126-TRC-10-011

SAFETY COMPLIANCE TESTING FOR FMVSS 126 Electronic Stability Control Systems

> Toyota Motor Corporation 2010 Lexus GX460 NHTSA No. CA5109

TRANSPORTATION RESEARCH CENTER INC. 10820 State Route 347 East Liberty, Ohio 43319

January 14, 2011

FINAL REPORT

Prepared Under Contract No.: DTNH22-07-D-00060 Task Order No.: 0084

U. S. DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Enforcement Office of Vehicle Safety Compliance 1200 New Jersey Avenue, SE West Building, 4th Floor (NVS-221) Washington, DC 20590 Prepared for the Department of Transportation, National Highway Traffic Safety Administration, under Contract No. <u>DTNH22-07-D-00060</u>, Task Order No. 0084.

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products of manufacturers.

Prepared by: _ Alan Ida Approved by Ken Webster 01 Approval Date:

FINAL REPORT ACCEPTANCE BY OVSC:

Accepted by: Acceptance Date

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
126-TRC-10-011		
4. Title and Subtitle		5. Report Date
Final Report of FMVSS 126 Compl MPV, NHTSA No. CA5109.	iance Testing of 2010 Lexus GX460	January 14, 2011
		6. Performing Organization Code
		TRC 20100404 / 3000
7. Author(s)		8. Performing Organization Report No.
Alan Ida, Project Engineer Ken Webster, Manager, DDO F	Project Operations	N/A
9. Performing Organization Name	e and Address	10. Work Unit No.
Transportation Research Cent 10820 State Route 347	er Inc.	11. Contract or Grant No.
East Liberty, OH 43319		Theomatic of Grant No.
		DTNH22-07-D-00060
12. Sponsoring Agency Name and	Address	13. Type of Report and Period Covered
U.S. Department of Transporta	tion	Final test report
National Highway Traffic Safet	y Administration	April 30, 2010 to January 14, 2011
Enforcement Office of Vehicle Safety Compl	liance	
1200 New Jersev Avenue, SE.		
West Building, 4 th Floor (NVS-	221)	
Washington, D.C. 20590		14. Sponsoring Agency Code
		14. Opensoning Agency Code
		N/A
15. Supplementary Notes		
16. Abstract		
		ccordance with the specifications of the Office of Vehicle Safet
		/SS No. 126 compliance. In April 2010, Toyota began a reca 460 vehicles to reprogram the ESC control algorithm. The test
vehicle in this report <u>did</u> have the re		
Test failures identified were as follo	ows: None	
17. Key Words		18. Distribution Statement
Compliance Testing		Copies of this report are available from:
Safety Engineering FMVSS 126		NHTSA Technical Information Services (TIS)
		(NPO 411)
		200 New Jersey Avenue, SE
		Washington, D.C. 20590 Email: tis@nhtsa.dot.gov
		FAX: (202) 493-2833
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages 61 22.
Unclassified	Unclassified	
<u>1</u>	•	

TABLE OF CONTENTS

SECTION		PAGE
1.0	PURPOSE OF COMPLIANCE TEST	1
2.0	TEST PROCEDURE AND DISCUSSION OF RESULTS	1
3.0	TEST DATA	5
4.0	TEST EQUIPMENT LIST AND CALIBRATION INFORMATION	27
5.0	PHOTOGRAPHS	28
6.0	DATA PLOTS	46
7.0	OTHER DOCUMENTATION 7.1 Owner's Manual Pages 7.2 Vehicle Arrival Condition Report 7.3 Vehicle Completion Condition Report 7.4 Sine with Dwell Test Results 7.5 Slowly Increasing Steer Test Results 7.6 Inertial Sensing System Location Coordinates	51 52 56 57 58 60 61

1.0 PURPOSE OF TEST

The purpose of this test is to determine if the test vehicle, a MY 2010 Lexus GX460 meets the minimum equipment and performance requirements stated in Federal Motor Vehicle Safety Standard (FMVSS) 126, "Electronic Stability Control Systems" after the ESC ECU control algorithm was reprogrammed (NHTSA Recall Campaign No. 10V159000)

This standard establishes performance and equipment requirements for Electronic Stability Control (ESC) Systems installed in passenger cars, multipurpose passenger vehicles, trucks, and buses with a gross vehicle weight rating of 4,536 kilograms or less.

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS

Testing of the MY 2010 Lexus GX460 was conducted at Transportation Research Center Inc. (TRC Inc.) in accordance with NHTSA TP-126-02, dated November 19, 2008.

The vehicle was inspected to ensure it was equipped with an ESC System that:

- Augments vehicle directional stability by applying and adjusting brake torques individually at each wheel to induce a correcting yaw moment to a vehicle;
- Is computer controlled with the computer using a closed-loop algorithm to limit vehicle oversteer and to limit vehicle understeer;
- Has a means to determine the vehicle's yaw rate and to estimate its side slip or side slip derivative with respect to time;
- Has a means to monitor driver steering inputs;
- Has an algorithm to determine the need, and a means to modify engine torque, as necessary, to assist the driver in maintaining control of the vehicle, and
- Is operational over the full speed range of the vehicle (except at vehicle speeds less than 20km/h (12.4mph), when being driven in reverse, or during system initialization).

The vehicle was subjected to a 0.7Hz Sine with Dwell (SWD) Steering Maneuver to ensure that it would meet the stability and responsiveness requirements of the standard as follows:

- At 1.0 second after completion of a required sine with dwell steering input, the yaw rate of the vehicle must not exceed 35 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).
- At 1.75 seconds after completion of a required sine with dwell steering input, the yaw rate of the vehicle must not exceed 20 percent of the first peak value of yaw

rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).

- The lateral displacement of the vehicle center of gravity with respect to its initial straight path must be at least 1.83 m (6 feet) (for vehicles with a GVWR of 3,500kg (7,716 lb) or less) when computed 1.07 seconds after the Beginning of Steer (BOS) at the specified steering wheel angles.

The vehicle's ESC System appears to meet the performance requirements as required by FMVSS 126. In April 2010, Toyota began a recall campaign (NHTSA Campaign No. 10V159000) on the MY2010 Lexus GX460 vehicles to reprogram the ESC control algorithm. The test vehicle in this report did have the reprogrammed control algorithm. The test results are summarized on the following summary sheet.

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS ... continued

DATA SUMMARY (Sheet 1 of 2)

VEHICLE MAKE/MODEL/BODY STYLE:	Lexus / GX460 / MPV
VEHICLE NHTSA NO.: CA5109	VIN: JTJBM7FX7A5010469
VEHICLE TYPE: MPV DATE	OF MANUFACTURE: 03/10
LABORATORY: Transportation Resea	arch Center Inc.
REQUIREMENTS	PASS/FAIL
ESC Equipment and Operational Characteris	stics (Data Sheet 2)
The vehicle is to be equipped with an ESC Sys and operational characteristics requirements. (
ESC Malfunction Telltale (Data Sheet 3)	
The vehicle is equipped with a telltale that indic ESC System malfunctions. (S126, S5.3)	cates one or more PASS
"ESC Off" and other System Controls and T	elltale (Data Sheet 3 & 4)
The vehicle is equipped with an ESC off telltale has been put into a mode that renders the ESC satisfy the performance requirements of the sta exists. (S5.5.1)	C System unable to
If provided, off control and other system contro off telltale meets the operational requirements S5.4.2, S5.5.4, and S5.5.9)	

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS ... continued

DATA SUMMARY (Sheet 2 of 2)

REQUIREMENTS

PASS/FAIL

Vehicle Lateral Stability (Data Sheet 8)

Yaw Rate Ratio at 1 second after COS is less than 35% of peak value.	PASS
(S126, S5.2.1)	

Yaw Rate Ratio at 1.75 seconds after COS is less than 20% of peak value. <u>PASS</u> (S126, S5.2.2)

Vehicle Responsiveness (Data Sheet 8)

Lateral displacement at 1.07 seconds after BOS is at least	PASS
1.83 m (6 feet) for vehicles with a GVWR of 3,500kg (7,716 lbs.)	
or less, and 1.52 m (5 feet) for vehicles with a GVWR greater than	
3,500 kg (7,716 lbs.). (S126 S5.2.3)	

ESC Malfunction Warning (Data Sheet 9)

Warning is provided to driver after malfunction occurrence. (S126. S5.3)	PASS
Malfunction telltale stayed illuminated as long as malfunction existed and must extinguish after malfunction was corrected. (S126, S5.3.7)	PASS_

DATA SHEET 1 (Sheet 1 of 2) TEST VEHICLE INSPECTION AND TEST PREPARATION

VEHICLE MAKE/MODEL/BODY STYLE: Lexus / GX460 / MPV			
NHTSA No.: CA5109	TEST DATE: 5-20-10		
VIN: JTJBM7FX7A5010469	MANUFACTURE DATE: 03/10		
GVWR: <u>2,990 KG</u> FRONT GAWR: <u>1,45</u>	<u>0_</u> KG_REAR GAWR <u>1,795_</u> KG		
SEATING POSITIONS: FRONT 2	MIDREAR		
ODOMETER READING AT START OF TEST:	231 (372) Miles (Kilometers)		
DESIGNATED TIRE SIZE(S) FROM VEHICLE LABELING: Front Axle <u>P265 / 60R 18</u> Rear Axle <u>P265 / 60R 18</u>			
INSTALLED TIRE SIZE(S) ON VEHICLE:			
From Tire Sidewall Front Axle	Rear Axle		
Manufacturer and Model Bridgestone Due	eler H/T Bridgestone Dueler H/T		
Tire Size Designation P265 / 60R 18	109H P265 / 60R 18 109H		
Are installed tire sizes same as labeled tire size If no, contact COTR for further guidance.	es? <u>X</u> Yes <u>No</u>		

DRIVE CONFIGURATIONS (MARK ALL THAT APPLY):

 Two Wheel Drive (2WD): () Front Wheel Drive () Rear Wheel Drive

 All Wheel Drive (AWD)

 Four Wheel Drive Automatic – differential not locked full time (4WD Automatic)

 X
 Four Wheel Drive High Gear Unlocked Center Differential

 X
 Four Wheel Drive High Gear Locked Center Differential

 X
 Four Wheel Drive Low Gear Unlocked Center Differential

 X
 Four Wheel Drive Low Gear Unlocked Center Differential

 Other (define
)

DATA SHEET 1 (Sheet 2 of 2) TEST VEHICLE INSPECTION AND TEST PREPARATION

DRIVE CONFIGURATIONS AND MODES: (ex. default, performance, off)

(For each of the vehicle's drive configurations identify available operating modes)

Drive Configuration <u>4WD High Unlocked Center Differential</u> Mode(s) <u>default - ESC On; ESC Off</u>

Drive Configuration <u>4WD High Locked Center Differential</u> Mode(s) <u>ESC On; ESC Off</u>

Drive Configuration_4WD Low Unlocked Center Differential Mode(s) _____ESC Off

Drive Configuration <u>4WD Low Locked Center Differential</u> Mode(s) <u>ESC Off</u>

VEHICLE STABILITY SYSTEMS (Check applicable technologies):

X ESC	X Traction Control	Roll Stability Control
-------	--------------------	------------------------

Active Suspension X Electronic Throttle Control Active Steering

<u>X</u>ABS

List other systems; <u>Electronic Brakeforce Distribution (EBD); Hillstart Assist Control (HAC)</u>, <u>Downhill Assist Control (DAC)</u>

REMARKS:

RECORDED BY:	Alan Ida	DATE:	04-19-10
APPROVED BY:	Jeff Sankey	DATE:	05-25-10

DATA SHEET 2 (Sheet 1 of 2) ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

VEHICLE MAKE/MODEL/BODY STYLE:	Lexus / GX460 / MPV		
NHTSA No.: CA5109	TEST DATE: 04-21-10		
ESC SYSTEM IDENTIFICATION: Manufacturer / Model <u>Advics Co., Ltd. / 472</u>	10-60230 (with DAC or CRAWL, MTS)		
ESC SYSTEM HARDWARE (Check applicable hardware): X Electronic Control Unit X Hydraulic Control Unit X Wheel Speed Sensors X Steering Angle Sensor X Yaw Rate Sensor X Lateral Acceleration Sensor List other components; ESC Buzzer			
ESC SYSTEM OPERATIONAL CHARACTER	ISTICS:		
System is capable of generating brake torques	s at each wheel <u>X</u> Yes (PASS) <u>No (FAIL)</u>		
List and describe component(s): Brake Actu	ator with ESC computer		
System is capable of determining yaw rate	<u>X</u> Yes (PASS) No (FAIL)		
List and describe component(s): Yaw Rate S			
System is capable of monitoring driver steering	g input <u>X</u> Yes (PASS) No (FAIL)		
List and describe component(s): Steering W			
System is capable of estimating side slip or side	de slip derivation <u>X</u> Yes (PASS) No (FAIL)		

List and describe component(s): <u>The ESC system collects wheel speed, lateral acceleration</u> and yaw rate data to estimate the vehicle side slip derivative. Vehicle speed is estimated from the wheel speed and estimated yaw rate is calculated by dividing the lateral acceleration by vehicle speed. The estimated vehicle side slip derivative is obtained as the difference between the estimated yaw rate and the actual yaw rate detected by the yaw sensor. The ESC system estimates vehicle side slip by the integration of the estimated vehicle side slip derivative.

