Safety Compliance Testing for FMVSS 208
Occupant Crash Protection

General Motors Corporation
2003 Chevrolet Silverado
NHTSA Number: C30102
TRC Inc. Test Number: 021119-1

Transportation Research Center Inc.
10820 State Route 347
East Liberty, OH 43319

Report Date: Dec. 23, 2002

Final Report

Prepared For:
U. S. Department of Transportation
National Highway Traffic Safety Administration
Safety Assurance
Office of Vehicle Safety Compliance (NVS-221)
400 Seventh Street, S.W., Room No. 6115
Washington, DC 20590
This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Test Performed By: Jason D. Jenkins, Senior Project Engineer

Report Approved By:

[Signature] Date 12/23/02
Virginia L. Watters, Project Manager
Transportation Research Center Inc.

Final Report Acceptance By OVSC:

[Signature] Date
Contracting Officer's Technical Representative (COTR),
NHTSA, Office of Vehicle Safety Compliance
Compliance tests were conducted on a 2003 Chevrolet Silverado, NHTSA No. 30104, in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP208-11 for the determination of FMVSS 208 compliance. Possible test failures identified were as follows:

None
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1</td>
<td>Purpose of Compliance Test</td>
<td>1-1</td>
</tr>
<tr>
<td>Section 2</td>
<td>Tests Performed</td>
<td>2-1</td>
</tr>
<tr>
<td>Section 3</td>
<td>Injury Result Summary</td>
<td>3-1</td>
</tr>
<tr>
<td>Section 4</td>
<td>Discussion of Test (if applicable)</td>
<td>4-1</td>
</tr>
<tr>
<td>Section 5</td>
<td>Test Data Sheets (list each sheet in order)</td>
<td>5-1</td>
</tr>
<tr>
<td>Section 6</td>
<td>Test Data (including acceleration and load plots)</td>
<td>6-1</td>
</tr>
<tr>
<td>Section 7</td>
<td>Photographs</td>
<td>7-1</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Test Equipment List and Calibration Information</td>
<td>A-1</td>
</tr>
</tbody>
</table>
List of Data Sheets

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COTR Work Order</td>
<td>5-2</td>
</tr>
<tr>
<td>2</td>
<td>Report of Vehicle Condition</td>
<td>5-6</td>
</tr>
<tr>
<td>3</td>
<td>Certification Label and Tire Placard Information</td>
<td>5-8</td>
</tr>
<tr>
<td>4</td>
<td>Rear Outboard Seating Position Seat Belts</td>
<td>5-9</td>
</tr>
<tr>
<td>5</td>
<td>Air Bag Labels</td>
<td>5-10</td>
</tr>
<tr>
<td>6</td>
<td>FMVSS 208 Readiness Indicator</td>
<td>5-19</td>
</tr>
<tr>
<td>7</td>
<td>Passenger Manual Cut-Off Device</td>
<td>5-20</td>
</tr>
<tr>
<td>8</td>
<td>Lap Belt Lockability</td>
<td>5-23</td>
</tr>
<tr>
<td>9</td>
<td>FMVSS 208 Seat Belt Warning System Check (S7.3)</td>
<td>5-29</td>
</tr>
<tr>
<td>10</td>
<td>Belt Contact Force (S7.4.3)</td>
<td>5-31</td>
</tr>
<tr>
<td>11</td>
<td>Latchplate Access (S7.4.4)</td>
<td>5-37</td>
</tr>
<tr>
<td>12</td>
<td>Seat Belt Retraction (S7.4.5)</td>
<td>5-45</td>
</tr>
<tr>
<td>13</td>
<td>Seat Belt Guides and Hardware (S7.4.6)</td>
<td>5-51</td>
</tr>
<tr>
<td>26</td>
<td>Vehicle Weight, Fuel Tank and Attitude Data</td>
<td>5-54</td>
</tr>
<tr>
<td>27</td>
<td>Vehicle Accelerometer Locations</td>
<td>5-58</td>
</tr>
<tr>
<td>28</td>
<td>Photographic Targets</td>
<td>5-61</td>
</tr>
<tr>
<td>29</td>
<td>Camera Locations</td>
<td>5-67</td>
</tr>
<tr>
<td>30</td>
<td>Dummy Positioning Procedures for Test Dummy Conforming to Subpart H of Part 572</td>
<td>5-69</td>
</tr>
<tr>
<td>31</td>
<td>Dummy Positioning Measurements</td>
<td>5-77</td>
</tr>
<tr>
<td>32</td>
<td>Crash Test</td>
<td>5-83</td>
</tr>
<tr>
<td>34</td>
<td>Accident Investigation Measurements</td>
<td>5-84</td>
</tr>
<tr>
<td>35</td>
<td>Windshield Mounting (FMVSS 212)</td>
<td>5-86</td>
</tr>
<tr>
<td>36</td>
<td>Windshield Zone Intrusion (FMVSS 219)</td>
<td>5-88</td>
</tr>
<tr>
<td>37</td>
<td>Fuel System Integrity (FMVSS 301)</td>
<td>5-90</td>
</tr>
</tbody>
</table>
Section 1

Purpose of Compliance Test
PURPOSE

This Federal Motor Vehicle Safety Standard 208 compliance test is part of a program conducted for the National Highway Traffic Safety Administration by Transportation research Center (TRC Inc.) under contract DTNH22-02-D-08062, Task Order VRTC-DCF2525. The purpose of the test was to determine whether the subject vehicle, a 2003 Chevrolet Silverado, NHTSA No. C30102, meets certain performance requirements of FMVSS 208, "Occupant Crash Protection"; FMVSS 212, "Windshield Mounting"; indicant FMVSS 219, "Windshield Zone Intrusion"; and FMVSS 301, "Fuel System Integrity". The compliance test was conducted in accordance with OVSC Laboratory Test Procedure No. TP-208-11 dated August 22, 2002.
Section 2

Tests Performed
TESTS PERFORMED

The following checked items indicate the tests that were performed:

X 1. Rear outboard seating position seat belts (S4.1.4.2(b) & (S4.2.4)
X 2. Air bag labels (S4.5.1)
X 3. Readiness indicator (S4.5.2)
X 4. Passenger Air Bag Manual Cut-Off Device (S4.5.4)
X 5. Lap belt lockability (S7.1.1.5)
X 6. Seat belt warning system (S7.3)
X 7. Seat belt contact force (S7.4.3)
X 8. Seat belt latch plate access (S7.4.4)
X 9. Seat belt retraction (S7.4.5)
X 10. Seat belt guides and hardware (S7.4.6)
 ___ 11. Suppression tests with 12-month-old CRABI dummy (Part 572, Subpart N)
 ___ 12. Suppression tests with Newborn infant Subpart K dummy (Part 572, Subpart N)
 ___ 13. Suppression tests with 3-year-old dummy (Part 572, Subpart P)
 ___ 14. Suppression tests with 6-year-old dummy (Part 572, Subpart R)
 ___ 15. Test of Reactivation of the passenger Air Bag system with an Unbelted 5th Percentile female dummy
 ___ 16. Low risk deployment test with 12-month-old dummy (Part 572, Subpart N)
 ___ 17. Low risk deployment test with 3-year-old dummy (Part 572, Subpart P)
 ___ 18. Low risk deployment test with 6-year-old dummy (Part 572, Subpart R)
 ___ 19. Low risk deployment test with 5th female dummy (Part 572, Subpart O)
X 20. Impact tests
 ___ Frontal Oblique
 ___ Belted 50th male dummy driver and passenger (0 to 48 km/h) (S5.1.1(a))
 ___ Unbelted 50th male dummy driver and passenger (0 to 48 km/h) (S5.1.2(a)(1))
 ___ Unbelted 50th male dummy driver and passenger (32 to 40 km/h) (S5.1.2(a)(1) or S5.1.2(b))
X 21. Frontal 0°
 ___ Belted 50th male dummy driver (0 to 48 km/h) (S5.1.1(b)(1) or S5.1.1(a))
 ___ Belted 50th male dummy passenger (0 to 48 km/h) (S5.1.1(b)(1) or S5.1.1(a))
 ___ Belted 5th female dummy driver (0 to 48 km/h) (S16.1(a))
 ___ Belted 5th female dummy passenger (0 to 48 km/h) (S16.1(a))
 ___ Belted 50th male dummy driver and passenger (0 to 56 km/h) (S5.1.1(b)(2))
 ___ Unbelted 50th male dummy driver and passenger (0 to 48 km/h) (S5.1.2(a)(1))
 ___ Unbelted 50th male dummy driver (32 to 40 km/h) (S5.1.2(a)(2) or S5.1.2(b))
 ___ Unbelted 50th male dummy passenger (32 to 40 km/h) (S5.1.2(a)(2) or S5.1.2(b))
 ___ Unbelted 5th female dummy driver (32 to 40 km/h) (S16.1(b))
Unbelted 5th female dummy passenger (32 to 40 km/h) (S16.1(b))

40% Offset 0° Belted 5th female dummy driver and passenger (0 to 40 km/h) (S18.1)

21. Sled test: Unbelted 50th male dummy driver and passenger (S13)

22. FMVSS 204 indi scant test

23. FMVSS 212 test

24. FMVSS 219 indi scant test

25. FMVSS 301 frontal test

For the crash tests, the vehicle was instrumented with 8 accelerometers. The accelerometer data from the vehicle and dummies were sampled at 12,500 samples per second and processed as specified in SAE J211/1 MAR95 and FMVSS 208, S4.13.

The dynamic tests were recorded using high speed film and digital motion picture cameras.

The vehicle appears to meet the performance requirements to which it was tested.
Section 3

Injury Result Summary
INJURY RESULT SUMMARY FOR CRASH TESTS AND/OR
LOW RISK DEPLOYMENT TESTS

NHTSA No.: C30102 Test Date: 11/19/02

VIN: 1GCEC14X13Z131545

Frontal Crash X Offset Crash ___ Low Risk Deployment ___

Impact Angle: 0

Belted Dummies: Yes X No

Speed Range: X 32 to 40 km/h 0 to 48 km/h 0 to 56 km/h

Test Speed: 39.2 km/h

Driver Dummy: 5th female X 50th male

Passenger Dummy: 5th female X 50th male

Test weight: 2295.7 kg

50th Percentile Male Frontal Crash Test
Vehicles certified to S5.1.1(b)(1), S5.1.1(b)(2), S5.1.2(a)(2), or S5.1.2(b)

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Driver</th>
<th>Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>132</td>
<td>94</td>
</tr>
<tr>
<td>N_neck</td>
<td>1.0</td>
<td>0.40</td>
<td>0.34</td>
</tr>
<tr>
<td>N_F</td>
<td>1.0</td>
<td>0.35</td>
<td>0.32</td>
</tr>
<tr>
<td>N_mf</td>
<td>1.0</td>
<td>0.12</td>
<td>0.06</td>
</tr>
<tr>
<td>N_DF</td>
<td>1.0</td>
<td>0.06</td>
<td>0.11</td>
</tr>
<tr>
<td>Neck tension</td>
<td>4170 N</td>
<td>2068</td>
<td>1495</td>
</tr>
<tr>
<td>Neck compression</td>
<td>4000 N</td>
<td>282</td>
<td>318</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>47.3</td>
<td>41.1</td>
</tr>
<tr>
<td>Chest displacement</td>
<td>63 mm</td>
<td>33</td>
<td>14</td>
</tr>
<tr>
<td>Left femur</td>
<td>10,000 N</td>
<td>6433</td>
<td>6773</td>
</tr>
<tr>
<td>Right femur</td>
<td>10,000 N</td>
<td>7643</td>
<td>6915</td>
</tr>
</tbody>
</table>
Section 4

Discussion of Test
DISCUSSION OF TEST

The engine top X-axis acceleration data channel exceeded the data channel's full scale at 61 milliseconds and did not record valid data after 61 milliseconds.

The vehicle's pre-test attitudes did not fall between the measured attitudes for the delivered and fully-loaded conditions. Deviations were 6 mm or less.

The left side (B-post view and rear pit fuel tank view) cameras ran too slowly to determine the actual film speed.

The left side (barrier to front seat back, front door, B-post, and steering wheel views) and front pit (engine view) cameras ran at less than 1000 frames per second.

TRC Inc. used the method of toping off the fuel (gasoline) for determining the fully loaded weight and then drained all the fuel and filled the fuel tank to 94% capacity with Stoddard solvent.

The test dummies were not maintained in the required temperature soak of 20.6 to 22.2 C for the full sixteen hours. See temperature data on page 6-56.
Section 5

Test Data Sheets
Vehicle model year, make, and model: 2003 Chevrolet Silverado

NHTSA No.: C30102

COTR signature: Charles R. Case

Tests to be performed for this vehicle are checked below.

- [x] 1. Rear outboard seating position seat belts (§4.1.A.2(b) & (§4.2.A))
- [x] 2. Air bag labels (§4.5.1)
- [x] 3. Readiness Indicator (§4.5.2)
- [x] 4. Passenger air bag manual cut-off device (§4.5.4)
- [x] 5. Lap belt lockability (§7.1.1.5)
- [x] 6. Seat belt warning system (§7.2)
- [x] 7. Seat belt contact force (§7.4.3)
- [x] 8. Seat belt latch plate access (§7.4.4)
- [x] 9. Seat belt retraction (§7.4.5)
- [x] 10. Seat belt guides and hardware (§7.4.6)
- [] 11. Suppression tests with 12-month-old CRABI dummy (Part 572, Subpart R) using the following indicated child restraints.

Section A

- [] Cosco Dream Ride 02-719
- [] Full rearmost
- [] Midposition
- [] Full forward

Section B

- [] Britax Handle with Care 191
- [] Full rearmost
- [] Midposition
- [] Full forward
- [] Century Assurance 4553
- [] Full rearmost
- [] Midposition
- [] Full forward
- [] Century Avanta SE 41530
- [] Full rearmost
- [] Midposition
- [] Full forward
- [] Century Smart Fit 4543
- [] Full rearmost
- [] Midposition
- [] Full forward
- [] Cosco Arriva 02727
- [] Full rearmost
- [] Midposition
- [] Full forward
- [] Cosco Opna 35 02603
- [] Full rearmost
- [] Midposition
- [] Full forward
- [] Evenflo Discovery Adjust Right 212
- [] Full rearmost
- [] Midposition
- [] Full forward
- [] Evenflo First Choice 204
- [] Full rearmost
- [] Midposition
- [] Full forward
- [] Evenflo On My Way Position Right V 282
- [] Full rearmost
- [] Midposition
- [] Full forward
- [] Graco Infant 8457
- [] Full rearmost
- [] Midposition
- [] Full forward

Section C

- [] Britax Roundabout 161
- [] Full rearmost
- [] Midposition
- [] Full forward
- [] Century Encore 4612
- [] Full rearmost
- [] Midposition
- [] Full forward
- [] Century STE 1000 4416
- [] Full rearmost
- [] Midposition
- [] Full forward
- [] Cosco Olympias 02803
- [] Full rearmost
- [] Midposition
- [] Full forward
- [] Cosco Travura 02519
- [] Full rearmost
- [] Midposition
- [] Full forward
- [] Evenflo Horizon V 425
- [] Full rearmost
- [] Midposition
- [] Full forward
- [] Evenflo Medallion 254
- [] Full rearmost
- [] Midposition
- [] Full forward

Section D

- [] Britax Roadster 9004
- [] Full rearmost
- [] Midposition
- [] Full forward
- [] Century Next Step 4920
- [] Full rearmost
- [] Midposition
- [] Full forward
<table>
<thead>
<tr>
<th>Model</th>
<th>Position 1</th>
<th>Position 2</th>
<th>Position 3</th>
<th>Position 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coacu High Back Booster 02-442</td>
<td>Full rearward</td>
<td>Microposition</td>
<td>Full forward</td>
<td></td>
</tr>
<tr>
<td>Eventlo Right Fit 245</td>
<td>Full rearward</td>
<td>Microposition</td>
<td>Full forward</td>
<td></td>
</tr>
</tbody>
</table>

13. Suppression tests with Representative 3-year-old child using the following indicated child restraints where a child restraint is required. (Laboratory Test Procedure Appendix H, Data Sheet 16H and 17H)

Section C
<table>
<thead>
<tr>
<th>Model</th>
<th>Position 1</th>
<th>Position 2</th>
<th>Position 3</th>
<th>Position 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brixia Roundabout 16</td>
<td>Full rearward</td>
<td>Microposition</td>
<td>Full forward</td>
<td></td>
</tr>
<tr>
<td>Century Bossom 4612</td>
<td>Full rearward</td>
<td>Microposition</td>
<td>Full forward</td>
<td></td>
</tr>
<tr>
<td>Century STE 1000 4416</td>
<td>Full rearward</td>
<td>Microposition</td>
<td>Full forward</td>
<td></td>
</tr>
<tr>
<td>Coacu Olympias 02-8403</td>
<td>Full rearward</td>
<td>Microposition</td>
<td>Full forward</td>
<td></td>
</tr>
<tr>
<td>Coacu Tamerla 02519</td>
<td>Full rearward</td>
<td>Microposition</td>
<td>Full forward</td>
<td></td>
</tr>
<tr>
<td>Eventlo Horizon V 425</td>
<td>Full rearward</td>
<td>Microposition</td>
<td>Full forward</td>
<td></td>
</tr>
<tr>
<td>Eventlo Medallion 254</td>
<td>Full rearward</td>
<td>Microposition</td>
<td>Full forward</td>
<td></td>
</tr>
</tbody>
</table>

Section D
<table>
<thead>
<tr>
<th>Model</th>
<th>Position 1</th>
<th>Position 2</th>
<th>Position 3</th>
<th>Position 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brixia Roadster 9004</td>
<td>Full rearward</td>
<td>Microposition</td>
<td>Full forward</td>
<td></td>
</tr>
<tr>
<td>Century Next Step 4920</td>
<td>Full rearward</td>
<td>Microposition</td>
<td>Full forward</td>
<td></td>
</tr>
<tr>
<td>Coacu High Back Booster 02-442</td>
<td>Full rearward</td>
<td>Microposition</td>
<td>Full forward</td>
<td></td>
</tr>
<tr>
<td>Eventlo Right Fit 245</td>
<td>Full rearward</td>
<td>Microposition</td>
<td>Full forward</td>
<td></td>
</tr>
</tbody>
</table>

14. Suppression tests with 3-year-old dummy (Part 572, Subpart P) in the following positions

<table>
<thead>
<tr>
<th>Position 1</th>
<th>Position 2</th>
<th>Position 3</th>
<th>Position 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitting on seat with back against seat back (§22.2.2.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitting on seat with back against reclined seat back (§22.2.2.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitting on seat with back not against seat back (§22.2.2.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitting on seat edge, spine vertical, hands by the child's side (§22.2.2.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standing on seat, facing forward (§22.2.2.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kneeling on seat facing forward (§22.2.2.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kneeling on seat facing rearward (§22.2.2.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lying on seat (§22.2.2.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15. Suppression tests with representative 3-year-old child in the following positions

<table>
<thead>
<tr>
<th>Position 1</th>
<th>Position 2</th>
<th>Position 3</th>
<th>Position 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitting on seat with back against seat back (§22.2.2.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitting on seat with back against reclined seat back (§22.2.2.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitting on seat with back not against seat back (§22.2.2.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitting on seat edge, spine vertical, hands by the child's side (§22.2.2.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standing on seat, facing forward (§22.2.2.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kneeling on seat facing forward (§22.2.2.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kneeling on seat facing rearward (§22.2.2.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lying on seat (§22.2.2.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16. Suppression tests with 5-year-old dummy (Part 572, Subpart N) using the following indicated child restraints where a child restraint is required.

Section D
<table>
<thead>
<tr>
<th>Model</th>
<th>Position 1</th>
<th>Position 2</th>
<th>Position 3</th>
<th>Position 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brixia Roadster 9004</td>
<td>Full rearward</td>
<td>Microposition</td>
<td>Full forward</td>
<td></td>
</tr>
<tr>
<td>Century Next Step 4920</td>
<td>Full rearward</td>
<td>Microposition</td>
<td>Full forward</td>
<td></td>
</tr>
<tr>
<td>Coacu High Back Booster 02-442</td>
<td>Full rearward</td>
<td>Microposition</td>
<td>Full forward</td>
<td></td>
</tr>
<tr>
<td>Eventlo Right Fit 245</td>
<td>Full rearward</td>
<td>Microposition</td>
<td>Full forward</td>
<td></td>
</tr>
</tbody>
</table>

17. Suppression tests with representative 6-year-old child using the following indicated child restraints where a child restraint is required.

Section D
<table>
<thead>
<tr>
<th>Model</th>
<th>Position 1</th>
<th>Position 2</th>
<th>Position 3</th>
<th>Position 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brixia Roadster 9004</td>
<td>Full rearward</td>
<td>Microposition</td>
<td>Full forward</td>
<td></td>
</tr>
<tr>
<td>Century Next Step 4920</td>
<td>Full rearward</td>
<td>Microposition</td>
<td>Full forward</td>
<td></td>
</tr>
<tr>
<td>Coacu High Back Booster 02-442</td>
<td>Full rearward</td>
<td>Microposition</td>
<td>Full forward</td>
<td></td>
</tr>
<tr>
<td>Eventlo Right Fit 245</td>
<td>Full rearward</td>
<td>Microposition</td>
<td>Full forward</td>
<td></td>
</tr>
</tbody>
</table>

18. Suppression tests with 6-year-old dummy (Part 572, Subpart N) in the following positions

<table>
<thead>
<tr>
<th>Position 1</th>
<th>Position 2</th>
<th>Position 3</th>
<th>Position 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitting on seat with back against seat back (§22.2.2.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitting on seat with back against reclined seat back (§22.2.2.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitting on seat edge, spine vertical, hands by the dummy's side (§22.2.2.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitting back in the seat and leaning on the right front passenger door (§24.2.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
19. Suppression tests with representative 6-year-old child in the following positions
 ___ Sitting on seat with back against seat back (S22.2.2.1)
 ___ Sitting on seat with back against reclined seat back (S22.2.2.2)
 ___ Sitting on seat edge, spine vertical, hands by the dummy's side (S22.2.2.4)
 ___ Sitting back in the seat and leaning on the right front passenger door (S24.2.3)

20. Low risk deployment test with 12-month-old dummy (Part 572, Subpart R) using the following
 indicated child restraints.

