear306.2KGTotal UVW 1539.1KG
Baseline Weight and Outrigger Selection (only for MPVs, Trucks, Buses)
Calculated baseline weight (UVW + 73kg) 1612.1 KG
Outrigger size required ("Standard" or "Heavy") <u>None</u> Standard - Baseline weight under 2772 kg (6000 lb) Heavy - Baseline weight equal to or greater than 2772 kg (6000 lb)

Data Sheet 5 (Page 2 of 3) TEST TRACK AND VEHICLE DATA

UVW with Outriggers: (only for MPVs, Trucks, Buses)

Front axle	NA	KG	Left front	NA	KG	Right front	NA	KG
Rear axle	NA	KG	Left rear	NA	KG	Right rear	NA	KG
			Total UVW wi	ith out	riggers	NA	KG	

Loaded Vehicle Weight w/Driver and Instrumentation (no Ballast)

Front axle	996.5	KG	Left front	519.8	KG	Right front	476.7	KG
Rear axle	681.8	KG	Left rear	341.6	KG	Right rear	340.2	KG
			V	ehicle We	ight	1678.3	KG	

Ballast Required =	[Total U ^v Outriggers (i	VW with f applicable)]	+ <u>168</u>	KG	- [Loadeo w/Driv Instrume	er and
=	<u>1539.1</u>	KG	+ <u>168</u>	KG	- 1678.3	KG
		=	<u> 28.8</u>	KG		

Total Loaded Vehicle Weight w/Driver and Instrumentation and Ballast

Front axle	1011.1	KG	Left front	524.8	KG	Right front	486.3	KG
Rear axle	698.1	KG	Left rear	345.2	KG	Right rear	352.9	KG
				Total	UVW _	1709.2	KG	

Data Sheet 5 (Page 3 of 3) TEST TRACK AND VEHICLE DATA

Center of Gravity and Inertial Sensing System Location at Loaded Vehicle Condition:

x-distance (longitudinal)	Point of reference is the front axle centerline. (Positive from front axle toward rear of vehicle.)
y-distance (lateral)	Point of reference is the vehicle centerline. (Positive from the center toward the right.)
z-distance (vertical)	Point of reference is the ground plane. (Positive from the ground up.)

Locations:

	Center o		Inertial	Sensing System	
x-distance	<u>45.0</u> in	<i>114.3</i> cm	_	<i>69.</i> 7	in <u>177.0</u> cm
y-distance	<i>-0.6</i> in	<i>-1.5</i> _cm		-0.2	in _ <i>-0.5</i> cm
z-distance	<u>22.2</u> in	<i>56.4</i> cm		10.0	in <u>25.4</u> cm
		Roof Height	<i>58.452</i> ii	า	<u>148.5</u> cm
Distance be	tween ultrasor	nic sensors	<i>90.5</i> ii	า	<u>229.9</u> cm

Remarks: Ballast consisted of barbell weights positioned on rear passenger floor

RECORDED BY:	B. Kebschull	DATE RECORDED:	3/3/2010
APPROVED BY:	J Lenkeit	DATE APPROVED:	3/5/2010

Data Sheet 6 (Page 1 of 3) BRAKE AND TIRE CONDITIONING

Vehicle: 2010 Honda Accord Pa NHTSA No. CA5307	sseng	ger Car					
Measured tire pressure:	LF	<u>240</u>	KPA	RF	<u>233</u>	KPA	
	LR	<u>234</u>	КРА	RR	<u>243</u>	KPA	
			mph) max f h) max for l	-	-		
Ambient Temperature (7°C (45°	°F) - 4	40°C (104°F))		<u>19</u>	°C	
Brake Conditioning Time:	<u>10:</u>	25:00	<u>AM</u>	Da	te: <u>3/3</u>	/2010	<u>)</u>
56 km/h (35 mph)	Brake	Stops					
Number of s	stops	execut	ted (10 requ	ired)		<u>10</u>	Stops
Observed decele	ration	rate ra	ange (.5g tai	rget)	<u>0.45</u> -	0.55	g
72 km/h (45 mph)	Brake	Stops					
Number of	stop	s exec	uted (3 requ	ired)		<u>3</u>	Stops
Number of stop	s AB	S activ	ated (3 requ	ired)		<u>3</u>	Stops
Obse	erved	decele	ration rate ra	ange	0.85 -	0.95	g
72 km/h (45 mph)	Brake	Cool [Down Period				
Duration of co	ol do	wn per	iod (5 minut	tes mi	n.)	<u>5</u>	Minutes

Data Sheet 6 (Page 2 of 3) BRAKE AND TIRE CONDITIONING

Tire Conditioning series No. 1	Time:	<u>11:00</u>	:00 AM	Da	ate: <u>3/3/</u>	<u>/2010</u>
Measured cold tire pressure	LF	<u>243</u>	КРА	RF	248	KPA
	LR	<u>242</u>	KPA	RR	238	KPA
Wind Speed <u>0.7</u> m/s	(10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)				-	

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 20.5°C

30 meter (100 ft) Diameter Circle Maneuver					
Test Run	Steering Direction	Target Lateral Acceleration (g)	Observed Lateral Acceleration (g)	Observed Vehicle Speed (Km/h)	
1-3	Clockwise	0.5 - 0.6	<u>0.5 - 0.6</u>	<u>32.8 - 33.6</u>	
4-6	Counterclockwise	0.5 – 0.6	<u>0.5 - 0.6</u>	<u>32.0 - 33.6</u>	

	5-1 Hz Cycle Sinusoidal Steering Maneuver to Determine Steering Wheel Angle for 0.5-0.6 g Lateral Acceleration							
Test Run	Data File	Vehicle Speed Km/h(mph)	Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)			
1	3	$56 \pm 2 (35 \pm 1)$	<u>60</u>	0.5 - 0.6	<u>0.44</u>			
2	4	56 ± 2 (35 ± 1)	<u>80</u>	0.5 - 0.6	<u>0.54</u>			
3		56 ± 2 (35 ± 1)		0.5 - 0.6				
4		56 ± 2 (35 ± 1)		0.5 - 0.6				

Steering wheel angle that corresponds to a peak 0.5-0.6 g lateral acceleration: 80 degrees

	10-1 Hz Cycle Sinusoidal Steering Maneuver						
Test Run	Data File	Vehicle Speed Km/h (mph)	Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)		
1-3	<u>5-7</u>	56 ± 2 (35 ± 1)	<u>80 (</u> cycles 1-10)	0.5 - 0.6	<u>0.54</u>		
4	0		<u>80 (</u> cycles 1-9)	0.5 - 0.6	<u>0.54</u>		
4	4 <u>8</u> 56 ± 2 (35 ± 1)	<u>160 (</u> cycle10) *	NA	<u>0.80</u>			

* The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9

Data Sheet 6 (Page 3 of 3) BRAKE AND TIRE CONDITIONING

Tire Conditioning series No. 2	Time:	<u>12:38:</u>	00 PM	Date	: <u>3/3/2</u>	2010
Measured cold tire pressure	LF	249	KPA	RF	254	KPA
	LR	246	KPA	RR	244	KPA
Wind Speed <u>1.7</u> m/s	(10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)					

Ambient Temperature (7°C (45°F) - 40°C (104°F)) _____ 19.8 °C

30 meter (100 ft) Diameter Circle Maneuver						
Test Run	Steering Direction	Target Lateral Acceleration (g)	Observed Lateral Acceleration (g)	Observed Vehicle Speed (Km/h)		
1-3	Clockwise	0.5 - 0.6	<u>0.5-0.6</u>	<u> 32.8 - 33.6</u>		
4-6	Counterclockwise	0.5 - 0.6	<u>0.5-0.6</u>	<u> 32.8 - 33.6</u>		

