SAFETY COMPLIANCE TESTING FOR
FMVSS NO. 225
CHILD RESTRAINT ANCHORAGE SYSTEMS
LOWER AND TETHER ANCHORAGES

MITSUBISHI MOTORS CORPORATION
2008 MITSUBISHI LANCER, PASSENGER CAR
NHTSA NO. C85603

GENERAL TESTING LABORATORIES, INC.
1623 LEEDSTOWN ROAD
COLONIAL BEACH, VIRGINIA 22443

November 14, 2008
FINAL REPORT
PREPARED FOR
U. S. DEPARTMENT OF TRANSPORTATION
NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
ENFORCEMENT
OFFICE OF VEHICLE SAFETY COMPLIANCE
1200 NEW JERSEY AVE., SE
WASHINGTON, D.C. 20590
This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers’ names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Prepared By: Debbie Messick
Approved By: Grant Farrand
Approval Date: 11/14/08

FINAL REPORT ACCEPTANCE BY OVSC:

Accepted By:
Acceptance Date:

 Edward E. Chan
Abstract

Compliance tests were conducted on the subject, 2008 Mitsubishi Lancer Passenger Car in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP-225-01 for the determination of FMVSS 225 compliance. Test failures identified were as follows: None

Key Words

Compliance Testing
Safety Engineering
FMVSS 225
<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Purpose of Compliance Test</td>
<td>1</td>
</tr>
<tr>
<td>2 Compliance Test Results</td>
<td>2</td>
</tr>
<tr>
<td>3 Compliance Test Data</td>
<td>3</td>
</tr>
<tr>
<td>4 Test Equipment List</td>
<td>20</td>
</tr>
<tr>
<td>5 Photographs</td>
<td>21</td>
</tr>
<tr>
<td>5.1 Left Side View of Vehicle</td>
<td></td>
</tr>
<tr>
<td>5.2 Right Side View of Vehicle</td>
<td></td>
</tr>
<tr>
<td>5.3 ¾ Frontal View from Left Side of Vehicle</td>
<td></td>
</tr>
<tr>
<td>5.4 ¾ Rear View from Right Side of Vehicle</td>
<td></td>
</tr>
<tr>
<td>5.5 Vehicle Certification Label</td>
<td></td>
</tr>
<tr>
<td>5.6 Vehicle Tire Information Label</td>
<td></td>
</tr>
<tr>
<td>5.7 Row 2, Visibility of Lower Anchors</td>
<td></td>
</tr>
<tr>
<td>5.8 Row 2, Left Side Outboard Lower Anchor</td>
<td></td>
</tr>
<tr>
<td>5.9 Row 2, Left Side, Inboard Lower Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.10 Row 2, Left Side, Top Tether Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.11 Row 2, Center, Top Tether Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.12 Row 2, Right Side, Inboard Lower Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.13 Row 2, Right Side, Outboard Lower Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.14 Row 2, Right Side, Top Tether Anchor, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.15 Overall View of Row 2 Seating Positions, Pre-Test</td>
<td></td>
</tr>
<tr>
<td>5.16 Row 2, Left Side with CRF</td>
<td></td>
</tr>
<tr>
<td>5.17 Row 2, Left Side with 2-D Template</td>
<td></td>
</tr>
<tr>
<td>5.18 Row 2, Left Side, Top Tether Routing</td>
<td></td>
</tr>
<tr>
<td>5.19 Row 2, Right Side with CRF</td>
<td></td>
</tr>
<tr>
<td>5.20 Row 2, Right Side with 2-D Template</td>
<td></td>
</tr>
<tr>
<td>5.21 Row 2, Right Side Top Tether Routing</td>
<td></td>
</tr>
<tr>
<td>5.22 Row 2, Center with 2-D Template</td>
<td></td>
</tr>
<tr>
<td>5.23 Row 2, Center, Top Tether Routing</td>
<td></td>
</tr>
<tr>
<td>5.24 Row 2, Right Side, Inboard CRF Measurement</td>
<td></td>
</tr>
<tr>
<td>5.25 Row 2, Right Side, Outboard CRF Measurement</td>
<td></td>
</tr>
<tr>
<td>5.26 Row 2, Left Side, Inboard CRF Measurement</td>
<td></td>
</tr>
<tr>
<td>5.27 Row 2, Left Side, Outboard CRF Measurement</td>
<td></td>
</tr>
<tr>
<td>5.28 Measurement of Symbol</td>
<td></td>
</tr>
<tr>
<td>5.29 Row 2, Left Side, CRF Pitch Measurement</td>
<td></td>
</tr>
<tr>
<td>5.30 Row 2, Right Side, CRF Pitch Measurement</td>
<td></td>
</tr>
<tr>
<td>5.31 Row 2, Left Side, Outboard SRP Measurement</td>
<td></td>
</tr>
<tr>
<td>5.32 Row 2, Left Side, Inboard SRP Measurement</td>
<td></td>
</tr>
<tr>
<td>5.33 Row 2, Right Side Outboard SRP Measurement</td>
<td></td>
</tr>
<tr>
<td>5.34 Row 2, Right Side Inboard SRP Measurement</td>
<td></td>
</tr>
<tr>
<td>5.35 ¾ Left Front View of Vehicle in Test Rig</td>
<td></td>
</tr>
<tr>
<td>5.36 ¾ Right Front View of Vehicle in Test Rig</td>
<td></td>
</tr>
<tr>
<td>5.37 Pre-Test, Row 2, Left Side with SFAD 2</td>
<td></td>
</tr>
<tr>
<td>5.38 Pre-Test, Row 2, Left Side with SFAD 2</td>
<td></td>
</tr>
<tr>
<td>5.39 Post Test, Row 2, Left Side with SFAD 2</td>
<td></td>
</tr>
<tr>
<td>5.40 Post Test, Row 2, Left Side with SFAD 2</td>
<td></td>
</tr>
<tr>
<td>5.41 Pre-Test, Row 2, Right Side with SFAD 2</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (continued)

5.42 Post Test, Row 2, Right Side with SFAD 2
5.43 Pre-Test, Row 2, Center with SFAD 1
5.44 Pre-Test, Row 2, Center with SFAD 1
5.45 Post Test, Row 2, Center with SFAD 1
5.46 Post Test, Row 2, Center with SFAD 1

Appendix A – Owner’s Manual Child Restraint Information	68
Appendix B – Manufacturer’s Data	77
Appendix C - Plots	87
SECTION 1
PURPOSE OF COMPLIANCE TEST

1.0 PURPOSE OF COMPLIANCE TEST

A 2008 Mitsubishi Lancer Passenger Car was subjected to Federal Motor Vehicle Safety Standard (FMVSS) No. 225 testing to determine if the vehicle was in compliance with the requirements of the standard. The purpose of this standard is to establish requirements for child restraint anchorage systems to ensure their proper location and strength for the effective securing of child restraints, to reduce the likelihood of the anchorage systems’ failure and to increase the likelihood that child restraints are properly secured and thus more fully achieve their potential effectiveness in motor vehicles.

