126-DRI-11-009
SAFETY COMPLIANCE TESTING FOR FMVSS 126
Electronic Stability Control Systems

General Motors de Mexico, S. De R.L. DE C.V.
2011 GMC Sierra 1500
NHTSA No. CB0108

DYNAMIC RESEARCH, INC.
355 Van Ness Avenue, STE 200
Torrance, California 90501

1 December 2011
Final Report
Prepared Under Contract No.: DTNH22-08-D-00098

U. S. DEPARTMENT OF TRANSPORTATION
National Highway Traffic Safety Administration
Enforcement
Office of Vehicle Safety Compliance
1200 New Jersey Avenue, SE
West Building, 4th Floor (NVS-221)
Washington, DC 20590
Prepared for the Department of Transportation, National Highway Traffic Safety Administration, under Contract No. DTNH22-08-D-00098.

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings, and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturer's names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products of manufacturers.

Prepared By: Brien K. Keefield

Approved By:

Approval Date: 1 December 2011

FINAL REPORT ACCEPTANCE BY OVSC:

Accepted By:

Acceptance Date: January 4, 2012
<table>
<thead>
<tr>
<th>1. Report No.</th>
<th>126-DRI-11-009</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Government Accession No.</td>
<td></td>
</tr>
<tr>
<td>3. Recipient's Catalog No.</td>
<td></td>
</tr>
<tr>
<td>4. Title and Subtitle</td>
<td>Final Report of FMVSS 126 Compliance Testing of a 2011 GMC Sierra 1500, NHTSA No. CB0108</td>
</tr>
<tr>
<td>5. Report Date</td>
<td>1 December 2011</td>
</tr>
<tr>
<td>6. Performing Organization Code</td>
<td>DRI</td>
</tr>
<tr>
<td>7. Author(s)</td>
<td>John F. Lenkeit, Technical Director</td>
</tr>
<tr>
<td></td>
<td>Brian Kebschull, Principal Engineer</td>
</tr>
<tr>
<td>9. Performing Organization Name and Address</td>
<td>Dynamic Research, Inc.</td>
</tr>
<tr>
<td></td>
<td>355 Van Ness Ave, STE 200</td>
</tr>
<tr>
<td></td>
<td>Torrance, CA 90501</td>
</tr>
<tr>
<td>10. Work Unit No.</td>
<td></td>
</tr>
<tr>
<td>11. Contract or Grant No.</td>
<td>DTNH22-08-D-00098</td>
</tr>
<tr>
<td>12. Sponsoring Agency Name and Address</td>
<td>U.S. Department of Transportation</td>
</tr>
<tr>
<td></td>
<td>National Highway Traffic Safety Administration Enforcement</td>
</tr>
<tr>
<td></td>
<td>Office of Vehicle Safety Compliance</td>
</tr>
<tr>
<td></td>
<td>1200 New Jersey Avenue, SE,</td>
</tr>
<tr>
<td></td>
<td>West Building, 4th Floor (NVS-221)</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20590</td>
</tr>
<tr>
<td>13. Type of Report and Period Covered</td>
<td>Final Test Report</td>
</tr>
<tr>
<td></td>
<td>26 August 2011 to 1 December 2011</td>
</tr>
<tr>
<td>15. Supplementary Notes</td>
<td></td>
</tr>
<tr>
<td>16. Abstract</td>
<td>A test was conducted on a 2011 GMC Sierra 1500 4WD Crew Cab, NHTSA No. CB0108, in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP-126-02 for the determination of FMVSS 126 compliance. The vehicle was tested in both two wheel drive and four wheel drive (high) modes. Test failures identified were as follows: None</td>
</tr>
<tr>
<td>17. Key Words</td>
<td>Compliance Testing</td>
</tr>
<tr>
<td></td>
<td>Safety Engineering</td>
</tr>
<tr>
<td></td>
<td>FMVSS 126</td>
</tr>
<tr>
<td>18. Distribution Statement</td>
<td>Copies of this report are available from:</td>
</tr>
<tr>
<td></td>
<td>NHTSA Technical Information Services (TIS)</td>
</tr>
<tr>
<td></td>
<td>(NPO 411)</td>
</tr>
<tr>
<td></td>
<td>1200 New Jersey Avenue, SE</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20590</td>
</tr>
<tr>
<td></td>
<td>Email: tis@nhtsa.dot.gov</td>
</tr>
<tr>
<td></td>
<td>FAX: (202) 493-2833</td>
</tr>
<tr>
<td>19. Security Classif. (of this report)</td>
<td>Unclassified</td>
</tr>
<tr>
<td>20. Security Classif. (of this page)</td>
<td>Unclassified</td>
</tr>
<tr>
<td>21. No. of Pages</td>
<td>92</td>
</tr>
<tr>
<td>22.</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 PURPOSE OF COMPLIANCE TEST</td>
<td>1</td>
</tr>
<tr>
<td>2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS</td>
<td>1</td>
</tr>
<tr>
<td>3.0 TEST DATA</td>
<td>5</td>
</tr>
<tr>
<td>4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION</td>
<td>37</td>
</tr>
<tr>
<td>5.0 PHOTOGRAPHS</td>
<td>39</td>
</tr>
<tr>
<td>6.0 DATA PLOTS</td>
<td>54</td>
</tr>
<tr>
<td>7.0 OTHER DOCUMENTATION</td>
<td>62</td>
</tr>
<tr>
<td>7.1 Owner’s Manual Pages</td>
<td>63</td>
</tr>
<tr>
<td>7.2 Vehicle Arrival Condition Report</td>
<td>80</td>
</tr>
<tr>
<td>7.3 Vehicle Completion Condition Report</td>
<td>81</td>
</tr>
<tr>
<td>7.4 Sine with Dwell Test Results</td>
<td>82</td>
</tr>
<tr>
<td>7.5 Slowly Increasing Steer Test Results</td>
<td>86</td>
</tr>
<tr>
<td>7.6 Inertial Sensing System Location Coordinates</td>
<td>88</td>
</tr>
</tbody>
</table>
1.0 PURPOSE OF COMPLIANCE TEST

The purpose of this test is to determine if the test vehicle, a 2011 GMC Sierra 1500 4WD Crew Cab, meets the minimum equipment and performance requirements stated in Federal Motor Vehicle Safety Standard (FMVSS) 126, "Electronic Stability Control Systems." The vehicle was tested in both 2WD and 4WD (high) drive configurations.

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS

Testing of the 2011 GMC Sierra 1500 4WD Crew Cab was conducted at Dynamic Research, Inc (DRI) in accordance with NHTSA TP-126-02, dated November 19, 2008.

The vehicle was inspected to ensure it was equipped with an ESC system that:

- Augments vehicle directional stability by applying and adjusting brake torques individually at each wheel to induce a correcting yaw moment to a vehicle;
- Is computer controlled with the computer using a closed-loop algorithm to limit vehicle oversteer and to limit vehicle understeer;
- Has a means to determine the vehicle’s yaw rate and to estimate its side slip or side slip derivative with respect to time;
- Has a means to monitor driver steering inputs;
- Has an algorithm to determine the need, and a means to modify engine torque, as necessary, to assist the driver in maintaining control of the vehicle; and
- Is operational over the full speed range of the vehicle (except at vehicle speeds less than 20 km/h (12.4 mph), when being driven in reverse, or during system initialization).

The vehicle was subjected to a 0.7 Hz Sine with Dwell steering maneuver to ensure that it would meet the stability and responsiveness requirements of the standard as follows:

- At 1.0 second after completion of a required Sine with Dwell steering input, the yaw rate of the vehicle must not exceed 35 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).
2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTINUED)

- At 1.75 seconds after completion of a required Sine with Dwell steering input, the yaw rate of the vehicle must not exceed 20 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).

- For steering inputs of scalar 5 and greater, the lateral displacement of the vehicle center of gravity with respect to its initial straight path must be at least 1.83 m (6 feet) (for vehicles with a GVWR of 3,500 kg (7,716 lb) or less) when computed 1.07 seconds after the Beginning of Steer (BOS) at the specified steering wheel angles.

System malfunction simulations were executed to verify vehicle could identify and indicate a malfunction.

The vehicle's ESC System appears to meet the performance and equipment requirements as required by FMVSS 126. The test results are summarized on the following summary sheet.
2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTD)

Data Summary Sheet (Page 1 of 2)

Vehicle: 2011 GMC Sierra 1500 4WD (2WD and 4WD High Configurations)

NHTSA No. CBO108 VIN: 3GTP2VE33BG386727

Vehicle Type: Truck Manufacture Date: 7/11

Laboratory: Dynamic Research, Inc.

REQUIREMENTS: PASS/FAIL

ESC Equipment and Operational Characteristics (Data Sheet 2)
 The vehicle is to be equipped with an ESC system that meets the equipment and operational characteristics requirements. (S126, S5.1, S5.6) PASS

ESC Malfunction Telltale (Data Sheet 3)
 Vehicle is equipped with a telltale that indicates one or more ESC system malfunctions. (S126, S5.3) PASS

“ESC Off” and other System Controls and Telltale (Data Sheet 3,4)
 Vehicle is equipped with an ESC off telltale indicating the vehicle has been put into a mode that renders the ESC system unable to satisfy the performance requirements of the standard, if such a mode exists. (S5.5.1) PASS

 If provided, off control and other system controls as well as the ESC off telltale meets the operational requirements (S126, S5.4, S5.4.1, S5.4.2, S5.5.4, and S5.5.9) PASS
2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONT'D)

Data Summary Sheet (Page 2 of 2)

REQUIREMENTS:

PASS/FAIL

Vehicle Lateral Stability (Data Sheet 8)

Yaw Rate Ratio at 1 second after COS is less than 35% of peak value. (S126, S5.2.1)

PASS

Yaw Rate Ratio at 1.75 seconds after COS is less than 20% of peak value. (S126, S5.2.2)

PASS

Vehicle Responsiveness (Data Sheet 8)

Lateral displacement at 1.07 seconds after BOS is at least 1.83 m (6 feet) for vehicles with a GVWR of 3,500 kg (7,716 lb) or less, and 1.52 m (5 feet) for vehicles with a GVWR greater than 3,500 Kg (7,716 lb). (S126, S5.2.3)

PASS

ESC Malfunction Warning (Data Sheet 9)

Warning is provided to driver after malfunction occurrence. (S126, S5.3)

PASS

Malfunction telltale stayed illuminated as long as malfunction existed and must extinguish after malfunction was corrected. (S126, S5.3.7)

PASS
3.0 TEST DATA

Data Sheet 1 (Page 1 of 2)
TEST VEHICLE INSPECTION AND TEST PREPARATION

Vehicle: **2011 GMC Sierra 1500 4WD Crew Cab**
NHTSA No. **CB0108** Data Sheet Completion Date: **9/13/2011**
VIN **3GTP2VE33BG386727** Manufacture Date: **7/11**
GVWR (kg): **3175** Front GAWR (kg): **1792** Rear GAWR (kg): **1792**
Seating Positions Front: **2** Mid: **3** Rear: **3**
Odometer reading at time of inspection: **5 miles (8 km)**

DESIGNATED TIRE SIZE(S) FROM VEHICLE LABELING:
Front axle: **P275/55R20** Rear axle: **P275/55R20**

INSTALLED TIRE SIZE(S) ON VEHICLE (from tire sidewall)

<table>
<thead>
<tr>
<th></th>
<th>Front Axle</th>
<th>Rear Axle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tire Manufacturer:</td>
<td>Goodyear</td>
<td>Goodyear</td>
</tr>
<tr>
<td>Tire Model:</td>
<td>Eagle LS-2</td>
<td>Eagle LS-2</td>
</tr>
<tr>
<td>Tire Size:</td>
<td>P275/55R20</td>
<td>P275/55R20</td>
</tr>
</tbody>
</table>

TIN

<table>
<thead>
<tr>
<th></th>
<th>Left Front</th>
<th>Right Front</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M621 BCER 2611</td>
<td>M62A BCER 2611</td>
</tr>
<tr>
<td>Left Rear:</td>
<td>M621 BCER 2611</td>
<td>M62A BCER 2611</td>
</tr>
</tbody>
</table>

Are installed tire sizes same as labeled tire sizes? **Yes**

If no, contact COTR for further guidance

DRIVE CONFIGURATION(S): (mark all that apply)

- [x] Two Wheel Drive (2WD)
- [] Front Wheel Drive
- [x] Rear Wheel Drive
- [] All Wheel Drive (AWD)
- [x] Four Wheel Drive Automatic - differential no locked full time (4WD Automatic)
- [x] Four Wheel Drive (High Gear Locked Differential 4WD HGLD)
- [x] Four Wheel Drive Low Gear (4WD Low)
- [] Other (Describe)
3.0 TEST DATA (CONTD)

Data Sheet 1 (Page 2 of 2)
TEST VEHICLE INSPECTION AND TEST PREPARATION

DRIVE CONFIGURATIONS AND MODES: (ex. default, performance, off)
(For each of the vehicle's drive configurations identify available operating modes)

Drive Configuration: 2WD
 Modes: ESC on (Default), ESC off

Drive Configuration: Auto
 Modes: ESC on (Default), ESC off

Drive Configuration: 4WD High
 Modes: ESC on (Default), ESC off

Drive Configuration: 4WD Low
 Mode: ESC off

VEHICLE STABILITY SYSTEMS (Check applicable technologies):
List other systems:
 X ESC X Traction Control X Roll Stability Control
 [] Active Suspension X Electronic Throttle Control [] Active Steering
 X ABS

REMARKS:

RECORDED BY: P Broen DATE RECORDED: 9/13/2011
APPROVED BY: B Kebschull DATE APPROVED: 9/13/2011
3.0 TEST DATA (CONTD)

Data Sheet 2 (Page 1 of 3)

ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

Vehicle: 2011 GMC Sierra 1500 4WD Crew Cab

NHTSA No CB0108 Data Sheet Completion Date: 8/31/2011

ESC SYSTEM IDENTIFICATION
Manufacturer/Model Robert Bosch LLC. / Bosch ESP Gen 8

ESC SYSTEM HARDWARE (Check applicable hardware)
- [X] Electronic Control Unit
- [X] Hydraulic Control Unit
- [X] Wheel Speed Sensors
- [X] Steering Angle Sensor
- [X] Yaw Rate Sensor
- [X] Lateral Acceleration Sensor

List other Components: Interface to engine management ECU

ESC OPERATIONAL CHARACTERISTICS

System is capable of generating brake torque at each wheel
Brief explanation: To generate brake torque at each wheel, the ESC electronic control unit modulates electrical solenoids that open and close valves within the hydraulic control unit, which in turn controls brake fluid pressure to the foundation brake calipers located at the four wheels of the vehicle.

System is capable of determining yaw rate
Brief explanation: The component used to determine yaw rate is the yaw/lateral acceleration combination sensor, which is located under the passenger seat on the GMC Sierra. The yaw rate sensor is a gyroscopic device that measures the vehicle’s angular velocity around its vertical axis. The signal from the yaw rate sensor is transmitted to the ESC electronic control unit for processing by the ESC control algorithm.

System is capable of monitoring driver steering input
Brief explanation: Driver steering input is measured by a steering wheel angle sensor that is mounted on the steering column. The signal from the steering wheel angle sensor is transmitted to the ESC electronic control unit for processing by the ESC control algorithm.

[] Yes (Pass) [] No (Fail)
ESC OPERATIONAL CHARACTERISTICS (continued)

System is capable of estimating side slip or side slip derivative
Brief explanation: *Side slip and side slip derivative are calculated values within the ESC electronic control unit based on the following sensor inputs: four independent wheel speeds (from the wheel speed sensors mounted at each wheel), yaw rate (from the combination yaw/lateral acceleration sensor mounted underneath the front passenger seat), lateral acceleration (from the combination yaw/lateral acceleration sensor mounted underneath the front passenger seat), and steering wheel angle (from the steering wheel angle sensor mounted on the steering column).*

System is capable of modifying engine torque during ESC activation. Method used to modify torque: *During certain vehicle understeer conditions vehicle speed may be reduced by reducing engine torque. In order to reduce engine torque, the ESC electronic control unit sends a signal to the powertrain control module requesting an appropriate percent reduction in engine torque. The powertrain control module provides the requested engine torque reduction using its own control algorithm with actuation that utilizes combinations of spark and throttle.*

System is capable of activation at speeds of 20 km/h (12.4 mph) and higher
Speed system becomes active: **14.4 km/h**

System is capable of activation during the following driving phases:
- acceleration
- braking
- coasting
- during activation of ABS or traction control
ESC OPERATIONAL CHARACTERISTICS (continued)

Driving phases during which ESC is capable of activation:

Once the system initializes after key-on, the ESC system is active under driving phases of acceleration, deceleration, coasting, and during activation of ABS or traction control, except if the vehicle is being driven in reverse or if the forward vehicle speed is less than 14.4 km/h.

