SAFETY COMPLIANCE TESTING FOR
FMVSS NO. 225
CHILD RESTRAINT ANCHORAGE SYSTEMS
LOWER AND TETHER ANCHORAGES

FORD MOTOR CO.
2010 FORD TAURUS, PASSENGER CAR
NHTSA NO. CA0210

GENERAL TESTING LABORATORIES, INC.
1623 LEEDSTOWN ROAD
COLONIAL BEACH, VIRGINIA 22443

May 20, 2010
FINAL REPORT
PREPARED FOR
U. S. DEPARTMENT OF TRANSPORTATION
NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
ENFORCEMENT
OFFICE OF VEHICLE SAFETY COMPLIANCE
1200 NEW JERSEY AVE., SE
WASHINGTON, D.C. 20590
This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Prepared By: __
Digitally signed by Debbie Messick
DN: cn=Debbie Messick, c=US, o=GTL, email=gtl@general-testing.com

Approved By: __
Digitally signed by Grant Farrand
DN: cn=Grant Farrand, c=US, o=GTL, email=gtl@general-testing.com

Approval Date: 05/20/10

FINAL REPORT ACCEPTANCE BY OVSC:

Accepted By: __
Edward E. Chan

Acceptance Date: __
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NHTSA No. CA0210</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Author(s)</td>
<td>Grant Farrand, Project Engineer</td>
<td>8. Performing Organ. Rep#</td>
<td>GTL-DOT-10-225-002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Debbie Messick, Project Manager</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Performing Organization Name and Address</td>
<td>General Testing Laboratories, Inc.</td>
<td>10. Work Unit No. (TRAIS)</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1623 Leedstown Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Colonial Beach, Va 22443</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Contract or Grant No.</td>
<td>DTNH22-06-C-00032</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Sponsoring Agency Name and Address</td>
<td>U.S. Department of Transportation</td>
<td>13. Type of Report and Period Covered</td>
<td>Final Test Report</td>
<td>April 8-14, 2010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enforcement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Office of Vehicle Safety Compliance (NVS-220)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200 New Jersey Ave., S.E., Washington, DC 20590</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Supplementary Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abstract</td>
<td>Compliance tests were conducted on the subject, 2010 Ford Taurus Passenger Car in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP-225-01 for the determination of FMVSS 225 compliance. Test failures identified were as follows:</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Safety Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FMVSS 225</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Security Classif. (of this page)</td>
<td>UNCLASSIFIED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Form DOT F 1700.7 (8-72)
<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Purpose of Compliance Test</td>
<td>1</td>
</tr>
<tr>
<td>2 Compliance Test Results</td>
<td>2</td>
</tr>
<tr>
<td>3 Compliance Test Data</td>
<td>3</td>
</tr>
<tr>
<td>4 Test Equipment List</td>
<td>20</td>
</tr>
<tr>
<td>5 Photographs</td>
<td>21</td>
</tr>
<tr>
<td>5.1 Left Side View of Vehicle</td>
<td></td>
</tr>
<tr>
<td>5.2 Right Side View of Vehicle</td>
<td></td>
</tr>
<tr>
<td>5.3 ¾ Frontal View from Left Side of Vehicle</td>
<td></td>
</tr>
<tr>
<td>5.4 ¾ Rear View from Right Side of Vehicle</td>
<td></td>
</tr>
<tr>
<td>5.5 Vehicle Certification Label</td>
<td></td>
</tr>
<tr>
<td>5.6 Vehicle Tire Information Label</td>
<td></td>
</tr>
<tr>
<td>5.7 Visibility of Lower Anchors</td>
<td></td>
</tr>
<tr>
<td>5.8 Measurement of Lower Anchor Symbol</td>
<td></td>
</tr>
<tr>
<td>5.9 Row 2 Seating Positions</td>
<td></td>
</tr>
<tr>
<td>5.10 Row 2, Right Side, Outboard Lower Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.11 Row 2, Right Side, Inboard Lower Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.12 Row 2, Left Side, Outboard Lower Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.13 Row 2, Left Side, Inboard Lower Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.14 Row 2, Right Side, Top Tether Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.15 Row 2, Center, Top Tether Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.16 Row 2, Left Side, Top Tether Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.17 Row 2, Right Side Outboard Z Measurement</td>
<td></td>
</tr>
<tr>
<td>5.18 Row 2, Right Side Inboard Z Measurement</td>
<td></td>
</tr>
<tr>
<td>5.19 Row 2, Right Side, Pitch Measurement</td>
<td></td>
</tr>
<tr>
<td>5.20 Row 2, Right Side with CRF</td>
<td></td>
</tr>
<tr>
<td>5.21 Row 2, Left Side Outboard Z Measurement</td>
<td></td>
</tr>
<tr>
<td>5.22 Row 2, Left Side Inboard Z Measurement</td>
<td></td>
</tr>
<tr>
<td>5.23 Row 2, Left Side, Pitch Measurement</td>
<td></td>
</tr>
<tr>
<td>5.24 Row 2, Left Side with CRF</td>
<td></td>
</tr>
<tr>
<td>5.25 Row 2, Right Side with 2-D Template</td>
<td></td>
</tr>
<tr>
<td>5.26 Row 2, Right Side Top Tether Routing</td>
<td></td>
</tr>
<tr>
<td>5.27 Row 2, Right Side Top Tether Routing</td>
<td></td>
</tr>
<tr>
<td>5.28 Row 2, Right Side Outboard SRP Measurement</td>
<td></td>
</tr>
<tr>
<td>5.29 Row 2, Right Side, Inboard SRP Measurement</td>
<td></td>
</tr>
<tr>
<td>5.30 Row 2, Left Side with 2-D Template</td>
<td></td>
</tr>
<tr>
<td>5.31 Row 2, Left Side, Top Tether Routing</td>
<td></td>
</tr>
<tr>
<td>5.32 Row 2, Left Side, Top Tether Routing</td>
<td></td>
</tr>
<tr>
<td>5.33 Row 2, Left Side, Outboard SRP Measurement</td>
<td></td>
</tr>
<tr>
<td>5.34 Row 2, Left Side, Inboard SRP Measurement</td>
<td></td>
</tr>
<tr>
<td>5.35 Row 2, Center with 2-D Template</td>
<td></td>
</tr>
<tr>
<td>5.36 Row 2, Center Top Tether Routing</td>
<td></td>
</tr>
<tr>
<td>5.37 Row 2, Center Top Tether Routing</td>
<td></td>
</tr>
<tr>
<td>5.38 ¾ Left Front View of Vehicle in Test Fixture</td>
<td></td>
</tr>
<tr>
<td>5.39 ¾ Right Front View of Vehicle in Test Fixture</td>
<td></td>
</tr>
<tr>
<td>5.40 Vehicle Tie Down</td>
<td></td>
</tr>
<tr>
<td>5.41 Pre-Test Row 2, Left Side, Top Tether Test with SFAD 2</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (continued)

