This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Prepared By:

Approved By:

Approval Date: 07/06/10

FINAL REPORT ACCEPTANCE BY OYSC:

Accepted By:

Acceptance Date:

Digitally signed by Debbie Messick
DN: cn=Debbie Messick, c=US, o=GTL, email=gtl@general-testing.com

Digitally signed by Grant Farrand
DN: cn=Grant Farrand, c=US, o=GTL, email=gtl@general-testing.com

Digitally signed by Edward E. Chan
DN: cn=Edward E. Chan, c=US, o=GTL, email=gtl@general-testing.com
Compliance tests were conducted on the subject, 2010 Infiniti G37 Passenger Car in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP-225-01 for the determination of FMVSS 225 compliance. Test failures identified were as follows: None
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Purpose of Compliance Test</td>
<td>1</td>
</tr>
<tr>
<td>2 Compliance Test Results</td>
<td>2</td>
</tr>
<tr>
<td>3 Compliance Test Data</td>
<td>3</td>
</tr>
<tr>
<td>4 Test Equipment List</td>
<td>20</td>
</tr>
<tr>
<td>5 Photographs</td>
<td>21</td>
</tr>
</tbody>
</table>

5.1 Left Side View of Vehicle
5.2 Right Side View of Vehicle
5.3 ¾ Frontal View from Left Side of Vehicle
5.4 ¾ Rear View from Right Side of Vehicle
5.5 Vehicle Certification Label
5.6 Vehicle Tire Information Label
5.7 Visibility of Lower Anchors
5.8 Measurement of Lower Anchor Symbol
5.9 Row 2 Seating Positions
5.10 Row 2, Right Side, Outboard Lower Anchor, Pre-Test
5.11 Row 2, Right Side, Inboard Lower Anchor, Pre-Test
5.12 Row 2, Left Side, Outboard Lower Anchor, Pre-Test
5.13 Row 2, Left Side, Inboard Lower Anchor, Pre-Test
5.14 Row 2, Right Side, Top Tether Anchor, Pre-Test
5.15 Row 2, Center, Top Tether Anchor, Pre-Test
5.16 Row 2, Left Side, Top Tether Anchor, Pre-Test
5.17 Row 2, Right Side Outboard Z Measurement
5.18 Row 2, Right Side Inboard Z Measurement
5.19 Row 2, Right Side, Pitch Measurement
5.20 Row 2, Right Side with CRF
5.21 Row 2, Left Side Outboard Z Measurement
5.22 Row 2, Left Side Inboard Z Measurement
5.23 Row 2, Left Side, Pitch Measurement
5.24 Row 2, Left Side with CRF
5.25 Row 2, Right Side with 2-D Template
5.26 Row 2, Right Side Top Tether Routing
5.27 Row 2, Right Side Top Tether Routing
5.28 Row 2, Right Side Outboard SRP Measurement
5.29 Row 2, Right Side, Inboard SRP Measurement
5.30 Row 2, Left Side with 2-D Template
5.31 Row 2, Left Side, Top Tether Routing
5.32 Row 2, Left Side, Top Tether Routing
5.33 Row 2, Left Side, Outboard SRP Measurement
5.34 Row 2, Left Side, Inboard SRP Measurement
5.35 Row 2, Center with 2-D Template
5.36 Row 2, Center Top Tether Routing
5.37 ¾ Left Front View of Vehicle in Test Fixture
5.38 ¾ Right Front View of Vehicle in Test Fixture
5.39 Vehicle Tie Down
5.40 Pre-Test Row 2, Left Side, Top Tether Test with SFAD 2
TABLE OF CONTENTS (continued)

5.41 Pre-Test, Row 2, Left Side, Top Tether Test with SFAD 2
5.42 Post Test, Row 2, Left Side, Top Tether Test with SFAD 2
5.43 Post Test, Row 2, Left Side, Top Tether Test with SFAD 2
5.44 Pre-Test, Row 2, Center, Top Tether Test with SFAD 1
5.45 Pre-Test, Row 2, Center, Top Tether Test with SFAD 1
5.46 Post Test, Row 2, Center, Top Tether Test with SFAD 1
5.47 Pre-Test, Row 2, Right Side Lower Anchor Test with SFAD 2
5.48 Post Test, Row 2, Right Side Lower Anchor Test with SFAD 2

Appendix A – Owner’s Manual Child Restraint Information 70
Appendix B – Manufacturer’s Data 76
Appendix C - Plots 87
SECTION 1
PURPOSE OF COMPLIANCE TEST

1.0 PURPOSE OF COMPLIANCE TEST

A 2010 Infiniti G37 Passenger Car was subjected to Federal Motor Vehicle Safety Standard (FMVSS) No. 225 testing to determine if the vehicle was in compliance with the requirements of the standard. The purpose of this standard is to establish requirements for child restraint anchorage systems to ensure their proper location and strength for the effective securing of child restraints, to reduce the likelihood of the anchorage systems’ failure and to increase the likelihood that child restraints are properly secured and thus more fully achieve their potential effectiveness in motor vehicles.

1.1 The test vehicle was a 2010 Infiniti G37 Passenger Car. Nomenclature applicable to the test vehicle are:

A. **Vehicle Identification Number:** JN1CV6AR7AM454290

B. **NHTSA No.:** CA5204

C. **Manufacturer:** NISSAN MOTOR CO., LTD.

D. **Manufacture Date:** 12/09

E. **Color:** White

1.2 TEST DATE

The test vehicle was subjected to FMVSS No. 225 testing during the time period April 30 – May 18, 2010.
SECTION 2

COMPLIANCE TEST RESULTS

2.0 TEST RESULTS

All tests were conducted in accordance with NHTSA, Office of Vehicle Safety Compliance (OVSC) Laboratory Procedures, TP-225-01 dated 11 April 2005.