DATA SHEET 2 (Sheet 2 of 2) ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

ESC SYSTEM OPERATIONAL CHARACTERISTICS (continued):

System is capable of modifying engine torque during ESC activation. X Yes (PASS) No (FAIL)

Method used to modify engine torque: <u>The ESC computer outputs an engine output</u> <u>control signal to the ECM. Upon receiving this signal, the ECM effects throttle control</u> to regulate the engine output.

System is capable of activation at speeds of 20 km/h (12.4 mph)	<u>X</u>	Yes (PASS)
and higher.		No (FAIL)

Speed system becomes active. above 15 km/h (8.9 mph)

System is capable of activation during the following driving _____ Yes (PASS) phases (acceleration, deceleration, coasting, and during _____ No (FAIL) activation of ABS or traction control).

Driving phases that the system is capable of activation. <u>The ESC system is capable of activation under acceleration, deceleration, coasting and during activation of ABS or traction control.</u>

Vehicle manufacturer submitted documentation explaining how the <u>X</u> Yes (PASS) ESC system mitigates understeer? <u>No (FAIL)</u>

PASS/FAIL PASS

DATA INDICATES COMPLIANCE

REMARKS:

RECORDED BY:	Alan Ida	DATE:	05-18-10
APPROVED BY:	Jeff Sankey	DATE:	05-25-10

DATA SHEET 3 (Sheet 1 of 2) ESC MALFUNCTION AND OFF TELLTALES

VEHICLE MAKE/MODEL/BODY STYLE:	Lexus / GX460 / MPV
VEHICLE NHTSA NO. <u>CA5109</u>	TEST DATE: 05-21-10
ESC Malfunction Telltale	
Vehicle is equipped with malfunction telltale?	<u>X</u> Yes (Pass) <u>No</u> (Fail)
Telltale Location <u>Instrument cluster, inside</u>	the tachometer
Telltale Color Amber	_
Telltale symbol or abbreviation used.	
Or ESC	Vehicle uses this symbol Vehicles uses this abbreviation Neither symbol or abbreviation is used
If different than identified above, make note of	any message, symbol or abbreviation used.
Is telltale part of a common space?	_Yes <u>X</u> No
Is telltale also used to indicate activation of the	e ESC system? X Yes No

If yes, explain telltale operation during ESC activation: <u>telltale symbol flashes; also the ESC signals an audible alert</u>

3.0 **DATA SHEETS....continued**

DATA SHEET 3 (Sheet 2 of 2) **ESC MALFUNCTION AND OFF TELLTALES**

<u>"ESC OFF" Telltale (if provided)</u>

Vehicle is equipped with "ESC Off" telltale? X Yes No Is "ESC OFF" telltale combined with "ESC Malfunction" telltale utilizing a two part telltale? Yes X No Telltale Location Instrument cluster, inside the tachometer Telltale Color Amber Telltale symbol or abbreviation used. X Vehicle uses this symbol Or ESC OFF Vehicle uses this abbreviation ____Neither symbol or abbreviation is used If different than identified above, make note of any message, symbol or abbreviation used. _____Yes <u>X</u>No Is telltale part of a common space? PASS/FAIL PASS DATA INDICATES COMPLIANCE (Vehicle is compliant if equipped with a malfunction telltale) **REMARKS:**

RECORDED BY:	Alan Ida	DATE:	05-20-10
APPROVED BY:	Jeff Sankey	DATE:	05-25-10

DATA SHEET 4 (Sheet 1 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

"ESC OFF" Controls Identification and Operational Check:

Is the vehicle equipped with a control or controls whose purpose is to deactivate the ESC system or place the ESC system in a mode or modes that may no longer satisfy the performance requirements of the standard?

X Yes No

Type of control or controls provided?		Dedicated "ESC Off" control
(mark all that apply)	Х	Multi-functional control with an
· · · · · · ·		"ESC Off" mode
		Other (describe)

Identify each control location, labeling and selectable modes.

First Control:	Location	Instrument panel,	left of steer	<u>ing column</u>	
	Labeling	Skidding car sym	bol		
	Modes	Traction Control of	off		
		ESC off			
		ESC & Traction C	Control on		
Identify standard or defa	ault drive confi	guration <u>Full</u>	Time 4WD ·	- default	
Verify standard or defau	ult drive configu	uration selected.	<u> </u>	€S	No
Does the "ESC Off" tellt		•		ESC off cor	ntrol or
selection of the "ESC O	ff" mode on the	e multi-function cont			
			<u> </u>	es	No (fail)
					N .
Does the "ESC Off" tellt	•	•		"On" ("Run') to
"Lock" or "Off" and then	back again to	the "On" ("Run") pos			NI (6 11)
			<u> </u>	es	No (fail)
If no, describe how the	off control fund	ctions:			

DATA SHEET 4 (Sheet 2 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

If a multi-function control is provided, cycle through each mode setting on the control and record which modes illuminate the "ESC Off" telltale. Also, for those modes that illuminate the ESC Off" telltale identify if the telltale extinguishes upon cycling the ignition system.

	"ESC Off" telltale	"ESC Off" telltale	
Control Modes	illuminates upon	extinguishes upon	
	activation of control?	cycling ignition?	
	(Yes/No)	(Yes/No)	
ESC & Traction Control on	No	N/A	
Traction Control off	No	N/A	
ESC off	Yes	Yes	

For each mode that illuminates the "ESC Off" telltale, did the telltale extinguish when the ignition was cycled from "On" ("Run") to "Lock" or "Off" and then back again to the "On" ("Run") position?

X Yes No (fail)

Other System Controls that have an ancillary effect on ESC Operation:

Is the vehicle equipped with any ancillary controls that upon activation may deactivate the ESC System or place the ESC System in a mode or modes that may no longer satisfy the performance requirements of the standard?

<u>X</u>Yes <u>No</u>

List and describe each control (i.e. alternate drive configuration selection controls):

System 4WD L	_OW
Control Description	Push switch on center console
Labeling 4WD L	<u>_4 (4Lo – telltale on instrument cluster)</u>
System	N/A
Control Description	N/A
Labeling	N/A
	Control Description Labeling <u>4WD L</u> System Control Description

DATA SHEET 4 (Sheet 3 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

Activate each control listed above and record whether the control illuminates the "ESC Off" telltale. Also, record warnings or messages provided regarding the ESC System.

Ancillary Control	Control Activates "ESC Off" Telltale? (Yes/No)	Warnings or Messages Provided
4WD Low	Yes	Skidding car telltale, 4Lo telltale
N/A	N/A	N/A
N/A	N/A	N/A

For those controls that illuminate the "ESC Off" telltale above identify if the "ESC Off" telltale extinguishes upon cycling the ignition system.

	"ESC Off" telltale extinguishes upon
Ancillary Control	cycling ignition? (Yes/No)
4WD Low	No
N/A	N/A
N/A	N/A

For each control that illuminates the "ESC Off" telltale, did the telltale extinguish when the ignition is cycled from "On" ("Run") to "Lock" or "Off" and then back again to the "On" ("Run") position? If the control activated places the vehicle into a low-range four-wheel drive configuration designed for low-speed, off–road driving, the ESC System may remain turned off after the ignition has been cycled off and then back on and therefore the "ESC Off" telltale may not extinguish.

_____Yes <u>X (See Remarks)</u> No

DATA INDICATES COMPLIANCE:

PASS/FAIL PASS

REMARKS:

The control places the vehicle in low range four wheel drive configuration, which automatically turns off the ESC system and illuminates the ESC off telltale. Upon cycling the ignition the ESC system remains off and the ESC off telltale remains illuminated. This is an acceptable condition, so the vehicle does not fail the ancillary system controls.

RECORDED BY:	Alan Ida	DATE:	05-24-10
APPROVED BY:	Jeff Sankey	DATE:	05-25-10

DATA SHEET 5 (Sheet 1 of 3) VEHICLE AND TEST TRACK DATA

VEHICLE MAKE/MODEL/BODY S	TYLE: Lexus /	GX460 / MPV			
VEHICLE NHTSA NO. CA51	VEHICLE NHTSA NO. <u>CA5109</u> TEST DATE: <u>5/20/10</u>				
Test Track Requirements:	Fest Surface Slope (0-1 %) Peak Friction Coefficient (at				
		,			
Full Fluid Levels: Fuel X	Coolant <u>X</u> Othe	r Fiulds <u>wasner</u> (specify)			
Tire Pressures: Front Axle 2	2 <u>20 </u> kPa Rear Axle <u> 2</u>	<u>20 </u> kPa			
Actual: LF: <u>220</u> kPa F	RF: <u>220.0 </u> kPa LR: <u>220.</u>	<u>0 </u> kPa RR: <u>220.0 </u> kPa			
Vehicle Dimensions: Track Width <u>158.8</u> cm Wheelbase <u>279.6</u> cm Roof Height <u>178.2</u> cm					
Vehicle weight ratings: GAWR Front <u>1,450 kg</u> GAWR Rear <u>1,795 kg</u>					
Unloaded Vehicle Weight (UVW)					
Front Axle1,219.8_kg Le	eft Front <u>617.6</u> kg	Right Front <u>602.2</u> kg			
Rear Axle <u>1,169.6</u> kg Le	eft Rear <u>600.6</u> kg	Right Rear <u>569.0 kg</u>			
Total UVW <u>2,389.4</u> kg					
Baseline Weight and Outrigger Selection (only for MPVs, Trucks, Buses)					

Calculated Baselin	<u>2,462.4</u> kg	
55 1	uired ("Standard" or "Heavy")	Standard
Standard -	Baseline weight under 2,722 kg (6	,000 lbs.)
Heavy -	Baseline weight equal to or greate	r than 2,722 kg (6,000 lbs.)

DATA SHEET 5 (Sheet 2 of 3) VEHICLE AND TEST TRACK DATA

UVW with Outriggers (only for MPVs, Trucks, Buses)

Front Axle1,246.8 kgLeft Front630.6 kgRight Front616.2 kgRear Axle1,220.4 kgLeft Rear628.4 kgRight Rear592.0 kg

Total UVW w/ Outriggers 2,467.2 kg

Total Loaded Vehicle Weight w/ Driver, Instrumentation and Ballast

Front Axle	<u>1,337.8</u> kg	Left Front	<u>681.8</u> kg	Right Front	<u>656.0</u> kg
Rear Axle	<u>1,297.4</u> kg	Left Rear_	<u>663.8</u> kg	Right Rear	<u>633.6</u> kg

Total Loaded Vehicle Weight 2,635.2 kg

DATA SHEET 5 (Sheet 3 of 3) VEHICLE AND TEST TRACK DATA

Center of Gravity and Inertial Sensing System Location at Loaded Vehicle Condition

x-distance (longitudinal)	Point of reference is the front axle centerline. (Positive from front axle toward rear of vehicle.)
y-distance (lateral)	Point of reference is the vehicle centerline. (Positive from the center toward the right.)
z-distance (vertical)	Point of reference is the ground plane. (Positive from the ground up.)

Locations:

	Center of Gravity	Inertial Sensing System
x-distance	<u> 137.6 </u> cm	<u> </u>
y-distance	<u>-1.69</u> cm	<u>-1.05</u> cm
z-distance	<u> </u>	<u> </u>

Distance Between Ultrasonic Sensors:

TEST TRACK DATA MEETS REQUIREMENTS:	YES/NO	YES	
If no, explain:			

194.2 cm

REMARKS:

RECORDED BY:	Alan Ida	DATE:	5/20/10
APPROVED BY:	Jeff Sankey	DATE:	5/31/10

DATA SHEET 6 (Sheet 1 of 3) BRAKE AND TIRE CONDITIONING

VEHICLE MAKE/MODEL/BODY	STYLE:	Lexus / GX4	60 / MPV			
VEHICLE NHTSA No.: CA	5109					
Measured Cold Tire Pressures:	LF <u>220</u>	_KPA	RF <u>220</u>	_KPA		
	LR <u>220</u>	_KPA	RR <u>220</u>	KPA		
Wind Speed <u>4.0</u> m/sec (10m/sec (22mph) max for passenger cars; 5m/s (11mph) max. for MPVs and Trucks)						
Ambient Temperature (7°C (45°F) - 40°C (104°F)) <u>13.3</u> °C						
Brake Conditioning Time;	9:55 AM		Date; 04-21-	-10*		
56 km/h (35 mph) Brake S	Stops					
Number of stops ex	xecuted (10 re	quired)	10	_stops		
Observed decelera	tion rate range	e (.5g target)	0.45 – 0.49	_ 9		
72 km/h (45 mph) Brake S	Stops					
Number of stops ex	xecuted (3 req	uired)	3	_stops		
Number of stops A	BS activated (3 required)	3	_stops		
Observed decelera	tion rate range	9	1.0 – 1.15	_ 9		
72 km/h (45 mph) Brake (Cool Down Per	iod				
Duration of cool do	wn period (5 n	ninutes min.)	5:40	_minutes		

*Note: Brake Conditioning was performed on 4/21/10, while conducting the Pre-ECU Flash testing.