5.42 Pre-Test, Row 2, Left Side, Top Tether Test with SFAD 2
5.43 Post Test, Row 2, Left Side, Top Tether Test with SFAD 2
5.44 Post Test, Row 2, Left Side, Top Tether Test with SFAD 2
5.45 Post Test, Row 2, Left Side, Top Tether Test with SFAD 2
5.46 Pre-Test, Row 2, Center, Top Tether Test with SFAD 1
5.47 Pre-Test, Row 2, Center, Top Tether Test with SFAD 1
5.48 Post Test, Row 2, Center, Top Tether Test with SFAD 1
5.49 Post Test, Row 2, Center Top Tether Test with SFAD 1
5.50 Pre-Test, Row 2, Right Side Lower Anchor Test with SFAD 2
5.51 Post Test, Row 2, Right Side Lower Anchor Test with SFAD 2

Appendix A – Owner’s Manual Child Restraint Information 73
Appendix B – Manufacturer’s Data 77
Appendix C - Plots 88
SECTION 1
PURPOSE OF COMPLIANCE TEST

1.0 PURPOSE OF COMPLIANCE TEST

A 2010 Ford Taurus Passenger Car was subjected to Federal Motor Vehicle Safety Standard (FMVSS) No. 225 testing to determine if the vehicle was in compliance with the requirements of the standard. The purpose of this standard is to establish requirements for child restraint anchorage systems to ensure their proper location and strength for the effective securing of child restraints, to reduce the likelihood of the anchorage systems’ failure and to increase the likelihood that child restraints are properly secured and thus more fully achieve their potential effectiveness in motor vehicles.

1.1 The test vehicle was a 2010 Ford Taurus Passenger Car. Nomenclature applicable to the test vehicle are:

A. **Vehicle Identification Number:** 1FAHP2EW5AG143449

B. **NHTSA No.:** CA0210

C. **Manufacturer:** FORD MOTOR CO.

D. **Manufacture Date:** 01/10

E. **Color:** Gold Metallic

1.2 TEST DATE

The test vehicle was subjected to FMVSS No. 225 testing during the time period April 8-14, 2010.
SECTION 2
COMPLIANCE TEST RESULTS

2.0 TEST RESULTS

All tests were conducted in accordance with NHTSA, Office of Vehicle Safety Compliance (OVSC) Laboratory Procedures, TP-225-01 dated 11 April 2005.

Based on the test performed, the 2010 Ford Taurus Passenger Car appears to meet the requirements of FMVSS 225 testing.
SECTION 3

COMPLIANCE TEST DATA

3.0 TEST DATA

The following data sheets document the results of testing on the 2010 Ford Taurus Passenger Car.
SUMMARY OF RESULTS

<table>
<thead>
<tr>
<th>VEH. MOD YR/MAKE/MODEL/BODY: 2010 FORD TAURUS PASSENGER CAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEH. NHTSA NO: CA0210; VIN: 1FAHP2EW5AG143449</td>
</tr>
<tr>
<td>VEH. BUILD DATE: 01/10; TEST DATE: APRIL 8-14, 2010</td>
</tr>
<tr>
<td>TEST LABORATORY: GENERAL TESTING LABORATORIES</td>
</tr>
<tr>
<td>OBSERVERS: GRANT FARRAND, JIMMY LATANE</td>
</tr>
</tbody>
</table>

A. VISUAL INSPECTION OF TEST VEHICLE

Upon receipt for completeness, function, and discrepancies or damage which might influence the testing.

RESULTS: OK FOR TEST

B. REQUIREMENTS FOR CHILD RESTRAINT SYSTEMS AND TETHER ANCHORAGES

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

C. LOCATION OF TETHER ANCHORAGES

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

D. LOWER ANCHORAGE DIMENSIONS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
DATA SHEET 1 CONTINUED

SUMMARY OF RESULTS

E. CONSPICUITY AND MARKING OF LOWER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

F. STRENGTH OF TETHER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

G. STRENGTH OF LOWER ANCHORAGES (Forward Force)

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

H. STRENGTH OF LOWER ANCHORAGE (Lateral Force)

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

I. OWNER’S MANUAL

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:

NOTE:

RECORDED BY: __G. Farrand________ DATE: __04/14/10__

APPROVED BY: __D. Messick________
DATA SHEET 2
REQUIREMENTS FOR CHILD RESTRAINT ANCHORAGE SYSTEMS
AND TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2010 FORD TAURUS PASSENGER CAR
VEH. NHTSA NO: CA0210; VIN: 1FAHP2EW5AG143449
VEH. BUILD DATE: 01/10; TEST DATE: APRIL 8, 2010
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

Number of rows of seats: 2
Number of rear, forward-facing designated seating positions: 3
Number of required CRAS (lower anchorages only, for convertibles/school buses): 2
Number of required tether anchorages (can be additional CRAS): 3
Is the vehicle a convertible? NO
Is the vehicle a school bus? NO

Does the vehicle have a CRAS (lower anchorage only, for convertibles/school buses) installed at a front passenger seating position? NO
If NO, skip to next question.
If YES, does the vehicle have rear designated seating positions? YES
If NO, does the vehicle have an air bag on-off switch or a special exemption for no passenger air bag?
If NO = FAIL If YES = PASS
If Yes, does the vehicle meet the requirements of S4.5.4.1 (b) of S208 and have an air bag on-off switch or a special exemption for no passenger air bag?
Record the distance between the front and rear seat back: ___________
If Distance <720 mm and vehicle has an air bag on-off switch or special exemption = PASS
If Distance ≥ 720 mm or no air bag on-off switch or no special exemption = FAIL

Does the vehicle have rear designated seating position(s) where the lower bars of a CRAS are prevented from being located because of transmission and/or suspension component interference? NO
If NO, skip to next question.
If YES, does the vehicle have a tether anchorage at a front passenger seating position? YES = PASS NO = FAIL (S5(e))

