SAFETY COMPLIANCE TESTING FOR FMVSS 126
Electronic Stability Control Systems

Ford Motor Co.
2011 Ford Edge
NHTSA No. CB0208

DYNAMIC RESEARCH, INC.
355 Van Ness Avenue, STE 200
Torrance, California 90501

30 November 2011
Final Report

Prepared Under Contract No.: DTNH22-08-D-00098

U. S. DEPARTMENT OF TRANSPORTATION
National Highway Traffic Safety Administration
Enforcement
Office of Vehicle Safety Compliance
1200 New Jersey Avenue, SE
West Building, 4th Floor (NVS-221)
Washington, DC 20590
Prepared for the Department of Transportation, National Highway Traffic Safety Administration, under Contract No. DTNH22-08-D-00098.

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings, and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturer's names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products of manufacturers.

Prepared By:

Approved By:

Approval Date: 30 November 2011

FINAL REPORT ACCEPTANCE BY OVSC:

Accepted By:

Acceptance Date: 12/2/11
1. Report No. 126-DRI-11-010

2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle
Final Report of FMVSS 126 Compliance Testing of a 2011 Ford Edge, NHTSA No. CB0208

5. Report Date
30 November 2011

6. Performing Organization Code
DRI

7. Author(s)
John F. Lenkeit, Technical Director
Brian Kebschull, Principal Engineer

DRI-TM-11-38

9. Performing Organization Name and Address
Dynamic Research, Inc.
355 Van Ness Ave, STE 200
Torrance, CA 90501

10. Work Unit No.

11. Contract or Grant No.
DTNH22-08-D-00098

12. Sponsoring Agency Name and Address
U.S. Department of Transportation
National Highway Traffic Safety Administration Enforcement
Office of Vehicle Safety Compliance
1200 New Jersey Avenue, SE,
West Building, 4th Floor (NVS-221)
Washington, D.C. 20590

13. Type of Report and Period Covered
Final Test Report
26 August 2011 to 30 November 2011

NVS-220

15. Supplementary Notes

16. Abstract
A test was conducted on a 2011 Ford Edge, NHTSA No. CB0208, in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP-126-02 for the determination of FMVSS 126 compliance. Test failures identified were as follows: None

17. Key Words
Compliance Testing
Safety Engineering
FMVSS 126

18. Distribution Statement
Copies of this report are available from:
NHTSA Technical Information Services (TIS)
(NPO 411)
1200 New Jersey Avenue, SE
Washington, D.C. 20590
Email: tis@nhtsa.dot.gov
FAX: (202) 493-2833

19. Security Classif. (of this report) Unclassified

20. Security Classif. (of this page) Unclassified

21. No. of Pages 65

22.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>PURPOSE OF COMPLIANCE TEST</td>
</tr>
<tr>
<td>2.0</td>
<td>TEST PROCEDURE AND DISCUSSION OF RESULTS</td>
</tr>
<tr>
<td>3.0</td>
<td>TEST DATA</td>
</tr>
<tr>
<td>4.0</td>
<td>TEST EQUIPMENT LIST AND CALIBRATION INFORMATION</td>
</tr>
<tr>
<td>5.0</td>
<td>PHOTOGRAPHS</td>
</tr>
<tr>
<td>6.0</td>
<td>DATA PLOTS</td>
</tr>
<tr>
<td>7.0</td>
<td>OTHER DOCUMENTATION</td>
</tr>
<tr>
<td>7.1</td>
<td>Owner’s Manual Pages</td>
</tr>
<tr>
<td>7.2</td>
<td>Vehicle Arrival Condition Report</td>
</tr>
<tr>
<td>7.3</td>
<td>Vehicle Completion Condition Report</td>
</tr>
<tr>
<td>7.4</td>
<td>Sine with Dwell Test Results</td>
</tr>
<tr>
<td>7.5</td>
<td>Slowly Increasing Steer Test Results</td>
</tr>
<tr>
<td>7.6</td>
<td>Inertial Sensing System Location Coordinates</td>
</tr>
</tbody>
</table>
1.0 PURPOSE OF COMPLIANCE TEST

The purpose of this test is to determine if the test vehicle, a 2011 Ford Edge, meets the minimum equipment and performance requirements stated in Federal Motor Vehicle Safety Standard (FMVSS) 126, "Electronic Stability Control Systems."

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS

Testing of the 2011 Ford Edge was conducted at Dynamic Research, Inc (DRI) in accordance with NHTSA TP-126-02, dated November 19, 2008.

The vehicle was inspected to ensure it was equipped with an ESC system that:

- Augments vehicle directional stability by applying and adjusting brake torques individually at each wheel to induce a correcting yaw moment to a vehicle;

- Is computer controlled with the computer using a closed-loop algorithm to limit vehicle oversteer and to limit vehicle understeer;

- Has a means to determine the vehicle's yaw rate and to estimate its side slip or side slip derivative with respect to time;

- Has a means to monitor driver steering inputs;

- Has an algorithm to determine the need, and a means to modify engine torque, as necessary, to assist the driver in maintaining control of the vehicle; and

- Is operational over the full speed range of the vehicle (except at vehicle speeds less than 20 km/h (12.4 mph), when being driven in reverse, or during system initialization).

The vehicle was subjected to a 0.7 Hz Sine with Dwell steering maneuver to ensure that it would meet the stability and responsiveness requirements of the standard as follows:

- At 1.0 second after completion of a required Sine with Dwell steering input, the yaw rate of the vehicle must not exceed 35 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).
2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTINUED)

− At 1.75 seconds after completion of a required Sine with Dwell steering input, the yaw rate of the vehicle must not exceed 20 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).

− For steering inputs of scalar 5 and greater, the lateral displacement of the vehicle center of gravity with respect to its initial straight path must be at least 1.83 m (6 feet) (for vehicles with a GVWR of 3,500 kg (7,716 lb) or less) when computed 1.07 seconds after the Beginning of Steer (BOS) at the specified steering wheel angles.

System malfunction simulations were executed to verify vehicle could identify and indicate a malfunction.

The vehicle's ESC System appears to meet the performance and equipment requirements as required by FMVSS 126. The test results are summarized on the following summary sheet.
2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTD)

Data Summary Sheet (Page 1 of 2)

Vehicle: 2011 Ford Edge

NHTSA No. C80208 VIN: 2FMDK3JC9BBB51891

Vehicle Type: MPV Manufacture Date: 6/11

Laboratory: Dynamic Research, Inc.

REQUIREMENTS:

ESC Equipment and Operational Characteristics (Data Sheet 2)
The vehicle is to be equipped with an ESC system that meets the equipment and operational characteristics requirements. (S126, S5.1, S5.6)

PASS

ESC Malfunction Telltale (Data Sheet 3)
Vehicle is equipped with a telltale that indicates one or more ESC system malfunctions. (S126, S5.3)

PASS

“ESC Off” and other System Controls and Telltale (Data Sheet 3,4)
Vehicle is equipped with an ESC off telltale indicating the vehicle has been put into a mode that renders the ESC system unable to satisfy the performance requirements of the standard, if such a mode exists. (S5.5.1)

PASS

If provided, off control and other system controls as well as the ESC off telltale meets the operational requirements (S126, S5.4, S5.4.1,S5.4.2, S5.5.4, and S5.5.9)

PASS
2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTD)

Data Summary Sheet (Page 2 of 2)

REQUIREMENTS:

Vehicle Lateral Stability (Data Sheet 8)
- Yaw Rate Ratio at 1 second after COS is less than 35% of peak value. (S126, S5.2.1)
 PASS
- Yaw Rate Ratio at 1.75 seconds after COS is less than 20% of peak value. (S126, S5.2.2)
 PASS

Vehicle Responsiveness (Data Sheet 8)
- Lateral displacement at 1.07 seconds after BOS is at least 1.83 m (6 feet) for vehicles with a GVWR of 3,500 kg (7,716 lb) or less, and 1.52 m (5 feet) for vehicles with a GVWR greater than 3,500 Kg (7,716 lb). (S126, S5.2.3)
 PASS

ESC Malfunction Warning (Data Sheet 9)
- Warning is provided to driver after malfunction occurrence. (S126, S5.3)
 PASS
- Malfunction telltale stayed illuminated as long as malfunction existed and must extinguish after malfunction was corrected. (S126, S5.3.7)
 PASS
3.0 TEST DATA

DATA SHEET 1 (Page 1 of 2)
TEST VEHICLE INSPECTION AND TEST PREPARATION

Vehicle: 2011 Ford Edge
NHTSA No. CB0208 Data Sheet Completion Date: 9/12/2011
VIN 2FMDK3JC9BBB51891 Manufacture Date: 6/11
GVWR (kg): 2440 Front GAWR (kg): 1297 Rear GAWR (kg): 1157
Seating Positions Front: 2 Mid: 3 Rear: 3
Odometer reading at time of inspection: 14 miles (22.4 km)

DESIGNATED TIRE SIZE(S) FROM VEHICLE LABELING:
Front axle: P245/50R20 Rear axle: P245/50R20

INSTALLED TIRE SIZE(S) ON VEHICLE (from tire sidewall)

<table>
<thead>
<tr>
<th>TIN</th>
<th>Left Front: 51 KC L936 1811</th>
<th>Right Front: 51 KC L936 1811</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left Rear: 51 KC L936 1811</td>
<td>Right Rear: 51 KC L936 1811</td>
</tr>
</tbody>
</table>

Are installed tire sizes same as labeled tire sizes? Yes
If no, contact COTR for further guidance

DRIVE CONFIGURATION(S): (mark all that apply)
- [X] Two Wheel Drive (2WD)
- [X] Front Wheel Drive
- [] Rear Wheel Drive
- [] All Wheel Drive (AWD)
- [] Four Wheel Drive Automatic - differential no locked full time (4WD Automatic)
- [] Four Wheel Drive (High Gear Locked Differential 4WD HGLD)
- [] Four Wheel Drive Low Gear (4WD Low)
- [] Other (Describe)
3.0 TEST DATA (CONTD)

Data Sheet 1 (Page 2 of 2)
TEST VEHICLE INSPECTION AND TEST PREPARATION

DRIVE CONFIGURATIONS AND MODES: (ex. default, performance, off)
(For each of the vehicle's drive configurations identify available operating modes)

Drive Configuration: **FWD**
Mode: **Default - ESC on**

Drive Configuration:
Mode:

Drive Configuration:
Mode:

VEHICLE STABILITY SYSTEMS (Check applicable technologies):
List other systems:

- ESC X
- Traction Control X
- Roll Stability Control X
- Active Suspension
- Electronic Throttle Control X
- Active Steering
- ABS X

Advance Trac with RSC system (ESC)

REMARKS:

RECORDED BY: **P Broen** DATE RECORDED: **9/12/2011**
APPROVED BY: **B Kebschull** DATE APPROVED: **9/12/2011**
Vehicle: 2011 Ford Edge

NHTSA No CB0208 Data Sheet Completion Date: 8/31/2011

ESC SYSTEM IDENTIFICATION
Manufacturer/Model Continental Automotive MK25E XT ESC module (Diagonal split)

ESC SYSTEM HARDWARE (Check applicable hardware)
- [X] Electronic Control Unit
- [X] Hydraulic Control Unit
- [X] Wheel Speed Sensors
- [X] Steering Angle Sensor
- [X] Yaw Rate Sensor
- [X] Lateral Acceleration Sensor

List other Components: Engine and transmission ECU

ESC OPERATIONAL CHARACTERISTICS
System is capable of generating brake torque at each wheel
Brief explanation: A Hydraulic Control Unit (HCU) with integrated Electronic Control Unit (ECU) including primary pressure sensor is able to control brake torque for each wheel individually. The HCU is able to adjust pressure wheel individually, by switching valves and activation of the pump, independent from the driver’s brake actuation.