Steering wheel angle that corresponds to a peak 0.5-0.6 g lateral acceleration:

80 degrees

10-1 Hz Cycle Sinusoidal Steering Maneuver					
Test Run	Data File	Vehicle Speed Km/h (mph)	Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)
1-3	<u>17-19</u>	56 ± 2 (35 ± 1)	<u>80</u> (cycles 1-10)	0.5 - 0.6	<u>0.54</u>
4	20		<u>80</u> (cycles 1-9)	0.5 - 0.6	<u>0.54</u>
4	4 20 56 ± 2 (35 ± 1)	<u>160</u> (cycle 10)*	NA	<u>0.80</u>	

* The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9

Remarks:

RECORDED BY:	B. Kebschull	DATE RECORDED:	3/3/2010
APPROVED BY:	J Lenkeit	DATE APPROVED:	3/12/2010

Data Sheet 7 (Page 1 of 2) SLOWLY INCREASING STEER (SIS) MANEUVER

Vehicle: 2010 Honda Accord Passenger Car

NHTSA No. *CA5307*

Measured tire pressure:	LF	244	КРА	RF	242	КРА
	LR	<u>249</u>	KPA	RR	<u>240</u>	КРА

Wind Speed <u>0.9</u> m/s

(10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 20.2 °C

Selected drive configuration *Default (FWD)*

Selected Mode: <u>Default ESC on</u>

Preliminary Left Steer Maneuver:

Lateral Acceleration measured at 30 degrees steering wheel angle

 $a_{y,30 \text{deg}rees} = 0.35$ g

Assuming a linear relationship the following ratio should be used to calculate the steering wheel angle at 0.55g:

30 degrees	$\delta_{\scriptscriptstyle SIS}$	$\delta_{sis} =$	47.1	degrees (@.55g)
a _{y,30 degrees}	$\overline{0.55\mathrm{g}}$	$\delta_{sis} =$	50	degrees (rounded)

Steering Wheel Angle at Corrected 0.3g Lateral Acceleration:

	-				
		Time Clock	Steering Wheel Angle		
	Initial Steer	(5 min max	to nearest	Data	
Maneuver	Direction	between runs)	0.1° (degrees)	Run	Good/NG
1	Left	<u>11:45:00 AM</u>	<u>28.7</u>	<u>11</u>	<u>Good</u>
2	Left	<u>11:49:00 AM</u>	<u>28.7</u>	<u>12</u>	<u>Good</u>
3	Left	<u>11:55:00 AM</u>	<u>29.0</u>	<u>13</u>	Good
4	Left				
5	Left				
1	Right	<u>12:00:00 PM</u>	<u>28.1</u>	<u>14</u>	<u>Good</u>
2	Right	<u>12:03:00 PM</u>	<u>28.7</u>	<u>15</u>	<u>Good</u>
3	Right	<u>12:08:00 PM</u>	<u>28.2</u>	<u>16</u>	Good
4	Right				
5	Right				

Data Sheet 7 (Page 2 of 2) SLOWLY INCREASING STEER (SIS) MANEUVER

Average Overall Steering Wheel Angle:

 $\delta_{0.3 \ g, \ overall} = \left(\left| \delta_{0.3 \ g, \ left \ (1)} \right| + \left| \delta_{0.3 \ g, \ left \ (2)} \right| + \left| \delta_{0.3 \ g, \ left \ (3)} \right| + \delta_{0.3 \ g, \ right \ (1)} + \delta_{0.3 \ g, \ right \ (2)} + \delta_{0.3 \ g, \ right \ (3)} \right) / 6$

 $\delta_{0.3 g, overall} = 28.6$ degrees

[to nearest 0.1 degree]

Remarks:

RECORDED BY:	B. Kebschull	DATE RECORDED:	3/3/2010
APPROVED BY:	J Lenkeit	DATE APPROVED:	3/12/2010

Data Sheet 8 (Page 1 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Vehicle: 2010 Honda Accord Passenger Car

NHTSA No. <u><i>CA5307</i></u>	Data sheet comp	letion date:	<u>3/3/2010</u>
Tire conditioning completed		X Yes	No
ESC system is enabled		X Yes	No
On track calibration checks hav	e been completed	X Yes	No
On track static data file for eac	h sensor obtained	X Yes	No
Selected Drive Configuration:	Default (FWD)		
Selected Mode: Default - ES	SC on		
Overall steering wheel angle (δ_0	.3 g, overall) <u>28.6</u>	degrees	

Lateral Stability Test Series No. 1 – Counterclockwise Initial Steer Direction

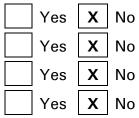
		Commanded			Yaw Rate	S	Y	′RR	```	YRR
	Clock	Steering	Wheel	(c	legrees/se	ec)	at 1.0	sec after	r at 1.75 sec after	
Maneuver	Time	Ang	le¹				C	OS	(COS
#		_					[<	35%]	[<	20%]
	(1.5 – 5.0 min max between runs)	Scalar (* δ _{0.3 g})	Angle (degrees)	$\dot{\psi}_{\scriptscriptstyle Peak}$	$\dot{\psi}_{1.0\text{sec}}$	$\dot{\psi}_{1.75 m sec}$	%	Pass/Fail	%	Pass/Fail
22	12:56 PM	1.5	43.0	12.89	-0.19	-0.17	-1.51	PASS	-1.33	PASS
23	12:59 PM	2.0	57.2	16.64	-0.46	-0.41	-2.75	PASS	-2.47	PASS
24	1:04 PM	2.5	72.1	20.98	-0.14	-0.18	-0.68	PASS	-0.84	PASS
25	1:06 PM	3.0	86.2	24.97	-0.19	-0.19	-0.78	PASS	-0.75	PASS
26	1:10 PM	3.5	99.9	29.66	-0.20	-0.20	-0.66	PASS	-0.69	PASS
27	1:13 PM	4.0	114.0	35.07	-0.51	-0.31	-1.45	PASS	-0.89	PASS
28	1:16 PM	4.5	129.1	39.21	0.02	0.02	0.05	PASS	0.04	PASS
29	1:21 PM	5.0	143.0	43.41	0.03	-0.02	0.07	PASS	-0.05	PASS
30	1:24 PM	5.5	157.1	45.08	0.04	-0.08	0.09	PASS	-0.18	PASS
31	1:27 PM	6.0	171.9	48.87	0.00	-0.18	-0.01	PASS	-0.36	PASS
32	1:29 PM	6.5	186.0	51.41	-0.09	-0.18	-0.18	PASS	-0.35	PASS
33	1:32 PM	7.0	199.9	53.68	-0.12	-0.04	-0.22	PASS	-0.08	PASS
34	1:37 PM	7.5	213.8	54.04	0.07	-0.10	0.14	PASS	-0.19	PASS
35	1:39 PM	8.0	228.9	55.42	0.06	-0.19	0.10	PASS	-0.35	PASS
36	1:41 PM	8.5	242.7	57.51	0.55	-0.11	0.96	PASS	-0.19	PASS
37	1:44 PM	9.0	256.6	58.94	0.16	-0.11	0.28	PASS	-0.19	PASS
38	1:49 PM	-	269.7	58.11	0.01	-0.22	0.01	PASS	-0.38	PASS

Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5 *δ_{0.3 g}, overall or 270 degrees is utilized, whichever is greater provided the calculated magnitude of 6.5 *δ_{0.3 g}, overall is less than or equal to 300 degrees. If 6.5 *δ_{0.3 g}, overall is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5 *δ_{0.3 g}, overall without exceeding the 270 degree steering wheel angle.

