126-DRI-09-002

SAFETY COMPLIANCE TESTING FOR FMVSS 126 Electronic Stability Control Systems

Kia 2009 Borrego LX NHTSA No. C90512

DYNAMIC RESEARCH, INC.

355 Van Ness Avenue, STE 200 Torrance, California 90501

October 29, 2009

FINAL REPORT

Prepared Under Contract No.: DTNH22-08-D-00098

U. S. DEPARTMENT OF TRANSPORTATION
National Highway Traffic Safety Administration
Enforcement
Office of Vehicle Safety Compliance
1200 New Jersey Avenue, SE
West Building, 4th Floor (NVS-221)
Washington, DC 20590

Prepared for the Department of Transportation, National Highway Traffic Safety Administration, under Contract No. DTNH22-08-D-00098.

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings, and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturer's names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products of manufacturers.

Prepared By: Mien C. Mebbelle
Approved By: M
Approval Date: October 29, 2009
FINAL REPORT ACCEPTANCE BY OVSC:
Accepted By:
Acceptance Date:

1. Report No.	Government Accession No.	Recipient's Catalog No.	
126-DRI-09-002			
4. Title and Subtitle	•	5. Report Date	
Final Report of FMVSS 126 Com multipurpose passenger vehicle,	pliance Testing of 2009 Kia Borrego	October 29, 2009	
multipulpose passenger verilole,	VITIGA NO. 030312	6. Performing Organization Co	de
		DRI	
7. Author(s) John F. Lenkeit, Technical D	rector	Performing Organization Re	port No.
Brian Kebschull, Principal En		DRI-TM-09-61	
9. Performing Organization Nam	e and Address	10. Work Unit No.	
Dynamic Research, Inc.			
355 Van Ness Ave, STE 200 Torrance, CA 90501		11. Contract or Grant No.	
Totrance, OA 30301		DTNH22-08-D-00098	
12. Sponsoring Agency Name a U.S. Department of Transport		13. Type of Report and Period	Covered
National Highway Traffic Sa	fety Administration Enforcement	Draft Test Report	
Office of Vehicle Safety Cor 1200 New Jersey Avenue, S		July 24 to October 29, 2009)
West Building, 4th Floor (N) Washington, D.C. 20590	/S-221)		
rradinington, B.S. 2000		14. Sponsoring Agency Code	
		NIV.C 000	
15. Supplementary Notes		NVS-220	
16. Abstract			
	Kia Borrego, NHTSA No. C90512, in accordar FP-126-02 for the determination of FMVSS 12		of Vehicle Safety
Test failures identified were as fo	lows: None		
17. Key Words		18. Distribution Statement	
Compliance Testing		Copies of this report are av	ailahle from:
Safety Engineering		Copies of this report are avi	allable ITOITI.
FMVSS 126		NHTSA Technical Informati (NPO 411)	on Services (TIS)
		1200 New Jersey Avenue, S Washington, D.C. 20590	SE
		Email: tis@nhtsa.dot.gov	
		FAX: (202) 493-2833	
19. Security Classif. (of this	20. Security Classif. (of this page)	21. No. of Pages	22.
report) Unclassified	Unclassified		

TABLE OF CONTENTS

SECTION	<u>P</u>	<u>AGE</u>
1.0	PURPOSE OF COMPLIANCE TEST	1
2.0	TEST PROCEDURE AND DISCUSSION OF RESULTS	3
3.0	TEST DATA	5
4.0	TEST EQUIPMENT LIST AND CALIBRATION INFORMATION	27
5.0	PHOTOGRAPHS	29
6.0	DATA PLOTS	43
7.0	OTHER DOCUMENTATION	47
	 7.1 Owner's Manual Pages 7.2 Vehicle Arrival Condition Report 7.3 Vehicle Completion Condition Report 7.4 Sine with Dwell Test Results 7.5 Slowly Increasing Steer Test Results 7.6 Inertial Sensing System Location Coordinates 	48 52 53 54 56 57

1.0 PURPOSE OF COMPLIANCE TEST

The purpose of this test is to determine if the test vehicle, a 2009 Kia Borrego, meets the minimum equipment and performance requirements stated in Federal Motor Vehicle Safety Standard (FMVSS) 126, "Electronic Stability Control Systems."

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS

Testing of the 2009 Kia Borrego was conducted at Dynamic Research, Inc (DRI) in accordance with NHTSA TP-126-02, dated November 19, 2008.

The vehicle was inspected to ensure it was equipped with an ESC system that:

- Augments vehicle directional stability by applying and adjusting brake torques individually at each wheel to induce a correcting yaw moment to a vehicle;
- Is computer controlled with the computer using a closed-loop algorithm to limit vehicle oversteer and to limit vehicle understeer;
- Has a means to determine the vehicle's yaw rate and to estimate its side slip or side slip derivative with respect to time;
- Has a means to monitor driver steering inputs;
- Has an algorithm to determine the need, and a means to modify engine torque, as necessary, to assist the driver in maintaining control of the vehicle; and
- Is operational over the full speed range of the vehicle (except at vehicle speeds less than 20 km/h (12.4 mph), when being driven in reverse, or during system initialization).

The vehicle was subjected to a 0.7 Hz sine with dwell steering maneuver to ensure that it would meet the stability and responsiveness requirements of the standard as follows:

 At 1.0 second after completion of a required sine with dwell steering input, the yaw rate of the vehicle must not exceed 35 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTINUED)

- At 1.75 seconds after completion of a required sine with dwell steering input, the yaw rate of the vehicle must not exceed 20 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).
- The lateral displacement of the vehicle center of gravity with respect to its initial straight path must be at least 1.83 m (6 feet) (for vehicles with a GVWR of 3,500kg (7,716 lb) or less) when computed 1.07 seconds after the Beginning of Steer (BOS) at the specified steering wheel angles.

System malfunction simulations were executed to verify vehicle could identify and indicate a malfunction.

The vehicle's ESC System appears to meet the performance and equipment requirements as required by FMVSS 126. The test results are summarized on the following summary sheet.

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTD)

Data Summary Sheet (Page 1 of 2)

Vehicle: 2009 Kia Borrego

NHTSA No <u>C90512</u> VIN: <u>KNDJJ741X95012203</u>

Vehicle Type: MPV Manufacture Date: 5/08

Laboratory: Dynamic Research, Inc.

REQUIREMENTS: PASS/FAIL

ESC Equipment and Operational Characteristics (Data Sheet 2)

The vehicle is to be equipped with an ESC system that meets the equipment and operational characteristics requirements. (S126, S5.1, S5.6)

ESC Malfunction Telltale (Data Sheet 3)

Vehicle is equipped with a telltale that indicates one or more ESC system malfunctions. (S126, S5.3)

"ESC Off" and other System Controls and Telltale (Data Sheet 3,4)

Vehicle is equipped with an ESC off telltale indicating the vehicle has been put into a mode that renders the ESC system unable to satisfy the performance requirements of the standard, if such a mode exists. (S5.5.1)

PASS

PASS

If provided, off control and other system controls as well as the ESC off telltale meets the operational requirements (S126, S5.4, S5.4.1,S5.4.2, S5.5.4, and S5.5.9)

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTD)

Data Summary Sheet (Page 2 of 2)

REQUIREMENTS:	PASS/FAIL
Vehicle Lateral Stability (Data Sheet 8)	
Yaw Rate Ratio at 1 second after COS is less than 35% of peak value. (S126, S5.2.1)	<u>PASS</u>
Yaw Rate Ratio at 1.75 seconds after COS is less than 20% of peak value. (S126, S5.2.2)	<u>PASS</u>
Vehicle Responsiveness (Data Sheet 8)	
Lateral displacement at 1.07 seconds after BOS is at least 1.83 m (6 feet) for vehicles with a GVWR of 3,500kg (7,716 lb) or less, and 1.52 m (5 feet) for vehicles with a GVWR greater than 3,500 Kg (7,716 lb). (S126, S5.2.3)	<u>PASS</u>
ESC Malfunction Warning (Data Sheet 9)	
Warning is provided to driver after malfunction occurrence. (S126. S5.3)	<u>PASS</u>
Malfunction telltale stayed illuminated as long as malfunction existed and must extinguish after malfunction was corrected. (S126, S5.3.7)	<u>PASS</u>

3.0 TEST DATA

Data Sheet 1 (Page 1 of 2) TEST VEHICLE INSPECTION AND TEST PREPARATION

Vehic	cle: <i>2009 Kia L</i>	Borrego :MPV			
NHT	SA No <i>C9051</i>	<i>12</i> Da	ata sheet completio	n date: <u>7/24/2009</u>	
VIN:	KNDJJ741X.	<u>95012203</u>	Manufacture D	ate: <u>5/08</u>	
GVW	/R (kg): <u>2650</u>	Front GA	WR (kg): <u>1300</u>	Rear GVWR (kg): <u>1650</u>	2
Seati	ng Positions	Front: <u>2</u>	Mid: <u>3</u>	Rear: <u>2</u>	
Odor	neter reading a	at time of inspec	tion: <u>141 (226) m</u>	iles (km)	
DESI	GNATED TIRE	SIZE(S) FROM \	/EHICLE LABELING	:	
	Front Axle:	P245/70 R17	Rear Axle:	P245/70 R17	
INST	ALLED TIRE S	IZE(S) ON VEHIC	CLE (from tire sidew	all)	
			Front Axle	Rear Axle	
	Tire Mar	nufacturer:	<u>Hankook</u>	<u>Hankook</u>	
	7	Tire Model:	Radial RA07	Radial RA07	
		Tire Size:	P245/70 R17	P245/70 R17	
Т	IN Left From	nt: <u><i>T7M0 AEH</i></u>	<u>2508</u> Right	Front: <u>T7M0 AEH 2508</u>	
	Left Re	ar: <u>T7M0 AEH</u>	<u>2508</u> Righ	t Rear: <i>T7M0 AEH 2508</i>	
		zes same as labe R for further guid		<u>s</u>	
		ATION(S):(mark a		_	
\checkmark	Two Wheel Dr	rive (2WD)	Front Wheel Dri	ve 🗹 Rear Wheel Drive	
	All Wheel Driv	e (AWD)			
	Four Wheel Dr	ive Automatic -	differential no locke	ed full time (4WD Automat	ic)
	Four Wheel Drive (High Gear Locked Differential 4WD HGLD)				
	Four Wheel Dr	ive Low Gear (4	WD Low)		
П	Other Describe	e			