Note that when the driver selects 4-wheel drive low, the ESC system is automatically turned off, the ESC off telltale is illuminated, and ‘STABILITRAK OFF’ is displayed in the DIC.

Vehicle manufacturer submitted documentation explaining how the ESC mitigates understeer

DATA INDICATES COMPLIANCE:

___ Yes (Pass)

___ No (Fail)

REMARKS:

RECORDED BY:

J Lenkeit

DATE RECORDED:

8/31/2011

APPROVED BY:

P Broen

DATE APPROVED:

8/31/2011
Data Sheet 3 (Page 1 of 2)

ESC MALFUNCTION AND OFF TELLTALES

Vehicle: **2011 GMC Sierra 1500 4WD Crew Cab**

NHTSA No. **CB0108**
Data Sheet completion date: **9/13/2011**

ESC Malfunction Telltale

Vehicle is equipped with malfunction telltale? **Yes**

Telltale Location: **Left side of instrument cluster in the tachometer display**

Telltale Color: **Yellow**

Telltale symbol or abbreviation used

![Symbol](image)

X Vehicle uses this symbol

☐ Vehicle uses this abbreviation

☐ Neither symbol or abbreviation is used

If different than identified above, make note of any message, symbol or abbreviation used.

The ESC symbol above is enclosed in a triangle. The ESC symbol with triangle is illuminated and the message "SERVICE STABILITRAK" is displayed in the Driver Information Center (DIC) common display area located in the lower part of the tachometer. (see Figure 5.13)

Is telltale part of a common space? **No**

Is telltale also used to indicate activation of the ESC system? **Yes**

If yes explain telltale operation during ESC activation:

The "STABILITRAK" symbol (sliding car with triangle) flashes when ESC is activated
3.0 TEST DATA (CONT'D)

Data Sheet 3 (Page 2 of 2)
ESC MALFUNCTION AND OFF TELLTALES

"ESC OFF" Telltale (if provided)

Vehicle is equipped with "ESC OFF" telltale? Yes

Is "ESC Off" telltale combined with "ESC Malfunction" telltale utilizing a two part telltale? Yes but the combined telltale is not a two part telltale utilizing the word "OFF" as shown in the symbol below.

Telltale Location: Left side of instrument cluster in the tachometer display

Telltale Color: Yellow

Telltale symbol or abbreviation used

☐ Vehicle uses this symbol
☐ Vehicle uses this abbreviation
☒ Neither symbol or abbreviation is used

If different than identified above, make note of any message, symbol or abbreviation used. To identify an ESC off condition the ESC malfunction telltale is illuminated and the message "STABILITRAK OFF" is displayed in the Driver Information Center (DIC) common display area located in the lower part of the tachometer. (see Figure 5.13)

Is telltale part of a common space? No

DATA INDICATES COMPLIANCE Yes

(Vehicle is compliant if equipped with a malfunction telltale)

Remarks:
The same sliding car symbol with triangle is used for ESC malfunction and ESC off. When the system is off the ESC malfunction illuminates and the message “Stabilitrak off” is displayed in the common space

RECORDED BY: P Broen DATE RECORDED: 9/13/2011
APPROVED BY: B Kebschull DATE APPROVED: 9/13/2011
3.0 TEST DATA (CONTD)

Data Sheet 4 (Page 1 of 3)
ESC AND ANCILLARY SYSTEM CONTROLS

Vehicle: 2011 GMC Sierra 1500 4WD Crew Cab
NHTSA No. CB0108 Data Sheet completion date: 9/13/2011

“ESC OFF” Controls Identification and Operational Check:
Is the vehicle equipped with a control or controls whose purpose is to deactivate the ESC system or place the ESC system in a mode or modes that may no longer satisfy the performance requirements of the standard? X Yes ___ No

Type of control or controls provided? X Dedicated “ESC Off” Control
(mark all that apply) ☐ Multi-functional control with an “ESC Off” mode
☐ Other (describe)

Identify each control location, labeling and selectable modes.
First Control: Location In the center of the dashboard (below the navigation display screen).
Labeling ESC symbol and an diagonal line through the symbol (Figure 5.14)
Modes 3 modes:
1. Traction Control and ESC on.
2. Traction control off.
3. Traction control and ESC off

Identify standard or default drive configuration RWD (2WD)
Verify standard or default drive configuration X Yes ___ No

Does the “ESC Off” telltale illuminate upon activation of the dedicated ESC off control or selection of the “ESC Off” mode on the multi-function control?
___ NA X Yes ___ No (Fail)

Does the “ESC Off” telltale extinguish when the ignition is cycled from “on” (“Run”) to “Lock” or “Off” and then back again to the “On” (”Run”) position?
___ NA X Yes ___ No (Fail)

If no, describe how the “Off” control functions
3.0 TEST DATA (CONTD)

Data Sheet 4 (Page 2 of 3)
ESC AND ANCILLARY SYSTEM CONTROLS

If a multi-function control is provided, cycle through each mode setting on the control and record which modes illuminate the “ESC Off” telltale. Also, for those modes that illuminate the ESC Off” telltale identify if the telltale extinguishes upon cycling the ignition system.

<table>
<thead>
<tr>
<th>Control Mode</th>
<th>"ESC Off" telltale illuminates upon activation of control? (Yes/No)</th>
<th>"ESC Off" telltale extinguishes upon cycling ignition? (Yes/No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traction Control Off</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Traction Control and ESC Off</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For each mode that illuminates the “ESC Off” telltale, did the telltale extinguish when the ignition was cycled from “On” (“Run”) to “Lock” or “Off” and then back again to the “On” (“Run”) position?

___ NA ___ Yes ___ No

Other System Controls that have an ancillary effect on ESC Operation:

Is the vehicle equipped with any ancillary controls that upon activation may deactivate the ESC system or place the ESC system in a mode or modes that may no longer satisfy the performance requirements of the standard?

___ Yes ___ No

Ancillary Control: 4WD Low transfer case selection

Transfer case selector
Selector-symbol with 2 axles, "4" with down arrow (see Figure 5.15)

Activate each ancillary control listed above and record whether the control illuminates the “ESC Off” telltale. Also, record warnings or messages provided regarding the ESC system.

<table>
<thead>
<tr>
<th>Ancillary Control</th>
<th>Control Activates “ESC Off” Telltale? (Yes/No)</th>
<th>Warnings or Messages Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>4WD Low transfer case selection</td>
<td>Yes</td>
<td>"STABILITRAK OFF" and "TRACTION CONTROL OFF" in DIC</td>
</tr>
</tbody>
</table>
For those controls that illuminate the “ESC Off” telltale above identify if the “ESC Off” telltale extinguishes upon cycling the ignition system.

<table>
<thead>
<tr>
<th>Ancillary Control</th>
<th>“ESC Off” telltale extinguishes upon cycling ignition? (Yes/No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4WD Low transfer case selection</td>
<td>No</td>
</tr>
</tbody>
</table>

For each ancillary control that illuminates the “ESC Off” telltale, did the telltale extinguish when the ignition is cycled from “On” (“Run”) to “Lock” or “Off” and then back again to the “On” (“Run”) position? If activating the control places the vehicle into a low-range four-wheel drive configuration designed for low-speed, off-road driving, the ESC system may remain turned off after the ignition has been cycled off and then back on and therefore the “ESC Off” telltale may not extinguish.

___ Yes ___ X ___ No (See remarks) ___ NA

DATA INDICATES COMPLIANCE: PASS

Remarks:

Activating the 4WD Low transfer case selection control placed the vehicle into low-range four-wheel drive configuration designed for low-speed, off-road driving. The ESC system remained turned off after the ignition had been cycled off and then back on and therefore the “ESC Off” telltale did not extinguish. This condition is allowed by FMVSS No. 126 for the 4WD Low drive configuration.
3.0 TEST DATA (CONTD)

Data Sheet 5 (Page 1 of 3)

TEST TRACK AND VEHICLE DATA

<table>
<thead>
<tr>
<th>Vehicle:</th>
<th>2011 GMC Sierra 1500 4WD Crew Cab (2WD Drive Configuration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHTSA No.</td>
<td>CB0108</td>
</tr>
<tr>
<td></td>
<td>Data Sheet completion date: 9/13/2011</td>
</tr>
</tbody>
</table>

Test Track Requirements:
- Test surface slope (0-1%): 0.5%
- Peak Friction Coefficient (at least 0.9): 0.951

Test track data meets requirements: Yes

<table>
<thead>
<tr>
<th>Full Fluid Levels:</th>
<th>Fuel</th>
<th>Yes</th>
<th>Other Fluids</th>
<th>Yes</th>
<th>(specify)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coolant</td>
<td>Yes</td>
<td>Oil, Washer Fluid, Brake Fluid</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tire Pressures:
- Required: Front Axle 210 kPa Rear Axle 210 kPa
- Actual: LF 210 kPa RF 210 kPa LR 210 kPa RR 210 kPa

Vehicle Dimensions:
- Front Track Width 172.2 cm Wheelbase 365.3 cm
- Rear Track Width 170.2 cm

Vehicle Weight Ratings:
- GAWR Front 1792 kg GAWR Rear 1792 kg

Unloaded Vehicle Weight (UVW):
- Front Axle 1451.5 kg Left Front 740.7 kg Right Front 710.8 kg
- Rear Axle 1021.0 kg Left Rear 510.3 kg Right Rear 510.7 kg
- Total UVW 2472.5 kg

Baseline Weight and Outrigger Selection (only for MPVs, Trucks, Buses)
- Calculated baseline weight (UVW + 73kg) 2545.5 kg
- Outrigger size required ("Standard" or "Heavy") Standard

Standard - Baseline weight under 2772 kg (6000 lb)
Heavy - Baseline weight equal to or greater than 2772 kg (6000 lb)
3.0 TEST DATA (CONT'D)

Data Sheet 5 (Page 2 of 3)
TEST TRACK AND VEHICLE DATA

UVW with Outriggers: (only for MPVs, Trucks, Buses)

Front axle 1476.0 kg Left front 759.3 kg Right front 716.7 kg
Rear axle 1059.5 kg Left rear 517.5 kg Right rear 542.0 kg

Total UVW with outriggers 2535.5 kg

Loaded Vehicle Weight w/Driver and Instrumentation (no Ballast)

Front axle 1557.2 kg Left front 812.4 kg Right front 744.8 kg
Rear axle 1109.1 kg Left rear 555.7 kg Right rear 553.4 kg

Vehicle Weight 2666.3 kg

Ballast Required = [Total UVW with Outriggers (if applicable)] + 168 kg - [Loaded Weight w/Driver and Instrumentation]

= 2535.5 kg + 168 kg - 2666.3 kg

= 37.2 kg

Total Loaded Vehicle Weight w/Driver and Instrumentation and Ballast

Front axle 1578.1 kg Left front 814.7 kg Right front 763.4 kg
Rear axle 1125.4 kg Left rear 562.9 kg Right rear 562.5 kg

Total UVW 2703.5 kg
3.0 TEST DATA (CONT'D)

Data Sheet 5 (Page 3 of 3)
TEST TRACK AND VEHICLE DATA

Center of Gravity and Inertial Sensing System Location at Loaded Vehicle Condition:

x-distance (longitudinal) Point of reference is the front axle centerline. (Positive from front axle toward rear of vehicle.)

y-distance (lateral) Point of reference is the vehicle centerline. (Positive from the center toward the right.)

z-distance (vertical) Point of reference is the ground plane. (Positive from the ground up.)

Locations:

<table>
<thead>
<tr>
<th>Center of Gravity</th>
<th>Inertial Sensing System</th>
</tr>
</thead>
<tbody>
<tr>
<td>x-distance</td>
<td>59.9 in 152.1 cm</td>
</tr>
<tr>
<td></td>
<td>72.3 in 183.6 cm</td>
</tr>
<tr>
<td>y-distance</td>
<td>-0.6 in -1.6 cm</td>
</tr>
<tr>
<td></td>
<td>-1.8 in -4.5 cm</td>
</tr>
<tr>
<td>z-distance</td>
<td>28.1 in 71.3 cm</td>
</tr>
<tr>
<td></td>
<td>28.2 in 71.5 cm</td>
</tr>
</tbody>
</table>

Roof Height 73.844 in 187.6 cm
Distance between ultrasonic sensors 85.8 in 217.8 cm

Remarks:

RECORDED BY: B Kebschull DATE RECORDED: 9/13/2011
APPROVED BY: P Broen DATE APPROVED: 9/13/2011
3.0 TEST DATA (CONTD)

Data Sheet 5 (Supplemental) (Page 1 of 1)
TEST TRACK AND VEHICLE DATA

Vehicle: 2011 GMC Sierra 1500 4WD Crew Cab (4WD Drive Configuration)
NHTSA No. CB0108 Data Sheet completion date: 9/14/2011

Test Track Requirements:
Test surface slope (0-1%): 0.5%
Peak Friction Coefficient (at least 0.9) 0.928
Test track data meets requirements: Yes If no, explain:

Full Fluid Levels: Fuel Yes Other Fluids Yes (specify)
Coolant Yes Oil, Washer Fluid, Brake Fluid

Tire Pressures:
Required; Front Axle 210 kPa Rear Axle 210 kPa
Actual; LF 210 kPa RF 210 kPa
LR 210 kPa RR 210 kPa

RECORDED BY: B Kebschull DATE RECORDED: 9/14/2011
APPROVED BY: J Lenkeit DATE APPROVED: 9/16/2011
3.0 TEST DATA (CONTD)

Data Sheet 6 (Page 1 of 6)
BRAKE AND TIRE CONDITIONING

Vehicle: 2011 GMC Sierra 1500 4WD Crew Cab (2WD Drive Configuration)
NHTSA No. CB0108

Measured tire pressure: LF 218 kPa RF 215 kPa
 LR 214 kPa RR 215 kPa

Wind Speed 0 m/s (10 m/sec (22 mph) max for passenger cars; 5 m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 27°C

Brake Conditioning Time: 8:50:00 AM Date: 9/13/2011

56 km/h (35 mph) Brake Stops

 Number of stops executed (10 required) 10 Stops

 Observed deceleration range (0.5g target) 0.45 - 0.55 g

72 km/h (45 mph) Brake Stops

 Number of stops executed (3 required) 3 Stops

 Number of stops ABS activated (3 required) 3 Stops

 Observed deceleration range 0.85 - 0.95 g

72 km/h (45 mph) Brake Cool Down Period

 Duration of cool down period (5 minutes min.) 5 Minutes
3.0 TEST DATA (CONTD)

Data Sheet 6 (Page 2 of 6)

BRAKE AND TIRE CONDITIONING

Tire Conditioning series No. 1

<table>
<thead>
<tr>
<th>Time:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00:00 AM</td>
<td>9/13/2011</td>
</tr>
</tbody>
</table>

Measured cold tire pressure

- LF 227 kPa
- RF 227 kPa
- LR 223 kPa
- RR 225 kPa

Wind Speed 1 m/s

- (10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) **28°C**

30 meter (100 ft) Diameter Circle Maneuver

<table>
<thead>
<tr>
<th>Test Run</th>
<th>Steering Direction</th>
<th>Target Lateral Acceleration (g)</th>
<th>Observed Lateral Acceleration (g)</th>
<th>Observed Vehicle Speed (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>Clockwise</td>
<td>0.5 – 0.6</td>
<td>0.5 - 0.6</td>
<td>30.4 - 32</td>
</tr>
<tr>
<td>4-6</td>
<td>Counterclockwise</td>
<td>0.5 – 0.6</td>
<td>0.5 - 0.6</td>
<td>30.4 - 32</td>
</tr>
</tbody>
</table>

5-1 Hz Cycle Sinusoidal Steering Maneuver to Determine Steering Wheel Angle for 0.5-0.6 g Lateral Acceleration

<table>
<thead>
<tr>
<th>Test Run</th>
<th>Data File</th>
<th>Vehicle Speed km/h(mph)</th>
<th>Steering Wheel Angle (degrees)</th>
<th>Target Peak Lateral Acceleration (g)</th>
<th>Observed Peak Lateral Acceleration (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>56 ± 2 (35 ± 1)</td>
<td>60</td>
<td>0.5 - 0.6</td>
<td>0.33</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>56 ± 2 (35 ± 1)</td>
<td>100</td>
<td>0.5 - 0.6</td>
<td>0.55</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>56 ± 2 (35 ± 1)</td>
<td></td>
<td>0.5 - 0.6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>56 ± 2 (35 ± 1)</td>
<td></td>
<td>0.5 - 0.6</td>
<td></td>
</tr>
</tbody>
</table>

Steering wheel angle that corresponds to a peak 0.5-0.6 g lateral acceleration: **100** degrees

