SAFETY COMPLIANCE TESTING FOR FMVSS NO. 225
CHILD RESTRAINT ANCHORAGE SYSTEMS LOWER AND TETHER ANCHORAGES

DAIMLER AG STUTTGART
2010 MERCEDES GLK 350, MPV
NHTSA NO. CA0514

GENERAL TESTING LABORATORIES, INC.
1623 LEEDSTOWN ROAD
COLONIAL BEACH, VIRGINIA 22443

July 06, 2010
FINAL REPORT
PREPARED FOR
U. S. DEPARTMENT OF TRANSPORTATION
NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
ENFORCEMENT
OFFICE OF VEHICLE SAFETY COMPLIANCE
1200 NEW JERSEY AVE., SE
WASHINGTON, D.C. 20590
Compliance tests were conducted on the subject, 2010 Mercedes GLK 350 MPV in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP-225-01 for the determination of FMVSS 225 compliance. Test failures identified were as follows:

None

Copies of this report are available from NHTSA Technical Information Services (TIS) Room W45-212 (NPO-411)
1200 New Jersey Ave., S.E.
Washington, DC 20590
Telephone No. (202) 366-4947
<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Purpose of Compliance Test</td>
<td>1</td>
</tr>
<tr>
<td>2 Compliance Test Results</td>
<td>2</td>
</tr>
<tr>
<td>3 Compliance Test Data</td>
<td>3</td>
</tr>
<tr>
<td>4 Test Equipment List</td>
<td>20</td>
</tr>
<tr>
<td>5 Photographs</td>
<td>21</td>
</tr>
<tr>
<td>5.1 Left Side View of Vehicle</td>
<td></td>
</tr>
<tr>
<td>5.2 Right Side View of Vehicle</td>
<td></td>
</tr>
<tr>
<td>5.3 ¾ Frontal View from Left Side of Vehicle</td>
<td></td>
</tr>
<tr>
<td>5.4 ¾ Rear View from Right Side of Vehicle</td>
<td></td>
</tr>
<tr>
<td>5.5 Vehicle Certification Label</td>
<td></td>
</tr>
<tr>
<td>5.6 Vehicle Tire Information Label</td>
<td></td>
</tr>
<tr>
<td>5.7 Visibility of Lower Anchors</td>
<td></td>
</tr>
<tr>
<td>5.8 Lower Anchor Cover with Symbol</td>
<td></td>
</tr>
<tr>
<td>5.9 Measurement of Lower Anchor Symbol</td>
<td></td>
</tr>
<tr>
<td>5.10 Row 2 Seating Positions</td>
<td></td>
</tr>
<tr>
<td>5.11 Row 2, Right Side, Outboard Lower Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.12 Row 2, Right Side, Inboard Lower Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.13 Row 2, Left Side, Outboard Lower Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.14 Row 2, Left Side, Inboard Lower Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.15 Row 2, Right Side, Top Tether Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.16 Row 2, Center, Top Tether Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.17 Row 2, Left Side, Top Tether Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.18 Row 2, Right Side Outboard Z Measurement</td>
<td></td>
</tr>
<tr>
<td>5.19 Row 2, Right Side Inboard Z Measurement</td>
<td></td>
</tr>
<tr>
<td>5.20 Row 2, Right Side, Pitch Measurement</td>
<td></td>
</tr>
<tr>
<td>5.21 Row 2, Right Side with CRF</td>
<td></td>
</tr>
<tr>
<td>5.22 Row 2, Left Side Outboard Z Measurement</td>
<td></td>
</tr>
<tr>
<td>5.23 Row 2, Left Side Inboard Z Measurement</td>
<td></td>
</tr>
<tr>
<td>5.24 Row 2, Left Side, Pitch Measurement</td>
<td></td>
</tr>
<tr>
<td>5.25 Row 2, Left Side with CRF</td>
<td></td>
</tr>
<tr>
<td>5.26 Row 2, Right Side with 2-D Template</td>
<td></td>
</tr>
<tr>
<td>5.27 Row 2, Right Side Top Tether Routing</td>
<td></td>
</tr>
<tr>
<td>5.28 Row 2, Right Side Outboard SRP Measurement</td>
<td></td>
</tr>
<tr>
<td>5.29 Row 2, Right Side, Inboard SRP Measurement</td>
<td></td>
</tr>
<tr>
<td>5.30 Row 2, Left Side with 2-D Template</td>
<td></td>
</tr>
<tr>
<td>5.31 Row 2, Left Side, Top Tether Routing</td>
<td></td>
</tr>
<tr>
<td>5.32 Row 2, Left Side, Outboard SRP Measurement</td>
<td></td>
</tr>
<tr>
<td>5.33 Row 2, Left Side, Inboard SRP Measurement</td>
<td></td>
</tr>
<tr>
<td>5.34 Row 2, Center with 2-D Template</td>
<td></td>
</tr>
<tr>
<td>5.35 Row 2, Center Top Tether Routing</td>
<td></td>
</tr>
<tr>
<td>5.36 ¾ Left Front View of Vehicle in Test Fixture</td>
<td></td>
</tr>
<tr>
<td>5.37 ¾ Right Front View of Vehicle in Test Fixture</td>
<td></td>
</tr>
<tr>
<td>5.38 Vehicle Tie Down</td>
<td></td>
</tr>
<tr>
<td>5.39 Pre-Test Row 2, Left Side, Top Tether Test with SFAD 2</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (continued)

5.40 Pre-Test, Row 2, Left Side, Top Tether Test with SFAD 2
5.41 Post Test, Row 2, Left Side, Top Tether Test with SFAD 2
5.42 Post Test, Row 2, Left Side, Top Tether Test with SFAD 2
5.43 Pre-Test, Row 2, Center, Top Tether Test with SFAD 1
5.44 Pre-Test, Row 2, Center, Top Tether Test with SFAD 1
5.45 Post Test, Row 2, Center, Top Tether Test with SFAD 1
5.46 Post Test, Row 2, Center, Top Tether Test with SFAD 1
5.47 Pre-Test, Row 2, Right Side Lower Anchor Test with SFAD 2
5.48 Post Test, Row 2, Right Side Lower Anchor Test with SFAD 2

Appendix A – Owner’s Manual Child Restraint Information 70
Appendix B – Manufacturer’s Data 75
Appendix C - Plots 85
SECTION 1

PURPOSE OF COMPLIANCE TEST

1.0 PURPOSE OF COMPLIANCE TEST

A 2010 Mercedes GLK 350 MPV was subjected to Federal Motor Vehicle Safety Standard (FMVSS) No. 225 testing to determine if the vehicle was in compliance with the requirements of the standard. The purpose of this standard is to establish requirements for child restraint anchorage systems to ensure their proper location and strength for the effective securing of child restraints, to reduce the likelihood of the anchorage systems’ failure and to increase the likelihood that child restraints are properly secured and thus more fully achieve their potential effectiveness in motor vehicles.