DATA SHEET 6 (Sheet 2 of 3) TIRE CONDITIONING

Tire Conditioning Series No. 1		Time:	8:55 AM	_	Date:	5/20/10
Measured Tire Pressures:	LF	234	_kPa	RF	234	<u>k</u> Pa
	LR	228	_kPa	RR_	234	<u>k</u> Pa

Wind Speed <u>1.3</u> m/sec

(10m/sec (22mph) max for passenger cars; 5m/s (11mph) max. for MPVs and Trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) <u>16.1</u> °C

30 meter (100 ft) Diameter Circle Maneuver							
Test RunsSteering DirectionTarget Lateral Acceleration (g)Observed Lateral Acceleration (g)Observed Vehicle Speed (kph)							
1-3	Clockwise	0.5-0.6	0.55	30.6			
4-6	Counterclockwise	0.5-0.6	0.55	30.6			

1 Hz 3 Cycle Sinusoidal Steering Maneuver to Determine Steering Wheel Angle For 0.5-0.6g Lateral Acceleration							
Test RunsVehicle Speed Km/h(mph)Steering Wheel Angle (degrees)Target Peak Lateral 							
1	56 <u>+</u> 2 (35 <u>+</u> 1)	30	0.5-0.6	0.2			
2	56 <u>+</u> 2 (35 <u>+</u> 1)	100	0.5-0.6	0.55			
3	56 <u>+</u> 2 (35 <u>+</u> 1)		0.5-0.6				
4	56 <u>+</u> 2 (35 <u>+</u> 1)		0.5-0.6				

Steering wheel angle that corresponds to a peak 0.5–0.6g lateral acceleration; <u>100</u> degrees

1 Hz 10 Cycle Sinusoidal Steering Maneuver								
Test Runs	Vehicle Speed Km/h (mph)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)					
1 - 3	56 <u>+</u> 2 (35 <u>+</u> 1)	100 (cycles 1-10)	0.5-0.6	0.54				
4	56 <u>+</u> 2 (35 <u>+</u> 1)	100 (cycles 1-9)	0.5-0.6	0.54				
4	$50 \pm 2 (50 \pm 1)$	200 (cycle 10)*	NA	0.82				

* The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9.

DATA SHEET 6 (Sheet 3 of 3) TIRE CONDITIONING

Tire Conditioning Series No. 2		Time:	11:20 AM		Date:	5/20/10
Measured Tire Pressures:	LF	238	_kPa	RF	238	_kPa
	LR	231	_kPa	RR	241	_kPa

Wind Speed <u>1.8</u> m/sec (10m/sec (22mph) max for passenger cars; 5m/s (11mph) max. for MPVs and Trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) _____21.1 °C

30 meter (100 ft) Diameter Circle Maneuver							
Test RunsSteering DirectionTarget Lateral Acceleration (g)Observed Lateral Acceleration (g)Observed Vehicle Speed							
1-3	clockwise	0.5-0.6	0.55	30.6			
4-6	counterclockwise	0.5-0.6	0.55	30.6			

1 Hz 3 Cycle Sinusoidal Steering Maneuver to Determine Steering Wheel Angle For 0.5-0.6g Lateral Acceleration							
Test RunsVehicle Speed Km/h (mph)Steering Wheel Angle (degrees)Target Peak Lateral 							
1	56 <u>+</u> 2 (35 <u>+</u> 1)	30	0.5-0.6	N/A			
2	56 <u>+</u> 2 (35 <u>+</u> 1)		0.5-0.6				
3	56 <u>+</u> 2 (35 <u>+</u> 1)		0.5-0.6				
4	56 <u>+</u> 2 (35 <u>+</u> 1)		0.5-0.6				

Steering wheel angle that corresponds to a peak 0.5–0.6g lateral acceleration;	<u>100</u> degrees
--	--------------------

1 Hz 10 Cycle Sinusoidal Steering Maneuver						
Test Runs	Vehicle Speed (mph)	Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)		
1 - 3	56 <u>+</u> 2 (35 <u>+</u> 1)	100 (cycles 1-10)	0.5-0.6	0.53		
Λ	56 <u>+</u> 2 (35 <u>+</u> 1)	100 (cycles 1-9)	0.5-0.6	0.53		
4	<u>50+</u> 2 (55 <u>+</u> 1)	200 (cycle 10)*	NA	0.82		

* The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9.

REMARKS:

RECORDED BY:	Alan Ida	DATE:	5/20/10
APPROVED BY:	Jeff Sankey	DATE:	5/31/10

DATA SHEET 7 (1 of 2) SLOWLY INCREASING STEER (SIS) MANEUVER

VEHICLE MAKE/MODEL/BODY STYLE:	Lexus / GX460 / MPV
VEHICLE NHTSA NO. CA5109	TEST DATE: <u>5/20/10</u>
Wind Speed <u>0.4</u> m/sec (10m/sec (22mph) max for passenger c	ars; 5m/s (11mph) max. for MPVs and Trucks)
Ambient Temperature (7°C (45°F) - 40°C	C (104°F)) <u>17.2</u> °C
Static Data File Number	0009
Selected Drive Configuration:	4WD High (H4)
Selected Mode:	default – ESC On

Preliminary Left Steer Maneuver:

Lateral Acceleration measured at 30 degrees steering wheel angle (ay,30 degrees)

 $a_{y,30 \text{ degrees}} = 0.34 \text{ g}$

Assuming a linear relationship the following ratio should be used to calculate the steering wheel angle at .55g.

$30 \text{degrees} _ \delta_{SIS}$	$\delta_{S/S} = $	48.5	_ degrees @ 0.55g
$a_{y,30 degrees} = 0.55 g$	$\delta_{SIS} = $	50.0	_ degrees (rounded)

Steering Wheel Angle at Corrected 0.3 g Lateral Acceleration:

Maneuver #	Initial Steer Direction	Time Clock (5 min max between runs)	Steering Wheel Angle to nearest 0.1 degree (degrees)	All Conditions Met?
0011	Left	9:12 AM	-32.7	Yes
0012	Left	9:19 AM	-31.5	Yes
0013	Left	9:22 AM	-32.6	Yes
0014	Right	9:25 AM	33.1	Yes
0015	Right	9:28 AM	33.1	Yes
0016	Right	9:31 AM	32.6	Yes

DATA SHEET 7 (2 of 2) SLOWLY INCREASING STEER (SIS) MANEUVER

Average Overall Steering Wheel Angle:

$$\begin{split} \delta_{0.3 \text{ g, overall}} &= \left(\left| \begin{array}{c} \delta_{0.3 \text{ g, left (1)}} \right| + \left| \begin{array}{c} \delta_{0.3 \text{ g, left (2)}} \right| + \left| \begin{array}{c} \delta_{0.3 \text{ g, left (3)}} \right| + \delta_{0.3 \text{ g, right (1)}} + \delta_{0.3 \text{ g, right (2)}} + \delta_{0.3 \text{ g,$$

 $\delta_{0.3 \text{ g, overall}} = 32.6 \text{ degrees}$ [to nearest 0.1 degree]

REMARKS:

RECORDED BY:	Alan Ida	DATE:	5/20/10
APPROVED BY:	Jeff Sankey	DATE:	5/31/10

DATA SHEET 8 (1 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

VEHICLE MAKE/MODEL/BODY STYLE	: Lexus / GX460 / MPV
VEHICLE NHTSA NO. <u>CA5109</u>	TEST DATE: <u>5/20/10</u>
Tire conditioning completed ESC system is enabled On track calibration checks have been co On track static data file for each sensor of	•
Selected Drive Configuration: Selected Mode:	4WD High (H4) default – ESC On
Overall steering wheel angle ($\delta_{0.3 \text{ g, overall}}$)	<u>32.6</u> degrees
Static Data File Number	0021

Lateral Stability Test Series No. 1 – Counterclockwise Initial Steer Direction

	Clock Time	Commar Steering V	Vheel		Yaw Rate	s	at 1.0 s	RR ec after		RR sec after
		Angle	9 ¹	(degrees/s	ec)	CC	DS	C	OS
	(1.5 – 5	(degree	es)		-	-	[< 3	5%]	[< 2	20%]
Maneuver #	min between each test run)	Scalar	Angle	$\dot{\psi}_{\it Peak}$	$\dot{\psi}_{ m 1.0sec}$	$\dot{\psi}_{1.75 m sec}$	%	Pass/ Fail	%	Pass/ Fail
0022	11:38 am	1.5 * δ _{0.3 g}	49	12.22	-0.15	-0.03	-1.19	Pass	-0.27	Pass
0023	11:41 am	2.0* δ _{0.3 g}	65	16.51	0.04	0.01	0.23	Pass	0.08	Pass
0024	11:47 am	2.5* δ _{0.3 g}	82	21.31	0.10	-0.08	0.47	Pass	-0.39	Pass
0025	11:51 am	3.0* δ _{0.3 g}	98	26.16	-0.18	-0.27	-0.71	Pass	-1.02	Pass
0026	11:54 am	3.5 * δ _{0.3 g}	114	31.07	-0.22	-0.18	-0.70	Pass	-0.56	Pass
0027	11:58 am	4.0* δ _{0.3 g}	130	36.49	-0.28	-0.23	-0.77	Pass	-0.64	Pass
0028	12:01 pm	4.5 * δ _{0.3 g}	147	24.39	-0.30	-0.31	-1.24	Pass	-1.26	Pass
0029	12:04 pm	5.0* δ _{0.3 g}	163	25.75	-0.30	-0.17	-1.17	Pass	-0.67	Pass
0030	12:08 pm	5.5* δ _{0.3 g}	179	27.38	-0.14	-0.13	-0.51	Pass	-0.48	Pass
0031	12:11 pm	6.0* δ _{0.3 g}	196	29.36	-0.18	-0.16	-0.61	Pass	-0.56	Pass
0032	12:14 pm	6.5* δ _{0.3 g}	212	32.26	-0.18	-0.18	-0.56	Pass	-0.56	Pass
0033	12:18 pm	7.0* δ _{0.3 g}	228	31.05	-0.38	-0.29	-1.21	Pass	-0.93	Pass
0034	12:24 pm	7.5* δ _{0.3 g}	245	31.79	-0.19	-0.35	-0.60	Pass	-1.09	Pass
0035	12:27 pm	8.0* δ _{0.3 g}	261	30.67	-0.17	-0.29	-0.54	Pass	-0.94	Pass
0036	12:31 pm	8.3* δ _{0.3 g}	270	30.72	-0.34	-0.26	-1.12	Pass	-0.86	Pass

1. Maneuver execution should continue until a steering wheel angle magnitude factor of $6.5^*\delta_{0.3 \text{ g, overall}}$ or 270 degrees is utilized, whichever is greater provided the calculated magnitude of $6.5^*\delta_{0.3 \text{ g, overall}}$ is less than or equal to 300 degrees. If $6.5^*\delta_{0.3 \text{ g, overall}}$ is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of $0.5^*\delta_{0.3 \text{ g, overall}}$ without exceeding the 270 degree steering wheel angle.

DATA SHEET 8 (2 of 3) **VEHICLE LATERAL STABILITY AND RESPONSIVENESS**

Lateral Stability Test Series No. 2 – Clockwise Initial Steer Direction										
	Clock Time	Commai Steering \ Angle	Vheel	(Yaw Rate degrees/s		at 1.0 s	RR ec after OS	at 1.75	RR sec after OS
	(1.5 – 5	(degre		```	J	/		5%]		20%]
Maneuver #	`min between each test run)	Scalar	Angle	$\dot{\psi}_{\scriptscriptstyle Peak}$	$\dot{\psi}_{1.0 m sec}$	$\dot{\psi}_{1.75 m sec}$	%	Pass/ Fail	%	Pass/ Fail
0037	12:34 pm	1.5* δ _{0.3 g}	49	-12.35	-0.07	0.07	0.58	Pass	-0.54	Pass
0038	12:37 pm	2.0* δ _{0.3 g}	65	-16.60	-0.02	0.06	0.11	Pass	-0.34	Pass
0039	12:42 pm	2.5* δ _{0.3 g}	82	-21.30	-0.50	-0.03	2.37	Pass	0.15	Pass
0040	12:45 pm	3.0* δ _{0.3 g}	98	-25.81	0.13	0.26	-0.51	Pass	-1.01	Pass
0041	12:49 pm	3.5* δ _{0.3 g}	114	-30.29	0.08	-0.03	-0.28	Pass	0.08	Pass
0042	12:52 pm	4.0* δ _{0.3 g}	130	-35.66	0.19	0.14	-0.54	Pass	-0.40	Pass
0043	12:55 pm	4.5* δ _{0.3 g}	147	-22.95	0.39	0.21	-1.70	Pass	-0.92	Pass
0044	12:58 pm	5.0* δ _{0.3 g}	163	-26.54	0.25	0.10	-0.93	Pass	-0.38	Pass
0045	1:02 pm	5.5* δ _{0.3 g}	179	-28.51	0.18	0.32	-0.62	Pass	-1.13	Pass
0046	1:05 pm	6.0* δ _{0.3 g}	196	-28.67	0.15	0.19	-0.53	Pass	-0.68	Pass
0047	1:08 pm	6.5 * δ _{0.3 g}	212	-30.31	0.19	0.22	-0.62	Pass	-0.73	Pass
0048	1:11 pm	7.0* δ _{0.3 g}	228	-31.53	0.41	0.23	-1.29	Pass	-0.72	Pass
0049	1:16 pm	7.5* δ _{0.3 g}	245	-30.49	0.20	0.09	-0.67	Pass	-0.28	Pass
0050	1:20 pm	8.0* δ _{0.3 g}	261	-30.79	0.21	0.18	-0.69	Pass	-0.58	Pass
0051	1:24 pm	8.3 * δ _{0.3 g}	270	-28.66	0.28	0.17	-0.96	Pass	-0.58	Pass

Lateral Stability Test Series No. 2 - Clockwise Initial Steer Direction

1. Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5* $\delta_{0.3 \text{ g, overall}}$ or 270 degrees is utilized, whichever is greater provided the calculated $6.5^* \delta_{0.3 \text{ g, overall}}$ is less than or equal to 300 degrees. If $6.5^* \delta_{0.3 \text{ g, overall}}$ is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5* \$6.3.9, overall without exceeding the 270 degree steering wheel angle.