10-1 Hz Cycle Sinusoidal Steering Maneuver

<table>
<thead>
<tr>
<th>Test Run</th>
<th>Data File</th>
<th>Vehicle Speed km/h(mph)</th>
<th>Steering Wheel Angle (degrees)</th>
<th>Target Peak Lateral Acceleration (g)</th>
<th>Observed Peak Lateral Acceleration (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>4-6</td>
<td>56 ± 2 (35 ± 1)</td>
<td>100(cycles 1-10)</td>
<td>0.5 - 0.6</td>
<td>0.55</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>56 ± 2 (35 ± 1)</td>
<td>100(cycles 1-9)</td>
<td>0.5 - 0.6</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200(cycle10)*</td>
<td>NA</td>
<td>0.74</td>
</tr>
</tbody>
</table>

* The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9
3.0 TEST DATA (CONT'D)

Data Sheet 6 (Page 3 of 6)
BRAKE AND TIRE CONDITIONING

<table>
<thead>
<tr>
<th>Tire Conditioning series No. 2</th>
<th>Time: 10:11:00 AM</th>
<th>Date: 9/13/2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured cold tire pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LF 236 kPa</td>
<td>RF 236 kPa</td>
<td></td>
</tr>
<tr>
<td>LR 228 kPa</td>
<td>RR 232 kPa</td>
<td></td>
</tr>
<tr>
<td>Wind Speed 0.5 m/s</td>
<td>(10 m/sec) (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks</td>
<td></td>
</tr>
</tbody>
</table>

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 29°C

<table>
<thead>
<tr>
<th>30 meter (100 ft) Diameter Circle Maneuver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Run</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>1-3</td>
</tr>
<tr>
<td>4-6</td>
</tr>
</tbody>
</table>

Steering wheel angle that corresponds to a peak 0.5-0.6 g lateral acceleration: 100 degrees

<table>
<thead>
<tr>
<th>10-1 Hz Cycle Sinusoidal Steering Maneuver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Run</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>1-3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

* The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9

Remarks:

RECORDED BY: B Kebschull DATE RECORDED: 9/13/2011
APPROVED BY: J Lenkeit DATE APPROVED: 9/16/2011
3.0 TEST DATA (CONTD)

Data Sheet 6 (Page 4 of 6)
BRAKE AND TIRE CONDITIONING

Vehicle: **2011 GMC Sierra 1500 4WD Crew Cab (4WD Drive Configuration)**

NHTSA No. **CB0108**

Measured tire pressure:
- LF: **216** kPa
- RF: **217** kPa
- LR: **214** kPa
- RR: **215** kPa

Wind Speed: 1 m/s (10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)): **24** °C

Brake Conditioning
- Time: **8:43:00 AM**
- Date: **9/14/2011**

56 km/h (35 mph) Brake Stops
- Number of stops executed (10 required): **10** Stops
- Observed deceleration range (0.5g target): **0.45 - 0.55** g

72 km/h (45 mph) Brake Stops
- Number of stops executed (3 required): **3** Stops
- Number of stops ABS activated (3 required): **3** Stops
- Observed deceleration range: **0.85 - 0.95** g

72 km/h (45 mph) Brake Cool Down Period
- Duration of cool down period (5 minutes min.): **5** Minutes
3.0 TEST DATA (CONTD)

Data Sheet 6 (Page 5 of 6)
BRAKE AND TIRE CONDITIONING

Tire Conditioning series No. 1

<table>
<thead>
<tr>
<th>Time:</th>
<th>8:53:00 AM</th>
<th>Date:</th>
<th>9/14/2011</th>
</tr>
</thead>
</table>

Measured cold tire pressure

<table>
<thead>
<tr>
<th>Tire</th>
<th>Pressure (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
<td>228</td>
</tr>
<tr>
<td>RF</td>
<td>230</td>
</tr>
<tr>
<td>LR</td>
<td>223</td>
</tr>
<tr>
<td>RR</td>
<td>226</td>
</tr>
</tbody>
</table>

Wind Speed __1__ m/s

(10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 26°C

<table>
<thead>
<tr>
<th>30 meter (100 ft) Diameter Circle Maneuver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Run</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>1-3</td>
</tr>
<tr>
<td>4-6</td>
</tr>
</tbody>
</table>

5-1 Hz Cycle Sinusoidal Steering Maneuver to Determine Steering Wheel Angle for 0.5-0.6 g Lateral Acceleration

<table>
<thead>
<tr>
<th>Test Run</th>
<th>Data File</th>
<th>Vehicle Speed (km/h(mph))</th>
<th>Steering Wheel Angle (degrees)</th>
<th>Target Peak Lateral Acceleration (g)</th>
<th>Observed Peak Lateral Acceleration (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>56 ± 2 (35 ± 1)</td>
<td>60</td>
<td>0.5 - 0.6</td>
<td>0.33</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>56 ± 2 (35 ± 1)</td>
<td>100</td>
<td>0.5 - 0.6</td>
<td>0.51</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>56 ± 2 (35 ± 1)</td>
<td></td>
<td>0.5 - 0.6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>56 ± 2 (35 ± 1)</td>
<td></td>
<td>0.5 - 0.6</td>
<td></td>
</tr>
</tbody>
</table>

Steering wheel angle that corresponds to a peak 0.5-0.6 g lateral acceleration: __100__ degrees

10-1 Hz Cycle Sinusoidal Steering Maneuver

<table>
<thead>
<tr>
<th>Test Run</th>
<th>Data File</th>
<th>Vehicle Speed (km/h(mph))</th>
<th>Steering Wheel Angle (degrees)</th>
<th>Target Peak Lateral Acceleration (g)</th>
<th>Observed Peak Lateral Acceleration (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>4-6</td>
<td>56 ± 2 (35 ± 1)</td>
<td>100 (cycles 1-10)</td>
<td>0.5 - 0.6</td>
<td>0.51</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>56 ± 2 (35 ± 1)</td>
<td>100 (cycles 1-9)</td>
<td>0.5 - 0.6</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200 (cycle10)*</td>
<td>NA</td>
<td>0.75</td>
</tr>
</tbody>
</table>

* The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9
Data Sheet 6 (Page 6 of 6)
BRAKE AND TIRE CONDITIONING

Tire Conditioning series No. 2 Time: 10:23:00 AM Date: 9/14/2011

Measured cold tire pressure

<table>
<thead>
<tr>
<th></th>
<th>LF</th>
<th>RF</th>
<th>LR</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>pressure (kPa)</td>
<td>234</td>
<td>235</td>
<td>225</td>
<td>228</td>
</tr>
</tbody>
</table>

Wind Speed 1 m/s (10 m/sec (22 mph) max for passenger cars; 5 m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 28°C

30 meter (100 ft) Diameter Circle Maneuver

<table>
<thead>
<tr>
<th>Test Run</th>
<th>Steering Direction</th>
<th>Target Lateral Acceleration (g)</th>
<th>Observed Lateral Acceleration (g)</th>
<th>Observed Vehicle Speed (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>Clockwise</td>
<td>0.5 - 0.6</td>
<td>0.5 - 0.6</td>
<td>30.4 - 32</td>
</tr>
<tr>
<td>4-6</td>
<td>Counterclockwise</td>
<td>0.5 - 0.6</td>
<td>0.5 - 0.6</td>
<td>30.4 - 32</td>
</tr>
</tbody>
</table>

Steering wheel angle that corresponds to a peak 0.5-0.6 g lateral acceleration: 100 degrees

10-1 Hz Cycle Sinusoidal Steering Maneuver

<table>
<thead>
<tr>
<th>Test Run</th>
<th>Data File</th>
<th>Vehicle Speed km/h (mph)</th>
<th>Steering Wheel Angle (degrees)</th>
<th>Target Peak Lateral Acceleration (g)</th>
<th>Observed Peak Lateral Acceleration (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>16-18</td>
<td>56 ± 2 (35 ± 1)</td>
<td>100 (cycles 1-10)</td>
<td>0.5 - 0.6</td>
<td>0.51</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>56 ± 2 (35 ± 1)</td>
<td>100 (cycles 1-9)</td>
<td>0.5 - 0.6</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200 (cycle 10)*</td>
<td>NA</td>
<td>0.75</td>
</tr>
</tbody>
</table>

* The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9

Remarks:

RECORDED BY: B Kebschull DATE RECORDED: 9/14/2011
APPROVED BY: J Lenkeit DATE APPROVED: 9/16/2011
3.0 TEST DATA (CONTD)

Data Sheet 7 (Page 1 of 4)
SLOWLY INCREASING STEER (SIS) MANEUVER (2WD)

Vehicle: 2011 GMC Sierra 1500 4WD Crew Cab (2WD Drive Configuration)
NHTSA No. CB0108

Measured tire pressure: LF 232 kPa RF 232 kPa
LR 225 kPa RR 229 kPa

Wind Speed 1 m/s
(10 m/sec (22 mph) max for passenger cars; 5 m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 28 °C

Selected drive configuration RWD

Selected Mode: Default

Preliminary Left Steer Maneuver:
Lateral Acceleration measured at 30 degrees steering wheel angle

\[
a_{y,30\text{degrees}} = 0.25 \text{ g}
\]

Assuming a linear relationship the following ratio should be used to calculate the steering wheel angle at 0.55g:

\[
\frac{30 \text{ degrees}}{a_{y,30\text{degrees}}} = \frac{\delta_{\text{SIS}}}{0.55 \text{ g}} \quad \Rightarrow \quad \delta_{\text{sis}} = 66.0 \text{ degrees (at .55g)}
\]

\[
\delta_{\text{sis}} = 70 \text{ degrees (rounded)}
\]

Steering Wheel Angle at Corrected 0.3g Lateral Acceleration:

<table>
<thead>
<tr>
<th>Maneuver</th>
<th>Initial Steer Direction</th>
<th>Time Clock (5 min max between runs)</th>
<th>Steering Wheel Angle to nearest 0.1° (degrees)</th>
<th>Data Run</th>
<th>Good/NG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Left</td>
<td>9:36</td>
<td>-41.2</td>
<td>10</td>
<td>Good</td>
</tr>
<tr>
<td>2</td>
<td>Left</td>
<td>9:39</td>
<td>-41.1</td>
<td>11</td>
<td>Good</td>
</tr>
<tr>
<td>3</td>
<td>Left</td>
<td>9:43</td>
<td>-41.8</td>
<td>12</td>
<td>Good</td>
</tr>
<tr>
<td>4</td>
<td>Left</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Left</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Right</td>
<td>9:47</td>
<td>39.5</td>
<td>13</td>
<td>Good</td>
</tr>
<tr>
<td>2</td>
<td>Right</td>
<td>9:50</td>
<td>39.8</td>
<td>14</td>
<td>Good</td>
</tr>
<tr>
<td>3</td>
<td>Right</td>
<td>9:54</td>
<td>40.1</td>
<td>15</td>
<td>Good</td>
</tr>
<tr>
<td>4</td>
<td>Right</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Right</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.0 TEST DATA (CONTD)

Data Sheet 7 (Page 2 of 4)
SLOWLY INCREASING STEER (SIS) MANEUVER (2WD)

Average Overall Steering Wheel Angle:

\[
\delta_{0.3 \text{ g, overall}} = \frac{1}{6} \left(|\delta_{0.3 \text{ g, left}} (1)| + |\delta_{0.3 \text{ g, left}} (2)| + |\delta_{0.3 \text{ g, left}} (3)| + \delta_{0.3 \text{ g, right}} (1) + \delta_{0.3 \text{ g, right}} (2) + \delta_{0.3 \text{ g, right}} (3) \right)
\]

\[
\delta_{0.3 \text{ g, overall}} = 40.6 \text{ degrees}
\]

[to nearest 0.1 degree]

Remarks:

__

RECORDED BY:
B Kebschull
DATE RECORDED: 9/13/2011

APPROVED BY:
P Broen
DATE APPROVED: 9/13/2011
3.0 TEST DATA (CONTD)

Data Sheet 7 (Page 3 of 4)
SLOWLY INCREASING STEER (SIS) MANEUVER (4WD)

Vehicle: 2011 GMC Sierra 1500 4WD Crew Cab (4WD Drive Configuration)
NHTSA No. CB0108

Measured tire pressure:

<table>
<thead>
<tr>
<th>Tyre Position</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
<td>231 kPa</td>
</tr>
<tr>
<td>RF</td>
<td>233 kPa</td>
</tr>
<tr>
<td>LR</td>
<td>224 kPa</td>
</tr>
<tr>
<td>RR</td>
<td>227 kPa</td>
</tr>
</tbody>
</table>

Wind Speed 1 m/s
(10 m/sec (22 mph) max for passenger cars; 5 m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 27°C

Selected drive configuration 4WD High

Selected Mode: Nominal

Preliminary Left Steer Maneuver:
Lateral Acceleration measured at 30 degrees steering wheel angle

\[a_{y,30\text{degrees}} = 0.25 \text{ g} \]

Assuming a linear relationship the following ratio should be used to calculate the steering wheel angle at 0.55g:

\[\frac{30 \text{ degrees}}{a_{y,30\text{degrees}}} = \frac{\delta_{\text{SIS}}}{0.55 \text{ g}} \]

\[\delta_{\text{SIS}} = \frac{66.0}{0.55} \text{ degrees (@ 0.55g)} \]

\[\delta_{\text{SIS}} = 70 \text{ degrees (rounded)} \]

Steering Wheel Angle at Corrected 0.3g Lateral Acceleration:

<table>
<thead>
<tr>
<th>Maneuver</th>
<th>Initial Steer Direction</th>
<th>Time Clock (5 min max between runs)</th>
<th>Steering Wheel Angle to nearest 0.1° (degrees)</th>
<th>Data Run</th>
<th>Good/NG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Left</td>
<td>9:56</td>
<td>-41.9</td>
<td>10</td>
<td>Good</td>
</tr>
<tr>
<td>2</td>
<td>Left</td>
<td>9:59</td>
<td>-42.3</td>
<td>11</td>
<td>Good</td>
</tr>
<tr>
<td>3</td>
<td>Left</td>
<td>10:02</td>
<td>-42.1</td>
<td>12</td>
<td>Good</td>
</tr>
<tr>
<td>4</td>
<td>Left</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Left</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Right</td>
<td>10:05</td>
<td>41.6</td>
<td>13</td>
<td>Good</td>
</tr>
<tr>
<td>2</td>
<td>Right</td>
<td>10:10</td>
<td>41.3</td>
<td>14</td>
<td>Good</td>
</tr>
<tr>
<td>3</td>
<td>Right</td>
<td>10:13</td>
<td>41.3</td>
<td>15</td>
<td>Good</td>
</tr>
<tr>
<td>4</td>
<td>Right</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Right</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.0 TEST DATA (CONT'D)

Data Sheet 7 (Page 4 of 4)
SLOWLY INCREASING STEER (SIS) MANEUVER (4WD)

Average Overall Steering Wheel Angle:

\[\delta_{0.3 \text{ g, overall}} = \left(|\delta_{0.3 \text{ g, left (1)}}| + |\delta_{0.3 \text{ g, left (2)}}| + |\delta_{0.3 \text{ g, left (3)}}| + \delta_{0.3 \text{ g, right (1)}} + \delta_{0.3 \text{ g, right (2)}} + \delta_{0.3 \text{ g, right (3)}} \right) / 6 \]

\[\delta_{0.3 \text{ g, overall}} = 41.7 \text{ degrees} \]

[to nearest 0.1 degree]

Remarks:

__

RECORDED BY: B Kebschull DATE RECORDED: 9/14/2011
APPROVED BY: J Lenkeit DATE APPROVED: 9/16/2011
3.0 TEST DATA (CONT'D)

Data Sheet 8 (Page 1 of 6)

VEHICLE LATERAL STABILITY AND RESPONSIVENESS (2WD)

Vehicle: 2011 GMC Sierra 1500 4WD Crew Cab (2WD Drive Configuration)