DATA SHEET 8 (2 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

LATERAL STABILITY TEST SERIES NO. 2 – Clockwise Initial Steer Direction										
Maneuver #	in the second		g Wheel	Yaw Rates (degrees/sec)		YRR at 1.0 sec after COS [< 35%]		YRR at 1.75 sec after COS [< 20%]		
	(1.5 – 5.0 min max between runs)	Scalar (* δ _{0.3 g})	Angle (degrees)	$\dot{\psi}_{\scriptscriptstyle Peak}$	$\dot{\psi}_{1.0 m sec}$	$\dot{\psi}_{1.75 m sec}$	%	Pass/Fail	%	Pass/Fail
39	1:52 PM	1.5	43.7	-13.29	0.09	0.10	-0.68	PASS	-0.72	PASS
40	1:55 PM	2.0	57.7	-17.84	0.05	0.00	-0.30	PASS	0.03	PASS
41	1:58 PM	2.5	72.6	-22.36	0.17	0.00	-0.77	PASS	0.00	PASS
42	2:01 PM	3.0	86.7	-26.16	0.27	0.24	-1.03	PASS	-0.92	PASS
43	2:04 PM	3.5	100.7	-30.69	0.23	0.16	-0.76	PASS	-0.52	PASS
44	2:08 PM	4.0	114.6	-36.43	0.12	-0.02	-0.34	PASS	0.06	PASS
46	2:12 PM	4.5	129.8	-40.53	0.11	0.06	-0.27	PASS	-0.14	PASS
47	2:15 PM	5.0	143.9	-45.49	0.15	-0.02	-0.32	PASS	0.04	PASS
48	2:17 PM	5.5	157.9	-49.50	0.15	-0.02	-0.31	PASS	0.04	PASS
49	2:21 PM	6.0	172.8	-54.02	0.00	-0.09	0.00	PASS	0.16	PASS
50	2:24 PM	6.5	186.8	-56.81	-0.24	0.02	0.42	PASS	-0.04	PASS
51	2:27 PM	7.0	200.8	-60.01	-0.61	-0.11	1.02	PASS	0.18	PASS
52	2:31 PM	7.5	214.9	-62.32	2.01	-0.12	-3.23	PASS	0.20	PASS
53	2:35 PM	8.0	230.0	-64.31	4.54	0.17	-7.07	PASS	-0.27	PASS
54	2:39 PM	8.5	243.9	-66.63	2.84	0.02	-4.26	PASS	-0.03	PASS
55	2:43 PM	9.0	257.8	-67.45	4.34	0.10	-6.43	PASS	-0.14	PASS
56	2:48 PM	-	270.6	-68.99	5.43	0.06	-7.87	PASS	-0.08	PASS

 Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5 *δ_{0.3 g}, overall or 270 degrees is utilized, whichever is greater provided the calculated 6.5 *δ_{0.3 g}, overall is less than or equal to 300 degrees. If 6.5 *δ_{0.3 g}, overall is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5 *δ_{0.3 g}, overall without exceeding the 270 degree steering wheel angle.


During execution of the Sine with Dwell maneuvers were any of the following events observed?

Rim-to-pavement contact

Tire debeading

Loss of pavement contact of vehicle tires

Did the test driver experience any vehicle loss of control or spinout?

If "Yes" explain the event and consult with the COTR.

DATA SHEET 8 (3 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Responsive	ness – Lateral Disp	olacement				
			ering Wheel Angle	Calculated Lateral Displacement ¹		
		(5.0 *δ0.3 g, ove	erall or greater)		-	
Maneuver	Initial Steer Direction	Scalar	Angle	Distance	Pass/Fail	
#		* δ0.3 g	(degrees)	(m)		
29	Counter Clockwise	5.0	143.0	-3.2	<u>PASS</u>	
30	Counter Clockwise	5.5	157.1	-3.2	<u>PASS</u>	
31	Counter Clockwise	6.0	171.9	-3.3	<u>PASS</u>	
32	Counter Clockwise	6.5	186.0	-3.4	<u>PASS</u>	
33	Counter Clockwise	7.0	199.9	-3.4	<u>PASS</u>	
34	Counter Clockwise	7.5	213.8	-3.4	<u>PASS</u>	
35	Counter Clockwise	8.0	228.9	-3.3	<u>PASS</u>	
36	Counter Clockwise	8.5	242.7	-3.4	<u>PASS</u>	
37	Counter Clockwise	9.0	256.6	-3.4	<u>PASS</u>	
38	Counter Clockwise	-	269.7	-3.4	<u>PASS</u>	
47	Clockwise	5.0	143.9	3.0	<u>PASS</u>	
48	Clockwise	5.5	157.9	3.1	<u>PASS</u>	
49	Clockwise	6.0	172.8	3.2	PASS	
50	Clockwise	6.5	186.8	3.3	<u>PASS</u>	
51	Clockwise	7.0	200.8	3.3	<u>PASS</u>	
52	Clockwise	7.5	214.9	3.3	PASS	
53	Clockwise	8.0	230.0	3.4	PASS	
54	Clockwise	8.5	243.9	3.4	<u>PASS</u>	
55	Clockwise	9.0	257.8	3.4	<u>PASS</u>	
56	Clockwise	-	270.6	3.4	<u>PASS</u>	

Responsiveness – Lateral Displacement

1. Lateral displacement should be \geq 1.83 m (6 ft) for vehicle with a GVWR of 3,500 kg (7,716 lb) or less; and \geq 1.52 m (5 ft) for vehicles with GVWR greater than 3,500 kg (7,716 lb).

DATA INDICATES COMPLIANCE:

PASS **FAIL**

Remarks:

RECORDED BY:	B. Kebschull	DATE RECORDED:	3/3/2010
APPROVED BY:	J Lenkeit	DATE APPROVED:	3/12/2010

Data Sheet 9 (Page 1 of 2) MALFUNCTION WARNING TESTS

Vehicle: 2010 Honda Accord Passenger Car

NHTSA No. *CA5307*

Data Sheet Completion Date: <u>3/3/2010</u>

TEST 1

MALFUNCTION SIMULATION: Describe method of malfunction simulation

Disconnected Left front wheel speed sensor

MALFUNCTION TELLTALE ILLUMINATION:

Telltale illuminates and remains illuminated after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

X Yes No

X Pass

X Pass

Time for telltale to illuminate after ignition system is activated and vehicle speed of 48 ± 8 km/h (30 ± 5 mph) is reached.

O Seconds (must be within 2 minutes)

ESC SYSTEM RESTORATION

Telltale extinguishes after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

X Yes

Fail

No

Fail

Time for telltale to extinguish after ignition system is activated and vehicle speed of 48 \pm 8 km/h (30 \pm 5mph) is reached.

<u>*O*</u> Seconds (must be within 2 minutes)

TEST	1	DATA	INDICATES	COMPLIANCE:	PASS

Remarks:Both the "VSA" telltale and the triangle (with a "!" inside it) telltaleilluminated immediately upon ignition after the malfunction was caused.TheABS telltale illuminated as well.When the ESC system was restored, bothtelltales immediately extinguished upon ignition.No driving was required.RECORDED BY:B. KebschullDATE RECORDED:APPROVED BY:J LenkeitDATE APPROVED 3/8/2010

Data Sheet 9 (Page 2 of 2) MALFUNCTION WARNING TESTS

Vehicle: 2010 Honda Accord Passenger Car

NHTSA No*. CA5307*

Data Sheet Completion Date: 3/3/2010

TEST 2

MALFUNCTION SIMULATION: Describe method of malfunction simulation

Disconnected steering angle sensor.

MALFUNCTION TELLTALE ILLUMINATION:

Telltale illuminates and remains illuminated after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

X Yes

X Pass

No

Fail

Fail

Time for telltale to illuminate after ignition system is activated and vehicle speed of 48 ± 8 km/h (30 ± 5 mph) is reached.