Number of provided CRAS (lower anchorage only, for convertibles/school buses), indicate if a built-in child restraint is counted as a CRAS: 2

Is the number of provided CRAS (lower anchorages only, for convertible/school buses) greater than or equal to the number of required CRAS (lower anchorages only, for convertibles/school buses)? YES
YES = PASS NO = FAIL (S4.4(a) or (b) or (c))
DATA SHEET 2 CONTINUED

If the vehicle has 3 or more rows of seats is a CRAS (lower anchorage only for convertibles/school buses) provided in the second row: N/A

YES = PASS NO = FAIL (S4.4(a)(1))

Number of provided tether anchorages (can be additional CRAS) indicate if a built-in child restraint is counted as tether anchorage (NOTE: a built-in child restraint can only be counted toward either the required number of CRAS or tether anchorages, not both): 3

Is the number of provided tether anchorages greater than or equal to the number of required tether anchorages? YES

YES = PASS NO = FAIL (S4.4 (a) or (b) or (c))

If the vehicle has 3 or more rear dsps and a non-outboard dsp, is a tether anchorage or CRAS provided at a non-outboard dsp? YES

YES = PASS NO = FAIL (S4.4 (a)(2))

Are all tether and lower anchorages available for use at all times when the seat is configured for passenger use? YES

YES = PASS NO = FAIL (S4.6 (b))

Provide a diagram showing the location of lower anchorages and/or tether anchorages.

X

X

X

* A

* B

* C

**

Drvr.

Psgr.

X = Top Tether

* = Lower Anchors

RECORDED BY: J. Latane
DATE: 04/08/10

APPROVED BY: D. Messick
DATA SHEET 3
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2010 FORD TAURUS PASSENGER CAR
VEH. NHTSA NO: CA0210; VIN: 1FAHP2EW5AG143449
VEH. BUILD DATE: _01/10; TEST DATE: _APRIL 8, 2010
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT, RIGHT AND CENTER POSITIONS

Detailed description of the location of the tether anchorage:
LOCATED ON CENTERLINE OF EACH SEATING POSITION ON THE HAT SHELF DIRECTLY BEHIND SEAT BACK.

Based on visual inspection, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component? YES
If YES = FAIL (S6.2.1)
If NO, Is a tether routing device provided? YES
If YES = PASS
IF NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? YES
If NO, skip to next question
If YES, is it outside of the tether strap wraparound area? YES
YES = PASS NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? YES
YES = PASS NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? YES
YES = PASS NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? YES
YES = PASS NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? YES
YES = PASS NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? N/A
DATA SHEET 3 CONTINUED

DESIGNATED SEATING POSITION: ROW 2 LEFT, RIGHT AND CENTER POSITIONS

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension:

N/A (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device: N/A

Greater than or equal to 65mm = PASS Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device: N/A

Greater than or equal to 100mm = PASS Less than 100mm = FAIL

COMMENTS:

RECORDED BY: J. Latane DATE: 04/08/10

APPROVED BY: D. Messick
DATA SHEET 4
LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2010 FORD TAURUS PASSENGER CAR
VEH. NHTSA NO: CA0210; VIN: 1FAHP2EW5AG143449
VEH. BUILD DATE: 01/10; TEST DATE: APRIL 8, 2010
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

Outboard Lower Anchorage bar diameter: 6.02 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: 6.02 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? YES
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): 40 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length of the straight portion of the bar (inboard lower anchorage): 30 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length between the anchor bar supports (outboard lower anchorage): 45 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

Length between the anchor bar supports (inboard lower anchorage): 35 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

CRF Pitch angle: 12.9°
Angle = 15°±10° = PASS Angle≠15°±10° = FAIL (S9.2.1)

CRF Roll angle: 0.0°
Angle = 0°±5° = PASS Angle≠0°±5° = FAIL (S9.2.1)

CRF Yaw angle: 0.0°
Angle = 0°±10° = PASS Angle≠0°±10° = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 45 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: 45 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL
DATA SHEET 4 CONTINUED

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

Distance between SgRP and the front surface of outboard anchor bar: 165 mm
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: 165 mm
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm?

_____ NO

If NO = PASS
If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:

COMMENTS:

RECORDED BY: J. Latane DATE: 04/08/10

APPROVED BY: D. Messick
DATA SHEET 4A
LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2010 FORD TAURUS PASSENGER CAR
VEH. NHTSA NO: CA0210; VIN: 1FAHP2EW5AG143449
VEH. BUILD DATE: 01/10; TEST DATE: APRIL 8, 2010
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Outboard Lower Anchorage bar diameter: 6.04 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: 6.05 mm
6mm ± 0.1mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? YES
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): 42 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length of the straight portion of the bar (inboard lower anchorage): 35 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length between the anchor bar supports (outboard lower anchorage): 45 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

Length between the anchor bar supports (inboard lower anchorage): 37 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

CRF Pitch angle: 12.4°
Angle = 15º±10º = PASS Angle≠15º±10º = FAIL (S9.2.1)

CRF Roll angle: 0.0°
Angle = 0º±5º = PASS Angle≠0º±5º = FAIL (S9.2.1)

CRF Yaw angle: 0.0°
Angle = 0º±10º = PASS Angle≠0º±10º = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 45 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: 45 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL
DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Distance between SgRP and the front surface of outboard anchor bar: 165 mm
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: 165 mm
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm?
_____NO____

If NO = PASS
If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:

COMMENTS:

RECORDED BY: G. Farrand DATE: 04/08/109
APPROVED BY: D. Messick
DATA SHEET 5
CONSPICUITY AND MARKING OF LOWER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2010 FORD TAURUS PASSENGER CAR

VEH. NHTSA NO: CA0210; VIN: 1FAHP2EW5AG143449

VEH. BUILD DATE: 01/10; TEST DATE: APRIL 8, 2010

TEST LABORATORY: GENERAL TESTING LABORATORIES

OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT AND RIGHT SIDE (DSP A AND C)

MARKING (Circles)

Diameter of the circle: __15.0 mm__

Diameter ≥13mm = PASS Diameter <13mm = FAIL (S9.5(a)(1))

Does the circle have words, symbols or pictograms? __PICTOGRAM____

NO skip to next question

YES, are the meaning of the words, symbols or pictograms explained in the owner’s manual?

