126-DRI-10-008
SAFETY COMPLIANCE TESTING FOR FMVSS 126
Electronic Stability Control Systems

Chrysler Group LLC
2010 Chrysler Town and Country
NHTSA No. CA0305

DYNAMIC RESEARCH, INC.
355 Van Ness Avenue, STE 200
Torrance, California 90501

23 November, 2010

Final Report

Prepared Under Contract No.: DTNH22-08-D-00098

U. S. DEPARTMENT OF TRANSPORTATION
National Highway Traffic Safety Administration
Enforcement
Office of Vehicle Safety Compliance
1200 New Jersey Avenue, SE
West Building, 4th Floor (NVS-221)
Washington, DC 20590
126-DRI-10-008

2. Government Accession No.
3. Recipient's Catalog No.

4. Title and Subtitle
Final Report of FMVSS 126 Compliance Testing of 2010 Chrysler Town and Country multipurpose passenger vehicle, NHTSA No. CA0305

5. Report Date
23 November, 2010

6. Performing Organization Code
DRI

7. Author(s)
John F. Lenkeit, Technical Director
Brian Kebschull, Principal Engineer

DRI-TM-10-08

9. Performing Organization Name and Address
Dynamic Research, Inc.
355 Van Ness Ave, STE 200
Torrance, CA 90501

10. Work Unit No.

11. Contract or Grant No.
DTNH22-08-D-00098

12. Sponsoring Agency Name and Address
U.S. Department of Transportation
National Highway Traffic Safety Administration Enforcement
Office of Vehicle Safety Compliance
1200 New Jersey Avenue, SE,
West Building, 4th Floor (NVS-221)
Washington, D.C. 20590

13. Type of Report and Period Covered
Final Test Report
30 April, 2010 to 23 November, 2010

NVS-220

15. Supplementary Notes

16. Abstract
A test was conducted on a 2010 Chrysler Town and Country, NHTSA No. CA0305, in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP-126-02 for the determination of FMVSS 126 compliance. Test failures identified were as follows: None

17. Key Words
Compliance Testing
Safety Engineering
FMVSS 126

18. Distribution Statement
Copies of this report are available from:
NHTSA Technical Information Services (TIS)
(NPO 411)
1200 New Jersey Avenue, SE
Washington, D.C. 20590
Email: tis@nhtsa.dot.gov
FAX: (202) 493-2933

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages
65

22. }
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 PURPOSE OF COMPLIANCE TEST</td>
<td>1</td>
</tr>
<tr>
<td>2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS</td>
<td>1</td>
</tr>
<tr>
<td>3.0 TEST DATA</td>
<td>5</td>
</tr>
<tr>
<td>4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION</td>
<td>27</td>
</tr>
<tr>
<td>5.0 PHOTOGRAPHS</td>
<td>29</td>
</tr>
<tr>
<td>6.0 DATA PLOTS</td>
<td>43</td>
</tr>
<tr>
<td>7.0 OTHER DOCUMENTATION</td>
<td>47</td>
</tr>
<tr>
<td>7.1 Owner’s Manual Pages</td>
<td>48</td>
</tr>
<tr>
<td>7.2 Vehicle Arrival Condition Report</td>
<td>56</td>
</tr>
<tr>
<td>7.3 Vehicle Completion Condition Report</td>
<td>57</td>
</tr>
<tr>
<td>7.4 Sine with Dwell Test Results</td>
<td>58</td>
</tr>
<tr>
<td>7.5 Slowly Increasing Steer Test Results</td>
<td>60</td>
</tr>
<tr>
<td>7.6 Inertial Sensing System Location Coordinates</td>
<td>61</td>
</tr>
</tbody>
</table>
1.0 PURPOSE OF COMPLIANCE TEST

The purpose of this test is to determine if the test vehicle, a 2010 Chrysler Town and Country, meets the minimum equipment and performance requirements stated in Federal Motor Vehicle Safety Standard (FMVSS) 126, "Electronic Stability Control Systems."

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS

Testing of the 2010 Chrysler Town and Country was conducted at Dynamic Research, Inc (DRI) in accordance with NHTSA TP-126-02, dated November 19, 2008.

The vehicle was inspected to ensure it was equipped with an ESC system that:

- Augments vehicle directional stability by applying and adjusting brake torques individually at each wheel to induce a correcting yaw moment to a vehicle;
- Is computer controlled with the computer using a closed-loop algorithm to limit vehicle oversteer and to limit vehicle understeer;
- Has a means to determine the vehicle’s yaw rate and to estimate its side slip or side slip derivative with respect to time;
- Has a means to monitor driver steering inputs;
- Has an algorithm to determine the need, and a means to modify engine torque, as necessary, to assist the driver in maintaining control of the vehicle; and
- Is operational over the full speed range of the vehicle (except at vehicle speeds less than 20 km/h (12.4 mph), when being driven in reverse, or during system initialization).

The vehicle was subjected to a 0.7 Hz Sine with Dwell steering maneuver to ensure that it would meet the stability and responsiveness requirements of the standard as follows:

- At 1.0 second after completion of a required Sine with Dwell steering input, the yaw rate of the vehicle must not exceed 35 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).
2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTINUED)

- At 1.75 seconds after completion of a required Sine with Dwell steering input, the yaw rate of the vehicle must not exceed 20 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).

- The lateral displacement of the vehicle center of gravity with respect to its initial straight path must be at least 1.83 m (6 feet) (for vehicles with a GVWR of 3,500kg (7,716 lb) or less) when computed 1.07 seconds after the Beginning of Steer (BOS) at the specified steering wheel angles.

System malfunction simulations were executed to verify vehicle could identify and indicate a malfunction.

The vehicle's ESC System appears to meet the performance and equipment requirements as required by FMVSS 126. The test results are summarized on the following summary sheet.
2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONT'D)

Data Summary Sheet (Page 1 of 2)

Vehicle: 2010 Chrysler Town and Country

NHTSA No. CA0305 VIN: 2A4RR4DE5AR240558
Vehicle Type: MPV Manufacture Date: 2/10

Laboratory: Dynamic Research, Inc.

REQUIREMENTS: PASS/FAIL

ESC Equipment and Operational Characteristics (Data Sheet 2)
The vehicle is to be equipped with an ESC system that meets the equipment and operational characteristics requirements. (S126, S5.1, S5.6) PASS

ESC Malfunction Telltale (Data Sheet 3)
Vehicle is equipped with a telltale that indicates one or more ESC system malfunctions. (S126, S5.3) PASS

“ESC Off” and other System Controls and Telltale (Data Sheet 3,4)
Vehicle is equipped with an ESC off telltale indicating the vehicle has been put into a mode that renders the ESC system unable to satisfy the performance requirements of the standard, if such a mode exists. (S5.5.1) PASS

If provided, off control and other system controls as well as the ESC off telltale meets the operational requirements (S126, S5.4, S5.4.1, S5.4.2, S5.5.4, and S5.5.9) PASS
2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTD)

Data Summary Sheet (Page 2 of 2)

__

REQUIREMENTS: PASS/FAIL

Vehicle Lateral Stability (Data Sheet 8)

 Yaw Rate Ratio at 1 second after COS is less than 35% of peak value. (S126, S5.2.1) PASS

 Yaw Rate Ratio at 1.75 seconds after COS is less than 20% of peak value. (S126, S5.2.2) PASS

Vehicle Responsiveness (Data Sheet 8)

 Lateral displacement at 1.07 seconds after BOS is at least 1.83 m (6 feet) for vehicles with a GVWR of 3,500kg (7,716 lb) or less, and 1.52 m (5 feet) for vehicles with a GVWR greater than 3,500 Kg (7,716 lb). (S126, S5.2.3) PASS

ESC Malfunction Warning (Data Sheet 9)

 Warning is provided to driver after malfunction occurrence. (S126, S5.3) PASS

 Malfunction telltale stayed illuminated as long as malfunction existed and must extinguish after malfunction was corrected. (S126, S5.3.7) PASS
3.0 TEST DATA

Data Sheet 1 (Page 1 of 2)

TEST VEHICLE INSPECTION AND TEST PREPARATION

Vehicle: *2010 Chrysler Town and Country MPV*

NHTSA No. **CA0305**
Data Sheet Completion Date: **5/24/2010**

VIN **2A4RR4DE5AR240558**
Manufacture Date: **2/10**

GVWR (kg): **2745**
Front GAWR (kg): **1339**
Rear GAWR (kg): **1407**

Seating Positions
Front: **2**
Mid:
Rear: **5**

Odometer reading at time of inspection:
6 miles (9.6 km)

DESIGNATED TIRE SIZE(S) FROM VEHICLE LABELING:

<table>
<thead>
<tr>
<th></th>
<th>Front axle</th>
<th>Rear axle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front axle:</td>
<td>225/65 R16</td>
<td>225/65 R16</td>
</tr>
</tbody>
</table>

INSTALLED TIRE SIZE(S) ON VEHICLE (from tire sidewall)

<table>
<thead>
<tr>
<th></th>
<th>Front Axle</th>
<th>Rear Axle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tire Manufacturer:</td>
<td>Yokohama</td>
<td>Yokohama</td>
</tr>
<tr>
<td>Tire Model:</td>
<td>Avid S33</td>
<td>Avid S33</td>
</tr>
<tr>
<td>Tire Size:</td>
<td>225/65 R16</td>
<td>225/65 R16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIN</th>
<th>Left Front:</th>
<th>Right Front:</th>
<th>Left Rear:</th>
<th>Right Rear:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4UF2 6B4 4409</td>
<td>4UF2 6B4 4409</td>
<td>4UF2 6B4 4409</td>
<td>4UF2 6B4 4409</td>
<td></td>
</tr>
</tbody>
</table>

Are installed tire sizes same as labeled tire sizes? **Yes**

If no, contact COTR for further guidance

DRIVE CONFIGURATION(S): *(mark all that apply)*

- [X] Two Wheel Drive (2WD)
- [X] Front Wheel Drive
- [] Rear Wheel Drive
- [] All Wheel Drive (AWD)
- [] Four Wheel Drive Automatic - differential no locked full time (4WD Automatic)
- [] Four Wheel Drive (High Gear Locked Differential 4WD HGLD)
- [] Four Wheel Drive Low Gear (4WD Low)
- [] Other (Describe)
3.0 TEST DATA (CONTD)

Data Sheet 1 (Page 2 of 2)
TEST VEHICLE INSPECTION AND TEST PREPARATION

DRIVE CONFIGURATIONS AND MODES: (ex. default, performance, off)
(For each of the vehicle's drive configurations identify available operating modes)

Drive Configuration: **FWD**
Mode: **Default- ESC on**

Drive Configuration: **FWD**
Mode: **ESP “Partial off” mode**

Drive Configuration: __________
Mode: __________

VEHICLE STABILITY SYSTEMS (Check applicable technologies):

List other systems:

- [x] ESC
- [x] Traction Control
- [] Roll Stability Control
- [] Active Suspension
- [x] Electronic Throttle Control
- [] Active Steering
- [x] ABS

REMARKS: Note that this manufacturer refers to ESC as ESP

RECORDED BY: Peter Broen
DATE RECORDED: 5/24/2010

APPROVED BY: Brian Kebschull
DATE APPROVED: 5/27/2010
3.0 TEST DATA (CONTD)

Data Sheet 2 (Page 1 of 2)

ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

Vehicle: 2010 Chrysler Town and Country MPV

NHTSA No CA0305 Data Sheet Completion Date: 5/21/2010

ESC SYSTEM IDENTIFICATION
Manufacturer/Model Continental Teves – Mk25e

ESC SYSTEM HARDWARE (Check applicable hardware)

- [X] Electronic Control Unit
- [X] Hydraulic Control Unit
- [X] Wheel Speed Sensors
- [X] Steering Angle Sensor
- [X] Yaw Rate Sensor
- [X] Lateral Acceleration Sensor

List other Components: Brake actuation (vac booster)

ESC OPERATIONAL CHARACTERISTICS

System is capable of generating brake torque at each wheel
Brief explanation: The Hydraulic Control Unit (HCU) is able to adjust brake pressure at each wheel individually, by switching valves and activation of the pump, independent of the driver’s brake actuation.