NHTSA No.: CB0108
Data sheet completion date: 9/13/2011

<table>
<thead>
<tr>
<th>Maneuver #</th>
<th>Clock Time (1.5 – 5.0 min max between runs)</th>
<th>Commanded Steering Wheel Angle¹</th>
<th>Yaw Rates (degrees/sec)</th>
<th>YRR at 1.0 sec after COS [< 35%]</th>
<th>YRR at 1.75 sec after COS [< 20%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Scalar (* δ₀.₃ g)</td>
<td>Angle (degrees)</td>
<td>Peak</td>
<td>1.0sec</td>
</tr>
<tr>
<td>21</td>
<td>10:47</td>
<td>1.5</td>
<td>61</td>
<td>12.19</td>
<td>-0.29</td>
</tr>
<tr>
<td>22</td>
<td>10:50</td>
<td>2.0</td>
<td>81</td>
<td>15.65</td>
<td>-0.27</td>
</tr>
<tr>
<td>23</td>
<td>10:53</td>
<td>2.5</td>
<td>102</td>
<td>19.27</td>
<td>-0.25</td>
</tr>
<tr>
<td>24</td>
<td>10:56</td>
<td>3.0</td>
<td>122</td>
<td>23.15</td>
<td>-0.19</td>
</tr>
<tr>
<td>25</td>
<td>10:59</td>
<td>3.5</td>
<td>142</td>
<td>22.86</td>
<td>-0.16</td>
</tr>
<tr>
<td>26</td>
<td>11:02</td>
<td>4.0</td>
<td>162</td>
<td>25.74</td>
<td>-0.35</td>
</tr>
<tr>
<td>27</td>
<td>11:05</td>
<td>4.5</td>
<td>183</td>
<td>26.27</td>
<td>-0.19</td>
</tr>
<tr>
<td>28</td>
<td>11:08</td>
<td>5.0</td>
<td>203</td>
<td>26.09</td>
<td>-0.39</td>
</tr>
<tr>
<td>29</td>
<td>11:11</td>
<td>5.5</td>
<td>223</td>
<td>27.94</td>
<td>-0.39</td>
</tr>
<tr>
<td>30</td>
<td>11:13</td>
<td>6.0</td>
<td>244</td>
<td>27.72</td>
<td>-0.49</td>
</tr>
<tr>
<td>31</td>
<td>11:16</td>
<td>6.5</td>
<td>264</td>
<td>27.76</td>
<td>-0.43</td>
</tr>
<tr>
<td>32</td>
<td>11:19</td>
<td>-</td>
<td>270</td>
<td>28.65</td>
<td>-0.12</td>
</tr>
</tbody>
</table>

1. Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5*δ₀.₃ g, overall or 270 degrees is utilized, whichever is greater. Provided the calculated magnitude of 6.5*δ₀.₃ g, overall is less than or equal to 300 degrees. If 6.5*δ₀.₃ g, overall is less than 270 degrees, maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5*δ₀.₃ g, overall without exceeding the 270 degree steering wheel angle.
3.0 TEST DATA (CONTD)

Data Sheet 8 (2 of 6)

VEHICLE LATERAL STABILITY AND RESPONSIVENESS (2WD)

<table>
<thead>
<tr>
<th>Maneuver #</th>
<th>Clock Time</th>
<th>Commanded Steering Wheel Angle¹</th>
<th>Yaw Rates (degrees/sec)</th>
<th>YRR % at 1.0 sec after COS < 35%</th>
<th>YRR % at 1.75 sec after COS < 20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>11:22</td>
<td>1.5</td>
<td>-12.25</td>
<td>0.08</td>
<td>0.10</td>
</tr>
<tr>
<td>34</td>
<td>11:25</td>
<td>2.0</td>
<td>-16.04</td>
<td>0.14</td>
<td>0.86</td>
</tr>
<tr>
<td>35</td>
<td>11:28</td>
<td>2.5</td>
<td>-19.57</td>
<td>0.20</td>
<td>0.12</td>
</tr>
<tr>
<td>36</td>
<td>11:31</td>
<td>3.0</td>
<td>-23.21</td>
<td>0.15</td>
<td>0.00</td>
</tr>
<tr>
<td>37</td>
<td>11:34</td>
<td>3.5</td>
<td>-23.53</td>
<td>0.19</td>
<td>0.22</td>
</tr>
<tr>
<td>38</td>
<td>11:37</td>
<td>4.0</td>
<td>-24.53</td>
<td>0.31</td>
<td>0.07</td>
</tr>
<tr>
<td>39</td>
<td>11:40</td>
<td>4.5</td>
<td>-26.82</td>
<td>0.27</td>
<td>0.20</td>
</tr>
<tr>
<td>40</td>
<td>11:43</td>
<td>5.0</td>
<td>-28.07</td>
<td>0.18</td>
<td>-0.07</td>
</tr>
<tr>
<td>41</td>
<td>11:46</td>
<td>5.5</td>
<td>-27.38</td>
<td>0.43</td>
<td>0.18</td>
</tr>
<tr>
<td>42</td>
<td>11:50</td>
<td>6.0</td>
<td>-28.33</td>
<td>0.27</td>
<td>0.04</td>
</tr>
<tr>
<td>43</td>
<td>11:53</td>
<td>6.5</td>
<td>-29.27</td>
<td>0.37</td>
<td>0.13</td>
</tr>
<tr>
<td>44</td>
<td>11:56</td>
<td>7.0</td>
<td>-28.48</td>
<td>0.30</td>
<td>0.16</td>
</tr>
</tbody>
</table>

1. Maneuver execution should continue until a steering wheel angle magnitude factor of $6.5^\circ \delta0.3 g_{\text{overall}}$ or 270 degrees is utilized, whichever is greater provided the calculated $6.5^\circ \delta0.3 g_{\text{overall}}$ is less than or equal to 300 degrees. If $6.5^\circ \delta0.3 g_{\text{overall}}$ is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of $0.5^\circ \delta0.3 g_{\text{overall}}$ without exceeding the 270 degree steering wheel angle.

During execution of the Sine with Dwell maneuvers were any of the following events observed?

- Rim-to-pavement contact [] Yes [X] No
- Tire debeading [] Yes [X] No
- Loss of pavement contact of vehicle tires [X] Yes [] No
- Did the test driver experience any vehicle loss of control or spinout? [] Yes [X] No

If “Yes” explain the event and consult with the COTR.
Responsiveness – Lateral Displacement

<table>
<thead>
<tr>
<th>Maneuver #</th>
<th>Initial Steer Direction</th>
<th>Commanded Steering Wheel Angle (5.0*δ₀.3 g, overall or greater)</th>
<th>Calculated Lateral Displacement¹</th>
<th>Distance (m)</th>
<th>Pass/Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Counter Clockwise</td>
<td>5.0</td>
<td>-2.45</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Counter Clockwise</td>
<td>5.5</td>
<td>-2.58</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Counter Clockwise</td>
<td>6.0</td>
<td>-2.53</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Counter Clockwise</td>
<td>6.5</td>
<td>-2.44</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Counter Clockwise</td>
<td>-</td>
<td>-2.52</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Clockwise</td>
<td>5.0</td>
<td>2.41</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Clockwise</td>
<td>5.5</td>
<td>2.39</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Clockwise</td>
<td>6.0</td>
<td>2.40</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Clockwise</td>
<td>6.5</td>
<td>2.46</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Clockwise</td>
<td>-</td>
<td>2.40</td>
<td>PASS</td>
<td></td>
</tr>
</tbody>
</table>

1. Lateral displacement should be $\geq 1.83 \text{ m (6 ft)}$ for vehicle with a GVWR of 3,500 kg (7,716 lb) or less; and $\geq 1.52 \text{ m (5 ft)}$ for vehicles with GVWR greater than 3,500 kg (7,716 lb).

DATA INDICATES COMPLIANCE:

✅ PASS ❋ FAIL

Remarks: *During Run 30 the right front wheel lifted briefly approximately 1 inch from pavement on reversal as determined by visual observation.*

RECORDED BY: P Broen **DATE RECORDED:** 9/13/2011

APPROVED BY: B Kebschull **DATE APPROVED:** 9/13/2011
3.0 TEST DATA (CONTD)

Data Sheet 8 (Page 4 of 6)

VEHICLE LATERAL STABILITY AND RESPONSIVENESS (4WD)

Vehicle: *2011 GMC Sierra 1500 4WD Crew Cab* (4WD Drive Configuration)

NHTSA No. **CB0108**
Data sheet completion date: **9/14/2011**

<table>
<thead>
<tr>
<th>Maneuver #</th>
<th>Clock Time (1.5 – 5.0 min max between runs)</th>
<th>Commanded Steering Wheel Angle¹</th>
<th>Yaw Rates (degrees/sec)</th>
<th>YRR at 1.0 sec after COS [< 35%]</th>
<th>YRR at 1.75 sec after COS [< 20%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Scalar (δ₀.₃ g)</td>
<td>Angle (degrees)</td>
<td>ψₚₑ𝐚ᵏ</td>
<td>ψ₁.₀sec</td>
</tr>
<tr>
<td>22</td>
<td>10:49</td>
<td>1.5 63</td>
<td>12.53</td>
<td>-0.04</td>
<td>-0.05</td>
</tr>
<tr>
<td>23</td>
<td>10:52</td>
<td>2.0 83</td>
<td>16.06</td>
<td>-0.10</td>
<td>-0.18</td>
</tr>
<tr>
<td>24</td>
<td>10:55</td>
<td>2.5 104</td>
<td>19.29</td>
<td>-0.26</td>
<td>-0.16</td>
</tr>
<tr>
<td>25</td>
<td>10:59</td>
<td>3.0 125</td>
<td>23.09</td>
<td>-0.30</td>
<td>-0.28</td>
</tr>
<tr>
<td>26</td>
<td>11:02</td>
<td>3.5 146</td>
<td>22.67</td>
<td>-0.43</td>
<td>-0.42</td>
</tr>
<tr>
<td>27</td>
<td>11:06</td>
<td>4.0 167</td>
<td>25.36</td>
<td>-0.38</td>
<td>-0.15</td>
</tr>
<tr>
<td>28</td>
<td>11:09</td>
<td>4.5 188</td>
<td>26.48</td>
<td>-0.31</td>
<td>-0.20</td>
</tr>
<tr>
<td>29</td>
<td>11:12</td>
<td>5.0 208</td>
<td>26.43</td>
<td>-0.39</td>
<td>-0.18</td>
</tr>
<tr>
<td>30</td>
<td>11:15</td>
<td>5.5 229</td>
<td>27.52</td>
<td>-0.62</td>
<td>-0.39</td>
</tr>
<tr>
<td>31</td>
<td>11:18</td>
<td>6.0 250</td>
<td>27.69</td>
<td>-0.27</td>
<td>-0.07</td>
</tr>
<tr>
<td>32</td>
<td>11:22</td>
<td>6.5 271</td>
<td>27.46</td>
<td>-0.38</td>
<td>-0.03</td>
</tr>
</tbody>
</table>

1. Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5 *δ₀.₃ g, overall* or 270 degrees is utilized, whichever is greater provided the calculated magnitude of 6.5 *δ₀.₃ g, overall* is less than or equal to 300 degrees. If 6.5 *δ₀.₃ g, overall* is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5 *δ₀.₃ g, overall* without exceeding the 270 degree steering wheel angle.
3.0 TEST DATA (CONTD)

Data Sheet 8 (5 of 6)

VEHICLE LATERAL STABILITY AND RESPONSIVENESS (4WD)

LATERAL STABILITY TEST SERIES NO. 2 – Clockwise Initial Steer Direction

<table>
<thead>
<tr>
<th>Maneuver #</th>
<th>Clock Time (1.5 – 5.0 min max between runs)</th>
<th>Commanded Steering Wheel Angle¹</th>
<th>Yaw Rates (degrees/sec)</th>
<th>YRR at 1.0 sec after COS [%]</th>
<th>YRR at 1.75 sec after COS [%]</th>
<th>% Pass/Fail</th>
<th>% Pass/Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>11:26</td>
<td>1.5 63</td>
<td>-12.29 0.25 0.13</td>
<td>-2.02 PASS</td>
<td>-1.02 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>34</td>
<td>11:30</td>
<td>2.0 83</td>
<td>-16.24 0.24 0.19</td>
<td>-1.45 PASS</td>
<td>-1.17 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>35</td>
<td>11:33</td>
<td>2.5 104</td>
<td>-19.82 0.15 0.28</td>
<td>-0.76 PASS</td>
<td>-1.41 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>36</td>
<td>11:36</td>
<td>3.0 125</td>
<td>-23.09 0.41 0.27</td>
<td>-1.76 PASS</td>
<td>-1.18 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>37</td>
<td>11:39</td>
<td>3.5 146</td>
<td>-24.19 0.41 0.31</td>
<td>-1.71 PASS</td>
<td>-1.29 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>38</td>
<td>11:42</td>
<td>4.0 167</td>
<td>-25.26 0.41 0.23</td>
<td>-1.63 PASS</td>
<td>-0.89 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>39</td>
<td>11:45</td>
<td>4.5 188</td>
<td>-25.81 0.20 0.15</td>
<td>-0.79 PASS</td>
<td>-0.59 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>40</td>
<td>11:48</td>
<td>5.0 208</td>
<td>-27.76 0.34 0.23</td>
<td>-1.22 PASS</td>
<td>-0.82 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>41</td>
<td>11:50</td>
<td>5.5 229</td>
<td>-27.44 0.37 0.18</td>
<td>-1.34 PASS</td>
<td>-0.64 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>42</td>
<td>11:53</td>
<td>6.0 250</td>
<td>-28.74 0.07 -0.14</td>
<td>-0.24 PASS</td>
<td>0.48 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>43</td>
<td>11:56</td>
<td>6.5 271</td>
<td>-28.80 0.05 -0.05</td>
<td>-0.17 PASS</td>
<td>0.18 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
</tbody>
</table>

1. Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5°*δ_0.3 g, overall or 270 degrees is utilized, whichever is greater provided the calculated 6.5°*δ_0.3 g, overall is less than or equal to 300 degrees. If 6.5°*δ_0.3 g, overall is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5°*δ_0.3 g, overall without exceeding the 270 degree steering wheel angle.

During execution of the Sine with Dwell maneuvers were any of the following events observed?

- Rim-to-pavement contact: ______________ Yes ______________ No
- Tire debeading: ______________ Yes ______________ No
- Loss of pavement contact of vehicle tires: ______________ Yes ______________ No
- Did the test driver experience any vehicle loss of control or spinout? ______________ Yes ______________ No

If “Yes” explain the event and consult with the COTR.
Responsiveness – Lateral Displacement

<table>
<thead>
<tr>
<th>Maneuver #</th>
<th>Initial Steer Direction</th>
<th>Commanded Steering Wheel Angle (5.0° $\delta_{0.3 \text{ g}, \text{ overall}}$ or greater)</th>
<th>Calculated Lateral Displacement¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Scalar Angle * $\delta_{0.3 \text{ g}}$</td>
<td>Distance (m)</td>
</tr>
<tr>
<td>29</td>
<td>Counter Clockwise</td>
<td>5.0 208</td>
<td>-2.42</td>
</tr>
<tr>
<td>30</td>
<td>Counter Clockwise</td>
<td>5.5 229</td>
<td>-2.47</td>
</tr>
<tr>
<td>31</td>
<td>Counter Clockwise</td>
<td>6.0 250</td>
<td>-2.43</td>
</tr>
<tr>
<td>32</td>
<td>Counter Clockwise</td>
<td>6.5 271</td>
<td>-2.45</td>
</tr>
<tr>
<td>40</td>
<td>Clockwise</td>
<td>5.0 208</td>
<td>2.42</td>
</tr>
<tr>
<td>41</td>
<td>Clockwise</td>
<td>5.5 229</td>
<td>2.43</td>
</tr>
<tr>
<td>42</td>
<td>Clockwise</td>
<td>6.0 250</td>
<td>2.46</td>
</tr>
<tr>
<td>43</td>
<td>Clockwise</td>
<td>6.5 271</td>
<td>2.54</td>
</tr>
</tbody>
</table>

1. Lateral displacement should be ≥ 1.83 m (6 ft) for vehicle with a GVWR of 3,500 kg (7,716 lb) or less; and ≥ 1.52 m (5 ft) for vehicles with GVWR greater than 3,500 kg (7,716 lb).

DATA INDICATES COMPLIANCE:

☑ PASS □ FAIL

Remarks:

RECORDED BY: B Kebschull **DATE RECORDED:** 9/14/2011

APPROVED BY: J Lenkeit **DATE APPROVED:** 9/16/2011
3.0 TEST DATA (CONTD)

Data Sheet 9 (Page 1 of 2)
MALFUNCTION WARNING TESTS

Vehicle: 2011 GMC Sierra 1500 4WD Crew Cab
NHTSA No. CB0108 Data Sheet Completion Date: 9/13/2011

TEST 1

MALFUNCTION SIMULATION: Describe method of malfunction simulation

Disconnected left front wheel speed sensor

MALFUNCTION TELLTALE ILLUMINATION:

Telltale illuminates and remains illuminated after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

\[
\begin{array}{c|c|c}
& Yes & No \\
\hline
X & \ & \ \\
\end{array}
\]

Time for telltale to illuminate after ignition system is activated and vehicle speed of \(48 \pm 8\) km/h (30 \pm 5 mph) is reached.

\[
\begin{array}{c|c|c}
0 & \ & \\
\hline
& Pass & Fail \\
\end{array}
\]

ESC SYSTEM RESTORATION

Telltale extinguishes after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

\[
\begin{array}{c|c|c}
& Yes & No \\
\hline
X & \ & \ \\
\end{array}
\]

Time for telltale to extinguish after ignition system is activated and vehicle speed of \(48 \pm 8\) km/h (30 \pm 5 mph) is reached.

\[
\begin{array}{c|c|c}
0 & \ & \\
\hline
& Pass & Fail \\
\end{array}
\]

TEST 1 DATA INDICATES COMPLIANCE: PASS

Remarks: Telltale illuminated immediately upon ignition, after sensor was disconnected. In addition, the alternating messages "Service Stabilitrak" and "Service Traction Control" appeared in the common display area in the lower part of the tachometer. The telltale and messages extinguished immediately upon cycling the ignition, after the sensor was reconnected. No driving was required.