0 Seconds (must be within 2 minutes)

ESC SYSTEM RESTORATION

Telltale extinguishes after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

X Ye	s	No
------	---	----

Pass

Time for telltale to extinguish after ignition system is activated and vehicle speed of 48 \pm 8 km/h (30 \pm 5mph) is reached.

0 Seconds (must be within 2 minutes)

TEST	2	DATA	INDICATES	COMPLIANCE:	PASS
					1 700

Remarks: Both the "VSA" and the triangle with exclamation point telltales illuminated immediately upon ignition. After the system was restored, both telltales extinguished immediately upon ignition. No driving was required.

RECORDED BY: <u>B Kebschull</u>	DATE RECORDED: <u>3/3/2010</u>
APPROVED BY: <u>J Lenkeit</u>	DATE APPROVED <u>3/8/2010</u>

4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION (1 OF 2)

Туре	Output	Range	Resolution	Accuracy	Specifics	Serial Number	Calibration
Tire Pressure Gauge	Vehicle Tire Pressure	0-100 psi 0-690 kPa	1 psi 6.89 kPa	0.5 psi 3.45 kPa	Ashcroft D1005PS	1039350	By: DRI Date:2/25/10 Due: 2/25/11
Platform Scales	Vehicle Total, Wheel, and Axle Load	8000 lb 35.6 kN	0.5 lb 2.2 N	±1.0% of applied load	Intercomp Model SWII	24032361	By: American Scale Date: 2/25/10 Due: 2/25/11
Automated Steering Machine with Steering Angle Encoder	Handwheel Angle	±800 deg	0.25 deg	$\pm 0.25 \text{ deg}$	Heitz Automotive Testing Model: Sprint 3	60304	By: DRI Date: 2/25/10 Due: 2/25/11
Multi-Axis Inertial Sensing System	Longitudinal, Lateral, and Vertical Acceleration Roll, Yaw, and Pitch Rate	Accelerometer s: ±2 g Angular Rate Sensors: ±100 deg/s	Accelerometers: ≤10 ug Angular Rate Sensors: ≤0.004 deg/s	Acceleromete rs: ≤0.05% of full range Angular Rate Sensors: 0.05% of full range	BEI Technologies Model: MotionPAK MP-1	0767	By: Systron Donner Date:11/23/09 Due: 11/23/10
Radar Speed Sensor and Dashboard Display	Vehicle Speed	0-125 mph 0-200 km/h	0.009 mph .014 km/h	±0.25% of full scale	A-DAT Corp. Radar Model: DRS- 6 Display Model: RD- 2	1400.604	By: DRI Date:3/2/10 Due:3/2/11
Ultrasonic Distance Measuring System		5-24 inches	0.01 inches	±0.25% of	Massa Products Corporation Model: M- 5000/220	DOT-NHTSA D2646	By: DRI Date:2/26/10 Due: 2/26/11
		127-610 mm	.254 mm	distance		DOT-NHTSA D3272	By: DRI Date:2/26/10 Due: 2/26/11

TABLE 1. TEST INSTRUMENTATION

4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION (2 OF 2)

Туре	Output	Range	Resolution	Accuracy	Specifics	Serial Number	Calibration
Data Acquisition System [Includes amplification, anti- aliasing, and analog to digital conversion.]	Record Time; Velocity; Distance; Lateral, Longitudinal, and Vertical Accelerations; Roll, Yaw, and Pitch Rates; Steering Wheel Angle.	Sufficient to meet or exceed individual sensors	200 Hz	Sufficient to meet or exceed individual sensors	SoMat eDaq ECPU processor	MSHLB.03- 2476	By: DRI Date:2/9/10 Due: 2/9/11
					SoMat High level Board EHLS	MSHLS.03- 3182	By: DRI Date: 2/9/10 Due: 2/9/11
Load Cell	Vehicle Brake Pedal Force	0-300 lb 0-1.33 kN	1 lb 4.44 N	±0.05% of full scale	Lebow 3663-300	767	Operationally verified on test date
Coordinate Measurement Machine	Inertial Sensing System Coordinates	0-8 ft 0-2.4 m	±.0020 in. ±.051 mm	±.0020 in. ±.051 mm (Single point articulation accuracy)	Faro Arm Fusion	UO8-05-08- 06636	By: Faro Date: 8/18/09 Due: 8/18/10
Outriggers	No output. Safety Item.	NA	NA	NA	DRI manufactured Aluminum meeting the weight and MOI specifications of Docket 2007- 27662-11	NA	NA

TABLE 1. TEST INSTRUMENTATION (CONTD)

5.0 PHOTOGRAPHS (1 of 14)

Figure 5.1. Front View of Test Vehicle As-Delivered

5.0 PHOTOGRAPHS (2 of 14)

Figure 5.2. Rear View of Test Vehicle As-Delivered

5.0 PHOTOGRAPHS (3 of 14)

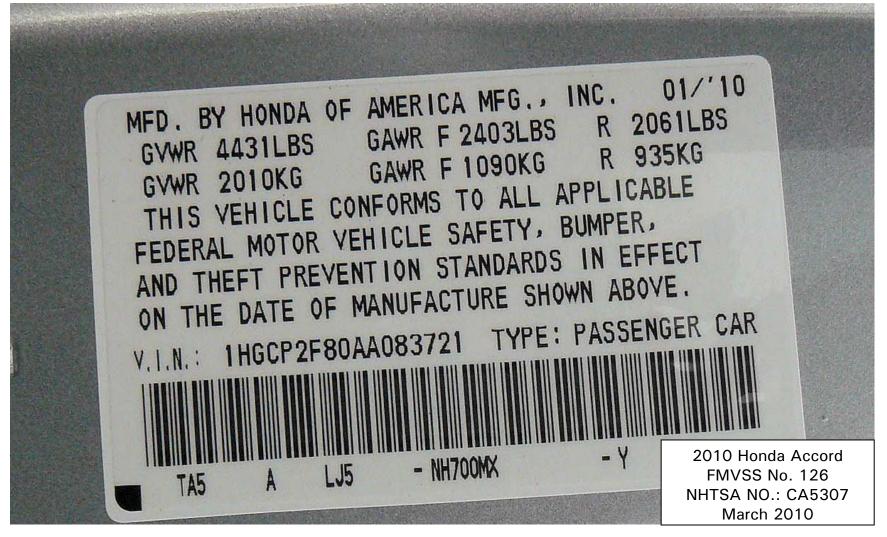
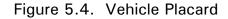



Figure 5.3. Vehicle Certification Label

5.0 PHOTOGRAPHS (5 of 14)



Figure 5.5. Window Sticker (Monroney Label)

5.0 PHOTOGRAPHS (6 of 14)

Figure 5.6. Telltale for ESC Malfunction and ESC Off

5.0 PHOTOGRAPHS (7 of 14)

Figure 5.7. ESC Off Control Switch

5.0 PHOTOGRAPHS (8 of 14)

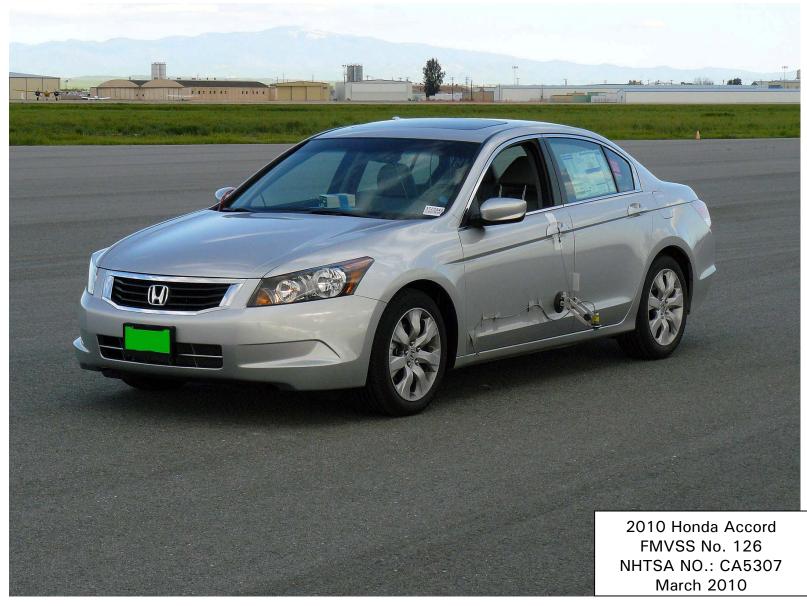


Figure 5.8. Front View of Vehicle As-Tested

5.0 PHOTOGRAPHS (9 of 14)

Figure 5.9. Rear View of Vehicle As-Tested

5.0 PHOTOGRAPHS (10 of 14)

Figure 5.10. Ultrasonic Height Sensor Mounted on Left side of Vehicle for Determining Body Roll Angle

