SAFETY COMPLIANCE TESTING FOR FMVSS NO. 225
CHILD RESTRAINT ANCHORAGE SYSTEMS LOWER AND TETHER ANCHORAGES

HONDA OF AMERICA MFG., INC.
2009 HONDA ACCORD LX, PASSENGER CAR
NHTSA NO. C95300

GENERAL TESTING LABORATORIES, INC.
1623 LEEDSTOWN ROAD
COLONIAL BEACH, VIRGINIA 22443

September 1, 2009

FINAL REPORT
PREPARED FOR
U. S. DEPARTMENT OF TRANSPORTATION
NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
ENFORCEMENT
OFFICE OF VEHICLE SAFETY COMPLIANCE
1200 NEW JERSEY AVE., SE
WASHINGTON, D.C. 20590
This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Prepared By: Debbie Messick
Approved By: Grant Farrand
Approval Date: ____________________

FINAL REPORT ACCEPTANCE BY OVSC:
Accepted By: Edward E. Chan
Acceptance Date: ____________________
Compliance tests were conducted on the subject, 2009 Honda Accord LX Passenger Car in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP-225-01 for the determination of FMVSS 225 compliance. Test failures identified were as follows:
None

Compliance tests were conducted on the subject, 2009 Honda Accord LX Passenger Car in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP-225-01 for the determination of FMVSS 225 compliance. Test failures identified were as follows:

None
<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Purpose of Compliance Test</td>
<td>1</td>
</tr>
<tr>
<td>2 Compliance Test Results</td>
<td>2</td>
</tr>
<tr>
<td>3 Compliance Test Data</td>
<td>3</td>
</tr>
<tr>
<td>4 Test Equipment List</td>
<td>20</td>
</tr>
<tr>
<td>5 Photographs</td>
<td>21</td>
</tr>
<tr>
<td>5.1 Left Side View of Vehicle</td>
<td></td>
</tr>
<tr>
<td>5.2 Right Side View of Vehicle</td>
<td></td>
</tr>
<tr>
<td>5.3 ¾ Frontal View from Left Side of Vehicle</td>
<td></td>
</tr>
<tr>
<td>5.4 ¾ Rear View from Right Side of Vehicle</td>
<td></td>
</tr>
<tr>
<td>5.5 Vehicle Certification Label</td>
<td></td>
</tr>
<tr>
<td>5.6 Vehicle Tire Information Label</td>
<td></td>
</tr>
<tr>
<td>5.7 Pre-Test View of Row 2 Seating Positions</td>
<td></td>
</tr>
<tr>
<td>5.8 Measurement of Lower Anchor Symbol</td>
<td></td>
</tr>
<tr>
<td>5.9 Visibility of Lower Anchor Bars</td>
<td></td>
</tr>
<tr>
<td>5.10 Row 2, Left Side, Top Tether Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.11 Row 2, Center, Top Tether Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.12 Row 2, Right Side, Top Tether Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.13 Row 2, Right Side, Outboard Lower Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.14 Row 2, Right Side, Inboard Lower Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.15 Row 2, Left Side, Outboard Lower Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.16 Row 2, Left Side, Inboard Lower Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.17 Row 2, Right Side with CRF</td>
<td></td>
</tr>
<tr>
<td>5.18 Row 2, Right Side Pitch Measurement</td>
<td></td>
</tr>
<tr>
<td>5.19 Row 2, Right Side, Outboard Z Measurement</td>
<td></td>
</tr>
<tr>
<td>5.20 Row 2, Right Side, Inboard Z Measurement</td>
<td></td>
</tr>
<tr>
<td>5.21 Row 2, Left Side with CRF</td>
<td></td>
</tr>
<tr>
<td>5.22 Row 2, Left Side Pitch Measurement</td>
<td></td>
</tr>
<tr>
<td>5.23 Row 2, Left Side, Outboard Z Measurement</td>
<td></td>
</tr>
<tr>
<td>5.24 Row 2, Left Side, Inboard Z Measurement</td>
<td></td>
</tr>
<tr>
<td>5.25 Row 2, Right Side with 2-D Template</td>
<td></td>
</tr>
<tr>
<td>5.26 Row 2, Left Side with 2-D Template</td>
<td></td>
</tr>
<tr>
<td>5.27 Row 2, Center with 2-D Template</td>
<td></td>
</tr>
<tr>
<td>5.28 Row 2, Left Side, Top Tether Routing</td>
<td></td>
</tr>
<tr>
<td>5.29 Row 2, Right Side, Top Tether Routing</td>
<td></td>
</tr>
<tr>
<td>5.30 Row 2, Center, Top Tether Routing</td>
<td></td>
</tr>
<tr>
<td>5.31 Row 2, Left Side, Outboard SRP Measurement</td>
<td></td>
</tr>
<tr>
<td>5.32 Row 2, Left Side, Inboard SRP Measurement</td>
<td></td>
</tr>
<tr>
<td>5.33 Row 2, Right Side Outboard SRP Measurement</td>
<td></td>
</tr>
<tr>
<td>5.34 Row 2, Right Side Inboard SRP Measurement</td>
<td></td>
</tr>
<tr>
<td>5.35 ¾ Left Front View of Vehicle in Test Rig</td>
<td></td>
</tr>
<tr>
<td>5.36 ¾ Right Front View of Vehicle in Test Rig</td>
<td></td>
</tr>
<tr>
<td>5.37 Pre-Test, Row 2, Left Side with SFAD 2</td>
<td></td>
</tr>
<tr>
<td>5.38 Post Test, Row 2, Left Side with SFAD 2</td>
<td></td>
</tr>
<tr>
<td>5.39 Pre-Test, Row 2, Right Side with SFAD 2</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (continued)

5.40 Post Test, Row 2, Right Side with SFAD 2
5.41 Pre-Test, Row 2, Center with SFAD 1
5.42 Post Test, Row 2, Center with SFAD 1

Appendix A – Owner’s Manual Child Restraint Information 64
Appendix B – Manufacturer’s Data 68
Appendix C - Plots 80
SECTION 1

PURPOSE OF COMPLIANCE TEST

1.0 PURPOSE OF COMPLIANCE TEST

A 2009 Honda Accord LX Passenger Car was subjected to Federal Motor Vehicle Safety Standard (FMVSS) No. 225 testing to determine if the vehicle was in compliance with the requirements of the standard. The purpose of this standard is to establish requirements for child restraint anchorage systems to ensure their proper location and strength for the effective securing of child restraints, to reduce the likelihood of the anchorage systems’ failure and to increase the likelihood that child restraints are properly secured and thus more fully achieve their potential effectiveness in motor vehicles.