Data Sheet 1 (Page 2 of 2) TEST VEHICLE INSPECTION AND TEST PREPARATION

DRIVE CONFIGURATIONS AND MODES: (ex. default, performance, off) (For each of the vehicle's drive configurations identify available operating modes) Drive Configuration: 2WS Mode: Default Drive Configuration: Mode: Drive Configuration: Mode: **VEHICLE STABILITY SYSTEMS (Check applicable technologies):** ☑ ESC ✓ Traction Control ✓ Roll Stability Control ☐ Active Suspension ☑ Electronic Throttle Control ☐ Active Steering ✓ ABS List other systems: **REMARKS:**

RECORDED BY: <u>J Brubacher</u> DATE RECORDED: 7/24/2009

APPROVED BY: J Lenkeit DATE APPROVED: 8/10/2009

Data Sheet 2 (Page 1 of 2) ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

Vehicle: 2009 Kia Borrego		
NHTSA No <u>C90512</u>	Data Sheet Completion Date: 7/24/20	<u>09</u>
ESC SYSTEM IDENTIFICATION	I	
Manufacturer/Model Mando / I	<u>MGH-40-ESC</u>	
ESC SYSTEM HARDWARE (Ch	eck applicable hardware)	
☑ Electronic Control Unit	☑ Hydraulic Control Unit	
☑ Wheel Speed Sensors	☑ Steering Angle Sensor	
☑ Yaw Rate Sensor	☑ Lateral Acceleration Sensor	
List other Components: Engir	ne management interface	
ESC OPERATIONAL CHARACT	ERISTICS	
System is capable of generating	g brake torque at each wheel	X Yes (Pass)
List and describe Components:	Electronics Control unit can	No (Fail)
	command individual brake torques to	
	<u>hydraulic control unit and individual</u> <u>brakes</u>	
System is capable of determini	ng yaw rate	X Yes (Pass)
List and describe Components:	Yaw rate sensor	No (Fail)
System is capable of monitorin	g driver steering input	X Yes (Pass)
List and describe Components:	Steering wheel angle sensor	No (Fail)
System is capable of estimating	g side slip or side slip derivative	X Yes (Pass)
List and describe Components:	Yaw Rate & Lateral Acceleration	No (Fail)
	sensor, Steering Angle sensor,	
	Logic	

APPROVED BY: <u>J Lenkeit</u>

Data Sheet 2 (Page 2 of 2) ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

ESC OPERATIONAL CHARACTE	ERISTICS (continued)	
System is capable of modifying activation.	engine torque during ESC	_X_Yes (Pass) No (Fail)
Method used to modify torque: (Controller Area Network)	Electronic control unit, CAN	
System is capable of activation and higher.	at speeds of 20 km/h (12.4 mph)	X Yes (Pass) No (Fail)
Speed system becomes active:	<i>15</i> km/h	
System is capable of activation	during the following driving phases.	X Yes (Pass) No (Fail)
Driving phases during which ES Acceleration, deceleration, coas during activation of ABS or Trace	ting, during activation of ABS and	
Vehicle manufacturer submitted ESC mitigates understeer	documentation explaining how the	_X_Yes (Pass) No (Fail)
	DATA INDICATES COMPLIANCE:	X Yes (Pass) No (Fail)
REMARKS:		
RECORDED BY: <i>J Brubacher</i>	DATE RECORDED: <u>7/2</u>	4/200 <u>9</u>

DATE APPROVED: <u>8/04/2009</u>

Data Sheet 3 (Page 1 of 2) ESC MALFUNCTION AND OFF TELLTALES

Make: 2009 Kia Borrego		
NHTSA No <u>C90512</u>	Data sheet completion date: 8/04/2009	
ESC Malfunction Telltale		
Vehicle is equipped with malfunction	telltale? <u>Yes</u>	
Telltale Location Instrument panel no	ear temperature gauge (Figure 6)	
Telltale Color <u>Amber</u>		
Telltale symbol or abbreviation used		
\triangle	□ Vehicle uses this symbol	
or ESC	□ Vehicles uses this abbreviation	
//	☑ Neither symbol or abbreviation is used	
If different than identified above, malabbreviation used.	ke note of any message, symbol or	
Refer to Figure 6. The "ESC" telltale	identifies when the ESC system is activating.	
	en the ESC system has malfunctioned or has	
Is telltale part of a common space? Λ	<u>lo</u>	
Is telltale also used to indicate activa <u>above.</u>	tion of the ESC system? No (see explanation	
If yes explain telltale operation during ESC activation:		

Data Sheet 3 (Page 2 of 2) ESC MALFUNCTION AND OFF TELLTALES

"ESC OFF" Telltale (if provided)

Vehicle is equipped with "ESC OFF" telltale? Yes

Is "ESC Off" telltale combined with "ESC Malfunction" telltale utilizing a two part telltale? No. The same telltale is utilized for indicating a malfunction and when the system has been turned off but the telltale is not a two part telltale.

Telltale Color Amber

Telltale symbol or abbreviation used

		□ Vehicle uses this symbol
55	or ESC OFF	☑ Vehicle uses this abbreviation
OFF		☐ Neither symbol or abbreviation is used

If different than identified above, make note of any message, symbol or abbreviation used.

Is telltale part of a common space? No

DATA INDICATES COMPLIANCE: Pass

(Vehicle is compliant if equipped with a malfunction telltale)

Remarks: <u>"ESC OFF" illuminates when the ESC has been manually switched off</u> and also when there is an ESC malfunction. "ESC" indicator flashes when ESC is functioning, i.e., ESC is intervening.

RECORDED BY: <u>J Lenkeit</u> DATE RECORDED: <u>8/11/2009</u> APPROVED BY: <u>B Kebschull</u> DATE APPROVED: <u>9/10/2009</u>

Data Sheet 4 (Page 1 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

Make: <u>2009 <i>Kia L</i></u>	Borrego		
NHTSA No <u>C905</u>	<u>512</u>	Data sheet completion date: 8/04/2009	
"ESC OFF" Conti	rols Identi	fication and Operational Check:	
the ESC system	or place th	h a control or controls whose purpose is to deactivate ne ESC system in a mode or modes that may no noce requirements of the standard? X Yes No	
Type of control o		☑ Dedicated "ESC Off" control	
controls provided mark all that app		☐ Multi-functional control with an "ESC Off" mode	
		☐ Other (describe)	
dentify each con	ntrol locati	on, labeling and selectable modes.	
First Control:	Location	Left side of dash (refer to Figure 5.7)	
	Labeling	ESC OFF	
		ESC on/off	
Second Control:			
	Labeling		
	Modes		
dentify standard	or default	t drive configurationRWD	
Verify standard o	or default o	drive configuration selected. X Yes No	
		e illuminate upon activation of the dedicated ESC off "ESC Off" mode on the multi-function control?	
		X Yes No (Fai	il)
		e extinguish when the ignition is cycled from "On" and then back again to the "On" ("Run")	
		Yes No (Fai	il)
f no, describe ho	ow the off	control functions	

Data Sheet 4 (Page 2 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

If a multi-function control is provided, cycle through each mode setting on the control and record which modes illuminate the "ESC Off" telltale. Also, for those modes that illuminate the ESC Off" telltale identify if the telltale extinguishes upon cycling the ignition system.

		"ESC Off" telltale	"ESC Off" telltale
		illuminates upon	extinguishes
		activation of	upon cycling
Cont	rol Mode	control? (Yes/No)	ignition? (Yes/No)
None			<u> </u>
	at illuminates the "ESC was cycled from "On" ("Run") position?	("Run") to "Lock" or '	_
Other System Con	trols that have an ancil	lary effect on ESC Op	eration:
deactivate the ESC	pped with any ancillary C system or place the E he performance require System <i>None</i>	SC system in a mode ments of the standard	or modes that may d? X_No
	Control Description		
	Labeling		
Ancillary Control:	System		
	Control Description		
	Labeling		
Ancillary Control:			
	Control Description		
	Labeling		

APPROVED BY: *J Lenkeit*

Data Sheet 4 (Page 3 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

Activate each control listed above and record whether the control illuminates the "ESC Off" telltale. Also, record warnings or messages provided regarding the ESC system.

	Control	
	Activates "ESC Off"	
Ancillary Control	Telltale? (Yes/No)	Warnings or Messages Provided
None		

For those controls that illuminate the "ESC Off" telltale above identify if the "ESC Off" telltale extinguishes upon cycling the ignition system.

	"ESC Off" telltale extinguishes
Ancillary Control	upon cycling ignition? (Yes/No)
None	

For each control that illuminates the "ESC Off" telltale, did the telltale extinguish when the ignition is cycled from "On" ("Run") to "Lock" or "Off" and then back again to the "On" ("Run") position? If the control activated places the vehicle into a low-range four-wheel drive configuration designed for low-speed, off-road driving, the ESC system may remain turned off after the ignition has been cycled off and then back on and therefore the "ESC Off" telltale may not extinguish.

then back on and therefore the	e "ESC Off" telltale may not extinguishYes	No (Fail	
	DATA INDICATES COMPLIANCE:	<u>Pass</u>	
Remarks:			
RECORDED BY: B Kebschull	DATE RECORDED: 8/04/	/2009	

DATE APPROVED: *8/10/2009*

Data Sheet 5 (Page 1 of 3) TEST TRACK AND VEHICLE DATA

Vehicle: 2009 Kia Borrego

NHTSA No <u>C90512</u> Data sheet completion date: <u>8/05/2009</u>

Test Track Requirements: Test surface slope (0-1%) <u>0.5%</u>

Peak Friction Coefficient (at least 0.9) 0.94

Test track data meets requirements: Yes

If no, explain:

Full Fluid Levels: Fuel Yes Coolant Yes Other Fluids Yes

(specify) Oil, ATF

Tire Pressures: Required; Front Axle <u>220</u> KPA Rear Axle <u>220</u> KPA

Actual; LF <u>220</u> KPA RF <u>220</u> KPA

LR <u>220</u> KPA RR <u>220</u> KPA

Vehicle Dimensions: Front Track Width <u>163.1</u> cm Wheelbase <u>289.6</u> cm

Rear Track Width 164.1 cm

Vehicle Weight Ratings: GAWR Front 1300 KG GAWR Rear 1650 KG

Unloaded Vehicle Weight (UVW):

Front axle *1015.0* KG Left Front *521.1* KG Right Front 493.9 KG KG 476.7 KG Right Rear KG Rear axle 950.6 Left Rear 473.9