Based on the test performed, the 2010 Infiniti G37 Passenger Car appears to meet the requirements of FMVSS 225 testing.
SECTION 3

COMPLIANCE TEST DATA

3.0 TEST DATA

The following data sheets document the results of testing on the 2010 Infiniti G37 Passenger Car.
A. VISUAL INSPECTION OF TEST VEHICLE

Upon receipt for completeness, function, and discrepancies or damage which might influence the testing.

RESULTS: OK FOR TEST

B. REQUIREMENTS FOR CHILD RESTRAINT SYSTEMS AND TETHER ANCHORAGES

<table>
<thead>
<tr>
<th>DSP a</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

C. LOCATION OF TETHER ANCHORAGES

<table>
<thead>
<tr>
<th>DSP a</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

D. LOWER ANCHORAGE DIMENSIONS

<table>
<thead>
<tr>
<th>DSP a</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
DATA SHEET 1 CONTINUED

SUMMARY OF RESULTS

E. CONSPICUITY AND MARKING OF LOWER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

F. STRENGTH OF TETHER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

G. STRENGTH OF LOWER ANCHORAGES (Forward Force)

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

H. STRENGTH OF LOWER ANCHORAGE (Lateral Force)

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

I. OWNER’S MANUAL

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:

NOTE:

RECORDED BY: G. Farrand
DATE: 05/18/10
APPROVED BY: D. Messick
Number of rows of seats: 2
Number of rear, forward-facing designated seating positions: 3
Number of required CRAS (lower anchorages only, for convertibles/school buses): 2
Number of required tether anchorages (can be additional CRAS): 3
Is the vehicle a convertible? NO
Is the vehicle a school bus? NO
Does the vehicle have a CRAS (lower anchorage only, for convertibles/school buses) installed at a front passenger seating position? NO

If the vehicle has rear designated seating positions:

If NO, does the vehicle have an air bag on-off switch or a special exemption for no passenger air bag?
 If NO = FAIL If YES = PASS
If Yes, does the vehicle meet the requirements of S4.5.4.1 (b) of S208 and have an air bag on-off switch or a special exemption for no passenger air bag?
 Record the distance between the front and rear seat back:
 If Distance < 720 mm and vehicle has an air bag on-off switch or special exemption = PASS
 If Distance ≥ 720 mm or no air bag on-off switch or no special exemption = FAIL

Does the vehicle have rear designated seating position(s) where the lower bars of a CRAS are prevented from being located because of transmission and/or suspension component interference? NO

If NO, skip to next question.
If YES, does the vehicle have a tether anchorage at a front passenger seating position?
 YES = PASS NO = FAIL (S5(e))

Number of provided CRAS (lower anchorage only, for convertibles/school buses), indicate if a built-in child restraint is counted as a CRAS: 2

Is the number of provided CRAS (lower anchorages only, for convertibles/school buses) greater than or equal to the number of required CRAS (lower anchorages only, for convertibles/school buses)? YES
 YES = PASS NO = FAIL (S4.4(a) or (b) or (c))
If the vehicle has 3 or more rows of seats is a CRAS (lower anchorage only for convertibles/school buses) provided in the second row:

N/A

YES = PASS NO = FAIL (S4.4(a)(1))

Number of provided tether anchorages (can be additional CRAS) indicate if a built-in child restraint is counted as tether anchorage (NOTE: a built-in child restraint can only be counted toward either the required number of CRAS or tether anchorages, not both):

3

Is the number of provided tether anchorages greater than or equal to the number of required tether anchorages?

YES

YES = PASS NO = FAIL (S4.4 (a) or (b) or (c))

If the vehicle has 3 or more rear dsps and a non-outboard dsp, is a tether anchorage or CRAS provided at a non-outboard dsp?

YES

YES = PASS NO = FAIL (S4.4 (a)(2))

Are all tether and lower anchorages available for use at all times when the seat is configured for passenger use?

YES

YES = PASS NO = FAIL (S4.6 (b))

Provide a diagram showing the location of lower anchorages and/or tether anchorages.

X

X

X

* = Lower Anchors

X = Top Tether

Drvr.

Psgr.

RECORDED BY: J. Latane DATE: 04/29/10

APPROVED BY: D. Messick
DATA SHEET 3
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2010 INFINITI G37 PASSENGER CAR
VEH. NHTSA NO: CA5204; VIN: JN1CV6AR7AM454290
VEH. BUILD DATE: 12/09; TEST DATE: APRIL 30, 2010
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: __ROW 2 LEFT, RIGHT AND CENTER POSITIONS__

Detailed description of the location of the tether anchorage:
RECESSED INTO REAR HAT SHELF CENTER ANCHORAGE OFFSET TO DRIVER’S SIDE FROM CENTERLINE OF VEHICLE.

Based on visual inspection, is the tether anchorage within the shaded zone? __YES__
 If YES = PASS, skip to next section
 If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone?

 __YES__
 If YES = PASS, skip to next section
 If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component?
 __YES__
 If YES = FAIL (S6.2.1)
 If NO, Is a tether routing device provided?
 __YES__
 If YES = PASS
 IF NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? __YES__
 If NO, skip to next question
 If YES, is it outside of the tether strap wraparound area? __YES__
 __YES__
 NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? __YES__

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? __YES__

 __YES__
 YES = PASS
 NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? __YES__

 __YES__
 YES = PASS
 NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? __YES__

 __YES__
 YES = PASS
 NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? __N/A__
DATA SHEET 3 CONTINUED

DESIGNATED SEATING POSITION: __ROW 2__ LEFT, RIGHT AND CENTER POSITIONS__

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension:

_____ N/A _____ (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device:

_____ N/A _____

Greater than or equal to 65mm = PASS
Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device:

_____ N/A _____

Greater than or equal to 100mm = PASS
Less than 100mm = FAIL

COMMENTS:

RECORDED BY: J. Latane
DATE: 04/30/10

APPROVED BY: D. Messick
DATA SHEET 4
LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2010 INFINITI G37 PASSENGER CAR
VEH. NHTSA NO: CA5204;
VIN: JN1CV6AR7AM454290
VEH. BUILD DATE: 12/09;
TEST DATE: APRIL 30, 2010
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

<table>
<thead>
<tr>
<th>Lower Anchorage</th>
<th>Diameter (mm)</th>
<th>Pass/Fail Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outboard</td>
<td>6.01</td>
<td>6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))</td>
</tr>
<tr>
<td>Inboard</td>
<td>5.94</td>
<td>6mm ± 0.1mm = PASS Other size = FAIL (S9.1.1(a))</td>
</tr>
</tbody>
</table>

Are the bars straight, horizontal and transverse? YES

YES = PASS
NO = FAIL

<table>
<thead>
<tr>
<th>Lower Anchorage</th>
<th>Length (mm)</th>
<th>Pass/Fail Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outboard</td>
<td>30</td>
<td>Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))</td>
</tr>
<tr>
<td>Inboard</td>
<td>30</td>
<td>Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower Anchorage</th>
<th>Length (mm)</th>
<th>Pass/Fail Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outboard</td>
<td>37</td>
<td>Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))</td>
</tr>
<tr>
<td>Inboard</td>
<td>37</td>
<td>Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))</td>
</tr>
</tbody>
</table>

CRF Pitch angle: 9.3°
Angle = 15°±10° = PASS
Angle ≠ 15°±10° = FAIL (S9.2.1)

CRF Roll angle: 0.0°
Angle = 0°±5° = PASS
Angle ≠ 0°±5° = FAIL (S9.2.1)

CRF Yaw angle: 0.0°
Angle = 0°±10° = PASS
Angle ≠ 0°±10° = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 58 mm
Distance ≤70mm = PASS
Distance > 70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: 58 mm
Distance ≤70mm = PASS
Distance > 70mm = FAIL
DATA SHEET 4 CONTINUED

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

Distance between SgRP and the front surface of outboard anchor bar: 175 mm
 Distance \(\geq \) 120 mm = PASS Distance < 120 mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: 175 mm
 Distance \(\geq \) 120 mm = PASS Distance < 120 mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm?
 NO
 If NO = PASS
 If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:

COMMENTS:

RECORDED BY: J. Latane DATE: 04/30/10

APPROVED BY: D. Messick

DATA SHEET 4A
LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2010 INFINITI G37 PASSENGER CAR
VEH. NHTSA NO: CA5204; VIN: JN1CV6AR7AM454290
VEH. BUILD DATE: 12/09; TEST DATE: APRIL 30, 2010
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Outboard Lower Anchorage bar diameter: 6.01 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: 5.99 mm
6mm ± 0.1mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? YES
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): 31 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length of the straight portion of the bar (inboard lower anchorage): 31 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length between the anchor bar supports (outboard lower anchorage): 38 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

Length between the anchor bar supports (inboard lower anchorage): 38 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

CRF Pitch angle: 9.1°
Angle = 15º±10º = PASS Angle≠15º±10º = FAIL (S9.2.1)

CRF Roll angle: 0.0°
Angle = 0º±5º = PASS Angle≠0º±5º = FAIL (S9.2.1)

CRF Yaw angle: 0.0°
Angle = 0º±10º = PASS Angle≠0º±10º = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 58 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: 58 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL
DATA SHEET 4A CONTINUED

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Distance between SgRP and the front surface of outboard anchor bar: ___175 mm____
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: ___175 mm____
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm? ____NO____

If NO = PASS
If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:

COMMENTS:

RECORDED BY: G. Farrand DATE: 04/30/10
APPROVED BY: D. Messick
DATA SHEET 5
CONSPICUITY AND MARKING OF LOWER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2010 INFINITI G37 PASSENGER CAR
VEH. NHTSA NO: CA5204; VIN: JN1CV6AR7AM454290
VEH. BUILD DATE: 12/09; TEST DATE: APRIL 30, 2010
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT AND RIGHT SIDE (DSP A AND C)

MARKING (Circles)

Diameter of the circle: 15.0 mm
Diameter ≥13mm = PASS Diameter <13mm = FAIL (S9.5(a)(1))

Does the circle have words, symbols or pictograms? PICTOGRAM
NO skip to next question
YES, are the meaning of the words, symbols or pictograms explained in the owner’s manual?
YES
YES = PASS NO = FAIL (S9.5(a)(2))

Where is the circle located? Seat back or seat Cushion: Seat Back

For circles on seat backs, vertical distance from the center of the circle to the center of the anchor bar: 70 mm
Distance between 50&100mm = PASS Other Distance=FAIL (S9.5(a)(3))

For circles on seat cushions, horizontal distance from the center of the circle to the center of the bar: N/A
Distance between 75&125mm= PASS Other Distance=FAIL (S9.5(a)(3))

Lateral distance from the center of the circle to the center of the anchor bar: 0 mm
Distance≤25mm = PASS Distance >25mm = FAIL (S9.5(a)(3))

CONSPICUITY (No Circles)

Is the anchor bar or guide visible when viewed from a point 30° above the horizontal in a vertical longitudinal plane bisecting the anchor bar or guide? N/A
YES = PASS NO = FAIL (S9.5(b))

If there is a guide, is it permanently attached? N/A
YES = PASS NO = FAIL (S9.5(b))
DATA SHEET 5 CONTINUED

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE AND RIGHT SIDE (DSP A & C)

Is there a cap or cover over the anchor bar? N/A

If YES, Is the cap or cover marked with words, symbols or pictograms?