1.1 The test vehicle was a 2009 Honda Accord LX Passenger Car. Nomenclature applicable to the test vehicle are:

A. Vehicle Identification Number: 1HGCP25369A082848

B. NHTSA No.: C95300

C. Manufacturer: HONDA OF AMERICA MFG., INC.

D. Manufacture Date: 12/08

1.2 TEST DATE

The test vehicle was subjected to FMVSS No. 225 testing during the time period August 17-18, 2009.
2.0 TEST RESULTS

All tests were conducted in accordance with NHTSA, Office of Vehicle Safety Compliance (OVSC) Laboratory Procedures, TP-225-01 dated 11 April 2005.

Based on the test performed, the 2009 Honda Accord LX Passenger Car appears to meet the requirements of FMVSS 225 testing.
SECTION 3
COMPLIANCE TEST DATA

3.0 TEST DATA

The following data sheets document the results of testing on the 2009 Honda Accord LX Passenger Car.
DATA SHEET 1
SUMMARY OF RESULTS

VEH. MOD YR/MAKE/MODEL/BODY: 2009 HONDA ACCORD LX PASSENGER CAR
VEH. NHTSA NO: C95300; VIN: 1HGCP25369A082848
VEH. BUILD DATE: 12/08; TEST DATE: AUGUST 17-18, 2009
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

A. VISUAL INSPECTION OF TEST VEHICLE

Upon receipt for completeness, function, and discrepancies or damage which might influence the testing.

RESULTS: OK FOR TEST

B. REQUIREMENTS FOR CHILD RESTRAINT SYSTEMS AND TETHER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

C. LOCATION OF TETHER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

D. LOWER ANCHORAGE DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
DATA SHEET 1 CONTINUED
SUMMARY OF RESULTS

E. CONSPICUITY AND MARKING OF LOWER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

F. STRENGTH OF TETHER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

G. STRENGTH OF LOWER ANCHORAGES (Forward Force)

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

H. STRENGTH OF LOWER ANCHORAGE (Lateral Force)

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

I. OWNER’S MANUAL

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:

NOTE:

RECORDED BY: G. Farrand

DATE: 08/18/09

APPROVED BY: D. Messick
DATA SHEET 2
REQUIREMENTS FOR CHILD RESTRAINT ANCHORAGE SYSTEMS AND TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2009 HONDA ACCORD LX PASSENGER CAR
VEH. NHTSA NO: C95300; **VIN:** 1HGCP25369A082848
VEH. BUILD DATE: 12/08; **TEST DATE:** AUGUST 17, 2009
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Number/YES/NO</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of rows of seats:</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Number of rear, forward-facing designated seating positions:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Number of required CRAS (lower anchorages only, for convertibles/school buses):</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Number of required tether anchorages (can be additional CRAS):</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Is the vehicle a convertible?</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>Is the vehicle a school bus?</td>
<td>NO</td>
<td></td>
</tr>
</tbody>
</table>

If the vehicle has a CRAS (lower anchorage only, for convertibles/school buses) installed at a front passenger seating position?

<table>
<thead>
<tr>
<th>Action</th>
<th>NO</th>
<th>YES</th>
</tr>
</thead>
<tbody>
<tr>
<td>No, skip to next question.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes, does the vehicle have rear designated seating positions?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No, does the vehicle have an air bag on-off switch or a special exemption for no passenger air bag?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No, FAIL</td>
<td>Yes, PASS</td>
<td></td>
</tr>
<tr>
<td>If Yes, does the vehicle meet the requirements of S4.5.4.1 (b) of S208 and have and air bag on-off switch or a special exemption for no passenger air bag?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Record the distance between the front and rear seat back:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance <720 mm and vehicle has an air bag on-off switch or special exemption = PASS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance ≥ 720 mm or no air bag on-off switch or no special exemption = FAIL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the vehicle have rear designated seating position(s) where the lower bars of a CRAS are prevented from being located because of transmission and/or suspension component interference?

<table>
<thead>
<tr>
<th>Action</th>
<th>NO</th>
<th>YES</th>
</tr>
</thead>
<tbody>
<tr>
<td>No, skip to next question.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes, does the vehicle have a tether anchorage at a front passenger seating position?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes, PASS</td>
<td>No, FAIL (S5(e))</td>
<td></td>
</tr>
</tbody>
</table>

Number of provided CRAS (lower anchorage only, for convertibles/school buses), indicate if a built-in child restraint is counted as a CRAS: 2

Is the number of provided CRAS (lower anchorages only, for convertible/school buses) greater than or equal to the number of required CRAS (lower anchorages only, for convertibles/school buses)?