Total UVW <u>1965.6</u> KG

Baseline Weight and Outrigger Selection (only for MPVs, Trucks, Buses)

Calculated baseline weight (UVW + 73kg) 2038.6 KG

Outrigger size required ("Standard" or "Heavy") <u>Standard</u>

Standard - Baseline weight under 2772 kg (6000 lb)

Heavy - Baseline weight equal to or greater than 2772 kg (6000 lb)

Data Sheet 5 (Page 2 of 3) TEST TRACK AND VEHICLE DATA

UVW with Outriggers: (only for MPVs, Trucks, Buses)

Front axle $\underline{1054.9}$ KG Left Front $\underline{533.8}$ KG Right Front $\underline{521.1}$ KG

Rear axle $\underline{964.5}$ KG Left Rear $\underline{490.7}$ KG Right Rear $\underline{473.5}$ KG

Total UVW with outriggers <u>2019.1</u> KG

Loaded Vehicle Weight w/Driver and Instrumentation (no Ballast)

Front axle $\underline{1143.8}$ KG Left Front $\underline{600.5}$ KG Right Front $\underline{543.3}$ KG

Rear axle 1039.5 KG Left Rear 537.9 KG Right Rear 501.6 KG

Vehicle Weight 2183.3 KG

Ballast Required =

[Total UVW with Outriggers (if applicable)]		+ <u>168</u> KG	 - [Loaded Weight w/Driver and Instrumentation)]
=	<u>2019.1</u> KG	+ <u>168</u> KG	- <u>2183.3</u> KG

= <u>3.8</u> KG

Total Loaded Vehicle Weight w/Driver and Instrumentation and Ballast

Front axle <u>1144.7</u> KG Left Front <u>600.9</u> KG Right Front <u>543.8</u> KG Rear axle <u>1042.1</u> KG Left Rear <u>539.2</u> KG Right Rear <u>502.9</u> KG

Total UVW <u>2186.8</u> KG

Data Sheet 5 (Page 3 of 3) TEST TRACK AND VEHICLE DATA

Center of Gravity and Inertial Sensing System Location at Loaded Vehicle Condition:

x-distance (longitudinal) Point of reference is the front axle centerline.

(Positive from front axle toward rear of vehicle.)

y-distance (lateral) Point of reference is the vehicle centerline.

(Positive from the center toward the right.)

z-distance (vertical) Point of reference is the ground plane.

Positive from the ground up.)

Locations:

	Center o		Inertia	l Sensi	ng System	
x-distance	<i>54.33</i> in	<u>138</u> cm		<u>69.5</u>	9 <u>2</u> in	<u>177.6</u> cm
y-distance	<u>-1.37</u> in	<u>-3.48</u> cm		<u>-0.2</u>	2 <u>5</u> in	<u>-0.64</u> cm
z-distance	<u>26.29</u> in	<u>66.77</u> cm	<u>+ 23.5</u> in		+ <i>59.6</i> cm	
		Roof Height	<u>69.18</u>	in	<u> 175.7</u>	cm cm
Distance between ultrasonic sensors			88.4	in	224.6	cm cm

Remarks:

RECORDED BY: <u>B Kebschull</u>

APPROVED BY: <u>J Lenkeit</u>

DATE RECORDED: <u>8/05/2009</u>

DATE APPROVED: <u>8/10/2009</u>

Data Sheet 6 (Page 1 of 3) BRAKE AND TIRE CONDITIONING

Vehicle: 2009 Kia Borrego

NHTSA No *C90512*

Measured tire pressure: LF 220 KPA RF 220 KPA

LR <u>220</u> KPA RR <u>220</u> KPA

Wind Speed 2.2 m/s (10 m/sec (22 mph) max for passenger cars;

5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) <u>29.4</u> °C

Brake Conditioning Time: 11:20:00 AM Date: 8/05/2009

56 km/h (35 mph) Brake Stops

Number of stops executed (10 required) 10 Stops

Observed deceleration rate range (.5g target) <u>0.45 - 0.55</u> g

72 km/h (45 mph) Brake Stops

Number of stops executed (3 required) 3 Stops

Number of stops ABS activated (3 required) 3 Stops

Observed deceleration rate range 0.8 - 0.9 g

72 km/h (45 mph) Brake Cool Down Period

Duration of cool down period (5 minutes min.) 5 Minutes

Data Sheet 6 (Page 2 of 3) BRAKE AND TIRE CONDITIONING

Tire Conditioning series No. 1 Time: 11:39:00 AM Date: 8/05/2009

Measured cold tire pressure LF 234 KPA RF 248 KPA

LR *241* KPA RR *248* KPA

Wind Speed 2.2 m/s (10 m/sec (22 mph) max for passenger cars;

5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 29.4°C

30 meter (100 ft) Diameter Circle Maneuver							
Test Run	Steering	Target Lateral	Observed	Observed Vehicle			
165t Null	Direction	Acceleration (g)	Lateral (g)	Speed (Km/h)			
1-3	Clockwise	0.5 - 0.6	0.5 - 0.6	32			
4-6	Counterclockwise	0.5 - 0.6	0.5 – 0.6	32			

	5-1 Hz Cycle Sinusoidal Steering Maneuver to Determine Steering Wheel Angle for 0.5-0.6 g Lateral Acceleration								
Test Run	Data File	Vehicle Speed Km/h(mph)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)					
1	2	56 ± 2 (35 ± 1)	60	0.5 - 0.6	0.44				
2	3	56 ± 2 (35 ± 1)	80	0.5 - 0.6	0.58				
3		56 ± 2 (35 ± 1)		0.5 - 0.6					
4		56 ± 2 (35 ± 1)		0.5 - 0.6					

Steering wheel angle that corresponds to a peak 0.5-0.6 g lateral acceleration: 80 degrees

	10-1 Hz Cycle Sinusoidal Steering Maneuver							
Test Run	Data File	Vehicle Speed Km/h (mph)	Steering Wheel Angle (degrees) Target Peak Lateral Acceleration (g)		Observed Peak Lateral Acceleration (g)			
1-3	4-6	56 ± 2 (35 ± 1)	80 (cycles 1-10)	0.5 - 0.6	0.56			
4	7	80 (cycles 1-9)	0.5 - 0.6	0.56				
4 7	/	56 ± 2 (35 ± 1)	160 (cycle10)*	NA	0.74			

^{*} The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9

Data Sheet 6 (Page 3 of 3) BRAKE AND TIRE CONDITIONING

Tire Conditioning series No. 2 Time: 2:45:00 PM Date: 8/05/2009

Measured cold tire pressure LF 245 KPA RF 245 KPA

LR <u>245</u> KPA RR *240* KPA

Wind Speed <u>0.9</u> m/s (10 m/sec (22 mph) max for passenger cars;

5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 32.2°C

30 meter (100 ft) Diameter Circle Maneuver							
Test Run Steering Direction Target Lateral Observed Lateral Observed Vehicles (g) Speed (Km/h)							
1-3	Clockwise	0.5 - 0.6	.05 - 0.6	33 – 34			
4-6	Counterclockwise	0.5 - 0.6	.05 - 0.6	33 - 34			

Steering wheel angle that corresponds to a peak 0.5-0.6 g lateral acceleration: 80

	10-1 Hz Cycle Sinusoidal Steering Maneuver							
Test Data Vehicle Speed Steering Wheel Run File Km/h (mph) Steering Wheel Angle (degrees) Target Peak Lateral Lateral Acceleration (g) Acceleration (g)								
1-3	16-18	56 ± 2 (35 ± 1)	80 (cycles 1-10)	0.5 - 0.6	0.56			
4		56 ± 2 (35 ± 1)	80 (cycles 1-9)		0.56			
4	19		160 (cycle10)*	NA	0.74			

^{*} The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9

Remarks:

RECORDED BY: B Kebschull DATE RECORDED: 8/05/2009

APPROVED BY: J Lenkeit DATE APPROVED: 8/11/2009

Data Sheet 7 (Page 1 of 2) SLOWLY INCREASING STEER (SIS) MANEUVER

Vehicle: 2009 Kia Borrego

NHTSA No *C90512*

Measured tire pressure: LF 240 KPA RF 235 KPA

LR *240* KPA RR *235* KPA

Wind Speed 1.8 m/s

(10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 32°C

Selected drive configuration RWD (default)

Selected Mode: default

Preliminary Left Steer Maneuver:

Lateral Acceleration measured at 30 degrees steering wheel angle

$$a_{y,30 \text{deg}rees} =$$
 0.35 g

Assuming a linear relationship the following ratio should be used to calculate the steering wheel angle at 0.55g:

$$\frac{30 \, \text{degrees}}{a_{\text{y,30 degrees}}} = \frac{\delta_{\text{SIS}}}{0.55 \, \text{g}} \qquad \qquad \frac{\delta_{\text{sis}} = 47.14 \, \text{degrees (@.55g)}}{\delta_{\text{sis}} = \underline{50} \, \text{degrees (rounded)}}$$

Steering Wheel Angle at Corrected 0.3g Lateral Acceleration:

	3		Steering Wheel		
	Initial Steer		Angle to nearest	Data	
Maneuver	Direction	Time Clock	0.1 (degrees)	Run	Good/NG
1	Left	1:37:00 PM	<u>-28.7</u>		<u>Good</u>
2	Left	1:41:00 PM	<u>-29.2</u>		Good
3	Left	<u>1:46:00 PM</u>	<u>-29.6</u>		Good
4	Left				
5	Left				
1	Right	1:51:00 PM	<u>30.3</u>		Good
2	Right	1:56:00 PM	<u>30.8</u>		Good
3	Right	2:01:00 PM	<u>30.6</u>		Good
4	Right				
5	Right				

Data Sheet 7 (Page 2 of 2) SLOWLY INCREASING STEER (SIS) MANEUVER

Average Overall Steering Wheel Angle:

[to nearest 0.1 degree]

Remarks:

RECORDED BY: <u>B Kebschull</u> DATE RECORDED: <u>8/05/2009</u>

APPROVED BY: <u>J Lenkeit</u> DATE APPROVED: <u>8/11/2009</u>

Data Sheet 8 (Page 1 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Tire conditioning completed	✓Yes	□No
ESC system is enabled	✓Yes	□No
On track calibration checks have been completed	✓Yes	□No
On track static data file for each sensor obtained	✓Yes	□No