[X] Yes (Pass) [] No (Fail)

System is capable of determining yaw rate
Brief explanation: Yaw rate is measured directly with a yaw rate sensor.

[X] Yes (Pass) [] No (Fail)

System is capable of monitoring driver steering input
Brief explanation: Steering wheel angle is measured directly.

[X] Yes (Pass) [] No (Fail)

System is capable of estimating side slip or side slip derivative
Brief explanation: The ESC system estimates the side slip derivative. This estimate is based on the measured lateral acceleration, measured wheel speeds, measured yaw rate, and derived bicycle model.

[X] Yes (Pass) [] No (Fail)
3.0 TEST DATA (CONT'D)

Data Sheet 2 (Page 2 of 2)

ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>ESC OPERATIONAL CHARACTERISTICS (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>System is capable of modifying engine torque during ESC activation. Method used to modify torque: ESC performs a reduction of engine torque by sending an engine torque request via the engine management interface. Torque reduction is achieved by changing ignition and spark timing, fuel delivery, and/or a combination of all the above in order to achieve the smoothest possible performance.</td>
</tr>
<tr>
<td>System is capable of activation at speeds of 20 km/h (12.4 mph) and higher</td>
</tr>
<tr>
<td>Speed system becomes active: 14.4 km/h</td>
</tr>
<tr>
<td>System is capable of activation during the following driving phases:</td>
</tr>
<tr>
<td>- Acceleration - During activation of ABS or traction control</td>
</tr>
<tr>
<td>- Braking -</td>
</tr>
<tr>
<td>- Coasting -</td>
</tr>
<tr>
<td>Driving phases during which ESC is capable of activation:</td>
</tr>
<tr>
<td>Acceleration, braking, coasting, during activation of ABS or traction control</td>
</tr>
</tbody>
</table>

Vehicle manufacturer submitted documentation explaining how the ESC mitigates understeer: X Yes (Pass) No (Fail)

DATA INDICATES COMPLIANCE: X Yes (Pass) No (Fail)

REMARKS:

RECORDED BY: Joe Kelly **DATE RECORDED:** 5/21/2010

APPROVED BY: Brian Kebschull **DATE APPROVED:** 5/8/2010
Data Sheet 3 (Page 1 of 2)

ESC MALFUNCTION AND OFF TELLTALES

Vehicle: **2010 Chrysler Town and Country MPV**

NHTSA No. **CA0305**
Data Sheet completion date: **5/21/2010**

ESC Malfunction Telltale

Vehicle is equipped with malfunction telltale? **Yes**

Telltale Location: *Between speedometer and tachometer, in the top center area of the instrument cluster*

Telltale Color: **Yellow**

Telltale symbol or abbreviation used

- [] [] Vehicle uses this symbol
- [] [] Vehicle uses this abbreviation
- [x] [] Neither symbol or abbreviation is used

If different than identified above, make note of any message, symbol or abbreviation used.

An “ESP BAS” (the “BAS” is underneath the “ESP”) telltale is used for ESC malfunction indication. (Figure 5.6)

Is telltale part of a common space? **No**

Is telltale also used to indicate activation of the ESC system? **No (see explanation below)**

If yes explain telltale operation during ESC activation:

The malfunction telltale “ESP BAS” is not used to indicate ESP system activation. However the “ESP/TCS Indicator Light” (“Skidding car”) flashes to indicate traction control and/or ESC activation.
3.0 TEST DATA (CONTD)

Data Sheet 3 (Page 2 of 2)
ESC MALFUNCTION AND OFF TELLTALES

"ESC OFF" Telltale (if provided)

Vehicle is equipped with "ESC OFF" telltale? __Yes_

Is "ESC Off" telltale combined with "ESC Malfunction" telltale utilizing a two part telltale? __No__

Telltale Location: __Between speedometer and tachometer, in the top center area of the instrument cluster__

Telltale Color: __Yellow__

Telltale symbol or abbreviation used

[] Vehicle uses this symbol

[] Vehicle uses this abbreviation

[x] Neither symbol or abbreviation is used

If different than identified above, make note of any message, symbol or abbreviation used. __The skidding car symbol above without the word OFF is used to indicate that the ESP system has been partially turned off. This telltale also flashes to indicate ESC/TCS activation__.

Is telltale part of a common space? __No__

DATA INDICATES COMPLIANCE __Yes__

(Vehicle is compliant if equipped with a malfunction telltale)

Remarks:

RECORDED BY: __Joe Kelly__ DATE RECORDED: __5/21/2010__

APPROVED BY: __Brian Kebschull__ DATE APPROVED: __5/27/2010__
3.0 TEST DATA (CONTD)

Data Sheet 4 (Page 1 of 3)

ESC AND ANCILLARY SYSTEM CONTROLS

Vehicle: *2010 Chrysler Town and Country MPV*

NHTSA No. **CA0305**

Data Sheet completion date: **5/24/2010**

"ESC OFF" Controls Identification and Operational Check:

Is the vehicle equipped with a control or controls whose purpose is to deactivate the ESC system or place the ESC system in a mode or modes that may no longer satisfy the performance requirements of the standard?

Yes ___ No ___

X

Type of control or controls provided? (mark all that apply)

Dedicated “ESC Off” Control

Multi-functional control with an “ESC Off” mode

Other (describe)

Identify each control location, labeling and selectable modes.

First Control:

Location: **Center of dashboard (beneath AC vents) (Figure 5.7)**

Labeling: **ESP OFF**

Modes:

Pressing this button partially deactivates the ESC and traction control. The ESC system remains partially active, but without engine torque management.

Second Control:

Location:

Labeling:

Modes:

Identify standard or default drive configuration: **FWD**

Verify standard or default drive configuration selected

Yes ___ No ___

X

Does the “ESC Off” telltale illuminate upon activation of the dedicated ESC off control or selection of the “ESC Off” mode on the multi-function control?

Yes ___ No (Fail)

X

Does the “ESC Off” telltale extinguish when the ignition is cycled from “on” (“Run”) to “Lock” or “Off” and then back again to the “On” (“Run”) position?

Yes ___ No (Fail)

X

If no, describe how the “Off” control functions

11
ESC AND ANCILLARY SYSTEM CONTROLS

If a multi-function control is provided, cycle through each mode setting on the control and record which modes illuminate the “ESC Off” telltale. Also, for those modes that illuminate the ESC Off” telltale identify if the telltale extinguishes upon cycling the ignition system.

<table>
<thead>
<tr>
<th>Control Mode</th>
<th>"ESC Off" telltale illuminates upon activation of control? (Yes/No)</th>
<th>"ESC Off" telltale extinguishes upon cycling ignition? (Yes/No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For each mode that illuminates the “ESC Off” telltale, did the telltale extinguish when the ignition was cycled from “On” (“Run”) to “Lock” or “Off” and then back again to the “On” (“Run”) position?

___ Yes ___ No

Other System Controls that have an ancillary effect on ESC Operation:

Is the vehicle equipped with any ancillary controls that upon activation may deactivate the ESC system or place the ESC system in a mode or modes that may no longer satisfy the performance requirements of the standard?

___ Yes ___ No

Ancillary Control: System None

<table>
<thead>
<tr>
<th>Control Description</th>
<th>Labeling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ancillary Control: System

<table>
<thead>
<tr>
<th>Control Description</th>
<th>Labeling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ancillary Control: System

<table>
<thead>
<tr>
<th>Control Description</th>
<th>Labeling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.0 TEST DATA (CONTD)

Data Sheet 4 (Page 3 of 3)
ESC AND ANCILLARY SYSTEM CONTROLS

Activate each control listed above and record whether the control illuminates the “ESC Off” telltale. Also, record warnings or messages provided regarding the ESC system.

<table>
<thead>
<tr>
<th>Ancillary Control</th>
<th>Control Activates “ESC Off” Telltale? (Yes/No)</th>
<th>Warnings or Messages Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For those controls that illuminate the “ESC Off” telltale above identify if the “ESC Off” telltale extinguishes upon cycling the ignition system.

<table>
<thead>
<tr>
<th>Ancillary Control</th>
<th>“ESC Off” telltale extinguishes upon cycling ignition? (Yes/No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

For each control that illuminates the “ESC Off” telltale, did the telltale extinguish when the ignition is cycled from “On” (“Run”) to “Lock” or “Off” and then back again to the “On” (“Run”) position? If activating the control places the vehicle into a low-range four-wheel drive configuration designed for low-speed, off-road driving, the ESC system may remain turned off after the ignition has been cycled off and then back on and therefore the “ESC Off” telltale may not extinguish.