1.1 The test vehicle was a 2010 Mercedes GLK 350 MPV. Nomenclature applicable to the test vehicle are:

A. **Vehicle Identification Number**: WDCGG8HB8AF474687

B. **NHTSA No.**: CA0514

C. **Manufacturer**: DAIMLER AG STUTTGART

D. **Manufacture Date**: 02/10

E. **Color**: Silver

1.2 TEST DATE

The test vehicle was subjected to FMVSS No. 225 testing during the time period April 28 – June 11, 2010.
SECTION 2

COMPLIANCE TEST RESULTS

2.0 TEST RESULTS

All tests were conducted in accordance with NHTSA, Office of Vehicle Safety Compliance (OVSC) Laboratory Procedures, TP-225-01 dated 11 April 2005.

Based on the test performed, the 2010 Mercedes GLK 350 MPV appears to meet the requirements of FMVSS 225 testing.
SECTION 3

COMPLIANCE TEST DATA

3.0 TEST DATA

The following data sheets document the results of testing on the 2010 Mercedes GLK 350 MPV.
DATA SHEET 1
SUMMARY OF RESULTS

VEH. MOD YR/MAKE/MODEL/BODY: 2010 MERCEDES GLK 350 MPV
VEH. NHTSA NO: CA0514; VIN: WDCGG8HB8AF474687
VEH. BUILD DATE: 02/10; TEST DATE: APRIL 28- JUNE 11, 2010
TEST LABORATORY:GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

A. VISUAL INSPECTION OF TEST VEHICLE

Upon receipt for completeness, function, and discrepancies or damage which might influence the testing.

RESULTS: OK FOR TEST

B. REQUIREMENTS FOR CHILD RESTRAINT SYSTEMS AND TETHER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

C. LOCATION OF TETHER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

D. LOWER ANCHORAGE DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
E. CONSPICUITY AND MARKING OF LOWER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

F. STRENGTH OF TETHER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

G. STRENGTH OF LOWER ANCHORAGES (Forward Force)

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

H. STRENGTH OF LOWER ANCHORAGE (Lateral Force)

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

I. OWNER’S MANUAL

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:

NOTE:

RECORDED BY: G. Farrand DATE: 06/11/10
APPROVED BY: D. Messick
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Answer/Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEH. MOD YR/MAKE/MODEL/BODY: 2010 MERCEDES GLK 350 MPV</td>
<td></td>
</tr>
<tr>
<td>VEH. NHTSA NO: CA0514; VIN: WDCGG8HB8AF474687</td>
<td></td>
</tr>
<tr>
<td>VEH. BUILD DATE: 02/10; TEST DATE: APRIL 28, 2010</td>
<td></td>
</tr>
<tr>
<td>TEST LABORATORY: GENERAL TESTING LABORATORIES</td>
<td></td>
</tr>
<tr>
<td>OBSERVERS: GRANT FARRAND, JIMMY LATANE</td>
<td></td>
</tr>
<tr>
<td>Number of rows of seats: 2</td>
<td></td>
</tr>
<tr>
<td>Number of rear, forward-facing designated seating positions: 3</td>
<td></td>
</tr>
<tr>
<td>Number of required CRAS (lower anchorages only, for convertibles/school buses): 2</td>
<td></td>
</tr>
<tr>
<td>Number of required tether anchorages (can be additional CRAS): 3</td>
<td></td>
</tr>
<tr>
<td>Is the vehicle a convertible? NO</td>
<td></td>
</tr>
<tr>
<td>Is the vehicle a school bus? NO</td>
<td></td>
</tr>
<tr>
<td>Does the vehicle have a CRAS (lower anchorage only, for convertibles/school buses) installed at a front passenger seating position? NO</td>
<td></td>
</tr>
<tr>
<td>If NO, skip to next question. If YES, does the vehicle have rear designated seating positions? YES</td>
<td></td>
</tr>
<tr>
<td>If NO, does the vehicle have an air bag on-off switch or a special exemption for no passenger air bag? YES</td>
<td></td>
</tr>
<tr>
<td>If NO = FAIL If YES = PASS</td>
<td></td>
</tr>
<tr>
<td>If Yes, does the vehicle meet the requirements of S4.5.4.1 (b) of S208 and have and air bag on-off switch or a special exemption for no passenger air bag? YES</td>
<td></td>
</tr>
<tr>
<td>Record the distance between the front and rear seat back:</td>
<td></td>
</tr>
<tr>
<td>If Distance <720 mm and vehicle has an air bag on-off switch or special exemption = PASS</td>
<td></td>
</tr>
<tr>
<td>If Distance ≥ 720 mm or no air bag on-off switch or no special exemption = FAIL</td>
<td></td>
</tr>
<tr>
<td>Does the vehicle have rear designated seating position(s) where the lower bars of a CRAS are prevented from being located because of transmission and/or suspension component interference? NO</td>
<td></td>
</tr>
<tr>
<td>If NO, skip to next question. If YES, does the vehicle have a tether anchorage at a front passenger seating position? YES</td>
<td></td>
</tr>
<tr>
<td>Number of provided CRAS (lower anchorage only, for convertibles/school buses), indicate if a built-in child restraint is counted as a CRAS: 2</td>
<td></td>
</tr>
<tr>
<td>Is the number of provided CRAS (lower anchorages only, for convertible/school buses) greater than or equal to the number of required CRAS (lower anchorages only, for convertibles/school buses)? YES</td>
<td></td>
</tr>
<tr>
<td>YES = PASS NO = FAIL (S4.4(a) or (b) or (c))</td>
<td></td>
</tr>
</tbody>
</table>
DATA SHEET 2 CONTINUED

If the vehicle has 3 or more rows of seats is a CRAS (lower anchorage only for convertibles/school buses) provided in the second row: N/A
YES = PASS NO = FAIL (S4.4(a)(1))

Number of provided tether anchorages (can be additional CRAS) indicate if a built-in child restraint is counted as tether anchorage (NOTE: a built-in child restraint can only be counted toward either the required number of CRAS or tether anchorages, not both): 3

Is the number of provided tether anchorages greater than or equal to the number of required tether anchorages? YES
YES = PASS NO = FAIL (S4.4 (a) or (b) or (c))

If the vehicle has 3 or more rear dsps and a non-outboard dsp, is a tether anchorage or CRAS provided at a non-outboard dsp? YES
YES = PASS NO = FAIL (S4.4 (a)(2))

Are all tether and lower anchorages available for use at all times when the seat is configured for passenger use? YES
YES = PASS NO = FAIL (S4.6 (b))

Provide a diagram showing the location of lower anchorages and/or tether anchorages.