5.0 PHOTOGRAPHS (11 of 14)

Figure 5.11. Speed Sensor Mounted on Rear Bumper

5.0 PHOTOGRAPHS (12 of 14)

Figure 5.12. Steering Controller and Data Acquisition Computer

5.0 PHOTOGRAPHS (13 of 14)

Figure 5.13. Inertial Measurement Unit Mounted in Vehicle

5.0 PHOTOGRAPHS (14 of 14)

Figure 5.14. Brake Pedal Load Cell

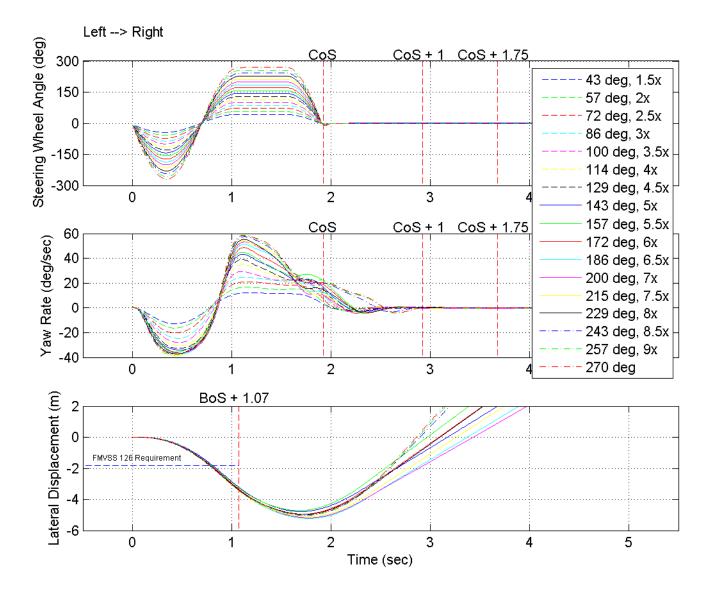


Figure 6.1. Steering Wheel Angle, Yaw Rate and Lateral Displacement for L-R Series

6.0 DATA PLOTS (2 of 4)

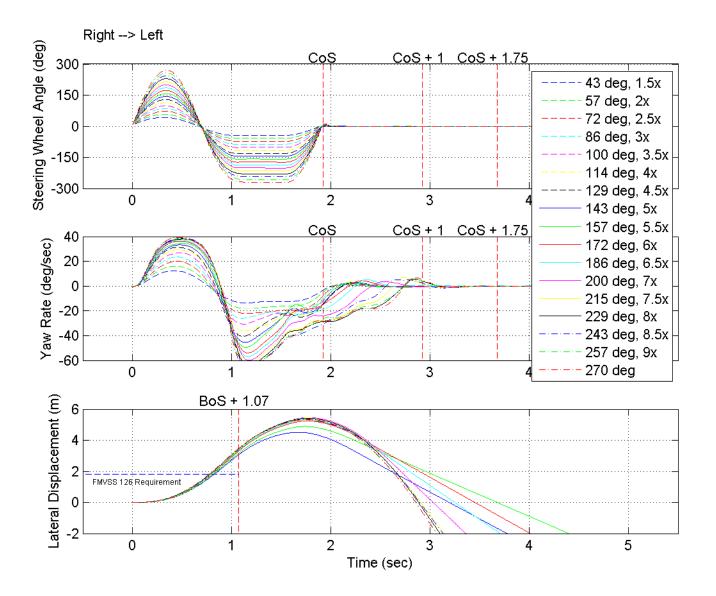


Figure 6.2. Steering Wheel Angle, Yaw Rate and Lateral Displacement for R-L Series

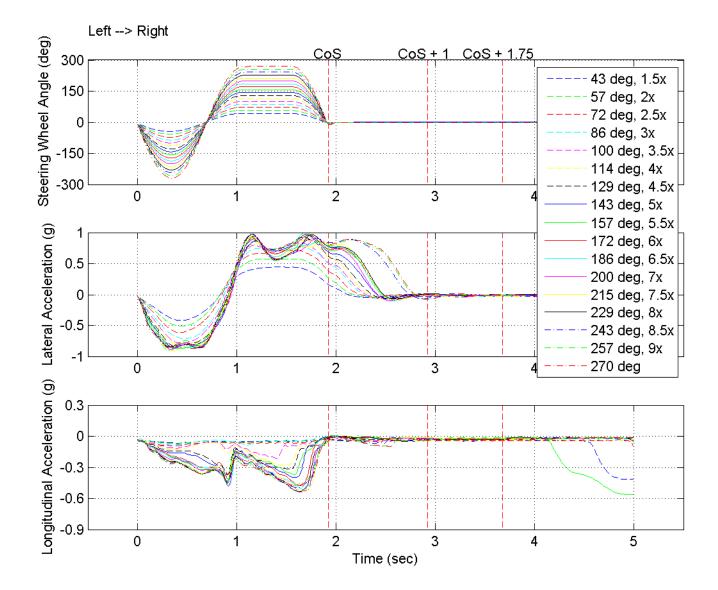


Figure 6.3. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for L-R Series

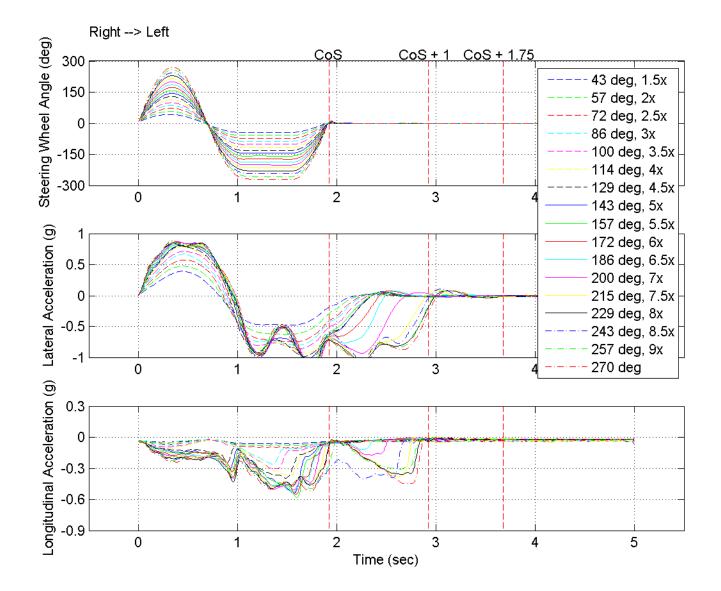
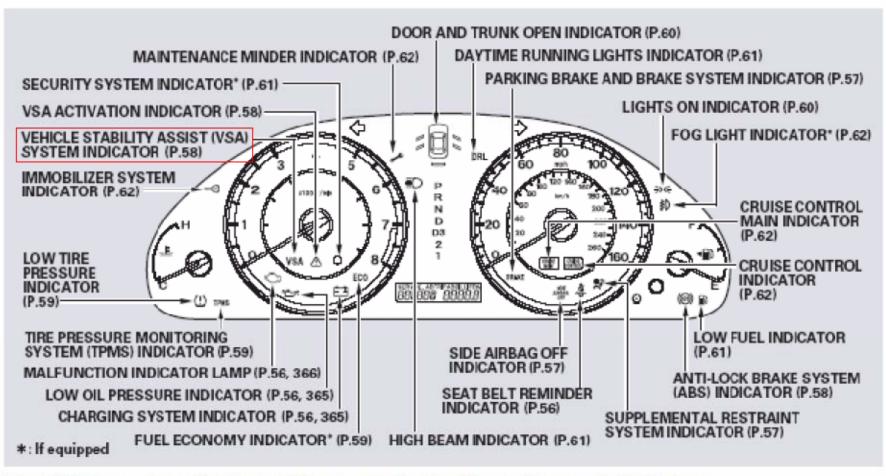