1.1 The test vehicle was a 2008 Mitsubishi Lancer Passenger Car. Nomenclature applicable to the test vehicle are:

A. **Vehicle Identification Number:** JA3AU16U08U036749
B. **NHTSA No.:** C85603
C. **Manufacturer:** MITSUBISHI MOTORS CORPORATION
D. **Manufacture Date:** OCT 2007

1.2 TEST DATE

The test vehicle was subjected to FMVSS No. 225 testing during the time period October 21-27, 2008.
SECTION 2

COMPLIANCE TEST RESULTS

2.0 TEST RESULTS

All tests were conducted in accordance with NHTSA, Office of Vehicle Safety Compliance (OVSC) Laboratory Procedures, TP-225-01 dated 11 April 2005.

Based on the test performed, the 2008 Mitsubishi Lancer Passenger Car appears to meet the requirements of FMVSS 225 testing.
SECTION 3

COMPLIANCE TEST DATA

3.0 TEST DATA

The following data sheets document the results of testing on the 2008 Mitsubishi Lancer Passenger Car.
DATA SHEET 1
SUMMARY OF RESULTS

VEH. MOD YR/MAKE/MODEL/BODY: 2008 MITSUBISHI LANCER PASSENGER CAR
VEH. NHTSA NO: C85603; VIN: JA3AU16U08U036749
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

A. VISUAL INSPECTION OF TEST VEHICLE

Upon receipt for completeness, function, and discrepancies or damage which might influence the testing.

RESULTS: OK FOR TEST

B. REQUIREMENTS FOR CHILD RESTRAINT SYSTEMS AND TETHER ANCHORAGES

<table>
<thead>
<tr>
<th>DSP a</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

C. LOCATION OF TETHER ANCHORAGES

<table>
<thead>
<tr>
<th>DSP a</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

D. LOWER ANCHORAGE DIMENSIONS

<table>
<thead>
<tr>
<th>DSP a</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
DATA SHEET 1 CONTINUED

SUMMARY OF RESULTS

E. CONSPICUITY AND MARKING OF LOWER ANCHORAGES

<table>
<thead>
<tr>
<th>DSP a</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DSP b</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DSP c</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

F. STRENGTH OF TETHER ANCHORAGES

<table>
<thead>
<tr>
<th>DSP a</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DSP b</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DSP c</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

G. STRENGTH OF LOWER ANCHORAGES (Forward Force)

<table>
<thead>
<tr>
<th>DSP a</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DSP b</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DSP c</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

H. STRENGTH OF LOWER ANCHORAGE (Lateral Force)

<table>
<thead>
<tr>
<th>DSP a</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DSP b</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DSP c</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

I. OWNER’S MANUAL

<table>
<thead>
<tr>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:

NOTE:

RECORDED BY: G. Farrand

DATE: 10/27/08

APPROVED BY: D. Messick
DATA SHEET 2
REQUIREMENTS FOR CHILD RESTRAINT ANCHORAGE SYSTEMS
AND TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2008 MITSUBISHI LANCER PASSENGER CAR
VEH. NHTSA NO: C85603; VIN: JA3AU16U08U036749
VEH. BUILD DATE: OCT 2007; TEST DATE: OCTOBER 21, 2008
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

Number of rows of seats: 2
Number of rear, forward-facing designated seating positions: 3
Number of required CRAS (lower anchorages only, for convertibles/school buses): 2
Number of required tether anchorages (can be additional CRAS): 3
Is the vehicle a convertible? NO
Is the vehicle a school bus? NO

Does the vehicle have a CRAS (lower anchorage only, for convertibles/school buses) installed at a front passenger seating position? NO
 If NO, skip to next question.
 If YES, does the vehicle have rear designated seating positions?
 If NO, does the vehicle have an air bag on-off switch or a special exemption for no passenger air bag?
 If NO = FAIL If YES = PASS
 If Yes, does the vehicle meet the requirements of S4.5.4.1 (b) of S208 and have an air bag on-off switch or a special exemption for no passenger air bag?
 Record the distance between the front and rear seat back:
 If Distance <720 mm and vehicle has an air bag on-off switch or special exemption = PASS
 If Distance ≥ 720 mm or no air bag on-off switch or no special exemption = FAIL

Does the vehicle have rear designated seating position(s) where the lower bars of a CRAS are prevented from being located because of transmission and/or suspension component interference? NO
 If NO, skip to next question.
 If YES, does the vehicle have a tether anchorage at a front passenger seating position?
 YES = PASS NO = FAIL (S5(e))

Number of provided CRAS (lower anchorage only, for convertibles/school buses), indicate if a built-in child restraint is counted as a CRAS: 2

Is the number of provided CRAS (lower anchorages only, for convertible/school buses) greater than or equal to the number of required CRAS (lower anchorages only, for convertibles/school buses)? YES
 YES = PASS NO = FAIL (S4.4(a) or (b) or (c))
If the vehicle has 3 or more rows of seats is a CRAS (lower anchorage only for convertibles/school buses) provided in the second row: N/A

YES = PASS
NO = FAIL (S4.4(a)(1))

Number of provided tether anchorages (can be additional CRAS) indicate if a built-in child restraint is counted as tether anchorage (NOTE: a built-in child restraint can only be counted toward either the required number of CRAS or tether anchorages, not both):

3

Is the number of provided tether anchorages greater than or equal to the number of required tether anchorages?

YES = PASS
NO = FAIL (S4.4 (a) or (b) or (c))

If the vehicle has 3 or more rear dssps and a non-outboard dsp, is a tether anchorage or CRAS provided at a non-outboard dsp?