X Yes ____ No (Fail)

DATA INDICATES COMPLIANCE: PASS

Remarks:

RECORDED BY: Peter Broen DATE RECORDED: 5/24/2010
APPROVED BY: Brian Kebschull DATE APPROVED: 5/27/2010
3.0 TEST DATA (CONTD)

Data Sheet 5 (Page 1 of 3)
TEST TRACK AND VEHICLE DATA

Vehicle: 2010 Chrysler Town and Country MPV
NHTSA No. CA0305 Data Sheet completion date: 5/27/2010

Test Track Requirements:
- Test surface slope (0-1%): **0.5%**
- Peak Friction Coefficient (at least 0.9) **0.931**

Test track data meets requirements: **Yes**
If no, explain:

Full Fluid Levels:
- Fuel **Yes**
- Other Fluids **Yes** (specify)
- Coolant **Yes**
- Oil, washer fluid, brake fluid

Tire Pressures:
- Required;
 - Front Axle **250** KPA
 - Rear Axle **250** KPA
- Actual;
 - LF **250** KPA
 - RF **250** KPA
 - LR **250** KPA
 - RR **250** KPA

Vehicle Dimensions:
- Front Track Width **166.9** cm
- Wheelbase **307.8** cm
- Rear Track Width **165.1** cm

Vehicle Weight Ratings:
- GAWR Front **1339** KG
- GAWR Rear **1407** KG

Unloaded Vehicle Weight (UVW):
- Front Axle **1117.2** KG
- Left Front **570.2** KG
- Right Front **547.0** KG
- Rear Axle **878.6** KG
- Left Rear **439.5** KG
- Right Rear **439.1** KG
- Total UVW **1995.8** KG

Baseline Weight and Outrigger Selection (only for MPVs, Trucks, Buses)
- Calculated baseline weight (UVW + 73kg) **2068.8** KG
- Outrigger size required ("Standard" or "Heavy") **Standard**
 - Standard - Baseline weight under 2772 kg (6000 lb)
 - Heavy - Baseline weight equal to or greater than 2772 kg (6000 lb)
3.0 TEST DATA (CONTD)

Data Sheet 5 (Page 2 of 3)
TEST TRACK AND VEHICLE DATA

UVW with Outriggers: (only for MPVs, Trucks, Buses)

Front axle 1150.8 KG Left front 587.4 KG Right front 563.4 KG
Rear axle 921.3 KG Left rear 459.5 KG Right rear 461.8 KG

Total UVW with outriggers 2072.1 KG

Loaded Vehicle Weight w/Driver and Instrumentation (no Ballast)

Front axle 1228.7 KG Left front 641.8 KG Right front 586.9 KG
Rear axle 983.4 KG Left rear 495.3 KG Right rear 488.1 KG

Vehicle Weight 2212.1 KG

Ballast Required = [Total UVW with Outriggers (if applicable)] + 168 KG - [Loaded Weight w/Driver and Instrumentation]

= 2072.1 KG + 168 KG - 2212.1 KG

= 28.0 KG

Total Loaded Vehicle Weight w/Driver and Instrumentation and Ballast

Front axle 1241.5 KG Left front 640.5 KG Right front 601.0 KG
Rear axle 997.9 KG Left rear 499.9 KG Right rear 498.0 KG

Total UVW 2239.4 KG
3.0 TEST DATA (CONTD)

Data Sheet 5 (Page 3 of 3)
TEST TRACK AND VEHICLE DATA

Center of Gravity and Inertial Sensing System Location at Loaded Vehicle Condition:

x-distance (longitudinal) Point of reference is the front axle centerline.
(Positive from front axle toward rear of vehicle.)
y-distance (lateral) Point of reference is the vehicle centerline.
(Positive from the center toward the right.)
z-distance (vertical) Point of reference is the ground plane.
(Positive from the ground up.)

Locations:

<table>
<thead>
<tr>
<th></th>
<th>Center of Gravity</th>
<th>Inertial Sensing System</th>
</tr>
</thead>
<tbody>
<tr>
<td>x-distance</td>
<td>54.0 in</td>
<td>59.9 in</td>
</tr>
<tr>
<td></td>
<td>137.2 cm</td>
<td>152.1 cm</td>
</tr>
<tr>
<td>y-distance</td>
<td>-0.6 in</td>
<td>-0.2 in</td>
</tr>
<tr>
<td></td>
<td>-1.5 cm</td>
<td>-0.6 cm</td>
</tr>
<tr>
<td>z-distance</td>
<td>25.9 in</td>
<td>21.1 in</td>
</tr>
<tr>
<td></td>
<td>65.7 cm</td>
<td>53.6 cm</td>
</tr>
<tr>
<td>Roof Height</td>
<td>68.1 in</td>
<td>173.0 cm</td>
</tr>
<tr>
<td>Distance between ultrasonic sensors</td>
<td>90.5 in</td>
<td>229.9 cm</td>
</tr>
</tbody>
</table>

Remarks:

RECORDED BY: PCB DATE RECORDED: 5/27/2010
APPROVED BY: BKK DATE APPROVED: 5/27/2010
3.0 TEST DATA (CONTD)

Data Sheet 6 (Page 1 of 3)
BRAKE AND TIRE CONDITIONING

Vehicle: 2010 Chrysler Town and Country MPV
NHTSA No. CA0305

Measured tire pressure: LF 258 KPA RF 257 KPA
LR 254 KPA RR 253 KPA

Wind Speed 2.2 m/s (10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 17.1 °C

Brake Conditioning Time: 9:01:00 AM Date: 5/27/2010

56 km/h (35 mph) Brake Stops

Number of stops executed (10 required) 10 Stops
Observed deceleration rate range (.5g target) 0.45-0.55 g

72 km/h (45 mph) Brake Stops

Number of stops executed (3 required) 3 Stops
Number of stops ABS activated (3 required) 3 Stops
Observed deceleration rate range 0.7-0.9 g

72 km/h (45 mph) Brake Cool Down Period

Duration of cool down period (5 minutes min.) 5 Minutes
3.0 TEST DATA (CONTD)

BRAKE AND TIRE CONDITIONING

Data Sheet 6 (Page 2 of 3)

<table>
<thead>
<tr>
<th>Tire Conditioning series No. 1</th>
<th>Time: 9:15:00 AM</th>
<th>Date: 5/27/2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured cold tire pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LF 276 KPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF 278 KPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR 265 KPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RR 271 KPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind Speed 1.2 m/s</td>
<td>(10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)</td>
<td></td>
</tr>
</tbody>
</table>

Ambient Temperature (7 °C (45°F) - 40 °C (104°F)) 17.2 °C

<table>
<thead>
<tr>
<th>Test Run</th>
<th>Steering Direction</th>
<th>Target Lateral Acceleration (g)</th>
<th>Observed Lateral Acceleration (g)</th>
<th>Observed Vehicle Speed (Km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>Clockwise</td>
<td>0.5 – 0.6</td>
<td>0.5-0.6</td>
<td>30.4 - 32</td>
</tr>
<tr>
<td>4-6</td>
<td>Counterclockwise</td>
<td>0.5 – 0.6</td>
<td>0.5-0.6</td>
<td>30.4 - 32</td>
</tr>
</tbody>
</table>

5-1 Hz Cycle Sinusoidal Steering Maneuver to Determine Steering Wheel Angle for 0.5-0.6 g Lateral Acceleration

<table>
<thead>
<tr>
<th>Test Run</th>
<th>Data File</th>
<th>Vehicle Speed Km/h (mph)</th>
<th>Steering Wheel Angle (degrees)</th>
<th>Target Peak Lateral Acceleration (g)</th>
<th>Observed Peak Lateral Acceleration (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>56 ± 2 (35 ± 1)</td>
<td>60</td>
<td>0.5 - 0.6</td>
<td>0.28</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>56 ± 2 (35 ± 1)</td>
<td>120</td>
<td>0.5 - 0.6</td>
<td>0.48</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>56 ± 2 (35 ± 1)</td>
<td>140</td>
<td>0.5 - 0.6</td>
<td>0.53</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>56 ± 2 (35 ± 1)</td>
<td></td>
<td>0.5 - 0.6</td>
<td></td>
</tr>
</tbody>
</table>

Steering wheel angle that corresponds to a peak 0.5-0.6 g lateral acceleration: **140 degrees**

10-1 Hz Cycle Sinusoidal Steering Maneuver

<table>
<thead>
<tr>
<th>Test Run</th>
<th>Data File</th>
<th>Vehicle Speed Km/h (mph)</th>
<th>Steering Wheel Angle (degrees)</th>
<th>Target Peak Lateral Acceleration (g)</th>
<th>Observed Peak Lateral Acceleration (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>5-7</td>
<td>56 ± 2 (35 ± 1)</td>
<td>140 (cycles 1-10)</td>
<td>0.5 - 0.6</td>
<td>0.53</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>56 ± 2 (35 ± 1)</td>
<td>140 (cycles 1-9)</td>
<td>0.5 - 0.6</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>280 (cycle10)</td>
<td>NA</td>
<td>0.76</td>
</tr>
</tbody>
</table>

* The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9
3.0 TEST DATA (CONT'D)

Data Sheet 6 (Page 3 of 3)
BRAKE AND TIRE CONDITIONING

Tire Conditioning series No. 2 Time: 10:47:00 AM Date: 5/27/2010

Measured cold tire pressure

<table>
<thead>
<tr>
<th>Tire</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
<td>276 KPA</td>
</tr>
<tr>
<td>RF</td>
<td>278 KPA</td>
</tr>
<tr>
<td>LR</td>
<td>266 KPA</td>
</tr>
<tr>
<td>RR</td>
<td>272 KPA</td>
</tr>
</tbody>
</table>

Wind Speed 2.6 m/s (10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 21.4°C

<table>
<thead>
<tr>
<th>Test Run</th>
<th>Steering Direction</th>
<th>Target Lateral Acceleration (g)</th>
<th>Observed Lateral Acceleration (g)</th>
<th>Observed Vehicle Speed (Km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>Clockwise</td>
<td>0.5 - 0.6</td>
<td>0.5-0.6</td>
<td>30.4 - 32</td>
</tr>
<tr>
<td>4-6</td>
<td>Counterclockwise</td>
<td>0.5 - 0.6</td>
<td>0.5-0.6</td>
<td>30.4 - 32</td>
</tr>
</tbody>
</table>

Steering wheel angle that corresponds to a peak 0.5-0.6 g lateral acceleration:

140 degrees

<table>
<thead>
<tr>
<th>Test Run</th>
<th>Data File</th>
<th>Vehicle Speed Km/h (mph)</th>
<th>Steering Wheel Angle (degrees)</th>
<th>Target Peak Lateral Acceleration (g)</th>
<th>Observed Peak Lateral Acceleration (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>17-19</td>
<td>56 ± 2 (35 ± 1)</td>
<td>140 (cycles 1-10)</td>
<td>0.5 - 0.6</td>
<td>0.53</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>56 ± 2 (35 ± 1)</td>
<td>140 (cycles 1-9)</td>
<td>0.5 - 0.6</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>280 (cycle 10)*</td>
<td>NA</td>
<td>0.77</td>
</tr>
</tbody>
</table>

* The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9

Remarks:

RECORDED BY: B Kebschull DATE RECORDED: 5/27/2010
APPROVED BY: J Lenkeit DATE APPROVED: 6/4/2010
3.0 TEST DATA (CONT'D)