X = Top Tether
* = Lower Anchors

RECORDED BY: J. Latane DATE: 04/28/10
APPROVED BY: D. Messick
DATA SHEET 3
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2010 MERCEDES GLK 350 MPV
VEH. NHTSA NO: CA0514; VIN: WDCGG8HB8AF474687
VEH. BUILD DATE: 02/10; TEST DATE: APRIL 28, 2010
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT, RIGHT AND CENTER POSITIONS

Detailed description of the location of the tether anchorage:
RECESSED INTO REAR HAT SHELF CENTER ANCHORAGE OFFSET TO DRIVER’S SIDE FROM CENTERLINE OF VEHICLE.

Based on visual inspection, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone?

If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component?
If YES = FAIL (S6.2.1)
If NO, Is a tether routing device provided?
If YES = PASS
IF NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? YES
If NO, skip to next question
If YES, is it outside of the tether strap wraparound area? YES
YES = PASS NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? YES
YES = PASS NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin?
YES
YES = PASS NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? YES
YES = PASS NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? YES
YES = PASS NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? N/A
DATA SHEET 3 CONTINUED

DESIGNATED SEATING POSITION: ROW 2 LEFT, RIGHT AND CENTER POSITIONS

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension:
N/A (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device:
N/A
Greater than or equal to 65mm = PASS Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device:
N/A
Greater than or equal to 100mm = PASS Less than 100mm = FAIL

COMMENTS:

RECORDED BY: J. Latane
DATE: 04/28/10

APPROVED BY: D. Messick
DATA SHEET 4
LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2010 MERCEDES GLK 350 MPV
VEH. NHTSA NO: CA0514; VIN: WDCGG8HB8AF474687
VEH. BUILD DATE: 02/10; TEST DATE: APRIL 28, 2010
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

Outboard Lower Anchorage bar diameter: 6.02 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: 6.02 mm
6mm ± 0.1mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? YES
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): 31.75 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length of the straight portion of the bar (inboard lower anchorage): 31.5 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length between the anchor bar supports (outboard lower anchorage): 31.5 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

Length between the anchor bar supports (inboard lower anchorage): 31.5 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

CRF Pitch angle: 12.8°
Angle = 15º±10º = PASS Angle≠15º±10º = FAIL (S9.2.1)

CRF Roll angle: 0.0°
Angle = 0º±5º = PASS Angle≠0º±5º = FAIL (S9.2.1)

CRF Yaw angle: 0.0°
Angle = 0º±10º = PASS Angle≠0º±10º = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 28 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: 30 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL
DATA SHEET 4 CONTINUED

DESIGNATED SEATING POSITION: __ROW 2 LEFT SIDE (DSP A)__

Distance between SgRP and the front surface of outboard anchor bar: ____150 mm____

Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: ____150 mm____

Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm? _____NO____

If NO = PASS
If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:

COMMENTS:

RECORDED BY: __J. Latane__ DATE: __04/28/10__

APPROVED BY: __D. Messick__
DATA SHEET 4A
LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2010 MERCEDES GLK 350 MPV
VEH. NHTSA NO: CA0514; VIN: WDCGG8HB8AF474687
VEH. BUILD DATE: 02/10; TEST DATE: APRIL 28, 2010
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Outboard Lower Anchorage bar diameter: 5.99 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: 5.99 mm
6mm ± 0.1mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? YES
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): 31.9 mm
Length ≥25mm = PASS Length <25mm = FAIL (S9.1.1(c) (i))

Length of the straight portion of the bar (inboard lower anchorage): 31.6 mm
Length ≥25mm = PASS Length <25mm = FAIL (S9.1.1(c) (i))

Length between the anchor bar supports (outboard lower anchorage): 31.9 mm
Length ≤60mm = PASS Length >60mm = FAIL (S9.1.1(c) (ii))

Length between the anchor bar supports (inboard lower anchorage): 31.6 mm
Length ≤60mm = PASS Length >60mm = FAIL (S9.1.1(c) (ii))

CRF Pitch angle: 12.8°
Angle = 15°±10° = PASS Angle ≠ 15°±10° = FAIL (S9.2.1)

CRF Roll angle: 0.0°
Angle = 0°±5° = PASS Angle ≠ 0°±5° = FAIL (S9.2.1)

CRF Yaw angle: 0.0°
Angle = 0°±10° = PASS Angle ≠ 0°±10° = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 28 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: 30 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL
DATA SHEET 4A CONTINUED

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Distance between SgRP and the front surface of outboard anchor bar: 150 mm
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: 150 mm
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm?
Yes or No?

If NO = PASS
If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:

COMMENTS:

RECORDED BY: G. Farrand DATE: 04/28/10
APPROVED BY: D. Messick
DATA SHEET 5
CONSPICUITY AND MARKING OF LOWER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2010 MERCEDES GLK 350 MPV
VEH. NHTSA NO: CA0514; VIN: WDCGG8HB8AF474687
VEH. BUILD DATE: 02/10; TEST DATE: APRIL 28, 2010
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT AND RIGHT SIDE (DSP A AND C)

MARKING (Circles)

Diameter of the circle: 15.0 mm
Diameter ≥13mm = PASS Diameter <13mm = FAIL (S9.5(a)(1))

Does the circle have words, symbols or pictograms? PICTOGRAM
NO skip to next question
YES, are the meaning of the words, symbols or pictograms explained in the owner’s manual?
YES
YES = PASS NO = FAIL (S9.5(a)(2))

Where is the circle located? Seat back or seat Cushion: Seat Cushion

For circles on seat backs, vertical distance from the center of the circle to the center of the anchor bar: N/A
Distance between 50&100mm = PASS Other Distance=FAIL (S9.5(a)(3))

For circles on seat cushions, horizontal distance from the center of the circle to the center of the bar: N/A
Distance between 75&125mm= PASS Other Distance=FAIL (S9.5(a)(3))

Lateral distance from the center of the circle to the center of the anchor bar: 0 mm
Distance≤25mm = PASS Distance >25mm = FAIL (S9.5(a)(3))

CONSPICUITY (No Circles)

Is the anchor bar or guide visible when viewed from a point 30° above the horizontal in a vertical longitudinal plane bisecting the anchor bar or guide? N/A
YES = PASS NO = FAIL (S9.5(b))

If there is a guide, is it permanently attached? N/A
YES = PASS NO = FAIL (S9.5(b))
DATA SHEET 5 CONTINUED

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE AND RIGHT SIDE (DSP A & C)

Is there a cap or cover over the anchor bar? YES

If YES, is the cap or cover marked with words, symbols or pictograms? YES

If NO = FAIL (S9.5(b))

If YES, is the meaning of the words, symbols or pictograms explained in the owner's manual?