Section B
 ___ Britax Handle with Care 191 Full rearward Mid position Full forward
 ___ Century Assure 4533 Full rearward Mid position Full forward
 ___ Century Avanta SE 41530 Full rearward Mid position Full forward
 ___ Century SmartFit 4543 Full rearward Mid position Full forward
 ___ Cosco Arrive 02727 Full rearward Mid position Full forward
 ___ Cosco Opal 35 02604 Full rearward Mid position Full forward
 ___ Evenflo Discovery Adjust Right 212 Full rearward Mid position Full forward
 ___ Evenflo First Choice 204 Full rearward Mid position Full forward
 ___ Evenflo On My Way Position Right V 282 Full rearward Mid position Full forward
 ___ Graco Infant 8457 Full rearward Mid position Full forward

Section C
 ___ Britax Roundabout 161: Full rearward Mid position Full forward
 ___ Century Encore 4612 Full rearward Mid position Full forward
 ___ Century STE 1000 4416 Full rearward Mid position Full forward
 ___ Cosco Olympian 01301 Full rearward Mid position Full forward
 ___ Cosco Tri-Fit 02519 Full rearward Mid position Full forward
 ___ Evenflo Horizon V 425 Full rearward Mid position Full forward
 ___ Evenflo Medallion 254 Full rearward Mid position Full forward

21. Test of Reactivation of the Passenger Air Bag System with an Unbelted 5th Percentile Female Dummy (S20.3, 22.3, S24.3) Perform this test after the following suppression test(s):

22. Test of Reactivation of the Passenger Air Bag System with a representative 5th Percentile Female (S20.3, 22.3, S24.3) Perform this test after the following suppression test(s):

23. Low risk deployment test with 3-year-old dummy (Part 572, Subpart P) in the following positions
 ___ Position 1
 ___ Position 2

24. Low risk deployment test with 6-year-old dummy (Part 572, Subpart N) in the following positions
 ___ Position 1
 ___ Position 2

25. Low risk deployment test with 5th female dummy (Part 572, Subpart O) in the following positions
 ___ Position 1
 ___ Position 2

26. Impact tests
 X Frontal Oblique Test Speed
 ___ Belted 50th male dummy driver and passenger ((0 to 48 km/h) (S5.1.1.(a))
 ___ Unbelted 50th male dummy driver and passenger ((0 to 48 km/h) (S5.1.2(a)(1))
 ___ Unbelted 50th male dummy driver and passenger ((32 to 40 km/h) (S3.1.2(b)(1) or S3.1.2(b)))
 X Frontal 0° Test Speed 40 km/h see test procedure for speed tolerance
 ___ Belted 50th male dummy driver ((0 to 48 km/h) (S3.1.1(b)(1)) or S3.1.1(a))
 ___ Belted 50th male dummy passenger ((0 to 48 km/h) (S5.1.1(b)(1) or S5.1.1(a))
 ___ Belted 5th female dummy driver ((0 to 48 km/h) (S16.1(a))
 ___ Belted 5th female dummy passenger ((0 to 48 km/h) (S16.1(a))
 ___ Belted 50th male dummy driver and passenger ((0 to 56 km/h) (S3.1.1(b)(3))
 ___ Unbelted 50th male dummy driver and passenger ((0 to 48 km/h) (S5.1.2(a)(1))
X Unbelted 50th male dummy driver (32 to 40 km/h) (S5.1.2(a)(2) or S5.1.2(b))
X Unbelted 50th male dummy passenger (32 to 40 km/h) (S5.1.2(a)(2) or S5.1.2(b))
___ Unbelted 5th female dummy driver (32 to 40 km/h) (S16.1(h))
___ Unbelted 5th female dummy passenger (32 to 40 km/h) (S16.1(h))
___ 40% Offset 0° Belted 5th female dummy driver and passenger (0 to 40 km/h) (S18.1)

Test Speed

27. Sled test: Unbelted 50th male dummy driver and passenger (S13)

28. FMVSS 204 indiant test

29. FMVSS 212 test

30. FMVSS 219 indiant test

31. FMVSS 301 frontal test
DATA SHEET 2

REPORT OF VEHICLE CONDITION

CONTRACT NO. DTNH22-02-D-08062 Date: 11/19/02
FROM: Transportation Research Center, Virginia L. Watters
TO: Charles R. Case
COTR Name

PURPOSE: () Initial Receipt () Received via Transfer (X) Present vehicle condition
MODEL YEAR/MAKE/MODEL/BODY STYLE: 2003/Chevrolet/Silverado/pickup truck
MANUFACTURE DATE: 08/02 NHTSA NO.: C30102 BODY COLOR: Gray
VIN: 1GCEC14X13Z131545 GVWR 2904 GAWR (Fr) 1429 GAWR (Rr) 1672
ODOMETER READINGS: ARRIVAL 71 miles DATE 11/14/02 COMPLETION 71 miles DATE 11/19/02
PURCHASE PRICE: $20,271 DEALER'S NAME: Byers Downtown Chevrolet

A. All options listed on "window sticker" are present on the test vehicle.
 X Yes ___ No
B. Tires and wheel rims are new and the same as listed.
 X Yes ___ No
C. There are no dents or other interior or exterior flaws.
 ___ Yes X No See remarks
D. The vehicle has been properly prepared and is in running condition.
 ___ Yes X No See remarks
E. Keyless remote is available and working.
 ___ Yes X No
F. The glove box contains an owner's manual, warranty document, consumer information, and extra set of keys.
 ___ Yes X No
G. Proper fuel filler cap is supplied on the test vehicle.
 X Yes ___ No
H. Using permanent marker, identify vehicle with NHTSA number and FMVSS test type(2) on roof line above driver door or for school buses, place a placard with NHTSA number inside the windshield and to the exterior front and rear side of bus.
 X Yes ___ No
I. Place vehicle in storage area.
 X Yes ___ No
J. Inspect the vehicle's interior and exterior, including all windows, seats, doors, etc., to confirm that each system is complete and functional per the manufacturer's specifications. Any damage, misadjustment, or other unusual condition that could influence the test program or test results shall be recorded. Report any abnormal condition to the NHTSA COTR before beginning any test.
 X Vehicle OK ___ Conditions reported below in comment section
 ___ N/A Post-Test Condition

Identify the letter above to which any of the following comments apply.
Comments: In a frontal impact the vehicle sustained significant front end and unknown structural damage.
LIST OF FMVSS TESTS PERFORMED BY THIS LAB: 208, 212, 219 Incident, 301

MODEL YEAR/MAKE/MODEL/BODY STYLE: 2003/Chevrolet/Silverado/pickup truck

NHTSA NO. C30102

REMARKS: None

Equipment that is no longer on the test vehicle as noted on previous page: None

Explanation for equipment removal: The owner's manual and extra keys are stored with the project file.

Test Vehicle Condition: In a frontal impact the vehicle sustained significant front end and unknown structural damage.

RECORDED BY: R. Benavides
DATE: 11/14/02

APPROVED BY: V. Watters
DATE: 12/9/02

RELEASE OF TEST VEHICLE

The vehicle described above is released from TRC Inc. to be delivered to _______ (Laboratory) _______ (Laboratory)

Date: _______ Time: _______ Odometer: _______

Lab Representative: ___________________________ Signature ______________ Title

Carrier/Customer Representative: ___________________________ Signature ______________ Date
DATA SHEET 3
Certification Label and Tire Placard Information

NHTSA No.: C30102 ___________________ Test Date: 11/14/02 ___________________

Laboratory: TRC Inc. ___________ Test Technician(s): R. Benavides ___________

1. Certification Label

Manufacturer: General Motors Corporation
Date of Manufacture: 08/02
VIN: 1GCEC14X13Z131545
Vehicle certified as: ____ Passenger car ____ MPV ____ Truck ____ Bus
Front axle GVWR: 1429 kg/3150 lbs
Rear axle GVWR: 1672 kg/3686 lbs
Total GVWR: 2903 kg/6400 lbs

2. Tire Placard

____ N/A – Vehicle is not a passenger car and does not have a tire placard.
X This is not a passenger car (see the item 1 above), but all or part of this
information is still contained on a vehicle label and is reported here.

Vehicle Capacity Weight: NA
Designated seating capacity front: NA
Designated seating capacity rear: NA
Total Designated seating capacity: NA
Recommended cold tire inflation pressure front: 240 kPa/35 psi
Recommended cold tire inflation pressure rear: 240 kPa/35 psi
Recommended tire size: P235/75R16

1 Label did not contain this information.
Do all rear outboard seating positions have type 2 seat belts? Yes ___; No X

If NO, describe the seat belt installed, the seat location, and any other information about the seat that would explain why a type 2 seat belt was not installed.

No rear seats.
DATA SHEET 5
AIR BAG LABELS (S4.5.1)

NHTSA No.: C30102 Test Date: 11/14/02

Laboratory: TRC Inc. Test Technician(s): R. Benavides

1. Air Bag Maintenance Label and Owner's Manual Instructions: (S4.5.1(a))
 1.1 Does the manufacturer recommend periodic maintenance or replacement of the air bag?
 ___ Yes (Go to 1.2); X No (Go to 2)
 1.2 Does the vehicle have a label specifying air bag maintenance or replacement?
 ___ Yes-Pass; ___ No-FAIL
 1.3 Does the label contain one of the following?
 ___ Yes-Pass; ___ No-FAIL
 Check applicable schedule:
 Schedule on label specifies month and year (Record date ________)
 Schedule on label specifies vehicle mileage (Record mileage ________)
 Schedule on label specifies interval measured from date on certification label
 (Record interval ___________)
 1.4 Is the label permanently affixed within the passenger compartment such that it cannot be
 removed without destroying or defacing the label or the sunvisor?
 ___ Yes-Pass; ___ No-FAIL
 1.5 Is the label lettered in English?
 ___ Yes-Pass; ___ No-FAIL
 1.6 Is the label in block capitals and numerals?
 ___ Yes-Pass; ___ No-FAIL
 1.7 Are the letters and numerals at least 3/32 inches high?
 ___ height of letters and numerals
 ___ Yes-Pass; ___ No-FAIL
 1.8 Does the owner's manual set forth the recommended schedule for maintenance or
 replacement? ___ Yes-Pass; ___ No-FAIL

2. Does the owner's manual: (S4.5.1(f))
 2.1 Include a description of the vehicle's air bag system in an easily understandable format?
 X Yes-Pass; ___ No-FAIL
 2.2 Include a statement that the vehicle is equipped with an air bag and a lap/shoulder belt at the
 front outboard seating positions?
 X Yes-Pass; ___ No-FAIL
 2.3 Include a statement that the air bag is a supplemental restraint at the front outboard seating
 positions?
 X Yes-Pass; ___ No-FAIL
 2.4 Emphasize that all occupants, including the driver, should always wear their seat belts
 whether or not an air bag is also provided at their seating positions to minimize the risk of
 severe injury or death in the event of a crash?
 X Yes-Pass; ___ No-FAIL
 2.5 Provide any necessary precautions regarding the proper positioning of occupants, including
 children, at seating positions equipped with air bags to ensure maximum safety protection for
 those occupants?
 X Yes-Pass; ___ No-FAIL
 2.6 Explain that no objects should be placed over or near the air bag on the steering wheel or on
 the instrument panel, because any such objects could cause harm if the vehicle is in a crash
 severe enough to cause the air bag to inflate?
2.7 Is the vehicle certified to meet the requirements of S14.5, S15, S17, S19, S21, S23, and S25? (Obtain the answer to this question from the COTR.) (S4.5.1(f)(2))
 \(x \) Yes (go to 2.7.1); \(x \) No (go to 3)

2.7.1 Explain the proper functioning of the advanced air bag system? (S4.5.1(f)(2))
 \(x \) Yes-Pass; \(x \) No-FAIL

2.7.2 Provide a summary of the actions that may affect the proper functioning of the system? (S4.5.1(f)(2))
 \(x \) Yes-Pass; \(x \) No-FAIL

2.7.3 Present and explain the main components of the advanced passenger air bag system? (S4.5.1(f)(2)(i))
 \(x \) Yes-Pass; \(x \) No-FAIL

2.7.4 Explain how the components function together as part of the advanced passenger air bag system? (S4.5.1(f)(2)(ii))
 \(x \) Yes-Pass; \(x \) No-FAIL

2.7.5 Contain the basic requirements for proper operation, including an explanation of the actions that may affect the proper functioning of the system? (S4.5.1(f)(2)(iii))
 \(x \) Yes-Pass; \(x \) No-FAIL

2.7.6 Is the vehicle certified to the requirements of S19.2, S21.2 or S23.2?
 \(x \) Yes, continue with 2.7.6
 \(x \) No, go to 2.7.7

2.7.6.1 Contain a complete description of the passenger air bag suppression system installed in the vehicle, including a discussion of any suppression zone? (S4.5.1(f)(2)(iv))
 \(x \) Yes-Pass; \(x \) No-FAIL

2.7.6.2 Discuss the telltale light, specifying its location in the vehicle and explaining when the light is illuminated?
 \(x \) Yes-Pass; \(x \) No-FAIL

2.7.7 Explain the interaction of the advanced passenger air bag system with other vehicle components, such as seat belts, seats or other components? (S4.5.1(f)(2)(v))
 \(x \) Yes-Pass; \(x \) No-FAIL

2.7.8 Summarize the expected outcomes when child restraint systems, children and small teenagers or adults are both properly and improperly positionned in the passenger seat, including cautionary advice against improper placement of child restraint systems? (S4.5.1(f)(2)(vi))
 \(x \) Yes-Pass; \(x \) No-FAIL

2.7.9 Provide information on how to contact the vehicle manufacturer concerning modifications for persons with disabilities that may affect the advanced air bag system? (S4.5.1(f)(2)(vii))
 \(x \) Yes-Pass; \(x \) No-FAIL

3. Sun Visor Air Bag Warning Label (S4.5.1(b))

3.1 Is the vehicle certified to meet the requirements of S19, S21, and S23? (Obtain the answer to this question from the COTR.) (S4.5.1(b)(x))
 \(x \) Yes (go to 3.1.1 and skip 3.2); \(x \) No (go to 3.2, skipping 3.1.1 through 3.1.6)

3.1.1 Is the label permanently affixed (including permanent marking on the visor material or molding into the visor material) to either side of the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing the label or the sun visor? (S4.5.1(b)(x))
 Driver side \(x \) Yes-Pass \(x \) No-FAIL
 Passenger side \(x \) Yes-Pass \(x \) No-FAIL

3.1.2 Does the label conform in content (vehicles without back seats may omit the statement: "The BACK SEAT is the SAFEST place for children." (S4.5.1(b)(2)(v))) to the label shown in Figure 8 at each front outboard seating position? (S4.5.1(b)(x))
 Driver side \(x \) Yes-Pass \(x \) No-FAIL
 Passenger side \(x \) Yes-Pass \(x \) No-FAIL
3.1.3 Is the label heading area yellow with the word "WARNING" and the alert symbol in black? (S4.5.1 (b)(2)(i))

Driver side X Yes-Pass ___ No-FAIL
Passenger side X Yes-Pass ___ No-FAIL

3.1.4 Is the message area white with black text? (S4.5.1(b)(2)(ii))

Driver side X Yes-Pass ___ No-FAIL
Passenger side X Yes-Pass ___ No-FAIL

3.1.5 Is the message area at least 30 cm²? (S4.5.1(b)(2)(ii))

Driver side: Length 12.5 cm, Width 7.8 cm
Passenger side: Length 12.5 cm, Width 7.8 cm

Driver actual message area 97.5 cm²
Passenger actual message area 97.5 cm²

3.1.6 Is the pictogram black on a white background? (S4.5.1(b)(2)(iii))

Driver side X Yes-Pass ___ No-FAIL
Passenger side X Yes-Pass ___ No-FAIL

3.1.7 Is the pictogram at least 30 mm (1.2 in) in length? (S4.5.1(b)(2)(iii))

Driver side: Length 31 mm
Passenger side: Length 31 mm

3.2 Vehicles not certified to meet the requirements of S19, S21, and S23.

3.2.1 Is the label permanently affixed (including permanent marking on the visor material or molding into the visor material) to each side of the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing it? (S4.5.1 (b)(1))

Driver side ___ Yes-Pass ___ No-FAIL
Passenger side ___ Yes-Pass ___ No-FAIL

3.2.2 Does the label conform in content (vehicles without back seats may omit the statement: “The BACK SEAT is the SAFEST place for children.” (S4.5.1(b)(2)(v))) to the label shown in either Figure 6a or 6b as appropriate at each front outboard seating position? (S4.5.1 (b)(1))

Driver side ___ Yes-Pass ___ No-FAIL
Passenger side ___ Yes-Pass ___ No-FAIL

3.2.3 Is the label heading area yellow with the word “WARNING” and the alert symbol in black? (S4.5.1 (b)(1)(i))

Driver side ___ Yes-Pass ___ No-FAIL
Passenger side ___ Yes-Pass ___ No-FAIL

3.2.4 Is the message area white with black text? (S4.5.1 (b)(1)(ii))

Driver side ___ Yes-Pass ___ No-FAIL
Passenger side ___ Yes-Pass ___ No-FAIL

3.2.5 Is the message area at least 30 cm²? (S4.5.1 (b)(1)(ii))

Driver side: Length ________, Width ________
Passenger side: Length ________, Width ________

Actual message area ________ cm²

Driver side ___ Yes-Pass ___ No-FAIL
Passenger side ___ Yes-Pass ___ No-FAIL

3.2.6 Is the pictogram black with a red circle and slash on a white background? (S4.5.1(b)(2)(iii))

Driver side ___ Yes-Pass ___ No-FAIL
Passenger side ___ Yes-Pass ___ No-FAIL
3.2.7 Is the pictogram at least 30 mm in diameter? (S4.5.1 (b)(2)(iii))
Actual diameter _______ mm
Driver side ___ Yes-Pass ___ No-FAIL
Passenger side ___ Yes-Pass ___ No-FAIL

3.3 Is the same side of the sun visor that contains the air bag warning label free of other information with the exception of the air bag maintenance label and/or the rollover-warning label? (S4.5.1 (b)(3))
Driver side ___ X ___ Yes-Pass ___ No-FAIL
Passenger side ___ X ___ Yes-Pass ___ No-FAIL

3.4 Is the sun visor free of other information about air bags or the need to wear seat belts with the exception of the air bag alert label and/or the rollover-warning label? (S4.5.1 (b)(3))
Driver side ___ X ___ Yes-Pass ___ No-FAIL
Passenger side ___ X ___ Yes-Pass ___ No-FAIL

3.5 Does the driver side visor contain a rollover-warning label on the same side of the visor as the air bag warning label?
___ Yes (go to 3.5.1); ___ X No (go to 4.1, skipping 3.5.1 through 3.5.)

3.5.1 Are both the rollover-warning label and the air bag warning label surrounded by a continuous solid-lined border?
___ Yes (go to 3.5.2 and skip 3.5.3); ___ No (go to 3.5.3 and skip 3.5.2.)

3.5.2 Is the shortest distance from the border of the rollover label to the border of the air bag warning label at least 1 cm? (S75.105 (d)(1)(iv)(B))
Actual distance
___ Yes-Pass; ___ No-FAIL

3.5.3 Is the shortest distance from any of the lettering or graphics on the rollover-warning label to any of the lettering or graphics of the air bag warning label at least 3 cm? (S75.105 (d)(1)(iv)(A)) Actual distance
___ Yes-Pass; ___ No-FAIL

4. Air Bag Alert Label (A “Rollover Warning Label” or “Rollover Alert Label” may be on the same side of the driver’s sun visor as the “Air Bag Alert Label.” S75.105(d))

4.1 Is the Sun Visor Warning Label visible when the sun visor is in the stowed position?
Driver side ___ X ___ Yes ___ No If yes, for driver and passenger go to 5.
Passenger side ___ X ___ Yes ___ No

4.2 Is the air bag alert label permanently affixed (including permanent marking on the visor material or molding into the visor material) to the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing the label or the sun visor? (S4.5.1 (e))
Driver side ___ Yes-Pass ___ No-FAIL
Passenger side ___ Yes-Pass ___ No-FAIL

4.3 Is the air bag alert label visible when the visor is in the stowed position? (S4.5.1(c))
Driver side ___ Yes-Pass ___ No-FAIL
Passenger side ___ Yes-Pass ___ No-FAIL

4.4 Does the label conform in content to the label shown in Figure 6c? (S4.5.1(c))
Driver side ___ Yes-Pass ___ No-FAIL
Passenger side ___ Yes-Pass ___ No-FAIL

4.5 Is the message area black with yellow text? (S4.5.1(c)(1))
Driver side ___ Yes-Pass ___ No-FAIL
Passenger side ___ Yes-Pass ___ No-FAIL
4.6 Is the message area at least 20 cm²? (S4.5.1(c)(1))
Driver side: Length __________, Width __________
Passenger side: Length __________, Width __________
Actual message area __________ cm²
Driver side ___ Yes-Pass ___ No-FAIL
Passenger side ___ Yes-Pass ___ No-FAIL

4.7 Is the pictogram black with a red circle and slash on a white background? (S4.5.1(c)(2))
Driver side ___ Yes-Pass ___ No-FAIL
Passenger side ___ Yes-Pass ___ No-FAIL

4.8 Is the pictogram at least 20 mm in diameter? (S4.5.1(e)(2))
Driver side: diameter __________ mm
Passenger side: diameter __________ mm
Driver side ___ Yes-Pass ___ No-FAIL
Passenger side ___ Yes-Pass ___ No-FAIL

5. Label On the Dashboard
5.1 Is the vehicle certified to meet the requirements of S19, S21, and S23? (Obtain the answer to this question from the COTR) (S4.5.1(e)(2))
X. Yes (go to 5.1.1 and skip 5.2 through 5.2.5)
___ No (go to 5.2, skipping 5.1.1 through 5.1.6)

5.1.1 Does the vehicle have a label on the dash or steering wheel hub? (S4.5.1(e)(2))
X. Yes-Pass; ___ No-FAIL

5.1.2 Is the label clearly visible from all front seating positions? (S4.5.1(e)(2))
X. Yes-Pass; ___ No-FAIL

5.1.3 Does the label conform in content (vehicles without back seats may omit the statement: “The back seat is the safest place for children.” (S4.5.1(e)(2)(iii))) to the label shown in Figure 9? (S4.5.1(e)(2))
X. Yes-Pass; ___ No-FAIL

5.1.4 Is the heading area yellow with black text? (S4.5.1(e)(2)(i))
X. Yes-Pass; ___ No-FAIL

5.1.5 Is the message white with black text? (S4.5.1(e)(2)(ii))
X. Yes-Pass; ___ No-FAIL

5.1.6 Is the message area at least 30 cm²? (S4.5.1(e)(2)(iii))
Length 105 mm, Width 49 mm
Actual message area __________ cm²
X. Yes-Pass; ___ No-FAIL

5.2 Does the vehicle have a label on the dash or steering wheel hub? (S4.5.1(e)(1))
___ Yes-Pass; ___ No-FAIL

5.2.1 Is the label clearly visible from all front seating positions? (S4.5.1(e)(1))
___ Yes-Pass; ___ No-FAIL

5.2.2 Does the label conform in content (vehicles without back seats may omit the statement: “The back seat is the safest place for children 12 and under.” to the label shown in Figure 7? (S4.5.1(e)(1)(iii))
___ Yes-Pass; ___ No-FAIL

5.2.3 Is the heading area yellow with the word “WARNING” and the alert symbol in black? (S4.5.1(e)(1)(i))
___ Yes-Pass; ___ No-FAIL

5.2.4 Is the message white with black text? (S4.5.1(e)(1)(ii))
___ Yes-Pass; ___ No-FAIL

5.2.5 Is the message area at least 30 cm²? (S4.5.1(e)(1)(iii))
Length __________, Width __________
Actual message area __________ cm²
___ Yes-Pass; ___ No-FAIL
WARNING

DEATH or SERIOUS INJURY can occur

- Do not walk under or into the air hose.
- Do not stand in front of the air hose.
- Always keep hands away from the air hose.
- Always keep a person in charge of the air hose.