____ YES

YES = PASS NO = FAIL (S9.5(a)(2))

Where is the circle located? Seat back or seat Cushion: ___ Seat Back___

For circles on seat backs, vertical distance from the center of the circle to the center of the anchor bar: ___65 mm___

Distance between 50&100mm = PASS Other Distance=FAIL (S9.5(a)(3))

For circles on seat cushions, horizontal distance from the center of the circle to the center of the bar: ___N/A___

Distance between 75&125mm= PASS Other Distance=FAIL (S9.5(a)(3))

Lateral distance from the center of the circle to the center of the anchor bar: ___0 mm___

Distance≤25mm = PASS Distance >25mm = FAIL (S9.5(a)(3))

CONSPICUITY (No Circles)

Is the anchor bar or guide visible when viewed from a point 30º above the horizontal in a vertical longitudinal plane bisecting the anchor bar or guide? __N/A__

YES = PASS NO = FAIL (S9.5(b))

If there is a guide, is it permanently attached? __N/A__

YES = PASS NO = FAIL (S9.5(b))
DATA SHEET 5 CONTINUED

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE AND RIGHT SIDE (DSP A & C)

Is there a cap or cover over the anchor bar? N/A

If YES, is the cap or cover marked with words, symbols or pictograms?

If NO = FAIL (S9.5(b))

If YES, is the meaning of the words, symbols or pictograms explained in the owner's manual?

YES = PASS NO = FAIL (S9.5(b))

If NO, there are no requirements for having a cover.

RECORDED BY: J. Latane
DATE: 04/08/10

APPROVED BY: D. Messick
DATA SHEET 6
STRENGTH OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2010 FORD TAURUS PASSENGER CAR
VEH. NHTSA NO: CA0210; VIN: 1FAHP2EW5AG143449
VEH. BUILD DATE: 01/10; TEST DATE: APRIL 9, 2010
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 6405

DESIGNATED SEATING POSITION: __ROW 2 LEFT SIDE (DSP A)___
SFAD: ____ 2 ____

Seat Back Angle: __25°__
Location of seat back angle measurement: ___2D Template____

Head Restraint Position: __FIXED___
D-ring Position: ___N/A_____

Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: ___140 N______
Lap belt tension: ___N/A___ (SFAD 1 only)
Tether strap tension: _______ 60 N ______

Angle (measured above the horizontal at 500 N): ___11°____
Separation of tether anchorage at 500 N: __NO__
NO = PASS _____ YES = FAIL (S6.3.1)

Force application rate: ___577 N/S____
Time to reach maximum force (24-30 s): ___26 sec.____
Maximum force (14,950 N ± 50 N): ___14,923 N____
Tested simultaneously with another DSP? ____NO__

COMMENTS:

RECORDED BY: ___G. FARRAND___ DATE: ___04/09/10___
APPROVED BY: ___D. MESSICK___
DATA SHEET 6A
STRENGTH OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2010 FORD TAURUS PASSENGER CAR
VEH. NHTSA NO: CA0210; VIN: 1FAHP2EW5AG143449
VEH. BUILD DATE: 01/10; TEST DATE: APRIL 14, 2010
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 6407

DESIGNATED SEATING POSITION: ROW 2 CENTER (DSP B)
SFAD: 1
Seat Back Angle: 25º
Location of seat back angle measurement: 2D Template
Head Restraint Position: UP
D-ring Position: N/A

Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: 140 N
Lap belt tension: 60 N (SFAD 1 only)
Tether strap tension: 60 N
Angle (measured above the horizontal at 500 N): 11º
Separation of tether anchorage at 500 N: NO
NO = PASS YES = FAIL (S6.3.1)
Force application rate: 577 N/S
Time to reach maximum force (24-30 s): 26 sec.
Maximum force (14,950 N ± 50 N): 14,919 N
Tested simultaneously with another DSP? NO

COMMENTS:

RECORDED BY: G. FARRAND DATE: 04/14/10
APPROVED BY: D. MESSICK
DATA SHEET 7
STRENGTH OF LOWER ANCHORAGES (Forward Force)

VEH. MOD YR/MAKE/MODEL/BODY: 2010 FORD TAURUS PASSENGER CAR
VEH. NHTSA NO: CA0210; VIN: 1FAHP2EW5AG143449
VEH. BUILD DATE: 01/10; TEST DATE: APRIL 14, 2010
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 6406

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Seat Back Angle: __25°__

Location of seat back angle measurement: __2D Template__

Head Restraint Position: __FIXED__

Force at lower front crossmember for SFAD2 while tightening rearward extensions: __140 N__

Angle (measured above the horizontal at 500 N): __11°__

Force application rate: __423 N/S__

Time to reach maximum force (24-30 s): __26 sec.__

Maximum force (10,950 N ± 50 N): __10,951 N__

Displacement, H1 (at 500N): __0__

Displacement, H2 (at maximum load): __48.2 mm__

Displacement of Point X: __48.2 mm__ (H2-H1)
Displacement > 175 mm = FAIL (S9.4.1(a))

Tested simultaneously with another DSP? __NO__

Distance between adjacent DSP’s: __260 mm__

COMMENTS:

RECORDED BY: __G. FARRAND__ DATE: __04/14/10__

APPROVED BY: __D. MESSICK__
Description of which DSP’s are equipped with tether anchorages and child restraint anchorage systems:____YES____

PASS X FAIL______

Step-by-step instructions for properly attaching a child restraint system’s tether strap to the tether anchorage. Diagrams are required.____YES____

PASS X FAIL______

Description of how to properly use the tether anchorage and lower anchor bars:____YES____

PASS X FAIL______

If the lower anchor bars are marked with a circle, an explanation of what the circle indicates as well as any words or pictograms:____YES____

PASS X FAIL______

COMMENTS:

RECORDED BY: G. Farrand DATE: 04/14/10

APPROVED BY: D. Messick
TABLE 1 - INSTRUMENTATION & EQUIPMENT LIST

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>DESCRIPTION</th>
<th>MODEL/ SERIAL NO.</th>
<th>CAL. DATE</th>
<th>NEXT CAL. DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER</td>
<td>AT&T</td>
<td>486DX266</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>LOAD CELL</td>
<td>INTERFACE</td>
<td>215709</td>
<td>02/10</td>
<td>02/11</td>
</tr>
<tr>
<td>LINEAR TRANSDUCER</td>
<td>SERVO SYSTEMS</td>
<td>69</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SEAT BELT LOAD CELL</td>
<td>TRANSUDucer</td>
<td>135</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SEAT BELT LOAD CELL</td>
<td>TRANSUDucer</td>
<td>137</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>LEVEL</td>
<td>STANLEY</td>
<td>42-449</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>FORCE GAUGE</td>
<td>CHATILLON</td>
<td>8761</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>CALIPER</td>
<td>N/A</td>
<td>Q9322365</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>CRF</td>
<td>MEASUREMENT FIXTURE</td>
<td>GTL CRF</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 1</td>
<td>FORCE APPLICATION DEVICE</td>
<td>GTL SFAD 1</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 2</td>
<td>FORCE APPLICATION DEVICE</td>
<td>GLT SFAD 2</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
</tbody>
</table>
2010 FORD TAURUS
NHTSA NO. CA0210
FMVSS NO. 225

FIGURE 5.1
LEFT SIDE VIEW OF VEHICLE
FIGURE 5.3
¾ FRONTAL VIEW FROM LEFT SIDE OF VEHICLE
2010 FORD TAURUS
NHTSA NO. CA0210
FMVSS NO. 225

FIGURE 5.5
CLOSE-UP VIEW OF VEHICLE CERTIFICATION LABEL
TIRE AND LOADING INFORMATION

SEATING CAPACITY
- TOTAL: 5
- FRONT: 2
- REAR: 3

The combined weight of occupants and cargo should never exceed:
- 430 kg or 950 lbs.

TIRE AND LOADING INFORMATION

<table>
<thead>
<tr>
<th>TIRE</th>
<th>SIZE</th>
<th>COLD TIRE PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONT</td>
<td>P255/45R19</td>
<td>220 KPA, 32 PSI</td>
</tr>
<tr>
<td>REAR</td>
<td>P255/45R19</td>
<td>220 KPA, 32 PSI</td>
</tr>
<tr>
<td>SPARE</td>
<td>T155/70D17</td>
<td>415 KPA, 60 PSI</td>
</tr>
</tbody>
</table>

SEE OWNERS MANUAL FOR ADDITIONAL INFORMATION

FIGURE 5.6
CLOSE-UP VIEW OF VEHICLE TIRE INFORMATION LABEL

2010 FORD TAURUS
NHTSA NO. CA0210
FMVSS NO. 225
FIGURE 5.7
VISIBILITY OF LOWER ANCHOR LOCATIONS
FIGURE 5.8
MEASUREMENT OF LOWER ANCHOR SYMBOL
2010 FORD TAURUS
NHTSA NO. CA0210
FMVSS NO. 225

FIGURE 5.11
ROW 2, RIGHT SIDE, INBOARD LOWER ANCHOR, PRE-TEST
2010 FORD TAURUS
NHTSA NO. CA0210
FMVSS NO. 225

FIGURE 5.13
ROW 2, LEFT SIDE, INBOARD LOWER ANCHOR, PRE-TEST
2010 FORD TAURUS
NHTSA NO. CA0210
FMVSS NO. 225

FIGURE 5.14
ROW 2, RIGHT SIDE, TOP TETHER ANCHOR PRE-TEST
FIGURE 5.15
ROW 2, CENTER, TOP TETHER ANCHOR PRE-TEST

2010 FORD TAURUS
NHTSA NO. CA0210
FMVSS NO. 225
2010 FORD TAURUS
NHTSA NO. CA0210
FMVSS NO. 225

FIGURE 5.16
ROW 2, LEFT SIDE, TOP TETHER ANCHOR, PRE-TEST
FIGURE 5.17
ROW 2, RIGHT SIDE OUTBOARD Z MEASUREMENT
FIGURE 5.18
ROW 2, RIGHT SIDE INBOARD Z MEASUREMENT

2010 FORD TAURUS
NHTSA NO. CA0210
FMVSS NO. 225
2010 FORD TAURUS
NHTSA NO. CA0210
FMVSS NO. 225

FIGURE 5.20
ROW 2, RIGHT SIDE, WITH CRF
FIGURE 5.23
ROW 2, LEFT SIDE PITCH MEASUREMENT
2010 FORD TAURUS
NHTSA NO. CA0210
FMVSS NO. 225

FIGURE 5.26
ROW 2, RIGHT SIDE TOP TETHER ROUTING
FIGURE 5.31
ROW 2, LEFT SIDE, TOP TETHER ROUTING
2010 FORD TAURUS
NHTSA NO. CA0210
FMVSS NO. 225

FIGURE 5.32
ROW 2, LEFT SIDE, TOP TETHER ROUTING
2010 FORD TAURUS
NHTSA NO. CA0210
FMVSS NO. 225

FIGURE 5.34
ROW 2, LEFT SIDE, INBOARD SRP MEASUREMENT
FIGURE 5.35
ROW 2, CENTER WITH 2-D TEMPLATE
2010 FORD TAURUS
NHTSA NO. CA0210
FMVSS NO. 225

FIGURE 6.39
¾ RIGHT FRONT VIEW OF VEHICLE IN TEST FIXTURE
FIGURE 5.40
VEHICLE TIE DOWN
2010 FORD TAURUS
NHTSA NO. CA0210
FMVSS NO. 225

FIGURE 5.41
PRE-TEST, ROW 2, LEFT SIDE, TOP TETHER TEST WITH SFAD 2
2010 FORD TAURUS
NHTSA NO. CA0210
FMVSS NO. 225

FIGURE 5.43
POST TEST, ROW 2, LEFT SIDE, TOP TETHER TEST WITH SFAD 2
FIGURE 5.46
PRE-TEST, ROW 2, CENTER, TOP TETHER TEST WITH SFAD 1
FIGURE 5.47
PRE-TEST ROW 2, CENTER, TOP TETHER TEST WITH SFAD 1
FIGURE 5.48
POST TEST ROW 2, CENTER, TOP TETHER TEST WITH SFAD 1
FIGURE 5.49
POST TEST ROW 2, CENTER TOP TETHER TEST WITH SFAD 1
2010 FORD TAURUS
NHTSA NO. CA0210
FMVSS NO. 225

FIGURE 5.50
PRE-TEST ROW 2, RIGHT SIDE LOWER ANCHOR TEST WITH SFAD 2
APPENDIX A
OWNER’S MANUAL RESTRAINT INFORMATION
Follow all the safety restraints and airbag precautions that apply to adult passengers in your vehicle.