Data Sheet 7 (Page 1 of 2)
SLOWLY INCREASING STEER (SIS) MANEUVER

Vehicle: 2010 Chrysler Town and Country MPV
NHTSA No. CA0305

Measured tire pressure: LF 275 KPA RF 277 KPA
LR 267 KPA RR 270 KPA

Wind Speed 1.4 m/s
(10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 17.4 °C

Selected drive configuration FWD

Selected Mode: Standard “ESP ON”

Preliminary Left Steer Maneuver:
Lateral Acceleration measured at 30 degrees steering wheel angle

\[a_{y,30\text{degrees}} = 0.26 \text{ g} \]

Assuming a linear relationship the following ratio should be used to calculate the steering wheel angle at 0.55g:

\[\frac{30\text{ degrees}}{a_{y,30\text{degrees}}} = \frac{\delta_{\text{SIS}}}{0.55 \text{ g}} \]
\[\delta_{\text{SIS}} = 63.5 \text{ degrees (@.55g)} \]
\[\delta_{\text{SIS}} = 60 \text{ degrees (rounded)} \]

Steering Wheel Angle at Corrected 0.3g Lateral Acceleration:

<table>
<thead>
<tr>
<th>Maneuver</th>
<th>Initial Steer Direction</th>
<th>Time Clock (5 min max between runs)</th>
<th>Steering Wheel Angle to nearest 0.1° (degrees)</th>
<th>Data Run</th>
<th>Good/NG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Left</td>
<td>9:56:44 AM</td>
<td>-36.9</td>
<td>11</td>
<td>Good</td>
</tr>
<tr>
<td>2</td>
<td>Left</td>
<td>10:01:38 AM</td>
<td>-36.1</td>
<td>12</td>
<td>Good</td>
</tr>
<tr>
<td>3</td>
<td>Left</td>
<td>10:05:28 AM</td>
<td>-36.7</td>
<td>13</td>
<td>Good</td>
</tr>
<tr>
<td>4</td>
<td>Left</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Left</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Right</td>
<td>10:12:00 AM</td>
<td>36.4</td>
<td>14</td>
<td>Good</td>
</tr>
<tr>
<td>2</td>
<td>Right</td>
<td>10:15:47 AM</td>
<td>37.4</td>
<td>15</td>
<td>Good</td>
</tr>
<tr>
<td>3</td>
<td>Right</td>
<td>10:19:17 AM</td>
<td>37.5</td>
<td>16</td>
<td>Good</td>
</tr>
<tr>
<td>4</td>
<td>Right</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Right</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.0 TEST DATA (CONTD)

Data Sheet 7 (Page 2 of 2)
SLOWLY INCREASING STEER (SIS) MANEUVER

Average Overall Steering Wheel Angle:

\[\delta_{0.3\text{ g, overall}} = (|\delta_{0.3\text{ g, left (1)}| + |\delta_{0.3\text{ g, left (2)}| + |\delta_{0.3\text{ g, left (3)}| + \delta_{0.3\text{ g, right (1)}} + \delta_{0.3\text{ g, right (2)}} + \delta_{0.3\text{ g, right (3)}}) / 6 \]

\[\delta_{0.3\text{ g, overall}} = 36.8 \text{ degrees} \]

[to nearest 0.1 degree]

Remarks:

__

RECORDED BY: Brian Kebschull DATE RECORDED: 5/27/2010
APPROVED BY: J Lenkeit DATE APPROVED: 6/7/2010
3.0 TEST DATA (CONT'D)

Data Sheet 8 (Page 1 of 3)

VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Vehicle: **2010 Chrysler Town and Country MPV**

NHTSA No. **CA0305**

Data sheet completion date: **5/27/2010**

<table>
<thead>
<tr>
<th>Maneuver #</th>
<th>Clock Time</th>
<th>Commanded Steering Wheel Angle¹</th>
<th>Yaw Rates (degrees/sec)</th>
<th>YRR at 1.0 sec after COS [< 35%]</th>
<th>YRR at 1.75 sec after COS [< 20%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Scalar (* δ₀.₃ g)</td>
<td>Angle (degrees)</td>
<td>Ψ⁰_peak</td>
<td>Ψ₁₀sec</td>
</tr>
<tr>
<td>23</td>
<td>11:16</td>
<td>1.5</td>
<td>55</td>
<td>13.42</td>
<td>0.02</td>
</tr>
<tr>
<td>24</td>
<td>11:20</td>
<td>2.0</td>
<td>74</td>
<td>17.93</td>
<td>0.04</td>
</tr>
<tr>
<td>25</td>
<td>11:23</td>
<td>2.5</td>
<td>92</td>
<td>22.06</td>
<td>0.03</td>
</tr>
<tr>
<td>26</td>
<td>11:26</td>
<td>3.0</td>
<td>110</td>
<td>26.47</td>
<td>-0.04</td>
</tr>
<tr>
<td>27</td>
<td>11:30</td>
<td>3.5</td>
<td>129</td>
<td>30.52</td>
<td>0.08</td>
</tr>
<tr>
<td>28</td>
<td>11:33</td>
<td>4.0</td>
<td>147</td>
<td>34.82</td>
<td>0.3</td>
</tr>
<tr>
<td>29</td>
<td>11:37</td>
<td>4.5</td>
<td>166</td>
<td>39.05</td>
<td>0.58</td>
</tr>
<tr>
<td>30</td>
<td>11:41</td>
<td>5.0</td>
<td>184</td>
<td>43.62</td>
<td>1.17</td>
</tr>
<tr>
<td>31</td>
<td>11:44</td>
<td>5.5</td>
<td>202</td>
<td>46.46</td>
<td>1.04</td>
</tr>
<tr>
<td>32</td>
<td>11:47</td>
<td>6.0</td>
<td>221</td>
<td>48.32</td>
<td>1.04</td>
</tr>
<tr>
<td>33</td>
<td>11:50</td>
<td>6.5</td>
<td>239</td>
<td>51.31</td>
<td>-1.9</td>
</tr>
<tr>
<td>34</td>
<td>11:54</td>
<td>7.0</td>
<td>258</td>
<td>52.31</td>
<td>-1.71</td>
</tr>
<tr>
<td>35</td>
<td>11:59</td>
<td>7.5</td>
<td>270</td>
<td>53.16</td>
<td>-5.96</td>
</tr>
</tbody>
</table>

1. Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5 * δ₀.₃ g, overall or 270 degrees is utilized, whichever is greater provided the calculated magnitude of 6.5 * δ₀.₃ g, overall is less than or equal to 300 degrees. If 6.5 * δ₀.₃ g, overall is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5 * δ₀.₃ g, overall without exceeding the 270 degree steering wheel angle.

Tire conditioning completed [] Yes [] No
ESC system is enabled [] Yes [] No
On track calibration checks have been completed [] Yes [] No
On track static data file for each sensor obtained [] Yes [] No

Selected Drive Configuration: **FWD**
Selected Mode: **Standard “ESP ON”**

Overall steering wheel angle (δ₀.₃ g, overall) **36.8** degrees
LATERAL STABILITY TEST SERIES NO. 2 – Clockwise Initial Steer Direction

Maneuver #	Clock Time	Commanded Steering Wheel Angle¹	Yaw Rates (degrees/sec)	YRR at 1.0 sec after COS [< 35%]	YRR at 1.75 sec after COS [< 20%]		Pass/Fail	%	Pass/Fail	%
------------	------------	----------------------------------	-------------------------	----------------------------------	-----------------------------------					
36	12:04	1.5	-13.86 -0.08 0.02	0.56 Pass	-0.13 Pass					
37	12:09	2.0	-18.53 -0.18 -0.17	0.97 Pass	0.91 Pass					
38	12:13	2.5	-22.89 -0.28 0.02	1.21 Pass	-0.08 Pass					
39	12:16	3.0	-27.09 -0.16 0.01	0.58 Pass	-0.05 Pass					
40	12:19	3.5	-30.92 -0.32 -0.14	1.05 Pass	0.46 Pass					
41	12:22	4.0	-35.07 -0.42 -0.04	1.21 Pass	0.13 Pass					
42	12:25	4.5	-39.62 -0.76 0.00	1.92 Pass	0.01 Pass					
43	12:29	5.0	-43.52 -1.00 -0.16	2.31 Pass	0.38 Pass					
44	12:32	5.5	-47.29 -0.69 -0.15	1.47 Pass	0.31 Pass					
45	12:35	6.0	-49.67 -0.34 -0.06	0.69 Pass	0.12 Pass					
46	12:39	6.5	-51.32 1.72 -0.07	-3.35 Pass	0.13 Pass					
47	12:43	7.0	-52.96 5.54 0.27	-10.46 Pass	-0.51 Pass					
48	12:46	7.5	-53.92 4.13 0.11	-7.66 Pass	-0.20 Pass					

1. Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5°δ0.3 g, overall or 270 degrees is utilized, whichever is greater provided the calculated 6.5°δ0.3 g, overall is less than or equal to 300 degrees. If 6.5°δ0.3 g, overall is less than 270 degrees, maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5°δ0.3 g, overall without exceeding the 270 degree steering wheel angle.

During execution of the Sine with Dwell maneuvers were any of the following events observed?

- Rim-to-pavement contact: [] Yes [x] No
- Tire debeding: [] Yes [x] No
- Loss of pavement contact of vehicle tires: [] Yes [x] No
- Did the test driver experience any vehicle loss of control or spinout?: [] Yes [x] No

If “Yes” explain the event and consult with the COTR.
Responsiveness – Lateral Displacement

<table>
<thead>
<tr>
<th>Maneuver #</th>
<th>Initial Steer Direction</th>
<th>Commanded Steering Wheel Angle $(5.0 \times \delta_{0.3_g \text{, overall}}$ or greater)</th>
<th>Calculated Lateral Displacement¹</th>
<th>Distance (m)</th>
<th>Pass/Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Scalar Angle $\delta_{0.3_g}$ (degrees)</td>
<td>Distance (m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Counter Clockwise</td>
<td>5.0</td>
<td>184</td>
<td>-2.6</td>
<td>PASS</td>
</tr>
<tr>
<td>31</td>
<td>Counter Clockwise</td>
<td>5.5</td>
<td>202</td>
<td>-2.7</td>
<td>PASS</td>
</tr>
<tr>
<td>32</td>
<td>Counter Clockwise</td>
<td>6.0</td>
<td>221</td>
<td>-2.7</td>
<td>PASS</td>
</tr>
<tr>
<td>33</td>
<td>Counter Clockwise</td>
<td>6.5</td>
<td>239</td>
<td>-2.7</td>
<td>PASS</td>
</tr>
<tr>
<td>34</td>
<td>Counter Clockwise</td>
<td>7.0</td>
<td>258</td>
<td>-2.8</td>
<td>PASS</td>
</tr>
<tr>
<td>35</td>
<td>Counter Clockwise</td>
<td>-</td>
<td>270</td>
<td>-2.8</td>
<td>PASS</td>
</tr>
<tr>
<td>43</td>
<td>Clockwise</td>
<td>5.0</td>
<td>184</td>
<td>2.5</td>
<td>PASS</td>
</tr>
<tr>
<td>44</td>
<td>Clockwise</td>
<td>5.5</td>
<td>202</td>
<td>2.6</td>
<td>PASS</td>
</tr>
<tr>
<td>45</td>
<td>Clockwise</td>
<td>6.0</td>
<td>221</td>
<td>2.6</td>
<td>PASS</td>
</tr>
<tr>
<td>46</td>
<td>Clockwise</td>
<td>6.5</td>
<td>239</td>
<td>2.7</td>
<td>PASS</td>
</tr>
<tr>
<td>47</td>
<td>Clockwise</td>
<td>7.0</td>
<td>258</td>
<td>2.7</td>
<td>PASS</td>
</tr>
<tr>
<td>48</td>
<td>Clockwise</td>
<td>-</td>
<td>270</td>
<td>2.8</td>
<td>PASS</td>
</tr>
</tbody>
</table>

1. Lateral displacement should be $\geq 1.83 \text{ m (6 ft)}$ for vehicle with a GVWR of 3,500 kg (7,716 lb) or less; and $\geq 1.52 \text{ m (5 ft)}$ for vehicles with GVWR greater than 3,500 kg (7,716 lb).