If NO = FAIL (S9.5(b))

If YES, is the meaning of the words, symbols or pictograms explained in the owner’s manual?

YES = PASS NO = FAIL (S9.5(b))

If NO, there are no requirements for having a cover.

RECORDED BY: J. Latane DATE: 04/30/10

APPROVED BY: D. Messick
DATA SHEET 6
STRENGTH OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2010 INFINITI G37 PASSENGER CAR
VEH. NHTSA NO: CA5204; VIN: JN1CV6AR7AM454290
VEH. BUILD DATE: 12/09; TEST DATE: MAY 18, 2010
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 6624

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)
SFAD: 2

Seat Back Angle: 28°

Location of seat back angle measurement: 2D Template

Head Restraint Position: FIXED

D-ring Position: N/A

Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: 135 N
Lap belt tension: N/A (SFAD 1 only)
Tether strap tension: 60 N

Angle (measured above the horizontal at 500 N): 11°

Separation of tether anchorage at 500 N: NO
NO = PASS YES = FAIL (S6.3.1)

Force application rate: 577 N/S

Time to reach maximum force (24-30 s): 26 sec.

Maximum force (14,950 N ± 50 N): 14,954 N

Tested simultaneously with another DSP? NO

COMMENTS:

RECORDED BY: G. FARRAND DATE: 05/18/10
APPROVED BY: D. MESSICK
DATA SHEET 6A
STRENGTH OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2010 INFINITI G37 PASSENGER CAR
VEH. NHTSA NO: CA5204; VIN: JN1CV6AR7AM454290
VEH. BUILD DATE: 12/09; TEST DATE: MAY 18, 2010
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 6626

DESIGNATED SEATING POSITION: ROW 2 CENTER (DSP B)
SFAD: 1
Seat Back Angle: 28º
Location of seat back angle measurement: 2D Template
Head Restraint Position: N/A
D-ring Position: N/A

Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: 135 N
Lap belt tension: 65 N (SFAD 1 only)
Tether strap tension: 60 N

Angle (measured above the horizontal at 500 N): 11º
Separation of tether anchorage at 500 N: NO
NO = PASS YES = FAIL (S6.3.1)

Force application rate: 577 N/S
Time to reach maximum force (24-30 s): 26 sec.
Maximum force (14,950 N ± 50 N): 14,923 N
Tested simultaneously with another DSP? NO

COMMENTS:

RECORDED BY: G. FARRAND DATE: 05/18/10
APPROVED BY: D. MESSICK
DATA SHEET 7
STRENGTH OF LOWER ANCHORAGES (Forward Force)

VEH. MOD YR/MAKE/MODEL/BODY: 2010 INFINITI G37 PASSENGER CAR
VEH. NHTSA NO: CA5204; VIN: JN1CV6AR7AM454290
VEH. BUILD DATE: 12/09; TEST DATE: MAY 18, 2010
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 6625

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Seat Back Angle: 28º

Location of seat back angle measurement: 2D Template

Head Restraint Position: FIXED

Force at lower front crossmember for SFAD2 while tightening rearward extensions: 135 N

Angle (measured above the horizontal at 500 N): 11º

Force application rate: 423 N/S

Time to reach maximum force (24-30 s): 26 sec.

Maximum force (10,950 N ± 50 N): 10,951 N

Displacement, H1 (at 500N): 0

Displacement, H2 (at maximum load): 48 mm

Displacement of Point X: 48 mm (H2-H1)

Displacement > 175 mm = FAIL (S9.4.1(a))

Tested simultaneously with another DSP? NO

Distance between adjacent DSP’s: 335 mm

COMMENTS:

RECORDED BY: G. FARRAND DATE: 05/18/10
APPROVED BY: D. MESSICK
Description of which DSP’s are equipped with tether anchorages and child restraint anchorage systems: __YES__

PASS __X__ FAIL ______

Step-by-step instructions for properly attaching a child restraint system’s tether strap to the tether anchorage. Diagrams are required. __YES__

PASS __X__ FAIL ______

Description of how to properly use the tether anchorage and lower anchor bars: __YES__

PASS __X__ FAIL ______

If the lower anchor bars are marked with a circle, an explanation of what the circle indicates as well as any words or pictograms: __YES__

PASS __X__ FAIL ______

COMMENTS:

RECORDED BY: __G. Farrand_________ DATE: __05/18/10_________

APPROVED BY: __D. Messick_________
<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>DESCRIPTION</th>
<th>MODEL/ SERIAL NO.</th>
<th>CAL. DATE</th>
<th>NEXT CAL. DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER</td>
<td>AT&T</td>
<td>486DX266</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>LOAD CELL</td>
<td>INTERFACE</td>
<td>215709</td>
<td>02/10</td>
<td>02/11</td>
</tr>
<tr>
<td>LINEAR TRANSDUCER</td>
<td>SERVO SYSTEMS</td>
<td>69</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SEAT BELT LOAD CELL</td>
<td>TRANSUDCER</td>
<td>135</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SEAT BELT LOAD CELL</td>
<td>TRANSUDCER</td>
<td>137</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>LEVEL</td>
<td>STANLEY</td>
<td>42-449</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>FORCE GAUGE</td>
<td>CHATILLON</td>
<td>8761</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>CALIPER</td>
<td>N/A</td>
<td>Q9322365</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>CRF</td>
<td>MEASUREMENT FIXTURE</td>
<td>GTL CRF</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 1</td>
<td>FORCE APPLICATION DEVICE</td>
<td>GTL SFAD 1</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 2</td>
<td>FORCE APPLICATION DEVICE</td>
<td>GLT SFAD 2</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
</tbody>
</table>
FIGURE 5.3
¾ FRONTAL VIEW FROM LEFT SIDE OF VEHICLE
MANUFACTURED BY NISSAN MOTOR CO., LTD.