YES = PASS
NO = FAIL (S4.4 (a)(2))

Are all tether and lower anchorages available for use at all times when the seat is configured for passenger use?

YES = PASS
NO = FAIL (S4.6 (b))

Provide a diagram showing the location of lower anchorages and/or tether anchorages.

X

A

B

C

Drvr.

Psgr.

X = Top Tether
* = Lower Anchors

RECORDED BY: G. Farrand
DATE: 10/21/08

APPROVED BY: D. Messick
DATA SHEET 3
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2008 MITSUBISHI LANCER PASSENGER CAR
VEH. NHTSA NO: C85603; VIN: JA3AU16U08U036749
VEH. BUILD DATE: OCT 2007; TEST DATE: OCTOBER 21, 2008
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT, RIGHT AND CENTER POSITIONS

Detailed description of the location of the tether anchorage:
LOCATED ON HAT SHELF BEHIND SEAT BACK.

Based on visual inspection, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone?

If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component?
 If YES = FAIL (S6.2.1)
 If NO, Is a tether routing device provided?
 If YES = PASS
 IF NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? YES
If NO, skip to next question
If YES, is it outside of the tether strap wraparound area? YES
 YES = PASS NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? YES
 YES = PASS NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? YES
 YES = PASS NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? YES
 YES = PASS NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? YES
 YES = PASS NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? N/A
DESIGNATED SEATING POSITION: ROW 2 LEFT, RIGHT AND CENTER POSITIONS

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension:

N/A (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device:

N/A

Greater than or equal to 65mm = PASS Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device:

N/A

Greater than or equal to 100mm = PASS Less than 100mm = FAIL

COMMENTS:

RECORDED BY: G. Farrand
DATE: 10/21/08

APPROVED BY: D. Messick
DATA SHEET 4

LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2008 MITSUBISHI LANCER PASSENGER CAR

VEH. NHTSA NO: C85603; VIN: JA3AU16U08U036749

VEH. BUILD DATE: OCT 2007; TEST DATE: OCTOBER 21, 2008

TEST LABORATORY: GENERAL TESTING LABORATORIES

OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outboard Lower Anchorage bar diameter</td>
<td>6.01 mm</td>
<td>6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))</td>
</tr>
<tr>
<td>Inboard Lower Anchorage bar diameter</td>
<td>6.01 mm</td>
<td>6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))</td>
</tr>
<tr>
<td>Are the bars straight, horizontal and transverse?</td>
<td>YES</td>
<td>YES = PASS NO = FAIL</td>
</tr>
<tr>
<td>Length of the straight portion of the bar</td>
<td>28 mm</td>
<td>Length ≥25mm = PASS Length <25mm = FAIL (S9.1.1(c) (i))</td>
</tr>
<tr>
<td>(outboard lower anchorage)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of the straight portion of the bar</td>
<td>28 mm</td>
<td>Length ≥25mm = PASS Length <25mm = FAIL (S9.1.1(c) (i))</td>
</tr>
<tr>
<td>(inboard lower anchorage)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length between the anchor bar supports</td>
<td>34 mm</td>
<td>Length ≤60mm = PASS Length >60mm = FAIL (S9.1.1(c) (ii))</td>
</tr>
<tr>
<td>(outboard lower anchorage)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length between the anchor bar supports</td>
<td>34 mm</td>
<td>Length ≤60mm = PASS Length >60mm = FAIL (S9.1.1(c) (ii))</td>
</tr>
<tr>
<td>(inboard lower anchorage)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRF Pitch angle</td>
<td>12.7°</td>
<td>Angle = 15°±10° = PASS Angle ≠15°±10° = FAIL (S9.2.1)</td>
</tr>
<tr>
<td>CRF Roll angle</td>
<td>0.2°</td>
<td>Angle = 0°±5° = PASS Angle ≠0°±5° = FAIL (S9.2.1)</td>
</tr>
<tr>
<td>CRF Yaw angle</td>
<td>0.0°</td>
<td>Angle = 0°±10° = PASS Angle ≠0°±10° = FAIL (S9.2.1)</td>
</tr>
</tbody>
</table>

Distance between point Z on the CRF and the front surface of outboard anchor bar: 30 mm

Distance between point Z on the CRF and the front surface of inboard anchor bar: 30 mm
DATA SHEET 4 CONTINUED

DESIGNATED SEATING POSITION: ____ ROW 2 LEFT SIDE (DSP A) ____

Distance between SgRP and the front surface of outboard anchor bar: ____ 164 mm ____
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: ____ 162 mm ____
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm? ____ NO ____
If NO = PASS
If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:

COMMENTS:

RECORDED BY: _ G. Farrand _ DATE: ____ 10/21/08 ____
APPROVED BY: _ D. Messick _
VEH. MOD YR/MAKE/MODEL/BODY: 2008 MITSUBISHI LANCER PASSENGER CAR
VEH. NHTSA NO: C85603; VIN: JA3AU16U08U036749
VEH. BUILD DATE: OCT 2007; TEST DATE: OCTOBER 21, 2008
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Outboard Lower Anchorage bar diameter: 6.02 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: 6.01 mm
6mm ± 0.1mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? YES
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): 28 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length of the straight portion of the bar (inboard lower anchorage): 28 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length between the anchor bar supports (outboard lower anchorage): 34 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

Length between the anchor bar supports (inboard lower anchorage): 34 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

CRF Pitch angle: 12.4°
Angle = 15º±10º = PASS Angle≠15º±10º = FAIL (S9.2.1)

CRF Roll angle: 0.2°
Angle = 0º±5º = PASS Angle≠0º±5º = FAIL (S9.2.1)

CRF Yaw angle: 0.0°
Angle = 0º±10º = PASS Angle≠0º±10º = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 30 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: 30 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL
DATA SHEET 4A CONTINUED

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Distance between SgRP and the front surface of outboard anchor bar: 160 mm

Distance \(\geq 120\text{mm} = \text{PASS} \quad \text{Distance} < 120\text{mm} = \text{FAIL} \)

Distance between SgRP and the front surface of inboard anchor bar: 158 mm

Distance \(\geq 120\text{mm} = \text{PASS} \quad \text{Distance} < 120\text{mm} = \text{FAIL} \)

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm?