DATA INDICATES COMPLIANCE:

☑ PASS ☐ FAIL

Remarks:

RECORDED BY: Brian Kebschull **DATE RECORDED:** 5/27/2010

APPROVED BY: J Lenkeit **DATE APPROVED:** 6/7/2010
3.0 TEST DATA (CONTD)

Data Sheet 9 (Page 1 of 2)
MALFUNCTION WARNING TESTS

Vehicle: 2010 Chrysler Town and Country MPV
NHTSA No. CA0305 Data Sheet Completion Date: 5/27/2010

TEST 1

MALFUNCTION SIMULATION: Describe method of malfunction simulation

Disconnected rear wheel speed sensor.

MALFUNCTION TELTALTE ILLUMINATION:
Telltales illuminate and remains illuminated after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time for telltale to illuminate after ignition system is activated and vehicle speed of 48 ± 8 km/h (30 ± 5mph) is reached.

0 Seconds (must be within 2 minutes) Yes Fail

ESC SYSTEM RESTORATION
Telltales extinguishes after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time for telltale to extinguish after ignition system is activated and vehicle speed of 48 ± 8 km/h (30 ± 5mph) is reached.

0 Seconds (must be within 2 minutes) Pass Fail

TEST 1 DATA INDICATES COMPLIANCE: PASS

Remarks: After the malfunction was caused, telltales illuminated immediately upon vehicle ignition. Telltales included sliding car symbol, "ESP BAS", and ABS. After the system was restored, the telltales did not extinguish immediately, but rather after the vehicle had been driven a short distance (less than 30m) at a vehicle speed under 48 km/h.

RECORDED BY: Brian Kebschull DATE RECORDED: 5/27/2010
APPROVED BY: J Lenkeit DATE APPROVED 6/10/2010
3.0 TEST DATA (CONTD)

Data Sheet 9 (Page 2 of 2)
MALFUNCTION WARNING TESTS

Vehicle: 2010 Chrysler Town and Country MPV
NHTSA No. CA0305 Data Sheet Completion Date: 5/27/2010

TEST 2

MALFUNCTION SIMULATION: Describe method of malfunction simulation

Disconnected inertial sensor package.

MALFUNCTION TELLTALE ILLUMINATION:
Telltales illuminate and remain illuminated after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

X Yes No

Time for telltales to illuminate after ignition system is activated and vehicle speed of 48 ± 8 km/h (30 ± 5mph) is reached.

0 Seconds (must be within 2 minutes) X Pass Fail

ESC SYSTEM RESTORATION
Telltales extinguish after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

X Yes No

Time for telltales to extinguish after ignition system is activated and vehicle speed of 48 ± 8 km/h (30 ± 5mph) is reached.

0 Seconds (must be within 2 minutes) X Pass Fail

TEST 2 DATA INDICATES COMPLIANCE: PASS

Remarks: After the malfunction was caused, telltales illuminated immediately upon vehicle ignition. Telltales included sliding car symbol and "ESP BAS". After the system was restored, the telltales extinguished immediately upon vehicle ignition. No driving was required.

RECORDED BY: Brian Kebschull DATE RECORDED: 5/27/2010
APPROVED BY: J Lenkeit DATE APPROVED 6/10/2010
4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION (1 OF 2)

TABLE 1. TEST INSTRUMENTATION

<table>
<thead>
<tr>
<th>Type</th>
<th>Output</th>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Specifics</th>
<th>Serial Number</th>
<th>Calibration</th>
</tr>
</thead>
</table>
| Tire Pressure Gauge | Vehicle Tire Pressure | 0-100 psi 0-690 kPa | 1 psi 6.89 kPa | 0.5 psi 3.45 kPa | Ashcroft D1005PS | 1039350 | By: DRI
 | Date: 2/25/10
 | Due: 2/25/11 |
| Platform Scales | Vehicle Total, Wheel, and Axle Load | 8000 lb 35.6 kN | 0.5 lb 2.2 N | ± 1.0% of applied load | Intercomp Model SWII | 24032361 | By: American Scale
 | Date: 2/25/10
 | Due: 2/25/11 |
| Automated Steering Machine with Steering Angle Encoder | Handwheel Angle | ± 800 deg | 0.25 deg | ± 0.25 deg | Heitz Automotive Testing Model: Sprint 3 | 60304 | By: DRI
 | Date: 2/25/10
 | Due: 2/25/11 |
| Multi-Axis Inertial Sensing System | Longitudinal, Lateral, and Vertical Acceleration Roll, Yaw, and Pitch Rate | Accelerometers: 62 g Angular Rate Sensors: ± 100 deg/s | Accelerometers: 10 ug Angular Rate Sensors: ±0.004 deg/s | Accelerometers: ±0.05% of full range Angular Rate Sensors: 0.05% of full range | BEI Technologies Model: MotionPAK MP-1 | 0767 | By: Systron Donner
 | Date: 11/23/09
 | Due: 11/23/10 |
| Radar Speed Sensor and Dashboard Display | Vehicle Speed | 0-125 mph 0-200 km/h | 0.009 mph 0.14 km/h | ± 0.25% of full scale | A-DAT Corp. Radar Model: DRS-6 Display Model: RD-2 | 1400.604 | By: DRI
 | Date: 3/2/10
 | Due: 3/2/11 |
| Ultrasonic Distance Measuring System | Left and Right Side Vehicle Height | 5-24 inches 127-610 mm | 0.01 inches 0.254 mm | ± 0.25% of maximum distance | Massa Products Corporation Model: M-5000/220 | DOT-NHTSA D2646 | By: DRI
 | Date: 2/26/10
 | Due: 2/26/11 |
| | | | | | DOT-NHTSA D3272 | By: DRI
 | Date: 2/26/10
 | Due: 2/26/11 |
4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION (2 OF 2)

TABLE 1. TEST INSTRUMENTATION (CONTD)

<table>
<thead>
<tr>
<th>Type</th>
<th>Output</th>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Specifics</th>
<th>Serial Number</th>
<th>Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Acquisition System [Includes amplification, anti-aliasing, and analog to digital conversion.]</td>
<td>Record Time; Velocity; Distance; Lateral, Longitudinal, and Vertical Accelerations; Roll, Yaw, and Pitch Rates; Steering Wheel Angle.</td>
<td>Sufficient to meet or exceed individual sensors</td>
<td>200 Hz</td>
<td>Sufficient to meet or exceed individual sensors</td>
<td>SoMat eDaq ECPU processor</td>
<td>MSHLB.03-2476</td>
<td>By: DRI Date: 2/9/10 Due: 2/9/11</td>
</tr>
<tr>
<td>Load Cell</td>
<td>Vehicle Brake Pedal Force</td>
<td>0-300 lb 0-1.33 kN</td>
<td>1 lb 4.44 N</td>
<td>±0.05% of full scale</td>
<td>Lebow 3663-300</td>
<td>767</td>
<td>Operationally verified by DRI prior to test</td>
</tr>
<tr>
<td>Coordinate Measurement Machine</td>
<td>Inertial Sensing System Coordinates</td>
<td>0-8 ft 0-2.4 m</td>
<td>±.0020 in. ±.051 mm</td>
<td>±.0020 in. ±.051 mm (Single point articulation accuracy)</td>
<td>Faro Arm Fusion</td>
<td>UO8-05-08-06636</td>
<td>By: Faro Date: 8/18/09 Due: 8/18/10</td>
</tr>
<tr>
<td>Outriggers</td>
<td>No output. Safety Item.</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>DRI manufactured Aluminum meeting the weight and MOI specifications of Docket 2007-27662-11</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
Figure 5.1. Front View of Test Vehicle

2010 Chrysler Town and Country
FMVSS No. 126
NHTSA NO.: CA0305
5.0 PHOTOGRAPHS (2 of 14)

Figure 5.2. Rear View of Test Vehicle

2010 Chrysler Town and Country
FMVSS No. 126
NHTSA NO.: CA0305
Figure 5.3. Vehicle Certification Label
5.0 PHOTOGRAPHS (4 of 14)

Figure 5.4. Vehicle Placard

<table>
<thead>
<tr>
<th>TIRE</th>
<th>FRONT</th>
<th>REAR</th>
<th>SPARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGINAL TIRE SIZE</td>
<td>225/65R16</td>
<td>225/65R16</td>
<td>T145/90D16</td>
</tr>
<tr>
<td>COLD TIRE INFLATION PRESSURE</td>
<td>250 kPa / 36 PSI</td>
<td>250 kPa / 36 PSI</td>
<td>420 kPa / 60 PSI</td>
</tr>
</tbody>
</table>

2010 Chrysler Town and Country
FMVSS No. 126
NHTSA NO.: CA0305
5.0 PHOTOGRAPHS (5 of 14)

Figure 5.5. Window Sticker (Monroney Label)
Figure 5.6. Telltale for ESC Malfunction and ESC Off
Figure 5.7. ESC Off Control Switch
Figure 5.8. Front View of Vehicle As-Tested

2010 Chrysler Town and Country
FMVSS No. 126
NHTSA NO.: CA0305
Figure 5.9. Rear View of Vehicle As-Tested
Figure 5.10. Ultrasonic Height Sensor Mounted on Left Side of Vehicle for Determining Body Roll Angle
Figure 5.11. Rear Outrigger, Mount and Speed Sensor
Figure 5.12. Steering Controller and Data Acquisition Computer