During execution of the fishhook maneuvers were any of the following events observed?

Rim-to-pavement contact Tire debeading Loss of pavement contact of vehicle tires Did the test driver experience any vehicle _____ Yes ____ No loss of control or spinout?

Ye	es	ŬХ	No
Ye	s	Х	No
Ye	s	Х	No
	-		

If "Yes" explain the event and consult with the COTR.

DATA SHEET 8 (3 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Responsiveness – Lateral Displacement

		Commanded Steerin (5.0*δ _{0.3 g, overall}	• •	Calculated Lateral Displacement ¹		
Maneuver #	Initial Steer Direction	Scalar	Angle (degrees)	Distance (m)	Pass/Fail	
0029	Counter Clockwise	5.0 * δ _{0.3 g}	163	2.68	Pass	
0030	Counter Clockwise	5.5* δ _{0.3 g}	179	2.71	Pass	
0031	Counter Clockwise	6.0* δ _{0.3 g}	196	2.70	Pass	
0032	Counter Clockwise	6.5 * δ _{0.3 g}	212	2.77	Pass	
0033	Counter Clockwise	7.0 * δ _{0.3 g}	228	2.69	Pass	
0034	Counter Clockwise	7.5* δ _{0.3 g}	245	2.76	Pass	
0035	Counter Clockwise	8.0* δ _{0.3 g}	261	2.69	Pass	
0036	Counter Clockwise	8.3* δ _{0.3 g}	270	2.66	Pass	
0044	Clockwise	5.0* δ _{0.3 g}	163	2.70	Pass	
0045	Clockwise	5.5* δ _{0.3 g}	179	2.71	Pass	
0046	Clockwise	6.0* δ _{0.3 g}	196	2.73	Pass	
0047	Clockwise	6.5* δ _{0.3 g}	212	2.78	Pass	
0048	Clockwise	7.0 * δ _{0.3 g}	228	2.80	Pass	
0049	Clockwise	7.5* δ _{0.3 g}	245	2.81	Pass	
0050	Clockwise	8.0* δ _{0.3 g}	261	2.77	Pass	
0051	Clockwise	8.3* δ _{0.3 g}	270	2.77	Pass	

1. Lateral displacement should be ≥ 1.83 m (6 ft) for vehicles with a GVWR of 3,500 kg (7,716 lb) or less; and ≥ 1.52 m (5ft) for vehicles with a GVWR greater than 3,500 kg (7,716 lb).

DATA INDICATES COMPLIANCE:

PASS/FAIL PASS

REMARKS:

RECORDED BY:	Alan Ida	DATE:	5/20/10
APPROVED BY:	Jeff Sankey	DATE:	5/31/10

DATA SHEET 9 (Sheet 1 of 2) MALFUNCTION WARNING TEST

VEHICLE MAKE/MODEL/BODY STYLE:	Lexus / GX460 / MPV
VEHICLE NHTSA No.: CA5109	TEST DATE: 05-21-10
METHOD OF MALFUNCTION SIMULATION: Describe method of malfunction simulation: connector.	
MALFUNCTION TELLTALE ILLUMINATION: Telltale illuminates and remains illuminated af necessary the vehicle is driven at least 2 minut	
Time for telltale to illuminate after ignition syste	em is activated.
ESC SYSTEM RESTORATION: Telltale extinguishes after ignition locking systed driven at least 2 minutes.	
Time for telltale to extinguish after ignition syst 48 <u>+</u> 8 km/h (30 <u>+</u> 5mph) is reached. <u>0</u> Second (must be within 2 minute	
DATA INDICATES COMPLIANCE: REMARKS:	PASS/FAIL <u>PASS</u>

The vehicle did not require driving to illuminate or extinguish the malfunction telltale. When the wheel speed sensor was disconnected, the ABS malfunction light was on and the AFS Off (Adaptive Front lighting System) telltale was flashing.

RECORDED BY:	Alan Ida	DATE:	05-21-10
APPROVED BY:	Jeff Sankey	DATE:	05-25-10

DATA SHEET 9 (Sheet 2 of 2) MALFUNCTION WARNING TEST

VEHICLE MAKE/MODEL/BODY STYLE:	Lexus / GX460	/ MPV	
VEHICLE NHTSA No.: CA05109	TEST DATE:	05-24-10	
METHOD OF MALFUNCTION SIMULATION: Describe method of malfunction simulation: connector.		e steering wheel an	gle sensor
MALFUNCTION TELLTALE ILLUMINATION: Telltale illuminates and remains illuminated af necessary the vehicle is driven at least 2 minu	ter ignition lock	ing system is activa	
Time for telltale to illuminate after ignition syste	em is activated.		
ESC SYSTEM RESTORATION: Telltale extinguishes after ignition locking systed driven at least 2 minutes.		and if necessary the	
Time for telltale to extinguish after ignition syst			Fail
DATA INDICATES COMPLIANCE:	F	ASS/FAIL PAS	<u>S</u>
REMARKS: The vehicle did not require driving to illuminate	or extinguish th	ne malfunction tellta	ale. When

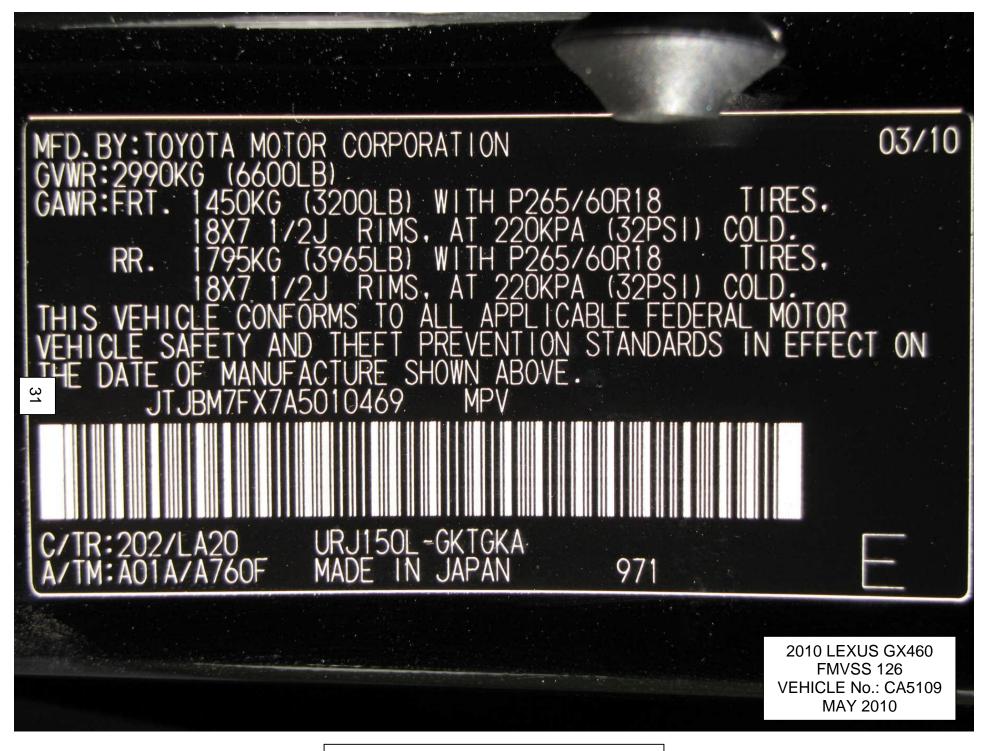
The vehicle did not require driving to illuminate or extinguish the malfunction telltale. When the steering wheel angle sensor was disconnected, the AFS Off (Adaptive Front lighting System) telltale was flashing.

RECORDED BY:	Alan Ida	DATE:	05-24-10
APPROVED BY:	Jeff Sankey	DATE:	05-25-10

4.0 Туре	Output	Range	Resolu tion	Accuracy	Specifics	Serial Number	Calibration
Tire Pressure Gauge	Vehicle Tire Pressure	0-60psi	0.5 psi	±0.5% of applied pressure	Moroso Model: 89562 0-60 psi	_ <u>N/A_</u>	By: <u>TRC</u> Date: <u>4-15-10</u> Due: <u>7-14-10</u>
Platform Scales	Vehicle Total, Wheel, and Axle Load	0-2500 lb per each of four pads	0.5 lb	±1.0% of applied load	Mettler Toledo Model: JXGA1000	<u>5225831-</u> _5JC	By: <u>Mettler</u> Date: <u>5-18-10</u> Due: <u>8-18-10</u>
Automated Steering Machine with Steering Angle Encoder	Handwheel Angle	±N/A deg	0.03 deg	±0.25 deg	SEA Limited Model: ASC II	_ <u>S001</u> _	By: <u>SEA Ltd</u> Date: <u>2-24-10</u> Due: <u>2-24-11</u>
Multi-Axis Inertial Sensing System	Longitudinal, Lateral, and Vertical Acceleration Roll, Yaw, and Pitch Rate	Accelero meters: ±2 g Angular Rate Sensors: ±100 deg/ sec	Acceler ometers : ≤10 ug Angular Rate Sensors : ≤0.004 deg/s	Acceleromet ers: ≤0.05% of full range Angular Rate Sensors: 0.05% of full range	BEI Technologies Model: MotionPAK MP- 1	_0768	By: <u>BEI Tech.</u> Date: <u>1-14-10</u> Due: <u>1-14-11</u>
Radar Speed Sensor	Vehicle Speed	0-125 mph	0.009 mph	±0.25% of full scale	A-DAT Corp. Radar Model: DRS-6 Display Model: RD-2	<u>1400603</u>	By: <u>A-DAT</u> Date:_ <u>12-16-09</u> Due: _ <u>12-16-10</u>
Ultrasonic Distance Measuring System	Left and Right Side Vehicle Height	5-24 inches	0.01 inches	±0.25% of maximum distance	Massa Products Corporation Model: M-5000 / 220	_ <u>103255</u> <u>& 103170</u>	By: <u>TRC</u> Date: <u>11-19-09</u> Due: <u>11-19-10</u>
Data Acquisition System	Record Time; Velocity; Lateral, Longitudinal, and Vertical Accelerations; Roll, Yaw, and Pitch Rates; Steering Wheel Angle.	Sufficient to meet or exceed individual sensors	200 Hz	Sufficient to meet or exceed individual sensors	3B Series Signal Conditioning Subsystem	<u>N/A</u>	By: <u>SEA Ltd.</u> Date: <u>2-25-10</u> Due: <u>2-25-11</u>
Load Cell	Vehicle Brake Pedal Force	0-300 lb	1 lb	±0.05% of full scale	DATRON Model: DTM- LPA	_ <u>4970-</u> 1103_	By: <u>TRC</u> Date: <u>per test</u> Due: <u>per test</u>
Coordinate Measurement Machine	Inertial Sensing System Location	0-10 feet	0.001 inch	±0.003% of full scale	FARO International Model: Faro Arm N10	_ <u>N10-02-03-</u> 	By: <u>FARO</u> Date: <u>9-1-09</u> Due: <u>9-1-10</u>
Multifunction Calibrator	Voltage Input for Sensor Calibration	0-20 VDC	0.001 V	±0.015% of reading accuracy	Martel Electronics Model: MC-1000	<u>10977</u>	By: <u>TRC</u> Date: <u>10-27-09</u> Due: <u>10-27-10</u>
Outriggers	No output. Safety Item.	N/A	N/A	N/A	NHTSA Titanium Outriggers Model: Docket 2007-27662-11	N/A	N/A

4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION

5.0 PHOTOGRAPHS


- 5.1 ³/₄ FRONT VIEW FROM LEFT SIDE OF VEHICLE
- 5.2 ¾ REAR VIEW FROM RIGHT SIDE OF VEHICLE
- 5.3 VEHICLE CERTIFICATION LABEL
- 5.4 TIRE AND LOADING INFORMATION LABEL
- 5.5 WINDOW STICKER (MONRONEY LABEL)
- 5.6 ESC MALFUNCTION TELLTALE
- 5.7 ESC OFF TELLTALE
- 5.8 ESC OFF CONTROL
- 5.9 ¾ FRONT VIEW TEST VEHICLE INSTRUMENTED
- 5.10 ¾ REAR VIEW TEST VEHICLE INSTRUMENTED
- 5.11 STEERING WHEEL CONTROLLER AND DATA ACQUISITION SYSTEM
- 5.12 STEERING CONTROLLER BATTERY BOX
- 5.13 INERTIA MEASUREMENT UNIT (CENTER CONSOLE)
- 5.14 VEHICLE SPEED SENSOR
- 5.15 BODY ROLL SENSOR (DRIVER SIDE)
- 5.16 BODY ROLL SENSOR (PASSENGER SIDE)
- 5.17 BRAKE PEDAL FORCE TRANSDUCER