_____NO____

If NO = PASS
If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:

COMMENTS:

RECORDED BY: G. Farrand DATE: 10/21/08

APPROVED BY: D. Messick
DATA SHEET 5
CONSPICUITY AND MARKING OF LOWER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2008 MITSUBISHI LANCER PASSENGER CAR
VEH. NHTSA NO: C85603; VIN: JA3AU16U08U036749
VEH. BUILD DATE: OCT 2007; TEST DATE: OCTOBER 21, 2008
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT AND RIGHT SIDE (DSP A AND C)

MARKING (Circles)

Diameter of the circle: 15.0 mm
Diameter ≥13mm = PASS Diameter <13mm = FAIL (S9.5(a)(1))

Does the circle have words, symbols or pictograms? PICTOGRAM
NO skip to next question
YES, are the meaning of the words, symbols or pictograms explained in the owner's manual?
YES = PASS NO = FAIL (S9.5(a)(2))

Where is the circle located? Seat back or seat Cushion: Seat Back

For circles on seat backs, vertical distance from the center of the circle to the center of the anchor bar: 60 mm
Distance between 50&100mm = PASS Other Distance=FAIL (S9.5(a)(3))

For circles on seat cushions, horizontal distance from the center of the circle to the center of the bar: N/A
Distance between 75&125mm= PASS Other Distance=FAIL (S9.5(a)(3))

Lateral distance from the center of the circle to the center of the anchor bar: 0 mm
Distance≤25mm = PASS Distance >25mm = FAIL (S9.5(a)(3))

CONSPICUITY (No Circles)

Is the anchor bar or guide visible when viewed from a point 30° above the horizontal in a vertical longitudinal plane bisecting the anchor bar or guide? N/A
YES = PASS NO = FAIL (S9.5(b))

If there is a guide, is it permanently attached? N/A
YES = PASS NO = FAIL (S9.5(b))
DATA SHEET 5 CONTINUED

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE AND RIGHT SIDE (DSP A & C)

Is there a cap or cover over the anchor bar? N/A

If YES, is the cap or cover marked with words, symbols or pictograms?

If NO = FAIL (S9.5(b))

If YES, is the meaning of the words, symbols or pictograms explained in the owner’s manual?

YES = PASS NO = FAIL (S9.5(b))

If NO, there are no requirements for having a cover.

RECORDED BY: G. Farrand DATE: 10/27/08

APPROVED BY: D. Messick
DATA SHEET 6
STRENGTH OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2008 MITSUBISHI LANCER PASSENGER CAR
VEH. NHTSA NO: C85603; VIN: JA3AU16U08U036749
VEH. BUILD DATE: OCT 2007; TEST DATE: OCTOBER 27, 2008
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 6100

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)
SFAD: 2

Seat Back Angle: 26º

Location of seat back angle measurement: 2D Template

Head Restraint Position: REMOVED

D-ring Position: N/A

Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: 135 N

Lap belt tension: N/A (SFAD 1 only)

Tether strap tension: 60 N

Angle (measured above the horizontal at 500 N): 10º

Separation of tether anchorage at 500 N: NO

Force application rate: 575 N/S

Time to reach maximum force (24-30 s): 26 sec.

Maximum force (14,950 N ± 50 N): 14,905 N

Tested simultaneously with another DSP? NO

COMMENTS:

RECORDED BY: G. FARRAND DATE: 10/27/08
APPROVED BY: D. MESSICK
DATA SHEET 6A
STRENGTH OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2008 MITSUBISHI LANCER PASSENGER CAR
VEH. NHTSA NO: C85603; VIN: JA3AU16U08U036749
VEH. BUILD DATE: OCT 2007; TEST DATE: OCTOBER 27, 2008
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: __6102__

DESIGNATED SEATING POSITION: __ROW 2 CENTER (DSP B)__
SFAD: __1__
Seat Back Angle: __26°__
Location of seat back angle measurement: __2D Template__
Head Restraint Position: __REMOVED__
D-ring Position: __N/A__
Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: __N/A__
Lap belt tension: __60 N__ (SFAD 1 only)
Tether strap tension: __60 N__
Angle (measured above the horizontal at 500 N): __10°__
Separation of tether anchorage at 500 N: __NO__
NO = PASS YES = FAIL (S6.3.1)
Force application rate: __575 N/S__
Time to reach maximum force (24-30 s): __26 sec__
Maximum force (14,950 N ± 50 N): __14,923 N__
Tested simultaneously with another DSP? __NO__

COMMENTS:

RECORDED BY: __G. FARRAND__ DATE: __10/27/08__
APPROVED BY: __D. MESSICK__
DATA SHEET 7
STRENGTH OF LOWER ANCHORAGES (Forward Force)

VEH. MOD YR/MAKE/MODEL/BODY: 2008 MITSUBISHI LANCER PASSENGER CAR

VEH. NHTSA NO: C85603; VIN: JA3AU16U08U036749

VEH. BUILD DATE: OCT 2007; TEST DATE: OCTOBER 27, 2008

TEST LABORATORY: GENERAL TESTING LABORATORIES

OBSERVERS: GRANT FARRAND, JIMMY LATANE

TEST NO: 6101

DESIGNATED SEATING POSITION: __ROW 2 RIGHT SIDE (DSP C)

Seat Back Angle: __26º__

Location of seat back angle measurement: ___2D Template____

Head Restraint Position: ___N/A___

Force at lower front crossmember for SFAD2 while tightening rearward extensions: ___135 N

Angle (measured above the horizontal at 500 N): ___10º___

Force application rate: ___423 N/S___

Time to reach maximum force (24-30 s): ___26 sec.____

Maximum force (14,950 N ± 50 N): ___10,999 N___

Displacement, H1 (at 500N): ___0____

Displacement, H2 (at maximum load): ___48.2 mm____

Displacement of Point X: ___48.2 mm____ (H2-H1)

Displacement > 175 mm = Fail (S9.4.1(a))

Tested simultaneously with another DSP? ___NO___

Distance between adjacent DSP's: ___355 mm____

COMMENTS:

RECORDED BY: ___G. FARRAND___ DATE: ___10/27/08___

APPROVED BY: ___D. MESSICK___
Description of which DSP’s are equipped with tether anchorages and child restraint anchorage systems: YES

PASS X FAIL ________

Step-by-step instructions for properly attaching a child restraint system’s tether strap to the tether anchorage. Diagrams are required. YES