System is capable of determining yaw rate
Brief explanation: Actual vehicle yaw rate is sourced from yaw rate sensor which resides in the Restraints Control Module.

System is capable of monitoring driver steering input
Brief explanation: Driver steering input is measured by steer angle sensor.
ESC OPERATIONAL CHARACTERISTICS (continued)

System is capable of estimating side slip or side slip derivative
Brief explanation: Side slip angle is estimated by ESC module control algorithm which calculates vehicle behavior based on four individual wheel speed inputs, steering wheel angle input, yaw rate signal input and lateral acceleration input

System is capable of modifying engine torque during ESC activation.
Method used to modify torque: Torque output is managed by reducing air flow, altering spark timing and/or selectively turning off fuel injectors. This is the standard priority for reducing output torque during a torque reduction request

System is capable of activation at speeds of 20 km/h (12.4 mph) and higher

Speed system becomes active: 14 km/h

System is capable of activation during the following driving phases:
- acceleration
- braking
- coasting

Driving phases during which ESC is capable of activation:
ESC is active under all driving situations, except backwards driving, driving at low velocity (< 14.4 km/h).

Vehicle manufacturer submitted documentation explaining how the ESC mitigates understeer

DATA INDICATES COMPLIANCE: Yes (Pass)

REMARKS: _

RECORDED BY: J Lenkeit DATE RECORDED: 8/31/2011
APPROVED BY: P Broen DATE APPROVED: 9/12/2011
3.0 TEST DATA (CONTD)

Data Sheet 3 (Page 1 of 2)

ESC MALFUNCTION AND OFF TELLTALES

Vehicle: 2011 Ford Edge

NHTSA No. CB0208 Data Sheet completion date: 9/12/2011

ESC Malfunction Telltale

Vehicle is equipped with malfunction telltale? Yes

Telltale Location: Lower right side of instrument cluster

Telltale Color: Yellow

Telltale symbol or abbreviation used

Vehicle uses this symbol

Vehicle uses this abbreviation

Neither symbol or abbreviation is used

If different than identified above, make note of any message, symbol or abbreviation used.

Additionally a “Service Advance Trac” message appears in the instrument cluster message center. There is also a chime associated with this message

Is telltale part of a common space? No

Is telltale also used to indicate activation of the ESC system? Yes

If yes explain telltale operation during ESC activation:

Telltale flashes during ESC operation
3.0 TEST DATA (CONTD)

Data Sheet 3 (Page 2 of 2)

ESC MALFUNCTION AND OFF TELLTALES

"ESC OFF" Telltale (if provided)

Vehicle is equipped with "ESC OFF" telltale? *Yes, but it is used only to indicate that TCS has been turned off*

Is "ESC Off" telltale combined with "ESC Malfunction" telltale utilizing a two part telltale? *No*

Telltale Location: *Lower right side of instrument cluster*

Telltale Color: *yellow*

Telltale symbol or abbreviation used

![Symbol] or ![Abbreviation]

Vehicle uses this symbol

Vehicle uses this abbreviation

Neither symbol or abbreviation is used

If different than identified above, make note of any message, symbol or abbreviation used.

Is telltale part of a common space? *No*

**DATA INDICATES COMPLIANCE ** *Yes*

(Vehicle is compliant if equipped with a malfunction telltale)

Remarks: *There is no ESC off control. However, there is a sliding car telltale with the text "OFF" underneath indicate that the traction control has been turned off*

RECORDED BY:

APPROVED BY:

<table>
<thead>
<tr>
<th>Recorded By</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>P Broen</td>
<td>B Kebschull</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Recorded</th>
<th>Date Approved</th>
</tr>
</thead>
</table>
3.0 TEST DATA (CONTD)

Data Sheet 4 (Page 1 of 3)
ESC AND ANCILLARY SYSTEM CONTROLS

Vehicle: **2011 Ford Edge**

NHTSA No. **CB0208**

Data Sheet completion date: **9/12/2011**

“ESC OFF” Controls Identification and Operational Check:

Is the vehicle equipped with a control or controls whose purpose is to deactivate the ESC system or place the ESC system in a mode or modes that may no longer satisfy the performance requirements of the standard? ___ Yes X No

Type of control or controls provided? (mark all that apply)
- [] Dedicated “ESC Off” Control
- [] Multi-functional control with an “ESC Off” mode
 - X Other (describe)

Identify each control location, labeling and selectable modes.

First Control: Location **Lower right side of instrument cluster**
Labeling **Message center**
Modes **ESC/RSC/TCS = enabled; ESC/RSC = enabled, TCS disabled**

Identify standard or default drive configuration **FWD**

Verify standard or default drive configuration ___ Yes ___ No

Does the “ESC Off” telltale illuminate upon activation of the dedicated ESC off control or selection of the “ESC Off” mode on the multi-function control? ___ Yes ___ No (Fail)

Does the “ESC Off” telltale extinguish when the ignition is cycled from “on” (“Run”) to “Lock” or “Off” and then back again to the “On” (“Run”) position? ___ Yes ___ No (Fail)

If no, describe how the “Off” control functions

The sliding car telltale with the text “OFF” underneath only indicates that the TCS has been disabled
3.0 TEST DATA (CONTD)

Data Sheet 4 (Page 2 of 3)
ESC AND ANCILLARY SYSTEM CONTROLS

If a multi-function control is provided, cycle through each mode setting on the control and record which modes illuminate the “ESC Off” telltale. Also, for those modes that illuminate the ESC Off” telltale identify if the telltale extinguishes upon cycling the ignition system.

<table>
<thead>
<tr>
<th>Control Mode</th>
<th>"ESC Off" telltale illuminates upon activation of control? (Yes/No)</th>
<th>"ESC Off" telltale extinguishes upon cycling ignition? (Yes/No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For each mode that illuminates the “ESC Off” telltale, did the telltale extinguish when the ignition was cycled from “On” (“Run”) to “Lock” or “Off” and then back again to the “On” (“Run”) position?

X NA Yes No

Other System Controls that have an ancillary effect on ESC Operation:

Is the vehicle equipped with any ancillary controls that upon activation may deactivate the ESC system or place the ESC system in a mode or modes that may no longer satisfy the performance requirements of the standard?

Yes X No

Ancillary Control:

<table>
<thead>
<tr>
<th>System</th>
<th>Control Description</th>
<th>Labeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Activate each ancillary control listed above and record whether the control illuminates the “ESC Off” telltale. Also, record warnings or messages provided regarding the ESC system.

<table>
<thead>
<tr>
<th>Ancillary Control</th>
<th>Control Activates “ESC Off” Telltale? (Yes/No)</th>
<th>Warnings or Messages Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For those controls that illuminate the “ESC Off” telltale above identify if the “ESC Off” telltale extinguishes upon cycling the ignition system.

<table>
<thead>
<tr>
<th>Ancillary Control</th>
<th>“ESC Off” telltale extinguishes upon cycling ignition? (Yes/No)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For each ancillary control that illuminates the “ESC Off” telltale, did the telltale extinguish when the ignition is cycled from “On” (“Run”) to “Lock” or “Off” and then back again to the “On” (“Run”) position? If activating the control places the vehicle into a low-range four-wheel drive configuration designed for low-speed, off-road driving, the ESC system may remain turned off after the ignition has been cycled off and then back on and therefore the “ESC Off” telltale may not extinguish.

Yes No (Fail) X NA

DATA INDICATES COMPLIANCE: PASS

Remarks:
The ESC system never shuts down. The sliding car telltale with the text “OFF” underneath only indicates that TCS has been disabled. ESC is deactivated in reverse if traction control has been turned off.

RECORDED BY: P Broen DATE RECORDED: 9/12/2011
APPROVED BY: B Kebschull DATE APPROVED: 9/12/2011
3.0 TEST DATA (CONTD)

Data Sheet 5 (Page 1 of 3)

TEST TRACK AND VEHICLE DATA

<table>
<thead>
<tr>
<th>Vehicle:</th>
<th>2011 Ford Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHTSA No.</td>
<td>CB0208</td>
</tr>
<tr>
<td>Data Sheet completion date:</td>
<td>9/12/2011</td>
</tr>
</tbody>
</table>

Test Track Requirements:
- Test surface slope (0-1%): 0.5%
- Peak Friction Coefficient (at least 0.9): 0.936

Test track data meets requirements: **Yes**

Full Fluid Levels:
- Fuel **Yes**
- Other Fluids **Yes** (specify) *Oil, Washer Fluid, Brake Fluid*
- Coolant **Yes**

Tire Pressures:
- Required:
 - Front Axle 240 kPa
 - Rear Axle 240 kPa
- Actual:
 - LF 240 kPa
 - RF 240 kPa
 - LR 240 kPa
 - RR 240 kPa

Vehicle Dimensions:
- Front Track Width 165.9 cm
- Wheelbase 282.2 cm
- Rear Track Width 165.9 cm

Vehicle Weight Ratings:
- GAWR Front 1297 kg
- GAWR Rear 1157 kg

Unloaded Vehicle Weight (UVW):
- Front Axle 1134.0 kg
- Left Front 572.9 kg
- Right Front 561.1 kg
- Rear Axle 801.1 kg
- Left Rear 402.8 kg
- Right Rear 398.3 kg
- Total UVW 1935.1 kg

Baseline Weight and Outrigger Selection (only for MPVs, Trucks, Buses)

- Calculated baseline weight (UVW + 73kg) 2008.1 kg
- Outrigger size required ("Standard" or "Heavy") **Standard**

Standard - Baseline weight under 2772 kg (6000 lb)
Heavy - Baseline weight equal to or greater than 2772 kg (6000 lb)
3.0 TEST DATA (CONTD)

Data Sheet 5 (Page 2 of 3)
TEST TRACK AND VEHICLE DATA

UVW with Outriggers: (only for MPVs, Trucks, Buses)

Front axle	1166.7 kg	Left front	585.6 kg	Right front	581.1 kg
Rear axle	845.0 kg	Left rear	425.0 kg	Right rear	420.0 kg
Total UVW with outriggers	2011.7 kg				

Loaded Vehicle Weight w/Driver and Instrumentation (no Ballast)

Front axle	1241.5 kg	Left front	631.4 kg	Right front	610.1 kg
Rear axle	907.6 kg	Left rear	464.0 kg	Right rear	443.6 kg
Vehicle Weight	2149.1 kg				

Ballast Required

\[
\text{Ballast Required} = (\text{Total UVW with Outriggers (if applicable)}) + 168 - (\text{Loaded Weight w/Driver and Instrumentation})
\]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>+ 168</th>
<th></th>
<th>- 2149.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011.7 kg</td>
<td></td>
<td>+ 168</td>
<td>30.6 kg</td>
<td></td>
</tr>
</tbody>
</table>

Total Loaded Vehicle Weight w/Driver and Instrumentation and Ballast

Front axle	1254.2 kg	Left front	633.2 kg	Right front	621.0 kg
Rear axle	925.4 kg	Left rear	469.5 kg	Right rear	455.9 kg
Total UVW	2179.6 kg				
Center of Gravity and Inertial Sensing System Location at Loaded Vehicle Condition:

x-distance (longitudinal) Point of reference is the front axle centerline.
(Positive from front axle toward rear of vehicle.)

y-distance (lateral) Point of reference is the vehicle centerline.
(Positive from the center toward the right.)

z-distance (vertical) Point of reference is the ground plane.
(Positive from the ground up.)