Selected Drive Configuration: RWD (default)

Selected Mode: default

Overall steering wheel angle ($\delta_{0.3 g, overall}$) <u>29.9</u> degrees

Lateral Stability Test Series No. 1 - Counterclockwise Initial Steer Direction

		Comm	anded	,	Yaw Rate:	S	١	/RR	Υ	'RR
	Clock	Steering Wheel		(c	(degrees/sec)		at 1.0 sec after		at 1.75 sec after	
Maneuver	Time	Ang	gle¹					cos	_	os
#	(1.5 – 5.0							35%]		20%]
	min max	Scalar	Angle	$\dot{\psi}_{\scriptscriptstyle Peak}$	$\dot{\psi}_{1.0 m sec}$	$\dot{\psi}_{1.75 \mathrm{sec}}$	%	Pass/Fail	%	Pass/Fail
	between	(* 80.3 g)	(degrees)	т Реак	7 1.0sec	7 1./5sec				
	runs)	4.5	4.5	10.0	-0.2	-0.2	-1.7	Pass	-1.8	Pass
1	3:11:00 PM	1.5	45	12.8						
2	3:16:00 PM	2	60	17.4	0.1	0.0	0.4	Pass	0.1	Pass
3	3:19:00 PM	2.5	75	21.8	0.2	0.3	1.1	Pass	1.2	Pass
4	3:22:00 PM	3	90	27.3	0.3	0.1	1.0	Pass	0.4	Pass
5	3:25:00 PM	3.5	105	32.9	0.5	-0.1	1.6	Pass	-0.2	Pass
6	3:28:00 PM	4	120	37.5	0.1	0.2	0.3	Pass	0.6	Pass
7	3:31:00 PM	4.5	135	41.0	-0.1	0.0	-0.3	Pass	0.0	Pass
8	3:33:00 PM	5	150	42.7	-0.1	-0.2	-0.1	Pass	-0.4	Pass
9	3:36:00 PM	5.5	164	44.0	0.1	0.1	0.2	Pass	0.2	Pass
10	3:39:00 PM	6	179	45.1	0.2	0.0	0.3	Pass	0.1	Pass
11	3:41:00 PM	6.5	194	46.9	-0.3	-0.2	-0.7	Pass	-0.4	Pass
12	3:44:00 PM	7	209	45.5	0.0	0.2	-0.1	Pass	0.4	Pass
13	3:47:00 PM	7.5	224	45.3	0.0	0.0	0.0	Pass	0.0	Pass
14	3:50:00 PM	8	239	46.9	0.2	0.0	0.3	Pass	0.1	Pass
15	3:53:00 PM	8.5	254	42.6	-0.2	0.0	-0.4	Pass	0.0	Pass
16	3:58:00 PM	9	269	45.8	-0.1	-0.1	-0.2	Pass	-0.2	Pass
17	4:01:00 PM		270	45.6	0.2	0.0	0.4	Pass	0.1	Pass

^{1.} Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5 *\delta_0.3 g, overall or 270 degrees is utilized, whichever is greater provided the calculated magnitude of 6.5 *\delta_0.3 g, overall is less than or equal to 300 degrees. If 6.5 *\delta_0.3 g, overall is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5 *\delta_0.3 g, overall without exceeding the 270 degree steering wheel angle.

Data Sheet 8 (2 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Lateral Stability Test Series No. 2 - Clockwise Initial Steer Direction

Lateral Stability Test Series No. 2 – Clockwise Initial Steer Direction										
		Commanded		Yaw Rates			YRR		YRR	
	Clock	Steering Wheel Angle ¹		(degrees/sec)			at 1.0 sec after		at 1.75 sec after	
Maneuver	Time						COS		COS	
#	(1 5 5 0						[<u><</u> 35%]		[<u><</u> 20%]	
	(1.5 – 5.0 min max	Scalar	Angle	$\dot{\psi}_{\scriptscriptstyle Peak}$	$\dot{\psi}_{1.0\mathrm{sec}}$	$\dot{\psi}_{1.75 m sec}$	%	Pass/Fail	%	Pass/Fail
	between runs)	(* 80.3 g)	(degrees)	₹ Peak	Ψ 1.0sec	Ψ 1.75sec				
1	4:03:00 PM	1.5	45	-13.4	0.1	0.0	-0.6	Pass	0.2	Pass
2	4:06:00 PM	2	60	-18.1	-0.1	-0.1	0.7	Pass	0.7	Pass
3	4:08:00 PM	2.5	75	-22.7	0.0	0.0	0.0	Pass	-0.2	Pass
4	4:11:00 PM	3	90	-27.9	-0.2	0.0	0.7	Pass	0.1	Pass
5	4:14:00 PM	3.5	105	-32.8	-0.2	-0.1	0.6	Pass	0.4	Pass
6	4:16:00 PM	4	120	-37.6	-0.2	-0.2	0.6	Pass	0.4	Pass
7	4:18:00 PM	4.5	135	-40.7	0.0	0.0	-0.1	Pass	0.1	Pass
8	4:20:00 PM	5	150	-43.8	0.0	0.1	0.1	Pass	-0.3	Pass
9	4:23:00 PM	5.5	164	-45.0	0.0	-0.1	0.1	Pass	0.3	Pass
10	4:25:00 PM	6	179	-45.6	0.0	0.1	0.0	Pass	-0.2	Pass
11	4:28:00 PM	6.5	194	-46.8	0.0	-0.1	0.1	Pass	0.1	Pass
12	4:30:00 PM	7	209	-46.0	0.1	0.1	-0.3	Pass	-0.2	Pass
13	4:33:00 PM	7.5	224	-48.0	0.1	0.1	-0.1	Pass	-0.2	Pass
14	4:35:00 PM	8	239	-46.7	-0.1	-0.1	0.2	Pass	0.2	Pass
15	4:37:00 PM	8.5	254	-49.9	-0.1	0.0	0.2	Pass	0.0	Pass
16	4:40:00 PM	9	269	-55.5	-0.1	-0.1	0.1	Pass	0.2	Pass
17	4:43:00 PM		270	-50.4	-0.2	0.0	0.4	Pass	0.0	Pass

^{1.} Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5*\delta_{0.3 g, overall} or 270 degrees is utilized, whichever is greater provided the calculated 6.5*\delta_{0.3 g, overall} is less than or equal to 300 degrees. If 6.5*\delta_{0.3 g, overall} is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5*\delta_{0.3 g, overall} without exceeding the 270 degree steering wheel angle.

During execution of the sine with dwell maneuvers were any of the following events observed?

Rim-to-pavement contact	☐ Yes	☑ No
Tire debeading	☐ Yes	☑ No
Loss of pavement contact of vehicle tires	☐ Yes	☑ No
Did the test driver experience any vehicle	☐ Yes	☑ No
loss of control or spinout?		

If "Yes" explain the event and consult with the COTR.

Data Sheet 8 (3 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Responsiveness - Lateral Displacement

nesponsive	iess – Laterai Disp				
			Steering Wheel	Calculated Lateral	
			gle	Displac	ement¹
Maneuver	Initial Steer	($5.0*\delta$ 0.3 g, ove	rall or greater)		_
#	Direction	Scalar	Angle	Distance	Pass/Fail
		*δ0.3 g	(degrees)	(m)	
8	Counterclockwise	5	150	-2.9	Pass
9	Counterclockwise	5.5	164	-2.9	Pass
10	Counterclockwise	6	179	-2.9	Pass
11	Counterclockwise	6.5	194	-3.0	Pass
12	Counterclockwise	7	209	-3.0	Pass
13	Counterclockwise	7.5	224	-2.9	Pass
14	Counterclockwise	8	239	-2.9	Pass
15	Counterclockwise	8.5	254	-2.9	Pass
16	Counterclockwise	9	269	-2.9	Pass
17	Counterclockwise		270	-2.9	Pass
8	Clockwise	5	150	2.7	Pass
9	Clockwise	5.5	164	2.8	Pass
10	Clockwise	6	179	2.9	Pass
11	Clockwise	6.5	194	2.9	Pass
12	Clockwise	7	209	2.9	Pass
13	Clockwise	7.5	224	2.9	Pass
14	Clockwise	8	239	2.9	Pass
15	Clockwise	8.5	254	2.9	Pass
16	Clockwise	9	269	3.0	Pass
17	Clockwise		270	3.0	Pass

^{1.} Lateral displacement should be \geq 1.83 m (6 ft) for vehicle with a GVWR of 3,500 kg (7,716 lb) or less; and \geq 1.52 m (5 ft) for vehicles with GVWR greater than 3,500 kg (7,716 lb).

DATA INDICATES COMPLIANCE:	☑ PASS	☐ FAIL	
Remarks:			

RECORDED BY: <u>B Kebschull</u>

APPROVED BY: <u>J Lenkeit</u>

DATE RECORDED: <u>8/05/2009</u>

DATE APPROVED: <u>8/11/2009</u>

APPROVED BY: <u>J Lenkeit</u>

Data Sheet 9 (Page 1 of 2) MALFUNCTION WARNING TESTS

Vehicle: <u>2009 Kia Borrego</u>	
NHTSA No <u>C90512</u>	Data Sheet Completion Date: 8/05/2009
	TEST 1
METHOD OF MALFUNCTION SIMUL	ATION:
Describe method of malfunction sim	ulation:
Remove ABS2 fuse	
MALFUNCTION TELLTALE ILLUMINA	ATION:
Telltale illuminates and remains illum and if necessary the vehicle is driver	inated after ignition locking system is activated at least 2 minutes as specified.
	XYesNo
Time for telltale to illuminate after ig 48 \pm 8 km/h (30 \pm 5mph) is reached	nition system is activated and vehicle speed o
0 Seconds (must be within	2 minutes) X Pass Fail
ESC SYSTEM RESTORATION	
Telltale extinguishes after ignition lo vehicle is driven at least 2 minutes a	cking system is activated and if necessary the s specified.
Time for telltale to extinguish after iq 48 \pm 8 km/h (30 \pm 5mph) is reached	gnition system is activated and vehicle speed .
Seconds (must be within	2 minutes) X Pass Fail
TEST 1 DATA INDICA	ATES COMPLIANCE: PASS/FAIL
Remarks: Vehicle did not require system restoration.	any driving for malfunction identification or
RECORDED BY: <u>B Kebschull</u>	DATE RECORDED: <u>8/05/2009</u>