PASS X FAIL ________

Description of how to properly use the tether anchorage and lower anchor bars: YES

PASS X FAIL ________

If the lower anchor bars are marked with a circle, an explanation of what the circle indicates as well as any words or pictograms: YES

PASS X FAIL ________

COMMENTS:

RECORDED BY: G. Farrand DATE: 10/21/08

APPROVED BY: D. Messick
TABLE 1 - INSTRUMENTATION & EQUIPMENT LIST

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>DESCRIPTION</th>
<th>MODEL/ SERIAL NO.</th>
<th>CAL. DATE</th>
<th>NEXT CAL. DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER</td>
<td>AT&T</td>
<td>486DX266</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>LOAD CELL</td>
<td>INTERFACE</td>
<td>215709</td>
<td>01/08</td>
<td>01/09</td>
</tr>
<tr>
<td>LINEAR TRANSDUCER</td>
<td>SERVO SYSTEMS</td>
<td>20</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SEAT BELT LOAD CELL</td>
<td>TRANSDUCER</td>
<td>135</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SEAT BELT LOAD CELL</td>
<td>TRANSDUCER</td>
<td>137</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>LEVEL</td>
<td>STANLEY</td>
<td>42-449</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>FORCE GAUGE</td>
<td>CHATILLON</td>
<td>8761</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>CALIPER</td>
<td>N/A</td>
<td>Q9322365</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>CRF</td>
<td>MEASUREMENT FIXTURE</td>
<td>GTL CRF</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 1</td>
<td>FORCE APPLICATION DEVICE</td>
<td>GTL SFAD 1</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 2</td>
<td>FORCE APPLICATION DEVICE</td>
<td>GLT SFAD 2</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
</tbody>
</table>
SECTION 5

PHOTOGRAPHS
FIGURE 5.1
LEFT SIDE VIEW OF VEHICLE
2008 MITSUBISHI LANCER
NHTSA NO. C85603
FMVSS NO. 225

FIGURE 5.3
¾ FRONTAL VIEW FROM LEFT SIDE OF VEHICLE
2008 MITSUBISHI LANCER
NHTSA NO. C85603
FMVSS NO. 225

FIGURE 5.5
CLOSE-UP VIEW OF VEHICLE CERTIFICATION LABEL
The combined weight of occupants and cargo should never exceed 375 kg or 827 lbs.

<table>
<thead>
<tr>
<th>TIRE</th>
<th>SIZE</th>
<th>COLD TIRE PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONT</td>
<td>P205/60R16</td>
<td>220KPA, 32PSI</td>
</tr>
<tr>
<td>REAR</td>
<td>P205/60R16</td>
<td>220KPA, 32PSI</td>
</tr>
<tr>
<td>SPARE</td>
<td>T125/70D16</td>
<td>420KPA, 60PSI</td>
</tr>
</tbody>
</table>

See Owner’s Manual for additional information.
2008 MITSUBISHI LANCER
NHTSA NO. C85603
FMVSS NO. 225

FIGURE 5.7
VISIBILITY OF LOWER ANCHORS
2008 MITSUBISHI LANCER
NHTSA NO. C85603
FMVSS NO. 225

FIGURE 5.10
ROW 2, LEFT SIDE, TOP TETHER ANCHOR PRE-TEST
2008 MITSUBISHI LANCER
NHTSA NO. C85603
FMVSS NO. 225

FIGURE 5.11
ROW 2, CENTER, TOP TETHER ANCHOR PRE-TEST
FIGURE 5.12
ROW 2, RIGHT SIDE INBOARD LOWER ANCHOR PRE-TEST
FIGURE 5.15
OVERALL VIEW OF ROW 2 SEATING POSITIONS,
PRE-TEST
2008 MITSUBISHI LANCER
NHTSA NO. C85603
FMVSS NO. 225

FIGURE 5.16
ROW 2, LEFT SIDE WITH CRF
2008 MITSUBISHI LANCER
NHTSA NO. C85603
FMVSS NO. 225

FIGURE 5.17
ROW 2, LEFT SIDE WITH 2-D TEMPLATE
FIGURE 5.18
ROW 2, LEFT SIDE TOP TETHER ROUTING
FIGURE 5.21
ROW 2, RIGHT SIDE TOP TETHER ROUTING
2008 MITSUBISHI LANCER
NHTSA NO. C85603
FMVSS NO. 225

FIGURE 5.27
ROW 2, LEFT SIDE OUTBOARD CRF MEASUREMENT
2008 MITSUBISHI LANCER
NHTSA NO. C85603
FMVSS NO. 225

FIGURE 5.28
MEASUREMENT OF SYMBOL
FIGURE 5.29
ROW 2, LEFT SIDE CRF PITCH MEASUREMENT
FIGURE 5.30
ROW 2, RIGHT SIDE CRF PITCH MEASUREMENT
2008 MITSUBISHI LANCER
NHTSA NO. C85603
FMVSS NO. 225

FIGURE 5.33
ROW 2, RIGHT SIDE OUTBOARD SRP MEASUREMENT
FIGURE 5.34
ROW 2, RIGHT SIDE INBOARD SRP MEASUREMENT
FIGURE 5.35
¾ LEFT FRONT VIEW OF VEHICLE IN TEST RIG
2008 MITSUBISHI LANCER
NHTSA NO. C85603
FMVSS NO. 225

FIGURE 5.36
¼ RIGHT FRONT VIEW OF VEHICLE IN TEST FIXTURE
FIGURE 5.37
PRE-TEST ROW 2, LEFT SIDE WITH SFAD 2
2008 MITSUBISHI LANCER
NHTSA NO. C85603
FMVSS NO. 225

FIGURE 5.39
POST TEST ROW 2, LEFT SIDE WITH SFAD 2
2008 MITSUBISHI LANCER
NHTSA NO. C85603
FMVSS NO. 225

FIGURE 5.40
POST TEST ROW 2, LEFT SIDE WITH SFAD 2
FIGURE 5.41
PRE-TEST ROW 2, RIGHT SIDE WITH SFAD 2
2008 MITSUBISHI LANCER
NHTSA NO. C85603
FMVSS NO. 225

FIGURE 5.42
POST TEST ROW 2, RIGHT SIDE WITH SFAD 2
FIGURE 5.44
PRE-TEST ROW 2, CENTER WITH SFAD 1
2008 MITSUBISHI LANCER
NHTSA NO. C85603
FMVSS NO. 225

FIGURE 5.45
POST TEST ROW 2, CENTER WITH SFAD 1
2008 MITSUBISHI LANCER
NHTSA NO. C85603
FMVSS NO. 225

FIGURE 5.46
POST TEST ROW 2, CENTER WITH SFAD 1
Seat and restraint systems

Child restraint systems

When transporting infants or small children in your vehicle, an appropriate child restraint system must always be used. This is required by law in the U.S. and Canada. Child restraint systems specifically designed for infants and small children are offered by several manufacturers. Choose only a child restraint system with a label certifying that it complies with Federal Motor Vehicle Safety Standard 213 (FMVSS 213) or Motor Vehicle Restraint Systems and Booster Cushions Safety Regulations (RSSR). Look for the manufacturer’s statement of compliance on the box and child restraint system itself.