Locations:

<table>
<thead>
<tr>
<th></th>
<th>Center of Gravity</th>
<th>Inertial Sensing System</th>
</tr>
</thead>
<tbody>
<tr>
<td>x-distance</td>
<td>47.2 in 119.8 cm</td>
<td>69.8 in 177.4 cm</td>
</tr>
<tr>
<td>y-distance</td>
<td>-0.4 in -1.0 cm</td>
<td>-0.5 in -1.2 cm</td>
</tr>
<tr>
<td>z-distance</td>
<td>25.3 in 64.2 cm</td>
<td>21.4 in 54.3 cm</td>
</tr>
<tr>
<td>Roof Height</td>
<td>66.516 in 169.0 cm</td>
<td></td>
</tr>
<tr>
<td>Distance between ultrasonic sensors</td>
<td>86.5 in 219.7 cm</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

RECORDED BY: P Broen DATE RECORDED: 9/12/2011
APPROVED BY: B Kebschull DATE APPROVED: 9/12/2011
3.0 TEST DATA (CONTD)

Data Sheet 6 (Page 1 of 3)
BRAKE AND TIRE CONDITIONING

Vehicle: *2011 Ford Edge*

NHTSA No.: *CB0208*

<table>
<thead>
<tr>
<th>Measured tire pressure:</th>
<th>LF 266 kPa</th>
<th>RF 260 kPa</th>
<th>LR 262 kPa</th>
<th>RR 258 kPa</th>
</tr>
</thead>
</table>

Wind Speed: *0.8 m/s*
(10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F))
35.3 °C

Brake Conditioning Time: *11:07:00 AM*
Date: *9/12/2011*

56 km/h (35 mph) Brake Stops
- Number of stops executed (10 required): *10* Stops
- Observed deceleration range (0.5g target): *0.5 g*

72 km/h (45 mph) Brake Stops
- Number of stops executed (3 required): *3* Stops
- Number of stops ABS activated (3 required): *3* Stops
- Observed deceleration range: *0.9 g*

72 km/h (45 mph) Brake Cool Down Period
- Duration of cool down period (5 minutes min.): *5 Minutes*
3.0 TEST DATA (CONTD)

Data Sheet 6 (Page 2 of 3)

BRAKE AND TIRE CONDITIONING

Tire Conditioning series No. 1
Time: 11:30:00 AM
Date: 9/12/2011

Measured cold tire pressure
- LF 268 kPa
- RF 261 kPa
- LR 263 kPa
- RR 258 kPa

Wind Speed 2.9 m/s
Wind Speed: 2.9 m/s (10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 30.6°C

<table>
<thead>
<tr>
<th>Test Run</th>
<th>Steering Direction</th>
<th>Target Lateral Acceleration (g)</th>
<th>Observed Lateral Acceleration (g)</th>
<th>Observed Vehicle Speed (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>Clockwise</td>
<td>0.5 – 0.6</td>
<td>0.5 - 0.55</td>
<td>30.4 - 32</td>
</tr>
<tr>
<td>4-6</td>
<td>Counterclockwise</td>
<td>0.5 – 0.6</td>
<td>0.5 - 0.55</td>
<td>30.4 - 32</td>
</tr>
</tbody>
</table>

5-1 Hz Cycle Sinusoidal Steering Maneuver to Determine Steering Wheel Angle for 0.5-0.6 g Lateral Acceleration

<table>
<thead>
<tr>
<th>Test Run</th>
<th>Data File</th>
<th>Vehicle Speed km/h(mph)</th>
<th>Steering Wheel Angle (degrees)</th>
<th>Target Peak Lateral Acceleration (g)</th>
<th>Observed Peak Lateral Acceleration (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>56 ± 2 (35 ± 1)</td>
<td>60</td>
<td>0.5 - 0.6</td>
<td>0.33</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>56 ± 2 (35 ± 1)</td>
<td>100</td>
<td>0.5 - 0.6</td>
<td>0.55</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>56 ± 2 (35 ± 1)</td>
<td></td>
<td>0.5 - 0.6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>56 ± 2 (35 ± 1)</td>
<td></td>
<td>0.5 - 0.6</td>
<td></td>
</tr>
</tbody>
</table>

Steering wheel angle that corresponds to a peak 0.5-0.6 g lateral acceleration: 100 degrees

10-1 Hz Cycle Sinusoidal Steering Maneuver

<table>
<thead>
<tr>
<th>Test Run</th>
<th>Data File</th>
<th>Vehicle Speed km/h(mph)</th>
<th>Steering Wheel Angle (degrees)</th>
<th>Target Peak Lateral Acceleration (g)</th>
<th>Observed Peak Lateral Acceleration (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>4-6</td>
<td>56 ± 2 (35 ± 1)</td>
<td>100 (cycles 1-10)</td>
<td>0.5 - 0.6</td>
<td>0.55</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>56 ± 2 (35 ± 1)</td>
<td>100 (cycles 1-9)</td>
<td>0.5 - 0.6</td>
<td>0.55</td>
</tr>
</tbody>
</table>

* The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9.
3.0 TEST DATA (CONTD)

Data Sheet 6 (Page 3 of 3)
BRAKE AND TIRE CONDITIONING

Tire Conditioning series No. 2 Time: 1:16:00 PM Date: 9/12/2011

Measured cold tire pressure
 LF 271 kPa RF 275 kPa
 LR 265 kPa RR 264 kPa

Wind Speed 2.7 m/s (10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 32.6 °C

<table>
<thead>
<tr>
<th>Test Run</th>
<th>Steering Direction</th>
<th>Target Lateral Acceleration (g)</th>
<th>Observed Lateral Acceleration (g)</th>
<th>Observed Vehicle Speed (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>Clockwise</td>
<td>0.5 - 0.6</td>
<td>0.55</td>
<td>30.4 - 32</td>
</tr>
<tr>
<td>4-6</td>
<td>Counterclockwise</td>
<td>0.5 - 0.6</td>
<td>0.55</td>
<td>30.4 - 32</td>
</tr>
</tbody>
</table>

Steering wheel angle that corresponds to a peak 0.5-0.6 g lateral acceleration: 100 degrees

<table>
<thead>
<tr>
<th>Test Run</th>
<th>Data File</th>
<th>Vehicle Speed km/h (mph)</th>
<th>Steering Wheel Angle (degrees)</th>
<th>Target Peak Lateral Acceleration (g)</th>
<th>Observed Peak Lateral Acceleration (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>18-20</td>
<td>56 ± 2 (35 ± 1)</td>
<td>100 (cycles 1-10)</td>
<td>0.5 - 0.6</td>
<td>0.55</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>56 ± 2 (35 ± 1)</td>
<td>100 (cycles 1-9)</td>
<td>0.5 - 0.6</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200 (cycle 10)*</td>
<td>NA</td>
<td>0.75</td>
</tr>
</tbody>
</table>

* The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9

Remarks:

RECORDED BY: P Broen DATE RECORDED: 9/12/2011
APPROVED BY: B Kebschull DATE APPROVED: 9/12/2011
3.0 TEST DATA (CONTD)

Data Sheet 7 (Page 1 of 2)
SLOWLY INCREASING STEER (SIS) MANEUVER

Vehicle: 2011 Ford Edge
NHTSA No. CB0208

Measured tire pressure: LF 268 kPa RF 263 kPa
LR 266 kPa RR 260 kPa

Wind Speed 3.6 m/s
(10 m/sec (22 mph) max for passenger cars; 5 m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 28.2 °C

Selected drive configuration FWD
Selected Mode: Default - ESC On

Preliminary Left Steer Maneuver:
Lateral Acceleration measured at 30 degrees steering wheel angle

\[a_{y,30 degrees} = 0.3 \text{ g} \]

Assuming a linear relationship the following ratio should be used to calculate the steering wheel angle at 0.55g:

\[\frac{30 \text{ degrees}}{a_{y,30 degrees}} = \frac{\delta_{\text{SIS}}}{0.55 \text{ g}} \quad \Rightarrow \quad \delta_{\text{SIS}} = 55.0 \text{ degrees (@.55g)} \]

\[\delta_{\text{SIS}} = 60 \text{ degrees (rounded)} \]

Steering Wheel Angle at Corrected 0.3g Lateral Acceleration:

<table>
<thead>
<tr>
<th>Maneuver</th>
<th>Initial Steer Direction</th>
<th>Time Clock (5 min max between runs)</th>
<th>Steering Wheel Angle to nearest 0.1° (degrees)</th>
<th>Data Run</th>
<th>Good/NG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Left</td>
<td>12:41</td>
<td>32.6</td>
<td>11</td>
<td>Good</td>
</tr>
<tr>
<td>2</td>
<td>Left</td>
<td>12:42</td>
<td>32.2</td>
<td>12</td>
<td>Good</td>
</tr>
<tr>
<td>3</td>
<td>Left</td>
<td>12:45</td>
<td>33.3</td>
<td>13</td>
<td>Good</td>
</tr>
<tr>
<td>4</td>
<td>Left</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Left</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Right</td>
<td>12:51</td>
<td>33.5</td>
<td>14</td>
<td>Good</td>
</tr>
<tr>
<td>2</td>
<td>Right</td>
<td>12:54</td>
<td>33.5</td>
<td>15</td>
<td>Good</td>
</tr>
<tr>
<td>3</td>
<td>Right</td>
<td>12:56</td>
<td></td>
<td>16</td>
<td>NG</td>
</tr>
<tr>
<td>4</td>
<td>Right</td>
<td>12:59</td>
<td>33.7</td>
<td>17</td>
<td>Good</td>
</tr>
<tr>
<td>5</td>
<td>Right</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.0 TEST DATA (CONTD)