5.1 ¾ FRONT VIEW FROM LEFT SIDE OF VEHICLE

5.2 ¾ REAR VIEW FROM RIGHT SIDE OF VEHICLE

5.3 VEHICLE CERTIFICATION LABEL

		SEATING CAP	OADING INFORMATION ACITY : TOTAL 7 FRONT 2 : REAR 5 d weight of occupants exceed 520 kg or 1155 lbs.	RENSEIGNEME NOMBRE DE F Le poids total	PLACES : TOTAL 7 AVANT 2 :	ARRIÈRE 5 t du chargement ne u 1155 lb.	
	TIRE	SIZE	COLD TIRE PRESSURE	PNEU	DIMENSIONS	PRESSION DES PNEUS À FROID	
	FRONT	P265/60R18	220kPa, 32PSI	AVANT	P265/60R18	220kPa, 32PSI	
32	REAR	P265/60R18	220kPa, 32PSI	ARRIÈRE	P265/60R18	220kPa, 32PSI	60A10
I	SPARE	P265/60R18	220kPa, 32PSI	DE SECOURS	P265/60R18	220kPa, 32PSI	7 60
	SEE OV	VNER'S MANU	AL FOR L INFORMATION	and the second se	MANUEL DE	L'USAGER SEIGNEMENTS	A
						2010 LEXUS GX FMVSS 126 VEHICLE No.: CA MAY 2010	

5.4 TIRE AND LOADING INFORMATION LABEL

 DESCRIPTION
 2010 / 9700A GX460 5-DR SUV

 COLOR
 BLACK

 VIN
 JTJBM7FX7A5010469

 PORT/PLANT
 Portland, OR

Dealer Name / Address: GERMAIN LEXUS OF DUBLIN 3885 W. DUBLIN-GRANVILLE DUBLIN OH43017

MANUFACTURER'S SUGGESTED RETAIL PRICE

Electrochromic power-folding outside mirrors;

with dual-swivel Adaptive Front Lighting System

Convenience Package

Intuitive Parking Assist

Comfort Plus Package

outboard seats

** Tow Hitch w/Ball Mount

** Remote Engine Start

Preferred Accessory Package:

(AFS)

441

** High Intesity Discharge Headlamps

Hard Disk Drive Navigation System

eDestination (includes 1-year trail

Lexus Enform with Destination Assist, and

Stocks (includes 90-day trial subscription)

subscription), Lexus Insider, Voice Command,

Semi-aniline leather-trimmed interior; Wood &

Leather-trimmed steering wheel & shift knob;

Three-zone Automatic Climate Control with

recirculation mode; Heated middle row

Cargo Net, Cargo Mat & Wheel Locks

interior air filter, smog sensor and automatic

XM NavTraffic, XM NavWeather, and XM Sports &

Ship to: (Dealer, unless otherwise indicated)

\$ 51,970,00

800.00

815.00

1,990.00

1,770.00

459.00

208.00

375.00

\$ 58,387.00

MAY 2010

875.00

SUB-TOTAL

DELIVERY, PROCESSING AND HANDLING FEE

STANDARD EQUIPMENT & INSTALLED OPTIONS

PERFORMANCE FEATURES

- * 4.6L 301HP 32-Valve DOHC V8 Engine w/ dual VVT-i * 6-Speed Sequential Shift Electronically
- Controlled Automatic Transmission (ECT-i) * Full-Time 4WD w/Torsen Limited Slip Center
- Differential (w/ Electronic Locking Feature) * Front Independent Double Wishbone Suspension
- * 4-link Lateral Rod Rear Suspension
- 4-link Lateral Rod Rear Suspensi
- * Kinetic Dynamic Suspension System (KDSS)
- * Power-assisted Rack & Pinion Steering
- * 4-Wheel Ventilated Disc Brakes
- * 18" Six-spoke Alloy Wheels w/ 265/60R18 Mud & Snow Tires

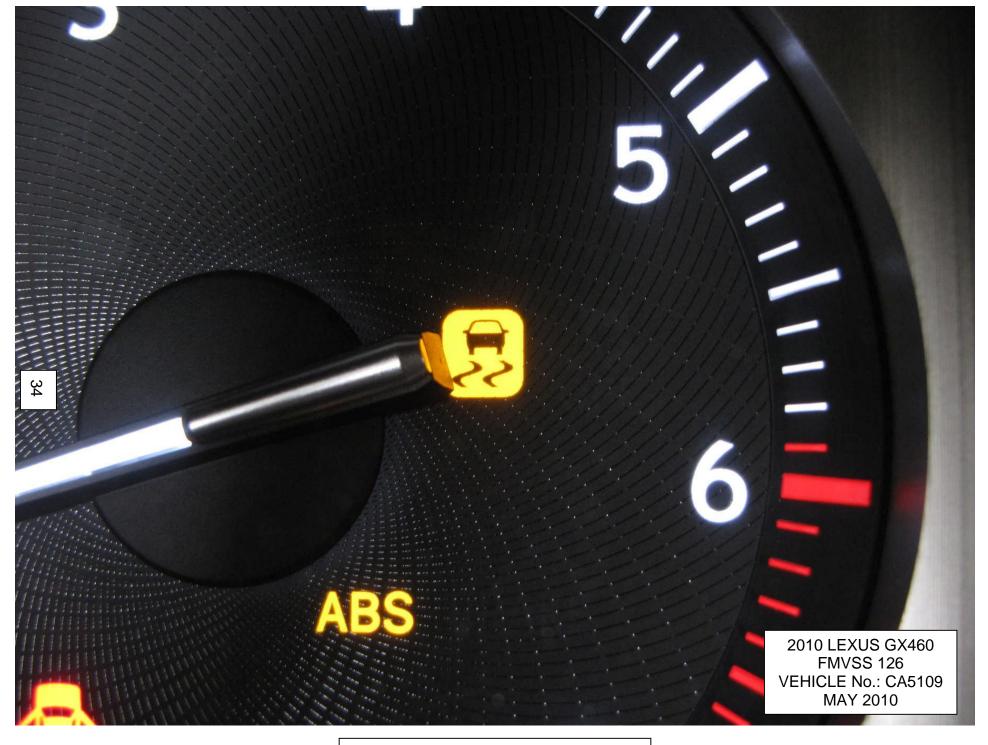
SAFETY FEATURES

ယ္ထ

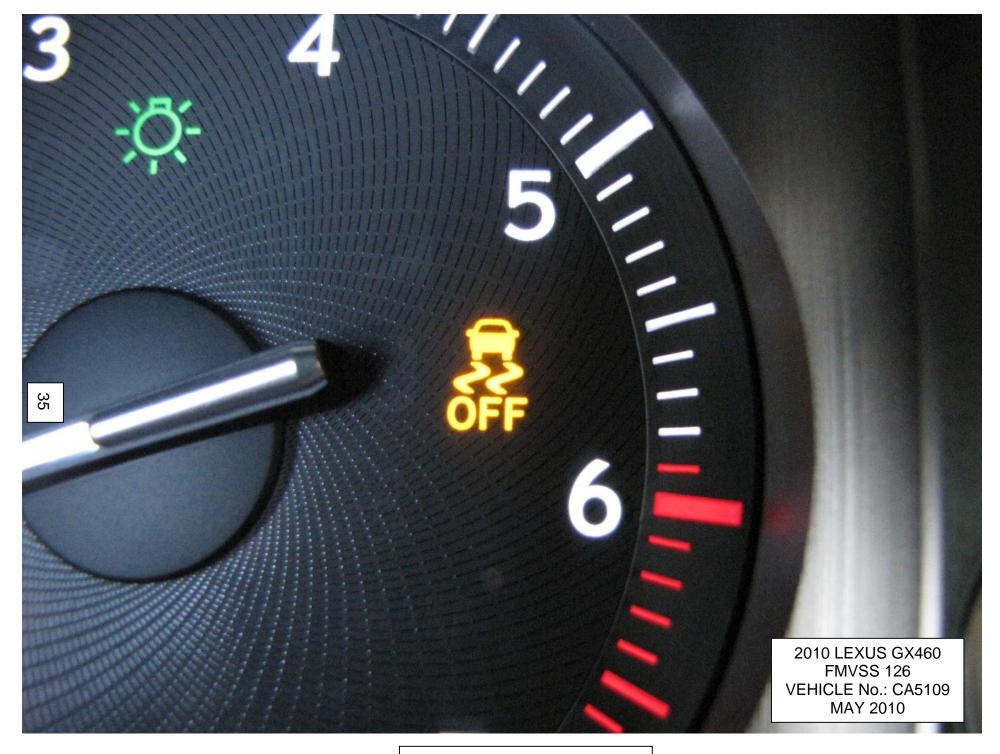
- Dual-Stage Front Airbags, Front Seat-Mounted Side Airbags, Front Knee Airbags 2nd Row Outboard Seat-Mounted Side Airbags Roll-Sensing Fr, 2nd & 3rd Row Curtain Airbags
- Active Front Headrests, 3-Point Safety Belts
 Fr & 2nd Row Outboard Seat Belt Pretensioners
 Vehicle Stability Control (VSC)/Anti-Lock Brakes (ABS)/Brake Assist (BA)/Active Traction Control (A-TRAC)/Electronic Brakeforce Distribution (EBD)
- Hill-Start Assist Control (HAC)
 Safety Connect: Automatic Collision Notification, Stolen Vehicle Location, Emergency Assist Button (SOS), and Enhanced Roadside Assistance (1-year trial subscription included)

* Tool Kit and First Aid Kit LUXURY AND CONVENIENCE FEATURES * Leather Trimmed Interior w/ Lexus Memory System:

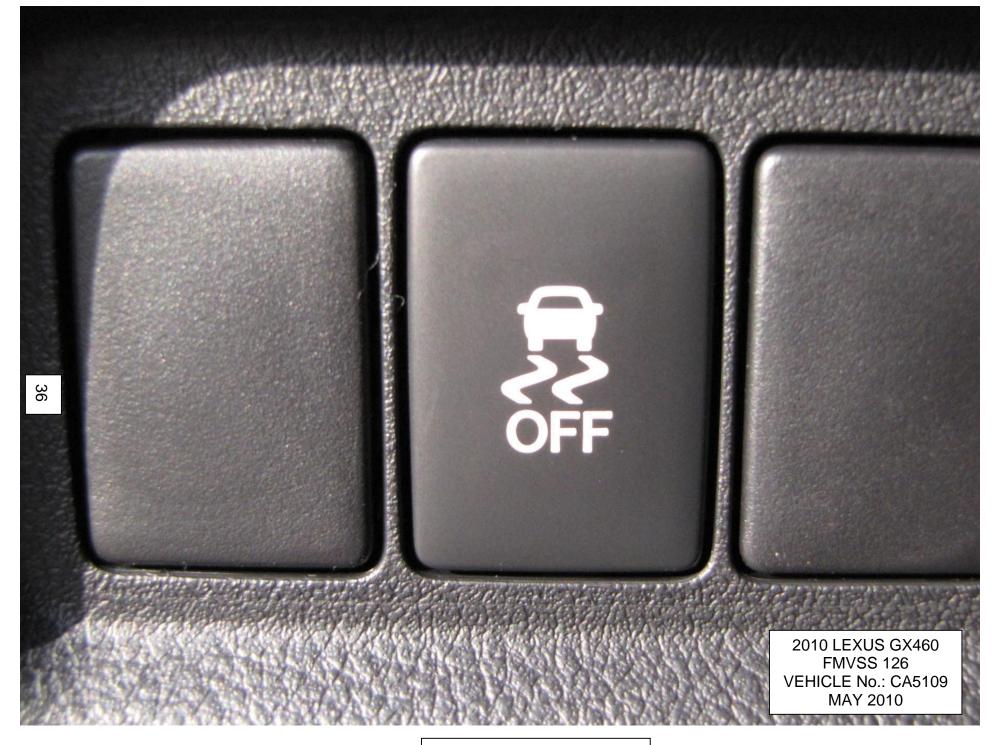
Rain-Sensing Intermittent Wipers with Deicer


Intermittent Rear Wiper with Washer

- Driver's Seat/Steering Wheel & Outside Mirrors * Leather Trimmed Steering Wheel w/ Multifunction
- Controls/Steering Wheel Mounted Cruise Control
- Smart Access with Push Button Start/Stop
 10-Way Power/Heated & Ventilated Front Seats
- 10-Way Power/Heated & Ventilated Front Seats Auburn Bubinga Wood Interior Trim, Power Tilt & Telescopic Steering Column w/ Auto Tilt-Away
- Power windows with one-touch auto open/close
- Electrochromic inside rearview mirror
- * Reclining, sliding, 60/40 split middle-row seat
- Power fold-flat, 50/50 split third-row seat
- * Dual-Zone Automatic Climate Control w/Interior Air
- Filter, Smog Sensor & Automatic Recirculation Mode
- One-Touch Open/Close Pwr Tilt-and-Slide Moon-oof
- Lexus 9-Speaker Premium Sound System with Automatic Sound Levelizer (ASL) & In-Dash, Single-Feed, 6-disc CD Auto-Chgr/Bluetooth Technology/USB Audio Plug/XM Satellite Radio (incl. 90-day trial subscription), Multi-Info center-console display with backup camera
- Privacy glass and flip-open rear glass hatch
- * Running boards with built-in courtesy lights * Rear Spoiler / Carpeted Floor Mats
- Rear Spoller / Carpeted Floor Mats