DATE APPROVED: <u>8/11/2009</u>

Data Sheet 9 (Page 2 of 2) MALFUNCTION WARNING TESTS

Vehicle: 2009 Kia Borrego						
IHTSA No <u>C90512</u> Data Sheet Completion Date: <u>8/05/2009</u>						
	TEST 2					
METHOD OF MALFUNCTION SIM	MULATION:					
Describe method of malfunction	simulation:					
Disconnect left front wheel speed	d sensor					
MALFUNCTION TELLTALE ILLUN	IINATION:					
	luminated after ignition locking system is activated iven at least 2 minutes as specified.					
	XYesNo					
Time for telltale to illuminate after 48 \pm 8 km/h (30 \pm 5mph) is reac	er ignition system is activated and vehicle speed of hed.					
_0 Seconds (must be w	thin 2 minutes) X Pass Fail					
ESC SYSTEM RESTORATION						
Telltale extinguishes after ignition vehicle is driven at least 2 minute	n locking system is activated and if necessary the es as specified.					
	X_YesNo					
Time for telltale to extinguish aft 48 \pm 8 km/h (30 \pm 5mph) is reac	er ignition system is activated and vehicle speed o					
0 Seconds (must be wi	thin 2 minutes) X Pass Fail					
TEST 2 DATA INI	DICATES COMPLIANCE: PASS/FAIL					
Remarks: Vehicle did not requisive system restoration.	ire any driving for malfunction identification or					
RECORDED BY: B Kebschull	DATE RECORDED: <u>8/05/2009</u>					
APPROVED BY: J Lenkeit	DATE APPROVED: 8/11/2009					

4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION (1 OF 2)

TABLE 1. TEST INSTRUMENTATION

Туре	Output	Range	Resolution	Accuracy	Specifics	Serial Number	Calibration
Tire Pressure Gauge	Vehicle Tire Pressure	0-100 psi 0-690 kPa	1 psi 6.89 kPa	0.5 psi 3.45 kPa	Ashcroft D1005PS	1039350	By: Innocal Date:1/15/09 Due: 1/15/10
Platform Scales	Vehicle Total, Wheel, and Axle Load	8000 lb 35.6 kN	0.5 lb 2.2 N	±1.0% of applied load	Intercomp Model SWII	24032361	By: Intercomp Date:1/29/09 Due: 1/29/10
Automated Steering Machine with Steering Angle Encoder	Handwheel Angle	±800 deg	0.25 deg	±0.25 deg	Heitz Automotive Testing Model: Sprint 3	60304	By: Heitz Date:1/29/09_ Due: 1/29/10
Multi-Axis Inertial Sensing System	Longitudinal, Lateral, and Vertical Acceleration Roll, Yaw, and Pitch Rate	Accelerometers: ±2 g Angular Rate Sensors: ±100 deg/s	Acceleromet ers: ≤10 ug Angular Rate Sensors: ≤0.004 deg/ s	Acceleromete rs: ≤0.05% of full range Angular Rate Sensors: 0.05% of full range	BEI Technologies Model: MotionPAK MP-1	0767	By:Systron Donner Date:12/11/08 Due: 12/11/09
Radar Speed Sensor and Dashboard Display	Vehicle Speed	0-125 mph 0-200 km/h	0.009 mph .014 km/h	±0.25% of full scale	A-DAT Corp. Radar Model: DRS- 6 Display Model: RD- 2	1400.604	By: ADAT Date:1/5/09 Due:1/5/10
Ultrasonic Distance Measuring System	Left and Right Side Vehicle Height	5-24 inches 127-610 mm	0.01 inches .254 mm	±0.25% of maximum distance	Massa Products Corporation Model: M- 5000/220	DOT-NHTSA D2646	By: DRI Date:3/16/09 Due: 3/16/10
Ultrasonic Distance Measuring System	Left and Right Side Vehicle Height	5-24 inches 127-610 mm	0.01 inches .254 mm	±0.25% of maximum distance	Massa Products Corporation Model: M- 5000/220	DOT-NHTSA D2647	By: DRI Date:3/16/09 Due: 3/16/10

4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION (2 OF 2)

TABLE 1. TEST INSTRUMENTATION (CONTD)

Туре	Output	Range	Resolution	Accuracy	Specifics	Serial Number	Calibration
Data Acquisition System [Includes amplification, anti- aliasing, and analog to digital conversion.]	Record Time; Velocity; Distance; Lateral, Longitudinal, and Vertical Accelerations; Roll, Yaw, and Pitch Rates; Steering Wheel Angle.	Sufficient to meet or exceed individual sensors	200 Hz	Sufficient to meet or exceed individual sensors	SoMat eDaq ECPU processor	MSHLB.03- 2476	By: Somat Date:1/13/09 Due: 1/14/10
Data Acquisition System [Includes amplification, anti- aliasing, and analog to digital conversion.]	Record Time; Velocity; Distance; Lateral, Longitudinal, and Vertical Accelerations; Roll, Yaw, and Pitch Rates; Steering Wheel Angle.	Sufficient to meet or exceed individual sensors	200 Hz	Sufficient to meet or exceed individual sensors	SoMat High level Board EHLS	MSHLS.03- 3182	By: Somat Date:1/14/09 Due: 1/15/10
Load Cell	Vehicle Brake Pedal Force	0-300 lb 0-1.33 kN	1 lb 4.44 N	±0.05% of full scale	Lebow 3663-300	767	By: Davis Date:2/3/09 Due: 2/3/10
Coordinate Measurement Machine	Inertial Sensing System Coordinates	0-8 ft 0-2.4 m	±.0020 in. ±.051 mm	±.0020 in. ±.051 mm (Single point articulation accuracy)	Faro Arm Fusion	Q12-05-08- 06717	By: Faro Date: 2/11/09 Due: 2/11/10
Outriggers	No output. Safety Item.	N/A	N/A	N/A	DRI manufactured Aluminum meeting the weight and MOI specifications of Docket 2007- 27662-11	N/A	N/A

Figure 5.1. Left Front View of Test Vehicle

Figure 5.2. Right Rear View of Test Vehicle

5.0 PHOTOGRAPHS (3 of 14)

Figure 5.3. Vehicle Certification Label

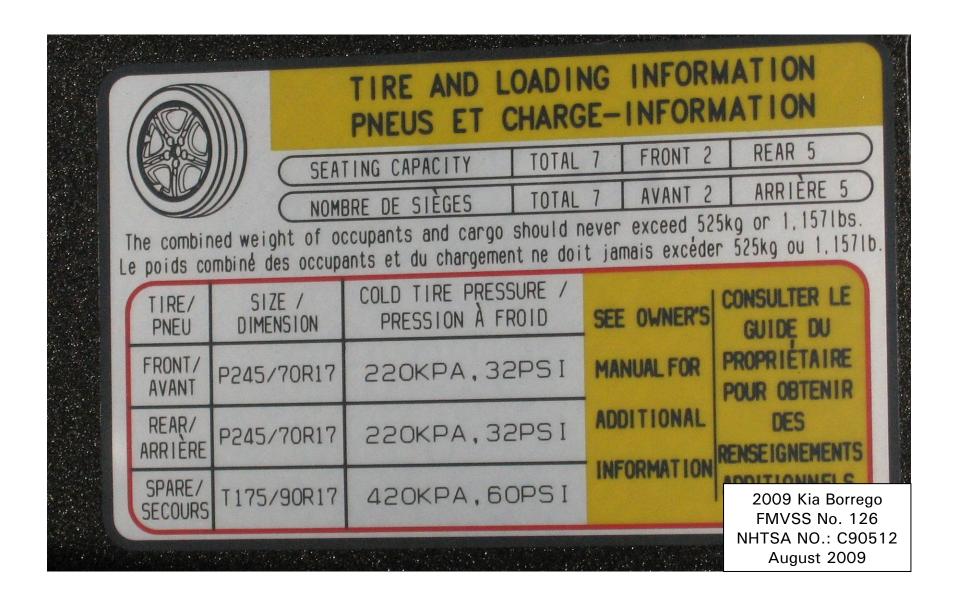


Figure 5.4. Vehicle Placard

5.0 PHOTOGRAPHS (5 of 14)

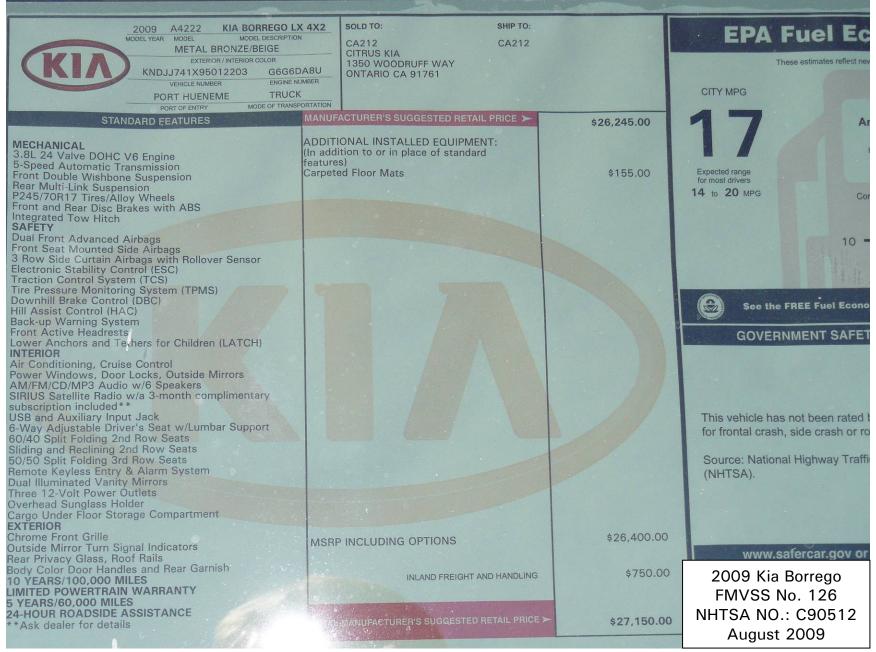


Figure 5.5. Window Sticker (Monroney Label)