Data Sheet 7 (Page 2 of 2)
SLOWLY INCREASING STEER (SIS) MANEUVER

Average Overall Steering Wheel Angle:

\[
\bar{\delta}_{0.3 \text{ g, overall}} = \frac{\left| \delta_{0.3 \text{ g, left (1)}} \right| + \left| \delta_{0.3 \text{ g, left (2)}} \right| + \left| \delta_{0.3 \text{ g, left (3)}} \right| + \delta_{0.3 \text{ g, right (1)}} + \delta_{0.3 \text{ g, right (2)}} + \delta_{0.3 \text{ g, right (3)}}}{6}
\]

\[
\bar{\delta}_{0.3 \text{ g, overall}} = 33.1 \text{ degrees}
\]
[to nearest 0.1 degree]

Remarks:

RECORDED BY: \hspace{1cm} P Broen \hspace{2cm} DATE RECORDED: 9/12/2011
APPROVED BY: \hspace{1cm} B Kebschull \hspace{2cm} DATE APPROVED: 9/12/2011
3.0 TEST DATA (CONTD)

Data Sheet 8 (Page 1 of 3)

VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Vehicle: **2011 Ford Edge**
NHTSA No. **CB0208**
Data sheet completion date: **9/12/2011**

<table>
<thead>
<tr>
<th>Maneuver #</th>
<th>Clock Time</th>
<th>Commanded Steering Wheel Angle¹</th>
<th>Yaw Rates (degrees/sec)</th>
<th>YRR at 1.0 sec after COS [< 35%]</th>
<th>YRR at 1.75 sec after COS [< 20%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1.5 – 5.0 min max between runs)</td>
<td>Scalar (δ₀.₃ g)</td>
<td>Angle (degrees)</td>
<td>ðₚₑᵃᵏ</td>
<td>ð₁₀sec</td>
</tr>
<tr>
<td>23</td>
<td>14:00</td>
<td>1.5</td>
<td>50</td>
<td>13.31</td>
<td>-0.10</td>
</tr>
<tr>
<td>24</td>
<td>14:03</td>
<td>2.0</td>
<td>66</td>
<td>17.74</td>
<td>-0.29</td>
</tr>
<tr>
<td>25</td>
<td>14:05</td>
<td>2.5</td>
<td>83</td>
<td>21.80</td>
<td>-0.03</td>
</tr>
<tr>
<td>26</td>
<td>14:08</td>
<td>3.0</td>
<td>99</td>
<td>25.02</td>
<td>-0.22</td>
</tr>
<tr>
<td>27</td>
<td>14:10</td>
<td>3.5</td>
<td>116</td>
<td>28.73</td>
<td>-0.14</td>
</tr>
<tr>
<td>28</td>
<td>14:13</td>
<td>4.0</td>
<td>132</td>
<td>31.43</td>
<td>0.00</td>
</tr>
<tr>
<td>29</td>
<td>14:15</td>
<td>4.5</td>
<td>149</td>
<td>33.91</td>
<td>-0.03</td>
</tr>
<tr>
<td>30</td>
<td>14:17</td>
<td>5.0</td>
<td>166</td>
<td>38.23</td>
<td>-0.04</td>
</tr>
<tr>
<td>31</td>
<td>14:20</td>
<td>5.5</td>
<td>182</td>
<td>38.36</td>
<td>-0.14</td>
</tr>
<tr>
<td>32</td>
<td>14:22</td>
<td>6.0</td>
<td>199</td>
<td>39.04</td>
<td>0.01</td>
</tr>
<tr>
<td>33</td>
<td>14:25</td>
<td>6.5</td>
<td>215</td>
<td>44.14</td>
<td>-0.16</td>
</tr>
<tr>
<td>34</td>
<td>14:28</td>
<td>7.0</td>
<td>232</td>
<td>43.56</td>
<td>-0.01</td>
</tr>
<tr>
<td>35</td>
<td>14:31</td>
<td>7.5</td>
<td>248</td>
<td>44.29</td>
<td>-0.49</td>
</tr>
<tr>
<td>36</td>
<td>14:37</td>
<td>8.0</td>
<td>265</td>
<td>44.75</td>
<td>-0.04</td>
</tr>
<tr>
<td>37</td>
<td>14:42</td>
<td>8.5</td>
<td>282</td>
<td>45.30</td>
<td>-0.29</td>
</tr>
</tbody>
</table>

1. Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5 * δ₀.₃ g, overall or 270 degrees is utilized, whichever is greater provided the calculated magnitude of 6.5 * δ₀.₃ g, overall is less than or equal to 300 degrees. If 6.5 * δ₀.₃ g, overall is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5 * δ₀.₃ g, overall without exceeding the 270 degree steering wheel angle.
3.0 TEST DATA (CONTD)

DATA SHEET 8 (2 of 3)

VEHICLE LATERAL STABILITY AND RESPONSIVENESS

LATERAL STABILITY TEST SERIES NO. 2 – Clockwise Initial Steer Direction

<table>
<thead>
<tr>
<th>Maneuver #</th>
<th>Clock Time</th>
<th>Commanded Steering Wheel Angle¹</th>
<th>Yaw Rates (degrees/sec)</th>
<th>YRR at 1.0 sec after COS [%]</th>
<th>YRR at 1.75 sec after COS [%]</th>
<th>% Pass/Fail</th>
<th>% Pass/Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>14:45</td>
<td>1.5 50</td>
<td>-13.83 -0.01 -0.11</td>
<td>-0.07 PASS</td>
<td>0.79 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>41</td>
<td>14:49</td>
<td>2.0 66</td>
<td>-18.03 -0.07 0.07</td>
<td>0.38 PASS</td>
<td>-0.40 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>42</td>
<td>14:52</td>
<td>2.5 83</td>
<td>-21.96 -0.11 0.03</td>
<td>0.51 PASS</td>
<td>-0.14 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>43</td>
<td>14:54</td>
<td>3.0 99</td>
<td>-25.35 -0.13 0.14</td>
<td>0.52 PASS</td>
<td>-0.56 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>44</td>
<td>14:56</td>
<td>3.5 116</td>
<td>-27.95 -0.46 0.00</td>
<td>1.66 PASS</td>
<td>0.01 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>45</td>
<td>14:59</td>
<td>4.0 132</td>
<td>-31.73 -0.33 -0.03</td>
<td>1.03 PASS</td>
<td>0.10 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>46</td>
<td>15:01</td>
<td>4.5 149</td>
<td>-34.79 -0.35 -0.02</td>
<td>1.02 PASS</td>
<td>0.05 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>47</td>
<td>15:05</td>
<td>5.0 166</td>
<td>-36.42 0.02 0.09</td>
<td>-0.05 PASS</td>
<td>-0.25 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>48</td>
<td>15:08</td>
<td>5.5 182</td>
<td>-39.07 -0.24 0.04</td>
<td>0.60 PASS</td>
<td>-0.11 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>49</td>
<td>15:10</td>
<td>6.0 199</td>
<td>-39.35 0.04 0.04</td>
<td>-0.10 PASS</td>
<td>-0.09 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>50</td>
<td>15:13</td>
<td>6.5 215</td>
<td>-42.25 0.07 0.15</td>
<td>-0.17 PASS</td>
<td>-0.35 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>51</td>
<td>15:15</td>
<td>7.0 232</td>
<td>-43.86 0.08 0.11</td>
<td>-0.19 PASS</td>
<td>-0.26 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>52</td>
<td>15:18</td>
<td>7.5 248</td>
<td>-45.35 0.09 0.14</td>
<td>-0.21 PASS</td>
<td>-0.30 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>53</td>
<td>15:20</td>
<td>8.0 265</td>
<td>-46.80 0.07 0.18</td>
<td>-0.14 PASS</td>
<td>-0.38 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>54</td>
<td>15:23</td>
<td>8.5 280</td>
<td>-47.26 0.10 0.06</td>
<td>-0.20 PASS</td>
<td>-0.13 PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
</tbody>
</table>

1. Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5°δ0.3g overall or 270 degrees is utilized, whichever is greater provided the calculated 6.5°δ0.3g overall is less than or equal to 300 degrees. If 6.5°δ0.3g overall is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5°δ0.3g overall without exceeding the 270 degree steering wheel angle.

During execution of the Sine with Dwell maneuvers were any of the following events observed?

- Rim-to-pavement contact
- Tire debeading
- Loss of pavement contact of vehicle tires
- Did the test driver experience any vehicle loss of control or spinout?

If “Yes” explain the event and consult with the COTR.
Responsiveness – Lateral Displacement

<table>
<thead>
<tr>
<th>Maneuver #</th>
<th>Initial Steer Direction</th>
<th>Commanded Steering Wheel Angle (5.0*δ_{0.3 g, overall} or greater)</th>
<th>Calculated Lateral Displacement¹</th>
<th>Distance (m)</th>
<th>Pass/Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Scalar Angle (degrees)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Counter Clockwise</td>
<td>5.0 166</td>
<td>-2.82</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Counter Clockwise</td>
<td>5.5 182</td>
<td>-2.85</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Counter Clockwise</td>
<td>6.0 199</td>
<td>-2.87</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Counter Clockwise</td>
<td>6.5 215</td>
<td>-2.89</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Counter Clockwise</td>
<td>7.0 232</td>
<td>-2.89</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Counter Clockwise</td>
<td>7.5 248</td>
<td>-2.94</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Counter Clockwise</td>
<td>8.0 265</td>
<td>-2.93</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Counter Clockwise</td>
<td>- 270</td>
<td>-2.93</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Clockwise</td>
<td>5.0 166</td>
<td>2.72</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Clockwise</td>
<td>5.5 182</td>
<td>2.80</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Clockwise</td>
<td>6.0 199</td>
<td>2.81</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Clockwise</td>
<td>6.5 215</td>
<td>2.84</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Clockwise</td>
<td>7.0 232</td>
<td>2.86</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Clockwise</td>
<td>7.5 248</td>
<td>2.90</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Clockwise</td>
<td>8.0 265</td>
<td>2.85</td>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Clockwise</td>
<td>- 270</td>
<td>2.92</td>
<td>PASS</td>
<td></td>
</tr>
</tbody>
</table>

1. Lateral displacement should be > 1.83 m (6 ft) for vehicle with a GVWR of 3,500 kg (7,716 lb) or less; and > 1.52 m (5 ft) for vehicles with GVWR greater than 3,500 kg (7,716 lb).

DATA INDICATES COMPLIANCE: ✔ PASS ☐ FAIL

Remarks:

RECORDED BY: P Broen **DATE RECORDED:** 9/12/2011

APPROVED BY: J Lenkeit **DATE APPROVED:** 9/16/2011
3.0 TEST DATA (CONTD)

Data Sheet 9 (Page 1 of 2)
MALFUNCTION WARNING TESTS

Vehicle: 2011 Ford Edge
NHTSA No. CB0208 Data Sheet Completion Date: 9/12/2011

TEST 1

MALFUNCTION SIMULATION: Describe method of malfunction simulation

Removed "Restraints Control Module" fuse.