If the child is the proper height, age, and weight (as specified by your child safety seat or booster manufacturer), the restraint can and should be restrained properly. This restraint then restrains the child in the child safety seat or with the belt-positioning booster. Remember that child seats and belt-positioning boosters vary and may be designed to fit children of different heights, ages, and weights. Children who are too large for child safety seats or belt-positioning boosters (as specified by your child safety seat manufacturer) should always properly wear safety belts.

SAFETY SEATS FOR CHILDREN

Infant and/or toddler seats

Use a safety seat that is recommended for the size and weight of the child.

When installing a child safety seat:

- Review and follow the information presented in the Airbag Supplemental restraint system (SRS) section in this chapter.
- Carefully follow all of the manufacturer's instructions. Included with the safety seat you put in your vehicle. If you do not install and use the safety seat properly, the child may be injured in a sudden stop or collision.

Airbags can kill or injure a child in a child seat. NEVER place a rear-facing child seat in front of an active airbag. If you must use a forward-facing child seat in the front seat, move the vehicle seat all the way back.

Children 12 and under should be properly restrained in a rear seating position whenever possible. If all children cannot be seated and restrained properly in a rear seating position, properly restrain the largest child in the front seat.

Installing child safety seats with combination lap and shoulder belts

Check to make sure the child seat is properly secured before each use. Children 12 and under should be properly restrained in a rear seating position whenever possible. If all children cannot be seated and restrained properly in a rear seating position, properly restrain the largest child in the front seat.

When installing a child safety seat with combination lap/shoulder belts:

- Use the correct safety belt buckle for that seating position.
- Insert the belt tongue into the proper buckle until you hear a snap and feel it lock. Make sure the tongue is securely fastened in the buckle.
- Keep the buckle release button pointed up and away from the safety seat, with the tongue between the child seat and the release button, to help prevent accidental unbuckling.
- Place vehicle seat back in upright position.
- Put the safety belt in the automatic locking mode. Refer to step 5 below. This vehicle does not require the use of a locking clip.

WARNING: Depending on where you secure a child restraint, and depending on the child restraint design, you may block access to certain safety belt buckle assemblies and/or LATCH lower anchors, rendering those features potentially unusable. To avoid risk of injury, occupants should only use seating positions where they are able to be properly restrained.

Perform the following steps when installing the child seat with combination lap/shoulder belts:

Note: Although the child seat illustrated is a forward-facing child seat, the steps are the same for installing a rear-facing child seat.

1. Position the child safety seat in a seat with a combination lap and shoulder belt.

2. Pull down on the shoulder belt and then grasp the shoulder belt and lap belt together.

3. While holding the shoulder and lap belt portions together, route the tongue through the child seat according to the child seat manufacturer's instructions. Be sure the belt webbing is not twisted.

4. Insert the belt tongue into the proper buckle (the buckle closest to the direction the tongue is coming from) for that seating position until you hear a snap and feel the latch engage. Make sure the tongue is latched securely by pulling on it.

5. To put the retractor in the automatic locking mode, grasp the shoulder portion of the belt and pull downward until all of the belt is pulled out.

6. Allow the belt to retract to remove slack. The belt will click as it retracts to indicate it is in the automatic locking mode.

7. Try to pull the belt out of the retractor to make sure the retractor is in the automatic locking mode (you should not be able to pull more belt out). If the retractor is not locked, repeat Steps 5 and 6.

8. Remove remaining slack from the belt. Force the seat down with extra weight, e.g., by pressing down on kneeing on the child restraint while pulling up on the shoulder belt in order to force slack from the belt. This is necessary to remove the remaining slack that will exist once the additional weight of the child is added to the child restraint. It also helps to achieve the proper snugness of the child seat to the vehicle. Sometimes, a slight lean towards the buckle will additionally help to remove remaining slack from the belt.
9. Attach the tether strap (if the child seat is equipped). Refer to Attaching child safety seats with tether straps later in this chapter.

10. Before placing the child in the seat, firmly move the seat forward and back to make sure the seat is securely held in place. To check this, push the seat at the belt path and attempt to move it side to side and forward and back. There should be no more than 1 inch (2.5 cm) of movement for proper installation.

Ford recommends consulting with a NHTSA-certified Child Passenger Safety Technician (CPST) to make certain the child restraint is properly installed. In Canada, check with your local St. John Ambulance office for referral to a CPST.

Attaching child safety seats with LATCH (Lower Anchors and Tethers for Children) attachments

The LATCH system is composed of three vehicle anchor points: two (2) lower anchors located where the vehicle seat back and seat cushion meet (called the "seat back") and one (1) top tether anchor located behind that seating position.

LATCH compatible child safety seats have two child or webbing mounted attachments that connect to the two lower anchors at the LATCH equipped seating positions in your vehicle. This type of attachment eliminates the need for safety belts to attach the child seat, however the safety belt can still be used to attach the child seat. For rear-facing child seats, the top tether strap must also be attached to the proper top tether anchor. If a top tether strap has been provided with your child seat, Ford Motor Company recommends the use of a child safety seat having a top tether strap. See Attaching child safety seats with tether straps and Recommendations for attaching safety restraints for children in this chapter for more information.

Seating and Safety Restraints

WARNING: Never attach two child safety seats to the same anchor. In a crash, one anchor may not be strong enough to hold two child safety seat attachments and may break, causing serious injury or death.

If you install a child seat with rigid LATCH attachments, and have attached the top tether strap to the proper top tether anchor, do not tighten the tether strap enough to lift the child seat off the vehicle seat cushion when the child is seated in it. Keep the tether strap just snug without lifting the seat from the seat. Keeping the child seat just touching the vehicle seat gives the best protection in a severe crash.

Each time you use the safety seat, check that the seat is properly attached to the lower anchors and tether anchor, if applicable. Tug the child seat from side to side and forward and back where it is secured to the vehicle. The seat should move less than one inch when you do this for a proper installation.

If the safety seat is not anchored properly, the risk of a child being injured in a crash greatly increases.

WARNING: Depending on where you secure a child restraint, the child and depending on the child restraint design, you may block access to certain safety seat tracks attached to the lower anchors, rendering those features potentially unusable. To avoid risk of injury, occupants should only use seating positions where they are able to be properly restrained.

Combining safety belt and LATCH lower anchors for attaching child safety seats

When used in combination, either the safety belt or the LATCH lower anchors may be attached first, provided a proper installation is achieved. Attach the tether strap afterward, if included with the child seat. Refer to Recommendations for attaching child safety restraints for children in this chapter.