5.0 PHOTOGRAPHS (6 of 14)

FMVSS No. 126 NHTSA NO.: C90512 August 2009

2009 Kia Borrego

Figure 5.6. Telltales for ESC Actuation, Malfunction and ESC Off

Figure 5.7. ESC Off Control Switch

5.0 PHOTOGRAPHS (8 of 14)

Figure 5.8. Front View of Vehicle As-Tested

Figure 5.9. Rear View of Vehicle As-Tested

5.0 PHOTOGRAPHS (10 of 14)

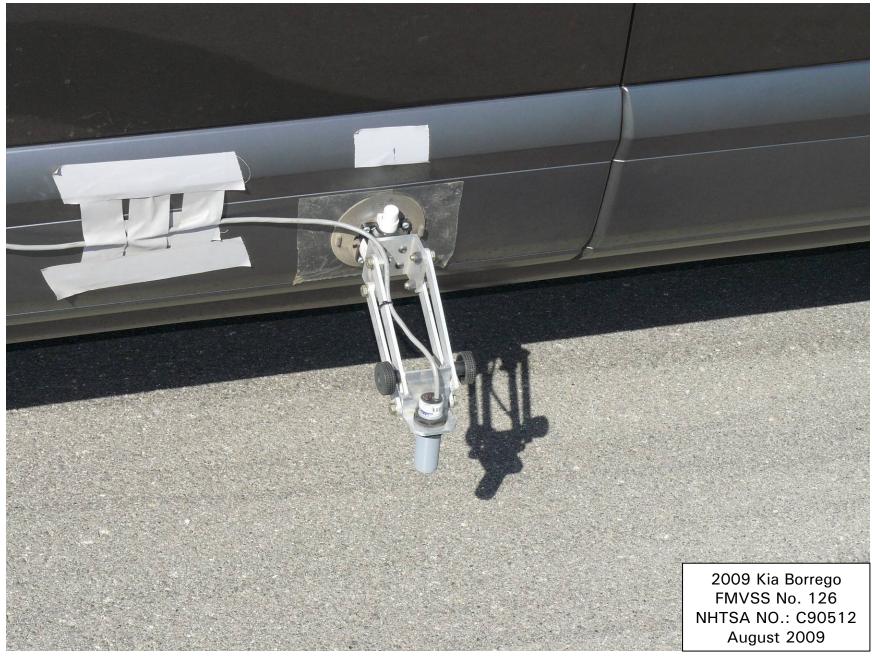


Figure 5.10. Ultrasonic Height Sensor Mounted on Left Side of Vehicle for Determining Body Roll Angle

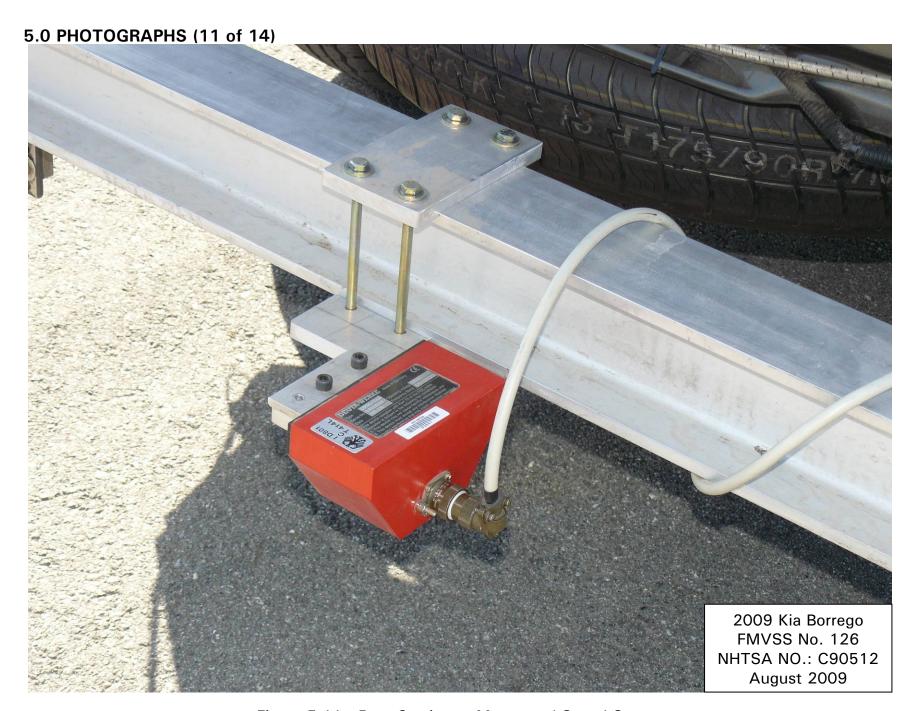


Figure 5.11. Rear Outrigger, Mount and Speed Sensor

Figure 5.12. Steering Controller and Data Acquisition Computer

5.0 PHOTOGRAPHS (13 of 14) 2009 Kia Borrego FMVSS No. 126 NHTSA NO.: C90512 August 2009

Figure 5.13. Inertial Measurement Unit Mounted in Vehicle

5.0 PHOTOGRAPHS (14 of 14) 2009 Kia Borrego FMVSS No. 126 NHTSA NO.: C90512 August 2009

Figure 5.14. Brake Pedal Load Cell

6.0 DATA PLOTS (1 of 4)

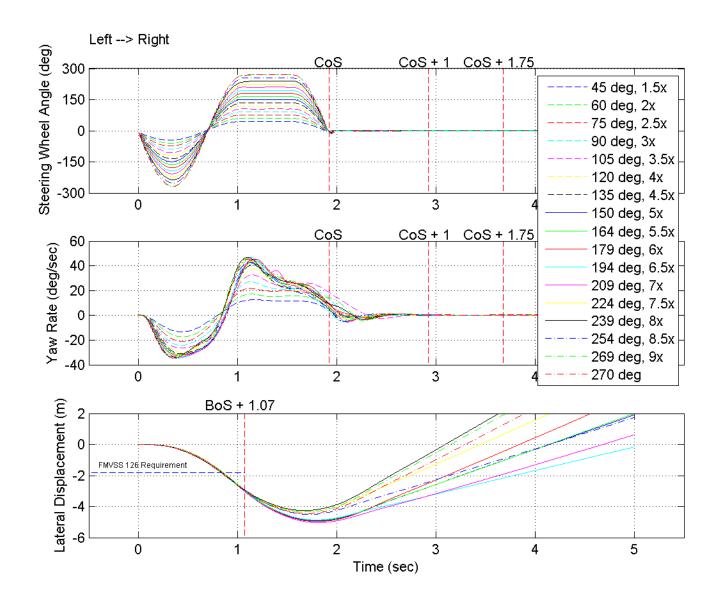


Figure 6.1. Steering Wheel Angle, Yaw Rate and Lateral Displacement for L-R Series

6.0 DATA PLOTS (2 of 4)

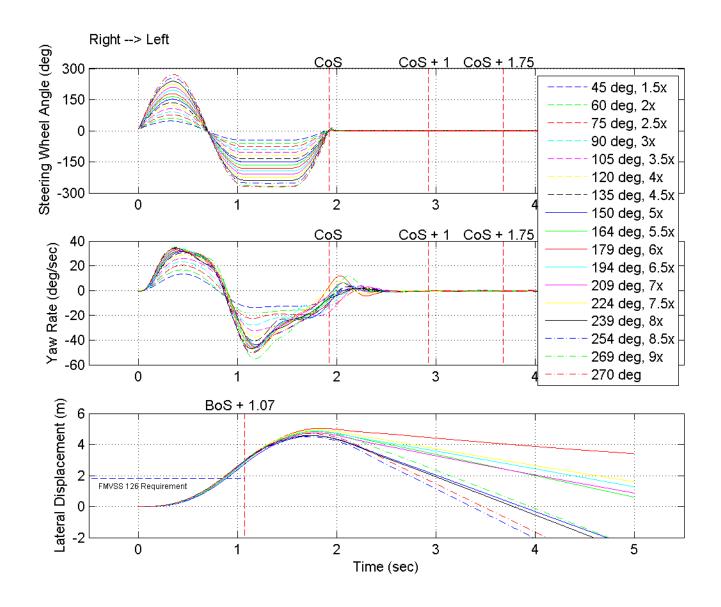


Figure 6.2. Steering Wheel Angle, Yaw Rate and Lateral Displacement for R-L Series

6.0 DATA PLOTS (3 of 4)

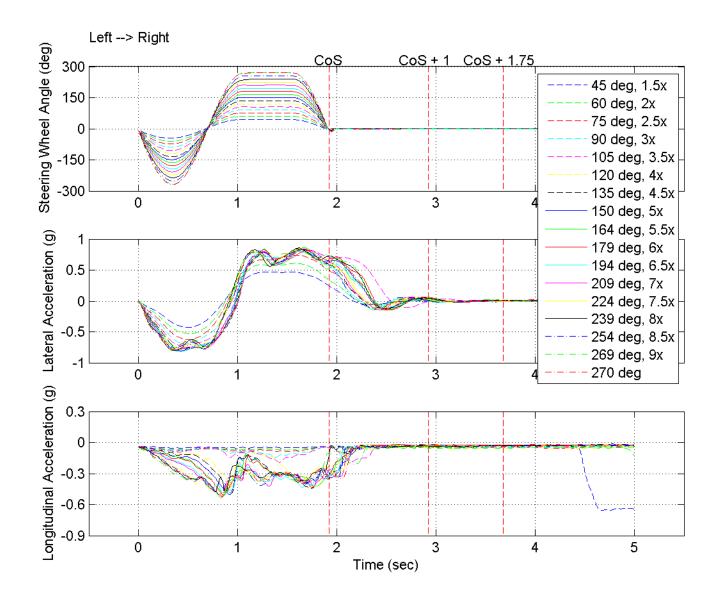


Figure 6.3. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for L-R Series

6.0 DATA PLOTS (4 of 4)

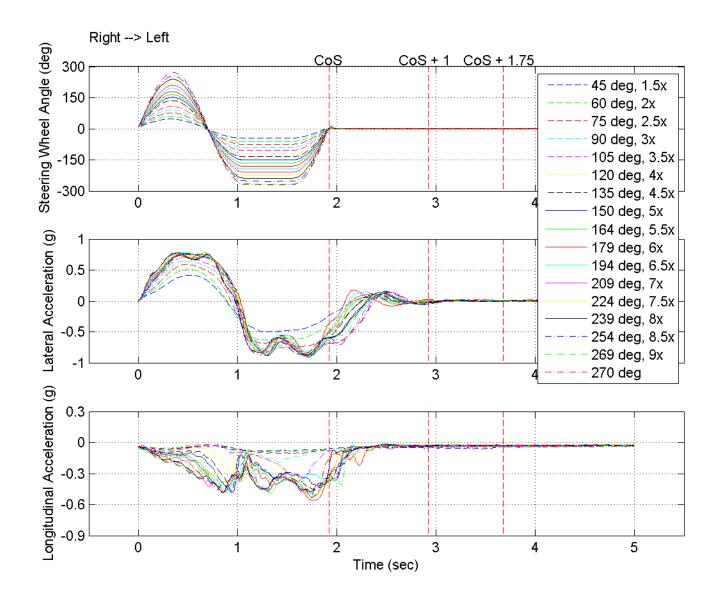


Figure 6.4. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for R-L Series

7.0 OTHER DOCUMENTATION

- 7.1 OWNER'S MANUAL PAGES
- 7.2 VEHICLE ARRIVAL CONDITION REPORT
- 7.3 VEHICLE COMPLETION CONDITION REPORT
- 7.4 SINE WITH DWELL TEST RESULTS
- 7.5 SLOWLY INCREASING STEER TEST RESULTS
- 7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES

7.1 OWNER'S MANUAL PAGES

Driving your vehicle

E070500AHM-EU

Electronic stability control (ESC)

The Electronic Stability control (ESC) system is designed to stabilize the vehicle during cornering maneuvers. ESC checks where you are steering and where the vehicle is actually going. ESC applies the brakes on individual wheels and intervenes with the engine management system to stabilize the vehicle.