MALFUNCTION TELLTALE ILLUMINATION:
Telltales illuminate and remain illuminated after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

[X] Yes [] No

Time for telltales to illuminate after ignition system is activated and vehicle speed of 48 ± 8 km/h (30 ± 5 mph) is reached.

0 Seconds (must be within 2 minutes) [X] Pass [] Fail

ESC SYSTEM RESTORATION

Telltales extinguish after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

[X] Yes [] No

Time for telltales to extinguish after ignition system is activated and vehicle speed of 48 ± 8 km/h (30 ± 5 mph) is reached.

0 Seconds (must be within 2 minutes) [X] Pass [] Fail

TEST 1 DATA INDICATES COMPLIANCE: PASS

Remarks: Telltales illuminated immediately upon ignition, after fuse was removed. The ESC Off telltales also illuminated. In addition, "Service AdvanceTrak", along with the ESC telltales symbol was displayed in the common display area on the left side of the instrument cluster. All of the above telltales extinguished immediately upon ignition, after the fuse was re-installed. No driving was necessary.

RECORDED BY: B Kebschull DATE RECORDED: 9/12/2011
APPROVED BY: P Broen DATE APPROVED 9/12/2011
3.0 TEST DATA (CONTD)

Data Sheet 9 (Page 2 of 2)
MALFUNCTION WARNING TESTS

Vehicle: 2011 Ford Edge
NHTSA No. CB0208
Data Sheet Completion Date: 9/12/2011

TEST 2

MALFUNCTION SIMULATION: Describe method of malfunction simulation

Disconnected left front wheel speed sensor

MALFUNCTION TELTALTE ILLUMINATION:
Telltale illuminates and remains illuminated after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

\[\text{X} \quad \text{Yes} \quad \text{No} \]

Time for telltale to illuminate after ignition system is activated and vehicle speed of \(48 \pm 8\) km/h (30 \(\pm\) 5 mph) is reached.

\[0 \quad \text{Seconds (must be within 2 minutes)} \quad \text{X} \quad \text{Pass} \quad \text{Fail} \]

ESC SYSTEM RESTORATION
Telltale extinguishes after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

\[\text{X} \quad \text{Yes} \quad \text{No} \]

Time for telltale to extinguish after ignition system is activated and vehicle speed of \(48 \pm 8\) km/h (30 \(\pm\) 5 mph) is reached.

\[0 \quad \text{Seconds (must be within 2 minutes)} \quad \text{X} \quad \text{Pass} \quad \text{Fail} \]

TEST 2 DATA INDICATES COMPLIANCE: \text{PASS}

Remarks: Telltale illuminated immediately upon ignition, after connector was disconnected. The ESC Off and ABS telltales also illuminated. In addition, “Service AdvanceTrak”, along with the ESC telltale symbol was displayed in the common display area on the left side of the instrument cluster. All of the above telltales extinguished immediately upon ignition, after the connector was re-connected. No driving was necessary.

RECORDED BY: P Broen
DATE RECORDED: 9/12/2011

APPROVED BY: B Kebschull
DATE APPROVED 9/12/2011
4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION (1 OF 2)

TABLE 1. TEST INSTRUMENTATION

<table>
<thead>
<tr>
<th>Type</th>
<th>Output</th>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Specifics</th>
<th>Serial Number</th>
<th>Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tire Pressure Gauge</td>
<td>Vehicle Tire Pressure</td>
<td>0-100 psi 0-690 kPa</td>
<td>1 psi 6.89 kPa</td>
<td>0.5 psi 3.45 kPa</td>
<td>Ashcroft D1005PS</td>
<td>1039350</td>
<td>By: DRI Date: 2/22/11 Due: 2/22/12</td>
</tr>
<tr>
<td>Platform Scales</td>
<td>Vehicle Total, Wheel, and Axle Load</td>
<td>8000 lb 35.6 kN</td>
<td>0.5 lb 2.2 N</td>
<td>± 1.0% of applied load</td>
<td>Intercomp Model SWII</td>
<td>24032361</td>
<td>By: DRI Date: 2/23/11 Due: 2/23/12</td>
</tr>
<tr>
<td>Automated Steering Machine with Steering Angle Encoder</td>
<td>Handwheel Angle</td>
<td>± 800 deg</td>
<td>0.25 deg</td>
<td>± 0.25 deg</td>
<td>Heitz Automotive Testing Model: Sprint 3</td>
<td>60304</td>
<td>By: DRI Date: 3/30/11 Due: 3/30/12</td>
</tr>
<tr>
<td>Multi-Axis Inertial Sensing System</td>
<td>Longitudinal, Lateral, and Vertical Acceleration Roll, Yaw, and Pitch Rate</td>
<td>Accelerometer s: ± 2 g Angular Rate Sensors: ± 100 deg/s</td>
<td>Accelerometers: ±10 ug Angular Rate Sensors: ≤0.004 deg/s</td>
<td>Accelerometers: ±0.05% of full range Angular Rate Sensors: 0.05% of full range</td>
<td>BEI Technologies Model: MotionPAK MP-1</td>
<td>0767</td>
<td>By: Systron Donner Date: 3/8/11 Due: 3/8/12</td>
</tr>
<tr>
<td>Radar Speed Sensor and Dashboard Display</td>
<td>Vehicle Speed</td>
<td>0-125 mph 0-200 km/h</td>
<td>0.009 mph .014 km/h</td>
<td>± 0.25% of full scale</td>
<td>A-DAT Corp. Radar Model: DRS-6 Display Model: RD-2</td>
<td>1400.604</td>
<td>By: DRI Date: 5/3/11 Due: 5/3/12</td>
</tr>
<tr>
<td>Ultrasonic Distance Measuring System</td>
<td>Left and Right Side Vehicle Height</td>
<td>5-24 inches 127-610 mm</td>
<td>0.01 inches .254 mm</td>
<td>± 0.25% of maximum distance</td>
<td>Massa Products Corporation Model: M-5000/220</td>
<td>DOT-NHTSA D2646</td>
<td>By: DRI Date: 2/22/11 Due: 2/21/12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DOT-NHTSA D3272</td>
<td>By: DRI Date: 2/22/11 Due: 2/22/12</td>
</tr>
</tbody>
</table>
4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION (2 OF 2)

TABLE 1. TEST INSTRUMENTATION (CONTD)

<table>
<thead>
<tr>
<th>Type</th>
<th>Output</th>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Specifics</th>
<th>Serial Number</th>
<th>Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Acquisition System [Includes amplification, anti-aliasing, and analog to digital conversion.]</td>
<td>Record Time; Velocity; Distance; Lateral, Longitudinal, and Vertical Accelerations; Roll, Yaw, and Pitch Rates; Steering Wheel Angle.</td>
<td>Sufficient to meet or exceed individual sensors</td>
<td>200 Hz</td>
<td>Sufficient to meet or exceed individual sensors</td>
<td>SoMat eDaq ECPU processor</td>
<td>MSHLB.03-2476</td>
<td>By: DRI Date: 3/29/11 Due: 3/29/12</td>
</tr>
<tr>
<td>Load Cell</td>
<td>Vehicle Brake Pedal Force</td>
<td>0-300 lb</td>
<td>1 lb</td>
<td>±0.05% of full scale</td>
<td>Lebow 3663-300</td>
<td>767</td>
<td>Operationally verified by DRI prior to test</td>
</tr>
<tr>
<td>Coordinate Measurement Machine</td>
<td>Inertial Sensing System Coordinates</td>
<td>0-8 ft</td>
<td>±.0020 in.</td>
<td>±.051 mm (Single point articulation accuracy)</td>
<td>Faro Arm Fusion</td>
<td>UO8-05-08-06636</td>
<td>By: DRI Date: 11/7/10 Due: 11/7/11</td>
</tr>
<tr>
<td>Outriggers</td>
<td>No output. Safety Item.</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>DRI manufactured Aluminum meeting the weight and MOI specifications of Docket 2007-27662-11</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
Figure 5.1. Front View of Test Vehicle

2011 Ford Edge
FMVSS No. 126
NHTSA Number CB0208
Figure 5.2. Rear View of Test Vehicle

2011 Ford Edge
FMVSS No. 126
NHTSA Number CB0208
5.0 PHOTOGRAPHS (3 of 14)

Figure 5.3. Vehicle Certification Label

2011 Ford Edge
FMVSS No. 126
NHTSA Number CB0208
Figure 5.4. Vehicle Placard
Figure 5.5. Window Sticker (Monroney Label)
Figure 5.6. Front View of Vehicle as Tested

2011 Ford Edge
FMVSS No. 126
NHTSA Number CB0208
Figure 5.7. Rear View of Vehicle as Tested

2011 Ford Edge
FMVSS No. 126
NHTSA Number CB0208
Figure 5.8. Ultrasonic Height Sensor Mounted on Side of Vehicle for Determining Body Roll Angle
5.0 PHOTOGRAPHS (9 of 14)

Figure 5.9. Rear Mounted Speed Sensor

2011 Ford Edge
FMVSS No. 126
NHTSA Number CB0208
Figure 5.10. Steering Controller and Data Acquisition Computer
Figure 5.11. Inertial Measurement Unit Mounted in Vehicle

2011 Ford Edge
FMVSS No. 126
NHTSA Number CB0208
5.0 PHOTOGRAPHS (12 of 14)

Figure 5.12. Brake Pedal Load Cell

2011 Ford Edge
FMVSS No. 126
NHTSA Number CB0208
Figure 5.13. Telltales for ESC Activation and Malfunction, and TCS Off
5.0 PHOTOGRAPHS (14 of 14)

Figure 5.14. Message Center Display

2011 Ford Edge
FMVSS No. 126
NHTSA Number CB0208
Figure 6.1. Steering Wheel Angle, Yaw Rate and Lateral Displacement for L-R Series
Figure 6.2. Steering Wheel Angle, Yaw Rate and Lateral Displacement for R-L Series
Figure 6.3. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for L-R Series
Figure 6.4. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for R-L Series
7.0 OTHER DOCUMENTATION

7.1 OWNER’S MANUAL PAGES
7.2 VEHICLE ARRIVAL CONDITION REPORT
7.3 VEHICLE COMPLETION CONDITION REPORT
7.4 SINE WITH DWELL TEST RESULTS
7.5 SLOWLY INCREASING STEER TEST RESULTS
7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES
Introduction

These are some of the symbols you may see on your vehicle.