2010 Chrysler Town and Country
FMVSS No. 126
NHTSA NO.: CA0305
Figure 5.13. Inertial Measurement Unit Mounted in Vehicle
Figure 5.14. Brake Pedal Load Cell
Figure 6.1. Steering Wheel Angle, Yaw Rate and Lateral Displacement for L-R Series
Figure 6.2. Steering Wheel Angle, Yaw Rate and Lateral Displacement for R-L Series
Figure 6.3. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for L-R Series
Figure 6.4. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for R-L Series
7.0 OTHER DOCUMENTATION

7.1 OWNER’S MANUAL PAGES
7.2 VEHICLE ARRIVAL CONDITION REPORT
7.3 VEHICLE COMPLETION CONDITION REPORT
7.4 SINE WITH DWELL TEST RESULTS
7.5 SLOWLY INCREASING STEER TEST RESULTS
7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES
10. Electronic Stability Program (ESP) Indicator Light / Brake Assist System (BAS) Warning Light

The malfunction light for the Electronic Stability Program (ESP) is combined with Brake Assist System (BAS). The yellow “ESP/BAS Warning Light” comes on when the ignition switch is turned to the “ON” position. They should go out with the engine running. If the “ESP/BAS Warning Light” comes on continuously with the engine running, a malfunction has been detected in either the ESP or the BAS system. If this light remains on after several ignition cycles, and the vehicle has been driven several miles (kilometers) at speeds greater than 30 mph (48 km/h), see an authorized dealer as soon as possible.

11. Brake Warning Light

This light monitors various brake functions, including brake fluid level and parking brake application. If the brake light turns on, it may indicate that the parking brake is applied, that the brake fluid level is low, or that there is a problem with the anti-lock brake system reservoir.
If the light remains on when the parking brake has been disengaged, and the fluid level is at the full mark on the master cylinder reservoir, it indicates a possible brake hydraulic system malfunction or that a problem with the Brake Booster has been detected by the Anti-Lock Brake System (ABS) / Electronic Stability Program (ESP) system. In this case, the light will remain on until the condition has been corrected. If the problem is related to the brake booster, the ABS pump will run when applying the brake and a brake pedal pulsation may be felt during each stop.

The dual brake system provides a reserve braking capacity in the event of a failure to a portion of the hydraulic system. A leak in either half of the dual brake system is indicated by the Brake Warning Light, which will turn on when the brake fluid level in the master cylinder has dropped below a specified level.

The light will remain on until the cause is corrected.

NOTE: The light may flash momentarily during sharp cornering maneuvers, which change fluid level conditions. The vehicle should have service performed, and the brake fluid level checked.

If brake failure is indicated, immediate repair is necessary.

WARNING!

Driving a vehicle with the red brake light on is dangerous. Part of the brake system may have failed. It will take longer to stop the vehicle. You could have an accident. Have the vehicle checked immediately.

Vehicles equipped with the Anti-Lock Brake System (ABS), are also equipped with Electronic Brake Force Distribution (EBD). In the event of an EBD failure, the Brake Warning Light will turn on along with the ABS Light. Immediate repair to the ABS system is required.
14. Electronic Stability Program (ESP) Indicator Light / Traction Control System (TCS) Indicator Light

If this indicator light flashes during acceleration, apply as little throttle as possible. While driving, ease up on the accelerator. Adapt your speed and driving to the prevailing road conditions, and do not switch off the Electronic Stability Program (ESP), or Traction Control System (TCS).

15. Tachometer

The red segments indicate the maximum permissible engine revolutions per minute (RPM x 1000) for each gear range. Before reaching the red area, ease up on the accelerator.

16. High Beam Indicator

This indicator shows that the high beam headlights are on. Push the multifunction lever forward to switch the headlights to high beam, and pull toward yourself (normal position) to return to low beam.

17. Front Fog Light Indicator — If Equipped

This indicator will illuminate when the front fog lights are on.

18. Seat Belt Reminder Light

When the ignition switch is first turned ON, this light will turn on for five to eight seconds as a bulb check. During the bulb check, if the driver’s seat belt is unbuckled, a chime will sound. After the bulb check or when driving, if the driver’s seat belt remains unbuckled, the Seat Belt Reminder Light will illuminate and the chime will sound. Refer to “Occupant Restraints” in “Things To Know Before Starting Your Vehicle” for further information.

19. Malfunction Indicator Light (MIL)

The Malfunction Indicator Light (MIL) is part of an onboard diagnostic system, called OBD, that monitors engine and automatic transmission control systems. The light will illuminate when the key is in
Anti-Lock Brake Warning Light
The “Anti-Lock Brake Warning Light” monitors the anti-lock brake system. The light will come on when the ignition switch is turned to the ON position and may stay on for as long as four seconds.

If the “Anti-Lock Brake Warning Light” remains on or comes on while driving, it indicates that the anti-lock portion of the brake system is not functioning and that service is required. However, the conventional brake system will continue to operate normally if the “Brake Warning Light” is not on.

If the “Anti-Lock Brake Warning Light” is on, the brake system should be serviced as soon as possible to restore the benefits of anti-lock brakes. If the “Anti-Lock Brake Warning Light” does not come on when the ignition switch is turned to the ON position, have the bulb repaired as soon as possible.

If both the “Brake Warning Light” and the “Anti-Lock Brake Warning Light” remain on, the ABS and Electronic Brake Force Distribution (EBD) systems are not functioning. Immediate repair to the ABS system is required. Consult with your authorized dealer service center as soon as possible.

ELECTRONIC BRAKE CONTROL SYSTEM
Your vehicle is equipped with an advanced electronic brake control system that includes the Traction Control System (TCS), Brake Assist System (BAS) and Electronic Stability Program (ESP). These systems complement the Anti-Lock Brake System (ABS) by optimizing the vehicle braking capability during emergency braking maneuvers.

Traction Control System (TCS)
The Traction Control System (TCS) monitors the amount of wheel spin of each of the driven wheels. If wheel spin is detected, brake pressure is applied to the slipping
wheel(s) and engine power is reduced, to provide enhanced acceleration and stability. A feature of the TCS functions similarly to a limited-slip differential, and controls the wheel spin across a driven axle. If one wheel on a driven axle is spinning faster than the other, the system will apply the brake of the spinning wheel. This will allow more engine torque to be applied to the wheel that is not spinning. This feature remains active even if the ESP is in the “Partial Off” mode.

The “ESP/TCS Indicator Light” (in the instrument cluster) will start to flash as soon as the tires lose traction and the wheels begin to spin. This indicates that the TCS is active. If the indicator light flashes during acceleration, ease up on the accelerator and apply as little throttle as possible. Be sure to adapt your speed and driving to the prevailing road conditions, and do not switch off the ESP or TCS.

<table>
<thead>
<tr>
<th>WARNING!</th>
</tr>
</thead>
</table>
| • The TCS cannot prevent the natural laws of physics from acting on the vehicle, nor can it increase the traction afforded.
• The TCS cannot prevent accidents, including those resulting from excessive speed in turns, or hydroplaning. Only a safe, attentive, and skillful driver can prevent accidents.
• The capabilities of a TCS-equipped vehicle must never be exploited in a reckless or dangerous manner, which could jeopardize the user’s safety or the safety of others. |
Electronic Stability Program (ESP)
The Electronic Stability Program (ESP) enhances directional control and stability of the vehicle under various driving conditions. ESP corrects for over/under steering of the vehicle by applying the brake of the appropriate wheel to assist in counteracting the over/under steer condition. Engine power may also be reduced to help the vehicle maintain the desired path.

ESP uses sensors in the vehicle to determine the vehicle path intended by the driver and compares it to the actual path of the vehicle. When the actual path does not match the intended path, ESP applies the brake of the appropriate wheel to assist in counteracting the oversteer or understeer condition.

- Oversteer - when the vehicle is turning more than appropriate for the steering wheel position.
- Understeer - when the vehicle is turning less than appropriate for the steering wheel position.

ESP On
This mode is the normal operating mode for ESP on two-wheel drive vehicles. Whenever the vehicle is started, the ESP system will be in this mode. This mode should be used for most driving situations. ESP should only be turned off for specific reasons as noted below.

ESP Partial Off
This mode is entered by momentarily pressing the “ESP OFF” switch (located in the center switch bank, next to the hazard flasher switch).

ESP OFF
When in the “Partial Off” mode, the TCS portion of ESP, except for the “limited slip” feature described in the TCS section, has been disabled and the “ESP/TCS Indicator Light” will be illuminated. When in the “Partial Off” mode, ESP will operate without engine torque management. This mode is intended to be used if the vehicle is in deep snow, sand or gravel conditions and more wheel spin
than ESP would normally allow is required to gain traction. To turn ESP on again, momentarily press the “ESP OFF” switch. This will restore the normal “ESP On” mode of operation.

NOTE: To improve the vehicle’s traction when driving with snow chains, or starting off in deep snow, sand or gravel, it may be desirable to switch to the “Partial Off” mode by pressing the “ESP OFF” switch. Once the situation requiring ESP to be switched to the “Partial Off” mode is overcome, turn ESP back on by momentarily pressing the “ESP OFF” switch. This may be done while the vehicle is in motion.

ESP/BAS Warning Light

The malfunction indicator light for the ESP is combined with BAS. The “ESP/BAS Warning Light” and the “ESP/TCS Indicator Light” (in the instrument cluster) come on for four seconds when the ignition switch is turned to the ON position, then goes out. If the “ESP/BAS Warning Light” comes on continuously with the engine running, a malfunction has been detected in either the ESP or the BAS system. If this light remains on after several ignition cycles, and the vehicle has been driven several miles/kilometers at speeds greater than 30 mph (48 km/h), see your authorized dealer as soon as possible to have the problem diagnosed and corrected.

NOTE:
- The “ESP/TCS Indicator Light” and the “ESP/BAS Warning Light” come on momentarily, each time the ignition switch is turned ON.
- Each time the ignition is turned ON, the ESP System will be ON, even if it was turned off previously.
- The ESP Control System will make buzzing or clicking sounds when it is active. This is normal. The sounds will stop when ESP becomes inactive, following the maneuver that caused the ESP activation.
FREEING A STUCK VEHICLE
If your vehicle becomes stuck in mud, sand or snow, it can often be moved by a rocking motion. Turn your steering wheel right and left to clear the area around the front wheels. Then move the shift lever back and forth between REVERSE and DRIVE. Using minimal accelerator pedal pressure to maintain the rocking motion, without spinning the wheels, is most effective.

CAUTION!
- When “rocking” a stuck vehicle by moving between 1st and REVERSE, do not spin the wheels faster than 15 mph (24 km/h), or drivetrain damage may result.