Figure No. Show these labels visible when visible is down.

Figure No. 20. Show these labels visible when visible is down.

Figure No. 21. Show these labels visible when visible is down.
Figure 8c. Sun Visor Label Visible When Visor is in Up Position.

Figure 9. Removable Label on Dash.
Figure 8. Sun Visor Label Visible when Visor is in Down Position.
This Vehicle is Equipped with Advanced Air Bags

Even with Advanced Air Bags
Children can be killed or seriously injured by the air bag.
The back seat is the safest place for children.
Always use seat belts and child restraints.
See owner's manual for more information about air bags.

Figure 9. Removable Label on Dash.
DATA SHEET 6
FMVSS 208 READINESS INDICATOR (S4.5.2)

NHTSA No.: C30102 ___________ Test Date: 11/14/02

Laboratory: TRC Inc. ___________ Test Technician(s): R. Benavides

An occupant restraint system that deploys in the event of a crash shall have a monitoring system with a readiness indicator. A totally mechanical system is exempt from this requirement. (11/8/94 legal interpretation to Lawrence F. Henneberger on behalf of Bread)

X 1. Is the system totally mechanical? Yes ___; No X
(If YES this Data Sheet is complete.)
X 2. Describe the location of the readiness indicator: Left side of instrument cluster

X 3. Is the readiness indicator clearly visible to the driver? Yes-Pass; ___ No-FAIL
X 4. Is a list of the elements in the occupant restraint system, being monitored by the readiness indicator, provided on a label or in the owner’s manual? Yes-Pass; ___ No-FAIL
X 5. Does the vehicle have an on-off switch for the passenger air bag? Yes (go to 6) ___ No (this form is complete)
X 6. Is the air bag readiness indicator off when the passenger air bag switch is in the off position? Yes-Pass; ___ No-FAIL

REMARKS:
DATA SHEET 7
Passenger Air Bag Manual Cut-Off Device (S4.5.4)

NHTSA No.: C30102 Test Date: 11/14/02

Laboratory: TRC Inc. Test Technician(s): R. Benavides

X 1. Is the vehicle equipped with an on-off switch that deactivates the air bag installed at the right front outboard seating position?
 ___ No, this sheet is complete
 X Yes, go to 2

2. Does the vehicle have any forward-facing rear designated seating positions? (S4.5.4(a))
 ___ Yes, go to 3
 X No, go to 4

3. Verification of the lack of room for a child restraint in the rear seat behind the driver’s seat. (S4.5.4(b))
 ___ N/A – No lumbar adjustment
 ___ N/A – No additional support adjustment
 ___ N/A – No independent fore-aft seat cushion adjustment

3.1 Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)

3.2 Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)

3.3 If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)

3.4 If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S16.2.10.3.1)

3.5 Put the seat in its full rearward position. (S16.2.10.3.1)

3.6 If the seat height is adjustable, put it in the full down position. (S16.2.10.3.1)

3.7 Draw a horizontal reference line on the side of the seat cushion.

3.8 Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the mid-point), and R for full rearward.

3.9 Using only the controls that change the seat in the fore-aft direction, place the seat in the full rearward position and then place the seat in the middle fore-aft position. (S8.1.2)

3.10 If seat adjustments, other than fore-aft, are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal.

___ N/A – No adjustments
Angle of reference line as tested

3.11. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (§4.5.4.1(b) and §8.1.3)

- N/A – No seat back angle adjustment

Manufacturer's design seat back angle

Tested seat back angle

3.12 Is the driver seat a bucket seat?

- Yes, go to 3.12.1 and skip 3.12.2.
- No, go to 3.12.2 and skip 3.12.1.

3.12.1 Bucket seats:

3.12.1.1 Locate and mark a vertical Plane B through the longitudinal centerline of the seat driver's seat cushion. (§22.2.1.3) The longitudinal centerline of a bucket seat cushion is determined at the widest part of the seat cushion. Measure perpendicular to the longitudinal centerline of the vehicle.

Record the width of the seat.

3.12.1.2 Locate the longitudinal horizontal line in plane B that is tangent to the highest point of the rear seat cushion behind the driver's seat. Measure along this line from the front of the seat back of the rear seat to the rear of the seat back of the driver's seat.

- less than 720 mm – Pass
- more than 720 mm – FAIL

Go to 4

3.12.2 Bench seats (including split bench seats):

3.12.2.1 Locate and mark a vertical Plane B through the center of the steering wheel parallel to the vehicle longitudinal centerline.

3.12.2.2 Locate the longitudinal horizontal line in plane B that is tangent to the highest point of the rear seat cushion. Measure along this line from the front of the seat back of the rear seat to the rear of the seat back of the front seat.

- less than 720 mm – Pass
- more than 720 mm – FAIL

Go to 4

4. Does the device turn the air bag on and off using the vehicle's ignition key? (§4.5.4.2)

- Yes-Pass; ___ No-FAIL

5. Is the on-off device separate from the ignition switch? (§4.5.4.2)

- Yes-Pass; ___ No-FAIL

6. Is there a telltale light that comes on when the passenger air bag is turned off? (§4.5.4.2)

- Yes-Pass; ___ No-FAIL This check was not performed

7. Telltale light (§4.5.4.3) This check was not performed

7.1 Is the light yellow? §4.5.4.3(a)

- Yes-Pass; ___ No-FAIL

7.2 Are the words "PASSENGER AIR BAG OFF" (§4.5.4.3(b))

7.2.1 on the telltale?

- Yes – Pass, go to 7.3
- No – go to 7.2.2

7.2.2 within 25 mm of the telltale? ___ mm from the edge of the telltale light

- Yes-Pass; ___ No-FAIL
7.3 Does the telltale remain illuminated while the air bag is turned off? (4.3.4.3(c)) (Leave the air bag off for 5 minutes.)
 Yes-Pass; No-FAIL

7.4 Is the telltale illuminated while the air bag is turned on? (4.3.4.3(d))
 Yes-Pass; No-FAIL

7.5 Is the telltale combined with the air bag readiness indicator? (4.3.5(c))
 Yes-Pass; No-FAIL

8. Owner's manual

8.1 Does the owner's manual contain complete instructions on the operation of the on-off switch? (4.3.4.4(a))
 Yes-Pass; No-FAIL

8.2 Does the owner's manual contain a statement that the on-off switch should only be used when a member of one of the following risk groups is occupying the right front passenger seating position? (4.3.4.4(b))
 - Infants: there is no back seat
 - the rear seat is too small to accommodate a child restraint
 - there is a medical condition that must be monitored constantly
 - Children aged 1 to 12: there is no back seat
 - space is not always available in the rear seat
 - there is a medical condition that must be monitored constantly
 - Medical condition: medical risk causes special risk for passenger
 - greater risk for harm than with the air bag on
 Yes-Pass; No-FAIL

8.3 Does the owner's manual contain a warning about the safety consequences of using the on-off switch at other times?
 Yes-Pass; No-FAIL
DATA SHEET 8
LAP BELT LOCKABILITY
Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver’s seat (S7.1.1.5(a), and that has seat belt retractors that are not solely automatic locking retractors. (S7.1.1.5(c))

NHTSA No.: C30102
Test Date: 11/14/02

Laboratory: TRC Inc. Test Technician(s): R. Benavides

DESIGNATED SEATING POSITION: Front Row Center – Not Type 2

X N/A – No retractor is at this position
__ N/A – The retractor is an automatic locking retractor ONLY

1. Record test fore-aft seat position. (S7.1.1.5 (c)(1))
(Any position is acceptable.)

2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5 (a))
__ Yes-Pass; __ No-FAIL

3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.5 (a))
__ Yes-Pass; __ No-FAIL

4. Buckle the seat belt. (S7.1.1.5(c)(1))

5. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))

6. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

7. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?
__ Yes; __ No (If yes, go to 7.1. If no, go to 8.)

7.1 Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))
__ Yes-Pass; __ No-FAIL

8. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2) & S7.1.1.5(c)(1))

9. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))
Measured distance between A and B: __________ inches

10. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(c)(3))
11. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

Measured force application angle ________________ (spec. 5 - 15 degrees)

12. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

Measured distance between A and B ________________ inches

13. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

Record onset rate ________________ lb/sec (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5))

Measured distance between A and B ________________ inches (S7.1.1.5(c)(6))

14. Subtract the measurement in 13 from the measurement in 12. Is the difference 2 inches or less? (S7.1.1.5(c)(7)) 13-12= __________ inches;

Yes-Pass; No-FAIL

15. Subtract the measurement in 9 from the measurement in 13. Is the difference 3 inches or more? (S7.1.1.5(c)(8)) 9-13= __________ inches;

Yes-Pass; No-FAIL

REMARKS:
Figure 5. - Webbing Tension Pull Device
DATA SHEET 8
LAP BELT LOCKABILITY

Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver’s seat (S7.1.1.5(a), and that has seat belt retractors that are not solely automatic locking retractors. (S7.1.1.5(c))

NHTSA No.: C30102 Test Date: 11/14/02

Laboratory: TRC Inc. Test Technician(s): R. Benavides

DESIGNATED SEATING POSITION: Front Row Right

__ N/A – No retractor is at this position
__ N/A – The retractor is an automatic locking retractor ONLY

X 1. Record test forward seat position. 23 marks (S7.1.1.5 (c)(1))
 (Any position is acceptable.)

X 2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5 (a))
 X Yes-Pass; __ No-FAIL

X 3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.5 (a))
 X Yes-Pass; __ No-FAIL

X 4. Buckle the seat belt. (S7.1.1.5(c)(1))

X 5. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))

X 6. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

X 7. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?
 X Yes; __ No (If yes, go to 7.1. If no, go to 8.)

X 7.1 Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))
 X Yes-Pass; __ No-FAIL

X 8. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2) & S7.1.1.5(c)(1))

X 9. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))
 Measured distance between A and B 53.8 __ inches

X 10. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(c)(3))
11. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

Measured force application angle 10° (spec. 5 - 15 degrees)

12. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

Measured distance between A and B 30.4 inches

13. Increase the load to 30 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

Record onset rate 50 lb/sec (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5))

Measured distance between A and B 31.0 inches (S7.1.1.5(c)(6))

14. Subtract the measurement in 13 from the measurement in 12. Is the difference 2 inches or less? (S7.1.1.5(c)(7)) 13-12 = 0.6 inches; Yes-Pass; No-FAIL

15. Subtract the measurement in 9 from the measurement in 13. Is the difference 3 inches or more? (S7.1.1.5(c)(8)) 9-13 = 22.8 inches; Yes-Pass; No-FAIL

REMARKS:
Figure 5. - Webbing Tension Pull Device

Dimension A - Width of Webbing Plus 1/2 inch
Dimension B - 1/2 of Dimension A
DATA SHEET 9
FMVSS 208 SEAT BELT WARNING SYSTEM CHECK (S7.3)

NHTSA No.: C30102
Test Date: 11/14/02

Laboratory: TRC Inc.
Test Technician(s): R. Benavides

1. The occupant is in the driver's seat.
2. The seat belt is in the stowed position.
3. The key is in the "on" or "start" position.
4. The time duration of the audible signal beginning with key "on" or "start" is 6 seconds.
5. The occupant is in the driver's seat.
6. The seat belt is in the stowed position.
7. The key is in the "on" or "start" position.
8. The time duration of the warning light beginning with key "on" or "start" is 7 seconds.
9. The occupant is in the driver's seat.
10. The seat belt is in the latched position and with at least 4 inches of belt webbing extended.
11. The key is in the "on" or "start" position.
12. The time duration of the audible signal beginning with key "on" or "start" is 0 seconds.
13. The occupant is in the driver's seat.
14. The seat belt is in the latched position and with at least 4 inches of belt webbing extended.
15. The key is in the "on" or "start" position.
16. The time duration of the warning light beginning with key "on" or "start" is 7 seconds.
17. Complete the following table with the data from 4, 8, 12 and 16 to determine which option is used.

<table>
<thead>
<tr>
<th>S7.3 (a)(1)</th>
<th>Warning light specification</th>
<th>Audible signal specification*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belt latched & Key on or start</td>
<td>Item 16 0 seconds*</td>
<td>Item 12 0 seconds**</td>
</tr>
<tr>
<td>Belt stowed & Key on or start</td>
<td>Item 8 60 seconds minimum</td>
<td>Item 4 4 to 8 seconds</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S7.3 (a)(2)</th>
<th>Warning light specification</th>
<th>Audible signal specification*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belt latched & Key on or start</td>
<td>Item 16 7 seconds</td>
<td>Item 12 0 seconds**</td>
</tr>
<tr>
<td>Belt stowed & Key on or start</td>
<td>Item 8 7 seconds</td>
<td>Item 4 6 seconds</td>
</tr>
</tbody>
</table>

* 49 USCS @ 30124 does NOT allow an audible signal to operate for more than 8 seconds.
** 0 seconds means the light or audible signal are NOT permitted to operate under these conditions.
See 7/12/00 interpretation to Patrick Raher of Hogan and Hartson
18. The seat belt warning system meets the requirements of (manufacturers may comply with either section)

 __ S7.3 (a)(1)
 __ X S7.3 (a)(2)
 ____ FAIL - Does NOT meet the requirements of either option

19. Note wording of visual warning: (S7.3(a)(1) and S7.3(a)(2))

 __ Fasten Seat Belts
 __ Fasten Belts
 __ X Symbol 101
 ____ FAIL – Does not use any of the above wording or symbol
DATA SHEET 10
BELT CONTACT FORCE (S7.4.3)

NHTSA No.: C30102 Test Date: 11/14/02

Laboratory: TRC Inc. Test Technician(s): R. Benavides

DESMINATED SEATING POSITION: Front Row Left

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

1. Does the vehicle incorporate a webbing tension-relieving device?
 - Yes (this form is complete)
 - No (continue with this check sheet)

2. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 - N/A - No lumbar adjustment

3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - N/A - No additional support adjustment

4. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 - N/A - No independent fore-aft seat cushion adjustment

5. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S16.2.10.3.1)
 - N/A - No independent seat cushion height adjustment.

6. Put the seat in its full rearward position. (S16.2.10.3.1)
 - N/A - The seat does not have a fore-aft adjustment

7. If the seat height is adjustable, put it in the full down position. (S16.2.10.3.1)
 - N/A - No seat height adjustment

8. Draw a horizontal reference line on the side of the seat cushion.

9. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid position (if there is no mid position, label the closest adjustment position to the rear of the midpoint), and R for full rearward.
 - N/A - The seat does not have a fore-aft adjustment.

10. Using only the controls that change the seat in the fore-aft direction, place the seat in the full rearward position and then place the seat in the middle fore-aft position for this test. (S8.1.2)
 - Mid position. If there is no mid position, put the seat in the closest adjustment position to the rear of the midpoint. Describe the location of the seat: Mid

11. If seat adjustments other than fore-aft are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal. (S16.2.10.3.2.1)
 - N/A - No adjustments
 Reference line angle as tested 0°
12. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.5.4.1 (b) and S8.1.3)

 N/A – No adjustments

Manufacturer's design seat back angle: 15.5°

Tested seat back angle: 15.5°

13. Position the test dummies according to dummy position placement instructions in Appendix B and include the positioning check sheets.

14. Fasten the seat belt latch.

15. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest.

16. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (S10.8) Using a force measuring gage with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy's chest exerted by the belt webbing.

 Contact force: 0.60 lb.

 0.0 to 0.7 pounds - Pass

 __greater than 0.7 pounds_ - FAIL
DATA SHEET 10
BELT CONTACT FORCE (S7.4.3)

NHTSA No. C30102 Test Date: 11/14/02

Laboratory: TRC Inc. Test Technician(s): R. Benavides

DESIGNATED SEATING POSITION: Front Row Right

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

X 1. Does the vehicle incorporate a webbing tension-relieving device?
 Yes (this form is complete)
 X No (continue with this check sheet)

X 2. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 X N/A - No lumbar adjustment

X 3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 X N/A - No additional support adjustment

X 4. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 X N/A - No independent fore-aft seat cushion adjustment

X 5. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S16.2.10.3.1)
 X N/A - No independent seat cushion height adjustment

X 6. Put the seat in its full rearward position. (S16.2.10.3.1)
 ___ N/A - the seat does not have a fore-aft adjustment

X 7. If the seat height is adjustable, put it in the full down position. (S16.2.10.3.1)
 ___ N/A - No seat height adjustment

X 8. Draw a horizontal reference line on the side of the seat cushion.

X 9. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid position (if there is no mid position, label the closest adjustment position to the rear of the midpoint), and R for full rearward.
 ___ N/A - The seat does not have a fore-aft adjustment

X 10. Using only the controls that change the seat in the fore-aft direction, place the seat in the full rearward position and then place the seat in the middle fore-aft position for this test. (S8.1.2)
 X Mid position. If there is no mid position, put the seat in the closest adjustment position to the rear of the midpoint. Describe the location of the seat: Mid

X 11. If seat adjustments other than fore-aft are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal. (S16.2.10.3.2.1)
 X N/A - No adjustments
 Reference line angle as tested 0°
12. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.5.4.1 (b) and S8.1.3)
 N/A – No adjustments
 Manufacturer's design seat back angle: 15.5°
 Tested seat back angle: 15.5°

13. Position the test dummies according to dummy position placement instructions in Appendix B and include the positioning check sheets.

14. Fasten the seat belt latch.

15. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest.

16. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (S10.8) Using a force measuring gage with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy's chest exerted by the belt webbing.
 Contact force: 0.56 lb.
 0.0 to 0.7 pounds - Pass
 greater than 0.7 pounds - FAIL
DATA SHEET 10
BELT CONTACT FORCE (S7.4.3)

NHTSA No: C30102 Test Date: 11/14/02

Laboratory: TRC Inc. Test Technician(s): R. Benavides

DESIGNATED SEATING POSITION: Front Row Center – Not Type 2

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

___ 1. Does the vehicle incorporate a webbing tension-relieving device?
 ___ Yes (this form is complete)
 ___ No (continue with this check sheet)

___ 2. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S6.1.3)
 ___ N/A – No lumbar adjustment

___ 3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 ___ N/A – No additional support adjustment

___ 4. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 ___ N/A – No independent fore-aft seat cushion adjustment

___ 5. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S16.2.10.3.1)
 ___ N/A – No independent seat cushion height adjustment.

___ 6. Put the seat in its full rearward position. (S16.2.10.3.1)
 ___ N/A - the seat does not have a fore-aft adjustment

___ 7. If the seat height is adjustable, put it in the full down position. (S16.2.10.3.1)
 ___ N/A – No seat height adjustment

___ 8. Draw a horizontal reference line on the side of the seat cushion.

___ 9. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid position (if there is no mid position, label the closest adjustment position to the rear of the mid-point), and R for full rearward.
 ___ N/A - The seat does not have a fore-aft adjustment.

___ 10. Using only the controls that change the seat in the fore-aft direction, place the seat in the full rearward position and then place the seat in the middle fore-aft position for this test. (S8.1.2)
 ___ Mid position. If there is no mid position, put the seat in the closest adjustment position to the rear of the midpoint. Describe the location of the seat:

___ 11. If seat adjustments other than fore-aft are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal. (S16.2.10.3.2.1)
 ___ N/A – No adjustments
 Reference line angle as tested

5-35 021119-1
12. The seat back angle, if adjustable, is set at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.5.4.1 (b) and S8.1.3)

N/A – No adjustments

<table>
<thead>
<tr>
<th>Manufacturer’s design seat back angle</th>
<th>Tested seat back angle</th>
</tr>
</thead>
</table>

13. Position the test dummies according to dummy position placement instructions in Appendix B and include the positioning check sheets.

14. Fasten the seat belt latch.

15. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy’s chest.

16. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy’s chest. At that point pull the belt webbing out 3 inches from the dummy’s chest and release until it is within one inch from the dummy’s chest. (S10.8) Using a force measuring gage with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy’s chest exerted by the belt webbing.

Contact force _________ lb.

- 0.0 to 0.7 pounds - Pass
- greater than 0.7 pounds - FAIL
DATASHEET 11
LATCHPLATE ACCESS (S7.4.4)

NHTSA No.: C30102 Test Date: 11/14/02

Laboratory: TRC Inc. Test Technician(s): R. Benavides

DESIGNATED SEATING POSITION: Left Front

Test all front outboard seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

X 1. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (§16.2.10.2)
 X N/A - No lumbar adjustment

X 2. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (§16.2.10.2)
 X N/A - No additional support adjustment

X 3. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (§16.2.10.3.1)
 X N/A - No independent fore-aft seat cushion adjustment

X 4. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (§16.2.10.3.1)
 X N/A - No independent seat cushion height adjustment.

X 5. Put the seat in its full rearward position. (§16.2.10.3.1)
 ___ N/A - the seat does not have a fore-aft adjustment

X 6. If the seat height is adjustable, put it in the full down position. (§16.2.10.3.1)
 X N/A - No seat height adjustment

X 7. Draw a horizontal reference line on the side of the seat cushion

X 8. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the midpoint), and R for full rearward.
 ___ N/A - The seat does not have a fore-aft adjustment.

X 9. Using only the controls that change the seat in the fore-aft direction, place the seat in the full rearward position and then place the seat in the forwardmost fore-aft position for this test. (§10.7)

X 10. If seat adjustments, other than fore-aft, are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal.
 X N/A - No adjustments

Reference line angle as tested 0°
11. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.5.4.1 (b) and S8.1.3)

___ N/A – No seat back angle adjustment
Manufacturer's design seat back angle 15.5°
Tested seat back angle 15.5°

12. Position the test dummy using the procedures in Appendix A. (Some modifications to the positioning procedure may need to be made because the seat is in its forward most position. Note on the Appendix A positioning check sheet any deviations necessary to position the Part 572, Subpart E dummy.) Include the positioning check sheet with this form.

13. Position the adjustable seat belt anchorage in the manufacturer's nominal design position for a 50th percentile adult male occupant.

14. Attach the inboard reach string to the base of the head following the instructions on Figure 3.

15. Attach the outboard reach string to the torso sheath following the instructions on Figure 3.

16. Place the latch plate in the stowed position.

17. Extend inboard reach string in front of the dummy and then backward and outboard to the latch plate to generate an arc of the reach envelope of the test dummy's arms. Is the latch plate within the reach envelope?

___ Yes-Pass; ___ No

18. Extend outboard reach string in front of the dummy and then backward and outboard to the latch plate to generate an arc of the reach envelope of the test dummy's arms. Is the latch plate within the reach envelope?

___ Yes-Pass; ___ No

19. Is the latch plate within the inboard (item 17) or outboard (item 18) reach envelope?

___ Yes-Pass; ___ No-FAIL

20. Using the clearance test block, specified in Figure 4, is there sufficient clearance between the vehicle seat and the side of vehicle interior to allow the test block to move unhindered to the latch plate or buckle?

___ Yes-Pass; ___ No-FAIL
Figure 6. Location of Anchoring Points for Retractable Beach Limiting Chains or Strips to Prevent Use of Submerged Debris

Attach the Inboard Anchor String (10' length of 5/8" chain or equivalent) along with the Outboard Anchor String (10' length of 5/8" chain or equivalent) to the anchor points shown.