The child restraint system should be appropriate for your child’s weight and height, and should properly fit your vehicle’s seat.

For detailed information, refer to the instruction manual accompanying the child restraint system.

Guidelines for child restraint system selection

All children should be properly restrained in a restraint device that offers the maximum protection for their size and age. Be sure to check local, state, or provincial requirements for child size and age that may vary from the recommendations listed below.

- Children less than 1 year old and children less than 20 pounds (9 kg) MUST ride in a rear-facing child safety seat that MUST ONLY be used in the rear seat.
- Children older than 1 year of age and who weigh less than 40 pounds (18 kg) or who are less than 40 inches (100 cm) tall must be in a forward-facing restraint used only in the rear seat.
- Children who weigh more than 40 pounds (18 kg) or who are more than 40 inches (100 cm) tall, regardless of age, should use a suitable child seat or a booster seat in the rear seat until the vehicle’s lap/shoulder belt fits them properly.

⚠️ WARNING

- All children must be seated in the rear seat, and properly restrained.

Accident statistics show that children of all sizes and ages are safer when properly restrained in the rear seat, rather than in the front seat.

⚠️ WARNING

- Any child who is too large to use a child restraint system should ride in the rear seat and wear the lap and shoulder belt properly. The shoulder belt must be positioned over the shoulder and across the chest, not across their neck, and with the lap belt positioned low on the child’s hips, not across their stomach. If necessary, a booster seat should be used to help achieve a proper seat belt fit. Follow the booster seat manufacturer’s instructions. Only use a booster seat that is certified as complying with Federal Motor Vehicle Safety Standards or Motor Vehicle Restraint Systems and Booster Cushions Safety Regulations.

⚠️ WARNING

- Never hold an infant or child in your arms or on your lap when riding in this vehicle, even when you are wearing your seat belt. Never place any part of the seat belt you are wearing around an infant or child. Failure to follow these simple instructions creates a risk of serious injury or death to your child in the event of an accident or sudden stop.
WARNING
- Your vehicle is also equipped with a front passenger airbag. Never put REAR-FACING CHILD RESTRAINT SYSTEMS or INFANT RESTRAINT SYSTEMS in the front passenger seat. This places the infant too close to the passenger airbag. During deployment of the airbag, the infant can be seriously injured or killed. Rear-facing child restraint systems or infant restraint systems must only be used in the rear seat.

WARNING
- FRONT-FACING CHILD RESTRAINT SYSTEMS should be used in the rear seat whenever possible. If they must be used in the front passenger seat, move the seat to the most rearward position and make sure the child stays in the child restraint system, properly restrained. Failure to follow these instructions could result in serious injury or death to the child.

NOTE
- Before purchasing a child restraint system, try installing it in the rear seat to make sure there is a good fit. Because of the location of the seat belt buckles and the shape of the seat cushion, it may be difficult to securely install some manufacturer's child restraint systems. If the child restraint system can be pulled forward or to either side easily on the seat cushion after the seat belt has been tightened, choose another manufacturer's child restraint system.

Depending on the seating position in the vehicle and the child restraint system that you have, the child restraint system can be attached using one of the following two methods:
- To the lower anchorage in the rear seat ONLY if the child restraint system is compatible with the LATCH system (See page 2-26).
- To the seat belt (See page 2-29).
Seat and restraint systems

Installing a child restraint system using the LATCH (Lower Anchors and Tethers for Children) system

Lower anchor locations
The outboard seating positions in the rear seat of your vehicle are equipped with lower anchors for attaching child restraint systems compatible with the LATCH system.

NOTE
• The symbols on the seatback show the location of the lower anchor points.

Examples of child restraint systems compatible with the LATCH system

Using the LATCH system
1. In order to securely fasten the tether strap, remove the head restraint from the location where you wish to install the child restraint system.
2. Push the anchor connectors (A) on the child restraint system into the slits (B) in accordance with the instructions provided by the child restraint system manufacturer. Remember, the lower anchors (E) provided with your vehicle are designed to secure suitable child restraint systems compatible with the LATCH system in the rear seat only.

A- Rear-facing child restraint system
B- Front-facing child restraint system
C- Child restraint system lower anchor connectors
D- Tether strap
(These are only examples.)

A- Connector
B- Slit
C- Vehicle seatback
D- Vehicle seat cushion
E- Lower anchor
NOTE
- In order to secure a child restraint system compatible with the LATCH system, use the lower anchor points in the outboard positions of the rear seat. It is not necessary to use the vehicle's seat belt. The vehicle's seat belt, however, MUST be used to secure a child restraint system in the center position of the rear seat.

⚠️ WARNING ⚠️
- If there is any foreign material in or around the lower anchors, remove it before installing the child restraint system. Also, make sure the seat belt is away from, not looped through or otherwise interfering with, the child restraint system. If foreign matter is not removed and/or the seat belt interferes with the child restraint system, the child restraint system will not be secured properly, could detach and move forward in the event of sudden braking or an accident, and could result in injury to the child or other vehicle occupants.
- When the vehicle is moving, do not adjust the seat where the child restraint system is installed.

3. Open the cover for the tether anchor by pulling it back with your hand as illustrated below (3).
4. Latch the tether strap hook (F) of the child restraint system to the anchor (G) as illustrated below (4) and tighten the top tether strap so it is securely fastened.

5. Push and pull the child restraint system in all directions to be sure it is firmly secured.

⚠️ WARNING ⚠️
- Child restraint system tether anchors are designed only to withstand loads from correctly fitted child restraint systems. Under no circumstances are they to be used for adult seat belts, or harnesses, or for attaching other items or equipment to the vehicle.