A WARNING

Never drive too fast according to the road conditions or too quickly when cornering. Electronic stability control (ESC) will not prevent accidents. Excessive speed in turns, abrupt maneuvers and hydroplaning on wet surfaces can still result in serious accidents. Only a safe and attentive driver can prevent accidents by avoiding maneuvers that cause the vehicle to lose traction. Even with ESC installed, always follow all the normal precautions for driving - including driving at safe speeds for the conditions.

The Electronic Stability Control (ESC) system is an electronic system designed to help the driver maintain vehicle control under adverse conditions. It is not a substitute for safe driving practices. Factors including speed, road conditions and driver steering input can all affect whether ESC will be effective in preventing a loss of control. It is still your responsibility to drive and corner at reasonable speeds and to leave a sufficient margin of safety.

When you apply your brakes under conditions which may lock the wheels, you may hear a "tik-tik" sound from the brakes, or feel a corresponding sensation in the brake pedal. This is normal and it means your ESC is active.

* NOTICE

A click sound may be heard in the engine compartment when the vehicle begins to move after the engine is started. These conditions are normal and indicate that the Electronic Stability Control System is functioning properly.

ESC operation
ESC ON condition

- When the ignition is turned ON, ESC and ESC OFF indicator lights illuminate for approximately 3 seconds, then ESC is turned on.
- Press the ESC OFF button for at least half a second after turning the ignition ON to turn ESC off. (ESC OFF indicator will illuminate). To turn the ESC on, press the ESC OFF button (ESC OFF indicator light will go off).
- When starting the engine, you may hear a slight ticking sound. This is the ESC performing an automatic system self-check and does not indicate a problem.

When operating

ESC

When the ESC is in operation, ESC indicator light blinks.

- When the Electronic Stability Control is operating properly, you can feel a slight pulsation in the vehicle. This is only the effect of brake control and indicates nothing unusual.
- When moving out of the mud or slippery road, pressing the accelerator pedal may not cause the engine rpm (revolutions per minute) to increase.

E070502AUN-EU

ESC operation off

ESC OFF state

- To cancel ESC operation, press the ESC OFF button (ESC OFF indicator light illuminates).
- If the ignition switch is turned to LOCK position when ESC is off, ESC remains off. Upon restarting the engine, the ESC will automatically turn on again.

7.1 OWNER'S MANUAL PAGES (CONTD)

Driving your vehicle

■ ESC indicator light (blinks)

ESC

■ ESC OFF indicator light (comes on)

ESC OFF

E070503AEN-EU Indicator light

When the ignition switch is turned ON, the indicator light illuminates, then goes off if ESC system is operating normally. The ESC indicator light blinks whenever ESC is operating.

The ESC OFF indicator light comes on when either the ESC is turned off with the button, or ESC fails to operate when turned on.

⚠ CAUTION

Driving with varying tire or wheel sizes may cause the ESC system to malfunction. When replacing tires, make sure they are the same size as your original tires.

A WARNING

The Electronic Stability Control system is only a driving aid; use precautions for safe driving by slowing down on curved, snowy, or icy roads. Drive slowly and don't attempt to accelerate whenever the ESC indicator light is blinking, or when the road surface is slippery.

E070504AEN-EU
ESC OFF usage

When driving

- It's a good idea to keep the ESC turned on for daily driving whenever possible.
- To turn ESC off while driving, press the ESC OFF button while driving on a flat road surface.

Never press the ESC OFF button while ESC is operating (ESC indicator light blinks).

If ESC is turned off while ESC is operating, the vehicle may slip out of control.

* NOTICE

- When operating the vehicle on a dynamometer, ensure that the ESC is turned off (ESC OFF light illuminated). If the ESC is left on, it may prevent the vehicle speed from increasing, and result in false diagnosis.
- Turning the ESC off does not affect ABS or brake system operation.

A WARNING

Never press the ESC OFF button while ESC is operating.

If the ESC is turned off while ESC is operating, the vehicle may go out of control.

To turn ESC off while driving, press the ESC OFF button while driving on a flat road surface.

E070505AHM-EU

Hill-start assist control (HAC) (if equipped)

A vehicle has the tendency to slip back on a steep hill when it starts to go after stopping. The Hill-start Assist Control (HAC) prevents the vehicle from slipping back by operating the brakes automatically for about 2 seconds. The brakes are released when the accelerator pedal is depressed or after about 2 seconds.

A WARNING

The HAC is activated only for about 2 seconds, so when the vehicle is starting off always depress the accelerator pedal.

* NOTICE

- · The HAC does not operate when the transmission shift lever is in the P (Park) or N (Neutral) position.
- The HAC activates even though the ESC is off but it does not activate when the ESC has malfunctioned.

7.2 VEHICLE ARRIVAL CONDITION REPORT

CONTRACT NO.: DTNH22-08-D-00098

APPROVED BY: J Lenkeit

DATE RECEIVED: <u>7/24/2009</u>								
From: Competitive Vehicle Services	Purpose 🗹 Initial Receipt							
	Received via Transfer							
To: <i><u>Dynamic Research, Inc</u></i>	☐ Present Vehicle Condition							
Vehicle VIN: <u>KNDJJ741X95012203</u>	NHTSA NO.: <u>C90512</u>							
Model Year: <u>2009</u> Odo Make: <u>Kia</u>	meter Reading: 141 <u>Miles</u> Body Style: <u>MPV</u>							
Model: <u>Borrego</u>	Body Color: Metal Bronze							
Manufacture Date: <u>5/08</u>	Dealer: <u>Competitive Vehicle Services</u>							
GVWR (kg/lb) <u>2855 (5842)</u>	Price: <u>Leased</u>							
 ✓ Tires and wheel rims are new and the same as listed ✓ There are no dents or other interior or exterior flaws ✓ The vehicle has been properly prepared and is in running condition ✓ The glove box contains an owner's manual, warranty document, consumer information, and extra set of keys ✓ Proper fuel filler cap is supplied on the test vehicle ✓ Place vehicle in storage area ✓ Inspect the vehicle's interior and exterior, including all windows, seats, doors, etc., to confirm that each system is complete and functional per the manufacturer's specifications. Any damage, misadjustment, or other unusual condition that could influence the test program or test results shall be recorded Report any abnormal condition to the NHTSA COTR before beginning any test. 								
NOTES:								
RECORDED BY: <u>J Brubacher</u>	DATE RECORDED: <u>7/24/2009</u>							

DATE APPROVED: *8/10/2009*

7.3 VEHICLE COMPLETION CONDITION REPORT

CONTRACT NO.: DTNH22-08-D-00098

DATE RELEASED: 8/21/2009 VIN: KNDJJ741X95012203 NHTSA NO.: *C90512* Vehicle Model Year: 2009 Odometer Reading: *Miles* Make: Kia Body Style: MPV Model: Borrego Body Color: Metal Bronze Manufacture Date: Dealer: Competitive Vehicle Services 5/08 GVWR (kg/lb) 2855 (5842) Price: Leased LIST OF FMVSS TESTS PERFORMED BY THIS LAB: FMVSS 126 Χ THERE ARE NO DENTS OR OTHER INTERIOR OR EXTERIOR FLAWS THE VEHICLE HAS BEEN PROPERLY MAINTAINED AND IS IN RUNNING X CONDITION THE GLOVE BOX CONTAINS AN OWNER'S MANUAL, WARRANTY ___X DOCUMENT, CONSUMER INFORMATION, AND EXTRA SET OF KEYS PROPER FUEL FILLER CAP IS SUPPLIED ON THE TEST VEHICLE. Χ **REMARKS:** Equipment that is no longer on the test vehicle as noted on Vehicle Arrival Condition Report: None Explanation for equipment removal: None Test Vehicle Condition: Good RECORDED BY: J Lenkeit DATE RECORDED: *8/20/2009* APPROVED BY: B Kebschull DATE APPROVED: 8/20/2009