DATE: 12/09 GVWR/PNBR: 4846 LBS.
GAWR/PNBE FR: 2423 LBS. RR: 2482 LBS.

THIS VEHICLE CONFORMS TO ALL APPLICABLE FEDERAL
MOTOR VEHICLE SAFETY, BUMPER, AND THEFT PREVENTION
STANDARDS IN EFFECT ON THE DATE OF MANUFACTURE
SHOWN ABOVE.

VIN: JN1CV6AR7AM454290 PASSENGER CAR

COLOR TRIM TRANS AXLE ENGINE
QAA K RE7R01A RC33 VQ37(VHR) 3696CC

2010 INFINITI G37
NHTSA NO. CA5204
FMVSS NO. 225

FIGURE 5.5
CLOSE-UP VIEW OF VEHICLE CERTIFICATION LABEL
TIRE AND LOADING INFORMATION
RENSEIGNEMENTS SUR LES PNEUS ET LE CHARGEMENT

SEATING CAPACITY TOTAL | FRONT AVANT 2 | REAR ARRIÈRE 3
NOMBRE DE PLACES TOTAL

FRONT AVANT P225/55R17 95V 230kPa , 33PSI
REAR ARRIÈRE P225/55R17 95V 230kPa , 33PSI
SPARE DE SECOURS T145/80D17 107M 420kPa , 60PSI

The combined weight of occupants and cargo should never exceed 408 kg or 900 lbs.
Le poids total des occupants et du chargement ne doit jamais dépasser 408 kg ou 900 lb.
FIGURE 5.7
VISIBILITY OF LOWER ANCHOR LOCATIONS
2010 INFINITI G37
NHTSA NO. CA5204
FMVSS NO. 225

FIGURE 5.8
MEASUREMENT OF LOWER ANCHOR SYMBOL
FIGURE 5.9
ROW 2 SEATING POSITIONS
FIGURE 5.10
ROW 2, RIGHT SIDE, OUTBOARD LOWER ANCHOR, PRE-TEST
FIGURE 5.11
ROW 2, RIGHT SIDE, INBOARD LOWER ANCHOR, PRE-TEST
FIGURE 5.12
ROW 2, LEFT SIDE, OUTBOARD LOWER ANCHOR, PRE-TEST
FIGURE 5.13
ROW 2, LEFT SIDE, INBOARD LOWER ANCHOR, PRE-TEST
FIGURE 5.14
ROW 2, RIGHT SIDE, TOP TETHER ANCHOR PRE-TEST
FIGURE 5.16
ROW 2, LEFT SIDE, TOP TETHER ANCHOR, PRE-TEST
FIGURE 5.20
ROW 2, RIGHT SIDE, WITH CRF
2010 INFINITI G37
NHTSA NO. CA5204
FMVSS NO. 225

FIGURE 5.21
ROW 2, LEFT SIDE OUTBOARD Z MEASUREMENT
2010 INFINITI G37
NHTSA NO. CA5204
FMVSS NO. 225

FIGURE 5.22
ROW 2, LEFT SIDE INBOARD Z MEASUREMENT
FIGURE 5.27
ROW 2, RIGHT SIDE TOP TETHER ROUTING
2010 INFINITI G37
NHTSA NO. CA5204
FMVSS NO. 225

FIGURE 5.30
ROW 2, LEFT SIDE WITH 2-D TEMPLATE
FIGURE 5.31
ROW 2, LEFT SIDE, TOP TETHER ROUTING
FIGURE 5.32
ROW 2, LEFT SIDE, TOP TETHER ROUTING
FIGURE 5.33
ROW 2, LEFT SIDE, OUTBOARD SRP MEASUREMENT
FIGURE 5.36
ROW 2, CENTER, TOP TETHER ROUTING
FIGURE 5.37
¾ LEFT FRONT VIEW OF VEHICLE IN TEST FIXTURE
2010 INFINITI G37
NHTSA NO. CA5204
FMVSS NO. 225

FIGURE 5.38
¾ RIGHT FRONT VIEW OF VEHICLE IN TEST FIXTURE
Figure 5.39
VEHICLE TIE DOWN
FIGURE 5.40
PRE-TEST, ROW 2, LEFT SIDE, TOP TETHER TEST WITH SFAD 2
2010 INFINITI G37
NHTSA NO. CA5204
FMVSS NO. 225

FIGURE 5.41
PRE-TEST, ROW 2, LEFT SIDE, TOP TETHER TEST WITH SFAD 2
FIGURE 5.42
POST TEST, ROW 2, LEFT SIDE, TOP TETHER TEST WITH SFAD 2
2010 INFINITI G37
NHTSA NO. CA5204
FMVSS NO. 225

FIGURE 5.44
PRE-TEST, ROW 2, CENTER, TOP TETHER TEST WITH SFAD 1
2010 INFINITI G37
NHTSA NO. CA5204
FMVSS NO. 225

FIGURE 5.45
PRE-TEST ROW 2, CENTER, TOP TETHER TEST WITH SFAD 1
2010 INFINITI G37
NHTSA NO. CA5204
FMVSS NO. 225

FIGURE 5.46
POST TEST ROW 2, CENTER, TOP TETHER TEST WITH SFAD 1
FIGURE 5.47
PRE-TEST ROW 2, RIGHT SIDE LOWER ANCHOR TEST WITH SFAD 2
FIGURE 5.48
POST TEST ROW 2, RIGHT SIDE LOWER ANCHOR TEST WITH SFAD 2
APPENDIX A
OWNER’S MANUAL RESTRAINT INFORMATION
PRECAUTIONS ON CHILD RESTRAINTS