<table>
<thead>
<tr>
<th>Action</th>
<th>YES/NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, PASS</td>
<td>No, FAIL (S4.4(a) or (b) or (c))</td>
</tr>
</tbody>
</table>
DATA SHEET 2 CONTINUED

If the vehicle has 3 or more rows of seats is a CRAS (lower anchorage only for convertibles/school buses) provided in the second row: N/A

YES = PASS NO = FAIL (S4.4(a)(1))

Number of provided tether anchorages (can be additional CRAS) indicate if a built-in child restraint is counted as tether anchorage (NOTE: a built-in child restraint can only be counted toward either the required number of CRAS or tether anchorages, not both): 3

Is the number of provided tether anchorages greater than or equal to the number of required tether anchorages? YES

YES = PASS NO = FAIL (S4.4 (a) or (b) or (c))

If the vehicle has 3 or more rear dsps and a non-outboard dsp, is a tether anchorage or CRAS provided at a non-outboard dsp? YES

YES = PASS NO = FAIL (S4.4 (a)(2))

Are all tether and lower anchorages available for use at all times when the seat is configured for passenger use? YES

YES = PASS NO = FAIL (S4.6 (b))

Provide a diagram showing the location of lower anchorages and/or tether anchorages.

X = Top Tether
* = Lower Anchors

RECORDED BY: G. Farrand DATE: 08/17/09
APPROVED BY: D. Messick
DATA SHEET 3
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2009 HONDA ACCORD LX PASSENGER CAR
VEH. NHTSA NO: C95300; VIN: 1HGCP25369A082848
VEH. BUILD DATE: 12/08; TEST DATE: AUGUST 17, 2009
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT, RIGHT AND CENTER POSITIONS

Detailed description of the location of the tether anchorage:
LOCATED ON HAT SHELF BEHIND SEAT BACK.

Based on visual inspection, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone?

If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component?
 If YES = FAIL (S6.2.1)
 If NO, Is a tether routing device provided?
 If YES = PASS
 IF NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? YES
If NO, skip to next question
If YES, is it outside of the tether strap wraparound area? YES
 YES = PASS NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? YES
 YES = PASS NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? YES
 YES = PASS NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? YES
 YES = PASS NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? YES
 YES = PASS NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? N/A
DESIGNATED SEATING POSITION: ___ROW 2 LEFT, RIGHT AND CENTER POSITIONS___

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension: _____ N/A__ (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device: _____ N/A_____
Greater than or equal to 65mm = PASS Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device: _____ N/A_____
Greater than or equal to 100mm = PASS Less than 100mm = FAIL

COMMENTS:

RECORDED BY: ___ G. Farrand ____________ DATE: ____ 08/17/09 ________

APPROVED BY: ___ D. Messick ____________
DATA SHEET 4
LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2009 HONDA ACCORD LX PASSENGER CAR
VEH. NHTSA NO: C95300; VIN: 1HGCP25369A082848
VEH. BUILD DATE: 12/08; TEST DATE: AUGUST 17, 2009
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
<th>Pass/Fail Criterion</th>
<th>Pass/Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outboard Lower Anchorage bar diameter</td>
<td>5.97 mm</td>
<td>6mm ± 0.1 mm = PASS</td>
<td>Pass</td>
</tr>
<tr>
<td>Inboard Lower Anchorage bar diameter</td>
<td>5.97 mm</td>
<td>6mm ± 0.1 mm = PASS</td>
<td>Pass</td>
</tr>
<tr>
<td>Are the bars straight, horizontal and transverse?</td>
<td>YES</td>
<td>YES = PASS</td>
<td>Pass</td>
</tr>
<tr>
<td>Length of the straight portion of the bar (outboard lower anchorage)</td>
<td>27 mm</td>
<td>Length ≥25mm = PASS</td>
<td>Pass</td>
</tr>
<tr>
<td>Length of the straight portion of the bar (inboard lower anchorage)</td>
<td>27 mm</td>
<td>Length ≥25mm = PASS</td>
<td>Pass</td>
</tr>
<tr>
<td>Length between the anchor bar supports (outboard lower anchorage)</td>
<td>33 mm</td>
<td>Length ≤60mm = PASS</td>
<td>Pass</td>
</tr>
<tr>
<td>Length between the anchor bar supports (inboard lower anchorage)</td>
<td>34 mm</td>
<td>Length ≤60mm = PASS</td>
<td>Pass</td>
</tr>
<tr>
<td>CRF Pitch angle</td>
<td>14.1°</td>
<td>Angle = 15°±10° = PASS</td>
<td>Pass</td>
</tr>
<tr>
<td>CRF Roll angle</td>
<td>0.0°</td>
<td>Angle = 0°±5° = PASS</td>
<td>Pass</td>
</tr>
<tr>
<td>CRF Yaw angle</td>
<td>0.0°</td>
<td>Angle = 0°±10° = PASS</td>
<td>Pass</td>
</tr>
<tr>
<td>Distance between point Z on the CRF and the front surface of outboard anchor bar</td>
<td>63 mm</td>
<td>Distance ≤70 mm = PASS</td>
<td>Pass</td>
</tr>
<tr>
<td>Distance between point Z on the CRF and the front surface of inboard anchor bar</td>
<td>64 mm</td>
<td>Distance ≤70 mm = PASS</td>
<td>Pass</td>
</tr>
</tbody>
</table>
DATA SHEET 4 CONTINUED

DESIGNATED SEATING POSITION: __ROW 2 LEFT SIDE (DSP A)___

Distance between SgRP and the front surface of outboard anchor bar: ___187 mm___
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: ___182 mm___
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm?
_______NO_______

If NO = PASS
If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:

COMMENTS:

RECORDED BY: ___G. Farrand___________ DATE: ______08/17/09________

APPROVED BY: ___D. Messick___________
DATA SHEET 4A
LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2009 HONDA ACCORD LX PASSENGER CAR
VEH. NHTSA NO: C95300; VIN: 1HGCP25369A082848
VEH. BUILD DATE: 12/08; TEST DATE: AUGUST 17, 2009
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Outboard Lower Anchorage bar diameter: 5.97 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: 5.97 mm
6mm ± 0.1mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? YES
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): 26 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length of the straight portion of the bar (inboard lower anchorage): 27 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length between the anchor bar supports (outboard lower anchorage): 32 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