CAUTION! (Continued)
- Revving the engine or spinning the wheels too fast may lead to transmission overheating and failure. It can also damage the tires. Do not spin the wheels above 30 mph (48 km/h) while in gear (no transmission shifting occurring).

NOTE: To improve the vehicle’s traction when starting off in deep snow, sand or gravel, it may be desirable to switch the Electronic Stability Program (ESP) to “Partial Off” mode. Refer to “Electronic Brake Control System” in “Starting and Operating” for further information.
7.2 VEHICLE ARRIVAL CONDITION REPORT

CONTRACT NO.: DTNH22-08-D-00098
DATE: __________

From: Automotive Allies
Purpose: Initial Receipt
Received via Transfer

To: Dynamic Research, Inc
Present Vehicle Condition

Vehicle VIN: 2A4RR4DE5AR240558 NHTSA NO.: CA0305
Model Year: 2010 Odometer Reading: 6 Miles
Make Chrysler Body Style: MPV
Model: Town and Country Body Color: White
Manufacture Date: 2/10 Dealer: Automotive Allies
GVWR (kg/lb) 2745/6050 Price: Leased

☒ All options listed on the "Window Sticker" are present on the test vehicle
☒ Tires and wheel rims are new and the same as listed
☒ There are no dents or other interior or exterior flaws
☒ The vehicle has been properly prepared and is in running condition
☒ The glove box contains an owner’s manual, warranty document, consumer information, and extra set of keys
☒ Proper fuel filler cap is supplied on the test vehicle
☒ Place vehicle in storage area
☒ Inspect the vehicle’s interior and exterior, including all windows, seats, doors, etc., to confirm that each system is complete and functional per the manufacturer’s specifications. Any damage, misadjustment, or other unusual condition that could influence the test program or test results shall be recorded. Report any abnormal condition to the NHTSA COTR before beginning any test.

NOTES:

RECORDED BY: J Lenkeit DATE RECORDED: 4/30/2010
APPROVED BY: P Broen DATE APPROVED: 4/30/2010
7.3 VEHICLE COMPLETION CONDITION REPORT

CONTRACT NO.: DTNH22-08-D-00098
DATE: 6/10/2010

Vehicle VIN: 2A4RR4DE5AR240558 NHTSA NO.: CA0305
Model Year: 2010 Odometer Reading: 68 Miles
Make: Chrysler Body Style: MPV
Model: Town and Country Body Color: White
Manufacture Date: 2/10 Dealer: Automotive Allies
GVWR (kg/lb) 2745 (6050) Price: Leased

LIST OF FMVSS TESTS PERFORMED BY THIS LAB: 126

☒ THERE ARE NO DENTS OR OTHER INTERIOR OR EXTERIOR FLAWS

☒ THE VEHICLE HAS BEEN PROPERLY MAINTAINED AND IS IN RUNNING CONDITION

☒ THE GLOVE BOX CONTAINS AN OWNER’S MANUAL, WARRANTY DOCUMENT, CONSUMER INFORMATION, AND EXTRA SET OF KEYS

☒ PROPER FUEL FILLER CAP IS SUPPLIED ON THE TEST VEHICLE

REMARKS:

Equipment that is no longer on the test vehicle as noted on Vehicle Arrival Condition Report:

Explanation for equipment removal:

Test Vehicle Condition: As new

RECORDED BY: J Lenkeit DATE RECORDED: 6/10/2010
APPROVED BY: P Broen DATE APPROVED: 6/10/2010
Lateral Stability Test Series No. 1 – Counterclockwise Initial Steer Direction

<table>
<thead>
<tr>
<th>File</th>
<th>SWA Peak @ 5deg Ct</th>
<th>MES</th>
<th>Time @ 5deg</th>
<th>COS</th>
<th>Time @ COS</th>
<th>MOS</th>
<th>Time @ MOS</th>
<th>YRR1</th>
<th>YR1</th>
<th>YRR 175</th>
<th>YRR1 17 5 Ct</th>
<th>2nd Yaw Peak</th>
<th>2nd Yaw Peak Ct</th>
<th>Lat Disp</th>
<th>Lat. Acc. 1.07 s</th>
<th>1st SWA Peak</th>
<th>1st SWA Peak Ct</th>
<th>2nd SWA Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(deg)</td>
<td>(mph)</td>
<td>(s)</td>
<td>(%)</td>
<td>(deg/s)</td>
<td>(%)</td>
<td>(deg/s)</td>
<td>(deg)</td>
</tr>
<tr>
<td>23</td>
<td>709</td>
<td>50</td>
<td>3.539</td>
<td>1090</td>
<td>5.443</td>
<td>846</td>
<td>4.225</td>
<td>0.15</td>
<td>0.02</td>
<td>1290</td>
<td>0.29</td>
<td>0.04</td>
<td>1440</td>
<td>13.42</td>
<td>941</td>
<td>-3.86</td>
<td>0.33</td>
<td>55.16</td>
</tr>
<tr>
<td>24</td>
<td>708</td>
<td>50.08</td>
<td>3.533</td>
<td>1090</td>
<td>5.443</td>
<td>846</td>
<td>4.225</td>
<td>0.21</td>
<td>0.04</td>
<td>1290</td>
<td>-0.08</td>
<td>-0.01</td>
<td>1440</td>
<td>17.93</td>
<td>934</td>
<td>-4.97</td>
<td>0.38</td>
<td>74.15</td>
</tr>
<tr>
<td>25</td>
<td>707</td>
<td>50.12</td>
<td>3.53</td>
<td>1090</td>
<td>5.443</td>
<td>846</td>
<td>4.225</td>
<td>0.13</td>
<td>0.03</td>
<td>1290</td>
<td>-0.11</td>
<td>-0.02</td>
<td>1440</td>
<td>22.06</td>
<td>935</td>
<td>-5.98</td>
<td>0.42</td>
<td>92.07</td>
</tr>
<tr>
<td>26</td>
<td>707</td>
<td>50.11</td>
<td>3.527</td>
<td>1090</td>
<td>5.442</td>
<td>846</td>
<td>4.224</td>
<td>-0.16</td>
<td>-0.04</td>
<td>1290</td>
<td>-0.74</td>
<td>-0.19</td>
<td>1440</td>
<td>26.47</td>
<td>932</td>
<td>-6.62</td>
<td>0.45</td>
<td>109.93</td>
</tr>
<tr>
<td>27</td>
<td>707</td>
<td>50.09</td>
<td>3.526</td>
<td>1090</td>
<td>5.443</td>
<td>846</td>
<td>4.225</td>
<td>0.27</td>
<td>0.08</td>
<td>1290</td>
<td>-0.34</td>
<td>-0.1</td>
<td>1440</td>
<td>30.52</td>
<td>930</td>
<td>-7.29</td>
<td>0.46</td>
<td>129.14</td>
</tr>
<tr>
<td>28</td>
<td>706</td>
<td>50.09</td>
<td>3.525</td>
<td>1090</td>
<td>5.443</td>
<td>846</td>
<td>4.225</td>
<td>0.87</td>
<td>0.3</td>
<td>1290</td>
<td>-0.45</td>
<td>-0.16</td>
<td>1440</td>
<td>34.82</td>
<td>931</td>
<td>-7.67</td>
<td>0.47</td>
<td>147.2</td>
</tr>
<tr>
<td>29</td>
<td>706</td>
<td>50.15</td>
<td>3.524</td>
<td>1090</td>
<td>5.442</td>
<td>846</td>
<td>4.225</td>
<td>1.48</td>
<td>0.58</td>
<td>1290</td>
<td>-0.03</td>
<td>-0.01</td>
<td>1440</td>
<td>39.05</td>
<td>933</td>
<td>-8.08</td>
<td>0.47</td>
<td>166.21</td>
</tr>
<tr>
<td>30</td>
<td>706</td>
<td>50.3</td>
<td>3.524</td>
<td>1090</td>
<td>5.441</td>
<td>846</td>
<td>4.225</td>
<td>2.69</td>
<td>1.17</td>
<td>1290</td>
<td>-0.36</td>
<td>-0.16</td>
<td>1440</td>
<td>43.62</td>
<td>937</td>
<td>-8.37</td>
<td>0.48</td>
<td>184.33</td>
</tr>
<tr>
<td>31</td>
<td>706</td>
<td>49.83</td>
<td>3.524</td>
<td>1090</td>
<td>5.441</td>
<td>847</td>
<td>4.226</td>
<td>2.23</td>
<td>1.04</td>
<td>1290</td>
<td>-0.52</td>
<td>-0.24</td>
<td>1440</td>
<td>46.46</td>
<td>938</td>
<td>-8.84</td>
<td>0.47</td>
<td>202.41</td>
</tr>
<tr>
<td>32</td>
<td>706</td>
<td>50.07</td>
<td>3.524</td>
<td>1090</td>
<td>5.441</td>
<td>846</td>
<td>4.225</td>
<td>2.15</td>
<td>1.04</td>
<td>1290</td>
<td>0</td>
<td>0</td>
<td>1440</td>
<td>48.32</td>
<td>937</td>
<td>-8.97</td>
<td>0.48</td>
<td>221.61</td>
</tr>
<tr>
<td>33</td>
<td>706</td>
<td>50.22</td>
<td>3.524</td>
<td>1090</td>
<td>5.442</td>
<td>846</td>
<td>4.225</td>
<td>-3.7</td>
<td>-1.9</td>
<td>1290</td>
<td>-0.13</td>
<td>-0.07</td>
<td>1440</td>
<td>51.31</td>
<td>942</td>
<td>-8.98</td>
<td>0.48</td>
<td>239.53</td>
</tr>
<tr>
<td>34</td>
<td>706</td>
<td>50.09</td>
<td>3.524</td>
<td>1090</td>
<td>5.443</td>
<td>847</td>
<td>4.227</td>
<td>-3.27</td>
<td>-1.71</td>
<td>1290</td>
<td>0.2</td>
<td>0.1</td>
<td>1440</td>
<td>52.31</td>
<td>942</td>
<td>-9.15</td>
<td>0.47</td>
<td>258.58</td>
</tr>
<tr>
<td>35</td>
<td>706</td>
<td>49.81</td>
<td>3.525</td>
<td>1090</td>
<td>5.444</td>
<td>847</td>
<td>4.227</td>
<td>-11.2</td>
<td>-5.96</td>
<td>1290</td>
<td>-0.54</td>
<td>-0.29</td>
<td>1440</td>
<td>53.16</td>
<td>944</td>
<td>-9.21</td>
<td>0.44</td>
<td>270.22</td>
</tr>
</tbody>
</table>
Lateral Stability Test Series No. 2 – Clockwise Initial Steer Direction