Figure 6.4. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for R-L Series

7.0 OTHER DOCUMENTATION

- 7.1 OWNER'S MANUAL PAGES
- 7.2 VEHICLE ARRIVAL CONDITION REPORT
- 7.3 VEHICLE COMPLETION CONDITION REPORT
- 7.4 SINE WITH DWELL TEST RESULTS
- 7.5 SLOWLY INCREASING STEER TEST RESULTS
- 7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES

7.1 OWNER'S MANUAL PAGES

The U.S. instrument panel is shown. Differences for the Canadian models are noted in the text.

55

Instrument Panel Indicators

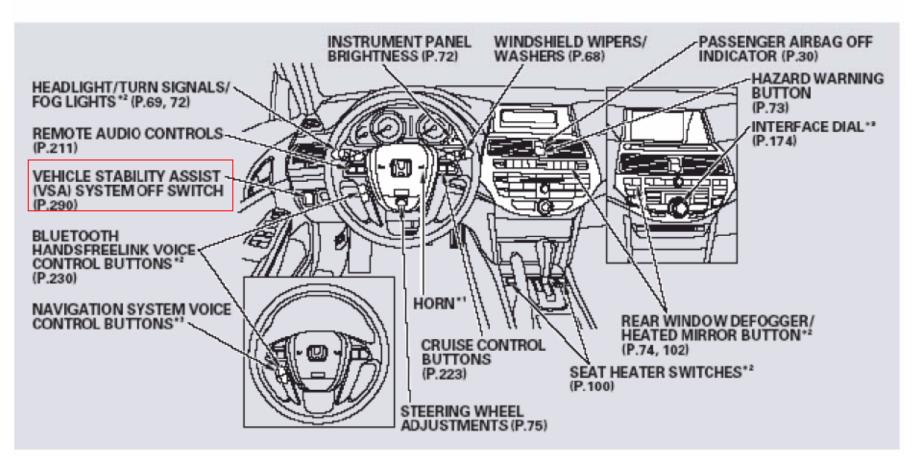
Anti-lock Brake System (ABS) Indicator

This indicator normally comes on for a few seconds when you turn the ignition switch to the ON (II) position. If it comes on at any other time, there is a problem with the ABS. If this happens, have your vehicle checked at a dealer. With this indicator on, your vehicle still has normal braking ability but no anti-lock function. For more information, see page 287. VSA Vehicle Stability Assist (VSA) System Indicator This indicator normally comes on for a few seconds when you turn the ignition switch to the ON (II) position.

If it comes on and stays on at any other time, or if it does not come on when you turn the ignition switch to the ON (II) position, there is a problem with the VSA system. Take your vehicle to a dealer to have it checked. Without VSA, your vehicle still has normal driving ability, but will not have VSA traction and stability enhancement. See page 289 for more information on the VSA system.

VSA Activation Indicator

This indicator has three functions:


- It comes on as a reminder that you have turned off the vehicle stability assist (VSA) system.
- It flashes when VSA is active (see page 289).
- It comes on along with the VSA system indicator if there is a problem with the VSA system.

This indicator normally comes on for a few seconds when you turn the ignition switch to the ON (II) position. For more information, see page 289.

7.1 OWNER'S MANUAL PAGES

Controls Near the Steering Wheel

67

- *1: To use the horn, press the center pad of the steering wheel.
- *2: If equipped
- *3: Only on vehicles equipped with navigation system, refer to the navigation system manual.

Vehicle Stability Assist (VSA®), aka Electronic Stability Control (ESC), System

The vehicle stability assist (VSA) system helps to stabilize the vehicle during cornering if the vehicle turns more or less than desired. It also assists you in maintaining traction while accelerating on loose or slippery road surfaces. It does this by regulating the engine's output and by selectively applying the brakes.

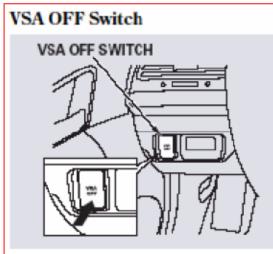
When VSA activates, you may notice that the engine does not respond to the accelerator in the same way it does at other times. There may also be some noise from the VSA hydraulic system. You will also see the VSA activation indicator blink.

The VSA system cannot enhance the vehicle's driving stability in all situations and does not control your vehicle's entire braking system. It is still your responsibility to drive and corner at reasonable speeds and to leave a sufficient margin of safety.

VSA Activation Indicator

When VSA activates, you will see the VSA activation indicator blink.

VSA Vehicle Stability Assist (VSA) System Indicator If this indicator comes on while driving, pull to the side of the road when it is safe, and turn off the engine. Reset the system by restarting the engine. If the VSA system indicator stays on or comes back on while driving, have the VSA system inspected by your dealer.


NOTE: The main function of the VSA system is generally known as Electronic Stability Control (ESC). The system also includes a traction control function. If the indicator does not come on when the ignition switch is turned to the ON (II) position, there may be a problem with the VSA system. Have your dealer inspect your vehicle as soon as possible.

If the low tire pressure indicator or TPMS indicator comes on, the VSA system automatically turns on even if the VSA system is turned off by pressing the VSA OFF switch (see page 290). If this happens, you cannot turn the VSA system off by pressing the VSA OFF switch again.

Without VSA, your vehicle will have normal braking and cornering ability, but it will not have VSA traction and stability enhancement.

7.1 OWNER'S MANUAL PAGES

Vehicle Stability Assist (VSA*), aka Electronic Stability Control (ESC), System

This switch is under the driver's side vent. To turn the VSA system on and off, press and hold it until you hear a beep.

When VSA is off, the VSA activation indicator comes on as a reminder. Press and hold the switch again. It turns the system back on. VSA is turned on every time you start the engine, even if you turned it off the last time you drove the vehicle.

In certain unusual conditions when your vehicle gets stuck in shallow mud or fresh snow, it may be easier to free it with the VSA temporarily switched off. When the VSA system is off, the traction control system is also off. You should only attempt to free your vehicle with the VSA off if you are not able to free it when the VSA is on.

Immediately after freeing your vehicle, be sure to switch the VSA on again. We do not recommend driving your vehicle with the VSA and traction control systems switched off.

VSA and Tire Sizes

Driving with varying tire or wheel sizes may cause the VSA to malfunction. When replacing tires, make sure they are of the same size and type as your original tires (see page 344).

If you install winter tires, make sure they are the same size as those that were originally supplied with your vehicle. Exercise the same caution during winter driving as you would if your vehicle was not equipped with VSA.