Length between the anchor bar supports (inboard lower anchorage): 32 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

CRF Pitch angle: 14.7°
Angle = 15º±10º = PASS Angle≠15º±10º = FAIL (S9.2.1)

CRF Roll angle: 0.0°
Angle = 0º±5º = PASS Angle≠0º±5º = FAIL (S9.2.1)

CRF Yaw angle: 0.0°
Angle = 0º±10º = PASS Angle≠0º±10º = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 65 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: 65 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL
DATA SHEET 4A CONTINUED

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Distance between SgRP and the front surface of outboard anchor bar: ___187 mm___
Distance \geq 120mm = PASS Distance < 120mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: ___182 mm___
Distance \geq 120mm = PASS Distance < 120mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm?
_____NO____

If NO = PASS
If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:

COMMENTS:

RECORDED BY: G. Farrand DATE: 08/17/09
APPROVED BY: D. Messick
DATA SHEET 5
CONSPICUITY AND MARKING OF LOWER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2009 HONDA ACCORD LX PASSENGER CAR
VEH. NHTSA NO: C95300; VIN: 1HGCP25369A082848
VEH. BUILD DATE: 12/08; TEST DATE: AUGUST 17, 2009
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT AND RIGHT SIDE (DSP A AND C)

MARKING (Circles)

Diameter of the circle: 15.0 mm
Diameter ≥13mm = PASS Diameter <13mm = FAIL (S9.5(a)(1))

Does the circle have words, symbols or pictograms? __PICTOGRAM____
NO skip to next question
YES, are the meaning of the words, symbols or pictograms explained in the owner’s manual?
_____YES _____
YES = PASS NO = FAIL (S9.5(a)(2))

Where is the circle located? Seat back or seat Cushion: __Seat Back__

For circles on seat backs, vertical distance from the center of the circle to the center of the anchor bar: 54 mm
Distance between 50&100mm = PASS Other Distance=FAIL (S9.5(a)(3))

For circles on seat cushions, horizontal distance from the center of the circle to the center of the bar: N/A
Distance between 75&125mm= PASS Other Distance=FAIL (S9.5(a)(3))

Lateral distance from the center of the circle to the center of the anchor bar: 3 mm
Distance ≤25mm = PASS Distance >25mm = FAIL (S9.5(a)(3))

CONSPICUITY (No Circles)

Is the anchor bar or guide visible when viewed from a point 30° above the horizontal in a vertical longitudinal plane bisecting the anchor bar or guide? N/A
YES = PASS NO = FAIL (S9.5(b))

If there is a guide, is it permanently attached? N/A
YES = PASS NO = FAIL (S9.5(b))
DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE AND RIGHT SIDE (DSP A & C)

Is there a cap or cover over the anchor bar? __ N/A ______

If YES, Is the cap or cover marked with words, symbols or pictograms? _______

If NO = FAIL (S9.5(b))

If YES, is the meaning of the words, symbols or pictograms explained in the owner's manual?

 YES = PASS NO = FAIL (S9.5(b))

If NO, there are no requirements for having a cover.

RECORDED BY: G. Farrand DATE: 08/17/09

APPROVED BY: D. Messick

DATA SHEET 6
STRENGTH OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2009 HONDA ACCORD LX PASSENGER CAR
VEH. NHTSA NO: C95300; VIN: 1HGCP25369A082848
VEH. BUILD DATE: 12/08; TEST DATE: AUGUST 18, 2009
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 6286

DESIGNATED SEATING POSITION: __ROW 2 LEFT SIDE (DSP A)___
SFAD: __2___
Seat Back Angle: ___25º_____
Location of seat back angle measurement: ___2D Template_____
Head Restraint Position: ___UP___
D-ring Position: ___N/A_______

Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: ___140 N___
Lap belt tension: ___N/A___ (SFAD 1 only)
Tether strap tension: ___55 N_____

Angle (measured above the horizontal at 500 N): ___10º____

Separation of tether anchorage at 500 N: ___NO___
NO = PASS YES = FAIL (S6.3.1)

Force application rate: ___577 N/S___

Time to reach maximum force (24-30 s): ___26 sec._____

Maximum force (14,950 N ± 50 N): ___14,941 N___

Tested simultaneously with another DSP? ___NO___

COMMENTS:

RECORDED BY: ___G. FARRAND__________ DATE: ___08/18/09_________
APPROVED BY: ___D. MESSICK__________
DATA SHEET 6A
STRENGTH OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2009 HONDA ACCORD LX PASSENGER CAR
VEH. NHTSA NO: C95300; VIN: 1HGCP25369A082848
VEH. BUILD DATE: 12/08; TEST DATE: AUGUST 17, 2009
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 6287

DESIGNATED SEATING POSITION: ROW 2 CENTER (DSP B)
SFAD: 1

Seat Back Angle: 23º

Location of seat back angle measurement: 2D Template

Head Restraint Position: UP

D-ring Position: N/A

Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: 135N

Lap belt tension: 55 N (SFAD 1 only)

Tether strap tension: 55 N

Angle (measured above the horizontal at 500 N): 10º

Separation of tether anchorage at 500 N: NO

NO = PASS YES = FAIL (S6.3.1)

Force application rate: 577 N/S

Time to reach maximum force (24-30 s): 26 sec.