1. t' from back collar; 2-3' from centerline of winch handle (not shown for ease of view).
Figure X-USE OF CLEARANCE TEST BLOCK TO DETERMINE HANDHALL ACCESS
DATA SHEET 11
LATCHPLATE ACCESS (S7.4.4)

NHTSA No.: C30102 Test Date: 11/14/02

Laboratory: TRC Inc. Test Technician(s): R. Benavidesw

DESIGNATED SEATING POSITION: Right Front

Test all front outboard seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

X 1. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (8.1.3)
 X N/A - No lumbar adjustment

X 2. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 X N/A - No additional support adjustment

X 3. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 X N/A - No independent fore-aft seat cushion adjustment

X 4. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S16.2.10.3.1)
 X N/A - No independent seat cushion height adjustment.

X 5. Put the seat in its full rearward position. (S16.2.10.3.1)
 ___ N/A - the seat does not have a fore-aft adjustment

X 6. If the seat height is adjustable, put it in the full down position. (S16.2.10.3.1)
 X N/A - No seat height adjustment

X 7 Draw a horizontal reference line on the side of the seat cushion

X 8. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the midpoint), and R for full rearward.
 ___ N/A - The seat does not have a fore-aft adjustment.

X 9. Using only the controls that change the seat in the fore-aft direction, place the seat in the full rearward position and then place the seat in the forwardmost fore-aft position for this test. (S10.7)

X 10. If seat adjustments, other than fore-aft, are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal.
 X N/A - No adjustments
Reference line angle as tested 0°
11. The seat back angle, if adjustable, is set at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.5.4.1 (b) and S8.1.3)

N/A – No seat back angle adjustment
Manufacturer’s design seat back angle 15.5°
Tested seat back angle 15.5°

12. Position the test dummy using the procedures in Appendix A. (Some modifications to the positioning procedure may need to be made because the seat is in its forward most position. Note on the Appendix A positioning check sheet any deviations necessary to position the Part 572, Subpart E dummy.) Include the positioning check sheet with this form.

13. Position the adjustable seat belt anchorage in the manufacturer’s nominal design position for a 50th percentile adult male occupant.

14. Attach the inboard reach string to the base of the head following the instructions on Figure 3.

15. Attach the outboard reach string to the torso sheath following the instructions on Figure 3.

16. Place the latch plate in the stowed position.

17. Extend inboard reach string in front of the dummy and then backward and outboard to the latch plate to generate an arc of the reach envelope of the test dummy’s arms. Is the latch plate within the reach envelope?
 Yes-Pass; No

18. Extend outboard reach string in front of the dummy and then backward and outboard to the latch plate to generate an arc of the reach envelope of the test dummy’s arms. Is the latch plate within the reach envelope?
 Yes-Pass; No

19. Is the latch plate within the inboard (item 17) or outboard (item 18) reach envelope?
 Yes-Pass; No-FAIL

20. Using the clearance test block, specified in Figure 4, is there sufficient clearance between the vehicle seat and the side of vehicle interior to allow the test block to move unhindered to the latch plate or buckle?
 Yes-Pass; No-FAIL
Attach the Internal Flash Straps (105"") length of the leash on the head of each side.

Attach the Outboard Flash Straps (8"") length across panels on the inner shore.

Anchoring swivel eye straps 3" from back medium 10" from rear cattail base and anchor points 10" in case of storms.

Figure 4. Location of Anchoring Points for Subchute Beach Limiting Chains or Bungees to Beach for Subchute Access/Recovery Using Smallport E Tether Device
DATA SHEET 12
SEAT BELT RETRACTION (S7.4.5)

NHTSA No.: C30102 Test Date: 11/14/02

Laboratory: TRC Inc. Test Technician(s): R. Benavides

DESIGNATED SEATING POSITION: Left Front

GVWR: 2903 kg/6400 lbs.

Test all front outboard seat belts, except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

X 1. Is the vehicle a passenger car or walk-in van-type vehicle?
 ___ Yes, this form is complete
 X No

X 2. Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 X N/A — No lumbar adjustment

X 3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 X N/A — No additional support adjustment

X 4. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 X N/A — No independent fore-aft seat cushion adjustment

X 5. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S16.2.10.3.1)
 X N/A — No independent seat cushion height adjustment.

X 6. Put the seat in its full rearward position.
 ___ N/A — The seat does not have a fore-aft adjustment

X 7. If the seat height is adjustable, put it in the full down position. (S8.1.2)
 X N/A — No seat height adjustment

X 7. Draw a horizontal line on the side of the seat cushion.

X 8. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid position (if there is no mid position, label the closest adjustment position to the rear of the mid-point), and R for full rearward.
 ___ N/A — The seat does not have a fore-aft adjustment.

X 9. Using only the controls that change the seat in the fore-aft direction, place the seat in the middle fore-aft position. (S8.1.2)
 If there is no mid position, put the seat in the closest adjustment position to the rear of the midpoint. Describe the location of the seat: Mid

X 10. If seat adjustments, other than fore-aft, are present and the reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal. (S16.2.10.3.2)
 X N/A — No seat adjustments
 Reference angle as tested 0°
11. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S8.1.3)

N/A – No seat back angle adjustment

Manufacturer’s design seat back angle 15.5°

Tested seat back angle 15.5°

12. If adjustable, set the head restraint at the full up and full forward position. (S8.1.3) Any adjustment of the head restraint shall be used to position it full forward. For example, if it rotates, rotate it such that the head restraint extends as far forward as possible.

N/A – No head restraint adjustment

13. Place any adjustable seat belt anchorages at the vehicle manufacturer’s nominal design position for a 50th percentile adult male occupant (S8.1.3)

N/A – No adjustable upper seat belt anchorage

Manufacturer’s specified anchorage position

Tested anchorage position

14. Is the driver seat a bucket seat?
 X Yes, go to 14.1 and skip 14.2.
 ___ No, go to 14.2 and skip 14.1.

14.1 Bucket seats:

 Locate and mark a vertical Plane B through the longitudinal centerline of the seat. The longitudinal centerline of a bucket seat cushion is determined at the widest part of the seat cushion. Measure perpendicular to the longitudinal centerline of the vehicle.

 Record the width of the seat. 565 mm

 Record the distance from the edge of the seat to Plane B 267 mm

14.2 Bench seats (including split bench seats):

 ___ Driver seat: Locate and mark a vertical Plane B through the center of the steering wheel parallel to the vehicle longitudinal centerline.

 ___ Passenger seat: Locate and mark a vertical longitudinal Plane B on the seat that is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel.

 Distance from the vehicle centerline to the center of the steering wheel

 Distance from the vehicle centerline to Plane B

15. Stow outboard armrests that are capable of being stowed. (S7.4.5)

16. Remove the arms of a Subpart B dummy and place it in the seat such that the midsagittal plane is coincident with Plane B and the upper torso rests against the seat back. (S10.4.1.1 & S10.4.1.2)

17. Rest the thighs on the seat cushion.

18. Position the H-point of the dummy within 0.5 inch of the vertical dimension and 0.5 inch of the horizontal dimension of a point 0.25 inch below the H-point determined by using the equipment and procedures specified in SAB J826 (APR 1980). (S10.4.2.1) Then measure the pelvic angle with respect to the horizontal using the pelvic angle gage. Adjust the dummy position until these three measurements are within the specifications. (S10.4.2.1 and S10.4.2.2)

 Horizontal inches from the point 0.25 below the determined H-point (0.5 inch max.)

 Vertical inches from the point 0.25 below the determined H-point (0.5 inch max.)

 Pelvic angle (20° to 25°) (S10.4.2.2)

19. Set the distance between the outboard knee clevis flange surfaces at 10.6 inches.

 Measured distance (10.6 inches) (S10.5)
20. To the extent practicable keep the thighs and the legs in a vertical plane (§10.3) and rest the thighs on the seat cushion while resting the feet on the floorpan or toe board.

21. Fasten the seat belt around the dummy.

22. Remove all slack from the lap belt portion. (§10.9)

23. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this four times. (§10.9)

24. Apply a 2 to 4 pound tension load to the lap belt. (§10.9)

25. Is the belt system equipped with a tension relieving device?
 Yes, continue
 No, go to 26

25.1 Introduce the maximum amount of slack into the upper torso belt that is recommended by the vehicle manufacturer in the vehicle owner's manual. (§10.9)

26. Check the statement that applies to this test vehicle:
 The torso and lap belt webbing of the seat belt system automatically retracts to a stowed position when the adjacent vehicle door is in an open position and the seat belt latch plate is released. Pass
 Neither A or B apply. Fail

26.2 The torso and lap belt webbing of the seat belt system automatically retracts when the seat belt latch plate is released. Pass

26.3 Neither A or B apply. Fail

27. With the webbing and hardware in the stowed position are the webbing and hardware prevented from being pinched when the door is closed?
 Yes-Pass; No-FAIL

28. If this test vehicle has an open body (without doors) and has a belt system with a tension-relieving device, does the belt system fully retract when the tension-relieving device is deactivated?
 N/A
 Yes-Pass; No-FAIL
DATA SHEET 12
SEAT BELT RETRACTION (§7.4.5)

NHTSA No.: C30102 Test Date: 11/14/02

Laboratory: TRC Inc. Test Technician(s): R. Benavides

DESIGNATED SEATING POSITION: Right Front

GVWR: 2903 kg/6400 lbs.

Test all front outboard seat belts, except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

X 1. Is the vehicle a passenger car or walk-in van-type vehicle?
 Yes, this form is complete
 X No

X 2. Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (§8.1.3)
 X N/A - No lumbar adjustment

X 3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (§16.2.10.2)
 X N/A - No additional support adjustment

X 4. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (§16.2.10.3.1)
 X N/A - No independent fore-aft seat cushion adjustment

X 5. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (§16.2.10.3.1)
 X N/A - No independent seat cushion height adjustment

X 6. Put the seat in its full rearward position.
 N/A - the seat does not have a fore-aft adjustment

X 7. If the seat height is adjustable, put it in the full down position. (§8.1.2)
 X N/A - No seat height adjustment

X 8. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid position (if there is no mid position, label the closest adjustment position to the rear of the mid-point), and R for full rearward.
 N/A - The seat does not have a fore-aft adjustment.

X 9. Using only the controls that change the seat in the fore-aft direction, place the seat in the middle fore-aft position. (§8.1.2)
 If there is no mid position, put the seat in the closest adjustment position to the rear of the midpoint. Describe the location of the seat: Mid

X 10. If seat adjustments, other than fore-aft, are present and the reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal. (§16.2.10.3.2)
 X N/A - No seat adjustments
 Reference angle as tested 0°

5-48 021119-1
11. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S8.1.3)
 ___ N/A - No seat back angle adjustment
 Manufacturer's design seat back angle 15.5°
 Tested seat back angle 15.5°

12. If adjustable, set the head restraint at the full up and full forward position. (S8.1.3) Any adjustment of the head restraint shall be used to position it full forward. For example, if it rotates, rotate it such that the head restraint extends as far forward as possible.
 ___ N/A - No head restraint adjustment

13. Place any adjustable seat belt anchorages at the vehicle manufacturer's nominal design position for a 50th percentile adult male occupant (S8.1.3)
 ___ N/A - No adjustable upper seat belt anchorage
 Manufacturer's specified anchorage position: ____________________________
 Tested anchorage position: ____________________________

14. Is the driver seat a bucket seat?
 ___ Yes, go to 14.1 and skip 14.2.
 ___ No, go to 14.2 and skip 14.1.

14.1 Bucket seats:
 Locate and mark a vertical Plane B through the longitudinal centerline of the seat. The longitudinal centerline of a bucket seat cushion is determined at the widest part of the seat cushion. Measure perpendicular to the longitudinal centerline of the vehicle.
 Record the width of the seat. 559 mm
 Record the distance from the edge of the seat to Plane B. 774 mm

14.2 Bench seats (including split bench seats):
 ___ Driver seat: Locate and mark a vertical Plane B through the center of the steering wheel parallel to the vehicle longitudinal centerline.
 ___ Passenger seat: Locate and mark a vertical longitudinal Plane B on the seat that is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel.
 Distance from the vehicle centerline to the center of the steering wheel ____________
 Distance from the vehicle centerline to Plane B ____________

15. Stow outboard armrests that are capable of being stowed. (S7.4.5)

16. Remove the arms of a Subpart B dummy and place it in the seat such that the midsagittal plane is coincident with Plane B and the upper torso rests against the seat back. (S10.4.1.1 & S10.4.1.2)

17. Rest the thighs on the seat cushion.

18. Position the H-point of the dummy within 0.5 inch of the vertical dimension and 0.5 inch of the horizontal dimension of a point 0.25 inch below the H-point determined by using the equipment and procedures specified in SAE J826 (APR 1980). (S10.4.2.1) Then measure the pelvic angle with respect to the horizontal using the pelvic angle gage. Adjust the dummy position until these three measurements are within the specifications. (S10.4.2.1 and S10.4.2.2)
 ___ Measurement not recorded
 ___ Horizontal inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1) Measurement not recorded
 ___ Vertical inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)
 ___ Pelvic angle (20° to 25°) (S10.4.2.2) Measurement not recorded

19. Set the distance between the outboard knee clevis flange surfaces at 10.6 inches.
 ___ Measured distance (10.6 inches) (S10.5)
20. To the extent practicable keep the thighs and the legs in a vertical plane (§10.5) and rest the thighs on the seat cushion while resting the feet on the floorpan or toe board.

21. Fasten the seat belt around the dummy.

22. Remove all slack from the lap belt portion. (§10.9)

23. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this four times. (§10.9)

24. Apply a 2 to 4 pound tension load to the lap belt. (§10.9)

25. Is the belt system equipped with a tension relieving device?
 - Yes, continue
 - No, go to 26

25.1 Introduce the maximum amount of slack into the upper torso belt that is recommended by the vehicle manufacturer in the vehicle owner's manual (§10.9).

26. Check the statement that applies to this test vehicle:
 - 26.1 The torso and lap belt webbing of the seat belt system automatically retracts to a stowed position when the adjacent vehicle door is in an open position and the seat belt latch plate is released. Pass
 - 26.2 The torso and lap belt webbing of the seat belt system automatically retracts when the seat belt latch plate is released. X Pass
 - 26.3 Neither A or B apply. FAIL

27. With the webbing and hardware in the stowed position are the webbing and hardware prevented from being pinched when the door is closed?
 - Yes-Pass; No-FAIL

28. If this test vehicle has an open body (without doors) and has a belt system with a tension-relieving device, does the belt system fully retract when the tension-relieving device is deactivated?
 - N/A
 - Yes-Pass; No-FAIL
DATASHEET 13
SEAT BELT GUIDES AND HARDWARE (S7.4.6)

NHTSA No.: C30102 ____________________ Test Date: 11/14/02

Laboratory: TRC Inc. Test Technician(s): R. Benavides

DESIGNATED SEATING POSITION: Left Front

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

X 1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1 (b))
 Yes; this form is complete
 X No; go to 2

X 2. Is the seat removable? (S7.4.6.1(b))
 Yes; this form is complete
 X No; go to 3

X 3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
 Yes; this form is complete
 X No; go to 4

X 4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(b))
 Yes; go to 5.
 X No: this form is complete.

5. Does one of the following parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
 ___ Yes-Pass; ___ No-FAIL
 Identify the part(s) on top or above the seat.
 ___ seat belt latch plate; ___ buckle; ___ seat belt webbing

6. Are the remaining two seat belt parts accessible under normal conditions?
 ___ Yes-Pass; ___ No-FAIL

7. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (S7.4.6.2)
 ___ Yes-Pass; ___ No-FAIL

8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
 ___ Yes-Pass; ___ No-FAIL

9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)
 ___ Yes-Pass; ___ No-FAIL

10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
 ___ Yes-Pass; ___ No-FAIL
DATASHEET 13
SEAT BELT GUIDES AND HARDWARE (§7.4.6)

NHTSA No.: C30102

Test Date: 11/14/02

Laboratory: TRC Inc.

Test Technician(s): R. Benavides

DESIGNATED SEATING POSITION: Center Front

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

1. Is the seat cushion movable so that the seat back serves a function other than seating? (§7.4.6.1(b))
 - Yes; this form is complete
 - X No; get to 2

2. Is the seat removable? (§7.4.6.1(b))
 - Yes; this form is complete
 - X No; get to 3

3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (§7.4.6.1(b))
 - Yes; this form is complete
 - X No; get to 4

4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (§7.4.6.1(a))
 - Yes; go to 5.
 - X No: this form is complete.

5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (§7.4.6.1(a))
 - Yes-Pass; No-FAIL
 - Identify the part(s) on top or above the seat.
 - X seat belt latch plate; ____ buckle; ____ seat belt webbing

6. Are the remaining two seat belt parts accessible under normal conditions?
 - Yes-Pass; No-FAIL

7. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (§7.4.6.2)
 - Yes-Pass; No-FAIL

8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (§7.4.6.2)
 - Yes-Pass; No-FAIL

9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (§7.4.6.2)
 - Yes-Pass; No-FAIL

10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (§7.4.6.2)
 - Yes-Pass; No-FAIL
DATASHEET 13
SEAT BELT GUIDES AND HARDWARE (S7.4.6)

NHTSA No.: C30102 Test Date: 11/14/02

Laboratory: TRC Inc. Test Technician(s): R. Benavides

DESIGNATED SEATING POSITION: Right Front

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

X 1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1(b))
 __ Yes; this form is complete
 X No; go to 2

X 2. Is the seat removable? (S7.4.6.1(b))
 __ Yes; this form is complete
 X No; go to 3

X 3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
 __ Yes; this form is complete
 X No; go to 4

X 4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
 __ Yes; go to 5.
 X No; this form is complete.

 5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
 __ Yes-Pass; __ No-FAIL
 Identify the part(s) on top or above the seat.
 __ seat belt latch plate; ___ buckle; ___ seat belt webbing

 6. Are the remaining two seat belt parts accessible under normal conditions?
 __ Yes-Pass; ___ No-FAIL

 7. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (S7.4.6.2)
 __ Yes-Pass; ___ No-FAIL

 8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
 __ Yes-Pass; ___ No-FAIL

 9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)
 __ Yes-Pass; ___ No-FAIL

 10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
 __ Yes-Pass; ___ No-FAIL
DATA SHEET 26

VEHICLE WEIGHT, FUEL TANK, AND ATTITUDE DATA

NHTSA No.: C30102
Test Date: 11/19/02

Laboratory: TRC Inc.
Test Technician(s): B. Miller, N. Echeverria, D. Summers, J. Jenkins

Impact Angle: 0°
Belted Dummies: Yes No

Test Speed: X 32 to 40 km/h
0 to 48 km/h
0 to 56 km/h

Driver Dummy: 5th female
50th male
Passenger Dummy: 5th female
50th male

1. Fill the transmission with transmission fluid to the satisfactory range.

2. Drain fuel from vehicle

3. Run the engine until fuel remaining in the fuel delivery system is used and the engine stops.

4. Record the usable fuel tank capacity supplied by the COTR. 34 gallons (128.7 L)

5. Record the fuel tank capacity supplied in the owner's manual. 34 gallons (128.7 L)

6. Using purple dyed Stoddard solvent having the physical and chemical properties of Type 1 solvent or cleaning fluid, Table 1, ASTM Standard D484-71, "Standard Specifications for Hydrocarbon Dry-cleaning Solvents," fill the fuel tank with an amount equal to the usable capacity provided by the COTR. Amount added.

7. Crank the engine to fill the fuel delivery system with Stoddard solvent.

8. Fill the coolant system to capacity.

9. Fill the engine with motor oil to the max. mark on the dip stick.

10. Fill the brake reservoir with brake fluid to its normal level.

11. Fill the windshield washer reservoir to capacity.

12. Inflate the tires to the tire pressure on the tire placard. If no tire placard is available, inflate the tires to the recommended pressure in the owner's manual.

Tire placard pressure: RF 35; LF 35; RR 35; LR 35

Owner's manual pressure: RF N/A; LF N/A; RR N/A; LR N/A

Actual inflated pressure: RF 35; LF 35; RR 35; LR 35

13. Record the vehicle weight at each wheel to determine the unloaded vehicle weight (UVW), i.e. "as delivered" weight.

Right Front = 556.0 kg
Right Rear = 409.5 kg

Left Front = 611.0 kg
Left Rear = 414.5 kg

TOTAL FRONT = 1167.0 kg
TOTAL REAR = 824.0 kg

% Total Weight = 58.6%
% Total Weight = 41.4%

UVW = TOTAL FRONT PLUS TOTAL REAR = 1991.0 kg

14. UVW Test Vehicle Attitude: (all dimensions in millimeters)

14.1 Mark a point on the vehicle above the center of each wheel.

14.2 Place the vehicle on a level surface.

14.3 Measure perpendicular to the level surface to the 4 points marked on the body and record the measurements:

RF 845; LF 835; RR 918; LR 909

5-54
021119-1
15. Calculate the Rated Cargo and Luggage Weight (RCLW).

 15.1 Does the vehicle have the vehicle capacity weight (VCW) on the certification label or tire placard?

 ___ Yes, go to 15.3.

 X ___ No, go to 15.2.

 15.2 VCW = Gross Vehicle Weight – UVW

 VCW = \[\frac{2903.0}{1991.0} = 912.0 \]

 15.3 VCW = \[912.0 \]

 15.4 Does the certification or tire placard contain the Designated Seating Capacity (DSC)?

 ___ Yes, go to 15.6.

 X ___ No, go to 15.5

 15.5 DSC = Total number of seat belt assemblies = \[3 \]

 15.6 DSC = \[3 \]

 15.7 RCLW = VCW – (68 kg x DSC) = \[912.0 - (68 \text{ kg} \times 3) = 708.0 \]

 15.8 Is the vehicle certified as a truck, MPV or bus (see the certification label on the door jamb)?

 X ___ Yes, the maximum RCLW is 136 kg.

 ___ No, use the RCLW calculated in 15.7.

16. Fully Loaded Weight (100% fuel fill)

 16.1 Place the appropriate test dummy in both front outboard seating positions.

 Driver: ___ 50th female X ___ 50th male

 Passenger: ___ 50th female X ___ 50th male

 16.2 Load the vehicle with the RCLW from 15.7 or 15.8 whichever is applicable.

 16.3 Place the RCLW in the cargo area. Center the load over the longitudinal centerline of the vehicle. (§8.1.1 (d))

 16.4 Record the vehicle weight at each wheel to determine the Fully Loaded Weight.

 Right Front = \[609.0 \] kg Right Rear = \[519.5 \] kg

 Left Front = \[659.5 \] kg Left Rear = \[519.0 \] kg

 TOTAL FRONT = \[1268.5 \] kg TOTAL REAR = \[1038.5 \] kg

 % Total Weight = \[55.0 \% \] % Total Weight = \[45.0 \% \]

 % GVW = \[43.7 \% \] % GVW = \[35.8 \% \]

 FULLY LOADED WEIGHT = TOTAL FRONT + TOTAL REAR = \[2307.0 \] kg

X 17. Fully Loaded Test Vehicle Attitude: (all dimensions in millimeters

 X 17.1 Place the vehicle on a level surface.