EPA Fuel Economy Estimates

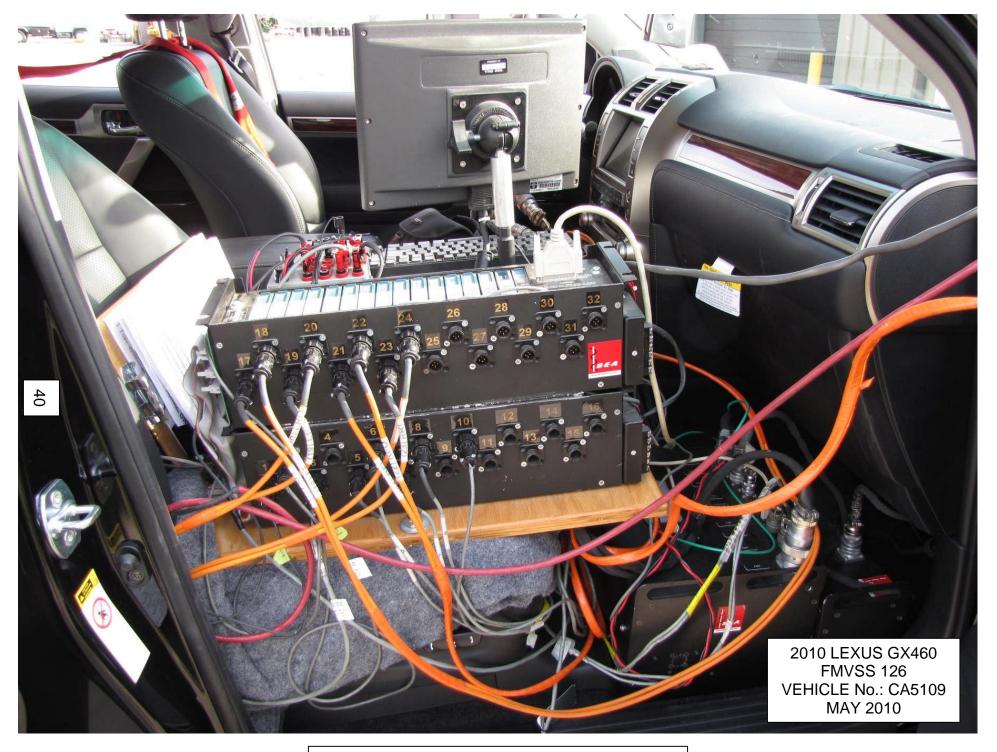
\$ 59,262.00 TOTAL **CITY MPG HIGHWAY MPG** APPLICABLE FEDERAL TAXES NOT INCLUDED **GOVERNMENT SAFETY RATINGS** Manufacturer's suggested retail price includes manufacturer's recommended pre-delivery service. Estimated License and title fees, state, local and applicable federal taxes, and dealer installed options and accessories are not included in the manufacturer's Annual Fuel Cost suggested retail price. \$ 2,470 LEXUS NEW VEHICLE LIMITED WARRANTY Limited werranty coverage highlights incl * 4YR / 50000 mile basic coverage * 6YR / 70000 mile powertrain coverage based on 15,000 miles * SYR / Unlimited mile corresion perforation warrants at \$2.80 per gallon Expected range Expected range This vehicle has not been rated by the government See your Warranty and Services Guide for details. for most drivers for most drivers for frontal crash, side crash or rollover risk. LEXUS IS PLEASED TO OFFER THE FOLLOWING OWNER SUPPORT PACKAGE 12 to 18 MPG **Combined Fuel Economy** 17 to 23 MPG Source: National Highway Traffic Safety Administration WITH FACH NEW LEXUS 24 hour, 365 day/yr. roadside assistance plan This Vehicle (NHTSA). * Complimentary 1st and 2nd scheduled maintenance services * Lodging for emergency breakdown 100 miles from home Your actual An extended service contract may be available for this vehicle. Ask dealer for details 17 mileage will vary depending on how you drive and maintain your vehicle. 084A85 009 WC03 B1773 All SUVS See the FREE Fuel Economy Guide at dealers or www.fueleconomy.gov R www.safercar.gov or 1-888-327-4236 2010 LEXUS GX460 FMVSS 126 VEHICLE No.: CA5109

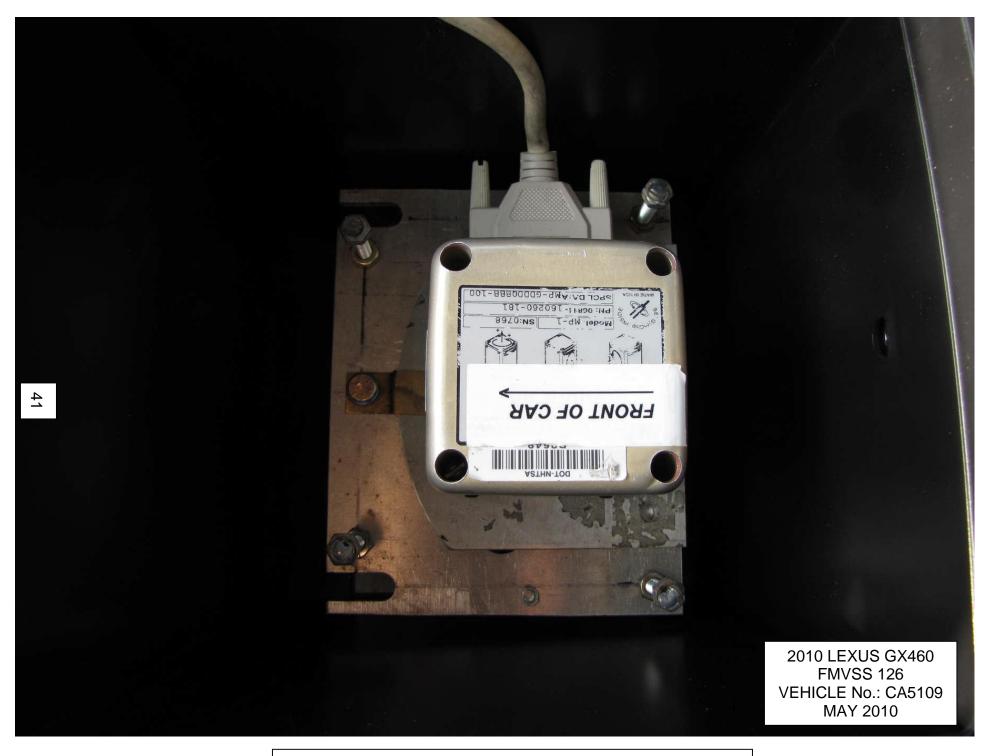

5.5 WINDOW STICKER - MONRONEY LABEL

5.6 ESC MALFUNCTION TELLTALE

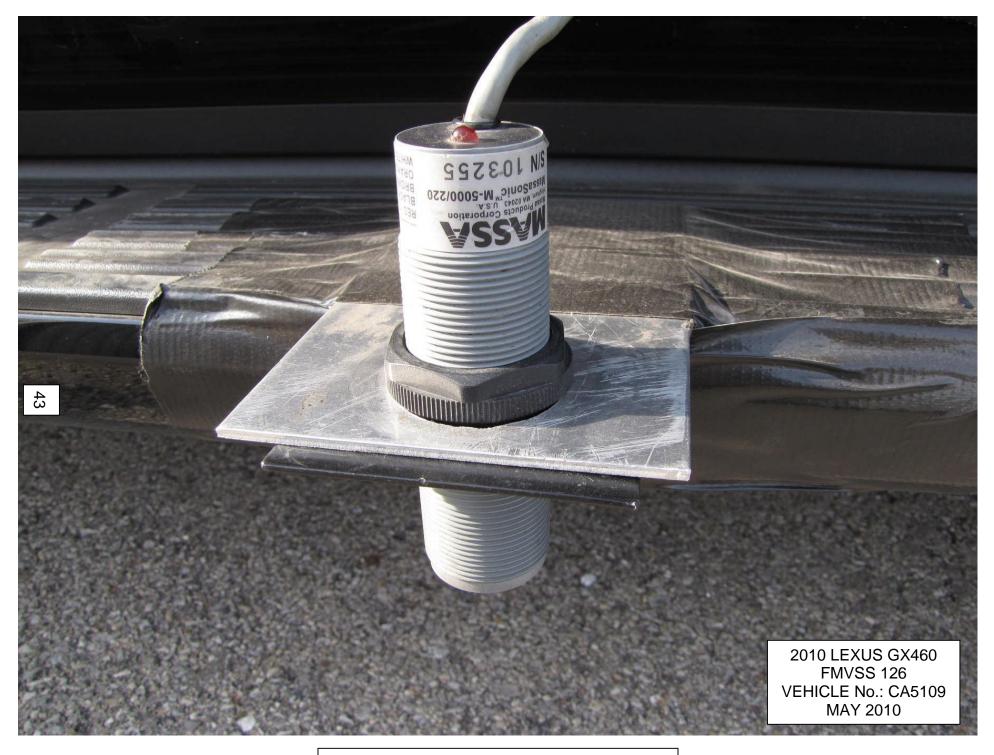
5.7 ESC OFF TELLTALE

5.8 ESC OFF CONTROL

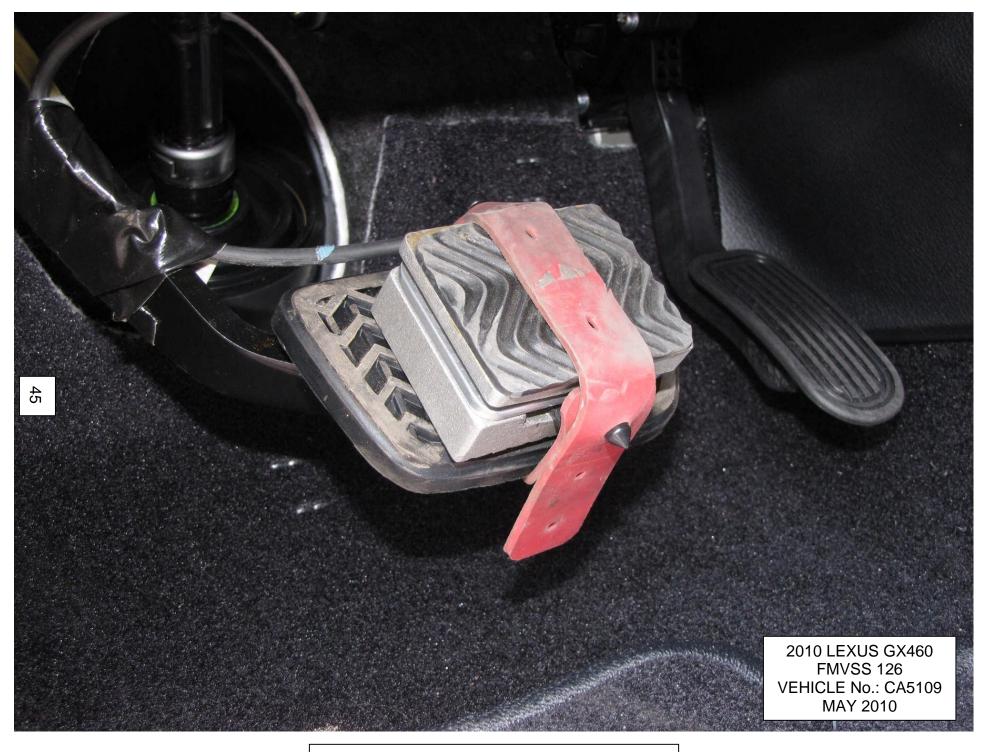

5.9 ¾ FRONT VIEW - TEST VEHICLE INSTRUMENTED


5.10 ¾ REAR VIEW - TEST VEHICLE INSTRUMENTED

5.11 STEERING WHEEL CONTROLLER AND DATA ACQUISITION SYSTEM


5.12 STEERING CONTROLLER BATTERY BOX

5.13 INERTIA MEASUREMENT UNIT (CENTER CONSOLE)


5.14 VEHICLE SPEED SENSOR

5.15 BODY ROLL SENSOR (DRIVER SIDE)

5.16 BODY ROLL SENSOR (PASSENGER SIDE)

5.17 BRAKE PEDAL FORCE TRANSDUCER

6.0 DATA PLOTS

Figure 1.	Steering Angle and Yaw Rate Time History, Counter-Clockwise Initial Steer Tests
Figure 2.	Steering Angle, Lateral Acceleration, and Lateral Displacement Time History, Counter-Clockwise Initial Steer Tests
Figure 3.	Steering Angle and Yaw Rate Time History, Clockwise Initial Steer Tests

Figure 4. Steering Angle, Lateral Acceleration, and Lateral Displacement Time History, Clockwise Initial Steer Tests

6.0 2010 LEXUS GX460 (POST-ECU FLASH) DATA PLOTS

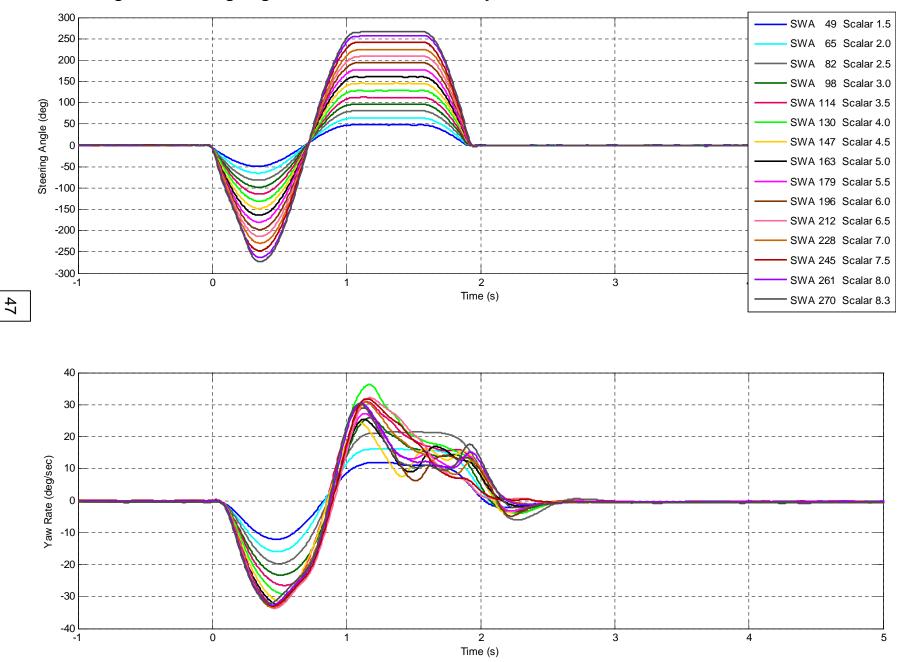


Figure 1. Steering Angle and Yaw Rate Time History, Counter-Clockwise Initial Steer Tests