Maximum force (14,950 N ± 50 N): 14,931 N

Tested simultaneously with another DSP? NO

COMMENTS:

RECORDED BY: G. FARRAND DATE: 08/18/09
APPROVED BY: D. MESSICK
DATA SHEET 7
STRENGTH OF LOWER ANCHORAGES (Forward Force)

VEH. MOD YR/MAKE/MODEL/BODY: 2009 HONDA ACCORD LX PASSENGER CAR
VEH. NHTSA NO: C95300; VIN: 1HGCP25369A082848
VEH. BUILD DATE: 12/08; TEST DATE: AUGUST 18, 2009
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 6285

DESIGNATED SEATING POSITION: __ROW 2 RIGHT SIDE (DSP C)___

Seat Back Angle: 25º
Location of seat back angle measurement: __2D Template___
Head Restraint Position: __UP___

Force at lower front crossmember for SFAD2 while tightening rearward extensions: ___ 140 N

Angle (measured above the horizontal at 500 N): ___10º___
Force application rate: ___423 N/S___
Time to reach maximum force (24-30 s): ___26 sec.___
Maximum force (10,950 N ± 50 N): ___10,955 N___
Displacement, H1 (at 500N): ___ 0 ___
Displacement, H2 (at maximum load): ___ 46.7 mm ___
Displacement of Point X: ___ 46.7 mm ___ (H2-H1)
Displacement > 175 mm = FAIL (S9.4.1(a))

Tested simultaneously with another DSP? ___NO___
Distance between adjacent DSP’s: ___ 365 mm ___

COMMENTS:

RECORDED BY: ___ G. FARRAND ___ DATE: ___ 08/18/09 ___
APPROVED BY: ___ D. MESSICK ___
Description of which DSP’s are equipped with tether anchorages and child restraint anchorage systems: YES

PASS X FAIL

Step-by-step instructions for properly attaching a child restraint system’s tether strap to the tether anchorage. Diagrams are required. YES

PASS X FAIL

Description of how to properly use the tether anchorage and lower anchor bars: YES

PASS X FAIL

If the lower anchor bars are marked with a circle, an explanation of what the circle indicates as well as any words or pictograms: YES

PASS X FAIL

COMMENTS:

RECORDED BY: G. Farrand DATE: 08/18/09

APPROVED BY: D. Messick
TABLE 1 - INSTRUMENTATION & EQUIPMENT LIST

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>DESCRIPTION</th>
<th>MODEL/ SERIAL NO.</th>
<th>CAL. DATE</th>
<th>NEXT CAL. DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER</td>
<td>AT&T</td>
<td>486DX266</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>LOAD CELL</td>
<td>INTERFACE</td>
<td>215636</td>
<td>05/09</td>
<td>05/10</td>
</tr>
<tr>
<td>LINEAR TRANSDUCER</td>
<td>SERVO SYSTEMS</td>
<td>69</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SEAT BELT LOAD CELL</td>
<td>TRANSDUCER</td>
<td>135</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SEAT BELT LOAD CELL</td>
<td>TRANSDUCER</td>
<td>137</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>LEVEL</td>
<td>STANLEY</td>
<td>42-449</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>FORCE GAUGE</td>
<td>CHATILLON</td>
<td>8761</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>CALIPER</td>
<td>N/A</td>
<td>Q9322365</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>CRF</td>
<td>MEASUREMENT FIXTURE</td>
<td>GTL CRF</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 1</td>
<td>FORCE APPLICATION DEVICE</td>
<td>GTL SFAD 1</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 2</td>
<td>FORCE APPLICATION DEVICE</td>
<td>GLT SFAD 2</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
</tbody>
</table>
SECTION 5
PHOTOGRAPHS
2009 HONDA ACCORD LX
NHTSA NO. C95300
FMVSS NO. 225
FIGURE 5.1
LEFT SIDE VIEW OF VEHICLE
2009 HONDA ACCORD LX
NHTSA NO. C95300
FMVSS NO. 225

FIGURE 5.2
RIGHT SIDE VIEW OF VEHICLE
2009 HONDA ACCORD LX
NHTSA NO. C95300
FMVSS NO. 225

FIGURE 5.3
¾ FRONTAL VIEW FROM LEFT SIDE OF VEHICLE
2009 HONDA ACCORD LX
NHTSA NO. C95300
FMVSS NO. 225

FIGURE 5.4
¾ REAR VIEW FROM RIGHT SIDE OF VEHICLE
MFD. BY HONDA OF AMERICA MFG., INC. 12/08
GVWR 4299LBS GAWR F 2337LBS R 2017LBS
GVWR 1950KG GAWR F 1060KG R 915KG
THIS VEHICLE CONFORMS TO ALL APPLICABLE
FEDERAL MOTOR VEHICLE SAFETY, BUMPER,
AND THEFT PREVENTION STANDARDS IN EFFECT
ON THE DATE OF MANUFACTURE SHOWN ABOVE.

V.I.N.: 1HGCP25369A082848 TYPE: PASSENGER CAR

FIGURE 5.5
CLOSE-UP VIEW OF VEHICLE CERTIFICATION LABEL
<table>
<thead>
<tr>
<th>TIRE</th>
<th>SIZE</th>
<th>COLD TIRE PRESSURE</th>
<th>SEE OWNER’S MANUAL FOR ADDITIONAL INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONT</td>
<td>P215/60R16 94H</td>
<td>210KPA, 30PSI</td>
<td></td>
</tr>
<tr>
<td>REAR</td>
<td>T135/80D16 101M</td>
<td>210KPA, 30PSI</td>
<td></td>
</tr>
<tr>
<td>SPARE</td>
<td>T135/80D16 101M</td>
<td>420KPA, 60PSI</td>
<td></td>
</tr>
</tbody>
</table>

The combined weight of occupants and cargo should never exceed 385kg or 850lbs.
FIGURE 5.7
PRE-TEST VIEW OF ROW 2 SEATING POSITIONS
2009 HONDA ACCORD LX
NHTSA NO. C95300
FMVSS NO. 225