YES = PASS NO = FAIL (S9.5(b))

If NO, there are no requirements for having a cover.

RECORDED BY: J. Latane DATE: 04/28/10

APPROVED BY: D. Messick
DATA SHEET 6
STRENGTH OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2010 MERCEDES GLK 350 MPV
VEH. NHTSA NO: CA0514; VIN: WDCGG8HB8AF474687
VEH. BUILD DATE: 02/10; TEST DATE: JUNE 10, 2010
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 6665

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)
SFAD: 2
Seat Back Angle: 25°
Location of seat back angle measurement: 2D Template
Head Restraint Position: UP
D-ring Position: N/A

Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: 135 N
Lap belt tension: N/A (SFAD 1 only)
Tether strap tension: 65 N
Angle (measured above the horizontal at 500 N): 10°
Separation of tether anchorage at 500 N: NO
NO = PASS YES = FAIL (S6.3.1)

Force application rate: 577 N/S
Time to reach maximum force (24-30 s): 26 sec.
Maximum force (14,950 N ± 50 N): 14,941 N
Tested simultaneously with another DSP? NO

COMMENTS:

RECORDED BY: G. FARRAND DATE: 06/10/10
APPROVED BY: D. MESSICK
DATA SHEET 6A
STRENGTH OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2010 MERCEDES GLK 350 MPV
VEH. NHTSA NO: CA0514; VIN: WDCGG8HB8AF474687
VEH. BUILD DATE: 02/10; TEST DATE: JUNE 11, 2010
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 6667

DESIGNATED SEATING POSITION: ROW 2 CENTER (DSP B)
SFAD: 1
Seat Back Angle: 25º
Location of seat back angle measurement: 2D Template
Head Restraint Position: UP
D-ring Position: N/A

Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: 135 N
Lap belt tension: 65 N (SFAD 1 only)
Tether strap tension: 65 N

Angle (measured above the horizontal at 500 N): 10º
Separation of tether anchorage at 500 N: NO
NO = PASS YES = FAIL (S6.3.1)

Force application rate: 577 N/S
Time to reach maximum force (24-30 s): 26 sec.

Maximum force (14,950 N ± 50 N): 14,945 N
Tested simultaneously with another DSP? NO

COMMENTS:

RECORDED BY: G. FARRAND DATE: 06/11/10
APPROVED BY: D. MESSICK
DATA SHEET 7
STRENGTH OF LOWER ANCHORAGES (Forward Force)

VEH. MOD YR/MAKE/MODEL/BODY: 2010 MERCEDES GLK 350 MPV
VEH. NHTSA NO: CA0514; VIN: WDCGG8HB8AF474687
VEH. BUILD DATE: 02/10; TEST DATE: JUNE 11, 2010
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 6666

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Seat Back Angle: 25º

Location of seat back angle measurement: 2D Template

Head Restraint Position: N/A

Force at lower front crossmember for SFAD2 while tightening rearward extensions: 135 N

Angle (measured above the horizontal at 500 N): 10º

Force application rate: 423 N/S

Time to reach maximum force (24-30 s): 26 sec.

Maximum force (10,950 N ± 50 N): 10,991 N

Displacement, H1 (at 500 N): 0

Displacement, H2 (at maximum load): 34.2 mm

Displacement of Point X: 34.2 mm (H2-H1)

Displacement > 175 mm = FAIL (S9.4.1(a))

Tested simultaneously with another DSP? NO

Distance between adjacent DSP’s: 330 mm

COMMENTS:

RECORDED BY: G. FARRAND DATE: 06/11/10
APPROVED BY: D. MESSICK
Description of which DSP’s are equipped with tether anchorages and child restraint anchorage systems: __YES__

PASS X FAIL____

Step-by-step instructions for properly attaching a child restraint system’s tether strap to the tether anchorage. Diagrams are required. __YES__

PASS X FAIL____

Description of how to properly use the tether anchorage and lower anchor bars: __YES__

PASS X FAIL____

If the lower anchor bars are marked with a circle, an explanation of what the circle indicates as well as any words or pictograms: __YES__

PASS X FAIL____

COMMENTS:

RECORDED BY: G. Farrand DATE: 06/10/10

APPROVED BY: D. Messick
SECTION 4
INSTRUMENTATION AND EQUIPMENT LIST

TABLE 1 - INSTRUMENTATION & EQUIPMENT LIST

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>DESCRIPTION</th>
<th>MODEL/ SERIAL NO.</th>
<th>CAL. DATE</th>
<th>NEXT CAL. DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER</td>
<td>AT&T</td>
<td>486DX266</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>LOAD CELL</td>
<td>INTERFACE</td>
<td>215709</td>
<td>02/10</td>
<td>02/11</td>
</tr>
<tr>
<td>LINEAR TRANSDUCER</td>
<td>SERVO SYSTEMS</td>
<td>69</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SEAT BELT LOAD CELL</td>
<td>TRANSSDUCER</td>
<td>135</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SEAT BELT LOAD CELL</td>
<td>TRANSSDUCER</td>
<td>137</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>LEVEL</td>
<td>STANLEY</td>
<td>42-449</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>FORCE GAUGE</td>
<td>CHATILLON</td>
<td>8761</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>CALIPER</td>
<td>N/A</td>
<td>Q9322365</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>CRF</td>
<td>MEASUREMENT FIXTURE</td>
<td>GTL CRF</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 1</td>
<td>FORCE APPLICATION DEVICE</td>
<td>GTL SFAD 1</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 2</td>
<td>FORCE APPLICATION DEVICE</td>
<td>GLT SFAD 2</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
</tbody>
</table>
FIGURE 5.1
LEFT SIDE VIEW OF VEHICLE
2010 MERCEDES GLK 350
NHTSA NO. CA0514
FMVSS NO. 225