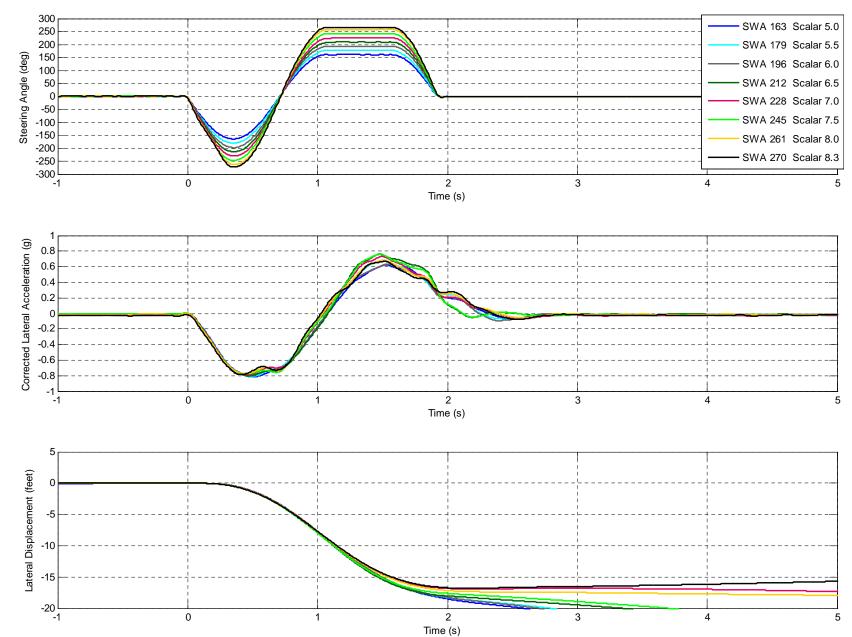


Figure 2. Steering Angle, Lateral Acceleration, and Lateral Displacement Time History, Counter-Clockwise Initial Steer Tests

48

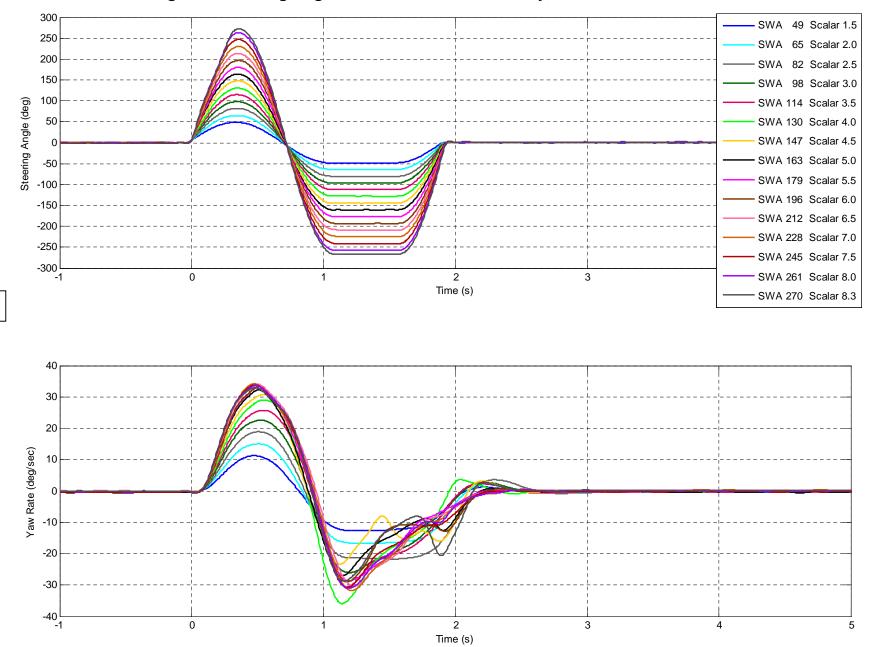


Figure 3. Steering Angle and Yaw Rate Time History, Clockwise Initial Steer Tests

49

6.0 2010 LEXUS GX460 (POST-ECU FLASH) DATA PLOTS...continued

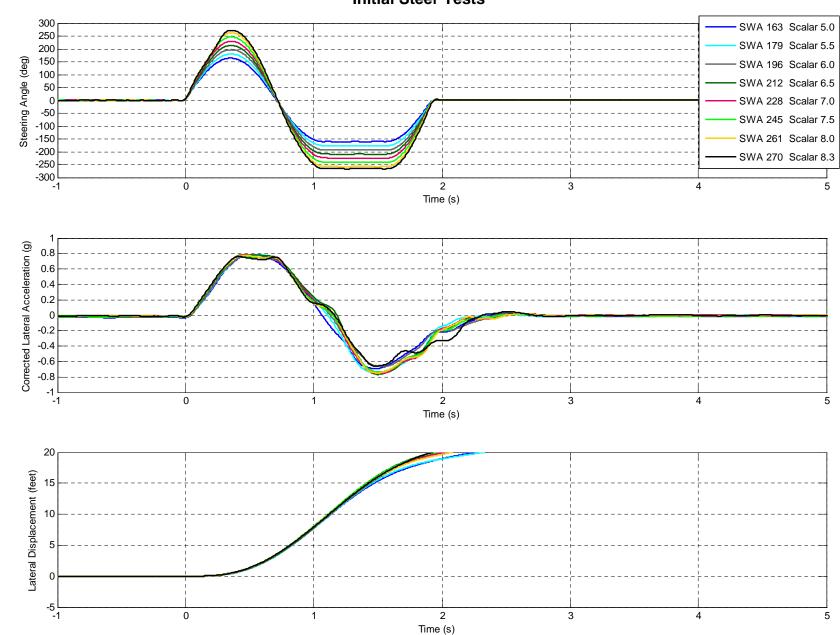


Figure 4. Steering Angle, Lateral Acceleration, and Lateral Displacement Time History, Clockwise Initial Steer Tests

50

7.0 OTHER DOCUMENTATION

- 7.1 OWNER'S MANUAL PAGES
- 7.2 VEHICLE ARRIVAL CONDITION REPORT
- 7.3 VEHICLE COMPLETION CONDITION REPORT
- 7.4 SINE WITH DWELL TEST RESULTS
- 7.5 SLOWLY INCREASING STEER TEST RESULTS
- 7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES

7.1 OWNER'S MANUAL PAGES

2-4. Using other driving systems Driving assist systems

To help enhance driving safety and performance, the following systems operate automatically in response to various driving situations. Be aware, however, that these systems are supplementary and should not be relied upon too heavily when operating the vehicle.

n ABS (Anti-lock Brake System)

Helps to prevent wheel lock when the brakes are applied suddenly, or if the brakes are applied while driving on a slippery road surface

n Multi Terrain ABS (Anti-lock Brake System) (vehicles with a Multi-terrain Select system)

Helps to prevent wheel lock when the brakes are applied suddenly, or if the brakes are applied while driving on a slippery road surface, or in offroad conditions (such as rough roads, sand and mud)

The Multi Terrain ABS operates in synchronization with the Multi-terrain Select

n Brake assist

Generates an increased level of braking force after the brake pedal is depressed when the system detects a panic stop situation

n VSC (Vehicle Stability Control)

Helps the driver to control skidding when swerving suddenly or turning on slippery road surfaces

2-4. Using other driving systems

When the VSC/TRAC or Active TRAC/hill-start assist control systems are operating

If the vehicle is in danger of slipping or rolling backward when starting on an incline, or if any of the drive wheels spins, the slip indicator light flashes to indicate that the VSC/TRAC or Active TRAC/ hill-start assist control systems are operating.

A buzzer (intermittent) sounds to indicate that VSC is operating.

The stop lights and high mounted stoplight turn on when the hill-start assist control system is operating.

GX460_U.S.A. (OM60E69U)

GX460_U.S.A. (OM60E69U)

332

7.1 OWNERS MANUAL PAGES

2-4. Using other driving systems

Disabling the TRAC or Active TRAC/VSC systems

If the vehicle gets stuck in fresh snow or mud, the TRAC or Active TRAC/ VSC systems may reduce power from the engine to the wheels. You may need to turn the system off to enable you to rock the vehicle in order to free it.

n Turning off TRAC or Active TRAC system only

To turn the TRAC or Active TRAC system off, quickly press and release the button.

The TRAC OFF will be shown on the multi-information display. Press the button again to turn the system back on.

n Turning off both TRAC or Active TRAC and VSC systems

To turn the TRAC or Active TRAC and VSC systems off, press and hold the button for more than 3 seconds while the vehicle is stopped.

The VSC OFF indicator light will come on and the TRAC OFF will be shown on the multi- information display.

Press the button again to turn the system back on.

2-4. Using other driving systems

- n Hill-start assist control operation conditions
- 1 The shift lever is in D or S.
- 1 The brake pedal is not depressed.
- 11 Sounds and vibrations caused by the ABS/Multi Terrain ABS, brake assist, VSC, TRAC/Active TRAC and hill-start assist control systems
- I A sound may be heard from the engine compartment when the engine is started or just after the vehicle begins to move. This sound does not indicate that a malfunction has occurred in any of these systems.
- 1 Any of the following conditions may occur when the above systems are operating. None of these indicates that a malfunction has occurred.
- Vibrations may be felt through the vehicle body and steering.
- A motor sound may be heard after the vehicle comes to a stop.
- The brake pedal may pulsate slightly after the ABS/Multi Terrain ABS is activated.
- The brake pedal may move down slightly after the ABS/Multi Terrain ABS is activated.
- n Reactivation of the TRAC or Active TRAC/VSC systems after turning off the engine

Turning off the engine after turning off the TRAC or Active TRAC/VSC systems will automatically reactivate them.

n Reactivation of the TRAC or Active TRAC system linked to vehicle speed

When only the TRAC or Active TRAC system is turned off, the TRAC or Active TRAC system will turn on when vehicle speed increases. However, when both TRAC or Active TRAC and VSC systems are turned off, the systems will not turn on even when vehicle speed increases.

333

334

GX460 U.S.A. (OM60E69U)

GX460_U.S.A. (OM60E69U)

7.1 OWNERS MANUAL PAGES

n When the brake system operates continuously

The brake actuator may overheat. In this case, the TRAC or Active TRAC and hillstart assist control systems will stop operating, a buzzer will sound and the TRAC OFF will be shown on the multi-information display. Refrain from using the system until the message goes off. (There is no problem with continuing normal driving.)

n If the slip indicator comes on...

It may indicate a malfunction in the VSC, TRAC/Active TRAC or hill-start assist control system. Consult your Lexus dealer.

A CAUTION

- n The ABS/Multi Terrain ABS does not operate effectively when
- Tires with inadequate gripping ability are used (such as excessively worn tires on a snow covered road).
- 1 The vehicle hydroplanes while driving at high speed on wet or slick roads.
- Stopping distance when the ABS/Multi Terrain ABS is operating will exceed that of normal conditions
- The ABS/Multi Terrain ABS is not designed to shorten the vehicle's stopping distance. Always maintain a safe distance from the vehicle in front of you in the following situations:
- 1 When driving on dirt, gravel or snow-covered roads
- 1 When driving with tire chains
- 1 When driving over bumps in the road
- 1 When driving over roads with potholes or roads with uneven surfaces

A CAUTION

n TRAC/Active TRAC may not operate effectively when

Directional control and power may not be achievable while driving on slippery road surfaces, even if the TRAC/Active TRAC is operating.

Do not drive the vehicle in conditions where stability and power may be lost.

n Hill- start assist control does not operate effectively when

Do not overly rely on the hill-start assist control. The hill-start assist control may not operate effectively on steep inclines and roads covered with ice.

n When the VSC is activated

The slip indicator light flashes and a warning buzzer sounds. Always drive carefully. Reckless driving may cause an accident. Exercise particular care when the indicator light flashes and a buzzer sounds.

11 When the TRAC or Active TRAC/VSC systems are turned off

Be especially careful and drive at a speed appropriate to the road conditions. As these are the systems to ensure vehicle stability and driving force, do not turn the TRAC or Active TRAC/VSC systems off unless necessary.

n Replacing tires

Make sure that all tires are of the same size, brand, tread pattern and total load capacity. In addition, make sure that the tires are inflated to the recommended tire inflation pressure level.

The ABS/Multi Terrain ABS and VSC systems will not function correctly if different tires are installed on the vehicle.

Contact your Lexus dealer for further information when replacing tires or wheels.