 X 17.2 Measure perpendicular to the level surface to the 4 points marked on the body (see 14.1 above) and record the measurements

 RF \[832 \]; LF \[827 \]; RR \[882 \]; LR \[873 \]

X 18. Calculate the test weight range (94% fuel fill).

 X 18.1 Calculated Test Weight = Fully Loaded Condition (See 16.4 above) – ((.06 x useable fuel tank capacity) x 0.79kg/liter)

 Calculated Test Weight = \[2307.0 - (0.06 \times 128.7 \times 0.79 \text{ kg/l}) = 2300.9 \] kg

 X 18.2 Test Weight Range = Calculated Test Weight – (4.5 kg, - 9 kg.)

 Max. Weight = Calculated Test Weight – 4.5 kg = \[2296.4 \] kg

 Min. Weight = Calculated Test Weight – 9 kg = \[2291.9 \] kg

X 19. Remove the RCLW from the cargo area.
20. Remove Stoddard solvent from the gas tank in the amount of 6% of the useable capacity as supplied by the COTR.

\[\text{Amount removed} = 0.06 \times \text{(useable capacity)} \]

21. Drain transmission fluid, engine coolant, motor oil, and windshield washer fluid from the test vehicle so that Stoddard solvent leakage from the fuel system will be evident.

22. Vehicle Components Removed For Weight Reduction:
 None

23. Secure the equipment and ballast in the load carrying area and distribute it, as nearly as possible, to obtain the proportion of axle weight indicated by the gross axle weight ratings and center it over the longitudinal centerline of the vehicle.

24. If necessary, add ballast to achieve the actual test weight.
 N/A
 Weight of ballast = 68.0 kg

25. Ballast, including test equipment, must be contained so that it will not shift during the impact event or interfere with data collection or interfere with high-speed film recordings or affect the structural integrity of the vehicle or do anything else to affect test results. Care must be taken to assure that any attachment hardware added to the vehicle is not in the vicinity of the fuel tank or lines.

26. Record the vehicle weight at each wheel to determine the actual test weight.

<table>
<thead>
<tr>
<th>Wheel</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Front</td>
<td>624.8</td>
</tr>
<tr>
<td>Left Front</td>
<td>636.8</td>
</tr>
<tr>
<td>Right Rear</td>
<td>519.6</td>
</tr>
<tr>
<td>Left Rear</td>
<td>514.5</td>
</tr>
</tbody>
</table>

\[\text{TOTAL FRONT} = 1261.6 \quad \text{TOTAL REAR} = 1034.1 \]

\[\text{% Total Weight} = 48.7 \quad \text{% Total Weight} = 51.3 \]

\[\text{% GVW} = 43.5 \quad \text{% GVW} = 35.6 \]

\[\text{TOTAL FRONT PLUS TOTAL REAR} = 2295.7 \quad \text{kg} \]

27. Is the test weight between the Max. Weight and the Min. Weight (See 18.2)?
 Yes
 No, explain why not.

28. Test Weight Vehicle Attitude: (all dimensions in millimeters)
 28.1 Place the vehicle on a level surface.
 28.2 Measure perpendicular to the level surface to the 4 points marked on the body (see 3 above) and record the measurements
 RF 830; IF 822; RR 878; LR 871
29. Summary of test attitude

29.1
AS DELIVERED: RF 845; LF 835; RR 918; LR 909

AS TESTED: RF 830; LF 822; RR 878; LR 871

FULLY LOADED: RF 832; LF 827; RR 882; LR 873

X 29.2 Is the "as tested" test attitude equal to or between the "fully loaded" and "as
delivered" attitude?

Yes

No, explain why not. Approved by COTR.

1 At this step the gasoline in the fuel tank was topped off (Stoddard was not
introduced until after fully loaded weight and attitudes were obtained). The exact
amount of fuel in the tank was unknown.

2 The Owner's Manual said to see Certification/Tire Label for tire pressure.

3 At this step Stoddard solvent was introduced into the drained fuel tank: 0.94 x
128.7 liters, a total of 121.0 liters was added.
DATA SHEET 27
Vehicle Accelerometer Location

NHTSA No.: C30102 Test Date: 11/19/02

Laboratory: TRC Inc. Test Technician(s): D. Summers

Impact Angle: 0° Belted Dummies: ___ Yes X No

Test Speed: X 32 to 40 km/h ____ 0 to 48 km/h
 ____ 0 to 56 km/h

Driver Dummy: ___ 5th female X 50th male Passenger Dummy: ___ 5th female X 50th male

1. Find the location where the vertical plane parallel to the longitudinal centerline of the vehicle and through the center of the left front outboard seating position intersects the left rear seat cross member. Install an accelerometer at this intersection on the rear seat cross member to record x-direction accelerations. Record the location on the following chart.

2. Find the location where the vertical plane parallel to the longitudinal centerline of the vehicle and through the center of the right front outboard seating position intersects the right rear seat cross member. Install an accelerometer at this intersection on the rear seat cross member to record x-direction accelerations. Record the location on the following chart.

3. Find the location where a vertical plane through the longitudinal centerline of the vehicle and a vertical transverse plane through the center of the two wheels on opposite sides of the engine intersect at the top of the engine. Install an accelerometer at this intersection to record x-direction accelerations. Record the location on the following chart.

4. Find the location where a vertical plane through the longitudinal centerline of the vehicle and a vertical transverse plane through the center of the two wheels on opposite sides of the engine intersect the bottom of the engine. Install an accelerometer at this intersection to record x-direction accelerations. Record the location on the following chart.

5. Install an accelerometer on the right front brake caliper to record x-direction accelerations. Record the location on the following chart.

6. Find the location where a vertical plane through the longitudinal centerline of the vehicle intersects the top of the instrument panel. Install an accelerometer at this intersection to record x-direction accelerations. Record the location on the following chart.

7. Install an accelerometer on the left front brake caliper to record x-direction accelerations. Record the location on the following chart.

8. Find the location where a vertical plane through the longitudinal centerline of the vehicle intersects the floor of the trunk. Install an accelerometer on the trunk floor at this intersection to record z-direction accelerations. Record the location on the following chart.
VEHICLE ACCELEROMETER LOCATION
AND DATA SUMMARY

REAR SEAT CUSHION ASSY. FRONT ATTACHMENT BRACKET SUPPORT

DISC BRAKE CALIPER

LEFT SIDE VIEW
<table>
<thead>
<tr>
<th>DIMENSION</th>
<th>LENGTH (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>711</td>
</tr>
<tr>
<td>B</td>
<td>673</td>
</tr>
<tr>
<td>C</td>
<td>4757</td>
</tr>
<tr>
<td>D</td>
<td>4452</td>
</tr>
<tr>
<td>E</td>
<td>5067</td>
</tr>
<tr>
<td>F</td>
<td>693 left; 706 right</td>
</tr>
<tr>
<td>G</td>
<td>4343</td>
</tr>
<tr>
<td>H</td>
<td>3068</td>
</tr>
<tr>
<td>K</td>
<td>314</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIMENSION</th>
<th>LENGTH (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>712</td>
</tr>
<tr>
<td>B</td>
<td>673</td>
</tr>
<tr>
<td>C</td>
<td>4697</td>
</tr>
<tr>
<td>D</td>
<td>4457</td>
</tr>
<tr>
<td>E</td>
<td>4497 left; 4517 right</td>
</tr>
<tr>
<td>F</td>
<td>691 left; 691 right</td>
</tr>
<tr>
<td>G</td>
<td>3813</td>
</tr>
<tr>
<td>H</td>
<td>2988</td>
</tr>
<tr>
<td>K</td>
<td>307</td>
</tr>
</tbody>
</table>

REMARKS:
DATA SHEET 28
Photographic Targets

NHTSA No.: C30102 Test Date: 11/14/02

Laboratory: TRC Inc. Test Technician(s): D. Summers, N. Echeverria

Impact Angle: 0° Offset percentage: 0 Belted Dummies: Yes

X 32 to 40 km/h X 0 to 48 km/h X 0 to 56 km/h

Driver Dummy: X 50th male Passenger Dummy: X 50th male

1. FMVSS 208 vehicle targeting requirements (See Figures 28A and 28B)

X 1.1 Targets A1 and A2 are on flat rectangular panels.

X 1.2 Three circular targets at least 90 mm in diameter and with black and yellow quadrants are mounted at the front on the outboard sides of A1 and A2. The center of each circular target is 100 mm from the one next to it. Distance between targets 100 mm

X 1.3 Three circular targets at least 90 mm in diameter and with black and yellow quadrants are mounted at the back on the outboard sides of A1 and A2. The center of each circular target is 100 mm from the one next to it. Distance between targets 100 mm

X 1.4 The distance between the first circular target at the front of A1 and A2 and the last circular target at the back of A1 and A2 is at least 915 mm.

Distance between the first and last circular targets 403 mm

X 1.5 Firmly fix target A1 on the vehicle roof in the vertical longitudinal plane that is coincident with the mid sagittal plane of the driver dummy.

X 1.6 Firmly fix target A2 on the vehicle roof in the vertical longitudinal plane that is coincident with the mid sagittal plane of the passenger dummy.

X 1.7 Two circular targets (C1 and C2) at least 90 mm in diameter and with black and yellow quadrants are mounted on the outside of the driver door. The centers of each circular target are at least 610 mm apart. Distance between targets 610 mm

X 1.8 Two circular targets (C1 and C2) at least 90 mm in diameter and with black and yellow quadrants are mounted on the outside of the passenger door. The centers of each circular target are at least 610 mm apart. Distance between targets 610 mm

X 1.9 Place tape with squares having alternating colors on the top portion of the steering wheel.

X 1.10 Chalk the bottom portion of the steering wheel.

X 1.11 Is this an offset test?

X Yes, continue with this section

No, go to 2.

X 1.12 Measure the width of the vehicle. Vehicle width 1967 mm

X 1.13 Find the centerline of the vehicle. (½ of the vehicle width)

X 1.14 Find the line parallel to the centerline of the vehicle and 0.1 x vehicle width from the centerline of the vehicle.

X 1.15 Apply 25 mm wide tape with alternating black and yellow squares parallel to and on each side of the line found in 1.14. The edge of each tape shall be 50 mm from the line found in 1.14. The tape shall extend from the bottom of the bumper to the front edge of the windshield. (Figure 28D)
2. **Barrier targeting**

 2.1 Fix two stationary targets D1 and D2 to the barrier as shown in the Figure 28A. One target is in the vertical longitudinal plane that is coincident with the midsagittal plane of the driver dummy. The other is in the vertical longitudinal plane that is coincident with the midsagittal plane of the passenger dummy. **Only one target over driver dummy**

 2.2 Targets D1 and D2 are on a rectangular panel. **No D2 target**

 2.3 Three circular targets at least 90 mm in diameter and with black and yellow quadrants are mounted on the sides of the rectangular panel away from the longitudinal centerline of the vehicle. The center of each circular target is 100 mm from the one next to it.

 Distance between circular targets on D1: **127** mm

 Distance between circular targets on D2: **N/A** mm

3. **FMVSS 208 dummy targeting requirements**

 3.1 Place a circular target with black and yellow quadrants on both sides of the driver dummy head as close as possible to the center of gravity of the head in the x and z direction (relative to the measuring directions of the accelerometers).

 3.2 Place a circular target with black and yellow quadrants on both sides of the passenger dummy head as close as possible to the center of gravity of the head in the x and z direction (relative to the measuring directions of the accelerometers).

 3.3 Place a circular target with black and yellow quadrants on the outboard shoulder of the driver dummy. Place the target as high up on the arm as possible at the intersection of the arm and shoulder. The sleeve of the shirt on the dummy may be cut to make the target visible, but do not remove any material.

 3.4 Place a circular target with black and yellow quadrants on the outboard shoulder of the passenger dummy. Place the target as high up on the arm as possible at the intersection of the arm and shoulder. The sleeve of the shirt on the dummy may be cut to make the target visible, but do not remove any material.

4. **FMVSS 204 targeting requirements**

 4.1 Is an FMVSS 204 indicant test ordered on the “COTR Vehicle Work Order?”

 - Yes, continue with this form.
 - **No**, this form is complete

 4.2 **Rear** section panel (Figure 28C)

 - 4.2.1 The panel deviates no more than 6 mm from perfect flatness when suspended vertically.

 - 4.2.2 The 8 targets on the panel are circular targets at least 90 mm in diameter and with black and yellow quadrants.

 - 4.2.3 The center of each of the 4 outer targets are placed within 1 mm of the corners of a square measuring 914 mm on each side.

 - 4.2.4 Locate another square with 228 mm sides and with the center of this square coincident with the center of the 914 mm square.

 - 4.2.5 The center of the 4 inner targets are placed at the midpoints of each of the 228 mm sides.

 - 4.3 Place a circular target at least 90 mm in diameter and with black and yellow quadrants on a material (cardboard, metal, etc.) that can be taped to the top of the steering column.

 - 4.4 Tape the target from 4.3 to the top of the steering column in a manner that does not interfere with the movement of the steering column in a crash.
REFERENCE PHOTO TARGETS

CONCRETE BARRIER

MONORAIL

COVERED PHOTO PIT

LEFT SIDE VIEW

FIGURE 28A
FIGURE 28B
PRE-RUN STEERING COLUMN HIGH SPEED CAMERA VIEW

LEFT SIDE VIEW

FIGURE 28C
OFFSET DEFORMABLE BARRIER
ADDITIONAL VEHICLE TARGETING

FIGURE 28D
DATA SHEET 29
CAMERA LOCATIONS

VEH. NHTSA No.: C30102 ; TEST DATE: 11/19/02 ; TIME: 1617

VEH. YEAR/MAKE/MODEL/BODY STYLE: 2003/Chevrolet/Silverado/Pickup Truck

<table>
<thead>
<tr>
<th>CAMERA NO.</th>
<th>VIEW</th>
<th>CAMERA POSITIONS (mm) *</th>
<th>ANGLE (deg.)</th>
<th>FILM PLANE TO HEAD TARGET</th>
<th>LENS (mm)</th>
<th>SPEED (fps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Left Side View</td>
<td>NA¹</td>
<td>NA¹</td>
<td>NA¹</td>
<td>24</td>
<td>430</td>
</tr>
<tr>
<td>2</td>
<td>Left Side View (barrier face to front seat backs)</td>
<td>-1230 -7660 -1380</td>
<td>0</td>
<td>7200</td>
<td>35</td>
<td>705</td>
</tr>
<tr>
<td>3</td>
<td>Left Side View (A-post)</td>
<td>-5000 -5000 -2150</td>
<td>-9</td>
<td>4230</td>
<td>25</td>
<td>250</td>
</tr>
<tr>
<td>4</td>
<td>Left Side View (B-post aimed toward center of steering wheel)</td>
<td>-1640 -7220 -1300</td>
<td>-3.5</td>
<td>7200</td>
<td>25</td>
<td>NA²</td>
</tr>
<tr>
<td>5</td>
<td>Left Side View (front door under camera 5)</td>
<td>-1600 -7310 -950</td>
<td>0</td>
<td>6820</td>
<td>25</td>
<td>585</td>
</tr>
<tr>
<td>7</td>
<td>Right Side View (overall)</td>
<td>-2770 9060 -1300</td>
<td>-1</td>
<td>8480</td>
<td>13</td>
<td>1000</td>
</tr>
<tr>
<td>8</td>
<td>Right Side View (A-post)</td>
<td>-900 5850 -1300</td>
<td>0</td>
<td>5350</td>
<td>25</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>Right Side View (B-post)</td>
<td>-5210 5510 -1940</td>
<td>-7</td>
<td>4670</td>
<td>25</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td>Right Side View (front door)</td>
<td>-1300 7880 -1300</td>
<td>0</td>
<td>7370</td>
<td>25</td>
<td>1002</td>
</tr>
<tr>
<td>11</td>
<td>Front View Windshield</td>
<td>470 0 -2500 -66</td>
<td>2150</td>
<td>8.5</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Front View Driver</td>
<td>470 -270 -2500 -62</td>
<td>2200</td>
<td>17</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Front View Passenger</td>
<td>560 230 -2500 -62</td>
<td>2180</td>
<td>17</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>14²</td>
<td>Overhead Barrier Impact View</td>
<td>0 0 -5600 -90</td>
<td>NA¹</td>
<td>13</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Pit Camera Engine View</td>
<td>-900 0 830 90</td>
<td>NA¹</td>
<td>17</td>
<td>685</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Pit Camera Fuel Tank View</td>
<td>-2650 130 1000 90</td>
<td>NA¹</td>
<td>13</td>
<td>NA²</td>
<td></td>
</tr>
</tbody>
</table>

* +X - film plane forward (downstream) from barrier impact surface
+Y - film plane to right of monorail centerline from driver's perspective
+Z - film plane below ground level
1 Not applicable
2 Unable to determine speed, camera ran too slow to time.
3 Digital camera
CAMERA POSITIONS FOR FRONTAL IMPACTS

TOP VIEW

CONCRETE BARRIER

COVER PHOTO PIT

TEST VEHICLE

MONORAIL

TOW ROAD

REAL TIME CAMERA

CAMERA FRAME RATES:

#1 = 24 fps

ALL OTHERS = 1,000 fps

LEFT SIDE VIEW

CONCRETE BARRIER

COVER PHOTO PIT
DATA SHEET 30
DUMMY POSITIONING PROCEDURES
FOR DRIVER TEST DUMMY CONFORMING TO SUBPART E OF PART 572

NHTSA No: C30102 ___________________________ Test Date: 11/19/02

Laboratory: TRC Inc. ___________________________ Test Technician(s): J. Jenkins

Impact Angle: 0° ____________ Belted Dummies: _____ Yes ___________ X____ No

Test Speed: ___________ X____ 32 to 40 km/h ___________ 0 to 48 km/h ___________ 0 to 56 km/h

Driver Dummy: ____ 5th female ___________ X____ 50th male ___________ Passenger Dummy: ____ 5th female ___________ X____ 50th male

1. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S20.1.8.1)
 ___________ X____ N/A – No lumbar adjustment

2. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S20.1.8.2)
 ___________ X____ N/A – No additional support adjustment

3. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S20.1.8.3)
 ___________ X____ N/A – No independent fore-aft seat cushion adjustment

4. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position.
 ___________ X____ N/A – No independent seat cushion height adjustment.

5. Put the seat in its full rearward position.
 ___________ N/A - the seat does not have a fore-aft adjustment

6. If the seat height is adjustable, put it in the full down position
 ___________ X____ N/A – No seat height adjustment

7. Draw a horizontal line on the side of the seat cushion. Record the angle of this line, with respect to the horizontal, as the seat cushion reference angle. 0° ___________

8. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the mid-point), and R for full rearward.
 ___________ N/A - The seat does not have a fore-aft adjustment

9. Using only the controls that change the seat in the fore-aft direction, place the seat in the middle fore-aft position.

10. If seat adjustments, other than fore-aft, are present and the seat cushion reference angle changes from that measured in 7, use those adjustments to maintain as closely as possible the angle recorded in 7.
 ___________ X____ N/A – No adjustments
 Reference angle ___________
 Reference angle as tested

11. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.5.4.1 (b) and S8.1.3)
 ___________ N/A – No seat back angle adjustment
12. If adjustable, set the head restraint at the full up and full forward position. Any adjustment of the head restraint shall be used to position it forward. For example, if it rotates, rotate it such that the head restraint extends as far forward as possible.

N/A – No head restraint adjustment

13. Place any adjustable seat belt anchorages at the vehicle manufacturer’s nominal design position for a 50th percentile adult male occupant (S22.2.1.6.1)

N/A – No adjustable upper seat belt anchorage

Manufacturer’s specified anchorage position: Fixed

Tested anchorage position: Fixed

14. Place the adjustable accelerator pedal in the full forward position.

N/A – the accelerator pedal is not adjustable.

15. Is the driver seat a bucket seat?

Yes, go to 15.1 and skip 15.2.

No, go to 15.2 and skip 15.1.

15.1 Bucket seats:

Locate and mark a vertical Plane B through the longitudinal centerline of the seat. The longitudinal centerline of a bucket seat cushion is determined at the widest part of the seat cushion. Measure perpendicular to the longitudinal centerline of the vehicle.

Record the width of the seat: 525 mm

Record the distance from the edge of the seat to Plane B: 263 mm

Go to 16

15.2 Bench seats (including split bench seats):

Locate and mark a vertical Plane B through the center of the steering wheel parallel to the vehicle longitudinal centerline.

Go to 16

16. Place the dummy in the seat such that the midsagittal plane is coincident with Plane B and the upper torso rests against the seat back. (S10.4.1.1 & S10.4.1.2)

17. Rest the thighs on the seat cushion. (S10.5)

18. Position the H-point of the dummy within 0.5 inch of the vertical dimension and 0.5 inch of the horizontal dimension of a point 0.25 inch below the H-point determined by using the equipment and procedures specified in SAE J826 (APR 1980). (S10.4.2.1) Then measure the pelvic angle with respect to the horizontal using the pelvic angle gage. Adjust the dummy position until these three measurements are within the specifications. (S10.4.2.1 and S10.4.2.2)

Horizontal inches from the point 0.25 below the determined H-point (0.5 inch max.)

Measurement not recorded

Vertical inches from the point 0.25 below the determined H-point (0.5 inch max.)

Measurement not recorded

Pelvic angle (20° to 25°)

Measurement not recorded

19. Is the head level within ± 0.5″? (S10.1)

Yes, go to 20

No, go to 19.1

19.1 Adjust the position of the H-point. (S10.1)

19.2 Is the head level within ± 0.5″? (S10.1)

Yes, record the following, then go to 20.