FIGURE 5.2
RIGHT SIDE VIEW OF VEHICLE
Vehicle Certification Label

- **MFD by Daimler AG Stuttgart**
- **Made in Germany**
- **C775 02/10**

<table>
<thead>
<tr>
<th>KG</th>
<th>LB</th>
<th>TIRES</th>
<th>RIM SIZE</th>
<th>COLD KPA (PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1220</td>
<td>2690</td>
<td>235/50 R19</td>
<td>7.5x19</td>
<td>240(35)</td>
</tr>
<tr>
<td>1280</td>
<td>2822</td>
<td>235/50 R19</td>
<td>7.5x19</td>
<td>270(39)</td>
</tr>
<tr>
<td>2480</td>
<td>5467</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2010 Mercedes GLK 350

NHTSA NO. CA0514

FMVSS NO. 225

Figure 5.5

Close-up view of vehicle certification label.
<table>
<thead>
<tr>
<th>TIRE PNEU</th>
<th>SIZE DIMENSIONS</th>
<th>COLD TIRE PRESSURE PRESSION DES PNEUS À FROID</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONT AVANT</td>
<td>235/50 R19</td>
<td>240 KPA, 35 PSI</td>
</tr>
<tr>
<td>REAR ARRIÈRE</td>
<td>235/50 R19</td>
<td>270 KPA, 39 PSI</td>
</tr>
<tr>
<td>SPARE DE SECOURS</td>
<td>185/75-17 98P</td>
<td>280 KPA, 41 PSI</td>
</tr>
</tbody>
</table>

The combined weight of occupants and cargo should never exceed
Le poids total des occupants et du chargement ne doit jamais dépasser 505 kg or 1113 lbs.
kg ou lb.
2010 MERCEDES GLK 350
NHTSA NO. CA0514
FMVSS NO. 225

FIGURE 5.7
VISIBILITY OF LOWER ANCHOR LOCATIONS
FIGURE 5.9
MEASUREMENT OF LOWER ANCHOR SYMBOL
2010 MERCEDES GLK 350
NHTSA NO. CA0514
FMVSS NO. 225

FIGURE 5.12
ROW 2, RIGHT SIDE, INBOARD LOWER ANCHOR, PRE-TEST
2010 MERCEDES GLK 350
NHTSA NO. CA0514
FMVSS NO. 225

FIGURE 5.15
ROW 2, RIGHT SIDE, TOP TETHER ANCHOR PRE-TEST
FIGURE 5.16
ROW 2, CENTER, TOP TETHER ANCHOR PRE-TEST
FIGURE 5.17
ROW 2, LEFT SIDE, TOP TETHER ANCHOR, PRE-TEST
FIGURE 5.18
ROW 2, RIGHT SIDE OUTBOARD Z MEASUREMENT

2010 MERCEDES GLK 350
NHTSA NO. CA0514
FMVSS NO. 225
2010 MERCEDES GLK 350
NHTSA NO. CA0514
FMVSS NO. 225

FIGURE 5.21
ROW 2, RIGHT SIDE, WITH CRF
FIGURE 5.24
ROW 2, LEFT SIDE PITCH MEASUREMENT
2010 MERCEDES GLK 350
NHTSA NO. CA0514
FMVSS NO. 225

FIGURE 5.25
ROW 2, LEFT SIDE WITH CRF
2010 MERCEDES GLK 350
NHTSA NO. CA0514
FMVSS NO. 225

FIGURE 5.26
ROW 2, RIGHT SIDE WITH 2-D TEMPLATE
FIGURE 5.27
ROW 2, RIGHT SIDE TOP TETHER ROUTING
2010 MERCEDES GLK 350
NHTSA NO. CA0514
FMVSS NO. 225

FIGURE 5.28
ROW 2, RIGHT SIDE OUTBOARD SRP MEASUREMENT
2010 MERCEDES GLK 350
NHTSA NO. CA0514
FMVSS NO. 225

FIGURE 5.29
ROW 2, RIGHT SIDE INBOARD SRP MEASUREMENT
FIGURE 5.31
ROW 2, LEFT SIDE, TOP TETHER ROUTING
FIGURE 5.32
ROW 2, LEFT SIDE, OUTBOARD SRP MEASUREMENT
2010 MERCEDES GLK 350
NHTSA NO. CA0514
FMVSS NO. 225

FIGURE 5.35
ROW 2, CENTER, TOP TETHER ROUTING
FIGURE 5.36
¾ LEFT FRONT VIEW OF VEHICLE IN TEST FIXTURE

2010 MERCEDES GLK 350
NHTSA NO. CA0514
FMVSS NO. 225
2010 MERCEDES GLK 350
NHTSA NO. CA0514
FMVSS NO. 225

FIGURE 5.37
¾ RIGHT FRONT VIEW OF VEHICLE IN TEST FIXTURE
FIGURE 5.39
PRE-TEST, ROW 2, LEFT SIDE, TOP TETHER TEST WITH SFAD 2
FIGURE 5.41
POST TEST, ROW 2, LEFT SIDE, TOP TETHER TEST WITH SFAD 2
FIGURE 5.42
POST TEST ROW 2, LEFT SIDE, TOP TETHER TEST WITH SFAD 2
FIGURE 5.43
PRE-TEST, ROW 2, CENTER, TOP TETHER TEST WITH SFAD 1
FIGURE 5.44
PRE-TEST ROW 2, CENTER, TOP TETHER TEST WITH SFAD 1
FIGURE 5.46
POST TEST ROW 2, CENTER, TOP TETHER TEST WITH SFAD 1
FIGURE 5.48
POST TEST ROW 2, RIGHT SIDE LOWER ANCHOR TEST WITH SFAD 2

2010 MERCEDES GLK 350
NHTSA NO. CA0514
FMVSS NO. 225
Safety and security

Steering wheel

- Observe Safety notes, see page 84.
 - Position steering wheel correctly. See (p. page 84) for manual adjustment and (p. page 84) for electrical adjustment.
 - Make sure:
 - You can reach the steering wheel with your arms slightly bent at the elbows.
 - You can move your legs freely.
 - All displays (including malfunction indicators) on the instrument cluster are clearly visible.

Seat belt

- Observe Safety notes, see page 47.
 - Fasten and position your seat belt correctly (p. page 49).
 - Make sure:
 - The seat belt is always fitted snugly.
 - Adjust the seat belt so that the shoulder section is located as close as possible to the middle of the shoulder.
 - Place the lap portion of the seat belt as low as possible on your hips.