FIGURE 5.8
MEASUREMENT OF LOWER ANCHOR SYMBOL
FIGURE 5.10
ROW 2, LEFT SIDE, TOP TETHER ANCHOR, PRE-TEST
2009 HONDA ACCORD LX
NHTSA NO. C95300
FMVSS NO. 225

FIGURE 5.12
ROW 2, RIGHT SIDE, TOP TETHER ANCHOR, PRE-TEST
FIGURE 5.13
ROW 2, RIGHT SIDE, OUTBOARD LOWER ANCHOR, PRE-TEST
2009 HONDA ACCORD LX
NHTSA NO. C95300
FMVSS NO. 225

FIGURE 5.14
ROW 2, RIGHT SIDE, INBOARD LOWER ANCHOR PRE-TEST
FIGURE 5.15
ROW 2, LEFT SIDE, OUTBOARD LOWER ANCHOR, PRE-TEST
FIGURE 5.16
ROW 2, LEFT SIDE, INBOARD LOWER ANCHOR, PRE-TEST

2009 HONDA ACCORD LX
NHTSA NO. C95300
FMVSS NO. 225
2009 HONDA ACCORD LX
NHTSA NO. C95300
FMVSS NO. 225

FIGURE 5.17
ROW 2, RIGHT SIDE WITH CRF INSTALLED
2009 HONDA ACCORD LX
NHTSA NO. C95300
FMVSS NO. 225

FIGURE 5.18
ROW 2, RIGHT SIDE PITCH MEASUREMENT
FIGURE 5.19
ROW 2, RIGHT SIDE, OUTBOARD Z MEASUREMENT

2009 HONDA ACCORD LX
NHTSA NO. C95300
FMVSS NO. 225
2009 HONDA ACCORD LX
NHTSA NO. C95300
FMVSS NO. 225

FIGURE 5.20
ROW 2, RIGHT SIDE, INBOARD Z MEASUREMENT
2009 HONDA ACCORD LX
NHTSA NO. C95300
FMVSS NO. 225

FIGURE 5.26
ROW 2, LEFT SIDE WITH 2-D TEMPLATE
2009 HONDA ACCORD LX
NHTSA NO. C95300
FMVSS NO. 225

FIGURE 5.27
ROW 2, CENTER WITH 2-D TEMPLATE
2009 HONDA ACCORD LX
NHTSA NO. C95300
FMVSS NO. 225

FIGURE 5.28
ROW 2, LEFT SIDE, TOP TETHER ROUTING
FIGURE 5.29
ROW 2, RIGHT SIDE, TOP TETHER ROUTING
2009 HONDA ACCORD LX
NHTSA NO. C95300
FMVSS NO. 225

FIGURE 5.30
ROW 2, CENTER, TOP TETHER ROUTING
2009 HONDA ACCORD LX
NHTSA NO. C95300
FMVSS NO. 225

FIGURE 5.31
ROW 2, LEFT SIDE, OUTBOARD SRP MEASUREMENT
2009 HONDA ACCORD LX
NHTSA NO. C95300
FMVSS NO. 225

FIGURE 5.32
ROW 2, LEFT SIDE INBOARD SRP MEASUREMENT
FIGURE 5.33
ROW 2, RIGHT SIDE, OUTBOARD SRP MEASUREMENT
2009 HONDA ACCORD LX
NHTSA NO. C95300
FMVSS NO. 225

FIGURE 5.34
ROW 2, RIGHT SIDE, INBOARD SRP MEASUREMENT
FIGURE 5.35
¾ LEFT FRONT VIEW OF VEHICLE IN TEST FIXTURE
FIGURE 5.36
¾ RIGHT FRONT VIEW OF VEHICLE IN TEST RIG
FIGURE 5.37
PRE-TEST ROW 2, LEFT SIDE WITH SFAD 2
2009 HONDA ACCORD LX
NHTSA NO. C95300
FMVSS NO. 225

FIGURE 5.38
POST TEST ROW 2, LEFT SIDE WITH SFAD 2
2009 HONDA ACCORD LX
NHTSA NO. C95300
FMVSS NO. 225

FIGURE 5.39
PRE-TEST ROW 2, RIGHT SIDE WITH SFAD 2
Installing a Child Seat

Before purchasing a conventional child seat, or using a previously purchased one, we recommend that you test the seat in the specific vehicle seating position or positions where the seat will be used.

Installing a Child Seat

After selecting a proper child seat and a good place to install the seat, there are three main steps in installing the seat:

1. **Properly secure the child seat to the vehicle.** All child seats must be secured to the vehicle with the lap part of a lap/shoulder belt or with the LATCH (lower anchors and tethers for children) system. A child whose seat is not properly secured to the vehicle can be endangered in a crash.

2. **Make sure the child seat is firmly secured.** After installing a child seat, push and pull the seat forward and from side-to-side to verify that it is secure.

 A child seat secured with a seat belt should be installed as firmly as possible. However, it does not need to be "rock solid." Some side-to-side movement can be expected and should not reduce the child seat's effectiveness.

 If the child seat is not secure, try installing it in a different seating position, or use a different style of child seat that can be firmly secured.

3. **Secure the child in the child seat.** Make sure the child is properly strapped in the child seat according to the child seat maker's instructions. A child who is not properly secured in a child seat can be seriously injured in a crash.

 The following pages provide guidelines on how to properly install a child seat. A forward-facing child seat is used in all examples, but the instructions are the same for rear-facing child seats.

Installing a Child Seat with LATCH

Your vehicle is equipped with LATCH (lower anchors and tethers for children) at the outer rear seats.

The lower anchors are located between the seat-back and seat bottom, and are to be used only with a child seat designed for use with LATCH.

The location of each lower anchor is indicated by a small button above the anchor point.