No, go to 19.3

8 mm forward

Horizontal inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)

10 mm

Vertical inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)

24.8° pelvic angle (20° to 25°) (S10.4.2.2)
19.3 Adjust the pelvic angle. (S10.1)

19.4 Is the head level within ± 0.5°? (S10.1)

Yes, record the following, then go to 20. No, go to 19.3

horizontal inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)

vertical inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)

pelvic angle (20° to 25°) (S10.4.2.2)

19.5 Adjust the neck bracket of the dummy the minimum amount necessary from the non-adjusted "0" setting until the head is level within ± 0.5°. (S10.1)

Record the following, then go to 20

horizontal inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)

vertical inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)

pelvic angle (20° to 25°) (S10.4.2.2)

20. Set the distance between the outboard knee clevis flange surfaces at 10.6 inches. 270 mm measured distance (10.6 inches) (S10.5)

21. Can the right foot be placed on the accelerator?

Yes, go to 21.1 and skip 21.2

No, go to 21.2

21.1 To the extent practicable keep the right thigh and the leg in a vertical plane (S10.5) while resting the foot on the undepressed accelerator pedal with the rearmost point of the heel on the floor pan in the plane of the pedal. (S10.6.1.1)

21.2 Initially set the foot perpendicular to the leg and then place it as far forward as possible in the direction of the pedal centerline with the rearmost point of the heel resting on the floor pan. (S10.6.1.1)

21.2.1 Move the adjustable pedal to its most rearward position or until the right foot is flat on the pedal, whichever occurs first. (S10.6.1.1)

22. Does the vehicle have a foot rest?

Yes, go to 22.1

No, go to 22.1.2

22.1 With the left thigh and leg in a vertical plane, place the foot on the foot rest. (S10.6.1.2)

22.1.1 Is the left foot elevated above the right foot?

Yes, go to 22.1.2 and position the foot on the foot rest

No, go to 23

22.1.2 Check the ONLY one of the following that applies

The foot reaches the toeboard without adjusting the foot or leg. To the extent practicable keep the left thigh and the leg in a vertical longitudinal plane (S10.5) and place the foot on the toeboard, skip 22.1.3 (S10.6.1.2)

The foot reaches the toeboard but contacts the brake or clutch pedal and must be rotated to avoid pedal contact. To the extent practicable keep the left thigh and the leg in a vertical longitudinal plane (S10.5) and place the foot on the toeboard. The foot was rotated about the leg to avoid pedal contact, skip 22.1.3 (S10.6.1.2)

The foot reaches the toeboard but contacts the brake or clutch pedal and the foot and leg must be rotated to avoid pedal contact. To the extent practicable keep the left thigh and the leg in a vertical longitudinal plane (S10.5) and place the foot on the toeboard. The foot was rotated about the leg and the leg was rotated outboard about the hip the minimum distance necessary to avoid pedal contact, skip 22.1.3 (S10.6.1.2)
N/A - the foot does not reach the toeboard, go to 22.1.3

22.1.3 Check the ONLY one of the following that applies

[] The foot did not contact the brake or clutch pedal. To the extent practicable keep the left thigh and the leg in a vertical longitudinal plane (S10.5). Set the foot perpendicular to the leg and place it as far forward as possible with the heel resting on the floor pan. (S10.6.1.2)

[] The foot did contact the brake or clutch pedal and the foot was rotated to avoid contact. To the extent practicable keep the left thigh and the leg in a vertical longitudinal plane (S10.5). Set the foot perpendicular to the leg and place it as far forward as possible with the heel resting on the floor pan and rotate the foot the minimum amount to avoid pedal contact. (S10.6.1.2)

[] The foot did contact the brake or clutch pedal and the foot was rotated about the leg and the leg was rotated outward about the hip the minimum distance necessary to avoid pedal contact. Set the foot perpendicular to the leg and place it as far forward as possible with the heel resting on the floor pan and rotate the foot about the leg and the thigh and leg outward about the hip the minimum distance necessary to avoid pedal contact. (S10.6.1.2)

X 23. Place the right upper arm adjacent to the torso with the centerline as close to a vertical plane as possible. (S10.2.1)

X 24. Is the driver seat belt used for this test?

[] Yes, continue

[] No, go to 25

24.1 Fasten the seat belt around the dummy.

24.2 Remove all slack from the lap belt portion. (S10.9)

24.3 Pull the upper torso webbing out of the retractor and allow it to retract; repeat this four times. (S10.9)

24.4 Apply a 2 to 4 pound tension load to the lap belt. (S10.9)

[] pound load applied

24.5 Is the belt system equipped with a tension relieving device?

[] Yes, continue

[] No, go to 25

24.6 Introduce the maximum amount of slack into the upper torso belt that is recommended by the vehicle manufacturer in the vehicle owner's manual. (S10.9). Go to 25.

X 25. Place the left upper arm adjacent to the torso with the centerline as close to a vertical plane as possible. (S10.2.1)

X 26. Place the right hand with the palm in contact with the steering wheel at the rim's horizontal centerline and with the thumb over the steering wheel. (S10.3.1)

X 27. Place the left hand with the palm in contact with the steering wheel at the rim's horizontal centerline and with the thumb over the steering wheel. (S10.3.1)

X 28. Tape the thumb of each hand to the steering wheel by using masking tape with a width of 0.25 inch. The length of the tape shall only be enough to go around the thumb and steering wheel one time.
DATA SHEET 30
DUMMY POSITIONING PROCEDURES FOR PASSENGER TEST DUMMY
CONFORMING TO SUBPART E OF PART 572

NHTSA No.: C30102 ____________________ Test Date: 11/19/02

Laboratory: TRC Inc. ________ Test Technician(s): J. Jenkins __________________________

Impact Angle: 0° _______________ Belted Dummies: __ Yes __ No

Test Speed: _______ 32 to 40 km/h _______ 0 to 48 km/h _______ 0 to 56 km/h

Driver Dummy: ____ 5th female __ 50th male Passenger Dummy: ____ 5th female __ 50th male

1. The seat is a bench seat for which the adjustments have already been made for the driver and there are no independent adjustments that can be made for the passenger. Go to 14

 N/A - the passenger seat adjusts independently of the driver seat.

2. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (§20.1.8.1)

 N/A - No lumbar adjustment

3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (§20.1.8.2)

 N/A - No additional support adjustment

4. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (§20.1.8.3)

 N/A - No independent fore-aft seat cushion adjustment

5. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position.

 N/A - No independent seat cushion height adjustment.

6. Put the seat in its full rearward position.

 N/A - the seat does not have a fore-aft adjustment

7. If the seat height is adjustable, put it in the full down position

 N/A - No seat height adjustment

8. Draw a horizontal line on the side of the seat cushion. Record the angle of this line, with respect to the horizontal, as the seat cushion reference angle. 0° _______

9. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the mid-point), and R for full rearward.

 N/A - The seat does not have a fore-aft adjustment.

10. Using only the controls that change the seat in the fore-aft direction, place the seat in the middle fore-aft position.

11. If seat adjustments, other than fore-aft, are present and the seat cushion reference angle changes from that measured in 8, use those adjustments to maintain as closely as possible the angle recorded in 8.

 N/A - No adjustments

 Reference angle ____________

 Reference angle as tested ____________
12. The seat back angle, if adjustable, is set at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.5.4.1 (b) and S8.1.3)
 N/A – No seat back angle adjustment
 Manufacturer’s design seat back angle: 15.5°
 Tested seat back angle: ________

13. If adjustable, set the head restraint at the full up and full forward position. Any adjustment of the head restraint shall be used to position it full forward. For example, if it rotates, rotate it such that the head restraint extends as far forward as possible.
 N/A – No head restraint adjustment

14. Place any adjustable seat belt anchorages at the vehicle manufacturer’s nominal design position for a 50th percentile adult male occupant (S22.2.1.6.1)
 N/A – No adjustable upper seat belt anchorage
 Manufacturer’s specified anchorage position: Fixed
 Tested anchorage position: Fixed

15. Is the passenger seat a bucket seat?
 Yes, go to 15.1 and skip 15.2.
 No, go to 15.2 and skip 15.1.

15.1 Bucket seats:
 Locate and mark a vertical Plane B through the longitudinal centerline of the seat. (S22.2.1.3) The longitudinal centerline of a bucket seat cushion is determined at the widest part of the seat cushion. Measure perpendicular to the longitudinal centerline of the vehicle.
 Record the width of the seat: 520 mm
 Record the distance from the edge of the seat to Plane B: 262 mm
 Go to 16

15.2 Bench seats (including split bench seats):
 Locate and mark a vertical longitudinal Plane B on the seat that is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel.
 Distance from the vehicle centerline to the center of the steering wheel: ________
 Distance from the vehicle centerline to Plane B: ________
 Go to 16

16. Place the dummy in the seat such that the midsagittal plane is coincident with Plane B and the upper torso rests against the seat back. (S10.4.1.1 & S10.4.1.2)

17. Rest the thighs on the seat cushion. (S10.5)

18. Position the H-point of the dummy within 0.5 inch of the vertical dimension and 0.5 inch of the horizontal dimension of a point 0.25 inch below the H-point determined by using the equipment and procedures specified in SAE J826 (APR 1980). (S10.4.2.1) Then measure the pelvic angle with respect to the horizontal using the pelvic angle gage. Adjust the dummy position until these three measurements are within the specifications. (S10.4.2.1 and S10.4.2.2)
 7 mm forward: horizontal inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)
 3 mm high: vertical inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)
 22.6° pelvic angle (20° to 25°) (S10.4.2.2)

19. Is the head level within ±0.5°? (S10.1)
 Yes, go to 20
 No, go to 19.1
 19.1 Adjust the position of the H-point. (S10.1)
19.2 Is the head level within ± 0.5"? (S10.1)
 ____ Yes, record the following, then go to 20. ____ No, go to 19.3
 ________________ horizontal inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)
 ________________ vertical inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)
 ______ pelvic angle (20° to 25°) (S10.4.2.2)

19.3 Adjust the pelvic angle. (S10.1)

19.4 Is the head level within ± 0.5"? (S10.1)
 ____ Yes, record the following, then go to 20. ____ No, go to 19.5
 ________________ horizontal inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)
 ________________ vertical inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)
 ______ pelvic angle (20° to 25°) (S10.4.2.2)

19.5 Adjust the neck bracket of the dummy the minimum amount necessary from the non-adjusted "0" setting until the head is level within ± 0.5°. (S10.1)

 Record the following, then go to 20
 ________________ horizontal inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)
 ________________ vertical inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)
 ______ pelvic angle (20° to 25°) (S10.4.2.2)

20. Set the distance between the outboard knee clevis flange surfaces at 10.6 inches.
 ______ 270 mm measured distance (10.6 inches) (S10.5)

21. Check the only one of the following that applies:
 ____________ To the extent practicable keep the left thigh and leg in a vertical plane and the right thigh and leg in a vertical plane, place the feet on the toeboard with the heels resting on the floor pan as close as possible to the intersection of the floor pan and toeboard.
 ______ The feet cannot be placed flat on the toeboard. To the extent practicable keep the left thigh and leg in a vertical plane and the right thigh and leg in a vertical plane, set the feet perpendicular to the legs and place them as far forward as possible with the heels resting on the floor pan.
 ______ The vehicle has a wheelhouse projection. To the extent practicable keep the left thigh and leg in a vertical plane and the right thigh and leg in a vertical plane, set the feet perpendicular to the legs and place them as far forward as possible with the heels resting on the floor pan. Do not set the feet on the wheelhouse projection.
 ______ The vehicle has a wheelhouse projection and the feet cannot be placed on the toeboard. To the extent practicable keep the left thigh and leg in a vertical plane and the right thigh and leg in a vertical plane, set the feet perpendicular to the legs and place them as far forward as possible with the heel resting on the floor pan. Do not set the feet on the wheelhouse projection.

22. Place the left upper arm in contact with the seat back and side of the torso. (S10.2.2)

23. Is the passenger seat belt used for this test?
 ____ Yes, continue
 ___ No, go to 24
 ____ 23.1 Fasten the seat belt around the dummy.
 ____ 23.2 Remove all slack from the lap belt portion. (S10.9)
 ____ 23.3 Pull the upper torso webbing out of the retractor and allow it to retract; repeat this four times. (S10.9)
 ____ 23.4 Apply a 2 to 4 pound tension load to the lap belt. (S10.9)
 ______ pound load applied
23.5 Is the belt system equipped with a tension relieving device?
 ___ Yes, continue
 ___ No, go to 24

23.6 Introduce the maximum amount of slack into the upper torso belt that is recommended by the vehicle manufacturer in the vehicle owner's manual. (S10.9). Go to 24.

 X 24. Place the right upper arm in contact with the seat back and side of the torso. (S10.2.2)
 X 25. Place the left hand palm in contact with the outside of the left thigh and the little finger in contact with the seat cushion. (S10.3.2)
 X 26. Place the right hand palm in contact with the outside of the right thigh and the little finger in contact with the seat cushion. (S10.3.2)
<table>
<thead>
<tr>
<th></th>
<th>DRIVER (Serial No. 230)</th>
<th>PASSENGER (Serial No. 229)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>SWA</td>
<td>69.1</td>
<td>NA</td>
</tr>
<tr>
<td>SCA</td>
<td>20.9</td>
<td>NA</td>
</tr>
<tr>
<td>SA</td>
<td>15.4</td>
<td>15.5</td>
</tr>
<tr>
<td>HZ</td>
<td>270</td>
<td>260</td>
</tr>
<tr>
<td>HH</td>
<td>527</td>
<td>496</td>
</tr>
<tr>
<td>HW</td>
<td>697</td>
<td>663</td>
</tr>
<tr>
<td>HR</td>
<td>250</td>
<td>245</td>
</tr>
<tr>
<td>NR</td>
<td>391 ANGLE 9.3°</td>
<td>NA</td>
</tr>
<tr>
<td>CD</td>
<td>550</td>
<td>486</td>
</tr>
<tr>
<td>CS</td>
<td>314</td>
<td>NA</td>
</tr>
<tr>
<td>RA</td>
<td>178</td>
<td>NA</td>
</tr>
<tr>
<td>KDL</td>
<td>135 ANGLE 33.5°</td>
<td>130</td>
</tr>
<tr>
<td>KDR</td>
<td>148</td>
<td>135 ANGLE 20.7°</td>
</tr>
<tr>
<td>PA</td>
<td>24.8</td>
<td>22.4</td>
</tr>
<tr>
<td>TA</td>
<td>54.9</td>
<td>50.2</td>
</tr>
<tr>
<td>KK</td>
<td>320</td>
<td>270</td>
</tr>
<tr>
<td>ST</td>
<td>634 ANGLE -74.6°</td>
<td>640 ANGLE -67.0°</td>
</tr>
<tr>
<td>SK</td>
<td>720 ANGLE -3.2°</td>
<td>727 ANGLE -0.5°</td>
</tr>
<tr>
<td>SH</td>
<td>355 ANGLE 12.4°</td>
<td>335 ANGLE 12.9°</td>
</tr>
<tr>
<td>SHY</td>
<td>260</td>
<td>245</td>
</tr>
<tr>
<td>HS</td>
<td>278</td>
<td>260</td>
</tr>
<tr>
<td>HD</td>
<td>162</td>
<td>163</td>
</tr>
<tr>
<td>AD</td>
<td>134</td>
<td>141</td>
</tr>
</tbody>
</table>
DUMMY MEASUREMENT FOR FRONT SEAT PASSENGERS

- CD - Chest to Dash
- CS - Steering Wheel to Chest
- HH - Head to Header
- HW - Head to Windshield
- HZ - Head to Roof
- KDA - Knee to Dash Angle
- KDL - Left Knee to Dash
- KDR - Right Knee to Dash
- NA - Nose to Rim Angle
- NR - Nose to Rim
- PA - Pelvic Angle
- RA - Rim to Abdomen
- SA - Seat Back Angle
- SCA - Steering Column Angle
- SH - Striker to H-Point
- SK - Striker to Knee
- ST - Striker to Head
- SWA - Steering Wheel Angle
- TA - Tibial Angle
- WA - Windshield Angle

AD - Arm to Door
HD - H-Point to Door
HR - Head to Side Header
HS - Head to Side Window
KK - Knee to Knee
SHY - Striker to H-Point (Y Direction)

Vertical Transverse Plane

Vertical Longitudinal Planes
DESCRIPTIONS OF DUMMY MEASUREMENTS

When a level is to be used, it is to ensure that the line containing the two points described is either parallel or perpendicular to the ground. If a measurement to be made is less than 10 inches ignore the directions to use a level and approximate a level measurement. Also, when a measurement is to be taken to or from the center of a bolt on the dummy, take the measurement from the center of the bolt hole if the bolt is recessed.

The following measurements are to be made within a vertical longitudinal plane.

* HH Head to Header, taken from the point where the dummy’s nose meets his forehead (between his eyes) to the furthest point forward on the header.

* HW Head to Windshield, taken from the point where the dummy’s nose meets his forehead (between his eyes) to a point on the windshield. Use a level.

* HZ Head to Roof, taken from the point where the dummy’s nose meets his forehead (between his eyes) to the point on the roof directly above it. Use a level.

* CS Steering Wheel to Chest, taken from the center of the steering wheel hub to the dummy’s chest. Use a level.

* CD Chest to Dash, place a tape measure on the tip of the dummy’s chin and rotate five inches of it downward toward the dummy to the point of contact on the transverse center of the dummy’s chest. Measure from this point to the closest point on the dashboard either between the upper part of the steering wheel between the hub and the rim, or measure to the dashboard placing the tape measure above the rim, whichever is a shorter measurement. See photograph.

RA Steering Wheel Rim to Abdomen, taken from the bottommost point of the steering wheel rim horizontally rearward to the dummy. Use a level.

NR Nose to Rim, taken from the tip of the dummy’s nose to the closest point on the top of the steering wheel rim. Also indicate the angle this line makes with respect to the horizontal (NA).

* KDL, KDR Left and Right Knees to Dashboard, taken from the center of the knee pivot bolt’s outer surface to the closest point forward acquired by swinging the tape measure in continually larger arcs until it contacts the dashboard. Also reference the angle of this measurement with respect to the horizontal for the outboard knee (KDA). See photograph.

SB, SK, ST Striker to Hip, Kneec, and Head, these measurements are to be taken in the X-Z plane measured from the forward most center point on the striker to the center of the H-point, outer knee bolt, and head target. When taking this measurement a firm device that can be rigidly connected to the striker should be used. Use a level. The angles of these measurements with respect to the

* Measurement used in Data Tape Reference Guide

1 Only outboard measurement is referenced in Data Tape Reference Guide
horizontal should also be recorded. The measurement in the Y (transverse) direction from the striker to the H-point should also be taken (SHY). See photograph.

The following measurements are to be made within a vertical transverse plane.

HS Head to Side Window, taken from the point where the dummy's nose meets his forehead (between his eyes) to the outside of the side window. In order to make this measurement, roll the window down to the exact height that allows a level measurement. Use a level. See photograph.

AD Arm to Door, taken from the outer surface of the elbow pivot bolt on a Hybrid II dummy to the first point it hits on the door. In the case of a Hybrid III dummy, measure from the bolt on the outer bicep. When a SID is used make the measurement from the center of the bottom of the arm segment where it meets the dummy's torso.

HD H-point to Door, taken from the H-point on the dummy to the closest point on the door. Use a level.

HR Head to Side Header, measure the shortest distance from the point where the dummy's nose meets his forehead (between his eyes) to the side edge of the header just above the window frame, directly adjacent to the dummy.

SHY Striker to H-point, taken from a rod rigidly connected to the forward most center point on the striker to the H-point. Use a level. See photograph.

KK Knee to Knee, for Hybrid II dummies measure the distance between knee pivot bolt head outer surfaces. For Hybrid III dummies measure the distance between the outboard knee clevis flange surfaces. (This measurement may not be exactly transverse)

ANGLES

SA Seat Back Angle, find this angle using the instructions provided by the manufacturer. If the manufacturer doesn't provide clear instructions contact the COTR.

PA Pelvic or Femur Angle, taken by inserting the pelvic angle gauge into the H-point gauging hole on the SID or the Hybrid III dummies and taking this angle with respect to the horizontal. Measure the angle of the line connecting the H-point hole and the outer knee pivot bolt hole on a Hybrid II dummy with respect to the horizontal, to find the femur angle.

SWA Steering Wheel Angle, find this by placing a straight edge against the steering wheel rim along the longitudinal plane. Then measure the acute angle of the straight edge with respect to the horizontal.

* Measurement used in Data Tape Reference Guide
1 Only outboard measurement is referenced in Data Tape Reference Guide
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCA</td>
<td>Steering Column Angle, measured with respect to the horizontal by placing an inclinometer on the center of the underside of the steering column.</td>
</tr>
<tr>
<td>NA</td>
<td>Measure the angle made when taking the measurement NR with respect to the horizontal.</td>
</tr>
<tr>
<td>KDA</td>
<td>Knee to Dash Angle, the angle that the measurement KD is taken at with respect to the horizontal. Only get this angle for the outboard knee. See photograph.</td>
</tr>
<tr>
<td>WA</td>
<td>Windshield Angle, place an inclinometer along the transverse center of the windshield exterior (measurement is made with respect to horizontal).</td>
</tr>
<tr>
<td>TA</td>
<td>Tibia Angle, use a straight edge to connect the dummy's knee and ankle bolts. Then place an inclinometer on the straight edge and measure the angle with respect to the horizontal.</td>
</tr>
</tbody>
</table>
DATA SHEET 32
CRASH TEST

NHTSA No.: C30102 Test Date: 11/19/02

Laboratory: TRC Inc. Test Technician(s): J. Jenkins

Impact Angle: 0° Belted Dummies: Yes No

Test Speed: X 32 to 40 km/h 0 to 48 km/h 0 to 56 km/h

Driver Dummy: 5th male 50th male Passenger Dummy: 5th female 50th male

1. Vehicle underbody painted
2. The speed measuring devices are in place and functioning.
3. The speed measuring devices are 1.5 m from the barrier (spec. 1.5 m) and 30 cm from the barrier (spec. is 30 cm)
4. Convertible top is in the closed position.
N/A – Not a convertible
5. Instrumentation and wires are placed so the motion of the dummies during impact is not affected.
6. Tires inflated to pressure on tire placard or if it does not have a tire placard because it is not a passenger car, then inflated to the tire pressure specified in the owner information.

240 kPa front left tire 240 kPa front right tire 240 kPa rear left tire 240 kPa rear right tire

240 kPa specified on the placard or in owner information 240 kPa specified on the placard or in owner information 240 kPa specified on the placard or in owner information 240 kPa specified on the placard or in owner information

7. Time zero markers and switches in place.
8. Pre test zero and shunt calibration adjustments performed and recorded
9. Dummy temperature meets requirements of section 12.2 of the test procedure.
10. Vehicle hood closed and latched
11. Transmission placed in neutral
12. Parking brake off
13. Ignition in the ON position
14. Doors closed and latched but not locked.
15. Posttest zero and shunt calibration checks performed and recorded
16. Actual test speed 39.2 km/h
17. Vehicle rebound from the barrier 56.4 cm
18. Describe whether the doors open after the test and what method is used to open the doors.