WARNING
- Infants and small children should always be placed in an appropriate child restraint while riding in the vehicle. Failure to use a child restraint can result in serious injury or death.
- Infants and small children should never be carried on your lap. It is not possible for even the strongest adult to resist the forces of a severe accident. The child could be crushed between the adult and parts of the vehicle. Also, do not put the same seat belt around both your child and yourself.
- Even with the INFINITI Advanced Air Bag System, never install a rear-facing child restraint in the front seat. An inflating supplemental front air bag could seriously injure or kill your child. A rear-facing child restraint must only be used in the rear seat.
- INFINITI recommends that the child restraint be installed in the rear seat. According to accident statistics, children are safer when properly restrained in the rear seat than in the front seat. If you must install a front-facing child restraint in the front seat, see "CHILD RESTRAINT INSTALLATION USING THE SEAT BELTS" later in this section.
- Improper use or improper installation of a child restraint can increase the risk or severity of injury for both the child and other occupants of the vehicle and can lead to serious injury or death in an accident.
- Follow all of the child restraint manufacturer's instructions for installation and use. When purchasing a child restraint, be sure to select one which will fit your child and vehicle. It may not be possible to properly install some types of child restraints in your vehicle.
- If the child restraint is not anchored properly, the risk of a child being injured in a collision or a sudden stop greatly increases.
- Child restraint anchor points are designed to withstand only those loads imposed by correctly fitted child restraints. Under no circumstances are they to be used for adult seat belts or harnesses.
- Adjustable seatbacks should be positioned to fit the child restraint, but as upright as possible.
- After attaching the child restraint, test it before you place the child in it. Push it from side to side while holding the seat near the LATCH attachment or near the seat belt path. The child restraint should not move more than 1 inch (25 mm) from side to side. Try to tug it forward and check to see if the belt holds the restraint in place. If the restraint is not secure, tighten the belt as necessary, or put the restraint in another seat and test it again. You may need to try a different child restraint. Not all child restraints fit in all types of vehicles.
- When your child restraint is not in use, keep it secured with the LATCH system or a seat belt to prevent it from being thrown around in case of a sudden stop or accident.

CAUTION
Remember that a child restraint left in a closed vehicle can become very hot. Check the seating surface and buckles before placing your child in the child restraint.

This vehicle is equipped with a universal child restraint lower anchor system, referred to as the Lower Anchors and Tethers for Children System or LATCH. Some child restraints include rigid or webbing-mounted attachments that can be connected to these lower anchors. For details, see "Lower Anchors and Tethers for Children System (LATCH)" later in this section.

If you do not have a LATCH compatible child restraint, the vehicle seat belts can be used. (See "CHILD RESTRAINT INSTALLATION USING THE SEAT BELTS" later in this section.) In general, child restraints are also designed to be installed with the top portion of a lap/shoulder seat belt.

Several manufacturers offer child restraints for infants and small children of various sizes. When selecting any child restraint, keep the following points in mind:
- Choose only a restraint with a label certifying that it complies with Federal Motor Vehicle Safety Standard 213 or Canadian Motor Vehicle Safety Standard 213.
- Check the child restraint in your vehicle to be sure it is compatible with the vehicle's seat and seat belt system.
- If the child restraint is compatible with your vehicle, place the child in the child restraint and check the various adjustments to be sure the child restraint is compatible with your child. Choose a child restraint that is designed for your child's height and weight. Always follow all recommended procedures.

All U.S. states and Canadian provinces or territories require that infants and small children be restrained in an approved child restraint at all times while the vehicle is being operated. Canadian law requires the top tether strap on front-facing child restraints to be secured to the designated anchor point on the vehicle.

Safety — Seats, seat belts and supplemental restraint system

LOWER ANCHORS AND TETHERS FOR CHILDREN SYSTEM (LATCH)

Your vehicle is equipped with the ISOFIX or ISOFIX compatible child restraints. This system may also be referred to as the ISOFIX or ISOFIX compatible system. With this system, you do not have to use a vehicle seat belt to secure the child restraint.
LATCH label location (Coupe)

The LATCH anchor points are provided to install child restraints in the rear outboard seating positions only. Do not attempt to install a child restraint in the center position using the LATCH anchors.

LATCH lower anchor location (Sedan)

LATCH lower anchor location (Coupe)

LATCH lower anchor point locations

The LATCH lower anchors are located at the rear of the seat cushion near the seatback. A label is attached to the seatback to help you locate the LATCH anchors.

⚠️ WARNING

- Attach LATCH system compatible child restraints only at the locations shown in the illustration. If a child restraint is not secured properly, your child could be seriously injured or killed in an accident.
- Do not secure a child restraint in the center rear seating position using the LATCH anchors. The child restraint will not be secured properly.
- Child restraint anchor points are designed to withstand only those loads imposed by correctly fitted child restraints. Under no circumstances are they to be used for adult seat belts or harnesses.

Safety — Seats, seat belts and supplemental restraint system

Installing child restraint LATCH anchor attachments

LATCH compatible child restraints include two rigid or webbing-mounted attachments that can be connected to two lower anchors located at certain seating positions in your vehicle. With this system, you do not have to use a vehicle seat belt to secure the child restraint. Check your child restraint for a label stating that it is compatible with LATCH. This information may also be in the instructions provided by the child restraint manufacturer.

LATCH webbing-mounted attachment

LATCH rigid attachment

TOP TETHER STRAP CHILD RESTRAINT

If the manufacturer of your child restraint requires the use of a top tether strap, it must be secured to an anchor point.

⚠️ WARNING

Child restraint anchor points are designed to withstand only those loads imposed by correctly fitted child restraints. Under no circumstances are they to be used for adult seat belts or harnesses.
Installing top tether strap
First, secure the child restraint with the lower anchors (rear bench outboard seating positions only) or the seat belt.
Flip up the tether anchor cover from the anchor point which is located directly behind the child seat. Position the top tether strap over the top of the seatback and secure it to the tether anchor bracket that provides the straightest installation. Tighten the strap according to the manufacturer's instructions to remove any slack.
If you have any questions when installing a top tether strap child restraint on the rear seat, consult your INFINITI retailer for details.