![BUTTON](image)

LOWER ANCHORS

To install a LATCH-compatible child seat:

1. Move the seat belt buckle or tongue away from the lower anchors.

2. Make sure there are no objects near the anchors that could prevent a secure connection between the child seat and the anchors.

![Rigid type](image)

3. Place the child seat on the vehicle seat, then attach the seat to the lower anchors according to the child seat maker's instructions.

Some LATCH-compatible seats have a rigid-type connector as shown above.
Installing a Child Seat

Installing a Child Seat with a Lap/Shoulder Belt

When not using the LATCH system, all child seats must be secured to the vehicle with the lap part of a lap/shoulder belt.

In addition, the lap/shoulder belts in all seating positions except the driver’s have a lockable retractor that must be activated to secure a child seat.

1. With the child seat in the desired seating position, route the belt through the child seat according to the seat maker’s instructions, then insert the latch plate into the buckle.

2. To activate the lockable retractor, slowly pull the shoulder part of the belt all the way out until it stops, then let the belt feed back into the retractor.

3. After the belt has retracted, tug on it. If the belt is locked, you will not be able to pull it out. If you can pull the belt out, it is not locked, and you will need to repeat these steps.

Flexible type

Other LATCH-compatible seats have a flexible-type connector as shown above.

4. Whatever type you have, follow the child seat maker’s instructions for adjusting or tightening the fit.

5. Lift the head restraint (see page 95), then route the tether strap through the legs of the head restraint and over the seat-back, making sure the strap is not twisted.

6. Attach the tether strap hook to the tether anchor, then tighten the strap as instructed by the child seat maker.

7. Push and pull the child seat forward and from side-to-side to verify that it is secure.
Installing a Child Seat

4. After confirming that the belt is locked, grab the shoulder part of the belt near the buckle, and pull up to remove any slack from the lap part of the belt. Remember, if the lap part of the belt is not tight, the child seat will not be secure.

To remove slack, it may help to put weight on the child seat, or push on the back of the seat while pulling up on the belt.

5. Push and pull the child seat forward and from side-to-side to verify that it is secure enough to stay upright during normal driving maneuvers. If the child seat is not secure, unlash the belt, allow it to retract fully, then repeat these steps.

To deactivate the lockable retractor and remove a child seat, unlash the buckle, unroute the seat belt, and let the belt fully retract.

Installing a Child Seat with a Tether

![Tether Anchorage Points]

A child seat with a tether can be installed in any seating position in the back seat, using one of the anchorage points shown above.

Since a tether can provide additional security to the lap/shoulder belt installation, we recommend using a tether whenever one is required or available.

Using an Anchor

![Tether Strap Hook]

1. After properly securing the child seat (see page 44), lift the head restraint, then route the tether strap through the head restraint legs.

2. Lift the anchor cover, then attach the tether strap hook to the anchor, making sure the strap is not twisted.

3. Tighten the strap according to the seat maker's instructions.
APPENDIX B

MANUFACTURER’S DATA
SEAT REFERENCE POINT (SRP) AND TORSO ANGLE DATA
FMVSS No. 225
(All dimensions in mm)

MODEL YEAR: 2009 / MAKE: Honda / MODEL: ACCORD SEDAN / BODY STYLE: 4DR SEDAN

SEAT STYLE: FRONT ROW: Bucket / SECOND ROW: Contoured / THIRD ROW: N/A

LEFT SIDE VIEW OF TEST VEHICLE
Table 1. Seating Positions\(^1\) and Torso Angles

<table>
<thead>
<tr>
<th></th>
<th>Left (Driver Side)</th>
<th>Center (if any)</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>(Driver) 252</td>
<td>N/A</td>
<td>(Front Passenger) 237</td>
</tr>
<tr>
<td>A2</td>
<td>278</td>
<td>315</td>
<td>278</td>
</tr>
<tr>
<td>A3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>B</td>
<td>326</td>
<td>N/A</td>
<td>335</td>
</tr>
<tr>
<td>C</td>
<td>1209</td>
<td>1176</td>
<td>1209</td>
</tr>
<tr>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Torso Angle (degree)</th>
<th>Front Row</th>
<th>Center (if any)</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td>22</td>
<td>N/A</td>
<td>22</td>
</tr>
<tr>
<td>Second Row</td>
<td>25</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>Third Row</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: All dimensions are in mm. If not, provide the unit used.

FORM – 225
SEATING REFERENCE POINT

FMVSS No. 225
(All dimensions in mm)

MODEL YEAR: 2009 / MAKE: Honda / MODEL: ACCORD SEDAN / BODY STYLE: 4DR SEDAN

SEAT STYLE: FRONT ROW: Bucket / SECOND ROW: Contoured / THIRD ROW: N/A

Driver's seat front outboard seat adjuster anchorage

FORM – 225
Table 2. Seating Reference Point and Tether Anchorage Locations

<table>
<thead>
<tr>
<th>Seating Reference Point (SRP)</th>
<th>Distance from Driver’s front outboard seat adjuster anchorage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>326</td>
</tr>
<tr>
<td>E1</td>
<td>213</td>
</tr>
<tr>
<td>B2</td>
<td>N/A</td>
</tr>
<tr>
<td>E2</td>
<td>N/A</td>
</tr>
<tr>
<td>B3</td>
<td>335</td>
</tr>
<tr>
<td>E3</td>
<td>983</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>1209</td>
</tr>
<tr>
<td>F1</td>
<td>233</td>
</tr>
<tr>
<td>C2</td>
<td>1176</td>
</tr>
<tr>
<td>F2</td>
<td>598</td>
</tr>
<tr>
<td>C3</td>
<td>1209</td>
</tr>
<tr>
<td>F3</td>
<td>963</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>N/A</td>
</tr>
<tr>
<td>G1</td>
<td>N/A</td>
</tr>
<tr>
<td>D2</td>
<td>N/A</td>
</tr>
<tr>
<td>G2</td>
<td>N/A</td>
</tr>
<tr>
<td>D3</td>
<td>N/A</td>
</tr>
<tr>
<td>G3</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: Use the center of anchorage.
TETHER ANCHORAGE LOCATIONS

FMVSS No. 225
(All dimensions in mm)

MODEL YEAR: 2009 / MAKE: Honda / MODEL: ACCORD SEDAN / BODY STYLE: 4DR SEDAN

SEAT STYLE: FRONT ROW: Bucket / SECOND ROW: Contoured / THIRD ROW: N/A

Φ: SRP
+ : Tether anchorage

Note: The location shall be measured at the center of anchorage.