Left front door Easy
Right front door Easy
Left rear door NA
Right rear door NA

19. Describe the contact points of the dummy with the interior of the vehicle.

Passenger dummy Head contacted airbag and sun visor. Chest contacted airbag. Both knees contacted the glove box.
DATA SHEET 34
ACCIDENT INVESTIGATION MEASUREMENTS

NHTSA No.: C30102
Test Date: 11/19/02

Laboratory: TRC Inc. Test Technician(s): J. Jenkins

Impact Angle: 0° Belted Dummies: ___ Yes ___ No

Test Speed: ___ 32 to 40 km/h ___ 40 to 48 km/h ___ 0 to 56 km/h

Driver Dummy: ___ 5th female ___ 50th male Passenger Dummy: ___ 5th female ___ 50th male

Vehicle Year/Make/Model/Body Style: 2003/Chevrolet/Silverado/Pickup Truck

VIN: 1GCEC14X13Z131545

Wheelbase: 3387 Build Date: 08/02

Veh. Size Category: Pickup Test Weight: 2295.7

Front Overhang: 1004 Overall Width: 1967

Veh. Impact Speed: 39.2 Vel. Change1: 44.0 km/h

Collision Deformation Classification (CDC) Code: 12FDEW2

1 From integration of right rear seat crossmember X-axis acceleration.
Impact Mode: 0° Front

Crush Depth Dimensions¹:

\[C_1 = 340 \text{ mm} \]
\[C_2 = 407 \text{ mm} \]
\[C_3 = 442 \text{ mm} \]
\[C_4 = 444 \text{ mm} \]
\[C_5 = 399 \text{ mm} \]
\[C_6 = 354 \text{ mm} \]

Midpoint of Damage: \(D = 0 \text{ mm} \)
(Left of Vehicle Longitudinal Centerline)

Length of Damage Region:
\[L = 1829 \text{ mm} \]

REMARKS:

¹ Numbered from left to right of vehicle.
DATA SHEET 35
WINDSHIELD MOUNTING (FMVSS 212)

NHTSA No: C30102 Test Date: 11/19/02

Laboratory: TRC Inc. Test Technician(s): D. Summers

Impact Angle: 0° Belted Dummies: Yes No

Test Speed: 32 to 40 km/h 0 to 48 km/h 0 to 56 km/h

Driver Dummy: 5th female 50th male Passenger Dummy: 5th female 50th male

Most vehicle windshields are either bonded in place and covered with chrome or plastic strips or they are held to the body by a rubber retainer. It is difficult to determine the exact periphery of the windshield because the glazing edge is hidden from view. The test engineer will measure the perimeter inside the retainer or molding at several locations. After the impact test the covering over the glazing edge may be removed for exact measurement of the windshield periphery. Do not disturb the molding or retainer in the event of a noncompliance.

X 1. Describe from visual inspection how the windshield is mounted and describe any trim material.
 Plastic trim around perimeter, held by adhesive around inner perimeter.

X 2. Mark the longitudinal centerline of the windshield.

X 3. Measure pre-crash A, B, and C for the left side and record in the chart below.

X 4. Measure pre-crash D, E, and F for the right side and record in the chart below.

X 5. Measure from the edge of the retainer or molding to the edge of the windshield.
 Dimension G: 20 mm

X 6. Can a single thickness of copier type paper (as small a piece as necessary) slide between the windshield and the vehicle body?
 X No, pass.
 X Yes, go to 7.

X 7. Visibly mark the beginning and end of the portions of the periphery where the paper slides between the windshield and the vehicle body.

X 8. Measure and record post-crash A, B, C, D, E, and F such that the measurements do not include any of the parts of the windshield where the paper slides between the windshield and the vehicle body.

X 9. Calculate and record the percent retention for the right and left side of the windshield.

X 10. Is total right side percent retention less than 75%?
 Yes, FAIL
 No, Pass

X 11. Is total left side percent retention less than 75%?
 Yes, FAIL
 No, Pass
WINDSHIELD PERIPHERY MEASUREMENT

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Pre-crash mm</th>
<th>Post-crash mm</th>
<th>Percent Retention (Post-crash ÷ Pre-crash)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left side</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>700</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>665</td>
<td>665</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>880</td>
<td>880</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2245</td>
<td>2245</td>
<td>100</td>
</tr>
<tr>
<td>Right side</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>700</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>665</td>
<td>665</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>880</td>
<td>880</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2245</td>
<td>2245</td>
<td>100</td>
</tr>
<tr>
<td>Width of Molding</td>
<td></td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Indicate area of mounting failure.

FRONT VIEW OF WINDSHIELD

INDICATE WIDTH OF MOLDING

ZERO POINT (0,0)
DATA SHEET 36
WINDSHIELD ZONE INTRUSION (FMVSS 219)

NHTSA No.: C30102 Test Date: 11/19/02

Laboratory: TRC Inc. Test Technician(s): N. Eschevarria, D. Summers, K. Watkins

Impact Angle: 0° Belted Dummies: Yes X No

Test Speed: X 32 to 40 km/h ___ 0 to 48 km/h ___ 0 to 56 km/h

Driver Dummy: ___ 5th female X 50th male Passenger Dummy: ___ 5th female X 50th male

X 1. Place a 165 mm diameter rigid sphere, with a mass of 6.8 kg on the instrument panel so that it is simultaneously touching the instrument panel and the windshield. (571.219 86.1(a))

X 2. Roll the sphere from one side of the windshield to the other while marking on the windshield where the sphere contacts the windshield. (571.219 86.1(b))

X 3. From the outermost contactable points on the windshield draw a horizontal line to the edges of the windshield. (571.219 86.1(b))

X 4. Draw a line on the inner surface of the windshield that is 13 mm below the line determined in items 2 and 3.

X 5. After the crash test, record any points where a part of the exterior of the vehicle has marked, penetrated, or broken the windshield.

SKETCH OF FRONT VIEW OF WINDSHIELD:

Provide all dimensions necessary to reproduce the protected area.

FRONT VIEW OF WINDSHIELD

A

D

E

X

Y

ZERO POINT (0,0)

LOWER EDGE OF PROTECTED ZONE

A. Windshield Dimensions

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1400</td>
<td>350</td>
<td>1760</td>
<td>665</td>
<td>447</td>
<td>915</td>
</tr>
</tbody>
</table>
AREA OF PROTECTED ZONE FAILURES:

B. Provide coordinates of the area that the protected zone was penetrated more than 0.25 inches by a vehicle component other than one which is normally in contact with the windshield.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Provide coordinates of the area beneath the protected zone template that the inner surface of the windshield was penetrated by a vehicle component.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:

No penetration into or beneath the protected zone.
DATA SHEET 37
FUEL SYSTEM INTEGRITY (FMVSS 301)

TEST VEHICLE NHTSA NO.: C30102; TEST DATE: 11/19/02

VEHICLE YEAR/MAKE/MODEL/BODY STYLE: 2003/Chevrolet/Silverado/Pickup Truck

TYPE OF IMPACT: 0° Front

STODDARD SOLVENT SPILLAGE MEASUREMENT:

A. From impact until vehicle motion ceases —
 Actual = 0 grams. (Maximum Allowable = 28 grams)

B. For 5 minute period after vehicle motion ceases —
 Actual = 0 grams. (Maximum Allowable = 142 grams)

C. For next 25 minutes —
 Actual = 0 grams. (Maximum Allowable = 28 grams/minute)

D. Provide Spillage Details: None

REMARKS:

No spillage occurred during the interval between test time and the start of the rollover.
A. TEST PHASE = 0° TO 90°

Determination of Stoddard Solvent Collection Time Period:

1. Rollover Fixture 90° Rotation Time = 1 minutes, 30 seconds
 (Specified Range is 1 to 3 minutes)

2. FMVSS 301 Position Hold Time = 5 minutes, 0 seconds

3. TOTAL = 6 minutes, 30 seconds

4. NEXT WHOLE MINUTE INTERVAL = 7 minutes

Actual Test Vehicle Stoddard Solvent Spillage:

1. First 5 minutes from onset of rotation = 0 grams
 (142 grams allowed)

2. 6th minute = 0 grams
 (28 grams allowed)

3. 7th minute = 0 grams
 (28 grams allowed)

4. 8th minute (if required) = NA grams
 (28 grams allowed)

Provide Details of Stoddard Solvent Spillage Locations – None
B. TEST PHASE = 90° TO 180°

Determination of Stoddard Solvent Collection Time Period:

1. Rollover Fixture 90° Rotation Time = 1__ minutes, 30__ seconds
 (Specified Range is 1 to 3 minutes)

2. FMVSS 301 Position Hold
 Time = 5 minutes, 0 seconds

3. TOTAL = 6__ minutes, 30__ seconds

4. NEXT WHOLE MINUTE INTERVAL = 7__ minutes

Actual Test Vehicle Stoddard Solvent Spillage:

1. First 5 minutes from onset of rotation = 0__ grams
 (142 grams allowed)

2. 6th minute = 0__ grams
 (28 grams allowed)

3. 7th minute = 0__ grams
 (28 grams allowed)

4. 8th minute (if required) = NA__ grams
 (28 grams allowed)

Provide Details of Stoddard Solvent Spillage Locations – None
C. TEST PHASE = 180° TO 270°

Determination of Stoddard Solvent Collection Time Period:

1. Rollover Fixture 90° Rotation Time = 1 minutes, 30 seconds

 (Specified Range is 1 to 3 minutes)

2. FMVSS 301 Position Hold
 Time = 5 minutes, 0 seconds

3. TOTAL = 6 minutes, 30 seconds

4. NEXT WHOLE MINUTE INTERVAL = 7 minutes

Actual Test Vehicle Stoddard Solvent Spillage:

1. First 5 minutes from onset of rotation = 0 grams
 (142 grams allowed)

2. 6th minute = 0 grams
 (28 grams allowed)

3. 7th minute = 0 grams
 (28 grams allowed)

4. 8th minute (if required) = NA grams
 (28 grams allowed)

Provide Details of Stoddard Solvent Spillage Locations – None
D. TEST PHASE = 270° TO 360°

Determination of Stoddard Solvent Collection Time Period:

1. Rollover Fixture 90° Rotation Time = 1 minute, 30 seconds

(Specified Range is 1 to 3 minutes)

2. FMVSS 301 Position Hold
 Time = 5 minutes, 0 seconds

3. TOTAL = 6 minutes, 30 seconds

4. NEXT WHOLE MINUTE INTERVAL = 7 minutes

 Actual Test Vehicle Stoddard Solvent Spillage:

1. First 5 minutes from onset of rotation = 0 grams
 (142 grams allowed)

2. 6th minute = 0 grams
 (28 grams allowed)

3. 7th minute = 0 grams
 (28 grams allowed)

4. 8th minute (if required) = NA grams
 (28 grams allowed)

Provide Details of Stoddard Solvent Spillage Locations – None
Section 6

Test Data
C30102 / 2003 CHEVROLET SILVERADO 1500 2WD REGULAR CAB
DRIVER HEAD Z-AXIS ACCELERATION
FMVSS208 FLAT FRONTAL/UNBELTED

TRC INC.

ACCELERATION (G x 10^-4)

TIME (MS)

CHANNEL: Hed261 FILTER: CH. CLASS 1000

PEAK DATA: 30.19 G @ 112.24 MS; -5.21 G @ 50.32 MS
CHANNEL: NEKX11 FILTER: CH. CLASS 600

PEAK DATA: 16.35 N·M @ 144.98 MS; -10.16 N·M @ 234.32 MS
C30102 / 2003 CHEVROLET SILVERADO 1500 2WD REGULAR CAB
DRIVER NECK MOMENT ABOUT Y AXIS
FMYSS288 FLAT FRONTAL/UNBELTED
TEST NUMBER: 021119-1

TORQUE (N-m)

CHANNEL: NEKY11 FILTER: CH: CLASS 680
TIME (MS)

PEAK DATA: 45.09 N-m @ 131.92 MS; -33.96 N-m @ 88.48 MS
C30102 / 2003 CHEVROLET SILVERADO 1500 2WD REGULAR CAB
DRIVER NECK MOMENT ABOUT Z AXIS
FNJ33280 FLAT FRONTAL/UNBELTED
TEST NUMBER: 021119-1

CHANNEL: NEKZM1 FILTER: CH. CLASS 600
PEAK DATA: 7.30 N-M @ 212.80 MS; -17.29 N-M @ 146.00 MS
C30102 / 2003 CHEVROLET SILVERADO 1500 2WD REGULAR CAB
RIGHT FRONT PASSENGER HEAD Z-AXIS ACCELERATION
FMYS288 FLAT FRONTAL/UNBELTED

ACCELERATION (G X 10^-1)

CHANNEL: MEDZC2 FILTER: CH. CLASS 1000
PEAK DATA: 24.14 G @ 76.88 MS, -6.86 G @ 51.44 MS
C30102 / 2003 CHEVROLET SILVERADO 1500 2WD REGULAR CAB
RIGHT FRONT PASSENGER HEAD RESULTANT ACCELERATION
FMVSS208 FLAT FRONTAL/UNBELTED

TEST NUMBER: 02119-1

ACCELERATION (G X 10^-3)

TIME (MS)

CHANNEL: HEDRG2 FILTER: CH. CLASS 1000
PEAK DATA: 34.16 G @ 94.32 MS, 0.87 G @ 36.72 MS
C30102 / 2003 CHEVROLET SILVERADO 1500 2WD REGULAR CAB
RIGHT FRONT PASSENGER NECK X-AXIS SHEAR FORCE
FMVSS208 FLAT FRONTAL/UNBELTED
TEST NUMBER: 021119-1

FORCE (IN X 10^4)

-20 10 40 70 100 130 160 190 220 250 280 310
 TIME (MS)

CHANNEL: NEKF2 FILTER: CH. CLASS 1000
PEAK DATA: 763.98 N @ 97.04 MS; -233.78 N @ 142.16 MS
C301B2 / 2003 CHEVROLET SILVERADO 1500 2WD REGULAR CAB
RIGHT FRONT PASSENGER NECK MOMENT ABOUT Z AXIS
FMYSS208 FLAT FRONTAL/UNBELTED

TEST NUMBER: 021119-1

CHANNEL: NEKZN2 FILTER: CH. CLASS 6B0
PEAK DATA: 1.66 N·M @ 50.96 MS, -3.31 N·M @ 162.40 MS
C30102 / 2003 CHEVROLET SILVERADO 1500 2WD REGULAR CAB
RIGHT FRONT PASSENGER CHEST X-AXIS ACCELERATION
FMVSS208 FLAT FRONTAL/UNBELTED TEST NUMBER: 021119-1

ACCELERATION (G x 10^-1)

TIME (MS)

CHANNEL: GSTXG2 FILTER: CH. CLASS 180 PEAK DATA: 1.68 G @ 143.68 MS; -41.57 G @ 83.60 MS
C30102 / 2003 CHEVROLET SILVERADO 1500 2WD REGULAR CAB
RIGHT FRONT PASSENGER CHEST Y-AXIS ACCELERATION
FNYSS208 FLAT FRONTAL/UNBELTED
TEST NUMBER: 021119-1

ACCELERATION (G X 10^-1)

CHANNEL: CSTYG2 FILTER: CH. CLASS 100
PEAK DATA: 3.32 G @ 77.36 MS; -3.00 G @ 40.72 MS
C30192 / 2003 CHEVROLET SILVERADO 1500 2WD REGULAR CAB
LEFT REAR SEAT CROSSEMBCR X-AXIS ACCELERATION
FMY35208 FLAT FRONTAL/UNBELTED
TEST NUMBER: 021119-1

CHANNEL: LSXXG FILTER: CH. CLASS 60
PEAK DATA: 1.35 G @ 195.12 MS; -27.48 G @ 27.36 MS

ACCELERATION (G X 10^-1)
TIME (MS)
C30182 / 2003 CHEVROLET SILVERADO 1500 2WD REGULAR CAB
RIGHT REAR SEAT CROSSMEMBER X-AXIS ACCELERATION

FMYS5208 FLAT FRONTAL/UNBELTED

TEST NUMBER: 021119-1

ACCELERATION (G x 10^-1)

CHANNEL: RSXG
FILTER: CH. CLASS 60
PEAK DATA: 1.06 G @ 131.68 MS; -28.64 G @ 29.84 MS
See Data Acquisition Explanations
ENGINE BOTTOM X-AXIS ACCELERATION
FMVSS208 FLAT FRONTAL/UNBELTED

ACCELERATION (G X 10^-1)

TIME (MS)

CHANNEL: BENDG
FILTER: CH. CLASS GD

PEAK DATA: 1.92 G @ 150.32 MS, -4.49 G @ 51.12 MS
Section 7

Photographs
<table>
<thead>
<tr>
<th>Image</th>
<th>Image Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pre-Test Front View</td>
<td>7-5</td>
</tr>
<tr>
<td>2</td>
<td>Post-Test Front View</td>
<td>7-6</td>
</tr>
<tr>
<td>3</td>
<td>Pre-Test Left Side View</td>
<td>7-7</td>
</tr>
<tr>
<td>4</td>
<td>Post-Test Left Side View</td>
<td>7-8</td>
</tr>
<tr>
<td>5</td>
<td>Pre-Test Right Side View</td>
<td>7-9</td>
</tr>
<tr>
<td>6</td>
<td>Post-Test Right Side View</td>
<td>7-10</td>
</tr>
<tr>
<td>7</td>
<td>Pre-Test Left Front Three-Quarter View</td>
<td>7-11</td>
</tr>
<tr>
<td>8</td>
<td>Post-Test Left Front Three-Quarter View</td>
<td>7-12</td>
</tr>
<tr>
<td>9</td>
<td>Pre-Test Right Rear Three-Quarter View</td>
<td>7-13</td>
</tr>
<tr>
<td>10</td>
<td>Post-Test Right Rear Three-Quarter View</td>
<td>7-14</td>
</tr>
<tr>
<td>11</td>
<td>Pre-Test Windshield View</td>
<td>7-15</td>
</tr>
<tr>
<td>12</td>
<td>Post-Test Windshield View</td>
<td>7-16</td>
</tr>
<tr>
<td>13</td>
<td>Pre-Test Engine Compartment View</td>
<td>7-17</td>
</tr>
<tr>
<td>14</td>
<td>Post-Test Engine Compartment View</td>
<td>7-18</td>
</tr>
<tr>
<td>15</td>
<td>Pre-Test Steering Column and Firewall - Under Hood View</td>
<td>7-19</td>
</tr>
<tr>
<td>16</td>
<td>Post-Test Steering Column and Firewall - Under Hood View</td>
<td>7-20</td>
</tr>
<tr>
<td>17</td>
<td>Pre-Test Steering Column and Steering Box View</td>
<td>7-21</td>
</tr>
<tr>
<td>18</td>
<td>Post-Test Steering Column and Steering Box View</td>
<td>7-22</td>
</tr>
<tr>
<td>19</td>
<td>Pre-Test Steering Column and Firewall - Interior View</td>
<td>7-23</td>
</tr>
<tr>
<td>20</td>
<td>Post-Test Steering Column and Firewall - Interior View</td>
<td>7-24</td>
</tr>
<tr>
<td>21</td>
<td>Pre-Test Front Underbody View</td>
<td>7-25</td>
</tr>
<tr>
<td>22</td>
<td>Post-Test Front Underbody View</td>
<td>7-26</td>
</tr>
<tr>
<td>23</td>
<td>Pre-Test Mid Underbody View</td>
<td>7-27</td>
</tr>
<tr>
<td>24</td>
<td>Post-Test Mid Underbody View</td>
<td>7-28</td>
</tr>
<tr>
<td>25</td>
<td>Pre-Test Rear Underbody View</td>
<td>7-29</td>
</tr>
<tr>
<td>26</td>
<td>Post-Test Rear Underbody View</td>
<td>7-30</td>
</tr>
<tr>
<td>27</td>
<td>Pre-Test Fuel Tank View</td>
<td>7-31</td>
</tr>
<tr>
<td>28</td>
<td>Post-Test Fuel Tank View</td>
<td>7-32</td>
</tr>
<tr>
<td>29</td>
<td>Pre-Test Fuel Lines and Filter View</td>
<td>7-33</td>
</tr>
<tr>
<td>Image</td>
<td>Image Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>30</td>
<td>Post-Test Fuel Lines and Filter View</td>
<td>7-34</td>
</tr>
<tr>
<td>31</td>
<td>Pre-Test Fuel Filler Neck View</td>
<td>7-35</td>
</tr>
<tr>
<td>32</td>
<td>Post-Test Fuel Filler Neck View</td>
<td>7-36</td>
</tr>
<tr>
<td>33</td>
<td>Pre-Test Fuel Filler Cap View</td>
<td>7-37</td>
</tr>
<tr>
<td>34</td>
<td>Post-Test Fuel Filler Cap View</td>
<td>7-38</td>
</tr>
<tr>
<td>35</td>
<td>Pre-Test Driver Dummy Front View</td>
<td>7-39</td>
</tr>
<tr>
<td>36</td>
<td>Post-Test Driver Dummy Front View</td>
<td>7-40</td>
</tr>
<tr>
<td>37</td>
<td>Pre-Test Driver Dummy Position View</td>
<td>7-41</td>
</tr>
<tr>
<td>38</td>
<td>Post-Test Driver Dummy Position View</td>
<td>7-42</td>
</tr>
<tr>
<td>39</td>
<td>Pre-Test Driver Dummy & Vehicle Intrusion View</td>
<td>7-43</td>
</tr>
<tr>
<td>40</td>
<td>Post-Test Driver Dummy & Vehicle Intrusion View</td>
<td>7-44</td>
</tr>
<tr>
<td>41</td>
<td>Pre-Test Passenger Dummy Front View</td>
<td>7-45</td>
</tr>
<tr>
<td>42</td>
<td>Post-Test Passenger Dummy Front View</td>
<td>7-46</td>
</tr>
<tr>
<td>43</td>
<td>Pre-Test Passenger Dummy Position View</td>
<td>7-47</td>
</tr>
<tr>
<td>44</td>
<td>Post-Test Passenger Dummy Position View</td>
<td>7-48</td>
</tr>
<tr>
<td>45</td>
<td>Pre-Test Passenger Dummy & Vehicle Intrusion View</td>
<td>7-49</td>
</tr>
<tr>
<td>46</td>
<td>Post-Test Passenger Dummy & Vehicle Intrusion View</td>
<td>7-50</td>
</tr>
<tr>
<td>47</td>
<td>Post-Test Driver Dummy View</td>
<td>7-51</td>
</tr>
<tr>
<td>48</td>
<td>Post-Test Driver Dummy Head Contact - View 1</td>
<td>7-52</td>
</tr>
<tr>
<td>49</td>
<td>Post-Test Driver Dummy Head Contact - View 2</td>
<td>7-53</td>
</tr>
<tr>
<td>50</td>
<td>Pre-Test Driver Dummy Knee Bolster View</td>
<td>7-54</td>
</tr>
<tr>
<td>51</td>
<td>Post-Test Driver Dummy Knee Contact - View 1</td>
<td>7-55</td>
</tr>
<tr>
<td>52</td>
<td>Post-Test Driver Dummy Knee Contact - View 2</td>
<td>7-56</td>
</tr>
<tr>
<td>53</td>
<td>Post-Test Passenger Dummy View</td>
<td>7-57</td>
</tr>
<tr>
<td>54</td>
<td>Post-Test Passenger Dummy Head Contact - View 1</td>
<td>7-58</td>
</tr>
<tr>
<td>55</td>
<td>Post-Test Passenger Dummy Head Contact - View 2</td>
<td>7-59</td>
</tr>
<tr>
<td>56</td>
<td>Pre-Test Passenger Dummy Knee Bolster View</td>
<td>7-60</td>
</tr>
<tr>
<td>57</td>
<td>Post-Test Passenger Dummy Knee Contact - View 1</td>
<td>7-61</td>
</tr>
<tr>
<td>58</td>
<td>Post-Test Passenger Dummy Knee Contact - View 2</td>
<td>7-62</td>
</tr>
</tbody>
</table>
List of Photographs, Continued

<table>
<thead>
<tr>
<th>Image</th>
<th>Image Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>Post-Test Vehicle on Static Rollover Device - 90° View</td>
<td>7-63</td>
</tr>
<tr>
<td>60</td>
<td>Pre-Test Vehicle Ballast View</td>
<td>7-64</td>
</tr>
<tr>
<td>61</td>
<td>Pre-Test Vehicle Certification and Recommended Tire Pressure Label View</td>
<td>7-65</td>
</tr>
<tr>
<td>62</td>
<td>Pre-Test Vehicle Window Slicker</td>
<td>7-66</td>
</tr>
</tbody>
</table>
Appendix A