| File | SWA @ 5deg Ct | MES | Time @ 5deg | COS | Time @ COS | MO S | Time @ MOS | YRR1 | YR1 | YRR 175 | YRR17 5 Ct | 2nd Yaw Peak | 2nd Yaw Peak Ct | Lat Disp | Lat. Acc. 1.07 s | 1st SWA Peak | 1st SWA Peak Ct | 2nd SWA Mean | (deg) | (mph) | (s) | (s) | (%) | (deg/s) | (%) | (deg/s) | (deg/s) | (sec) | (ft) | (g) | (deg) | (deg) |
|------|----------------|-----|-------------|-----|------------|------|------------|------|-----|---------|------------|----------------|----------------|-----------|-----------------|---------------|-----------------|-----------|-------|-------|-------|-------|--------|------|--------|--------|-------|-----|-----|------|------|
| 36 | 709 | 49.81 | 3.538 | 1090| 5.442 | 846 | 4.225 | 0.56 | -0.08 | 1290 | -0.13 | 0.02 | 1440 | -13.86 | 939 | 3.84 | -0.31 | 55.83 | 775 | 55.49 |
| 37 | 708 | 49.87 | 3.533 | 1090| 5.443 | 846 | 4.225 | 0.97 | -0.18 | 1290 | 0.91 | -0.17 | 1440 | -18.53 | 935 | 4.97 | -0.39 | 74.92 | 775 | 74.65 |
| 38 | 707 | 50.04 | 3.529 | 1090| 5.442 | 846 | 4.225 | 1.21 | -0.28 | 1290 | -0.08 | 0.02 | 1440 | -22.89 | 936 | 5.73 | -0.42 | 92.88 | 775 | 92.31 |
| 39 | 707 | 50.09 | 3.526 | 1090| 5.442 | 846 | 4.225 | 0.58 | -0.16 | 1290 | -0.05 | 0.01 | 1440 | -27.09 | 934 | 6.41 | -0.45 | 110.73 | 775 | 110.23 |
| 40 | 706 | 50.02 | 3.525 | 1090| 5.442 | 846 | 4.225 | 1.05 | -0.32 | 1290 | 0.46 | -0.14 | 1440 | -30.92 | 931 | 7.04 | -0.47 | 129.95 | 775 | 129.35 |
| 41 | 706 | 50.05 | 3.524 | 1090| 5.442 | 846 | 4.225 | 1.21 | -0.42 | 1290 | 0.13 | -0.04 | 1440 | -35.07 | 932 | 7.57 | -0.47 | 148 | 775 | 147.42 |
| 42 | 706 | 49.83 | 3.523 | 1090| 5.441 | 846 | 4.225 | 1.92 | -0.76 | 1290 | 0.01 | 0 | 1440 | -39.62 | 935 | 7.89 | -0.47 | 167.14 | 775 | 166.25 |
| 43 | 706 | 49.92 | 3.523 | 1090| 5.441 | 847 | 4.226 | 2.31 | -1 | 1290 | 0.38 | -0.16 | 1440 | -43.52 | 936 | 8.29 | -0.48 | 185.13 | 775 | 184.32 |
| 44 | 706 | 50.04 | 3.523 | 1089| 5.44 | 846 | 4.225 | 1.47 | -0.69 | 1289 | 0.31 | -0.15 | 1439 | -47.29 | 938 | 8.42 | -0.47 | 203.12 | 775 | 202.21 |
| 45 | 706 | 50.03 | 3.523 | 1089| 5.44 | 847 | 4.226 | 0.69 | -0.34 | 1289 | 0.12 | -0.06 | 1439 | -49.67 | 939 | 8.55 | -0.5 | 222.23 | 775 | 221.36 |
| 46 | 706 | 49.96 | 3.523 | 1090| 5.443 | 846 | 4.225 | -3.35 | 1.72 | 1290 | 0.13 | -0.07 | 1440 | -51.32 | 942 | 8.79 | -0.48 | 240.02 | 775 | 239.43 |
| 47 | 706 | 50.07 | 3.524 | 1090| 5.443 | 847 | 4.226 | -10.46 | 5.54 | 1290 | -0.51 | 0.27 | 1440 | -52.96 | 942 | 8.89 | -0.48 | 258.97 | 775 | 258.39 |
| 48 | 706 | 50.02 | 3.524 | 1090| 5.445 | 847 | 4.228 | -7.66 | 4.13 | 1290 | -0.2 | 0.11 | 1440 | -53.92 | 945 | 9.1 | -0.44 | 270.7 | 775 | 270.22 |
7.5 SLOWLY INCREASING STEER TEST RESULTS

2010 Chrysler Town and Country MPV

NHTSA No.: **CA0305**

Date of Test: **5/27/2010**

Date Created: **5/27/2010**

<table>
<thead>
<tr>
<th>File</th>
<th>EventPt</th>
<th>DOS</th>
<th>MES</th>
<th>Mean SPD</th>
<th>AYcount_3</th>
<th>THETAENCF_3</th>
<th>AYCG_CD2_3</th>
<th>r_squared</th>
<th>ZeroBegin</th>
<th>ZeroEnd</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>700</td>
<td>1</td>
<td>50.4</td>
<td>50.4</td>
<td>1250</td>
<td>-36.9</td>
<td>-0.31</td>
<td>1.00</td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td>12</td>
<td>700</td>
<td>1</td>
<td>50.5</td>
<td>50.4</td>
<td>1241</td>
<td>-36.1</td>
<td>-0.30</td>
<td>0.99</td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td>13</td>
<td>700</td>
<td>1</td>
<td>50.6</td>
<td>50.5</td>
<td>1249</td>
<td>-36.7</td>
<td>-0.29</td>
<td>0.99</td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td>14</td>
<td>692</td>
<td>0</td>
<td>50.3</td>
<td>50.5</td>
<td>1243</td>
<td>36.4</td>
<td>0.30</td>
<td>1.00</td>
<td>492</td>
<td>692</td>
</tr>
<tr>
<td>15</td>
<td>717</td>
<td>0</td>
<td>50.5</td>
<td>50.5</td>
<td>1257</td>
<td>37.4</td>
<td>0.30</td>
<td>0.99</td>
<td>517</td>
<td>717</td>
</tr>
<tr>
<td>16</td>
<td>700</td>
<td>0</td>
<td>50.5</td>
<td>50.5</td>
<td>1259</td>
<td>37.5</td>
<td>0.31</td>
<td>1.00</td>
<td>500</td>
<td>700</td>
</tr>
</tbody>
</table>

Averages

<table>
<thead>
<tr>
<th>Scalars</th>
<th>Steering Angles (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>55</td>
</tr>
<tr>
<td>2.0</td>
<td>74</td>
</tr>
<tr>
<td>2.5</td>
<td>92</td>
</tr>
<tr>
<td>3.0</td>
<td>110</td>
</tr>
<tr>
<td>3.5</td>
<td>129</td>
</tr>
<tr>
<td>4.0</td>
<td>147</td>
</tr>
<tr>
<td>4.5</td>
<td>166</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scalars</th>
<th>Steering Angles (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>184</td>
</tr>
<tr>
<td>5.5</td>
<td>202</td>
</tr>
<tr>
<td>6.0</td>
<td>221</td>
</tr>
<tr>
<td>6.5</td>
<td>239</td>
</tr>
<tr>
<td>7.0</td>
<td>258</td>
</tr>
<tr>
<td>7.3</td>
<td>270</td>
</tr>
</tbody>
</table>
7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES

Vehicle: 2010 Chrysler Town and Country MPV
Wheelbase: 121.2 Inches
Measurement date: 5/18/2010
NHTSA No.: CA0305
Faro Arm S/N: U08-05-08-06636
Certification date: 8/18/2009

CMM Measurements

Coordinate system: SAE (X,Y,Z positive forward, to the right, and downward, respectively)
Origin defined at 48" point on lateral arm of measurement fixture, projected onto the ground plane

<table>
<thead>
<tr>
<th>Ref X</th>
<th>Ref Y</th>
<th>Ref Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_PLANE001_Ground_Plane</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M_Line_Y_Axis</td>
<td>2.398</td>
<td>14.834</td>
</tr>
<tr>
<td>M_Point_48_Ref</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>M_CIRCLE001_I_Left_Rear_Wheel_Axle</td>
<td>-47.550</td>
<td>10.974</td>
</tr>
<tr>
<td>M_Point_IMU_side</td>
<td>13.760</td>
<td>46.257</td>
</tr>
<tr>
<td>M_Point_ROOF</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Motion Pak reference point taken from mid height of unit left side
Motion Pak Width = 3.05" => 1/2 W = 1.525
Motion_PAK_Location

<table>
<thead>
<tr>
<th>Ref X</th>
<th>Ref Y</th>
<th>Ref Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.760</td>
<td>47.782</td>
<td>-21.091</td>
</tr>
</tbody>
</table>

Measurement Notes:
1. The Faro arm is positioned just to the left of the vehicle, near the rear door.
2. A "centerline jig" is used in the Faro arm measurement. The jig consists of a long beam with a 4 ft lateral arm that is perpendicular to the beam. The jig is placed on the ground underneath the vehicle with the long beam positioned along the centerline of the vehicle, such that the lateral arm extends to the left, slightly forward of the left rear tire. The lateral arm has a marked indentation point which is located 48.00" from the edge of the centerline beam.
3. The Faro arm is used to make the following measurements:
 - Three points on the ground, which establishes the ground plane.
 - Two points along the lateral arm, and projected onto the ground plane. This establishes the y axis.
 - One point at the 48 inch reference point on the lateral arm. This establishes the origin.
 - Three points on the left rear wheel or wheel cover. The Faro arm then computes the center point of the wheel.
 - One point to establish the height of the highest point on the roof of the vehicle.

Coordinate Measurements Calculated for S7D (Matlab Program)

Coordinate system: X,Y,Z positive rearward, to the right, and upward, respectively
Origin defined as follows: X axis: front axle, Y axis: vehicle centerline, Z axis: ground plane

<table>
<thead>
<tr>
<th>Ref X</th>
<th>Ref Y</th>
<th>Ref Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion_PAK_Location in S7D (Matlab program) coordinate system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59.890</td>
<td>-0.218</td>
<td>21.091</td>
</tr>
</tbody>
</table>

Calculation Notes:
1. X axis value is the difference between the wheelbase and the calculated distance from the rear axle centerline to the IMU (the value must be positive and less than the wheelbase).
2. Y axis value is -48.00 (the Y axis offset of the measurement origin in the S7D coordinate system) plus the measured Y axis value (a negative value indicates the IMU is to the left of the vehicle centerline, and a positive value indicates it is to the right)
3. Z axis value is from the ground plane up to the center of the IMU (value must be positive).