Vehicle Symbol Glossary

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🚨🔥</td>
<td>Safety Alert</td>
</tr>
<tr>
<td>🕵️‍♂️</td>
<td>See Owner’s Guide</td>
</tr>
<tr>
<td>⚠️</td>
<td>Airbag - Front</td>
</tr>
<tr>
<td>🧡</td>
<td>Child Seat Lower Anchor</td>
</tr>
<tr>
<td>🕶️</td>
<td>Child Seat Tether Anchor</td>
</tr>
<tr>
<td>🔴</td>
<td>Brake System</td>
</tr>
<tr>
<td>🆘</td>
<td>Parking Brake System</td>
</tr>
<tr>
<td>🚗</td>
<td>Parking Aid System</td>
</tr>
<tr>
<td>🚿</td>
<td>Stability Control System</td>
</tr>
<tr>
<td>🔴</td>
<td>Speed Control</td>
</tr>
<tr>
<td>⚠️</td>
<td>Master Lighting Switch</td>
</tr>
<tr>
<td>🚨</td>
<td>Hazard Warning Flasher</td>
</tr>
<tr>
<td>⚡</td>
<td>Fog Lamps-Front</td>
</tr>
<tr>
<td>🔩</td>
<td>Fuse Compartment</td>
</tr>
<tr>
<td>🧴</td>
<td>Fuel Pump Reset</td>
</tr>
<tr>
<td>🛠️</td>
<td>Windshield Wash/Wipe</td>
</tr>
<tr>
<td>🛠️</td>
<td>Windshield Defrost/Demist</td>
</tr>
<tr>
<td>🛠️</td>
<td>Rear Window Defrost/Demist</td>
</tr>
</tbody>
</table>
Instrument Cluster

WARNING LIGHTS AND CHIMES
Base instrument cluster with standard measure shown–metric similar

Optional instrument cluster with standard measure shown–metric similar

Warning lights can alert you to a vehicle condition that may become serious enough to cause extensive repairs. A warning light may illuminate when a problem exists with one of your vehicle's functions.
Instrument Cluster

Charging system (RTT):
Illuminates when the battery is not charging properly. If it stays on while the engine is running, there may be a malfunction with the charging system. Contact your authorized dealer as soon as possible. This indicates a problem with the electrical system or a related component.

Engine oil pressure (RTT):
Illuminates when the oil pressure falls below the normal range, refer to Engine oil in the Maintenance and Specifications chapter.

AdvanceTrac®: Displays when the AdvanceTrac®/Traction control is active. If the light remains on, have the system serviced immediately, refer to the Driving chapter for more information.

AdvanceTrac® off light:
Illuminates when AdvanceTrac®/Traction control has been disabled by the driver. Refer to the Driving chapter for more information.

Low tire pressure warning:
Illuminates when your tire pressure is low. If the light remains on at start up or while driving, the tire pressure should be checked. Refer to Inflating your tires in the Tires, Wheels and Loading chapter. When the ignition is first turned to on, the light will illuminate for 3 seconds to ensure the indicator is working. If the light does not turn on or begins to flash, contact your authorized dealer as soon as possible. For more information on this system, refer to Tire pressure monitoring system (TPMS) in the Tires, Wheels and Loading chapter.

Low fuel (RTT): Illuminates when the fuel level in the fuel tank is at or near empty. Refer to Fuel gauge in this chapter.
Driving

WARNING: Always set the parking brake fully and make sure that the gearshift is securely latched in P (Park). Turn the ignition to the lock position and remove the key whenever you leave the vehicle. For vehicles with the push button start system, remove the 1A key whenever you leave the vehicle.

The parking brake is not recommended to stop a moving vehicle. However, if the normal brakes fail, the parking brake can be used to stop your vehicle in an emergency. Since the parking brake applies only the rear brakes, the vehicle’s stopping distance will increase greatly and the handling of your vehicle will be adversely affected.

Press the parking brake pedal downward again to release the parking brake. Driving with the parking brake on will cause the brakes to wear out quickly and reduce fuel economy.

Note: If the vehicle is driven with the parking brake applied, a chime will sound.

ADVANCEDTRAC® WITH ROLL STABILITY CONTROL™ (RSC®) STABILITY ENHANCEMENT SYSTEM

The AdvanceTrac® with RSC® system provides the following stability enhancement features for certain driving situations:

- Traction control system (TCS), which functions to help avoid drive-wheel spin and loss of traction.
- Electronic stability control (ESC), which functions to help avoid skids or lateral slides
- Roll Stability Control™ (RSC®), which functions to help avoid a vehicle roll-over.

WARNING: Vehicle modifications involving braking system, aftermarket roof racks, suspension, steering system, tire construction and/or wheel/tire size may change the handling characteristics of the vehicle and may adversely affect the performance of the AdvanceTrac® with RSC® system. In addition, installing any stereo loudspeakers may interfere with and adversely affect the AdvanceTrac® with RSC® system. Install any aftermarket stereo loudspeaker as far as possible from the front center console, the tunnel, and the front seats in order to minimize the risk of interfering with the AdvanceTrac® with RSC® sensors. Reducing the effectiveness of the AdvanceTrac® with RSC® system could lead to an increased risk of loss of vehicle control, vehicle rollover, personal injury and death.
Driving

WARNING: Remember that even advanced technology cannot defy the laws of physics. It’s always possible to lose control of a vehicle due to inappropriate driver input for the conditions. Aggressive driving on any road condition can cause you to lose control of your vehicle increasing the risk of personal injury or property damage. Activation of the AdvanceTrac® with RSC® system is an indication that at least some of the tires have exceeded their ability to grip the road; this could reduce the operator’s ability to control the vehicle, potentially resulting in a loss of vehicle control, vehicle rollover, personal injury and death. If your AdvanceTrac® with RSC® system activates, SLOW DOWN.

WARNING: If a failure has been detected within the AdvanceTrac® with RSC® system, the stability control light and stability control off light will illuminate steadily. Verify that the AdvanceTrac® with RSC® system was not manually disabled through the message center. If the stability control light and stability control off light still illuminate steadily, have the system serviced by an authorized dealer immediately. Operating your vehicle with AdvanceTrac® with RSC® disabled could lead to an increased risk of loss of vehicle control, vehicle rollover, personal injury and death.

The AdvanceTrac® with RSC® system automatically enables each time the engine is started. All features of the AdvanceTrac® with RSC® system (TCS, ESC, and RSC®) are active and monitor the vehicle from start-up. However, the system will only intervene if the driving situation requires it.

The AdvanceTrac® with RSC® system includes a traction control off selection located in the message center, a stability control light and a stability control off light in the instrument cluster. Refer to Message center in the Instrument cluster section for more information. Both the stability control light and the stability control off light will illuminate temporarily during start-up as part of a normal system self-check. The stability control light may illuminate (flash) during certain driving conditions which cause the AdvanceTrac® with RSC® system to operate. If the stability control light and stability control off light illuminate steadily, have the system serviced by an authorized dealer immediately. The message center will also indicate a failure with the AdvanceTrac® with RSC® system.

246
When AdvanceTrac® with RSC® performs a normal system self-check, some drivers may notice a slight movement of the brake, and/or a
rumble, grunting, or grinding noise after startup and when driving off.
When an event occurs that activates AdvanceTrac® with RSC® you may experience the following:
• A slight deceleration of the vehicle
• The stability control light will flash.
• A vibration in the pedal when your foot is on the brake pedal
• If the driving condition is severe and your foot is not on the brake, the
 brake pedal may move as the systems applies higher brake forces. You
 may also hear a whoosh of air from under the instrument panel during
 this severe condition.
• The brake pedal may feel stiffer than usual.

Traction control system (TCS)
Traction control is a driver aid feature that helps your vehicle maintain
traction of the wheels, typically when driving on slippery and/or hilly
road surfaces, by detecting and controlling wheel spin.
Excessive wheel spin is controlled in two ways, which may work
separately or in tandem; engine traction control and brake traction
control. Engine traction control works to limit drive-wheel spin by
momentarily reducing engine power. Brake traction control works to limit
wheel spin by momentarily applying the brakes to the wheel that is
slipping. Traction control is most active at low speeds.
During traction control events, the stability control light in the
instrument cluster will flash.
If the traction control system is activated excessively in a short period of
time, the braking portion of the system may become temporarily disabled
to allow the brakes to cool down. In this situation, traction control will
use only engine power reduction or transfer to help control the wheels
from over-spinning. When the brakes have cooled down, the system will
regain all features. Anti-lock braking, RSC®, and ESC are not affected by
this condition and will continue to function during the cool-down period.
The engine traction control and brake traction control system may be
deactivated in certain situations. See the Switching off AdvanceTrac®
with RSC® section below.
Driving

Electronic stability control (ESC)
Electronic stability control (ESC) may enhance your vehicle's directional stability during adverse maneuvers, for example when cornering severely or avoiding objects in the roadway. ESC operates by applying brakes to one or more of the wheels individually and, if necessary, reducing engine power if the system detects that the vehicle is about to skid or slide laterally.

During ESC events the stability control light in the instrument cluster will flash.

Certain adverse driving maneuvers may activate the ESC system, which include but are not limited to:
- Taking a turn too fast
- Maneuvering quickly to avoid an accident, pedestrian or obstacle
- Driving over a patch of ice or other slippery surfaces
- Changing lanes on a snow-rutted road
- Entering a snow-free road from a snow-covered side street, or vice versa
- Entering a paved road from a gravel road, or vice versa
- Cornering while towing a heavily loaded trailer (refer to Trailer towing in the Tires, Wheels and Loading chapter).

The electronic stability control system may be deactivated in certain situations. See the Switching off AdvanceTrac® with RSC® section following.

Roll Stability Control™ (RSC®)
Roll Stability Control™ (RSC®) may help to maintain roll stability of the vehicle during adverse maneuvers. RSC® operates by detecting the vehicle's roll motion and the rate at which it changes and by applying the brakes to one or more wheels individually.

During an event that activates RSC® the stability control light in the instrument cluster will flash.

Certain adverse driving maneuvers may activate the RSC® system, which include:
- Emergency lane-change
- Taking a turn too fast
- Quick maneuvering to avoid an accident, pedestrian or obstacle

The RSC® system may be deactivated in certain situations. See the Switching off AdvanceTrac® with RSC® section following.
7.1 OWNER’S MANUAL PAGES

Switching off AdvanceTrac® with RSC®

If the vehicle is stuck in snow, mud or sand, and seems to lose engine power, switching off certain features of the AdvanceTrac® with RSC® system may be beneficial because the wheels are allowed to spin. This will restore full engine power and will enhance momentum through the obstacle.

To switch off the AdvanceTrac® with RSC® system, select traction control off in the message center. Full features of the AdvanceTrac® with RSC® system can be restored by selecting traction control on, or by turning off and restarting the engine.

If you switch off the AdvanceTrac® with RSC® system, the stability control off light will illuminate steadily. Selecting traction control on will turn off the stability control light.

In R (Reverse), ABS and the engine traction control and brake traction control features will continue to function. However, ESC and RSC® are disabled.