Children in the vehicle

Safety notes

If an infant or child is traveling with you in the vehicle:
- Secure the child using an infant or child restraint appropriate to the age and size of the child.
- Make sure the infant or child is properly secured at all times while the vehicle is in motion.

Seat and head restraint

- Observe Safety notes, see page 80.
 - Position seat and head restraint properly. See (p. page 81) for seat and head restraint adjustment.
 - Observe the following points:
 - Always be in a properly seated position.
 - The position should be as far forward from the front air bag in the steering wheel as possible, while still permitting proper operation of vehicle controls.
 - Adjust the seat to a comfortable seating position that still allows you to reach the accelerator/brake pedal safely.

Warnings

Do not attach any objects (e.g., hangars) to the head restraint post. Otherwise, the NECK-PRO active front head restraints may not be able to function properly or offer the intended degree of protection they were designed for in the event of a rear-end collision.

Correct driver seat adjustment

- In order to avoid possible loss of vehicle control the following must be done before the vehicle is put into motion:
 - seat adjustment
 - head restraint adjustment
 - steering wheel adjustment
 - rear view mirror adjustment
 - fastening of seat belts

Shift京津冀

- The seat must be adjusted so that you can correctly fasten and position your seat belt.
- The seat backrest must be in a position that is as nearly upright as possible.
- Adjust the seat cushion so that the front edge of the seat cushion lightly supports your legs.
- Adjust the head restraint so that it is as close to the head as possible and the center of the head restraint supports the back of the head at eye level. This will reduce the potential for injury to the head and neck in the event of an accident or similar situation.

For information on head restraint adjustment, see "Head restraint height" (p. page 61), or see "Head restraint fore and aft adjustment" (p. page 82).
Infant and child restraint systems

Observe Safety notes, see page 53. We recommend all infants and children be properly restrained at all times while the vehicle is in motion.

Infants and small children should be seated in an appropriate infant or child restraint system. They must be properly secured in accordance with the manufacturer's instructions for the child restraint. All infant or child restraint systems must comply with U.S. Federal Motor Vehicle Safety Standards 213 and 225 and Canadian Motor Vehicle Safety Standards 213 and 219.2.

A statement by the child restraint manufacturer of compliance with these standards can be found on the instruction label on the restraint and in the instruction manual provided with the restraint.

When using any infant restraint, toddler restraint, or booster seat, make sure to carefully read and follow all manufacturer's instructions for installation and use.

Please read and observe warning labels affixed to the inside of the vehicle and to infant or child restraints.

Warning!

Do not carry heavy or hard objects in the passenger or cargo compartment unless they are firmly secured in place.

Unsecured or improperly positioned cargo increases a child's risk of injury in the event of:

- strong braking maneuvers
- sudden changes of direction
- an accident

Information on child seats with mounting fittings for tether anchorages (\(\text{page 56} \)). For information on LATCH-type (SOFIX) child seat anchors (\(\text{page 57} \)).

The use of infant or child restraints is required by law in all 50 states, the District of Columbia, the U.S. territories and all Canadian provinces.

Children can be killed or seriously injured by an inflating air bag. Note the following important information when circumstances require you to place a child in the front passenger seat:

- USA only: Year vehicle is equipped with air bag technology designed to deactivate the front passenger front air bag in your vehicle when the system senses the weight of a typical 12-month-old child or less along with the weight of a standard appropriate child restraint on the front passenger seat.

- USA only: For children larger than the typical 12-month-old child, the front passenger front air bag may or may not be activated. Always make sure the \(\text{air bag indicator lamp} \) is illuminated, indicating that the front passenger front air bag is deactivated.

- Canada only: Children 12 years old and under must never ride in the front seat, except in a Mercedes-Benz authorized BabySmart™ compatible child seat, which operates with the BabySmart™ system installed in the vehicle to deactivate the front passenger front air bag when it is installed properly. Otherwise they will be struck by the air bag when it inflates in a crash. If this happens, serious or fatal injury will result.

- A child in a rear-facing child restraint on the front passenger seat will be seriously injured or even killed if the front passenger front air bag inflates in a collision which could occur under some circumstances, even with the air bag technology installed in your vehicle. The only means to completely eliminate this risk is to never place a child in a rear-facing child restraint in the front seat. We therefore strongly recommend that you always place a child in a rear-facing child restraint in a backseat.
If you must install a rear-facing child restraint on the front passenger seat because circumstances require you to do so, make sure the \(\text{Indicator lamp} \) is illuminated, indicating that the front passenger front air bag is deactivated. Should the \(\text{Indicator lamp} \) not illuminate or go out while the restraint is installed, please check installation. Periodically check the \(\text{Indicator lamp} \) while driving to make sure the \(\text{Indicator lamp} \) is illuminated. If the \(\text{Indicator lamp} \) indicator lamp goes out or remains out, do not transport a child on the front passenger seat until the system has been repaired.

A child in a rear-facing child restraint on the front passenger seat will be seriously injured or even killed if the front passenger air bag inflates. If you have to place a child in a forward-facing child restraint on the front passenger seat, move the seat as far back as possible, use the proper child restraint recommended for the age, size, and weight of the child, and secure child restraint with the vehicle's seat belt according to the child seat manufacturer's instructions.

Warning! Infants and small children should never share a seat belt with another occupant. During an accident, they could be crushed between the occupant and seat belt.

A child's risk of serious or fatal injuries is significantly increased if the child restraint is not properly secured in the vehicle and/or the child is not properly secured in the child restraint. Children too big for a toddler restraint must ride in seats using regular seat belts. Position shoulder belt across chest and shoulder, not face or neck. A booster seat may be necessary to achieve proper seat belt positioning for children over 41 lb (18 kg) until they reach a height where a lap/shoulder belt fits properly without a booster. When the child restraint is not in use, remove it from the vehicle or secure it with the seat belt to prevent the child restraint from becoming a projectile in the event of an accident.

Installation of infant and child restraint systems

1. **Observe Safety notes, see page 53.**
2. **Warning!** Always lock the seat backrests in their upright position when the rear seats are occupied by passengers. Look at the seat backrests in their upright position before installing top tether straps or when the extended cargo compartment is not in use. Make sure that seat backrests are secured properly by pushing and pulling on the seat backrests: if a seat backrest is not locked properly, the seat backrest could fold. The child seat would no longer be supported properly or positioned to provide its intended benefit. That could cause serious or even fatal injuries.

