REPORT NUMBER: 305-CAL-07-05

SAFETY COMPLIANCE TESTING FOR FMVSS 305 ELECTRIC POWERED VEHICLES: ELECTROLYTE SPILLAGE AND ELECTRICAL SHOCK PROTECTION

HONDA MOTOR COMPANY 2007 HONDA ACCORD 4-DOOR SEDAN

NHTSA NUMBER: C75304

CALSPAN TRANSPORTATION SCIENCES CENTER P.O. BOX 400 BUFFALO, NEW YORK 14225

October 9, 2007

FINAL REPORT

U. S. DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Enforcement Office of Vehicle Safety Compliance (NVS-224) 1200 New Jersey Avenue, SE Washington, DC 20590 This Final Test Report was prepared for the U.S. Department of Transportation, National Highway Traffic Safety Administration, under Contract No. DTNH22-02-D-01114. This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufactures' names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Prepared By:

Approved By:

Vince Paolini, Program Manager Transportation Sciences Center

> **APPROVED** By James.Czarnecki at 1:10 pm, 11/2/07

Approval Date:

FINAL REPORT ACCEPTANCE BY:

Accepted By:

Acceptance Date:

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.	2. Government Accession No.		3. Recipient's Catalog	No.	
4 Title and Subtitle			5 Peport Date		
Final Report of FMVSS 305 Complian	ce Rear Impact Testing of a		October 9 2007		
2007 Honda Accord 4-door Sedan	tee Real Impact Testing of a		6 Performing Organiza	ation Code	
NHTSA No.: C75304			CAL		
7. Author(s)			8. Performing Organi	zation Report No.	
James Czarnecki, Project Engineer					
Vince Paolini, Program Manager					
9. Performing Organization Name and Address			10. Work Unit No.		
Calspan					
Transportation Sciences Center					
P.O. Box 400			11. Contract or Grant	No.	
Buffalo, New York 14225			DTNH22-02-D-	01114	
12. Sponsoring Agency Name and Address			13. Type of Report and	Period Covered	
U.S. Department of Transportat	ion		Final Report,		
National Highway Traffic Safet	y Administration		October 2007		
Office of Vehicle Safety Comp	liance				
1200 New Jersey Ave, SE			14. Sponsoring Agency Code		
Washington, D.C. 20590			NVS-224		
15. Supplementary Notes					
16. Abstract					
Compliance tests were conducted on the	subject 2007 Honda Accord	4-door Se	dan in accordance with	the specifications of	
the Office of Vehicle Safety Complianc	e Test Procedure No. TP-305	-00 for the	e determination of FMV	/SS 305 compliance.	
Test failures identified were as follows:				-	
The test vehicle appeared to comply wit	h all requirements of FMVSS	305 "Ele	ctric Powered Vehicles:	Electrolyte Spillage	
and Electrical Shock Protection."					
17. Key Words		18. Distri	bution Statement		
Compliance Testing		Copies of this report are available from:			
Safety Engineering		National Highway Traffic Safety Administration			
FMVSS 305		Technical Reference Division (TIS) (NPO-230)			
		1200 New Jersev Avenue. SE			
		Washing	on, D.C. 20590		
		Telephon	e No. (202) 366-4946		
19. Security Classification of Report	20. Security Classification of	f Page	21. No. of Pages	22. Price	
UNCLASSIFIED	UNCLASSIFIED	0	30		
L	I			I	

TABLE OF CONTENTS

Section		Page No.
1	PURPOSE AND TEST PROCEDURE	1-1
2	COMPLIANCE TEST RESULTS SUMMARY	2-1
3	SUMMARY OF TEST RESULTS Data Sheet 1 - Test Vehicle Specifications Data Sheet 2 – Pre-Test Data Data Sheet 3 - Pre-Impact Electrical Isolation Measurements & Calculations Data Sheet 4 – Post-Impact Data Data Sheet 5 – Static Rollover Test Data	3-1 3-2 3-3 3-5 3-6 3-7
APPENDIX A	PHOTOGRAPHS	A-1

SECTION 1

PURPOSE AND TEST PROCEDURE

This rear impact test is part of the FMVSS 305 Compliance Test Program sponsored by the National Highway Traffic Safety Administration (NHTSA) under Contract No. DTNH22-02-D-01114. The purpose of this test was to determine if the subject vehicle, a 2007 Honda Accord 4-door Sedan, meets the performance requirements of FMVSS No. 305 "Electric Powered Vehicles: Electrolyte Spillage and Electrical Shock Protection." The test was conducted in accordance with the Office of Vehicle Safety Compliance's Laboratory Test Procedure (TP-305D-00, dated December 29, 2005).