RECORDED BY: B Kebschull DATE RECORDED: 9/13/2011
APPROVED BY: P Broen DATE APPROVED 9/13/2011
3.0 TEST DATA (CONT'D)

Data Sheet 9 (Page 2 of 2)
MALFUNCTION WARNING TESTS

Vehicle: 2011 GMC Sierra 1500 4WD Crew Cab
NHTSA No. CB0108 Data Sheet Completion Date: 9/13/2011

TEST 2

MALFUNCTION SIMULATION: Describe method of malfunction simulation

Removed ABS Controller fuse.

MALFUNCTION TELLTALE ILLUMINATION:
Telltales illuminate and remain illuminated after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

Time for telltales to illuminate after ignition system is activated and vehicle speed of 48 ± 8 km/h (30 ± 5 mph) is reached.

0 Seconds (must be within 2 minutes)

<table>
<thead>
<tr>
<th></th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
</table>

ESC SYSTEM RESTORATION

Telltales extinguish after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

Time for telltales to extinguish after ignition system is activated and vehicle speed of 48 ± 8 km/h (30 ± 5 mph) is reached.

0 Seconds (must be within 2 minutes)

<table>
<thead>
<tr>
<th></th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
</table>

TEST 2 DATA INDICATES COMPLIANCE: PASS

Remarks: Telltales illuminated immediately upon ignition, after sensor was disconnected. In addition, the red "BRAKE" and ABS telltales also illuminated. The telltales extinguished immediately upon cycling the ignition, after the fuse was re-installed. No driving was required.

RECORDED BY: B Kebschull DATE RECORDED: 9/13/2011
APPROVED BY: P Broen DATE APPROVED 9/13/2011
4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION (1 OF 2)

TABLE 1. TEST INSTRUMENTATION

<table>
<thead>
<tr>
<th>Type</th>
<th>Output</th>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Specifics</th>
<th>Serial Number</th>
<th>Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tire Pressure Gauge</td>
<td>Vehicle Tire Pressure</td>
<td>0-100 psi 0-690 kPa</td>
<td>1 psi 6.89 kPa</td>
<td>0.5 psi 3.45 kPa</td>
<td>Ashcroft D1005PS</td>
<td>1039350</td>
<td>By: DRI Date: 2/22/11 Due: 2/22/12</td>
</tr>
<tr>
<td>Platform Scales</td>
<td>Vehicle Total, Wheel, and Axle Load</td>
<td>8000 lb 35.6 kN</td>
<td>0.5 lb 2.2 N</td>
<td>± 1.0% of applied load</td>
<td>Intercomp Model SWII</td>
<td>24032361</td>
<td>By: DRI Date: 2/23/11 Due: 2/23/12</td>
</tr>
<tr>
<td>Automated Steering Machine with Steering Angle Encoder</td>
<td>Handwheel Angle</td>
<td>± 800 deg</td>
<td>0.25 deg</td>
<td>± 0.25 deg</td>
<td>Heitz Automotive Testing Model: Sprint 3</td>
<td>60304</td>
<td>By: DRI Date: 3/30/11 Due: 3/30/12</td>
</tr>
<tr>
<td>Multi-Axis Inertial Sensing System</td>
<td>Longitudinal, Lateral, and Vertical Acceleration</td>
<td>Accelerometer s: ± 2 g Angular Rate Sensors: ± 100 deg/s</td>
<td>Accelerometers: ≤10 ug Angular Rate Sensors: ≤0.004 deg/s</td>
<td>Accelerometers: ≤0.05% of full range Angular Rate Sensors: 0.05% of full range</td>
<td>BEI Technologies Model: MotionPAK MP-1</td>
<td>0767</td>
<td>By: Systron Donner Date: 3/8/11 Due: 3/8/12</td>
</tr>
<tr>
<td>Radar Speed Sensor and Dashboard Display</td>
<td>Vehicle Speed</td>
<td>0-125 mph 0-200 km/h</td>
<td>0.009 mph 0.014 km/h</td>
<td>± 0.25% of full scale</td>
<td>A-DAT Corp. Radar Model: DRS-6 Display Model: RD-2</td>
<td>1400.604</td>
<td>By: DRI Date: 5/3/11 Due: 5/3/12</td>
</tr>
<tr>
<td>Ultrasonic Distance Measuring System</td>
<td>Left and Right Side Vehicle Height</td>
<td>5-24 inches 127-610 mm</td>
<td>0.01 inches 0.254 mm</td>
<td>± 0.25% of maximum distance</td>
<td>Massa Products Corporation Model: M-5000/220</td>
<td>DOT-NHTSA D2646</td>
<td>By: DRI Date: 2/22/11 Due: 2/21/12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DOT-NHTSA D3272</td>
<td>By: DRI Date: 2/22/11 Due: 2/22/12</td>
</tr>
</tbody>
</table>
4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION (2 OF 2)

TABLE 1. TEST INSTRUMENTATION (CONTD)

<table>
<thead>
<tr>
<th>Type</th>
<th>Output</th>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Specifics</th>
<th>Serial Number</th>
<th>Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Acquisition System</td>
<td>Record Time; Velocity; Distance; Lateral, Longitudinal, and Vertical Accelerations; Roll, Yaw, and Pitch Rates; Steering Wheel Angle.</td>
<td>Sufficient to meet or exceed individual sensors</td>
<td>200 Hz</td>
<td>Sufficient to meet or exceed individual sensors</td>
<td>SoMat eDaq ECPU processor</td>
<td>MSHLB.03-2476</td>
<td>By: DRI Date: 3/29/11 Due: 3/29/12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SoMat High level Board EHLS</td>
<td>MSHLS.03-3182</td>
<td>By: DRI Date: 3/29/11 Due: 3/29/12</td>
</tr>
<tr>
<td>Load Cell</td>
<td>Vehicle Brake Pedal Force</td>
<td>0-300 lb</td>
<td>1 lb</td>
<td>±0.05% of full scale</td>
<td>Lebow 3663-300</td>
<td>767</td>
<td>Operationally verified by DRI prior to test</td>
</tr>
<tr>
<td>Coordinate Measurement Machine</td>
<td>Inertial Sensing System Coordinates</td>
<td>0-8 ft</td>
<td>±.0020 in.</td>
<td>±.051 mm</td>
<td>Faro Arm Fusion</td>
<td>UO8-05-08-06636</td>
<td>By: DRI Date: 11/7/10 Due: 11/7/11</td>
</tr>
<tr>
<td>Outriggers</td>
<td>No output. Safety Item.</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>DRI manufactured Aluminum meeting the weight and MOI specifications of Docket 2007-27662-11</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
Figure 5.1. Front View of Test Vehicle

2011 GMC Sierra 1500
FMVSS No. 126
NHTSA Number CB0108
Figure 5.2. Rear View of Test Vehicle
Figure 5.3. Vehicle Certification Label
5.0 PHOTOGRAPHS (4 of 15)

Figure 5.4. Vehicle Placard

2011 GMC Sierra 1500
FMVSS No. 126
NHTSA Number CB0108
Figure 5.5. Window Sticker (Monroney Label)
Figure 5.6. Front View of Vehicle as Tested
Figure 5.7. Rear View of Vehicle as Tested

2011 GMC Sierra 1500
FMVSS No. 126
NHTSA Number CB0108
Figure 5.8. Ultrasonic Height Sensor Mounted on Side of Vehicle for Determining Body Roll Angle
Figure 5.9. Rear Mounted Speed Sensor
Figure 5.10. Steering Controller and Data Acquisition Computer
Figure 5.11. Inertial Measurement Unit Mounted in Vehicle

2011 GMC Sierra 1500
FMVSS No. 126
NHTSA Number CB0108
Figure 5.12. Brake Pedal Load Cell

2011 GMC Sierra 1500
FMVSS No. 126
NHTSA Number CB0108
Figure 5.13. Telltale and Messages for ESC Malfunction and ESC Off
Figure 5.14. ESC Off Control Switch
Figure 5.15. Transfer Case Configuration Select Switch

2011 GMC Sierra 1500
FMVSS No. 126
NHTSA Number CB0108
Figure 6.1. Steering Wheel Angle, Yaw Rate and Lateral Displacement for L-R Series (2WD Configuration)
Figure 6.2. Steering Wheel Angle, Yaw Rate and Lateral Displacement for R-L Series (2WD Configuration)
Figure 6.3. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for L-R Series (2WD Configuration)
Figure 6.4. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for R-L Series (2WD Configuration)
Figure 6.5. Steering Wheel Angle, Yaw Rate and Lateral Displacement for L-R Series (4WD Configuration)
Figure 6.6. Steering Wheel Angle, Yaw Rate and Lateral Displacement for R-L Series (4WD Configuration)
Figure 6.7. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for L-R Series (4WD Configuration)
Figure 6.8. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for R-L Series (4WD Configuration)
7.0 OTHER DOCUMENTATION

7.1 OWNER’S MANUAL PAGES
7.2 VEHICLE ARRIVAL CONDITION REPORT
7.3 VEHICLE COMPLETION CONDITION REPORT
7.4 SINE WITH DWELL TEST RESULTS
7.5 SLOWLY INCREASING STEER TEST RESULTS
7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES
Vehicle Symbol Chart

Here are some additional symbols that may be found on the vehicle and what they mean. For more information on the symbol, refer to the index.

- ![Symbol] : Adjustable Pedals
- ![Symbol] : Airbag Readiness Light
- ![Symbol] : Air Conditioning
- ![Symbol] : Antilock Brake System (ABS)
- ![Symbol] : Audio Steering Wheel Controls or OnStar®
- ![Symbol] : Brake System Warning Light
- ![Symbol] : Charging System
- ![Symbol] : Cruise Control
- ![Symbol] : Engine Coolant Temperature
- ![Symbol] : Exterior Lamps
- ![Symbol] : Fog Lamps
- ![Symbol] : Fuel Gauge
- ![Symbol] : Fuses
- ![Symbol] : Headlamp High/Low-Beam Changer
- ![Symbol] : LATCH System Child Restraints
- ![Symbol] : Malfunction Indicator Lamp
- ![Symbol] : Oil Pressure
- ![Symbol] : Outside Power Foldaway Mirrors
- ![Symbol] : Power
- ![Symbol] : Remote Vehicle Start
- ![Symbol] : Safety Belt Reminders
- ![Symbol] : Tire Pressure Monitor
- ![Symbol] : Tow/Haul Mode
- ![Symbol] : Traction Control
- ![Symbol] : Windshield Washer Fluid
7.1 OWNER’S MANUAL PAGES

1-2 In Brief

Instrument Panel

Instrument Panel (Base/Uplevel Version)
A. Air Vents on page 8-11.

B. Turn and Lane-Change Signals on page 6-6.
 Windshield Wiper/Washer on page 5-5.

C. Driver Information Center (DIC) Buttons. See Driver Information Center (DIC) on page 5-33.

D. Hazard Warning Flashers on page 6-5.

G. Infotainment on page 7-1.

H. Instrument Panel Storage on page 4-1.

I. Integrated Trailer Brake Controller (If Equipped).
 See Trailer Towing on page 9-95.

J. Exterior Lamp Controls on page 6-1.

K. Data Link Connector (DLC) (Out of View). See Malfunction Indicator Lamp on page 5-25.

L. Hood on page 10-5.

M. Parking Brake on page 9-69.

N. Dome Lamps on page 6-8.
 Fog Lamps on page 6-6
 (If Equipped).

O. Cruise Control on page 9-73.

P. Steering Wheel Adjustment on page 5-2.

Q. Horn on page 5-5.

R. Steering Wheel Controls on page 5-3 (If Equipped).

S. Automatic Transfer Case Control (If Equipped).
 See Four-Wheel Drive on page 10-34.

T. Ashtray (If Equipped).
 See Ashtrays on page 5-12 and Cigarette Lighter on page 5-11.

U. StabiliTrak® System on page 9-70 (If Equipped).
 Ultrasonic Parking Assist on page 9-76 (If Equipped).
 Pedal Adjust Button (If Equipped). See Adjustable Throttle and Brake Pedal on page 9-35.
 Exhaust Brake (If Equipped).
 See “Brakes” in the Duramax Diesel Supplement.
The sunroof also has a roller sunshade that can be used to block the rays of the sun. To open the sunshade, press and unlatch it, and roll it back. To close, pull it forward and latch it into the closed position.

Crew Cab

A. Open or Close
B. Vent

There are two sunroof switches located in the overhead console above the rearview mirror.

Vent: From the closed position, press the rear of the passenger side switch (B) to vent the sunroof.

Manual-Open/Manual-Close:
To open the sunroof, press and hold the rear of the driver side switch (A) until the sunroof reaches the desired position. Press and hold the front of the driver side switch to close it.

Express-Open/Express-Close:
To express-open the sunroof, fully press and release the rear of the driver side switch (B) until the sunroof reaches the desired position. To express-close the sunroof, fully press and release the front of the driver side switch. Press the switch again to stop it.

The sunroof also has a sunshade that you can pull forward to block the rays of the sun. The sunshade must be opened and closed manually.

See Sunroof (Extended Cab) on page 2-21 or Sunroof (Crew Cab) on page 2-22.

Performance and Maintenance

StabiliTrak® System

If equipped, the vehicle has a traction control system that limits wheel spin and the StabiliTrak system that assists with directional control of the vehicle in difficult driving conditions. Both systems turn on automatically every time the vehicle is started.

- To turn off traction control, press and release \(\) on the instrument panel. \(\) illuminates and the appropriate DIC message displays. See Ride Control System Messages on page 5-47.
1-34 In Brief

- To turn off both traction control and StabiliTrak, press and hold \(\textcolor{red}{\text{ESC}} \) until it illuminates and the appropriate DIC message displays. See Ride Control System Messages on page 5-47.
- Press and release \(\textcolor{red}{\text{ESC}} \) again to turn on both systems.

For more information, see StabiliTrak® System on page 9-70.

Tire Pressure Monitor

This vehicle may have a Tire Pressure Monitor System (TPMS).

![Warning Icon]

The TPMS warning light alerts you to a significant loss in pressure of one of the vehicle’s tires.

If the warning light comes on, stop as soon as possible and inflate the tires to the recommended pressure shown on the Tire and Loading Information label. See Vehicle Load Limits on page 9-25. The warning light will remain on until the tire pressure is corrected.

During cooler conditions, the low tire pressure warning light may appear when the vehicle is first started and then turn off. This may be an early indicator that the tire pressures are getting low and the tires need to be inflated to the proper pressure.

The TPMS does not replace normal monthly tire maintenance. It is the driver’s responsibility to maintain correct tire pressures.

See Tire Pressure Monitor System on page 10-68.

Engine Oil Life System

The engine oil life system calculates engine oil life based on vehicle use and, on most vehicles, displays a DIC message when it is necessary to change the engine oil and filter. The oil life system should be reset to 100% only following an oil change.

Resetting the Oil Life System

To reset the Engine Oil Life System on most vehicles:

1. Display OIL LIFE REMAINING on the DIC. If the vehicle does not have DIC buttons, the vehicle must be in P (Park) to access this display.

2. Press and hold the SET/RESET button on the DIC, or the trip odometer reset switch if the vehicle does not have DIC buttons, for more than five seconds. The oil life will change to 100%.
Instrument Cluster

English Light Duty Premium Shown. Metric, Uplevel, Base, Heavy Duty Similar.
StabiliTrak® Indicator Light

For vehicles with the StabiliTrak system, this light comes on briefly while starting the engine. If it does not, have the vehicle serviced by your dealer. If the system is working normally the indicator light then goes off. If the light comes on and stays on while driving, there could be a problem with the StabiliTrak system and the vehicle might need service. When this warning light is on, the StabiliTrak system is off and does not limit wheel spin.

The light flashes if the system is active and is working to assist the driver with directional control of the vehicle in difficult driving conditions. See StabiliTrak® System on page 9-70 for more information. If the vehicle is a hybrid, see the hybrid supplement for more information.

Tire Pressure Light

For vehicles with the Tire Pressure Monitor System (TPMS), this light comes on briefly when the engine is started. It provides information about tire pressures and the TPMS.

When the Light is On Steady
This indicates that one or more of the tires are significantly underinflated.
A tire pressure message can accompany the light. See Tire Messages on page 5-49 for more information. Stop as soon as possible, and inflate the tires to the pressure value shown on the Tire and Loading Information label. See Tire Pressure on page 10-66 for more information.

When the Light Flashes First and Then is On Steady
This indicates that there may be a problem with the Tire Pressure Monitor System. The light flashes for about a minute and stays on steady for the remainder of the ignition cycle. This sequence repeats with every ignition cycle. See Tire Pressure Monitor Operation on page 10-69 for more information.
SERVICE PARK ASSIST
If the vehicle has the Ultrasonic Rear Parking Assist (URPA) system, this message displays if there is a problem with the URPA system. Do not use this system to help you park. See Ultrasonic Parking Assist on page 9-76 for more information. See your dealer for service.