CHILD RESTRAINT INSTALLATION USING LATCH

WARNING
- Attach the LATCH system compatible child restraints only at the locations shown. For the LATCH lower anchor locations, see "Lower Anchors and Tethers for Children System (LATCH)" earlier in this section. If a child restraint is not secured properly, your child could be seriously injured or killed in an accident.
- The LATCH anchors are designed to withstand only those loads imposed by correctly fitted child restraints. Under no circumstances are they to be used for adult seat belts or harnesses.
- Inspect the lower anchors by inserting your fingers into the lower anchor area and feeling to make sure there are no obstructions over the LATCH anchors, such as seat belt webbing or seat cushion material. The child restraint will not be secured properly if the LATCH anchors are obstructed.

Front-facing (webbing-mounted) — step 2
Follow these steps to install a front-facing child restraint using the LATCH system:
1. Position the child restraint on the seat. Always follow the child restraint manufacturer's instructions.

Front-facing (rigid-mounted) — step 2
2. Secure the child restraint anchor attachments to the LATCH lower anchors. Check to make sure the LATCH attachment is properly attached to the lower anchor.

Front-facing — step 4
3. The back of the child restraint should be secured against the vehicle seatback. If the seating position does not have an adjustable head restraint and it is interfering with the proper child restraint fit, try another seating position or a different child restraint.
4. For child restraints that are equipped with webbing mounted attachments, remove any additional slack from the anchor attachments. Press downward and rearward firmly in the center of the child restraint with your knee to compress the vehicle seat cushion and seatback while tightening the webbing of the anchor attachments.
5. If the child restraint is equipped with a top tether strap, route the top tether strap and secure the tether strap to the tether anchor point. (See "TOP TETHER STRAP CHILD RESTRAINT" earlier in this section.)

6. After attaching the child restraint, test it before you place the child in it. Push it from side to side while holding the seat near the LATCH attachment path. The child restraint should not move more than 1 inch (25 mm) from side to side. Try to tug it forward and check to see if the latch attachment holds the restraint in place. If the restraint is not secure, tighten the latch attachment as necessary, or put the restraint in another seat and test it again. You may need to try a different child restraint. Not all child restraints fit in all types of vehicles.

7. Check to make sure the child restraint is properly secured prior to each use. If the child restraint is loose, repeat steps 3 through 6.

Rear-facing (webbing-mounted) — step 2

Rear-facing (rigid-mounted) — step 2

Rear-facing — step 3

3. For child restraints that are equipped with webbing mounted attachments, remove any additional slack from the anchor attachments. Press downward and rearward firmly in the center of the child restraint with your hand to compress the vehicle seat cushion and seatback while tightening the webbing of the anchor attachments.
5. Check to make sure the child restraint is properly secured prior to each use. If the child restraint is loose, repeat steps 3 through 4.

WARNING
- Even with the INFINITI Advanced Air Bag System, never install a rear-facing child restraint in the front passenger seat. Supplemental front air bags inflate with great force. A rear-facing child restraint could be struck by the supplemental front air bag in a crash and could seriously injure or kill your child.

APPENDIX B

MANUFACTURER'S DATA
SEAT REFERENCE POINT (SRP) AND TORSO ANGLE DATA
FMVSS No. 225
(All dimensions in mm)

SEAT STYLE: FRONT ROW: Bucket / SECOND ROW: Bench / THIRD ROW: N/A

LEFT SIDE VIEW OF TEST VEHICLE
Table 1. Seating Positions\(^1\) and Torso Angles

<table>
<thead>
<tr>
<th></th>
<th>Left (Driver Side)</th>
<th>Center (if any)</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>185.4</td>
<td>n/a</td>
<td>185.4</td>
</tr>
<tr>
<td>A2 (Hip Point ~ Anchor Point of Seat)</td>
<td>66.6</td>
<td>134.1</td>
<td>66.6</td>
</tr>
<tr>
<td>A3</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>B</td>
<td>410.3</td>
<td>n/a</td>
<td>410.3</td>
</tr>
<tr>
<td>C</td>
<td>1218.3</td>
<td>1188.3</td>
<td>1218.3</td>
</tr>
<tr>
<td>D</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Torso Angle (degree)</th>
<th>Front Row</th>
<th>Center</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21°</td>
<td>n/a</td>
<td>21°</td>
</tr>
<tr>
<td>Second Row</td>
<td>25°</td>
<td>25°</td>
<td>25°</td>
</tr>
<tr>
<td>Third Row</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Note: All dimensions are in mm. If not, provide the unit used.
SEATING REFERENCE POINT
FMVSS No. 225
(All dimensions in mm)

SEAT STYLE: FRONT ROW: Bucket / SECOND ROW: Bench / THIRD ROW: N/A

Driver's seat front outboard seat adjuster anchorage

FORM – 225
Table 2. Seating Reference Point and Tether Anchorage Locations

<table>
<thead>
<tr>
<th>Seating Reference Point (SRP)</th>
<th>Distance from Driver's front outboard seat adjuster anchorage¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>410.3</td>
</tr>
<tr>
<td>E1</td>
<td>230</td>
</tr>
<tr>
<td>B2</td>
<td>n/a</td>
</tr>
<tr>
<td>E2</td>
<td>n/a</td>
</tr>
<tr>
<td>B3</td>
<td>410.3</td>
</tr>
<tr>
<td>E3</td>
<td>970</td>
</tr>
<tr>
<td>C1</td>
<td>1218.3</td>
</tr>
<tr>
<td>F1</td>
<td>255</td>
</tr>
<tr>
<td>C2</td>
<td>n/a</td>
</tr>
<tr>
<td>F2</td>
<td>600</td>
</tr>
<tr>
<td>C3</td>
<td>1218.3</td>
</tr>
<tr>
<td>F3</td>
<td>945</td>
</tr>
<tr>
<td>D1</td>
<td>n/a</td>
</tr>
<tr>
<td>G1</td>
<td>n/a</td>
</tr>
<tr>
<td>D2</td>
<td>n/a</td>
</tr>
<tr>
<td>G2</td>
<td>n/a</td>
</tr>
<tr>
<td>D3</td>
<td>n/a</td>
</tr>
<tr>
<td>G3</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Note: Use the center of anchorage.
TETHER ANCHORAGE LOCATIONS