When

driving

336

GX460_U.S.A. (OM60E69U)

GX460_U.S.A. (OM60E69U)

7.1 OWNERS MANUAL PAGES

7.2 VEHICLE ARRIVAL CONDITION REPORT

CONTRACT NO. <u>DTNH22-07-D-00060</u> DATE: <u>4/15/10</u>
FROM: Germain Lexus
TO: TRC
PURPOSE: (X) Initial () Received () Present Receipt via Transfer vehicle condition
MODEL YEAR/MAKE/MODEL/BODY STYLE: <u>2010 / Lexus / GX460 / MPV</u>
MANUFACTURE DATE: 03/10 NHTSA NO.: CA5109
BODY COLOR: Black VIN: JTJBM7FX7A5010469
ODOMETER READING: <u>42</u> miles GVWR: <u>2,990</u> kg
PURCHASE PRICE: \$ <u>rented / leased</u> DEALER'S NAME: <u>Germain Lexus</u> , <u>3885 West Dublin Granville Road</u> , Dublin, OH 43016
XALL OPTIONS LISTED ON "WINDOW STICKER" ARE PRESENT ON THE TEST VEHICLE XXTIRES AND WHEEL RIMS ARE NEW AND THE SAME AS LISTEDXTHERE ARE NO DENTS OR OTHER INTERIOR OR EXTERIOR FLAWS
X THE VEHICLE HAS BEEN PROPERLY PREPARED AND IS IN RUNNING CONDITION
X THE GLOVE BOX CONTAINS AN OWNER'S MANUAL, WARRANTY DOCUMENT, CONSUMER INFORMATION, AND EXTRA SET OF KEYS
X PROPER FUEL FILLER CAP IS SUPPLIED ON THE TEST VEHICLE
X PLACE VEHICLE IN STORAGE AREA
X INSPECT THE VEHICLE'S INTERIOR AND EXTERIOR, INCLUDING ALL WINDOWS, SEATS, DOORS, ETC., TO CONFIRM THAT EACH SYSTEM IS COMPLETE AND FUNCTIONAL PER THE MANUFACTURER'S SPECIFICATIONS. ANY DAMAGE, MISADJUSTMENT, OR OTHER UNUSUAL CONDITION THAT COULD INFLUENCE THE TEST PROGRAM OR TEST RESULTS SHALL BE RECORDED. REPORT ANY ABNORMAL CONDITION TO THE NHTSA COTR BEFORE BEGINNING ANY TEST

RECORDED BY:	Alan Ida	DATE:	4-15-10
APPROVED BY:	Jeff Sankey	DATE:	5-31-10

7.3 VEHICLE COMPLETION CONDITION REPORT

CONTRACT NO. <u>DTNH22-07-D-00060</u> DATE: <u>5/25/10</u>
MODEL YEAR/MAKE/MODEL/BODY STYLE: <u>2010 / Lexus / GX460 / MPV</u>
MANUFACTURE DATE: 03/10 NHTSA NO.: CA5109
BODY COLOR: Black VIN: JTJBM7FX7A5010469
ODOMETER READING: <u>282</u> miles GVWR: <u>2,990</u> kg
LIST OF FMVSS TESTS PERFORMED BY THIS LAB: FMVSS 126 NHTSA Fishhook Test
X THERE ARE NO DENTS OR OTHER INTERIOR OR EXTERIOR FLAWS
X THE VEHICLE HAS BEEN PROPERLY MAINTAINED AND IS IN RUNNING

- X THE GLOVE BOX CONTAINS AN OWNER'S MANUAL, WARRANTY DOCUMENT, CONSUMER INFORMATION, AND EXTRA SET OF KEYS
- X PROPER FUEL FILLER CAP IS SUPPLIED ON THE TEST VEHICLE

REMARKS:

Equipment that is no longer on the test vehicle as noted on Vehicle Arrival Condition Report:

None.

CONDITION

Explanation for equipment removal: N/A

Test Vehicle Condition: Like new.

RECORDED BY:	Alan Ida	DATE:	5-25-10
APPROVED BY:	Jeff Sankey	DATE:	5-31-10

7.4 SINE WITH DWELL TEST RESULTS 2010 Lexus GX460 NHTSA No.: CA5109

Date Created 20-May-10

LEFT-TO-RIGHT (INITIAL COUNTER-CLOCKWISE STEER)												
File	SWA @ 5deg Ct	MES	Time@5deg	COS	Time@COS	MOS	Time@MOS	YRR1(%)	YR1 (deg/sec)	YRR1 Ct	YRR175(%)	YR175 (deg/sec)
0022	507	50.251	0.034	891	1.950	646	0.726	-1.193	-0.146	1091	-0.273	-0.033
0023	494	49.934	0.028	878	1.947	634	0.725	0.232	0.038	1078	0.082	0.013
0024	489	49.975	0.022	873	1.943	630	0.725	0.473	0.101	1073	-0.390	-0.083
0025	485	50.281	0.022	870	1.949	626	0.727	-0.707	-0.185	1070	-1.024	-0.268
0026	509	50.209	0.019	895	1.946	651	0.728	-0.702	-0.218	1095	-0.565	-0.175
0027	516	50.080	0.014	902	1.943	659	0.725	-0.770	-0.281	1102	-0.638	-0.233
0028	518	50.227	0.017	905	1.951	660	0.728	-1.240	-0.302	1105	-1.257	-0.307
0029	538	50.026	0.011	925	1.946	680	0.725	-1.165	-0.300	1125	-0.674	-0.174
0030	530	49.972	0.010	917	1.947	673	0.725	-0.510	-0.140	1117	-0.476	-0.130
0031	514	50.125	0.008	902	1.946	657	0.724	-0.606	-0.178	1102	-0.556	-0.163
0032	523	50.161	0.008	911	1.946	667	0.726	-0.561	-0.181	1111	-0.559	-0.180
0033	425	49.975	0.010	813	1.948	569	0.728	-1.209	-0.375	1013	-0.931	-0.289
0034	514	50.159	0.011	901	1.949	657	0.729	-0.600	-0.191	1101	-1.094	-0.348
0035	527	49.938	0.008	915	1.948	671	0.728	-0.545	-0.167	1115	-0.938	-0.288
0036	505	50.065	0.006	893	1.945	649	0.726	-1.121	-0.345	1093	-0.853	-0.262
	-LEFT (INITIAL C		,									
0037	535	49.964	0.035	918	1.947	674	0.727	0.583	-0.072	1118	-0.543	0.067
0038	537	49.990	0.027	920	1.943	677	0.729	0.110	-0.018	1120	-0.339	0.056
0039	485	50.028	0.024	869	1.944	626	0.727	2.370	-0.505	1069	0.155	-0.033
0040	522	50.002	0.021	907	1.947	663	0.728	-0.513	0.132	1107	-1.014	0.262
0041	510	50.015	0.016	895	1.943	652	0.725	-0.281	0.085	1095	0.083	-0.025
0042	533	50.051	0.017	919	1.948	675	0.729	-0.539	0.192	1119	-0.405	0.144
0043	511	49.955	0.015	898	1.950	653	0.728	-1.698	0.390	1098	-0.921	0.211
0044	536	50.065	0.011	922	1.945	678	0.725	-0.934	0.248	1122	-0.383	0.102
0045	526	50.054	0.014	913	1.949	669	0.730	-0.624	0.178	1113	-1.126	0.321
0046	506	50.106	0.009	894	1.947	650	0.726	-0.528	0.151	1094	-0.677	0.194
0047	538	50.395	0.008	925	1.945	682	0.725	-0.617	0.187	1125	-0.732	0.222
0048	469	50.196	0.007	856	1.945	613	0.726	-1.289	0.406	1056	-0.722	0.228
0049	513	49.980	0.006	901	1.945	657	0.725	-0.666	0.203	1101	-0.281	0.086
0050	521	49.951	0.005	908	1.944	665	0.726	-0.690	0.212	1108	-0.579	0.178
0051	500	50.162	0.007	888	1.948	644	0.728	-0.962	0.276	1088	-0.579	0.166

7.4 SINE WITH DWELL TEST RESULTS 2010 Lexus GX460 NHTSA No.: CA5109

Date Created 20-May-10

LEFT-TO-F	RIGHT (INITI	AL COUNTER-CLOCK	WISE STEER)					
File		2nd Yaw Peak(deg/sec)		Lat Disp (ft)	Lat. Acc. 1.07s (g)	1st SWA Peak(deg)	1st SWA Peak Ct	2nd SWA Mean(deg)
0022	1241	12.222	766	-3.735	0.283	49.098	575	47.862
0023	1228	16.510	757	-4.895	0.338	65.202	564	63.634
0024	1223	21.307	746	-6.093	0.323	82.177	559	80.449
0025	1220	26.160	721	-7.059	0.245	98.213	555	96.347
0026	1245	31.070	739	-7.580	0.419	114.498	580	112.118
0027	1252	36.488	750	-8.062	0.323	130.734	587	128.059
0028	1255	24.386	738	-8.477	0.105	147.755	588	144.923
0029	1275	25.752	764	-8.778	-0.003	164.042	608	160.618
0030	1267	27.380	757	-8.875	0.005	180.217	600	176.437
0031	1252	29.363	740	-8.848	0.013	197.393	585	193.257
0032	1261	32.259	758	-9.088	-0.012	213.415	594	208.981
0033	1163	31.045	654	-8.814	0.057	229.542	497	224.955
0034	1251	31.794	744	-9.053	0.006	247.280	585	241.566
0035	1265	30.670	749	-8.825	0.053	262.821	599	257.301
0036	1243	30.722	725	-8.740	0.091	272.235	576	266.242
		AL CLOCKWISE STEI	-D)					
	-			2 0 0 0	0.000	40.045	<u> </u>	47.000
0037 0038	1268 1270	-12.346 -16.596	790	3.628 4.724	-0.283 -0.313	48.915 64.926	602 604	47.888
			789					63.565
0039 0040	1219 1257	-21.301 -25.813	755 762	5.830 6.846	-0.326 -0.248	81.921 98.303	554 591	80.472 96.457
0040	1257	-25.015 -30.289	762	0.040 7.575	-0.248	90.303 114.924	579	112.046
0041	1245	-30.289 -35.660	746 762	7.575 8.176	-0.152 -0.282	130.501	579 603	127.924
0042	1269	-22.949	736	8.468	-0.282	147.592	582	144.848
0043	1240	-26.536	765	0.400 8.854	0.035	147.592	582 606	160.670
0044	1272	-28.512	765	8.903	0.069	180.401	597	176.376
0045	1203	-28.673	764 742	8.903 8.951	0.069	197.044	597	193.165
0048	1244	-20.073 -30.310	742 785	0.951 9.127	0.143	213.300	609	209.252
0047	1275	-31.532	705	9.127 9.190	0.143	230.131	541	209.252
0048	1206	-31.532	712 749	9.190 9.215	0.123	230.131 246.906	541 584	224.812 241.851
0049	1251	-30.492 -30.786	749 759	9.215 9.079	0.123	246.906 263.145	584 593	257.438
	1258		759 731					
0051	1238	-28.657	131	9.099	0.166	272.147	572	266.361

7.5 SLOWLY INCREASING STEER TEST RESULTS 2010 Lexus GX460 NHTSA No.: CA5109

5.5

6.5

7.5

7

8 8.3

6

179

196

212

228

245 261

270

Date Created 20-May-10

File	Vehicle	EventPt DOS	MES [mph]	Mean SPD [mph]	AYcount_3	THETAENCF_3 [degree]	AYCG_CD2_3 [g]	r_squared	ZeroBegin	ZeroEnd
0011	2010 Lexus GX460	518 1	50.13396166	49.90754538	1003	-32.65050887	-0.299914599	0.999050657	318	518
0012	2010 Lexus GX460	455 1	49.76061688	50.1342113	936	-31.51103655	-0.300509335	0.998198238	255	455
0013	2010 Lexus GX460	534 1	50.23710186	50.00962723	1037	-32.58287747	-0.297166654	0.998993136	334	534
0014	2010 Lexus GX460	492 0	49.82434214	50.34081552	993	33.13280246	0.303745902	0.997824299	292	492
0015	2010 Lexus GX460	541 0	50.42443439	49.88869989	1036	33.13839618	0.307500933	0.998653533	341	541
0016	2010 Lexus GX460	516 0	49.81412208	50.14634549	1009	32.61101301	0.301513203	0.997730447	316	516
	Averages					32.6	0.301725104			
	Scalars	Steering Angles (deg)								
	1.5	49								
	2	65								
	2.5	82								
	3	98								
	3.5	114								
	4	130								
	4.5	147								
	5	163								

7.6 INERTIA SENSOR MEASUREMENTS 2010 Lexus GX460 NHTSA No.: CA5109

Device: N10-02-0device version: 1.55device certification date: 09/01/0today is: 05/14/10units: Millimeters	9					
Label C_DEVICEPOS001 M_PLANE001 M_LINE001 M_ORIGIN_FRT_AXLE_CENTER C_COORDSYS001 M_TIRE_TREAD_CENTER M_INERTIA_PACK M_TOP_OF_ROOF M_GROUND	ActualX 1373.703 602.790 0.000 355.781 1525.603 2413.014 2413.586	ActualY -481.625 170.564 0.000 0.000 180.870 964.105 967.981 -82.441	-63.286 0.000 0.000 -155.160 481.504 1418.701			
Track Width		1587.500				
Roof Height (relative to ground)			1782.491			
Motion Pak - x-distance Motion Pak - y-distance Motion Pak - z-distance	1525.603	-10.516	800.845			
Motion Pak - x-distance (inches) Motion Pak - y-distance (inches) Motion Pak - z-distance (inches)	60.063	-0.414	31.529			
x-distance (longitudinal)	Point of refe (Positive fro			centerline. ar of vehicle.)		
y-distance (lateral)	Point of refe (Positive fro					
z-distance (vertical)	Point of reference is the ground plane. (Positive from the ground up.)					