Ride Control System Messages
SERVICE STABILITRAK
If the vehicle has StabiliTrak and this message displays, it means there may be a problem with the StabiliTrak system. If you see this message, try to reset the system.

STABILITRAK OFF
If the vehicle has StabiliTrak, this message displays when you turn off StabiliTrak, or when the stability control has been automatically disabled. To limit wheel spin and realize the full benefits of the stability enhancement system, you should normally leave StabiliTrak on. However, you should turn StabiliTrak off if your vehicle gets stuck in sand, mud, ice, or snow and you want to rock your vehicle to attempt to free it, or if you are driving in extreme off-road conditions and require more wheel spin. See If the Vehicle is Stuck on page 9-23. To turn the StabiliTrak system on or off, see StabiliTrak System on page 9-70.

Stop; turn off the engine for at least 15 seconds; then start the engine again. If this message still comes on, it means there is a problem. You should see your dealer for service. The vehicle is safe to drive; however, you do not have the benefit of StabiliTrak, so reduce your speed and drive accordingly.
7.1 OWNER’S MANUAL PAGES

5-48 Instruments and Controls

There are several conditions that can cause this message to appear.

- If the vehicle is overheating, which could occur if StabiliTrak activates continuously for an extended period of time.
- If the brake system warning light is on. See Brake System Warning Light on page 5-27.
- If the stability system takes longer than usual to complete its diagnostic checks due to driving conditions.
- If an engine or vehicle related problem has been detected and the vehicle needs service. See your dealer.
- If the vehicle is shifted into 4LO. The message turns off as soon as the conditions that caused the message to be displayed are no longer present.

TRACTION CONTROL OFF
If the vehicle has StabiliTrak, this message displays when the Traction Control System (TCS) is turned off. Adjust your driving accordingly. See StabiliTrak® System on page 9-70 for more information.

Airbag System Messages

SERVICE AIR BAG
This message displays if there is a problem with the airbag system. Have your dealer inspect the system for problems. See Airbag Readiness Light on page 5-20 and Airbag System on page 3-29 for more information.

Anti-Theft Alarm System Messages

SERVICE THEFT DETERRENT SYSTEM
This message displays when there is a problem with the theft-deterrent system. The vehicle may or may not restart so you may want to take the vehicle to your dealer before turning off the engine. See Immobilizer Operation on page 2-13 for more information.

Starting the Vehicle Messages

FAST IDLE ON
If your vehicle has this feature, this message displays when the fast idle feature is on. See Fast Idle System on page 9-39 for more information.
7.1 OWNER’S MANUAL PAGES

9-54 Driving and Operating

Drive Systems

Four-Wheel Drive
If the vehicle has Four-Wheel Drive, you can send the engine’s driving power to all four wheels for extra traction. To get the most satisfaction out of Four-Wheel Drive, you must be familiar with its operation. Read the following before using Four-Wheel Drive. See the appropriate text for the transfer case in the vehicle.

Notice: Driving on clean, dry pavement in Four-Wheel Drive High or Four-Wheel Drive Low for an extended period of time may cause premature wear on the vehicle’s powertrain. Do not drive on clean, dry pavement in Four-Wheel Drive High or Four-Wheel Drive Low for extended periods of time.

While driving on clean dry pavement and during tight turns, you may experience vibration in the steering system.

If the vehicle has StabiliTrak®, shifting into Four-Wheel Drive Low will turn Traction Control and StabiliTrak off. See StabiliTrak® System on page 9-70.

Front Axle
The front axle engages and disengages automatically when you shift the transfer case. Some delay for the axle to engage or disengage is normal.

Manual Transfer Case

The transfer case shift lever is on the floor to the right of the driver. Use this lever to shift into and out of Four-Wheel Drive.
Braking in Emergencies
ABS allows the driver to steer and brake at the same time. In many emergencies, steering can help more than even the very best braking.

Parking Brake

If the ignition is on, the brake system warning light will come on. See Brake System Warning Light on page 5-27.

Notice: Driving with the parking brake on can overheat the brake system and cause premature wear or damage to brake system parts. Make sure that the parking brake is fully released and the brake warning light is off before driving.

To release the parking brake, hold the regular brake pedal down, then push down momentarily on the parking brake pedal until you feel the pedal release. Slowly pull your foot up off the parking brake pedal. If the parking brake is not released when you begin to drive, the brake system warning light will flash and a chime will sound warning you that the parking brake is still on.

If you are towing a trailer and are parking on a hill, see Driving Characteristics and Towing Tips on page 9-91.

Brake Assist (Except With 4.3L V6 Engine)
If this vehicle has StabiliTrak®, it also has a Brake Assist feature designed to assist the driver in stopping or decreasing vehicle speed in emergency driving conditions. This feature uses the stability system hydraulic brake control module to supplement the power brake system under conditions where the driver has quickly and forcefully applied the brake pedal in an attempt to quickly stop or slow down the vehicle. The stability system hydraulic brake control module increases brake pressure at each corner of the vehicle until the ABS activates.
Minor brake pedal pulsation or pedal movement during this time is normal and the driver should continue to apply the brake pedal as the driving situation dictates. The Brake Assist feature will automatically disengage when the brake pedal is released or brake pedal pressure is quickly decreased.

Hill Start Assist (HSA)

2500 and 3500 series vehicles with StabiliTrak have a Hill Start Assist (HSA) feature, which may be useful when the vehicle is stopped on a grade. This feature is designed to prevent the vehicle from rolling, either forward or rearward, during vehicle drive off. After the driver completely stops and holds the vehicle in a complete standstill on a grade, HSA will be automatically activated. During the transition period between when the driver releases the brake pedal and starts to accelerate to drive off on a grade, HSA holds the braking pressure for a maximum of two seconds to ensure that there is no rolling. The brakes will automatically release when the accelerator pedal is applied within the two-second window. If the vehicle is equipped with the Integrated Trailer Brake Control (ITBC) system, HSA may also apply the trailer brakes. It will not activate if the vehicle is in a drive gear and facing downhill or if the vehicle is facing uphill and in R (Reverse). There may be situations on minor hills (less than 5% grade) with a loaded vehicle or while pulling a trailer where HSA will not activate.

Ride Control Systems

StabiliTrak® System

The vehicle may have a vehicle stability enhancement system called StabiliTrak®. It is an advanced computer-controlled system that assists the driver with directional control of the vehicle in difficult driving conditions. StabiliTrak activates when the computer senses a discrepancy between the intended path and the direction the vehicle is actually traveling. StabiliTrak selectively applies braking pressure at any one of the vehicle’s brakes to assist the driver with keeping the vehicle on the intended path.
When the vehicle is started and begins to move, the system performs several diagnostic checks to ensure there are no problems. The system may be heard or felt while it is working. This is normal and does not mean there is a problem with the vehicle. The system should initialize before the vehicle reaches 32 km/h (20 mph). In some cases, it may take approximately 3.2 km (2 mi) of driving before the system initializes.

If cruise control is being used when StabiliTrak activates, the cruise control automatically disengages. The cruise control can be re-engaged when road conditions allow. See Cruise Control on page 9-73 for more information.

If the system fails to turn on or activate, the StabiliTrak light along with one of the following messages will be displayed on the Driver Information Center (DIC): TRACTION OFF, SERVICE TRACTION CONTROL, STABILITRACK OFF, SERVICE STABILITRACK. If these DIC messages appear, make sure the StabiliTrak system has not been turned off using the StabiliTrak on/off button. Then turn the vehicle off, wait 15 seconds, and turn it back on again to reset the system. If any of these messages still appear on the DIC, the vehicle should be taken in for service. For more information on the DIC messages, see Ride Control System Messages on page 5-47.

The StabiliTrak light will flash on the instrument panel cluster when the system is both on and activated. The system may be heard or felt while it is working; this is normal.

The traction control disable button is located on the instrument panel below the climate controls. The Traction Control System (TCS) part of StabiliTrak can be turned off by pressing and releasing the StabiliTrak button. To disable both TCS and StabiliTrak, press and hold ∆ until ✈ illuminates and the appropriate DIC message displays. TCS and StabiliTrak can be turned on by pressing and releasing the StabiliTrak button if they are not automatically shut off for any other reason.
9-72 Driving and Operating

When TCS or StabiliTrak is turned off, the StabiliTrak light and the appropriate message will be displayed on the DIC to warn the driver. The vehicle will still have brake-traction control when traction control is off, but will not be able to use the engine speed management system. See “Traction Control Operation” next for more information.

When the traction control system has been turned off, system noises may still be heard as a result of the brake-traction control coming on.

It is recommended to leave the system on for normal driving conditions, but it may be necessary to turn the system off if the vehicle is stuck in sand, mud, ice or snow, and you want to “rock” the vehicle to attempt to free it. It may also be necessary to turn off the system when driving in extreme off-road conditions where high wheel spin is required. See if the Vehicle is Stuck on page 9-23.

When the transfer case is in 4LO, the stability system is automatically disabled, the StabiliTrak light comes on, and the STABILITRACK OFF message will appear on the DIC. Both traction control and StabiliTrak are automatically disabled in this condition.

Traction Control Operation

The traction control system is part of the StabiliTrak system. Traction control limits wheel spin by reducing engine power to the wheels (engine speed management) and by applying brakes to each individual wheel (brake-traction control) as necessary.

The traction control system is enabled automatically when the vehicle is started. It will activate and the StabiliTrak light will flash if it senses that any of the wheels are spinning or beginning to lose traction while driving. If traction control is turned off, only the brake-traction control portion of traction control will work. The engine speed management will be disabled. In this mode, engine power is not reduced automatically and the driven wheels can spin more freely. This can cause the brake-traction control to activate constantly.

Notice: If the wheel(s) of one axle is allowed to spin excessively while the StabiliTrak®, ABS, brake warning lights, and any relevant DIC messages are displayed, the transfer case could be damaged. The repairs would not be covered by the vehicle warranty. Reduce engine power and do not spin the wheel(s) excessively while these lights and messages are displayed.
The traction control system may activate on dry or rough roads or under conditions such as heavy acceleration while turning or abrupt upshifts/downshifts of the transmission. When this happens, a reduction in acceleration may be noticed, or a noise or vibration may be heard. This is normal.

If cruise control is being used when the system activates, the StabiliTrak light will flash and cruise control will automatically disengage. Cruise control may be reengaged when road conditions allow. See Cruise Control on page 9-73.

StabiliTrak may also turn off automatically if it determines that a problem exists with the system. If the problem does not clear itself after restarting the vehicle, see your dealer for service.

2500 and 3500 series vehicles with StabiliTrak have a Trailer Sway Control (TSC) feature. See Trailer Sway Control (TSC) on page 9-124.

2500 and 3500 series vehicles with StabiliTrak have a Hill Start Assist (HSA) feature. See Hill Start Assist (HSA) on page 9-70.

Adding non-dealer accessories can affect the vehicle’s performance. See Accessories and Modifications on page 10-3.

Locking Rear Axle

Vehicles with a locking rear axle can give more traction on snow, mud, ice, sand, or gravel. It works like a standard axle most of the time, but when traction is low, this feature will allow the rear wheel with the most traction to move the vehicle.

Cruise Control

⚠ WARNING

Cruise control can be dangerous where you cannot drive safely at a steady speed. So, do not use the cruise control on winding roads or in heavy traffic.

Cruise control can be dangerous on slippery roads. On such roads, fast changes in tire traction can cause excessive wheel slip, and you could lose control. Do not use cruise control on slippery roads.

For vehicles with cruise control, a speed of about 40 km/h (25 mph) or more can be maintained without keeping your foot on the accelerator. Cruise control does not work at speeds below about 40 km/h (25 mph).
Integrated Trailer Brake Control System

The vehicle may have an Integrated Trailer Brake Control (ITBC) system for electric trailer brakes. This symbol is located on the Trailer Brake Control Panel on vehicles with an Integrated Trailer Brake Control system. The power output to the trailer brakes is based on the amount of brake pressure being applied by the vehicle’s brake system. This available power output to the trailer brakes can be adjusted to a wide range of towing situations.

The ITBC system is integrated with the vehicle’s brake, antilock brake, and StabiliTrak (if equipped) systems. In trailer towing conditions that cause the vehicle’s antilock brake or StabiliTrak systems to activate, power sent to the trailer’s brakes will be automatically adjusted to minimize trailer wheel lock-up. This does not imply that the trailer has StabiliTrak.

2500 and 3500 series vehicles with StabiliTrak have a Trailer Sway Control (TSC) feature. See Trailer Sway Control (TSC) on page 9-124. 2500 and 3500 series vehicles with StabiliTrak have a Hill Start Assist (HSA) feature. See Hill Start Assist (HSA) on page 9-70.

If the vehicle’s brake, antilock brake, or StabiliTrak systems are not functioning properly, the ITBC system may not be fully functional or may not function at all. Make sure all of these systems are fully operational to ensure full functionality of the ITBC system.

The ITBC system is powered through the vehicle’s electrical system. Turning the ignition off will also turn off the ITBC system.

The ITBC system is fully functional only when the ignition is in ON or in RUN. The ITBC system can only be used with trailers with electric brakes.

⚠️ WARNING

Connecting a trailer that is not compatible with the ITBC system may result in reduced or complete loss of trailer braking. There may be an increase in stopping distance or trailer instability which could result in personal injury or damage to the vehicle, trailer, or other property. An aftermarket controller may be available for use with trailers with surge, air, or electric-over-hydraulic trailer brake systems. To determine the type of brakes on the trailer and the availability of controllers, check with your trailer manufacturer or dealer.
SERVICE TRAILER BRAKE SYSTEM: This message will be displayed when there is a problem with the ITBC system. If this message persists over multiple ignition cycles, there is a problem with the ITBC system. Take the vehicle to an authorized GM dealer to have the ITBC system diagnosed and repaired.

If either the CHECK TRAILER WIRING or SERVICE TRAILER BRAKE SYSTEM message is displayed while driving the vehicle, power is no longer available to the trailer brakes. When traffic conditions allow, carefully pull the vehicle over to the side of the road and turn the ignition off. Check the wiring connection to the trailer and turn the ignition back on. If either of these messages continues, either the vehicle or trailer needs service.

An authorized GM dealer may be able to diagnose and repair problems with the trailer. However, any diagnosis and repair of the trailer is not covered under the vehicle warranty. Please contact your trailer dealer for assistance with trailer repairs and trailer warranty information.

Trailer Sway Control (TSC)

Trailer Sway Control (TSC) 2500 and 3500 series vehicles with StabiliTrak have a Trailer Sway Control (TSC) feature. If the vehicle is towing a trailer and the system detects that the trailer is swaying, the vehicle’s brakes are applied without the driver pressing the brake pedal. If the vehicle is equipped with the Integrated Trailer Brake Control (ITBC) system, StabiliTrak may also apply the trailer brakes. The TCS/StabiliTrak warning light will flash on the instrument panel cluster to notify the driver to reduce speed. If the trailer continues to sway, StabiliTrak will reduce engine torque to help slow the vehicle.

Adding non-dealer accessories can affect the vehicle’s performance. See Accessories and Modifications on page 10-3 for more information.
7.2 VEHICLE ARRIVAL CONDITION REPORT

CONTRACT NO.: DTNH22-08-D-00098
DATE: 8/26/2011

From: Automotive Allies Purpose: Initial Receipt
Received via Transfer

To: Dynamic Research, Inc Present Vehicle Condition

Vehicle VIN: 3GTP2VE33BG386727 NHTSA NO.: CB0108
Model Year: 2011 Odometer Reading: 5 Miles
Make: GMC
Model: Sierra 1500
Body Style: Truck
Body Color: White
Manufacture Date: 7/11
Dealer: Automotive Allies
GVWR (kg/lb): 3175/7000 Price: Leased

- All options listed on the "Window Sticker" are present on the test vehicle
- Tires and wheel rims are new and the same as listed
- There are no dents or other interior or exterior flaws
- The vehicle has been properly prepared and is in running condition
- The glove box contains an owner’s manual, warranty document, consumer information, and extra set of keys
- Proper fuel filler cap is supplied on the test vehicle
- Place vehicle in storage area
- Inspect the vehicle’s interior and exterior, including all windows, seats, doors, etc., to confirm that each system is complete and functional per the manufacturer’s specifications. Any damage, misadjustment, or other unusual condition that could influence the test program or test results shall be recorded. Report any abnormal condition to the NHTSA COTR before beginning any test.