290

7.2 VEHICLE ARRIVAL CONDITION REPORT

CONTRACT NO.: DTNH22-08-D-00098 DATE:

From: <u>Automotive Allies</u>	Purpose 🗵 Initial	Receipt
	Recei	ved via Transfer
To: Dynamic Research, Inc	Prese	nt Vehicle Condition
Vehicle VIN: <u>1HGCP2F80AA083721</u>	NHTSA NO.:	CA5307
Model Year: <u>2010</u> 0	Odometer Reading:	<u>19</u> Miles
Make <u>Honda</u>	Body Style:	Passenger Car
Model: <u>Accord</u>	Body Color:	Silver
Manufacture Date: <u>1/10</u>	Dealer:	Automotive Allies
GVWR (kg/lb) <u>2010/4431</u>	Price:	Leased

- X All options listed on the "Window Sticker" are present on the test vehicle
- X Tires and wheel rims are new and the same as listed
- X There are no dents or other interior or exterior flaws
- The vehicle has been properly prepared and is in running condition
- The glove box contains an owner's manual, warranty document, consumer information, and extra set of keys
- X Proper fuel filler cap is supplied on the test vehicle
- X Place vehicle in storage area
- ☑ Inspect the vehicle's interior and exterior, including all windows, seats, doors, etc., to confirm that each system is complete and functional per the manufacturer's specifications. Any damage, misadjustment, or other unusual condition that could influence the test program or test results shall be recorded. Report any abnormal condition to the NHTSA COTR before beginning any test.

NOTES: No extra key

RECORDED BY:	<u>J Lenkeit</u>	DATE RECORDED:	2/19/2010
APPROVED BY:	<u>B Kebschull</u>	DATE APPROVED:	2/22/2010

7.3 VEHICLE COMPLETION CONDITION REPORT

CONTRACT NO.: DTN<u>H22-08-D-00098</u> DATE: *3/23/2010*

Vehicle VIN:	1HGCP2F80AA083721	NHTSA NO.:	<u>CA5307</u>
Model Year: 20	<u>010</u>	Odometer Reading:	<u>105</u> Miles
Make: <u>Honda</u>		Body Style:	Passenger Car
Model: <u>Accord</u>		Body Color:	<u>Silver</u>
Manufacture Date	:	Dealer:	
GVWR (kg/lb)	<u>2010 (4431)</u>	Price:	<u>Leased</u>

LIST OF FMVSS TESTS PERFORMED BY THIS LAB: <u>126</u>

- I THERE ARE NO DENTS OR OTHER INTERIOR OR EXTERIOR FLAWS
- ☑ THE VEHICLE HAS BEEN PROPERLY MAINTAINED AND IS IN RUNNING CONDITION
- ☑ THE GLOVE BOX CONTAINS AN OWNER'S MANUAL, WARRANTY DOCUMENT, CONSUMER INFORMATION, AND EXTRA SET OF KEYS

☑ PROPER FUEL FILLER CAP IS SUPPLIED ON THE TEST VEHICLE **REMARKS**:

Equipment that is no longer on the test vehicle as noted on Vehicle Arrival **Condition Report:**

Explanation for equipment removal:

Test Vehicle Condition:

As delivered, as new

RECORDED BY: <u>J Lenkeit</u> DATE RECORDED: <u>3/23/2010</u>

APPROVED BY: *P Broen* DATE APPROVED: 3/23/2010

7.4 SINE WITH DWELL TEST RESULTS

2010 Honda Accord Passenger Car NHTSA No.<u>: CA5307</u> Date of Test : <u>3/3/2010</u> Date Created: <u>3/3/2010</u>

Lat	ateral Stability Test Series No. 1 – Counterclockwise Initial Steer Direction																			
File	SWA @ 5deg Ct	MES	Time @ 5deg	cos	Time @ COS	MO S	Time @ MOS	YRR1	YR1	YRR 1 Ct	YRR 175	YR175	YRR17 5 Ct	2nd Yaw Peak	2nd Yaw Peak Ct	Lat Disp	Lat. Acc. 1.07 s	1st SWA Peak	1st SWA Peak Ct	2nd SWA Mean
	(deg)	(mph)	(s)		(s)		(sec)	(%)	(deg/s)		(%)	(deg/s)		(deg/s)		(ft)	(g)	(deg)		(deg)
22	711	50.31	3.546	1091	5.448	847	4.227	-1.51	-0.19	1291	-1.33	-0.17	1441	12.89	944	-4.08	0.38	43.04	775	42.95
23	709	50.53	3.539	1091	5.446	847	4.226	-2.75	-0.46	1291	-2.47	-0.41	1441	16.64	940	-5.34	0.48	57.16	775	56.94
24	708	50.42	3.533	1090	5.444	846	4.225	-0.68	-0.14	1290	-0.84	-0.18	1440	20.98	938	-6.47	0.57	72.09	775	71.77
25	707	50.42	3.53	1090	5.445	846	4.225	-0.78	-0.19	1290	-0.75	-0.19	1440	24.97	932	-7.70	0.62	86.17	775	85.90
26	707	50.36	3.527	1090	5.444	846	4.224	-0.66	-0.20	1290	-0.69	-0.20	1440	29.66	928	-8.68	0.64	99.94	775	99.70
27	707	50.49	3.526	1090	5.444	846	4.225	-1.45	-0.51	1290	-0.89	-0.31	1440	35.07	931	-9.47	0.64	113.97	775	113.76
28	706	50.28	3.525	1090	5.443	846	4.225	0.05	0.02	1290	0.04	0.02	1440	39.21	927	-9.96	0.68	129.09	775	128.87
29	706	50.53	3.524	1090	5.443	846	4.225	0.07	0.03	1290	-0.05	-0.02	1440	43.41	930	-10.40	0.65	142.97	775	142.87
30	706	50.36	3.523	1090	5.443	847	4.226	0.09	0.04	1290	-0.18	-0.08	1440	45.08	929	-10.57	0.72	157.09	775	156.78
31	706	50.37	3.523	1090	5.443	846	4.225	-0.01	0.00	1290	-0.36	-0.18	1440	48.87	931	-10.82	0.71	171.93	775	171.76
32	706	50.41	3.523	1090	5.443	847	4.226	-0.18	-0.09	1290	-0.35	-0.18	1440	51.41	932	-11.03	0.70	185.98	775	185.76
33	706	50.43	3.522	1090	5.442	847	4.226	-0.22	-0.12	1290	-0.08	-0.04	1440	53.68	933	-11.01	0.71	199.86	775	199.70
34	706	50.4	3.523	1090	5.443	847	4.226	0.14	0.07	1290	-0.19	-0.10	1440	54.04	930	-11.12	0.77	213.78	775	213.73
35	706	50.36	3.523	1090	5.442	847	4.226	0.10	0.06	1290	-0.35	-0.19	1440	55.42	931	-10.95	0.78	228.85	775	228.85
36	706	50.46	3.523	1090	5.443	847	4.227	0.96	0.55	1290	-0.19	-0.11	1440	57.51	933	-11.07	0.80	242.74	775	242.91
37	706	50.39	3.524	1090	5.444	847	4.227	0.28	0.16	1290	-0.19	-0.11	1440	58.94	931	-11.08	0.79	256.64	776	256.84
38	706	50.58	3.523	1090	5.442	847	4.226	0.01	0.01	1290	-0.38	-0.22	1440	58.11	929	-11.07	0.81	269.65	776	269.76

7.4 SINE WITH DWELL TEST RESULTS

NHTSA No.: <u>CA5307</u> Date of Test : <u>3/3/2010</u> Date Created: <u>3/3/2010</u>