3. **Warning!** This vehicle is equipped with tether anchorages for a 00-00 tether strap at each of the rear seating positions. Top tether straps enable an additional connection to be made between child restraint systems secured with LATCH-type (ISO/FIX) anchors and rear seats. This can further reduce the risk of injury.

 - **Guide top tether strap ⑤ between head restraint ① and top of the seat backrest.**
 - **Securely fasten hook ④, which is part of top tether strap ③, to anchorage ring ②.**
 - **Make sure:**
 - hook ③ is attached to anchorage ring ② beyond the safety catch, as illustrated
 - top tether strap ③ is not twisted
 - head restraint ① is installed and positioned such that top tether strap ③ can pass freely between head restraint ① and top of the seat backrest.
 - **Top tether strap ③ is positioned between the seat backrest and cargo compartment cover blind (if installed).**
 - **Swing the rear seat backrest to the rear until it engages.**
 - **Check the rear seat backrest to be locked in its upright position (p. page 192).**
 - **Observe Safety notes, see page 192.**
 - **Lower head restraint ① if necessary (p. page 83).**

 Once hook ③ is attached, the child restraint itself can be secured.

 - **Install the child restraint system and tighten top tether strap ③ according to the child restraint manufacturer's instructions.**

4. **Observe Safety notes, see page 53.**
5. **Warning!** Children too big for a toddler restraint must ride in seats using regular seat belts. Position shoulder belt across chest and shoulder, not face or neck. A booster seat may be necessary to achieve proper seat belt positioning for children over 41 lb (18 kg) until they reach a height where a lap/shoulder belt fits properly without a booster.

 - **Install child seat according to manufacturer's instructions.**
 - The child seat must be firmly attached to both anchors.
 - An incorrectly mounted child seat may come loose during an accident which could result in serious injury or death to the child.
 - Damaged or inspect damaged child seats or child seat mounting fittings must be replaced.

Each rear outer seat has two LATCH-type (ISO/FIX) anchors for the installation of a LATCH-type (ISO/FIX) child seat with matching mounting fittings. Non-LATCH-type (ISO/FIX) child seats may also be used and can be installed using the vehicle's seat belt system. Install child seat according to the manufacturer's instructions. The LATCH-type (ISO/FIX) anchors are located between the seat cushion and the backrest.
Information sign 1 indicates the position of anchor 2.

- Install a LATCH-type (ISOFIX) child seat according to the manufacturer's instructions. A rigid connection between the child seat and the body of the vehicle is established.
- Make sure that the seat belt for the rear center seat can operate freely with a child seat installed.

Child safety locks

⚠️ Observe Safety notes, see page 53.

⚠️ Warning!
Children could open a rear door from the inside. This may cause serious personal injury or an accident. Therefore, secure the rear doors with the child safety locks whenever children are riding in the back seats of the vehicle.

The child safety locks on the rear doors enable you to secure each rear door individually. You cannot open a secured rear door from the inside. You can open the rear door from the outside when the vehicle is unlocked.

- Securing: Press the lever up in direction of arrow 1.
- Check to make sure the child safety locks are working properly.
- Releasing: Press the lever down in direction of arrow 2.

Override switch

⚠️ Observe Safety notes, see page 53.

With the override switch you can disable the rear door window switches in the rear door panels. This is useful, for instance, when you have children riding in the rear passenger compartment.

⚠️ Warning!
Activating the override switch when children are riding in the back seats of the vehicle. The children may otherwise injure themselves, e.g. by becoming trapped in the rear door window opening.

- Activating: Press and hold the [on] button 1 for at least 1 second.
 An audible alarm and flashing exterior lamps will operate.
- Deactivating: Press the [off] button 1 again.
 or
 Insert the SmartKey into the starter switch, or
 Press the KEYLESS-GO start/stop button. The SmartKey with KEYLESS-GO must be inside the vehicle.

The rear door windows can no longer be operated using the respective switch located in the rear doors.

You can still operate the rear door windows using the switches located on the door control panels of the driver's door.

- Deactivating: Press override switch 1 again.
 The rear door windows can be operated again using the respective switch located in the rear doors.

For more information on power windows, see the "Controls in detail" section (→ page 77).

Panic alarm

- Activating: Press override switch 1. Indicator lamp 2 comes on.

-US only:
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:
1. This device may not cause harmful interference, and
2. This device must accept any interference received, including interference that may cause undesired operation.

Any unauthorized modification to this device could void the user's authority to operate the equipment.

-Canada only:
This device complies with RSS-210 of Industry Canada. Operation is subject to the following two conditions:
1. This device may not cause interference, and
2. This device must accept any interference received, including interference that may cause undesired operation of the device.

Any unauthorized modification to this device could void the user's authority to operate the equipment.

Driving safety systems

Introduction
This section contains information about the following driving safety systems:
- ABS (Antilock Brake System)
- BAS (Brake Assist System)
- ESP (Electronic Stability Program)

In winter operation, the maximum effectiveness of most of the driving systems described in this section is only
SEAT REFERENCE POINT (SRP) AND TORSO ANGLE DATA
FMVSS No. 225
(All dimensions in mm)

MODEL YEAR: 2010 / MAKE: Mercedes Benz / MODEL: X204 / BODY STYLE: SUV

SEAT STYLE: FRONT ROW: single seats / SECOND ROW: seat bench / THIRD ROW: n/a

LEFT SIDE VIEW OF TEST VEHICLE
Table 1. Seating Positions and Torso Angles

<table>
<thead>
<tr>
<th></th>
<th>Left (Driver Side)</th>
<th>Center (if any)</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>224,51 (Driver)</td>
<td>n/a</td>
<td>224,51 (Front Passenger)</td>
</tr>
<tr>
<td>A2</td>
<td>235,51</td>
<td>263,51</td>
<td>235,51</td>
</tr>
<tr>
<td>A3</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>B</td>
<td>295,2</td>
<td>n/a</td>
<td>295,20</td>
</tr>
<tr>
<td>C</td>
<td>1103,20</td>
<td>1078,2</td>
<td>1103,20</td>
</tr>
<tr>
<td>D</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Torso Angle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front Row</td>
<td>23</td>
<td>n/a</td>
<td>23</td>
</tr>
<tr>
<td>Second Row</td>
<td>27</td>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td>Third Row</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Note: All dimensions are in mm. If not, provide the unit used.
CONFIDENTIAL BUSINESS INFORMATION