2-28

Installing a child restraint system using the seat belt (with emergency/automatic locking mechanism)

With the exception of the driver, the seat belt in all other seating positions can be converted from normal Emergency Locking Retractor (ELR) mode to Automatic Locking Retractor (ALR) mode. This means that when you pull the seat belt fully out of the retractor, the retractor will switch to its ALR child restraint installation function. Always use the ALR child restraint installation function when you install a child restraint system using the seat belt.

Children 12 years old and under should always be restrained in the rear seat, whenever possible, although the front passenger seat belt can also be converted to ALR mode.

⚠️ WARNING ⚠️
- When you install a child restraint system using the seat belt, always make sure the retractor has been switched to the ALR child restraint installation function. The ALR function will keep the child restraint system tightly secured to the seat.

Failure to convert the retractor to the ALR function may allow the child restraint system to move forward during sudden braking or an accident, resulting in serious injury or death to the child or other occupants.

Installation

1. Place the child restraint system in the rear seating position.
2. Route the seat belt through the child restraint system according to the instructions provided by the child restraint system manufacturer. Then insert the seat belt latch plate into the buckle. Make sure you hear a “click” when you insert the latch plate into the buckle.
Seat and restraint systems

3. To activate the ALR child restraint installation function, slowly pull the shoulder part of the belt all the way out of the retractor until it stops. Then let the belt feed back into the retractor.

4. After the belt has retracted, tug on it. If the belt is in the ALR function, you will not be able to pull it out. If the webbing can be pulled out from retractor, the ALR function has not been activated and you will need to repeat steps 3 and 4.

5. After confirming that the belt is locked, grab the shoulder part of the belt near the buckle and pull up to remove any slack from the lap part of the belt allowing the slack to feed into the retractor. Remember, if the lap belt portion is not tight, the child restraint system will not be secure. It may help to put your weight on the child restraint system and/or push on its seatback while pulling up on the belt (see illustration).

If your child restraint system requires the use of a tether strap, fasten the tether strap in accordance with the following procedures.

6. Open the cover from the tether anchor installation point by pulling it back with your hand as illustrated below (6).

7. Remove the head restraint from the location in which you wish to install a child restraint system.

8. Latch the tether strap hook (A) of the child restraint system to the tether anchor (B) as illustrated below (8) and tighten the top tether strap so it is securely fastened.

WARNING

- Child restraint system tether anchors are designed only to withstand loads from correctly fitted child restraint systems. Under no circumstances are they to be used for adult seat belts, or harnesses, or for attaching other items or equipment to the vehicle.

9. Before putting your child in the restraint, push and pull the restraint in all directions to be sure it is firmly secured. Do this before each use. If the child restraint system is not firmly secure, repeat steps 1 through 8.

10. To remove a child restraint system from the vehicle and deactivate the ALR mode, remove the child from the restraint. Unlatch the buckle. Then remove the belt from the restraint and let the belt fully retract.
Seat and restraint systems

Children who have outgrown child restraint systems

Children who have outgrown a child restraint system should be seated in the rear seat and wear the seat belt. If the shoulder belt crosses their face or neck, and/or the lap belt crosses their stomach, a commercially available booster seat must be used, to raise the child so that the shoulder belt crosses their shoulder and the lap belt remains positioned low across their hips. The booster seat should fit the vehicle seat and have a label certifying compliance with Federal Motor Vehicle Safety Standards or Motor Vehicle Restraint Systems and Booster Cushions Safety Regulations.

⚠️ WARNING
- Any child who is too small to properly wear a seat belt must be properly restrained in an appropriate child restraint system, to reduce their risk of serious injury or death in an accident.
- A child should never be left unattended in, or unsupervised, around your vehicle. When you leave the vehicle always take the child out as well.
- Children can die from stroke if left or trapped inside the vehicle, especially on hot days.
- Keep your vehicle locked and the trunk lid closed when not in use. Keep your vehicle keys away from children.
- Never allow children to play in the trunk of your vehicle.

Supplemental Restraint System (SRS) - airbag

This vehicle is equipped with a Supplemental Restraint System (SRS), which includes airbags for the driver and passengers.

The SRS front airbags are designed to supplement the primary protection of the driver and front passenger seat belt systems by providing those occupants with protection against head and chest injuries in certain moderate to severe frontal collisions. The SRS front airbags, together with sensors at the front of the vehicle and sensors attached to the front seats, form an advanced airbag system.

The SRS driver’s knee airbag is designed to supplement the primary protection of the driver’s seat belt system. It can stop the forward movement of the driver’s lower legs and provide increased overall body protection in certain moderate to severe frontal collisions.

The SRS side airbags (if so equipped) and the curtain airbags (if so equipped) are also designed to supplement the seat belts. The SRS side airbags provide the driver and front passenger with protection against chest injuries by deploying the bag on the side impacted in moderate to severe side impact collisions. The SRS curtain airbags provide the driver and passengers on the front seat and rear outboard seat with protection against head injuries by deploying a bag on the side impacted in moderate to severe side impact collisions.

Maintenance and inspection of seat belts

The seat belt webbing may be cleaned with mild soap or detergent solution. Do not use an organic solvent. Allow the belts to dry in the shade. Do not allow them to retract until completely dry. Do not attempt to bleach or re-dye the belts. The color may rub off and the webbing strength may be affected.

Regularly check your seat belt buckles and their release mechanisms for positive engagement and release of the latch plate. Check the retractors for automatic locking when in the Automatic Locking Retractor function.

The entire seat belt assembly should be replaced if the webbing shows any obvious cuts, tears, increase in thickness in any section of the webbing from broken fibers, or severe fading from sunlight. All of these conditions indicate a weakening of the belt, which may adversely affect seat belt performance in an accident.

⚠️ WARNING
- Do not attempt to repair or replace any part of the seat belt assemblies. This work should be done by an authorized Mitsubishi Motors dealer. Failure to have an authorized Mitsubishi Motors dealer perform the work could reduce the effectiveness of the belts and could result in a serious injury or death in an accident.