Lat	ateral Stability Test Series No. 2 – Clockwise Initial Steer Direction																			
File	SWA @ 5deg Ct	MES	Time @ 5deg	cos	Time @ COS	MO S	Time @ MOS	YRR1	YR1	YRR 1 Ct	YRR 175	YR175	YRR17 5 Ct	2nd Yaw Peak	2nd Yaw Peak Ct	Lat Disp	Lat. Acc. 1.07 s	1st SWA Peak	1st SWA Peak Ct	2nd SWA Mean
	(deg)	(mph)	(s)		(s)		(sec)	(%)	(deg/s)		(%)	(deg/s)		(deg/s)		(ft)	(g)	(deg)		(deg)
39	710	50.46	3.545	1091	5.446	847	4.228	-0.68	0.09	1291	-0.72	0.10	1441	-13.29	942	4.05	-0.38	43.67	775	43.46
40	709	50.25	3.537	1090	5.445	847	4.226	-0.30	0.05	1290	0.03	0.00	1440	-17.84	942	5.19	-0.47	57.65	775	57.51
41	708	50.48	3.533	1090	5.444	847	4.226	-0.77	0.17	1290	0	0.00	1440	-22.36	940	6.35	-0.55	72.55	775	72.43
42	707	50.36	3.53	1090	5.444	847	4.226	-1.03	0.27	1290	-0.92	0.24	1440	-26.16	931	7.32	-0.59	86.65	775	86.54
43	708	49.42	3.533	1091	5.449	848	4.231	-0.76	0.23	1291	-0.52	0.16	1441	-30.69	934	8.22	-0.61	100.65	776	100.29
44	707	50.51	3.526	1090	5.444	847	4.226	-0.34	0.12	1290	0.06	-0.02	1440	-36.43	934	9.09	-0.62	114.64	775	114.35
46	706	50.4	3.523	1090	5.443	846	4.225	-0.27	0.11	1290	-0.14	0.06	1440	-40.53	932	9.41	-0.69	129.83	775	129.52
47	706	50.33	3.523	1090	5.443	846	4.225	-0.32	0.15	1290	0.04	-0.02	1440	-45.49	935	9.91	-0.63	143.91	775	143.37
48	706	50.39	3.523	1090	5.443	846	4.225	-0.31	0.15	1290	0.04	-0.02	1440	-49.5	936	10.24	-0.59	157.86	775	157.44
49	706	50.45	3.522	1090	5.444	846	4.225	0.00	0.00	1290	0.16	-0.09	1440	-54.02	940	10.65	-0.48	172.84	775	172.33
50	706	50.46	3.522	1090	5.445	847	4.226	0.42	-0.24	1290	-0.04	0.02	1440	-56.81	940	10.82	-0.50	186.84	775	186.40
51	706	50.39	3.522	1090	5.444	847	4.226	1.02	-0.61	1290	0.18	-0.11	1440	-60.01	942	10.96	-0.44	200.84	775	200.22
52	706	50.52	3.522	1090	5.443	846	4.225	-3.23	2.01	1290	0.2	-0.12	1440	-62.32	942	10.99	-0.47	214.94	775	214.08
53	706	50.46	3.522	1090	5.442	847	4.226	-7.07	4.54	1290	-0.27	0.17	1440	-64.31	942	11.10	-0.49	229.98	775	229.15
54	706	50.5	3.523	1090	5.445	847	4.226	-4.26	2.84	1290	-0.03	0.02	1440	-66.63	943	11.12	-0.51	243.94	775	243.15
55	706	50.43	3.523	1091	5.446	847	4.226	-6.43	4.34	1291	-0.14	0.10	1441	-67.45	940	11.16	-0.57	257.78	775	257.24
56	706	50.34	3.523	1090	5.444	847	4.226	-7.87	5.43	1290	-0.08	0.06	1440	-68.99	940	11.28	-0.59	270.62	776	270.24

7.5 SLOWLY INCREASING STEER TEST RESULTS

2010 Honda Accord Passenger Car NHTSA No.: CA5307 Date of Test: 3/3/2010 Date Created: 3/3/2010

File	EventPt	DOS	MES	Mean SPD	AYcount_3	THETAENCF_3	AYCG_CD2_3	r_squared	ZeroBegin	ZeroEnd
			(mph)	(mph)		(deg)	(g)			
11	623	1	49.737	49.8463	1130	-28.6997	-0.30852	0.982467	423	623
12	700	1	49.857	49.90932	1132	-28.6851	-0.30008	0.998807	500	700
13	700	1	49.954	49.87893	1137	-28.9936	-0.29448	0.997773	500	700
14	722	0	49.979	49.94619	1120	28.12899	0.295936	0.997894	522	722
15	696	0	49.787	49.8006	1132	28.68067	0.30388	0.995064	496	696
16	700	0	49.805	49.92895	1120	28.15335	0.299434	0.998452	500	700
Averages 28.6 0.300388								•		

Averages

28.6

0.300388

Scalars	Steering Angles (deg)
1.5	43
2.0	57
2.5	72
3.0	86
3.5	100
4.0	114
4.5	129
5.0	143
5.5	157

Scalars	Steering Angles (deg)
6.0	172
6.5	186
7.0	200
7.5	214
8.0	229
8.5	243
9.0	257
9.4	270

7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES

Vehicle: 2010 Honda Accord P		da Accord Passenger Car	NHTSA No.:	CA5307
Wheelbase	110.2	Inches	Faro Arm S/N:	U08-05-08-06636
Measureme	ent date:	2/26/2010	Certification date:	8/18/2009

CMM Measurements

Coordinate system: SAE (X,Y,Z positive forward, to the right, and downward, respectively) Origin defined at 48" point on lateral arm of measurement fixture, projected onto the ground plane

	e 8. e anta prante	•	
	Ref X	Ref Y	Ref Z
M_PLANE001_Ground_Plane	-	-	0.000
M_Line_Y_Axis	-1.538	-3.469	0.000
M_Point_48_Ref	0.000	0.000	-
M_CIRCLE001_I_Left_Rear_Wheel_Axle	-41.989	12.576	-12.618
M_Point_IMU_side	-1.455	46.305	-18.048
M_Point_ROOF	-	-	-58.452
Motion Pak reference point taken from mid height of unit left side			
Motion Pak Width = 3.05" ==> 1/2 W = 1.525			
Motion_PAK_Location	-1.455	47.830	-18.048

Measurement Notes

1. The Faro arm is positioned just to the left of the vehicle, near the rear door.

2. A "centerline jig" is used in the Faro arm measurement. The jig consists of a long beam with a 4 ft lateral arm that is perpendicular to the beam. The jig is placed on the ground underneath the vehicle with the long beam positioned along the centerline of the vehicle, such that the lateral arm extends to the left, slightly forward of the left rear tire. The lateral arm has a marked indentation point which is located 48.00" from the edge of the centerline beam.

3. The Faro arm is used to make the following measurements:

- Three points on the ground, which establishes the ground plane.
- Two points along the lateral arm, and projected onto the ground plane. This establishes the y axis.
- One point at the 48 inch reference point on the lateral arm. This establishes the origin.
- Three points on the left rear wheel or wheel cover. The Faro arm then computes the center point of the wheel.

- One point to establish the height of the highest point on the roof of the vehicle.

Coordinate Measurements Calculated for S7D (Matlab Program)

Coordinate system: X,Y,Z positive rearward, to the right, and upward, respectively

Origin defined as follows: X axis: front axle, Y axis: vehicle centerline, Z axis: ground plane

	Ref X	Ref Y	Ref Z
Motion_PAK_Location in S7D (Matlab program) coordinate system	69.666	-0.170	18.048

Calculation Notes:

1. X axis value is the difference between the wheelbase and the calculated distance from the rear axle centerline to the IMU (the value must be positive and less than the wheelbase).

2. Y axis value is -48.00 (the Y axis offset of the measurement origin in the S7D coordinate system) plus the measured Y axis value (a negative value indicates the IMU is to the left of the vehicle centerline, and a positive value indicates it is to the right)

3. Z axis value is from the ground plane up to the center of the IMU (value must be positive).