<table>
<thead>
<tr>
<th>Control switch operation</th>
<th>Mode</th>
<th>Stability control light (ON)</th>
<th>Message center display</th>
<th>TCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default at start-up</td>
<td>System initialization</td>
<td>Turns on at start-up</td>
<td>None</td>
<td>Enabled</td>
</tr>
<tr>
<td>Pressed once, momentarily</td>
<td>Traction control off</td>
<td>On</td>
<td>TRACTION CONTROL OFF</td>
<td>Disabled</td>
</tr>
<tr>
<td>Pressed again after deactivation</td>
<td>AdvanceTrac® fully enabled</td>
<td>Off</td>
<td>ADVANCE TRAC ON</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Note: The ESC/RSC® systems can’t be turned on or off using the control switch.
7.2 VEHICLE ARRIVAL CONDITION REPORT

CONTRACT NO.: DTNH22-08-D-00098
DATE: 8/26/2011

From: Automotive Allies Purpose Initial Receipt
 Received via Transfer
To: Dynamic Research, Inc Present Vehicle Condition

Vehicle VIN: 2FMDK3JC9BBB51891 NHTSA NO.: CB0208
Model Year: 2011 Odometer Reading: 14 Miles
Make Ford Body Style: MPV
Model: Edge Body Color: Blue
Manufacture Date: 6/11 Dealer: Automotive Allies
GVWR (kg/lb) 2440/5380 Price: Leased

☐ All options listed on the "Window Sticker" are present on the test vehicle
☐ Tires and wheel rims are new and the same as listed
☐ There are no dents or other interior or exterior flaws
☐ The vehicle has been properly prepared and is in running condition
☐ The glove box contains an owner’s manual, warranty document, consumer information, and extra set of keys
☐ Proper fuel filler cap is supplied on the test vehicle
☐ Place vehicle in storage area
☐ Inspect the vehicle’s interior and exterior, including all windows, seats, doors, etc., to confirm that each system is complete and functional per the manufacturer’s specifications. Any damage, misadjustment, or other unusual condition that could influence the test program or test results shall be recorded. Report any abnormal condition to the NHTSA COTR before beginning any test.

NOTES:

RECORDED BY: J Lenkeit DATE RECORDED: 8/26/2011
APPROVED BY: P Broen DATE APPROVED: 8/26/2011
7.3 VEHICLE COMPLETION CONDITION REPORT

CONTRACT NO.: _DTNH22-08-D-00098_
DATE: _9/27/2011_

<table>
<thead>
<tr>
<th>Vehicle VIN: 2FMDK3JC9BBB51891</th>
<th>NHTSA NO.: CB0208</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Year: 2011</td>
<td>Odometer Reading: 55 Miles</td>
</tr>
<tr>
<td>Make: Ford</td>
<td>Body Style: MPV</td>
</tr>
<tr>
<td>Model: Edge</td>
<td>Body Color: Blue</td>
</tr>
<tr>
<td>Manufacture Date: 6/11</td>
<td>Dealer: Automotive Allies</td>
</tr>
<tr>
<td>GVWR (kg/lb) 2440 (5380)</td>
<td>Price: Leased</td>
</tr>
</tbody>
</table>

LIST OF FMVSS TESTS PERFORMED BY THIS LAB: 126

☒ THERE ARE NO DENTS OR OTHER INTERIOR OR EXTERIOR FLAWS

☒ THE VEHICLE HAS BEEN PROPERLY MAINTAINED AND IS IN RUNNING CONDITION

☒ THE GLOVE BOX CONTAINS AN OWNER’S MANUAL, WARRANTY DOCUMENT, CONSUMER INFORMATION, AND EXTRA SET OF KEYS

☒ PROPER FUEL FILLER CAP IS SUPPLIED ON THE TEST VEHICLE

REMARKS:

Equipment that is no longer on the test vehicle as noted on Vehicle Arrival Condition Report:

None

Explanation for equipment removal:

Test Vehicle Condition:

As delivered, like new

RECORDED BY: _J Lenkeit_ DATE RECORDED: _9/22/12_

APPROVED BY: _P Broen_ DATE APPROVED: _9/22/11_
7.4 SINE WITH DWELL TEST RESULTS

2011 Ford Edge
NHTSA No.: CBO208
Date of Test: 9/12/2011
Date Created: 9/12/2011

Lateral Stability Test Series No. 1 – Counterclockwise Initial Steer Direction

File	SWA @ 5deg Ct	MES	Time @ 5deg	COS	MO S	Time @ MOS	YRR1	YR1	YRR 1 Ct	YRR 175	YRR17 5 Ct	2nd Yaw Peak	2nd Yaw Peak Ct	Lat Disp	Lat. Acc. 1.07 s	1st SWA Peak	1st SWA Peak Ct	2nd SWA Mean		
23	710	50.09	3.542	1090	5.445	847	4.226	-0.71	-0.10	1290	-0.08	-0.01	1440	13.31	938	-4.01	0.36	50.16	775	49.95
24	709	49.99	3.536	1090	5.444	847	4.226	-1.65	-0.29	1290	-0.31	-0.06	1440	17.74	941	-5.19	0.43	66.17	775	65.94
25	708	50.07	3.531	1090	5.443	846	4.225	-0.12	-0.03	1290	-0.58	-0.13	1440	21.80	943	-6.27	0.48	83.14	775	82.87
26	707	50.01	3.529	1090	5.444	847	4.226	-0.86	-0.22	1290	-0.91	-0.23	1440	25.02	931	-7.16	0.51	99.03	775	98.81
27	707	50.11	3.527	1091	5.446	848	4.232	-0.49	-0.14	1291	-0.33	-0.09	1441	28.73	947	-8.00	0.44	116.69	776	114.91
28	706	50.27	3.525	1090	5.442	846	4.224	-0.01	0.00	1290	-0.23	-0.07	1440	31.43	943	-8.50	0.42	131.93	775	131.67
29	706	50.22	3.525	1090	5.443	846	4.225	-0.08	-0.03	1290	-0.70	-0.24	1440	33.91	947	-8.91	0.37	148.92	776	148.67
30	706	50.15	3.525	1090	5.443	846	4.225	-0.11	-0.04	1290	-0.42	-0.16	1440	38.23	947	-9.25	0.39	165.49	776	165.65
31	706	50.28	3.524	1090	5.442	846	4.225	-0.36	-0.14	1290	-0.42	-0.16	1440	38.36	943	-9.36	0.32	181.20	777	181.55
32	706	50.12	3.525	1090	5.443	847	4.226	-0.04	0.01	1290	-0.49	-0.19	1440	39.04	944	-9.42	0.36	197.75	777	198.49
33	706	50.26	3.525	1090	5.442	846	4.225	-0.36	-0.16	1290	-0.25	-0.11	1440	44.14	941	-9.48	0.43	213.34	778	214.34
34	706	50.10	3.524	1090	5.441	846	4.225	-0.03	-0.01	1290	0.02	0.01	1440	43.56	940	-9.49	0.42	229.61	778	231.29
36	706	50.27	3.525	1090	5.445	848	4.233	-1.11	-0.49	1290	-0.77	-0.34	1440	44.29	938	-9.64	0.45	246.66	780	245.44
37	706	50.17	3.525	1091	5.441	847	4.226	-0.09	-0.04	1290	-0.06	-0.03	1440	44.75	935	-9.62	0.48	259.52	779	264.00
39	49.97	3.525	1091	5.447	848	4.233	-0.63	-0.29	1291	-0.89	-0.40	1441	45.30	936	-9.61	0.50	264.33	781	268.05	
2011 Ford Edge