Your vehicle has LATCH lower anchors for child seat installation at the seating positions marked with the child seat symbol.

The LATCH anchors are located at the rear section of the rear seat between the cushion and seatback, below the logo/symbols on the seat back. Follow the child seat manufacturer's instructions to properly install a child seat with LATCH attachments.

Follow the instructions on attaching child safety seats with tether straps. Refer to Attaching child safety seats with tether straps later in this chapter.

Attach LATCH lower attachments of the child seat only to the anchors shown.

All the LATCH lower anchors are equally spaced, 380 mm (11 inches) apart, so that a single LATCH child seat can be installed at any rear seating position. If two child safety seats are installed using the LATCH lower anchors, they must be placed in the outboard seating positions only. When child safety seats are installed, you can install two using the LATCH lower anchors by placing them in each outboard seating position and the third in the center using the lap/shoulder belt. OR you can use the LATCH lower anchors for the center child safety seat and the shoulder belts for the other two child safety seats in the outboard positions. Use the tether anchors if applicable.

Attaching child safety seats with tether straps

Many forward-facing child safety seats include a tether strap which extends from the back of the child safety seat and hooks to an anchoring point, called the top tether anchor. Tether straps are available as an accessory for many newer safety seats. Contact the manufacturer of your child seat, for information about ordering a tether strap, or to obtain a longer tether strap if the tether strap on your safety seat does not reach the appropriate top tether anchor in the vehicle.

The rear seats of your vehicle are equipped with built-in tether strap anchors located behind the seats as described below:

- The tether anchors in your vehicle are located under a cover marked with the tether anchor symbol (shown with title).
- The tether strap anchors on your vehicle are in the following positions (shown from top view):

 ![Tether Anchor Diagram]

- Attach the tether strap only to the appropriate tether anchor as shown.
- The tether strap may not work properly if attached somewhere other than the correct tether anchor.
- Once the child safety seat has been installed, using either the safety belt, the lower anchors of the LATCH system, or both, you can attach the top tether strap.
- Perform the following steps to attach a child safety seat to the tether anchor:
 1. Route the child safety seat tether strap over the back of the seat.
 2. For vehicles with adjustable head restraints, route the tether strap under the head restraints until between the head restraint posts, otherwise route the tether strap over the top of the head restraint.
 3. Locate the correct anchor for the selected seating position.
3. Open the tether anchor cover.

4. Clip the tether strap to the anchor as shown.
If the tether strap is clipped incorrectly, the child safety seat may not be retained properly in the event of a collision.

5. Tighten the child safety seat tether strap according to the manufacturer's instructions.
If the safety seat is not anchored properly, the risk of a child being injured in a collision greatly increases.
If your child restraint system is equipped with a tether strap, and the child restraint manufacturer recommends its use, Ford also recommends its use.

Child booster seats
The belt-positioning booster (booster seat) is used to improve the fit of the vehicle safety belt. Children outgrow a typical child seat (e.g., convertible or toddler seat) when they weigh about 40 lb (18 kg) and are around four (4) years of age. Consult your child safety seat owner guide for the weight, height, and age limits specific to your child safety seat. Keep your child in the child safety seat if it properly fits the child, remains appropriate for their weight, height and age AND if properly secured to the vehicle.
SEAT REFERENCE POINT (SRP) AND TORSO ANGLE DATA
FOR FMVSS 225
(All dimensions in mm)

Model Year: 2010; Make: Ford; Model: Ford Taurus (D258); Body Style: 4-Door Sedan
Seat Style: Front row: Buckets; Second row: 3 Passenger Bench; Third row: n/a

LEFT SIDE VIEW OF TEST VEHICLE
Table 1. Seating Positions and Torso Angles

<table>
<thead>
<tr>
<th></th>
<th>Left (Driver Side)</th>
<th>Center (if any)</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>A2</td>
<td>182 mm</td>
<td>203 mm</td>
<td>182 mm</td>
</tr>
<tr>
<td>A3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>B</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>C</td>
<td>1316 mm</td>
<td>1281 mm</td>
<td>1316 mm</td>
</tr>
<tr>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Torso Angle (degree) | Front Row | Second Row | Third Row |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/A</td>
<td>25</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>25</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>25</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: 1. All dimensions are in mm. If not, provide the unit used.
NOMINAL DESIGN RIDING POSITION
For adjustable driver, passenger, 2nd row and 3rd row seat backs, describe how to position the inclinometer to measure the seat back angle. Include description of the location of the adjustment latch detent if applicable. Indicate if applicable, how the detents are numbered (Is the first detent "0" or "1"?). Indicate if the seat back angle is measured with the dummy in the seat.

Seat back angle for driver's seat Measurement Instructions: N/A

Seat back angle for passenger's seat Measurement Instructions: N/A

Seat back angle for 2nd row seat Measurement Instructions: Fixed Seatback
SEATING REFERENCE POINT
FOR FMVSS 225
(All dimensions in mm)

Model Year: 2010; Make: Ford; Model: Ford Taurus (D258); Body Style: 4-Door Sedan
Seat Style: Front row: Buckets; Second row: 3 Passenger Bench; Third row: n/a

Driver's seat front outboard seat adjuster anchorage
Table 2. Seating Reference Point and Tether Anchorage Locations

<table>
<thead>
<tr>
<th>Seating Reference Point (SRP)</th>
<th>Distance from Driver’s front outboard seat adjuster anchorage¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>N/A</td>
</tr>
<tr>
<td>E1</td>
<td>N/A</td>
</tr>
<tr>
<td>B2</td>
<td>N/A</td>
</tr>
<tr>
<td>E2</td>
<td>N/A</td>
</tr>
<tr>
<td>B3</td>
<td>N/A</td>
</tr>
<tr>
<td>E3</td>
<td>N/A</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>1316 mm</td>
</tr>
<tr>
<td>F1</td>
<td>202 mm</td>
</tr>
<tr>
<td>C2</td>
<td>1281 mm</td>
</tr>
<tr>
<td>F2</td>
<td>582 mm</td>
</tr>
<tr>
<td>C3</td>
<td>1316 mm</td>
</tr>
<tr>
<td>F3</td>
<td>962 mm</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>N/A</td>
</tr>
<tr>
<td>G1</td>
<td>N/A</td>
</tr>
<tr>
<td>D2</td>
<td>N/A</td>
</tr>
<tr>
<td>G2</td>
<td>N/A</td>
</tr>
<tr>
<td>D3</td>
<td>N/A</td>
</tr>
<tr>
<td>G3</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: 1. Use the center of anchorage.
TETHER ANCHORAGE LOCATIONS
FOR FMVSS 225
(All dimensions in mm)