SECTION 2

COMPLIANCE TEST RESULTS SUMMARY

A 1822.5 kg 2007 Honda Accord 4-door Sedan was impacted from the rear by an 1797 kg moving barrier at a velocity of 47.5 kph (29.5 mph). The test was performed by Calspan Corporation on October 9, 2007.

The test vehicle was equipped with a 64.7 liter fuel tank which was filled to 92 percent capacity with stoddard fluid prior to impact. Additional ballast (42 kg) was secured in the vehicle cargo area. Two ballast Part 572E 50th percentile male Anthropomorphic Test Device (ATD) were placed in the front occupant seating positions.

The crash event was recorded by three high-speed cameras and one real-time camera. High-speed camera locations and other pertinent camera information are found on page 3-8 of this report. Pre- and post-test photographs of the vehicle can be found in Appendix A.

There was no fuel system fluid spillage following the impact or during any portion of the static rollover test. The average vehicle longitudinal crush was 331 millimeters. The vehicle appeared to comply with all the requirements of FMVSS No. 305 "Electrical Powered Vehicles: Electrolyte Spillage and Electrical Shock Protection."

SECTION 3

SUMMARY OF TEST RESULTS

TEST VEHICLE SPECIFICATIONS

TEST VEHICLE INFORMATION: Year/Make/Model/Body Style:				2007 Honda Acc	ord 4-door Sec	lan
Vehicle Body Color:		Red		NHTSA Number:		C75304
DEALER AND DELIVE	RY INF	ORMATION:				
Date Received:		7/27/07	;	Odometer Raeading	253	km
Selling Dealer:				Wilde Honda		
Dealer Address:				1710 HWY. 164 Waukesh	a, WI 53186	
DATA FROM VEHICLE	S CER	FIFICATION LA	BEL	-		
Vehicle Manufacturer: Honda Motor Company						
Vehicle Build Da	te:			09/06		
VII	N::			JHMCN36457C001	1081	
GVWR: 2	070	kg; GAWR:		1120 kg FRONT;	970	kg REAR
DATA FROM VEHICLE Location of Tire P	E'S TIRE lacard:	LABEL AND SI	DEV	VALL: Door A-pillar s	ide sill	
Type of Spare Tire	:	-		Temporar	y	
JI I				Front	<i>.</i>	Rear
Maximum Tire Pressure (sidewall - kPa)			300		300	
Cold Pressure (tire placar	d - kPa)	- test pressure		220		220
Recommended Tire Size	(tire plac	card)		P215/60R16		P215/60R16
Vehicle Tire Size with loa	ad index	& speed symbol		P215/60R16 94V		P215/60R16 94V
Tire Manufacturer				Michelin		Michelin
Tire Name				Energy MXV4		Energy MXV4
ELECTRIC VEHICLE P	ROPUL:	SION SYSTEM:				
Electric Vehicle Type:		Electric;	X	Electric/Hybrid		
Propulsion Battery Typ	e:			7.2 V NiMH		
Nominal Voltage:		<u>144</u> V				
Location of Automatic	Propulsi	on Battery Disco	nnec	t <u>N/A</u>		
Auxiliary Battery Type				N/A		

PRE-TEST DATA

WEIGHT OF TEST VEHICLE AS RECEIVED FROM DEALER (with maximum fluids)= UDW:

Front = 494 317 49.5 8	811.0
Rear = 499 327 50.5 8	826.0

Total Delivered Weight (UDW) = 1637.0

CALCULATION OF VEHICLE'S TARGET TEST WEIGHT:

Total Delivered Weight (UDW) =	1637.0	kg
Rated Cargo/Luggage Weight (RCLW) =	44.8	kg
Weight of 2 p.572E Dummies @ 78 each =	148.8	kg
TARGET TEST WEIGHT =	1830.6	kg

WEIGHT OF TEST VEHICLE WITH TWO DUMMIES AND 36.7 KG OF CARGO WEIGHT:

	Left Side (kg)	Right Side (kg)	Ratio (%)	Total (kg)
Front =	547.5	356.5	49.6	904.0
Rear =	552.0	366.5	50.4	918.5

Total Vehicle Test Weight (ATW) = 1822.5

Weight of Ballast Secured in Vehicle¹ = 42kg Ballast Type Lead shot bags

Method of securing Ballast:Compartment placement

Components Removed for Weight Reduction: None

¹Ballast weight does not include the weight of instrumentation, on-board cameras and data acquisition system ²Rearward of the front axle centerline.