NHTSA No.: CB0208

Date of Test: 9/12/2011

Date Created: 9/12/2011

Lateral Stability Test Series No. 2 – Clockwise Initial Steer Direction

<table>
<thead>
<tr>
<th>File</th>
<th>SWA 5deg @ Ct</th>
<th>MES</th>
<th>Time 5deg @ COS</th>
<th>COS</th>
<th>Time COS @ MOS</th>
<th>MOS</th>
<th>YRR1</th>
<th>YR1</th>
<th>YRR 1 Ct</th>
<th>YRR 175</th>
<th>YRR17 5 Ct</th>
<th>2nd Yaw Peak</th>
<th>2nd Yaw Peak Ct</th>
<th>Lat Disp</th>
<th>Lat. Acc. 1.07 s</th>
<th>1st SWA Peak</th>
<th>1st SWA Peak Ct</th>
<th>2nd SWA Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(deg)</td>
<td>(mph)</td>
<td>(s)</td>
<td></td>
<td>(s)</td>
<td></td>
<td>(s)</td>
<td>(%)</td>
<td>(deg/s)</td>
<td>(%)</td>
<td>(deg/s)</td>
<td>(deg)</td>
<td>(deg/s)</td>
<td>(deg)</td>
<td>(deg/s)</td>
<td>(deg)</td>
<td>(deg/s)</td>
<td>(deg)</td>
</tr>
<tr>
<td>40</td>
<td>710</td>
<td>50.23</td>
<td>3.542</td>
<td>1090</td>
<td>5.445</td>
<td>847</td>
<td>4.227</td>
<td>-0.07</td>
<td>0.01</td>
<td>1290</td>
<td>0.79</td>
<td>-0.11</td>
<td>1440</td>
<td>-13.83</td>
<td>940</td>
<td>3.96</td>
<td>-0.35</td>
<td>50.91</td>
</tr>
<tr>
<td>41</td>
<td>709</td>
<td>49.98</td>
<td>3.536</td>
<td>1090</td>
<td>5.444</td>
<td>847</td>
<td>4.227</td>
<td>0.38</td>
<td>-0.07</td>
<td>1290</td>
<td>-0.40</td>
<td>0.07</td>
<td>1440</td>
<td>-18.03</td>
<td>936</td>
<td>5.11</td>
<td>-0.42</td>
<td>66.93</td>
</tr>
<tr>
<td>42</td>
<td>708</td>
<td>50.16</td>
<td>3.532</td>
<td>1090</td>
<td>5.444</td>
<td>847</td>
<td>4.226</td>
<td>0.51</td>
<td>-0.11</td>
<td>1290</td>
<td>-0.14</td>
<td>0.03</td>
<td>1440</td>
<td>-21.96</td>
<td>934</td>
<td>6.20</td>
<td>-0.47</td>
<td>83.95</td>
</tr>
<tr>
<td>43</td>
<td>707</td>
<td>50.11</td>
<td>3.529</td>
<td>1090</td>
<td>5.444</td>
<td>847</td>
<td>4.226</td>
<td>0.52</td>
<td>-0.13</td>
<td>1290</td>
<td>-0.56</td>
<td>0.14</td>
<td>1440</td>
<td>-25.35</td>
<td>930</td>
<td>7.02</td>
<td>-0.50</td>
<td>99.84</td>
</tr>
<tr>
<td>44</td>
<td>706</td>
<td>50.27</td>
<td>3.525</td>
<td>1090</td>
<td>5.442</td>
<td>846</td>
<td>4.225</td>
<td>1.66</td>
<td>-0.46</td>
<td>1290</td>
<td>0.01</td>
<td>0.00</td>
<td>1440</td>
<td>-27.95</td>
<td>933</td>
<td>7.58</td>
<td>-0.47</td>
<td>116.70</td>
</tr>
<tr>
<td>45</td>
<td>706</td>
<td>50.11</td>
<td>3.524</td>
<td>1090</td>
<td>5.442</td>
<td>846</td>
<td>4.225</td>
<td>1.03</td>
<td>-0.33</td>
<td>1290</td>
<td>0.10</td>
<td>-0.03</td>
<td>1440</td>
<td>-31.73</td>
<td>941</td>
<td>8.20</td>
<td>-0.42</td>
<td>132.71</td>
</tr>
<tr>
<td>46</td>
<td>41</td>
<td>104.8</td>
<td>1.043</td>
<td>594</td>
<td>2.962</td>
<td>350</td>
<td>1.745</td>
<td>1.02</td>
<td>-0.35</td>
<td>794</td>
<td>0.05</td>
<td>-0.02</td>
<td>944</td>
<td>-34.79</td>
<td>440</td>
<td>8.62</td>
<td>-0.44</td>
<td>149.72</td>
</tr>
<tr>
<td>47</td>
<td>706</td>
<td>50.16</td>
<td>3.524</td>
<td>1090</td>
<td>5.442</td>
<td>847</td>
<td>4.226</td>
<td>-0.05</td>
<td>0.02</td>
<td>1290</td>
<td>-0.25</td>
<td>0.09</td>
<td>1440</td>
<td>-36.42</td>
<td>943</td>
<td>8.91</td>
<td>-0.36</td>
<td>166.51</td>
</tr>
<tr>
<td>48</td>
<td>706</td>
<td>50.38</td>
<td>3.523</td>
<td>1089</td>
<td>5.440</td>
<td>847</td>
<td>4.226</td>
<td>0.60</td>
<td>-0.24</td>
<td>1289</td>
<td>-0.11</td>
<td>0.04</td>
<td>1439</td>
<td>-39.07</td>
<td>943</td>
<td>9.18</td>
<td>-0.36</td>
<td>182.17</td>
</tr>
<tr>
<td>49</td>
<td>706</td>
<td>50.20</td>
<td>3.523</td>
<td>1089</td>
<td>5.440</td>
<td>847</td>
<td>4.226</td>
<td>-0.10</td>
<td>0.04</td>
<td>1289</td>
<td>-0.09</td>
<td>0.04</td>
<td>1439</td>
<td>-39.35</td>
<td>940</td>
<td>9.23</td>
<td>-0.37</td>
<td>198.59</td>
</tr>
<tr>
<td>50</td>
<td>706</td>
<td>49.98</td>
<td>3.524</td>
<td>1089</td>
<td>5.440</td>
<td>847</td>
<td>4.226</td>
<td>-0.17</td>
<td>0.07</td>
<td>1289</td>
<td>-0.35</td>
<td>0.15</td>
<td>1439</td>
<td>-42.25</td>
<td>940</td>
<td>9.33</td>
<td>-0.35</td>
<td>214.00</td>
</tr>
<tr>
<td>51</td>
<td>706</td>
<td>50.05</td>
<td>3.524</td>
<td>1090</td>
<td>5.441</td>
<td>847</td>
<td>4.226</td>
<td>-0.19</td>
<td>0.08</td>
<td>1290</td>
<td>-0.26</td>
<td>0.11</td>
<td>1440</td>
<td>-43.86</td>
<td>939</td>
<td>9.37</td>
<td>-0.39</td>
<td>231.30</td>
</tr>
<tr>
<td>52</td>
<td>706</td>
<td>50.37</td>
<td>3.524</td>
<td>1091</td>
<td>5.447</td>
<td>847</td>
<td>4.226</td>
<td>-0.21</td>
<td>0.09</td>
<td>1291</td>
<td>-0.30</td>
<td>0.14</td>
<td>1441</td>
<td>-45.35</td>
<td>938</td>
<td>9.53</td>
<td>-0.40</td>
<td>244.68</td>
</tr>
<tr>
<td>53</td>
<td>706</td>
<td>50.10</td>
<td>3.524</td>
<td>1089</td>
<td>5.440</td>
<td>847</td>
<td>4.226</td>
<td>-0.14</td>
<td>0.07</td>
<td>1289</td>
<td>-0.38</td>
<td>0.18</td>
<td>1439</td>
<td>-46.80</td>
<td>937</td>
<td>9.34</td>
<td>-0.53</td>
<td>260.19</td>
</tr>
<tr>
<td>54</td>
<td>706</td>
<td>50.26</td>
<td>3.524</td>
<td>1090</td>
<td>5.441</td>
<td>847</td>
<td>4.226</td>
<td>-0.20</td>
<td>0.10</td>
<td>1290</td>
<td>-0.13</td>
<td>0.06</td>
<td>1440</td>
<td>-47.26</td>
<td>936</td>
<td>9.59</td>
<td>-0.45</td>
<td>264.42</td>
</tr>
</tbody>
</table>
7.5 SLOWLY INCREASING STEER TEST RESULTS

2011 Ford Edge
NHTSA No.: CB0208
Date of Test: 9/12/2011
Date Created: 9/12/2011

<table>
<thead>
<tr>
<th>File</th>
<th>EventPt</th>
<th>DOS</th>
<th>MES (mph)</th>
<th>Mean SPD (mph)</th>
<th>AYcount_3</th>
<th>THETAENC_3 (deg)</th>
<th>AYCG_CD2_3 (g)</th>
<th>r_squared</th>
<th>ZeroBegin</th>
<th>ZeroEnd</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>700</td>
<td>1</td>
<td>49.657</td>
<td>49.649</td>
<td>1188</td>
<td>-32.606</td>
<td>-0.302</td>
<td>0.999</td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td>12</td>
<td>700</td>
<td>1</td>
<td>49.587</td>
<td>49.820</td>
<td>1183</td>
<td>-32.204</td>
<td>-0.302</td>
<td>0.994</td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td>13</td>
<td>700</td>
<td>1</td>
<td>49.790</td>
<td>49.758</td>
<td>1199</td>
<td>-33.322</td>
<td>-0.298</td>
<td>0.995</td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td>14</td>
<td>700</td>
<td>0</td>
<td>49.757</td>
<td>49.697</td>
<td>1201</td>
<td>33.546</td>
<td>0.303</td>
<td>0.996</td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td>15</td>
<td>700</td>
<td>0</td>
<td>49.571</td>
<td>49.657</td>
<td>1200</td>
<td>33.457</td>
<td>0.297</td>
<td>0.997</td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td>17</td>
<td>700</td>
<td>0</td>
<td>49.719</td>
<td>49.706</td>
<td>1206</td>
<td>33.748</td>
<td>0.303</td>
<td>0.996</td>
<td>500</td>
<td>700</td>
</tr>
</tbody>
</table>

Averages
33.1474
0.3006

<table>
<thead>
<tr>
<th>Scalars</th>
<th>Steering Angles (deg)</th>
<th>Scalars</th>
<th>Steering Angles (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>50</td>
<td>5.5</td>
<td>182</td>
</tr>
<tr>
<td>2.0</td>
<td>66</td>
<td>6.0</td>
<td>199</td>
</tr>
<tr>
<td>2.5</td>
<td>83</td>
<td>6.5</td>
<td>215</td>
</tr>
<tr>
<td>3.0</td>
<td>99</td>
<td>7.0</td>
<td>232</td>
</tr>
<tr>
<td>3.5</td>
<td>116</td>
<td>7.5</td>
<td>248</td>
</tr>
<tr>
<td>4.0</td>
<td>132</td>
<td>8.0</td>
<td>265</td>
</tr>
<tr>
<td>4.5</td>
<td>149</td>
<td>8.2</td>
<td>270</td>
</tr>
<tr>
<td>5.0</td>
<td>166</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

60
7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES

Vehicle: 2011 Ford Edge
NHTSA No.: CB0208
Wheelbase: 111.1 Inches
Faro Arm S/N: U08-05-08-0636
Measurement date: 9/9/2011
Certification date: 11/7/10

CMM Measurements

Coordinate system: SAE (X,Y,Z positive forward, to the right, and downward, respectively)
Origin defined at 48” point on lateral arm of measurement fixture, projected onto the ground plane

<table>
<thead>
<tr>
<th>Ref X</th>
<th>Ref Y</th>
<th>Ref Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_PLANE001_Ground_Plane</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M_Line_Y_Axis</td>
<td>2.571</td>
<td></td>
</tr>
<tr>
<td>M_Point_48_Ref</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>M_CIRCLE001_I_Left_Rear_Wheel_Axle</td>
<td>-30.829</td>
<td>10.464</td>
</tr>
<tr>
<td>M_Point_IMU_side</td>
<td>10.439</td>
<td>45.996</td>
</tr>
<tr>
<td>M_Point_ROOF</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Motion Pak reference point taken from mid height of unit left side

Motion Pak Width = 3.05” ==> 1/2 W = 1.525
Motion_PAK_Location
10.439 47.521 -21.392

Measurement Notes

1. The Faro arm is positioned just to the left of the vehicle, near the rear door.

2. A "centerline jig" is used in the Faro arm measurement. The jig consists of a long beam with a 4 ft lateral arm that is perpendicular to the beam. The jig is placed on the ground underneath the vehicle with the long beam positioned along the centerline of the vehicle, such that the lateral arm extends to the left, slightly forward of the left rear tire. The lateral arm has a marked indentation point which is located 48.00" from the edge of the centerline beam.

3. The Faro arm is used to make the following measurements:
 - Three points on the ground, which establishes the ground plane.
 - Two points along the lateral arm, and projected onto the ground plane. This establishes the y axis.
 - One point at the 48 inch reference point on the lateral arm. This establishes the origin.
 - Three points on the left rear wheel or wheel cover. The Faro arm then computes the center point of the wheel.
 - One point to establish the height of the highest point on the roof of the vehicle.

Coordinate Measurements Calculated for S7D (Matlab Program)

Coordinate system: X,Y,Z positive rearward, to the right, and upward, respectively
Origin defined as follows: X axis: front axle, Y axis: vehicle centerline, Z axis: ground plane

<table>
<thead>
<tr>
<th>Ref X</th>
<th>Ref Y</th>
<th>Ref Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion_PAK_Location in S7D (Matlab program) coordinate system</td>
<td>69.832</td>
<td>-0.479</td>
</tr>
</tbody>
</table>

Calculation Notes:

1. X axis value is the difference between the wheelbase and the calculated distance from the rear axle centerline to the IMU (the value must be positive and less than the wheelbase).

2. Y axis value is -48.00 (the Y axis offset of the measurement origin in the S7D coordinate system) plus the measured Y axis value (a negative value indicates the IMU is to the left of the vehicle centerline, and a positive value indicates it is to the right)

3. Z axis value is from the ground plane up to the center of the IMU (value must be positive).