Model Year: 2010; Make: Ford; Model: Ford Taurus (D258); Body Style: 4-Door Sedan
Seat Style: Front row: Buckets; Second row: 3 Passenger Bench; Third row: n/a

ψ: SRP
Φ: Tether anchorage

Note: 1. The location shall be measured at the center of the bar.
Table 3. Seating Reference Point and Tether Anchorage Locations

<table>
<thead>
<tr>
<th>Seating Reference Point (SRP)</th>
<th>Distance from SRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>N/A</td>
</tr>
<tr>
<td>K1</td>
<td>N/A</td>
</tr>
<tr>
<td>H2</td>
<td>N/A</td>
</tr>
<tr>
<td>K2</td>
<td>N/A</td>
</tr>
<tr>
<td>H3</td>
<td>N/A</td>
</tr>
<tr>
<td>K3</td>
<td>N/A</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>I1</td>
<td>606 mm</td>
</tr>
<tr>
<td>L1</td>
<td>0</td>
</tr>
<tr>
<td>I2</td>
<td>641 mm</td>
</tr>
<tr>
<td>L2</td>
<td>0</td>
</tr>
<tr>
<td>I3</td>
<td>606 mm</td>
</tr>
<tr>
<td>L3</td>
<td>0</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>N/A</td>
</tr>
<tr>
<td>M1</td>
<td>N/A</td>
</tr>
<tr>
<td>J2</td>
<td>N/A</td>
</tr>
<tr>
<td>M2</td>
<td>N/A</td>
</tr>
<tr>
<td>J3</td>
<td>N/A</td>
</tr>
<tr>
<td>M3</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: 1. Use the center of anchorage.
TETHER ANCHORAGE LOCATIONS - VERTICAL
FOR FMVSS 225
(All dimensions in mm)

Model Year: 2010; Make: Ford; Model: Ford Taurus (D258); Body Style: 4-Door Sedan
Seat Style: Front row: Buckets; Second row: 3 Passenger Bench; Third row: n/a

LEFT SIDE VIEW OF TEST VEHICLE
Table 4. Vertical Dimension For The Tether Anchorage

<table>
<thead>
<tr>
<th>Seating Row</th>
<th>Vertical Distance from Seating Reference Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>N1 (Driver)</td>
<td>N/A</td>
</tr>
<tr>
<td>N2 (Center)</td>
<td>N/A</td>
</tr>
<tr>
<td>N3 (Right)</td>
<td>N/A</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>O1 (Left)</td>
<td>524 mm</td>
</tr>
<tr>
<td>O2 (Center)</td>
<td>503 mm</td>
</tr>
<tr>
<td>O3 (Right)</td>
<td>524 mm</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>P1 (Left)</td>
<td>N/A</td>
</tr>
<tr>
<td>P2 (Center)</td>
<td>N/A</td>
</tr>
<tr>
<td>P3 (Right)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: 1. All dimensions are in mm. If not, provide the unit used.
Test Procedures Used for Compliance Tests

Lower Anchorages

<table>
<thead>
<tr>
<th>Block 1</th>
<th>FMVSS 225 Section(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower anchorage location certification method used (Enter applicable section used in block 1 of each position by circling A or B)</td>
<td></td>
</tr>
<tr>
<td>A) 9.2.1 or B) 15.1.2.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Block 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower anchorage dimension (Enter applicable section used in block 2 by circling A or B)</td>
<td></td>
</tr>
<tr>
<td>A) 9.1.1 or B) 15.1.2.2 (also provide roll and yaw angles)</td>
<td></td>
</tr>
<tr>
<td>pitch</td>
<td></td>
</tr>
<tr>
<td>roll</td>
<td></td>
</tr>
<tr>
<td>yaw</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Block 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower anchorage marking (Enter applicable section used in block 3 by circling A or B)</td>
<td></td>
</tr>
<tr>
<td>A) 9.5 or B) 15.4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Block 4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength requirement (Enter applicable section used in block 4 by circling A or B)</td>
<td></td>
</tr>
<tr>
<td>A) Section 9 or B) Section 15</td>
<td></td>
</tr>
</tbody>
</table>

Driver

<table>
<thead>
<tr>
<th>Front</th>
<th>Driver</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center (if any)</td>
<td>Block 1: A, B Block 2: A, B, C, D, E, F, G, Yaw</td>
<td></td>
</tr>
<tr>
<td>Right (if any)</td>
<td>Block 1: A, B Block 2: A, B, C, D, E, F, G, Yaw</td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>Block 1: A, B Block 2: A, B, C, D, E, F, G, Yaw</td>
<td></td>
</tr>
<tr>
<td>Second</td>
<td>Block 1: A, B Block 2: A, B, C, D, E, F, G, Yaw</td>
<td></td>
</tr>
<tr>
<td>Center</td>
<td>Block 1: A, B Block 2: A, B, C, D, E, F, G, Yaw</td>
<td></td>
</tr>
<tr>
<td>Right (if any)</td>
<td>Block 1: A, B Block 2: A, B, C, D, E, F, G, Yaw</td>
<td></td>
</tr>
</tbody>
</table>

Third

Left	Block 1: A, B Block 2: A, B, C, D, E, F, G, Yaw
Center	Block 1: A, B Block 2: A, B, C, D, E, F, G, Yaw
Right	Block 1: A, B Block 2: A, B, C, D, E, F, G, Yaw

Fourth

Left	Block 1: A, B Block 2: A, B, C, D, E, F, G, Yaw
Center	Block 1: A, B Block 2: A, B, C, D, E, F, G, Yaw
Right	Block 1: A, B Block 2: A, B, C, D, E, F, G, Yaw
GTL 6405, NHTSA CA0210.

225, Child Restraint, Top Tether, Driver

(Time in Seconds)

(Thousands)

Force in Newtons
GTL 6406, NHTSA CA0210.

225, Child Restraint, Lower Anchor.

Force in Newtons (Thousands) vs Time in Seconds
GTL 6406, NHTSA CA0210.

225, Child Restraint, Lower Anchor.