FMVSS No. 225
(All dimensions in mm)

SEAT STYLE: FRONT ROW: Bucket / SECOND ROW: Bench / THIRD ROW: N/A

©: SRP
†: Tether anchorage

Note: The location shall be measured at the center of anchorage.
Table 3. Seating Reference Point and Tether Anchorage Locations

<table>
<thead>
<tr>
<th>Seating Reference Point (SRP)</th>
<th>Distance from SRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>n/a</td>
</tr>
<tr>
<td>K1</td>
<td>n/a</td>
</tr>
<tr>
<td>H2</td>
<td>n/a</td>
</tr>
<tr>
<td>K2</td>
<td>n/a</td>
</tr>
<tr>
<td>H3</td>
<td>n/a</td>
</tr>
<tr>
<td>K3</td>
<td>n/a</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>I1</td>
<td>654.4</td>
</tr>
<tr>
<td>L1</td>
<td>6</td>
</tr>
<tr>
<td>I2</td>
<td>684.5</td>
</tr>
<tr>
<td>L2</td>
<td>141</td>
</tr>
<tr>
<td>I3</td>
<td>654.4</td>
</tr>
<tr>
<td>L3</td>
<td>6</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>n/a</td>
</tr>
<tr>
<td>M1</td>
<td>n/a</td>
</tr>
<tr>
<td>J2</td>
<td>n/a</td>
</tr>
<tr>
<td>M2</td>
<td>n/a</td>
</tr>
<tr>
<td>J3</td>
<td>n/a</td>
</tr>
<tr>
<td>M3</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Note: Use the center of anchorage.
NOMINAL DESIGN RIDING POSITION

For adjustable driver, passenger, 2nd row and 3rd row seat backs, describe how to position the inclinometer to measure the seat back angle. Include a description of the location of the seat back adjustment latch detent if applicable. Indicate if applicable, how the detents are numbered (Is the first detent "0" or "1"?). Indicate if the seat back angle is measured with the dummy in the seat.

Seat back angle for driver's seat = \textbf{21} degrees.

Measurement Instructions:

\textbf{Power Seat}: Using an inclinometer, measure the L/R rod angle when the seat back is in full forward position. Recline the seatback until the H/R rod angle is \textbf{10\textdegree} more than the angle at full forward.

Seat back angle for passenger's seat = \textbf{21} degrees.

Measurement Instructions: \textbf{Same as driver seat listed above}.

Seat back angle for 2nd row seat = \textbf{25} degrees.

Measurement Instructions: \textbf{Fixed Seats. Not Adjustable}.

Seat back angle for 3rd row seat = \underline{_____} degrees.

Measurement Instructions.
TETHER ANCHORAGE LOCATIONS - VERTICAL
FMVSS No. 225
(All dimensions in mm)

SEAT STYLE: FRONT ROW: Bucket / SECOND ROW: Bench / THIRD ROW: N/A

LEFT SIDE VIEW OF TEST VEHICLE
Table 4. Vertical Dimension For The Tether Anchorage

<table>
<thead>
<tr>
<th>Seating Row</th>
<th>Vertical Distance from Seating Reference Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>N1 (Driver)</td>
<td>n/a</td>
</tr>
<tr>
<td>N2 (Center)</td>
<td>n/a</td>
</tr>
<tr>
<td>N3 (Right)</td>
<td>n/a</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>C1 (Left)</td>
<td>522.4</td>
</tr>
<tr>
<td>O2 (Center)</td>
<td>455.2</td>
</tr>
<tr>
<td>O3 (Right)</td>
<td>522.4</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>F1 (Left)</td>
<td>n/a</td>
</tr>
<tr>
<td>P2 (Center)</td>
<td>n/a</td>
</tr>
<tr>
<td>P3 (Right)</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Note: All dimensions are in mm. If not, provide the unit anchorage.
For each vehicle, provide the following information:

1. How many designated seating positions exist in the vehicle?

 Five (5) designated seating positions exist in the vehicle.

2. How many designated seating positions are equipped with lower anchorages and tether anchorages? Specify which position(s).

 The two (2) rear outboard designated seating positions are equipped with lower anchorages and tether anchorages.

3. How many designated seating positions are equipped with tether anchorages? Specify which positions(s).

 The two (2) rear outboard and one (1) rear center designated seating positions are equipped with tether anchorages.

4. Lower Anchorages Marking and Conspicuity: Whether the anchorages are certified to S9.5(a) or S9.5(b) of FMVSS No. 225.

 The anchorages are certified to S9.5(a) of FMVSS No. 225. Markings of the lower anchors are located on the surface of the rear seat back.
APPENDIX C

PLOTS
GTL 6624, NHTSA CA5204.

225, Top Tether, Row 2 Left Side.

![Graph showing force in Newtons (thousands) versus time in seconds.](image)
GTL 6625, NHTSA CA5204.

225, Lower Anchor, Row 2 Right Side.
GTL 6626, NHTSA CA5204.

225, Top Tether, Row 2 Center.

Force in Newtons (Thousands)

Time in Seconds