SEATING REFERENCE POINT
FMVSS No. 225
(All dimensions in mm)

MODEL YEAR: 2010 / MAKE: Mercedes Benz / MODEL: X204 / BODY STYLE: SUV

SEAT STYLE: FRONT ROW: single seats / SECOND ROW: seat bench / THIRD ROW: n/a

Front

Second

Third

FORM – 225
Table 2. Seating Reference Point and Tether Anchorage Locations

<table>
<thead>
<tr>
<th>Seating Reference Point (SRP)</th>
<th>Distance from Driver's front outboard seat adjuster anchorage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>295.2</td>
</tr>
<tr>
<td>E1</td>
<td>218</td>
</tr>
<tr>
<td>B2</td>
<td>n/a</td>
</tr>
<tr>
<td>E2</td>
<td>n/a</td>
</tr>
<tr>
<td>B3</td>
<td>295.2</td>
</tr>
<tr>
<td>E3</td>
<td>958</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>1103.2</td>
</tr>
<tr>
<td>F1</td>
<td>253</td>
</tr>
<tr>
<td>C2</td>
<td>1078.2</td>
</tr>
<tr>
<td>F2</td>
<td>588</td>
</tr>
<tr>
<td>C3</td>
<td>1103.2</td>
</tr>
<tr>
<td>F3</td>
<td>923</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>n/a</td>
</tr>
<tr>
<td>G1</td>
<td>n/a</td>
</tr>
<tr>
<td>D2</td>
<td>n/a</td>
</tr>
<tr>
<td>G2</td>
<td>n/a</td>
</tr>
<tr>
<td>D3</td>
<td>n/a</td>
</tr>
<tr>
<td>G3</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Note: Use the center of anchorage.
CONFIDENTIAL BUSINESS INFORMATION

TETHER ANCHORAGE LOCATIONS
FMVSS No. 225
(All dimensions in mm)

MODEL YEAR: 2010 / MAKE: Mercedes Benz / MODEL: X204 / BODY STYLE: SUV

SEAT STYLE: FRONT ROW: single seats / SECOND ROW: seat bench / THIRD ROW: n/a

%: SRP
$: Tether anchorage

Note: The location shall be measured at the center of anchorage.

FORM – 225
Table 3. Seating Reference Point and Tether Anchorage Locations

<table>
<thead>
<tr>
<th>Seating Reference Point (SRP)</th>
<th>Distance from SRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>n/a</td>
</tr>
<tr>
<td>K1</td>
<td>n/a</td>
</tr>
<tr>
<td>H2</td>
<td>n/a</td>
</tr>
<tr>
<td>K2</td>
<td>n/a</td>
</tr>
<tr>
<td>H3</td>
<td>n/a</td>
</tr>
<tr>
<td>K3</td>
<td>n/a</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>I1</td>
<td>375,7</td>
</tr>
<tr>
<td>L1</td>
<td>0</td>
</tr>
<tr>
<td>I2</td>
<td>359,9</td>
</tr>
<tr>
<td>L2</td>
<td>40</td>
</tr>
<tr>
<td>I3</td>
<td>375,7</td>
</tr>
<tr>
<td>L3</td>
<td>0</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>n/a</td>
</tr>
<tr>
<td>M1</td>
<td>n/a</td>
</tr>
<tr>
<td>J2</td>
<td>n/a</td>
</tr>
<tr>
<td>M2</td>
<td>n/a</td>
</tr>
<tr>
<td>J3</td>
<td>n/a</td>
</tr>
<tr>
<td>M3</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Note: Use the center of anchorage.
NOMINAL DESIGN RIDING POSITION

For adjustable driver, passenger, 2nd row and 3rd row seat backs, describe how to position the inclinometer to measure the seat back angle. Include a description of the location of the seat back adjustment latch detent if applicable. Indicate if applicable, how the detents are numbered (is the first detent “0” or “1”?). Indicate if the seat back angle is measured with the dummy in the seat.

Seat back angle for driver’s seat = 75.5 degrees.

Measurement Instructions:

Position of inclinometer: upper cross member (remove back panel)

Seat back angle for passenger’s seat = 75.5 degrees.

Measurement Instructions:

Position of inclinometer: upper cross member (remove back panel)

Seat back angle for 2nd row seat = 64.5 degrees.

Measurement Instructions:

Position of inclinometer: above top tether anchorage

Seat back angle for 3rd row seat = n/a degrees.

Measurement Instructions: n/a
CONFIDENTIAL BUSINESS INFORMATION

TETHER ANCHORAGE LOCATIONS - VERTICAL
FMVSS No. 225
(All dimensions in mm)

MODEL YEAR: 2010 / MAKE: Mercedes Benz / MODEL: X204 / BODY STYLE: SUV

SEAT STYLE: FRONT ROW: single seats / SECOND ROW: seat bench / THIRD ROW: n/a

LEFT SIDE VIEW OF TEST VEHICLE

FORM – 225
Table 4. Vertical Dimension For The Tether Anchorage

<table>
<thead>
<tr>
<th>Seating Row</th>
<th>Vertical Distance from Seating Reference Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>N1 (Driver)</td>
<td>n/a</td>
</tr>
<tr>
<td>N2 (Center)</td>
<td>n/a</td>
</tr>
<tr>
<td>N3 (Right)</td>
<td>n/a</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>O1 (Left)</td>
<td>210,5</td>
</tr>
<tr>
<td>O2 (Center)</td>
<td>98,7</td>
</tr>
<tr>
<td>O3 (Right)</td>
<td>210,5</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>P1 (Left)</td>
<td>n/a</td>
</tr>
<tr>
<td>P2 (Center)</td>
<td>n/a</td>
</tr>
<tr>
<td>P3 (Right)</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Note: All dimensions are in mm. If not, provide the unit anchorage.

For each vehicle, provide the following information:

1. How many designated seating positions exist in the vehicle? 5

2. How many designated seating positions are equipped with lower anchorages and tether anchorages? Specify which position(s). 2 (second row, outer seating positions)

3. How many designated seating positions are equipped with tether anchorages? Specify which position(s). 1 (second row, center seating position)

4. Lower Anchorages Marking and Conspicuity: Whether the anchorages are certified to S9.5(a) or S9.5(b) of FMVSS No. 225. Certified to S9.5(a)
GTL 6666, NHTSA CA0514.

225, Lower Anchors, Row 2 Right Side.

Displacement in Millimeters

(Thousands)
Force in Newtons