7.4 SINE WITH DWELL TEST RESULTS

2009 Kia Borrego NHTSA No. C90512

Date of Test 8/05/2009
Date Created 8/05/2009

File	SWA @ 5deg Ct	MES	Time @ 5deg	cos	Time @ COS	MOS	Time @ MOS	YRR1	YR1	YRR1 Ct	YRR175	YR175	YRR175 Ct	2nd Yaw Peak	2nd Yaw Peak Ct	Lat Disp	Lat. Acc. 1.07s	1st SWA Peak	1st SWA Peak Ct	2nd SWA Mean
	(deg)	(mph)	(s)		(s)		(sec)	(%)	(deg/s)		(%)	(deg/s)		(deg/s)		(ft)	(g)	(deg)		(deg)
21	710	48.93	3.543	1091	5.446	847	4.226	-1.72	-0.22	1291	-1.78	-0.23	1441	12.83	946		0.34	45.08	775	44.84
22	709	48.86	3.537	1090	5.445	846	4.225	0.4	0.07	1290	0.1	0.02	1440	17.4	937		0.43	60.04	775	59.94
23	708	49.6	3.532	1090	5.444	846	4.225	1.1	0.24	1290	1.15	0.25	1440	21.84	935		0.48	74.96	775	74.88
24	707	49.66	3.529	1090	5.444	846	4.225	0.97	0.26	1290	0.35	0.1	1440	27.3	935		0.49	89.86	775	89.89
25	707	49.68	3.527	1090	5.443	846	4.224	1.57	0.52	1290	-0.15	-0.05	1440	32.86	938		0.46	104.9	775	104.89
26	706	49.8	3.525	1091	5.446	846	4.224	0.26	0.1	1291	0.58	0.22	1441	37.46	940		0.39	120.02	775	120.04
27	706	49.63	3.524	1091	5.447	846	4.225	-0.28	-0.11	1291	-0.02	-0.01	1441	41	937		0.41	135.17	775	135.17
28	706	49.54	3.523	1091	5.447	846	4.225	-0.11	-0.05	1291	-0.37	-0.16	1441	42.72	936	-9.54	0.43	150.08	775	150.21
29	706	49.61	3.523	1091	5.447	847	4.226	0.19	0.08	1291	0.2	0.09	1441	43.97	940	-9.51	0.41	164.02	775	164.22
30	706	49.66	3.523	1091	5.446	847	4.226	0.33	0.15	1291	0.09	0.04	1441	45.1	940	-9.66	0.38	179.02	775	179.07
31	706	49.72	3.523	1091	5.446	847	4.228	-0.66	-0.31	1291	-0.37	-0.17	1441	46.85	935	-9.74	0.47	193.8	775	194.11
32	706	49.56	3.522	1091	5.447	847	4.227	-0.07	-0.03	1291	0.35	0.16	1441	45.52	942	-9.78	0.37	208.98	775	209.01
33	706	49.74	3.522	1090	5.445	847	4.227	-0.04	-0.02	1290	0.04	0.02	1440	45.25	929	-9.47	0.62	223.77	776	224.18
34	706	49.73	3.523	1090	5.445	847	4.227	0.33	0.15	1290	0.09	0.04	1440	46.94	927	-9.47	0.66	237.02	778	239.33
35	706	49.66	3.523	1090	5.445	847	4.228	-0.4	-0.17	1290	-0.02	-0.01	1440	42.59	931	-9.61	0.61	252.86	777	254.19
36	706	49.46	3.524	1090	5.445	847	4.228	-0.16	-0.07	1290	-0.16	-0.07	1440	45.75	927	-9.6	0.66	267.62	777	269.23
37	706	49.64	3.523	1090	5.445	847	4.228	0.38	0.17	1290	0.05	0.02	1440	45.63	929	-9.64	0.63	268.97	776	270.23
38	710	49.45	3.543	1091	5.447	847	4.227	-0.55	0.07	1291	0.24	-0.03	1441	-13.38	943		-0.35	45.8	776	45.46
39	709	49.82	3.536	1090	5.445	847	4.226	0.72	-0.13	1290	0.68	-0.12	1440	-18.06	939		-0.42	60.74	775	60.47
40	708	49.66	3.532	1090	5.444	847	4.226	-0.03	0.01	1290	-0.19	0.04	1440	-22.66	938		-0.44	75.66	775	75.43
41	707	49.43	3.529	1090	5.444	847	4.226	0.67	-0.19	1290	0.13	-0.04	1440	-27.9	939		-0.45	90.65	775	90.37
42	707	49.4	3.527	1090	5.444	846	4.225	0.57	-0.19	1290	0.44	-0.14	1440	-32.83	943		-0.38	105.42	775	105.59
43	706	49.47	3.524	1090	5.445	846	4.225	0.57	-0.22	1290	0.39	-0.15	1440	-37.59	943		-0.35	120.82	775	120.46
44	706	49.64	3.523	1091	5.446	846	4.225	-0.05	0.02	1291	0.09	-0.03	1441	-40.68	941		-0.34	135.82	775	135.61
45	706	49.8	3.522	1091	5.446	847	4.226	0.1	-0.04	1291	-0.27	0.12	1441	-43.77	943	8.94	-0.28	150.84	775	150.59
46	706	50	3.522	1091	5.446	846	4.225	0.05	-0.02	1291	0.31	-0.14	1441	-44.97	944	9.2	-0.2	164.87	775	164.48
47	706	49.86	3.521	1091	5.448	847	4.226	0.02	-0.01	1291	-0.15	0.07	1441	-45.64	945	9.39	-0.19	179.71	775	179.5
48	706	49.5	3.522	1091	5.449	847	4.228	0.05	-0.02	1291	0.12	-0.06	1441	-46.76	940	9.43	-0.35	194.63	775	194.44
49	706	49.63	3.522	1091	5.448	847	4.229	-0.31	0.14	1291	-0.22	0.1	1441	-46.03	939	9.42	-0.38	209.11	776	209.55
50	706	49.58	3.522	1091	5.45	847	4.228	-0.11	0.05	1291	-0.17	0.08	1441	-48	942	9.59	-0.3	224.55	776	

File	SWA @ 5deg Ct	MES	Time @ 5deg	cos	Time @ COS	MOS	Time @ MOS	YRR1	YR1	YRR1 Ct	YRR175	YR175	YRR175 Ct	2nd Yaw Peak	2nd Yaw Peak Ct	Lat Disp	Lat. Acc. 1.07s	1st SWA Peak	1st SWA Peak Ct	2nd SWA Mean
	(deg)	(mph)	(s)		(s)		(sec)	(%)	(deg/s)		(%)	(deg/s)		(deg/s)		(ft)	(g)	(deg)		(deg)
51	706	49.82	3.522	1091	5.446	847	4.227	0.21	-0.1	1291	0.24	-0.11	1441	-46.68	935	9.54	-0.52	238.64	777	239.66
52	706	49.98	3.522	1091	5.447	847	4.227	0.23	-0.12	1291	-0.01	0	1441	-49.87	935	9.57	-0.56	253.47	777	254.68
53	706	49.72	3.522	1091	5.447	847	4.228	0.14	-0.08	1291	0.17	-0.09	1441	-55.45	941	9.68	-0.34	268.39	776	269.54
54	706	49.64	3.522	1090	5.444	847	4.228	0.35	-0.18	1290	0.04	-0.02	1440	-50.43	936	9.72	-0.47	269.77	777	270.57

7.5 SLOWLY INCREASING STEER TEST RESULTS

2009 Kia Borrego NHTSA No. 90512

Date of Test 8/05/2009

Date Created 8/05/2009

File	EventPt	DOS	MES	Mean SPD	AYcount_3	THETAENCF_3	AYCG_CD2_3	r_squared	ZeroBegin	ZeroEnd
			(mph)	(mph)		(deg)	(g)			
p_Bor10s.mat	701	1	49.90862312	49.98879018	1130	-28.67865635	-0.297652472	0.994224	501	701
p_Bor11s.mat	721	1	49.84229299	49.79330449	1139	-29.18621156	-0.30490157	0.996032	521	721
p_Bor12s.mat	708	1	49.87293891	49.93483467	1145	-29.59209288	-0.308223266	0.991622	508	708
p_Bor13s.mat	699	0	49.75061082	49.84569958	1153	30.29401845	0.301145903	0.996245	499	699
p_Bor14s.mat	700	0	49.94340846	50.05437143	1162	30.83921112	0.312016574	0.990327	500	700
p_Bor15s.mat	700	0	49.96428488	50.01276131	1158	30.58541034	0.288796571	0.992864	500	700

Averages 29.9 0.302122725965108

Scalars	Steering Angles (deg)
1.5	45
2	60
2.5	75
3	90
3.5	105
4	120
4.5	135
5	150
5.5	164
6	179
6.5	194
7	209
7.5	224
8	239
8.5	254
9	269
9	270

7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES

Vehicle: 2009 Kia Borrego

NHTSA No.: C90512 Measurement date: 8/3/2009

Wheelbase: 114.0 Faro Arm S/N: Q12-05-08-06717

Units Inches Certification date: 2/11/2009

CMM Measurements

Coordinate system: SAE (X,Y,Z positive forward, to the right, and downward, respectively)
Origin defined at 48" point on lateral arm of measurement fixture, projected onto the ground plane.

	Ref X	Rex Y	Ref Z
M PLANE001 Ground Plane	-	-	0.000
M_Line_Y_Axis	2.391	-3.661	0.000
M_Point_48_Ref	0.000	0.000	-
M_CIRCLE001_I_Left_Rear_Wheel_Axle	-31.489	12.592	-14.349
M_Point_IMU_side	12.596	46.224	-23.472
M_Point_ROOF	-	-	-69.176
Motion Pak reference point taken from mid height of unit left side Motion Pak Width = 3.05 " = = > $\frac{1}{2}$ W = 1.525			
Motion PAK Location	12.596	47.749	-23.472

Measurement Notes

- 1. The Faro arm is positioned just to the left of the vehicle, near the rear door
- 2. A "centerline jig" is used in the Faro arm measurement. The jig consists of a long beam with a 4 ft lateral arm that is perpendicular to the beam. The jig is placed on the ground underneath the vehicle with the long beam positioned along the centerline of the vehicle, such that the lateral arm extends to the left, slightly forward of the left rear tire. The lateral arm has a marked indentation point which is located 48.00" from the edge of the centerline beam.
- 3. The Faro arm is used to make the following measurements:
 - Three points on the ground, which establishes the ground plane
 - Two points along the lateral arm, and projected onto the ground plane. This establishes the origin.
 - One point at the 48 inch reference point on the lateral arm. This establishes the origin.
 - Three points on the left rear wheel or wheel cover. The Faro arm then computes the center point of the wheel.
 - One point to establish the height of the highest point on the roof of the vehicle.

Coordinate Measurements Calculated for S7D (Matlab Program)

Coordinate system: X, Y, Z positive rearward, to the right, and upward, respectively.

Origin defined as follows: X axis: front axle, Y axis: vehicle centerline, Z axis: ground plane.

	Ref X	Rex Y	Ref Z
Motion PAK Location in S7D (Matlab program) coordinate system	69.915	-0.251	23.472

Calculation Notes

- 1. X axis value is the difference between the wheelbase and the calculated distance from the rear axle centerline to the IMU (the value must be positive and less than the wheelbase.
- 2. Y axis value is -48.00 (the Y axis offset of the measurement origin in the S7D coordinate system) plus the measured Y axis value (a negative value indicates the IMU is to the left of the vehicle centerline, and a positive value indicates it is to the right).
- 3. Z axis value is from the ground plane up to the center of the IMU (value must be positive).