NOTES:

RECORDED BY: J Lenkeit DATE RECORDED: 8/26/2011
APPROVED BY: P Broen DATE APPROVED: 8/26/2011
7.3 VEHICLE COMPLETION CONDITION REPORT

CONTRACT NO.: DTNH22-08-D-00098
DATE: 9/27/2011

Vehicle VIN: 3GTP2VE33BG386727 NHTSA NO.: CB0108
Model Year: 2011 Odometer Reading: 79 Miles
Make: GMC Body Style: Truck
Model: Sierra 1500 Body Color: White
Manufacture Date: 7/11 Dealer: Automotive Allies
GVWR (kg/lb) 3175 (7000) Price: Leased

LIST OF FMVSS TESTS PERFORMED BY THIS LAB: 126

☒ THERE ARE NO DENTS OR OTHER INTERIOR OR EXTERIOR FLAWS

☒ THE VEHICLE HAS BEEN PROPERLY MAINTAINED AND IS IN RUNNING CONDITION

☒ THE GLOVE BOX CONTAINS AN OWNER’S MANUAL, WARRANTY DOCUMENT, CONSUMER INFORMATION, AND EXTRA SET OF KEYS

☒ PROPER FUEL FILLER CAP IS SUPPLIED ON THE TEST VEHICLE

REMARKS:

Equipment that is no longer on the test vehicle as noted on Vehicle Arrival Condition Report:

None

Explanation for equipment removal:

Test Vehicle Condition:

As-delivered, like-new

RECORDED BY: J Lenkeit DATE RECORDED: 9/27/2011
APPROVED BY: P Broen DATE APPROVED: 9/27/2011
7.4 SINE WITH DWELL TEST RESULTS
2011 GMC Sierra 1500 4WD Crew Cab (2WD Drive Configuration)

NHTSA No.: CB0108
Date of Test: 9/13/2011
Date Created: 9/14/11

<table>
<thead>
<tr>
<th>File</th>
<th>SWA @ 5deg Ct</th>
<th>MES</th>
<th>Time @ 5deg</th>
<th>COS</th>
<th>Time @ COS</th>
<th>MO S</th>
<th>Time @ MOS</th>
<th>YRR1</th>
<th>YR1</th>
<th>YRR 1 Ct</th>
<th>YRR 175</th>
<th>YRR17 5 Ct</th>
<th>2nd Yaw Peak</th>
<th>2nd Yaw Peak Ct</th>
<th>Lat Disp</th>
<th>Lat. Acc. 1.07 s</th>
<th>1st SWA Peak</th>
<th>1st SWA Peak Ct</th>
<th>2nd SWA Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(deg)</td>
<td>(mph)</td>
<td>(s)</td>
<td>(s)</td>
<td>(sec)</td>
<td>(%)</td>
<td>(deg/s)</td>
<td>(%)</td>
<td>(deg/s)</td>
<td>(%)</td>
<td>(deg/s)</td>
<td>(deg/s)</td>
<td>(ft)</td>
<td>(g)</td>
<td>(deg)</td>
<td>(deg)</td>
<td>(deg)</td>
<td>(deg)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>709</td>
<td>50.07</td>
<td>3.536</td>
<td>1091</td>
<td>5.446</td>
<td>847</td>
<td>4.226</td>
<td>-2.34</td>
<td>-0.29</td>
<td>1291</td>
<td>-2.79</td>
<td>-0.34</td>
<td>1441</td>
<td>12.19</td>
<td>945</td>
<td>0.41</td>
<td>61.30</td>
<td>775</td>
<td>60.95</td>
</tr>
<tr>
<td>22</td>
<td>708</td>
<td>50.21</td>
<td>3.532</td>
<td>1091</td>
<td>5.446</td>
<td>847</td>
<td>4.226</td>
<td>-1.76</td>
<td>-0.27</td>
<td>1291</td>
<td>-1.85</td>
<td>-0.29</td>
<td>1441</td>
<td>15.65</td>
<td>934</td>
<td>0.49</td>
<td>81.16</td>
<td>775</td>
<td>80.93</td>
</tr>
<tr>
<td>23</td>
<td>707</td>
<td>50.40</td>
<td>3.527</td>
<td>1090</td>
<td>5.445</td>
<td>846</td>
<td>4.225</td>
<td>-1.31</td>
<td>-0.25</td>
<td>1290</td>
<td>-1.24</td>
<td>-0.24</td>
<td>1440</td>
<td>19.27</td>
<td>925</td>
<td>0.57</td>
<td>102.00</td>
<td>775</td>
<td>101.81</td>
</tr>
<tr>
<td>24</td>
<td>707</td>
<td>50.39</td>
<td>3.526</td>
<td>1090</td>
<td>5.445</td>
<td>847</td>
<td>4.226</td>
<td>-0.81</td>
<td>-0.19</td>
<td>1290</td>
<td>-0.60</td>
<td>-0.14</td>
<td>1440</td>
<td>23.15</td>
<td>923</td>
<td>0.62</td>
<td>122.06</td>
<td>775</td>
<td>121.99</td>
</tr>
<tr>
<td>25</td>
<td>706</td>
<td>50.47</td>
<td>3.524</td>
<td>1090</td>
<td>5.445</td>
<td>846</td>
<td>4.225</td>
<td>-0.68</td>
<td>-0.16</td>
<td>1290</td>
<td>-0.58</td>
<td>-0.13</td>
<td>1440</td>
<td>22.86</td>
<td>932</td>
<td>0.62</td>
<td>142.15</td>
<td>775</td>
<td>141.85</td>
</tr>
<tr>
<td>26</td>
<td>706</td>
<td>50.13</td>
<td>3.523</td>
<td>1090</td>
<td>5.444</td>
<td>847</td>
<td>4.226</td>
<td>-1.38</td>
<td>-0.35</td>
<td>1290</td>
<td>-0.67</td>
<td>-0.17</td>
<td>1440</td>
<td>25.74</td>
<td>911</td>
<td>0.64</td>
<td>162.17</td>
<td>775</td>
<td>161.86</td>
</tr>
<tr>
<td>27</td>
<td>706</td>
<td>50.21</td>
<td>3.522</td>
<td>1090</td>
<td>5.444</td>
<td>846</td>
<td>4.225</td>
<td>-0.73</td>
<td>-0.19</td>
<td>1290</td>
<td>-0.43</td>
<td>-0.11</td>
<td>1440</td>
<td>26.27</td>
<td>910</td>
<td>0.63</td>
<td>183.16</td>
<td>775</td>
<td>182.87</td>
</tr>
<tr>
<td>28</td>
<td>706</td>
<td>50.23</td>
<td>3.522</td>
<td>1090</td>
<td>5.444</td>
<td>847</td>
<td>4.226</td>
<td>-1.50</td>
<td>-0.39</td>
<td>1290</td>
<td>-0.85</td>
<td>-0.22</td>
<td>1440</td>
<td>26.09</td>
<td>909</td>
<td>0.63</td>
<td>203.16</td>
<td>775</td>
<td>202.66</td>
</tr>
<tr>
<td>29</td>
<td>706</td>
<td>50.19</td>
<td>3.523</td>
<td>1090</td>
<td>5.445</td>
<td>847</td>
<td>4.226</td>
<td>-1.38</td>
<td>-0.39</td>
<td>1290</td>
<td>-1.01</td>
<td>-0.28</td>
<td>1440</td>
<td>27.94</td>
<td>912</td>
<td>0.65</td>
<td>223.05</td>
<td>775</td>
<td>222.72</td>
</tr>
<tr>
<td>30</td>
<td>706</td>
<td>50.34</td>
<td>3.523</td>
<td>1091</td>
<td>5.449</td>
<td>847</td>
<td>4.227</td>
<td>-1.78</td>
<td>-0.49</td>
<td>1291</td>
<td>-0.43</td>
<td>-0.12</td>
<td>1441</td>
<td>27.72</td>
<td>909</td>
<td>0.66</td>
<td>243.88</td>
<td>776</td>
<td>243.71</td>
</tr>
<tr>
<td>31</td>
<td>706</td>
<td>50.11</td>
<td>3.524</td>
<td>1097</td>
<td>5.480</td>
<td>847</td>
<td>4.228</td>
<td>-1.54</td>
<td>-0.43</td>
<td>1297</td>
<td>-1.12</td>
<td>-0.31</td>
<td>1447</td>
<td>27.76</td>
<td>906</td>
<td>0.66</td>
<td>262.28</td>
<td>777</td>
<td>263.63</td>
</tr>
<tr>
<td>32</td>
<td>706</td>
<td>50.39</td>
<td>3.523</td>
<td>1091</td>
<td>5.449</td>
<td>847</td>
<td>4.228</td>
<td>-0.42</td>
<td>-0.12</td>
<td>1291</td>
<td>-0.78</td>
<td>-0.22</td>
<td>1441</td>
<td>28.65</td>
<td>906</td>
<td>0.67</td>
<td>267.86</td>
<td>778</td>
<td>269.55</td>
</tr>
</tbody>
</table>
7.4 SINE WITH DWELL TEST RESULTS

2011 GMC Sierra 1500 4WD Crew Cab (2WD Drive Configuration)

NHTSA No.: CB0108
Date of Test: 9/13/2011
Date Created: 9/14/11

Lateral Stability Test Series No. 2 – Clockwise Initial Steer Direction

File	SWA @ 5deg Ct	MES	Time @ 5deg	COS	Time @ COS	MO S	Time @ MOS	YRR1	YR1	YRR 1 Ct	YRR 175	YRR17 5 Ct	2nd Yaw Peak	2nd Yaw Peak Ct	Lat. Acc. 1.07 s	Lat. Disp	1st SWA Peak	1st SWA Peak Ct	2nd SWA Mean	
	(deg)	(mph)	(s)	(s)	(sec)	(%)	(deg/s)	(%)	(deg/s)	(deg/s)	(ft)	(g)	(deg)	(deg)						
33	709	50.16	3.536	1090	5.445	847	4.227	-0.66	0.08	1290	-0.85	0.10	1440	-12.25	953	4.15	-0.39	61.91	775	61.64
34	708	49.99	3.531	1090	5.445	847	4.227	-0.86	0.14	1290	-0.78	0.12	1440	-16.04	931	5.24	-0.49	81.91	775	81.53
35	707	50.18	3.527	1090	5.444	847	4.226	-1.02	0.20	1290	-0.16	0.03	1440	-19.57	934	6.28	-0.56	102.77	775	102.38
36	706	50.23	3.525	1090	5.444	847	4.226	-0.65	0.15	1290	0.02	0.00	1440	-23.21	934	6.91	-0.61	122.93	775	122.44
37	706	50.09	3.522	1090	5.444	846	4.225	-0.82	0.19	1290	-0.95	0.22	1440	-23.53	939	7.46	-0.62	142.86	775	142.40
38	706	50.18	3.522	1090	5.444	847	4.226	-1.25	0.31	1290	-0.27	0.07	1440	-24.53	911	7.76	-0.64	162.95	775	162.34
39	706	50.10	3.522	1090	5.444	847	4.226	-1.01	0.27	1290	-0.76	0.20	1440	-26.82	909	7.67	-0.62	184.02	775	183.30
40	706	50.05	3.521	1090	5.443	847	4.226	-0.63	0.18	1290	0.23	-0.07	1440	-28.07	913	7.90	-0.65	204.02	775	202.95
41	706	50.35	3.522	1090	5.444	847	4.227	-1.58	0.43	1290	-0.67	0.18	1440	-27.38	910	7.84	-0.62	223.86	775	222.95
42	706	50.36	3.522	1091	5.446	847	4.227	-0.97	0.27	1291	-0.16	0.04	1441	-28.33	911	7.87	-0.66	244.50	776	244.11
43	706	50.17	3.523	1091	5.449	847	4.229	-1.26	0.37	1291	-0.44	0.13	1441	-29.27	909	8.07	-0.66	263.27	777	264.06
44	706	49.92	3.523	1091	5.448	847	4.229	-1.06	0.30	1291	-0.55	0.16	1441	-28.48	910	7.88	-0.68	268.75	778	270.05
7.4 SINE WITH DWELL TEST RESULTS

2011 GMC Sierra 1500 4WD Crew Cab (4WD Drive Configuration)

NHTSA No.: *CB0108*

Date of Test: 9/14/2011

Date Created: 9/14/2011

Lateral Stability Test Series No. 1 – Counterclockwise Initial Steer Direction

<table>
<thead>
<tr>
<th>File</th>
<th>SWA @ 5deg Ct</th>
<th>MES</th>
<th>Time @ 5deg</th>
<th>COS</th>
<th>Time @ COS</th>
<th>MO S</th>
<th>Time @ MOS</th>
<th>YRR1</th>
<th>YR1</th>
<th>YRR 175</th>
<th>YRR 17 5 Ct</th>
<th>2nd Yaw Peak</th>
<th>2nd Yaw Peak Ct</th>
<th>Lat Disp</th>
<th>Lat. Acc. 1.07 s</th>
<th>1st SWA Peak</th>
<th>1st SWA Peak Ct</th>
<th>2nd SWA Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(deg)</td>
<td>(mph)</td>
<td>(s)</td>
<td>(s)</td>
<td>(sec)</td>
<td>(%)</td>
<td>(deg/s)</td>
<td>(%)</td>
<td>(deg/s)</td>
<td>(%)</td>
<td>(deg/s)</td>
<td>(deg/s)</td>
<td>(deg/s)</td>
<td>(ft)</td>
<td>(g)</td>
<td>(deg)</td>
<td>(deg)</td>
<td>(deg)</td>
</tr>
<tr>
<td>22</td>
<td>709</td>
<td>50.11</td>
<td>3.536</td>
<td>1091</td>
<td>5.446</td>
<td>847</td>
<td>4.226</td>
<td>-0.34</td>
<td>-0.04</td>
<td>1291</td>
<td>-0.39</td>
<td>-0.05</td>
<td>1441</td>
<td>12.53</td>
<td>939</td>
<td>-4.07</td>
<td>0.40</td>
<td>63.33</td>
</tr>
<tr>
<td>23</td>
<td>708</td>
<td>50.31</td>
<td>3.531</td>
<td>1090</td>
<td>5.445</td>
<td>846</td>
<td>4.225</td>
<td>-0.61</td>
<td>-0.10</td>
<td>1290</td>
<td>-1.11</td>
<td>-0.18</td>
<td>1440</td>
<td>16.06</td>
<td>934</td>
<td>-5.24</td>
<td>0.49</td>
<td>83.28</td>
</tr>
<tr>
<td>24</td>
<td>707</td>
<td>50.11</td>
<td>3.527</td>
<td>1090</td>
<td>5.445</td>
<td>846</td>
<td>4.225</td>
<td>-1.32</td>
<td>-0.26</td>
<td>1290</td>
<td>-0.83</td>
<td>-0.16</td>
<td>1440</td>
<td>19.29</td>
<td>928</td>
<td>-6.21</td>
<td>0.55</td>
<td>104.10</td>
</tr>
<tr>
<td>25</td>
<td>706</td>
<td>50.20</td>
<td>3.525</td>
<td>1090</td>
<td>5.444</td>
<td>846</td>
<td>4.225</td>
<td>-1.28</td>
<td>-0.30</td>
<td>1290</td>
<td>-1.21</td>
<td>-0.28</td>
<td>1440</td>
<td>23.09</td>
<td>921</td>
<td>-7.07</td>
<td>0.63</td>
<td>125.25</td>
</tr>
<tr>
<td>26</td>
<td>706</td>
<td>50.13</td>
<td>3.524</td>
<td>1090</td>
<td>5.444</td>
<td>846</td>
<td>4.225</td>
<td>-1.88</td>
<td>-0.43</td>
<td>1290</td>
<td>-1.86</td>
<td>-0.42</td>
<td>1440</td>
<td>22.67</td>
<td>911</td>
<td>-7.50</td>
<td>0.62</td>
<td>146.25</td>
</tr>
<tr>
<td>27</td>
<td>706</td>
<td>50.39</td>
<td>3.523</td>
<td>1090</td>
<td>5.444</td>
<td>847</td>
<td>4.226</td>
<td>-1.51</td>
<td>-0.38</td>
<td>1290</td>
<td>-0.58</td>
<td>-0.15</td>
<td>1440</td>
<td>25.36</td>
<td>911</td>
<td>-7.82</td>
<td>0.64</td>
<td>167.22</td>
</tr>
<tr>
<td>28</td>
<td>706</td>
<td>50.36</td>
<td>3.523</td>
<td>1090</td>
<td>5.445</td>
<td>847</td>
<td>4.226</td>
<td>-1.16</td>
<td>-0.31</td>
<td>1290</td>
<td>-0.77</td>
<td>-0.20</td>
<td>1440</td>
<td>26.48</td>
<td>909</td>
<td>-7.86</td>
<td>0.64</td>
<td>188.18</td>
</tr>
<tr>
<td>29</td>
<td>706</td>
<td>50.44</td>
<td>3.523</td>
<td>1090</td>
<td>5.445</td>
<td>847</td>
<td>4.226</td>
<td>-1.48</td>
<td>-0.39</td>
<td>1290</td>
<td>-0.68</td>
<td>-0.18</td>
<td>1440</td>
<td>26.43</td>
<td>909</td>
<td>-7.93</td>
<td>0.63</td>
<td>208.10</td>
</tr>
<tr>
<td>30</td>
<td>706</td>
<td>50.51</td>
<td>3.522</td>
<td>1091</td>
<td>5.447</td>
<td>847</td>
<td>4.226</td>
<td>-2.26</td>
<td>-0.62</td>
<td>1291</td>
<td>-1.41</td>
<td>-0.39</td>
<td>1441</td>
<td>27.52</td>
<td>911</td>
<td>-8.10</td>
<td>0.66</td>
<td>229.11</td>
</tr>
<tr>
<td>31</td>
<td>706</td>
<td>50.26</td>
<td>3.523</td>
<td>1094</td>
<td>5.462</td>
<td>847</td>
<td>4.227</td>
<td>-0.96</td>
<td>-0.27</td>
<td>1294</td>
<td>-0.25</td>
<td>-0.07</td>
<td>1444</td>
<td>27.69</td>
<td>909</td>
<td>-7.96</td>
<td>0.67</td>
<td>249.64</td>
</tr>
<tr>
<td>32</td>
<td>706</td>
<td>50.16</td>
<td>3.523</td>
<td>1092</td>
<td>5.453</td>
<td>847</td>
<td>4.227</td>
<td>-1.38</td>
<td>-0.38</td>
<td>1292</td>
<td>-0.11</td>
<td>-0.03</td>
<td>1442</td>
<td>27.46</td>
<td>905</td>
<td>-8.03</td>
<td>0.62</td>
<td>268.77</td>
</tr>
</tbody>
</table>
Lateral Stability Test Series No. 2 – Clockwise Initial Steer Direction