Test Equipment List and Calibration Information
<table>
<thead>
<tr>
<th>Dummy</th>
<th>229n</th>
<th>Type</th>
<th>HYBRID III 50TH</th>
<th>Description</th>
<th>NHTSA - 229n HYBRID III 50TH. CAL DUB 4-14-03 (DKS 11-18-02)J211</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td>Location</td>
<td>Model</td>
<td>Name</td>
<td>Manufacturer</td>
<td>Sens./mV/V/U</td>
</tr>
<tr>
<td>HEDXG</td>
<td>Head Accel X</td>
<td>7231C</td>
<td>GB86</td>
<td>Endevco</td>
<td>0.01964</td>
</tr>
<tr>
<td>HEDYG</td>
<td>Head Accel Y</td>
<td>7231C</td>
<td>GB77</td>
<td>Endevco</td>
<td>0.01926</td>
</tr>
<tr>
<td>HEDZG</td>
<td>Head Accel Z</td>
<td>7231C</td>
<td>A54F</td>
<td>Endevco</td>
<td>0.01948</td>
</tr>
<tr>
<td>NEKXF</td>
<td>Neck Force X</td>
<td>1716A</td>
<td>1716A-1ZZ-2-FX</td>
<td>Denton</td>
<td>0.00019427</td>
</tr>
<tr>
<td>NEKYF</td>
<td>Neck Force Y</td>
<td>1716A</td>
<td>1716A-1ZZ-2-FY</td>
<td>Denton</td>
<td>0.000189492</td>
</tr>
<tr>
<td>NEKZF</td>
<td>Neck Force Z</td>
<td>1716A</td>
<td>1716A-1ZZ-2-FZ</td>
<td>Denton</td>
<td>0.000699943</td>
</tr>
<tr>
<td>NEKXM</td>
<td>Neck Moment X</td>
<td>1716A</td>
<td>1716A-1ZZ-2-MX</td>
<td>Denton</td>
<td>0.005598309</td>
</tr>
<tr>
<td>NEKYM</td>
<td>Neck Moment Y</td>
<td>1716A</td>
<td>1716A-1ZZ-2-MY</td>
<td>Denton</td>
<td>0.006140531</td>
</tr>
<tr>
<td>NEKZM</td>
<td>Neck Moment Z</td>
<td>1716A</td>
<td>1716A-1ZZ-2-MZ</td>
<td>Denton</td>
<td>0.008429027</td>
</tr>
<tr>
<td>CSTXG</td>
<td>Chest Accel X</td>
<td>7231C</td>
<td>C14133</td>
<td>Endevco</td>
<td>0.02741</td>
</tr>
<tr>
<td>CSTYG</td>
<td>Chest Accel Y</td>
<td>7231C</td>
<td>C14317</td>
<td>Endevco</td>
<td>0.02739</td>
</tr>
<tr>
<td>CSTZG</td>
<td>Chest Accel Z</td>
<td>7231C</td>
<td>C14341</td>
<td>Endevco</td>
<td>0.0234</td>
</tr>
<tr>
<td>CSTXD</td>
<td>Chest Deflection X</td>
<td>14CB1-2847</td>
<td>14CB1-2847-229</td>
<td>Servo</td>
<td>1.1375</td>
</tr>
<tr>
<td>LPMZF</td>
<td>Left Femur Force Z 603</td>
<td>2430T</td>
<td>2430T-901</td>
<td>GSB</td>
<td>0.000071249</td>
</tr>
<tr>
<td>RPMZF</td>
<td>Right Femur Force Z 744</td>
<td>2430T</td>
<td>2430T-902</td>
<td>GSB</td>
<td>0.000070313</td>
</tr>
<tr>
<td>Channel</td>
<td>Location</td>
<td>Model</td>
<td>Name</td>
<td>Manufacturer</td>
<td>Sens/mV/V/U</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------</td>
<td>-------</td>
<td>----------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HEDXG</td>
<td>Head Accel X</td>
<td>7231C</td>
<td>AD4H9</td>
<td>Endevco</td>
<td>0.01992</td>
</tr>
<tr>
<td>HBDYG</td>
<td>Head Accel Y</td>
<td>7231C</td>
<td>AD4J7</td>
<td>Endevco</td>
<td>0.01974</td>
</tr>
<tr>
<td>HEDZG</td>
<td>Head Accel Z</td>
<td>7231C</td>
<td>AD4J8</td>
<td>Endevco</td>
<td>0.01942</td>
</tr>
<tr>
<td>NBEKF</td>
<td>Neck Force X</td>
<td>1716</td>
<td>1716-0235-FX</td>
<td>Dentsa</td>
<td>0.000191999</td>
</tr>
<tr>
<td>NEKYP</td>
<td>Neck Force Y</td>
<td>1716</td>
<td>1716-0235-FY</td>
<td>Dentsa</td>
<td>0.000185468</td>
</tr>
<tr>
<td>NBEKF</td>
<td>Neck Force Z</td>
<td>1716</td>
<td>1716-0235-FZ</td>
<td>Dentsa</td>
<td>0.000093686</td>
</tr>
<tr>
<td>NEKKM</td>
<td>Neck Moment X</td>
<td>1716</td>
<td>1716-0235-MX</td>
<td>Dentsa</td>
<td>0.0015842832</td>
</tr>
<tr>
<td>NEKKM</td>
<td>Neck Moment Y</td>
<td>1716</td>
<td>1716-0235-MY</td>
<td>Dentsa</td>
<td>0.0015910088</td>
</tr>
<tr>
<td>NEKZM</td>
<td>Neck Moment Z</td>
<td>1716</td>
<td>1716-0235-MZ</td>
<td>Dentsa</td>
<td>0.001586124</td>
</tr>
<tr>
<td>CSTXG</td>
<td>Chest Accel X</td>
<td>7231C</td>
<td>ACTRA</td>
<td>Endevco</td>
<td>0.01976</td>
</tr>
<tr>
<td>CSTYG</td>
<td>Chest Accel Y</td>
<td>7231C</td>
<td>ACTTA</td>
<td>Endevco</td>
<td>0.01922</td>
</tr>
<tr>
<td>CSTZG</td>
<td>Chest Accel Z</td>
<td>7231C</td>
<td>ACTW0</td>
<td>Endevco</td>
<td>0.01972</td>
</tr>
<tr>
<td>CSTXCD</td>
<td>Chest Deflection X</td>
<td>14CB1-2847</td>
<td>85427-1</td>
<td>Servo</td>
<td>1.1347</td>
</tr>
<tr>
<td>LFMZF</td>
<td>Left Femur Force Z 60</td>
<td>2430T</td>
<td>2430T-984</td>
<td>GSE</td>
<td>0.000071646</td>
</tr>
<tr>
<td>RFMZF</td>
<td>Right Femur Force Z 28</td>
<td>2430T</td>
<td>2430T-985</td>
<td>GSE</td>
<td>0.000070088</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>-------------------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>0001</td>
<td>EVENT</td>
<td>SYNCC</td>
<td>SYNCC</td>
<td>5.12</td>
<td>V</td>
</tr>
<tr>
<td>0002</td>
<td>AD4H9</td>
<td>HEDXG1</td>
<td>Driv. Head Accel X</td>
<td>Rear</td>
<td>401.506642</td>
</tr>
<tr>
<td>0003</td>
<td>AD4J7</td>
<td>HEDYG1</td>
<td>Driv. Head Accel Y</td>
<td>Left</td>
<td>399.03359</td>
</tr>
<tr>
<td>0004</td>
<td>AD4J8</td>
<td>HEDZG1</td>
<td>Driv. Head Accel Z</td>
<td>Up</td>
<td>399.46322</td>
</tr>
<tr>
<td>0005</td>
<td>1716-023-4X</td>
<td>NEKFX1</td>
<td>Driv. Neck Force X</td>
<td>Hrd</td>
<td>8888.9351</td>
</tr>
<tr>
<td>0008</td>
<td>1716-023-5X</td>
<td>NEKXM1</td>
<td>Driv. Neck Moment X</td>
<td>Hrd</td>
<td>282.67335</td>
</tr>
<tr>
<td>0009</td>
<td>1716-023-5Y</td>
<td>NEKYM1</td>
<td>Driv. Neck Moment Y</td>
<td>Chn</td>
<td>282.18741</td>
</tr>
<tr>
<td>0010</td>
<td>1716-023-5Z</td>
<td>NEKZM1</td>
<td>Driv. Neck Moment Z</td>
<td>Chn</td>
<td>282.15881</td>
</tr>
<tr>
<td>0011</td>
<td>ACTR4</td>
<td>CSTXG1</td>
<td>Driv. Chest Accel X</td>
<td>Fwd</td>
<td>398.62971</td>
</tr>
<tr>
<td>0012</td>
<td>ACTT4</td>
<td>CSTYG1</td>
<td>Driv. Chest Accel Y</td>
<td>Left</td>
<td>397.39578</td>
</tr>
<tr>
<td>0013</td>
<td>ACTW0</td>
<td>CSTZG1</td>
<td>Driv. Chest Accel Z</td>
<td>Down</td>
<td>399.43828</td>
</tr>
<tr>
<td>0014</td>
<td>BS427-1</td>
<td>CSTXD1</td>
<td>Driv. Chest Deflection X</td>
<td>Simm</td>
<td>100.27124</td>
</tr>
<tr>
<td>0015</td>
<td>2430T-984</td>
<td>LFMMZ1</td>
<td>Driv. Left Femur Force Z 60</td>
<td>Knee</td>
<td>13332.550</td>
</tr>
<tr>
<td>0016</td>
<td>2430T-985</td>
<td>RFMMZ1</td>
<td>Driv. Right Femur Force Z 28</td>
<td>Knee</td>
<td>13354.848</td>
</tr>
<tr>
<td>0017</td>
<td>GB36</td>
<td>HEDXG2</td>
<td>Pass. Head Accel X</td>
<td>Rwd</td>
<td>400.04688</td>
</tr>
<tr>
<td>0018</td>
<td>GB77</td>
<td>HEDYG2</td>
<td>Pass. Head Accel Y</td>
<td>Lft</td>
<td>402.78171</td>
</tr>
<tr>
<td>0019</td>
<td>AS4F</td>
<td>HEDZG2</td>
<td>Pass. Head Accel Z</td>
<td>Up</td>
<td>397.62357</td>
</tr>
<tr>
<td>0026</td>
<td>CI4135</td>
<td>CSTXG2</td>
<td>Pass. Chest Accel X</td>
<td>Fwd</td>
<td>397.43221</td>
</tr>
<tr>
<td>0027</td>
<td>CI4317</td>
<td>CSTYG2</td>
<td>Pass. Chest Accel Y</td>
<td>Lft</td>
<td>397.72241</td>
</tr>
<tr>
<td>0028</td>
<td>CI4341</td>
<td>CSTZC2</td>
<td>Pass. Chest Accel Z</td>
<td>Down</td>
<td>397.82439</td>
</tr>
<tr>
<td>0029</td>
<td>14CB1-2847-229</td>
<td>CSTXG2</td>
<td>Pass. Chest Deflection X</td>
<td>Simm</td>
<td>100.02442</td>
</tr>
<tr>
<td>0030</td>
<td>2430T-901</td>
<td>LFMMZ2</td>
<td>Pass. Left Femur Force Z 603</td>
<td>Knee</td>
<td>13332.218</td>
</tr>
<tr>
<td>Channel Report</td>
<td>11/19/2002 10:13:30 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0031 2430T-902 RFMZ2F Pass. Right Femur Force Z 744 Knee 13336.494 N</td>
<td>11/14/2002 OK 229a GSE 2430T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0032 141089 LSXXG1 LEFT REAR SEAT RR 1015.7319 g</td>
<td>6/4/2002 OK -1 Endecco 7264-2000TZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chan. #</td>
<td>Sensor #</td>
<td>Mnemonic</td>
<td>Description</td>
<td>Dir.</td>
<td>Range</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>----------------------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>0001</td>
<td>J41087</td>
<td>LSXYG1</td>
<td>LEFT REAR SEAT</td>
<td>LT</td>
<td>1023.2918</td>
</tr>
<tr>
<td>0002</td>
<td>P23985</td>
<td>RSXG1</td>
<td>RIGHT REAR SEAT</td>
<td>FWD</td>
<td>984.57751</td>
</tr>
<tr>
<td>0003</td>
<td>P23823</td>
<td>RSXYG1</td>
<td>RIGHT REAR SEAT</td>
<td>RT</td>
<td>1004.9264</td>
</tr>
<tr>
<td>0004</td>
<td>J35701</td>
<td>TSXG1</td>
<td>TOP OF ENGINE X-AXIS</td>
<td>FWD</td>
<td>1520.5511</td>
</tr>
<tr>
<td>0005</td>
<td>J36226</td>
<td>TSXG1</td>
<td>BOTTOM OF ENGINE X-AXIS</td>
<td>FWD</td>
<td>1500.3531</td>
</tr>
<tr>
<td>0006</td>
<td>J11642</td>
<td>RFCXG1</td>
<td>RIGHT FRONT BRAKE</td>
<td>FWD</td>
<td>1025.9045</td>
</tr>
<tr>
<td>0007</td>
<td>10017</td>
<td>LFCXG1</td>
<td>LEFT FRONT BRAKE</td>
<td>RR</td>
<td>986.51252</td>
</tr>
<tr>
<td>0008</td>
<td>ACC501</td>
<td>DPCXG1</td>
<td>INSTRUMENT PANEL TOP</td>
<td>RR</td>
<td>1019.3923</td>
</tr>
<tr>
<td>0009</td>
<td>10084</td>
<td>RDKZG1</td>
<td>REAR DECK Z-AXIS</td>
<td>UP</td>
<td>982.81984</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>DAUC</td>
<td>EVENT</td>
<td>0001</td>
<td>3.100 / 3.114 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>AD499</td>
<td>0002</td>
<td>3.100 / 3.129 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>AD497</td>
<td>0003</td>
<td>3.100 / 3.120 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>AD498</td>
<td>0004</td>
<td>3.100 / 3.120 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>1716-0235-FX</td>
<td>0005</td>
<td>3.700 / 3.707 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>1716-0235-FY</td>
<td>0006</td>
<td>3.700 / 3.704 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>1716-0235-FZ</td>
<td>0007</td>
<td>3.700 / 3.832 Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>1716-0235-MX</td>
<td>0008</td>
<td>3.700 / 3.720 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>1716-0235-MY</td>
<td>0009</td>
<td>3.700 / 3.716 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>1716-0235-MZ</td>
<td>0010</td>
<td>3.700 / 3.659 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>ACTR4</td>
<td>0011</td>
<td>3.100 / 3.116 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>ACTT4</td>
<td>0012</td>
<td>3.100 / 3.126 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>ACTW0</td>
<td>0013</td>
<td>3.100 / 3.141 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>85427-1</td>
<td>0014</td>
<td>5.000 / 3.827 Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>2430T-984</td>
<td>0015</td>
<td>3.700 / 3.722 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>2430T-985</td>
<td>0016</td>
<td>3.700 / 3.732 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>GB86</td>
<td>0017</td>
<td>3.100 / 3.163 Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>GB77</td>
<td>0018</td>
<td>3.100 / 3.151 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>A54F</td>
<td>0019</td>
<td>3.100 / 3.148 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>1716A-1222-FX</td>
<td>0020</td>
<td>3.700 / 3.710 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>1716A-1222-FY</td>
<td>0021</td>
<td>3.700 / 3.712 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>1716A-1222-FZ</td>
<td>0022</td>
<td>3.700 / 3.654 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>1716A-1222-MX</td>
<td>0023</td>
<td>3.700 / 3.710 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>1716A-1222-MY</td>
<td>0024</td>
<td>3.700 / 3.713 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAU</td>
<td>Sensor</td>
<td>Change</td>
<td>Reference Voltage / Value / Rang</td>
<td>Shunt 1 (+)</td>
<td>Shunt 2 (-)</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>--------</td>
<td>---------------------------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>DAUC</td>
<td>1716A-1222-MZ</td>
<td>0025</td>
<td>3.700 3.643 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>C14135</td>
<td>0025</td>
<td>3.100 3.134 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>C14317</td>
<td>0027</td>
<td>3.100 3.134 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>C14341</td>
<td>0028</td>
<td>3.100 3.138 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>14CB1-2847-29</td>
<td>0029</td>
<td>5.000 3.207 Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>2430T-901</td>
<td>0030</td>
<td>3.700 3.698 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>2430T-902</td>
<td>0031</td>
<td>3.700 3.693 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUD</td>
<td>J41089</td>
<td>0032</td>
<td>3.000 2.847 Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUD</td>
<td>J41087</td>
<td>0001</td>
<td>3.000 2.700 Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUD</td>
<td>P23985</td>
<td>0002</td>
<td>3.000 3.157 Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUD</td>
<td>P23823</td>
<td>0003</td>
<td>3.000 3.159 Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUD</td>
<td>J35701</td>
<td>0004</td>
<td>3.000 2.785 Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUD</td>
<td>J36226</td>
<td>0005</td>
<td>3.000 3.234 Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUD</td>
<td>J11642</td>
<td>0006</td>
<td>3.000 2.803 Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUD</td>
<td>10017</td>
<td>0007</td>
<td>3.000 2.797 Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUD</td>
<td>ACC01</td>
<td>0008</td>
<td>3.000 2.607 Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUD</td>
<td>10084</td>
<td>0009</td>
<td>3.000 2.584 Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Shunt Measurement after Test

Name of Test: 021119-1
Date: 2002-11-19 11:28:16

<table>
<thead>
<tr>
<th>DAUC</th>
<th>Sensor</th>
<th>Channel</th>
<th>Shunt 1 (+)</th>
<th>Shunt 2 (-)</th>
<th>Shunt 3 (+) [K3600 only!]</th>
<th>Shunt 4 (-) [K3600 only!]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reference Voltage / Value / Rang</td>
<td>Reference Voltage / Value / Rang</td>
<td>Reference Voltage / Value / Value / V Rang</td>
<td>Reference Voltage / Value / V Rang</td>
</tr>
<tr>
<td>DAUC</td>
<td>EVENT</td>
<td>0001</td>
<td>3.100 3.114 No</td>
<td>3.100 3.129 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>AD4H9</td>
<td>0002</td>
<td>3.100 3.119 No</td>
<td>3.100 3.129 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>AD4J7</td>
<td>0003</td>
<td>3.100 3.119 No</td>
<td>3.100 3.129 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>AD4J8</td>
<td>0004</td>
<td>3.100 3.119 No</td>
<td>3.100 3.129 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>1716-0235-FX</td>
<td>0005</td>
<td>3.700 3.707 No</td>
<td>3.700 3.707 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>1716-0235-FY</td>
<td>0006</td>
<td>3.700 3.703 No</td>
<td>3.700 3.703 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>1716-0235-FZ</td>
<td>0007</td>
<td>3.700 3.832 Yes</td>
<td>3.700 3.832 Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>1716-0235-MX</td>
<td>0008</td>
<td>3.700 3.720 No</td>
<td>3.700 3.720 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>1716-0235-MY</td>
<td>0009</td>
<td>3.700 3.716 No</td>
<td>3.700 3.716 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>1716-0235-MZ</td>
<td>0010</td>
<td>3.700 3.659 No</td>
<td>3.700 3.659 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>ACTR4</td>
<td>0011</td>
<td>3.100 3.116 No</td>
<td>3.100 3.116 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>ACTR4</td>
<td>0012</td>
<td>3.100 3.126 No</td>
<td>3.100 3.126 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>ACTW0</td>
<td>0013</td>
<td>3.100 3.140 No</td>
<td>3.100 3.140 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>85427-1</td>
<td>0014</td>
<td>5.000 3.869 Yes</td>
<td>5.000 3.869 Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>2430T-984</td>
<td>0015</td>
<td>3.700 3.724 No</td>
<td>3.700 3.724 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>2430T-985</td>
<td>0016</td>
<td>3.700 3.732 No</td>
<td>3.700 3.732 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>GB86</td>
<td>0017</td>
<td>3.100 3.162 Yes</td>
<td>3.100 3.162 Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>GB77</td>
<td>0018</td>
<td>3.100 3.150 No</td>
<td>3.100 3.150 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>A54F</td>
<td>0019</td>
<td>3.100 3.148 No</td>
<td>3.100 3.148 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>1716A-1222-FX</td>
<td>0020</td>
<td>3.700 3.710 No</td>
<td>3.700 3.710 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>1716A-1222-FY</td>
<td>0021</td>
<td>3.700 3.712 No</td>
<td>3.700 3.712 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>1716A-1222-FZ</td>
<td>0022</td>
<td>3.700 3.654 No</td>
<td>3.700 3.654 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>1716A-1222-MX</td>
<td>0023</td>
<td>3.700 3.709 No</td>
<td>3.700 3.709 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>1716A-1222-MY</td>
<td>0024</td>
<td>3.700 3.714 No</td>
<td>3.700 3.714 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAU</td>
<td>Sensor</td>
<td>Chance</td>
<td>Shunt 1 (+)</td>
<td>Shunt 2 (-)</td>
<td>Shunt 3 (+) [K3600 only!</td>
<td>Shunt 4 (-) [K3600 only!</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>DAUC</td>
<td>1716A-1222-M</td>
<td>0025</td>
<td>3.700</td>
<td>3.663</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>C14135</td>
<td>0026</td>
<td>3.100</td>
<td>3.134</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>C14317</td>
<td>0027</td>
<td>3.100</td>
<td>3.134</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>C14341</td>
<td>0028</td>
<td>3.100</td>
<td>3.137</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>2430T-901</td>
<td>0029</td>
<td>5.000</td>
<td>3.215</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>2430T-902</td>
<td>0030</td>
<td>3.700</td>
<td>3.698</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>DAUC</td>
<td>J41089</td>
<td>0031</td>
<td>3.700</td>
<td>3.693</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>DAUD</td>
<td>J41087</td>
<td>0032</td>
<td>3.000</td>
<td>2.845</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DAUD</td>
<td>P23985</td>
<td>0001</td>
<td>3.000</td>
<td>2.697</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DAUD</td>
<td>P23823</td>
<td>0002</td>
<td>3.000</td>
<td>3.157</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DAUD</td>
<td>J35701</td>
<td>0003</td>
<td>3.000</td>
<td>3.159</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DAUD</td>
<td>J36226</td>
<td>0004</td>
<td>3.000</td>
<td>99.999</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DAUD</td>
<td>J11642</td>
<td>0005</td>
<td>3.000</td>
<td>3.237</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DAUD</td>
<td>10017</td>
<td>0006</td>
<td>3.000</td>
<td>2.794</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DAUD</td>
<td>J10084</td>
<td>0007</td>
<td>3.000</td>
<td>2.787</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DAUD</td>
<td>ACC01</td>
<td>0008</td>
<td>3.000</td>
<td>2.603</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DAUD</td>
<td>10084</td>
<td>0009</td>
<td>3.000</td>
<td>2.662</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>