FORM – 225
Table 3. Seating Reference Point and Tether Anchorage Locations

<table>
<thead>
<tr>
<th>Seating Reference Point (SRP)</th>
<th>Distance from SRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>N/A</td>
</tr>
<tr>
<td>K1</td>
<td>N/A</td>
</tr>
<tr>
<td>H2</td>
<td>N/A</td>
</tr>
<tr>
<td>K2</td>
<td>N/A</td>
</tr>
<tr>
<td>H3</td>
<td>N/A</td>
</tr>
<tr>
<td>K3</td>
<td>N/A</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>I1</td>
<td>507</td>
</tr>
<tr>
<td>L1</td>
<td>30</td>
</tr>
<tr>
<td>I2</td>
<td>540</td>
</tr>
<tr>
<td>L2</td>
<td>0</td>
</tr>
<tr>
<td>I3</td>
<td>507</td>
</tr>
<tr>
<td>L3</td>
<td>30</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>N/A</td>
</tr>
<tr>
<td>M1</td>
<td>N/A</td>
</tr>
<tr>
<td>J2</td>
<td>N/A</td>
</tr>
<tr>
<td>M2</td>
<td>N/A</td>
</tr>
<tr>
<td>J3</td>
<td>N/A</td>
</tr>
<tr>
<td>M3</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: Use the center of anchorage.
NOMINAL DESIGN RIDING POSITION

For adjustable driver, passenger, 2nd row and 3rd row seat backs, describe how to position the inclinometer to measure the seat back angle. Include a description of the location of the seat back adjustment latch detent if applicable. Indicate if applicable, how the detents are numbered (is the first detent "0" or "1"?). Indicate if the seat back angle is measured with the dummy in the seat.

Seat back angle for driver's seat = \(-13\) (Electric Power Type) degrees.

Measurement Instructions:
See page 10 and 11

Manual type seat should be adjusted at 4 detents from forward most locking position

Seat back angle for passenger's seat = \(-13\) (Electric Power Type) degrees.

Measurement Instructions:
See page 10 and 11

Manual type seat should be adjusted at 4 detents from forward most locking position

Seat back angle for 2nd row seat = N/A degrees.

Measurement Instructions:

Seat back angle for 3rd row seat = N/A degrees.

Measurement Instructions:

FORM – 225
TETHER ANCHORAGE LOCATIONS - VERTICAL
FMVSS No. 225
(All dimensions in mm)

MODEL YEAR: 2009 / MAKE: Honda / MODEL: ACCORD SEDAN / BODY STYLE: 4DR SEDAN

SEAT STYLE: FRONT ROW: Bucket / SECOND ROW: Contoured / THIRD ROW: N/A

LEFT SIDE VIEW OF TEST VEHICLE

FORM - 225
Table 4. Vertical Dimension For The Tether Anchorage

<table>
<thead>
<tr>
<th>Seating Row</th>
<th>Vertical Distance from Seating Reference Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td>N/A</td>
</tr>
<tr>
<td>N1 (Driver)</td>
<td>N/A</td>
</tr>
<tr>
<td>N2 (Center)</td>
<td>N/A</td>
</tr>
<tr>
<td>N3 (Right)</td>
<td>N/A</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>O1 (Left)</td>
<td>522</td>
</tr>
<tr>
<td>O2 (Center)</td>
<td>485</td>
</tr>
<tr>
<td>O3 (Right)</td>
<td>522</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>P1 (Left)</td>
<td>N/A</td>
</tr>
<tr>
<td>P2 (Center)</td>
<td>N/A</td>
</tr>
<tr>
<td>P3 (Right)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: All dimensions are in mm. If not, provide the unit anchorage.

For each vehicle, provide the following information:

1. How many designated seating positions exist in the vehicle? : 5
2. How many designated seating positions are equipped with lower anchorages and tether anchorages? Specify which position(s). : 2. **rear side R/L**.
3. How many designated seating positions are equipped with tether anchorages? Specify which position(s). : 3. **Rear all seating positions**.
4. Lower Anchorages Marking and Conspicuity: Whether the anchorages are certified to S9.5(a) or S9.5(b) of FMVSS No. 225. : Yes,

FORM – 225
SEAT BACK ADJUSTMENT INFORMATION

Electric Power type

Seat Back Angle is measured at Headrest pillar (Lowest Point). Inclinometer indicates 90° at upright Position. Adjust seatback in accordance with 2.1

Adjust seatback at 4 detents from the forward most locking position. (AMS0)
1. See page 1 of this attachment for seat slide adjustments.

2. Adjust the seat height to the lowest position (Driver side)

3. See page 1 of this attachment for seat back adjustments.

4. See table below for distance between A

<table>
<thead>
<tr>
<th></th>
<th>Driver’s Seat</th>
<th>Passenger’s Seat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Power Adjustment</td>
<td>Manual Adjustment</td>
</tr>
<tr>
<td>Distance</td>
<td>640 mm</td>
<td>645 mm</td>
</tr>
</tbody>
</table>

FORM – 225
APPENDIX C
PLOTS
GTL 62B6, NHTSA C95300

225, Child Restraint, Top Tether.