DATA SHEET 2 (continued)

PRE-TEST DATA

Vehicle: 2007 Honda Accord 4-door Sedan

NHTSA No. <u>C75304</u>

PROPULSION BATTERY SYSTEM DATA (COTR SUPPLIED):

Electrolyte Fluid Type:	КОН
Electrolyte Fluid Specific Gravity:	1.29
Electrolyte Fluid Kinematic Viscosity:	2.07
Electrolyte Fluid Color	Clear
Propulsion Battery Coolant Type,	Fan (Air cool)
Color and Specific Gravity:	N/A
Location of Battery Modules:	In Occupant Compartment <u>x</u> Outside Occupant Compartment
PROPULSION BATTERY STATE OF CHARGE	
Maximum State of Charge:	
Test Voltage (≥95% of maximum)	
	OR
Range of Normal Operating Voltage:	4 or 5 segments if IMA battery level gauge
Test Voltage (within range)	157
Details of Chassis Ground Points and Locations:	
Left side of floor under rear seating cushion	
Details of Propulsion Battery Components:	
Battery propulsion components are located b	behind rear seat back.
Comments:	
None	

PRE-IMPACT ELECTRICAL ISOLATION MEASUREMENTS & CALCULATIONS

Vehicle: 2007 Honda Accord 4-door Sedan

NHTSA No. C75304

VOLTMETER INFORMATION:

Make: Fluke	Model:	8022A	S	/N:	2180445	
Internal Resistance Value:	250k	Ω				
Resolution:	-	V				
Last Calibration Date:	-					
Propulsion Battery Voltage : (ready to drive position)			V_b	=	157.1	V
Propulsion Battery to Vehicle Chassis:			\mathbf{V}_1	=	74	v
Propulsion Battery to Vehicle Chassis:			V_2	=	68	v
Propulsion Battery to Vehicle Chassis Across Known Resistor:			R _o	=	118.5	Ω
Propulsion Battery to Vehicle Chassis with Ro installed:			\mathbf{V}_{1} '	=	.003	v
Propulsion Battery to Vehicle Cha	ssis: with R_o i	nstalled:	V ₂ '	=	.008	v

ELECTRICAL ISOLATION MEASUREMENTS:

R _{i1} :	5.6K	Ω	$R_{i1} = R_o * (1 + V_2 / V_1) * [(V_1 - V_1') / V_1']$
R _{i2} :	2.3K	Ω	$R_{i2} = R_o^* (1 + V_1/V_2)^* [(V_2 - V_2')/V_2']$
R_i	2.3K	Ω	Lesser value of R_{i1} and R_{i2}
R_i/V_b	14568	V	Electrical Isolation Value

	Yes/No
Is the Electrical Isolation Value $\geq 500 \ \Omega/V?$	Yes
If NO - Failure	

Comments: None

POST-IMPACT DATA

Vehicle: 2007 Honda Accord 4-door Sedan

NHTSA No. C75304

ELECTRICAL ISOLATION MEASUREMENTS & CALCULATIONS

VOLTMET	ER INFO	RMATION:							
Make:		FLUKE Model:			8022A		S/N:	21804	45
	Inter	nal Impedance V	alue 250K	MΩ					
Normal Pr	opulsion I	Battery Voltage	(V _b): 156.3	V					
ELECTICA	L ISOLA'	TION MEASU	<u>REMENTS</u>						
$V_1 =$	69.1	V Impact			Time:	5	minutes	05	seconds
V ₂ =	74.4	V Impact			Time:	5	minutes	10	seconds
$V_1' =$	0.06	V Impact			Time:	5	minutes	15	seconds
V ₂ ' =	0.06	V Impact			Time:	5	minutes	20	seconds
$R_{i1} =$	156.3	Ω Impact R	$r_{i1} = R_0 * (1 + V_2 / V_1) * [(V_1) + V_2 / V_1) * [(V_1) + V_2 / V_1] * [(V_1) + V_2 / V_2] * [(V_1) + V_2]$	-V1')/V1']	Time:	5	minutes	25	seconds
R _{i2} =	263679	Ω Impact R_i	$_{i2} = R_0 * (1 + V_1 / V_2) * [(V_2) + V_1 / V_2) * [(V_2 + V_1 / V_2) + V_2 / V_2]$	2-V2')/V2']	Time:	5	minutes	25	seconds
$\mathbf{R}_{i} =$	156.3	Ω Impact	Lesser value of R_{i1} a	and R_{i2}	Time:	5	minutes	25	seconds
$R_i/V_b =$	1687	Ω Impact			Time:	5	minutes	25	seconds
I	s the meas	sured Electrical l	Isolation Value ≥ 1	500 Ω/V?	Х	Yes	-	No (Fail)	
PROPULSIC	ON BATT	ERY SYSTEM	I COMPONENT	<u>S</u>					
Describe Prop	pulsion Ba	ttery Module me	ovement within or	ccupant co	ompartme	nt:			
None									
Has the Pro	opulsion B	attery Module n	noved within the o	occupant c	ompartme	ent?	Yes(Fail)	x No	