<table>
<thead>
<tr>
<th>File</th>
<th>SWA @ 5deg Ct</th>
<th>MES</th>
<th>Time @ 5deg</th>
<th>COS</th>
<th>Time @ COS</th>
<th>MO S</th>
<th>Time @ MOS</th>
<th>YRR1</th>
<th>YR1</th>
<th>YRR 1 Ct</th>
<th>YRR 175</th>
<th>YRR175</th>
<th>2nd Yaw Peak</th>
<th>Lat Disp</th>
<th>Lat. Acc. 1.07 s</th>
<th>1st SWA Peak</th>
<th>1st SWA Peak Ct</th>
<th>2nd SWA Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>709</td>
<td>50.11</td>
<td>3.536</td>
<td>1090</td>
<td>5.445</td>
<td>847</td>
<td>4.226</td>
<td>-2.02</td>
<td>0.25</td>
<td>1290</td>
<td>-1.02</td>
<td>0.13</td>
<td>1440</td>
<td>12.29</td>
<td>941</td>
<td>63.87</td>
<td>775</td>
<td>63.75</td>
</tr>
<tr>
<td>34</td>
<td>707</td>
<td>50.34</td>
<td>3.530</td>
<td>1090</td>
<td>5.444</td>
<td>846</td>
<td>4.225</td>
<td>-1.45</td>
<td>0.24</td>
<td>1290</td>
<td>-1.17</td>
<td>0.19</td>
<td>1440</td>
<td>16.24</td>
<td>932</td>
<td>83.90</td>
<td>775</td>
<td>83.60</td>
</tr>
<tr>
<td>35</td>
<td>707</td>
<td>50.39</td>
<td>3.526</td>
<td>1091</td>
<td>5.450</td>
<td>848</td>
<td>4.232</td>
<td>-0.76</td>
<td>0.15</td>
<td>1291</td>
<td>-1.41</td>
<td>0.28</td>
<td>1441</td>
<td>19.82</td>
<td>928</td>
<td>104.71</td>
<td>776</td>
<td>104.43</td>
</tr>
<tr>
<td>36</td>
<td>706</td>
<td>50.48</td>
<td>3.524</td>
<td>1090</td>
<td>5.444</td>
<td>847</td>
<td>4.226</td>
<td>-1.76</td>
<td>0.41</td>
<td>1290</td>
<td>-1.18</td>
<td>0.27</td>
<td>1440</td>
<td>23.09</td>
<td>922</td>
<td>125.91</td>
<td>775</td>
<td>125.63</td>
</tr>
<tr>
<td>37</td>
<td>706</td>
<td>50.34</td>
<td>3.522</td>
<td>1090</td>
<td>5.444</td>
<td>846</td>
<td>4.225</td>
<td>-1.71</td>
<td>0.41</td>
<td>1290</td>
<td>-1.29</td>
<td>0.31</td>
<td>1440</td>
<td>24.19</td>
<td>939</td>
<td>146.95</td>
<td>775</td>
<td>146.58</td>
</tr>
<tr>
<td>38</td>
<td>706</td>
<td>50.14</td>
<td>3.522</td>
<td>1090</td>
<td>5.444</td>
<td>847</td>
<td>4.226</td>
<td>-1.63</td>
<td>0.41</td>
<td>1290</td>
<td>-0.89</td>
<td>0.23</td>
<td>1440</td>
<td>25.26</td>
<td>911</td>
<td>168.02</td>
<td>775</td>
<td>167.41</td>
</tr>
<tr>
<td>39</td>
<td>706</td>
<td>50.23</td>
<td>3.522</td>
<td>1090</td>
<td>5.444</td>
<td>847</td>
<td>4.226</td>
<td>-0.79</td>
<td>0.20</td>
<td>1290</td>
<td>-0.59</td>
<td>0.15</td>
<td>1440</td>
<td>25.81</td>
<td>910</td>
<td>188.98</td>
<td>775</td>
<td>188.19</td>
</tr>
<tr>
<td>40</td>
<td>706</td>
<td>50.45</td>
<td>3.522</td>
<td>1090</td>
<td>5.444</td>
<td>847</td>
<td>4.226</td>
<td>-1.22</td>
<td>0.34</td>
<td>1290</td>
<td>-0.82</td>
<td>0.23</td>
<td>1440</td>
<td>27.76</td>
<td>910</td>
<td>208.88</td>
<td>775</td>
<td>208.05</td>
</tr>
<tr>
<td>41</td>
<td>706</td>
<td>50.17</td>
<td>3.522</td>
<td>1090</td>
<td>5.445</td>
<td>847</td>
<td>4.227</td>
<td>-1.34</td>
<td>0.37</td>
<td>1290</td>
<td>-0.64</td>
<td>0.18</td>
<td>1440</td>
<td>27.44</td>
<td>910</td>
<td>229.58</td>
<td>775</td>
<td>229.12</td>
</tr>
<tr>
<td>42</td>
<td>706</td>
<td>50.42</td>
<td>3.522</td>
<td>1091</td>
<td>5.447</td>
<td>847</td>
<td>4.228</td>
<td>-0.24</td>
<td>0.07</td>
<td>1291</td>
<td>0.48</td>
<td>-0.14</td>
<td>1441</td>
<td>28.74</td>
<td>911</td>
<td>250.16</td>
<td>776</td>
<td>250.12</td>
</tr>
<tr>
<td>43</td>
<td>706</td>
<td>50.19</td>
<td>3.523</td>
<td>1091</td>
<td>5.446</td>
<td>847</td>
<td>4.229</td>
<td>-0.17</td>
<td>0.05</td>
<td>1291</td>
<td>0.18</td>
<td>-0.05</td>
<td>1441</td>
<td>28.80</td>
<td>909</td>
<td>269.59</td>
<td>778</td>
<td>270.86</td>
</tr>
</tbody>
</table>
7.5 SLOWLY INCREASING STEER TEST RESULTS

2011 GMC Sierra 1500 4WD Crew Cab (2WD Drive Configuration)

NHTSA No.: **CB0108**

Date of Test: 9/13/2011
Date Created: 9/13/11

<table>
<thead>
<tr>
<th>File</th>
<th>EventPt</th>
<th>DOS</th>
<th>MES (mph)</th>
<th>Mean SPD (mph)</th>
<th>AYcount_3</th>
<th>THETAENCF_3 (deg)</th>
<th>AYCG_CD2_3 (g)</th>
<th>r_squared</th>
<th>ZeroBegin</th>
<th>ZeroEnd</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>700</td>
<td>1</td>
<td>49.633</td>
<td>49.741</td>
<td>1316</td>
<td>-41.237</td>
<td>-0.297</td>
<td>0.994</td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td>11</td>
<td>703</td>
<td>1</td>
<td>49.526</td>
<td>49.835</td>
<td>1314</td>
<td>-41.056</td>
<td>-0.299</td>
<td>0.998</td>
<td>503</td>
<td>703</td>
</tr>
<tr>
<td>12</td>
<td>705</td>
<td>1</td>
<td>49.853</td>
<td>50.012</td>
<td>1324</td>
<td>-41.831</td>
<td>-0.303</td>
<td>0.998</td>
<td>505</td>
<td>705</td>
</tr>
<tr>
<td>13</td>
<td>717</td>
<td>0</td>
<td>49.777</td>
<td>49.980</td>
<td>1290</td>
<td>39.499</td>
<td>0.293</td>
<td>0.998</td>
<td>517</td>
<td>717</td>
</tr>
<tr>
<td>14</td>
<td>700</td>
<td>0</td>
<td>49.566</td>
<td>49.738</td>
<td>1294</td>
<td>39.822</td>
<td>0.299</td>
<td>0.998</td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td>15</td>
<td>700</td>
<td>0</td>
<td>49.835</td>
<td>49.831</td>
<td>1298</td>
<td>40.102</td>
<td>0.296</td>
<td>0.998</td>
<td>500</td>
<td>700</td>
</tr>
</tbody>
</table>

Averages
- Mean SPD: 40.591 mph
- r_squared: 0.298

Scalars vs. Steering Angles (deg)

<table>
<thead>
<tr>
<th>Scalars</th>
<th>Steering Angles (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>61</td>
</tr>
<tr>
<td>2.0</td>
<td>81</td>
</tr>
<tr>
<td>2.5</td>
<td>102</td>
</tr>
<tr>
<td>3.0</td>
<td>122</td>
</tr>
<tr>
<td>3.5</td>
<td>142</td>
</tr>
<tr>
<td>4.0</td>
<td>162</td>
</tr>
<tr>
<td>4.5</td>
<td>183</td>
</tr>
<tr>
<td>5.0</td>
<td>203</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scalars</th>
<th>Steering Angles (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>223</td>
</tr>
<tr>
<td>6.0</td>
<td>244</td>
</tr>
<tr>
<td>6.7</td>
<td>264</td>
</tr>
</tbody>
</table>
7.5 SLOWLY INCREASING STEER TEST RESULTS

2011 GMC Sierra 1500 4WD Crew Cab (4WD Drive Configuration)

NHTSA No.: CB0108
Date of Test: 9/14/2011
Date Created: 9/14/2011

<table>
<thead>
<tr>
<th>File</th>
<th>EventPt</th>
<th>DOS</th>
<th>MES (mph)</th>
<th>Mean SPD (mph)</th>
<th>AYcount_3</th>
<th>THETAENC_F_3 (deg)</th>
<th>AYCG_CD2_3 (g)</th>
<th>r_squared</th>
<th>ZeroBegin</th>
<th>ZeroEnd</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>709</td>
<td>1</td>
<td>49.644</td>
<td>49.798</td>
<td>1326</td>
<td>-41.927</td>
<td>-0.310</td>
<td>0.996</td>
<td>509</td>
<td>709</td>
</tr>
<tr>
<td>11</td>
<td>716</td>
<td>1</td>
<td>49.801</td>
<td>49.905</td>
<td>1330</td>
<td>-42.270</td>
<td>-0.304</td>
<td>0.996</td>
<td>516</td>
<td>716</td>
</tr>
<tr>
<td>12</td>
<td>700</td>
<td>1</td>
<td>49.444</td>
<td>49.858</td>
<td>1328</td>
<td>-42.106</td>
<td>-0.298</td>
<td>0.994</td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td>13</td>
<td>697</td>
<td>0</td>
<td>49.409</td>
<td>49.756</td>
<td>1319</td>
<td>41.552</td>
<td>0.301</td>
<td>0.997</td>
<td>497</td>
<td>697</td>
</tr>
<tr>
<td>14</td>
<td>711</td>
<td>0</td>
<td>49.777</td>
<td>49.801</td>
<td>1315</td>
<td>41.286</td>
<td>0.303</td>
<td>0.995</td>
<td>511</td>
<td>711</td>
</tr>
<tr>
<td>15</td>
<td>697</td>
<td>0</td>
<td>49.774</td>
<td>49.773</td>
<td>1316</td>
<td>41.262</td>
<td>0.297</td>
<td>0.996</td>
<td>497</td>
<td>697</td>
</tr>
</tbody>
</table>

Averages
41.724
0.302

<table>
<thead>
<tr>
<th>Scalars</th>
<th>Steering Angles (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>63</td>
</tr>
<tr>
<td>2.0</td>
<td>83</td>
</tr>
<tr>
<td>2.5</td>
<td>104</td>
</tr>
<tr>
<td>3.0</td>
<td>125</td>
</tr>
<tr>
<td>3.5</td>
<td>146</td>
</tr>
<tr>
<td>4.0</td>
<td>167</td>
</tr>
<tr>
<td>4.5</td>
<td>188</td>
</tr>
<tr>
<td>5.0</td>
<td>209</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scalars</th>
<th>Steering Angles (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>229</td>
</tr>
<tr>
<td>6.0</td>
<td>250</td>
</tr>
<tr>
<td>6.5</td>
<td>271</td>
</tr>
</tbody>
</table>
7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES

Vehicle: 2011 GMC Sierra 1500 4WD Crew Cab
Wheelbase: 143.8 Inches
Measurement date: 9/9/2011

NHTSA No.: CB0108
Faro Arm S/N: U08-05-08-06636
Certification date: 11/7/10

CMM Measurements

Coordinate system: SAE (X,Y,Z positive forward, to the right, and downward, respectively)
Origin defined at 48" point on lateral arm of measurement fixture, projected onto the ground plane

<table>
<thead>
<tr>
<th>Ref</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_PLANE001_Ground_Plane</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
</tr>
<tr>
<td>M_Line_Y_Axis</td>
<td>2.438</td>
<td>-</td>
<td>0.000</td>
</tr>
<tr>
<td>M_Point_48_Ref</td>
<td>0.000</td>
<td>0.000</td>
<td>-</td>
</tr>
<tr>
<td>M_CIRCLE001_L_Left_Rear_Wheel_Axle</td>
<td>-52.191</td>
<td>8.521</td>
<td>-15.210</td>
</tr>
<tr>
<td>M_Point_IMU_side</td>
<td>19.327</td>
<td>44.694</td>
<td>-28.163</td>
</tr>
<tr>
<td>M_Point_ROOF</td>
<td>-</td>
<td>-</td>
<td>-73.844</td>
</tr>
</tbody>
</table>

Motion Pak reference point taken from mid height of unit left side
Motion Pak Width = 3.05" ==> 1/2 W = 1.525
Motion_PAK_Location

<table>
<thead>
<tr>
<th>Ref</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.327</td>
<td>46.219</td>
<td>-28.163</td>
<td></td>
</tr>
</tbody>
</table>

Measurement Notes:
1. The Faro arm is positioned just to the left of the vehicle, near the rear door.
2. A "centerline jig" is used in the Faro arm measurement. The jig consists of a long beam with a 4 ft lateral arm that is perpendicular to the beam. The jig is placed on the ground underneath the vehicle with the long beam positioned along the centerline of the vehicle, such that the lateral arm extends to the left, slightly forward of the left rear tire. The lateral arm has a marked indentation point which is located 48.00" from the edge of the centerline beam.
3. The Faro arm is used to make the following measurements:
 - Three points on the ground, which establishes the ground plane.
 - Two points along the lateral arm, and projected onto the ground plane. This establishes the y axis.
 - One point at the 48 inch reference point on the lateral arm. This establishes the origin.
 - Three points on the left rear wheel or wheel cover. The Faro arm then computes the center point of the wheel.
 - One point to establish the height of the highest point on the roof of the vehicle.

Coordinate Measurements Calculated for S7D (Matlab Program)

Coordinate system: X,Y,Z positive rearward, to the right, and upward, respectively
Origin defined as follows: X axis: front axle, Y axis: vehicle centerline, Z axis: ground plane

<table>
<thead>
<tr>
<th>Ref</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion_PAK_Location in S7D (Matlab program) coordinate system</td>
<td>72.282</td>
<td>-1.781</td>
<td>28.163</td>
</tr>
</tbody>
</table>

Calculation Notes:
1. X axis value is the difference between the wheelbase and the calculated distance from the rear axle centerline to the IMU (the value must be positive and less than the wheelbase).
2. Y axis value is -48.00 (the Y axis offset of the measurement origin in the S7D coordinate system) plus the measured Y axis value (a negative value indicates the IMU is to the left of the vehicle centerline, and a positive value indicates it is to the right)
3. Z axis value is from the ground plane up to the center of the IMU (value must be positive).