Describe intrusion of an outside Propulsion Battery Component into the occupant compartment: None

Has an outside Propulsion Battery Component intruded into the occupant compartment?	-	Yes(Fail)	Х	No	
Is Propulsion Battery electrolyte spillage visible in the occupant compartment?	-	Yes(Fail)	Х	No	

STATIC ROLLOVER TEST DATA

Vehicle: 2007 Honda Accord 4-door Sedan

NHTSA No.: C75304

I. DETERMINATION OF PROPULSION BATTERY ELECTROLYTE COLLECTION TIME PERIOD:

Rollover Stage	Rotation Time (spec. 1 - 3 min)			FMVSS 301 Hold Time		Total Time				Next Whole Minute Interval		
0° - 90°	1	minutes	06	seconds	5	minutes	6	minutes	6	seconds	7	minutes
90° - 180°	0	minutes	59	seconds	5	minutes	5	minutes	59	seconds	6	minutes
180°-270°	0	minutes	59	seconds	5	minutes	5	minutes	59	seconds	6	minutes
270°-360°	1	minutes	02	seconds	5	minutes	6	minutes	2	seconds	7	minutes

II. ACTUAL TEST VEHICLE PROPULSION BATTERY ELECTROLYTE SPILLAGE :

Rollover Stage	Propulsion Battery Electrolyte Spillage (L)	Spillage Location
0-90°	0	None
90-180°	0	None
180-270°	0	None
270-360°	0	None

Total Spillage: 0 L

FMVSS 305 permits 5 L maximum

Is the total spillage of Propulsion Battery electrolyte greater than 5.0 liters?		YES (Fail)	X	NO
Is Propulsion Battery electrolyte spillage visible in the occupant compartment?	-	YES (Fail)	х	NO

STATIC ROLLOVER TEST DATA (CONTINUED)

Vehicle: 2007 Honda Accord 4-door Sedan

III. ELECTRICAL ISOLATION MEASUREMENTS AND CALCULATIONS:

VOLTMETER INFORMATION:

Make:	Fluke	Model:		8022A	S/N:	2180445
	Internal Resistance Value (R ₀)	118.5	MΩ			
Normal F	Propulsion Battery Voltage (V _b):	156.8	V			

 $R_{i1} = R_o^* (1 + V_2/V_1)^* [(V_1 - V_1')/V_1'] \qquad R_{i2} = R_o^* (1 + V_1/V_2)^* [(V_2 - V_2')/V_2'] \qquad \text{Lesser value of } R_{i1} \text{ and } R_{i2}$

	Isolation Measurement (Volts)	Stage	R _{i1} Ω	R _{i2} Ω	R _i Ω	${ m R_i/V_b} \ { m \Omega/V}$	Time (min)	Time (s)
V ₁ =	74		280222	304848	280222	1944.8	1	06
V ₂ =	68	000						
V ₁ ' =	0.06	70						00
V ₂ ' =	0.06							
V ₁ =	74							
V ₂ =	68	180°	280222	304848	280222	1944.8	0	59
V ₁ ' =	0.06							
V ₂ ' =	0.06							
V ₁ =	74		280222	304848	280222	1944.8	0	
V ₂ =	68	270°						59
V ₁ ' =	0.06	270						57
V ₂ ' =	0.06							
V ₁ =	74		280222	304848	280222	1944.8	1	
V ₂ =	68	360°						02
V ₁ ' =	0.06		200222					02
V ₂ ' =	0.06							

Is the measured Electrical Isolation Value $\geq 500 \ \Omega/V?$

x YES - NO (Fail)

COMMENTS:

None

APPENDIX A

PHOTOGRAPHS

TABLE OF PHOTOGRAPHS

Figure	Photograph Title	Page
Figure A- 1	VEHICLE PLACARD	A- 3
Figure A- 2	TIRE PLACARD	A- 3
Figure A- 3	LABELS RELATED TO ELECTRIC PROPULSION SYSTEM	A- 4
Figure A- 4	PRE-TEST TEST PORT INTERFACE PORT INSTALLATION VIEW	A- 4
Figure A- 5	PRE-TEST TEST DEVICE INSTALLATION VIEWS	A- 5
Figure A- 6	PRE-TEST CHASSIS GROUND POINT VIEWS	A- 5
Figure A- 7	PRE-TEST BATTERY PROPULSION MODULE(S) VIEW	A- 6
Figure A- 8	POST-TEST BATTERY PROPULSION MODULE(S) VIEW	A- 6
Figure A- 9	PRE-TEST PROPULSION BATTERY VIEW	A- 7
Figure A- 10	POST-TEST PROPULSION BATTERY VIEW	A- 7
Figure A- 11	PRE-TEST HIGH VOLTAGE INTERCONNECT VIEW	A- 8
Figure A- 12	POST-TEST HIGH VOLTAGE INTERCONNECT VIEW	A- 8
Figure A- 13	PRE-TEST BATTERY COMPARTMENT VIEW	A- 9
Figure A- 14	POST-TEST BATTERY COMPARTMENT VIEW	A- 9
Figure A- 15	PRE-TEST BATTERY VENTING SYSTEM VIEW	A- 10
Figure A- 16	POST-TEST BATTERY VENTING SYSTEM VIEW	A- 10
Figure A- 17	PRE-TEST ELECTRIC PROPULSION COMPONENT(S) VIEW	A- 11
Figure A- 18	POST-TEST ELECTRIC PROPULSION COMPONENT(S) VIEW	A- 11
Figure A- 19	PRE-TEST ELECTRIC PROPULSION DRIVE VIEW	A- 12
Figure A- 20	POST-TEST ELECTRIC PROPULSION DRIVE VIEW	A- 12
Figure A- 21	PRE-TEST VEHICLE PASSENGER COMPARTMENT VIEW	A- 13
Figure A- 22	POST-TEST VEHICLE PASSENGER COMPARTMENT VIEW	A- 13
Figure A- 23	POST-TEST PROPULSION BATTERY ELECTROLYTE SPILLAGE LOCATION VIEW	A- 14
Figure A- 24	ROLLOVER 90 VIEW HIGHLIGHTING PROPULSION BATTERY LOCATION	A- 15
Figure A- 25	ROLLOVER 180 VIEW HIGHLIGHTING PROPULSION BATTERY LOCATION	A- 15
Figure A- 26	ROLLOVER 270 VIEW HIGHLIGHTING PROPULSION BATTERY LOCATION	A- 16
Figure A- 27	ROLLOVER 360 VIEW HIGHLIGHTING PROPULSION BATTERY LOCATION	A- 16

Figure A-1: Vehicle Certification Placard

Figure A-2: Vehicle Tire Placard

Figure A-3: Vehicle Electric Propulsion System Label

Figure A-4: Pre-Test Test Port Interface Port Installation View

Figure A-5: Pre-Test Test Device Installation Views

Figure A-6: Pre-Test Chassis Ground Point View

Figure A-7: Pre-Test Battery Propulsion Module(S) View

Figure A-8: Post-Test Battery Propulsion Module(S) View

Figure A-9: Pre-Test Propulsion Battery View

Photo Not Available

Figure A-10: Post-Test Propulsion Battery View

Figure A-11: Pre-Test High Voltage Interconnect View

Photo Not Available

Figure A-12: Post-Test High Voltage Interconnect View

Figure A-13: Pre-Test Battery Compartment View

Photo not available : due to trunk not being able to opened

Figure A-14: Post-Test Battery Compartment View

Figure A-15: Pre-Test Battery Venting System View

Photo not available : due to trunk not being able to opened

Figure A-16: Post-Test Battery Venting System View

Figure A-17: Pre-Test Electric Propulsion Component(S) View

Figure A-18: Post-Test Electric Propulsion Component(S) View

Figure A-19: Pre-Test Electric Propulsion Drive View

Figure A-20: Post-Test Electric Propulsion Drive View

Figure A-21: Pre-Test Vehicle Passenger Compartment View

Figure A-22: Post-Test Vehicle Passenger Compartment View

None

Figure A-23: Post-Test Propulsion Battery Electrolyte Spillage Location View

Figure A-24: Rollover View - 90° Highlighting Propulsion Battery Location

Figure A-25: Rollover View - 180° Highlighting Propulsion Battery Location

Figure A-26: Rollover View - 270° Highlighting Propulsion Battery Location

Figure A-27: Rollover View - 360° Highlighting Propulsion Battery Location