Seating and restraint systems

The SRS airbags are NOT a substitute for use of the seat belts. For maximum protection in all types of accidents, seat belts must ALWAYS be worn by everyone who drives or rides in this vehicle (with infants and small children in an appropriate child restraint system in the rear seat, and older children buckled in the rear seat). Refer to “Child restraint systems” on page 2-22.

⚠️ WARNING
- IT IS VERY IMPORTANT TO ALWAYS WEAR YOUR SEAT BELT PROPERLY EVEN WITH AN AIRBAG.
 - Seat belts help keep the driver and passengers properly positioned. This reduces the risk of injury in all collisions, and reduces the risk of serious injuries or death when the airbags inflate.
 - During sudden braking just before a collision, an unrestrained or improperly restrained driver or passengers can move forward into direct contact with, or within close proximity to, the airbag when it begins to inflate.
 - The beginning stage of airbag inflation is the most forceful and can cause serious injuries or death if the occupant comes in contact with the airbag at this time.
 - Seat belts reduce the risk of injury in rollovers, rear impact collisions, and in lower-speed frontal collisions, because the airbags are not designed to inflate in those situations.
 - Seat belts reduce the risk of being thrown from your vehicle in a collision or rollover.
WARNING

- It is very important to be properly seated.
 - A driver or front passenger sitting too close to the steering wheel or instrument panel during airbag deployment can be seriously injured or killed.
 - Airbags inflate very quickly and with great force. If the driver and front passenger are not properly seated and restrained, the airbag may not provide the proper protection and can cause serious injuries or death when it inflates.
 - To reduce the risk to the driver of serious injury or death due to a deploying driver’s airbag, always properly wear your seat belt and adjust the driver’s seat as far back as possible, maintaining a position that still allows the driver to have good control of the steering wheel, brake, accelerator, and other vehicle controls.
 - To reduce the risk to the front passenger of serious injury or death from a deploying passenger’s airbag, make sure the passenger always wears the seat belt properly, remains seated upright and all the way back in the seat, and positions the seat as far back as possible.
 - Seat all infants and children in the rear seat, properly restrained in an appropriate child restraint system.

WARNING

- Infants and small children should never ride unrestrained, or lean against the instrument panel. They should never ride held in your arms or on your lap. They can be seriously injured or killed in an accident, especially when the airbags inflate. Infants and children should be properly seated in the rear seat in an appropriate child restraint system. Refer to “Child restraint systems” on page 2-22.

WARNING

- NEVER put REAR-FACING CHILD RESTRAINT SYSTEMS or INFANT RESTRAINT SYSTEMS in the front passenger seat. This places the infant too close to the passenger airbag. During deployment of the airbag, the infant can be seriously injured or killed. Rear-facing child restraint systems or infant restraint systems must only be used in the rear seat.
Seat and restraint systems

WARNING
- FRONT-FACING CHILD RESTRAINT SYSTEMS should be used in the rear seat whenever possible. If they must be used in the front passenger seat, move the seat to the most rearward position and make sure the child stays in the child restraint system, properly restrained. Failure to follow these instructions could result in serious injury or death to the child.

WARNING
- Older children should be seated in the rear seat with their seat belt properly worn, and with an appropriate booster seat if needed. Refer to "Children who have outgrown child restraint systems" on page 2-32.
APPENDIX B
MANUFACTURER’S DATA
SEAT REFERENCE POINT (SRP) AND TORSO ANGLE DATA
FMVSS No. 225
(All dimensions in mm)

MODEL YEAR: 2008 MY / MAKE: Mitsubishi / MODEL: Lancer / BODY STYLE: 4-Door Sedan

SEAT STYLE: FRONT ROW: Bucket / SECOND ROW: Bench / THIRD ROW: Not applicable

As for accessible point, please refer to attachment 6.
<table>
<thead>
<tr>
<th>Torso Angle (degree)</th>
<th>Front Row</th>
<th>Second Row</th>
<th>Third Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>N/A</td>
<td>19</td>
<td>N/A</td>
</tr>
<tr>
<td>A2</td>
<td>207</td>
<td>27</td>
<td>N/A</td>
</tr>
<tr>
<td>A3</td>
<td>N/A</td>
<td>18 (W/O ARMREST)</td>
<td>27 (W/O ARMREST)</td>
</tr>
<tr>
<td>B</td>
<td>N/A</td>
<td>1154 (W/O ARMREST)</td>
<td>N/A</td>
</tr>
<tr>
<td>C</td>
<td>1149</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>D</td>
<td>N/A</td>
<td>1139 (W/O ARMREST)</td>
<td>19</td>
</tr>
</tbody>
</table>

Note: All dimensions are in mm. If not, provide the unit used.
SEATING REFERENCE POINT
FMVSS No. 225
(All dimensions in mm)

MODEL YEAR: 2008 MY / MAKE: Mitsubishi / MODEL: Lancer / BODY STYLE: 4-Door Sedan

SEAT STYLE: FRONT ROW: Bucket / SECOND ROW: Bench / THIRD ROW: Not applicable

Driver's seat front outboard seat adjuster anchorage
Table 2. Seating Reference Point and Tether Anchorage Locations

<table>
<thead>
<tr>
<th>Seating Reference Point (SRP)</th>
<th>Distance from Driver's front outboard seat adjuster anchorage¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>355</td>
</tr>
<tr>
<td>E1</td>
<td>217.5</td>
</tr>
<tr>
<td>B2</td>
<td>N/A</td>
</tr>
<tr>
<td>E2</td>
<td>N/A</td>
</tr>
<tr>
<td>B3</td>
<td>355</td>
</tr>
<tr>
<td>E3</td>
<td>932.5</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>1149</td>
</tr>
<tr>
<td>F1</td>
<td>240</td>
</tr>
<tr>
<td>C2</td>
<td>1139 (With ARMREST)</td>
</tr>
<tr>
<td></td>
<td>1154 (W/O ARMREST)</td>
</tr>
<tr>
<td>F2</td>
<td>575</td>
</tr>
<tr>
<td>C3</td>
<td>1149</td>
</tr>
<tr>
<td>F3</td>
<td>910</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>N/A</td>
</tr>
<tr>
<td>G1</td>
<td>N/A</td>
</tr>
<tr>
<td>D2</td>
<td>N/A</td>
</tr>
<tr>
<td>G2</td>
<td>N/A</td>
</tr>
<tr>
<td>D3</td>
<td>N/A</td>
</tr>
<tr>
<td>G3</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: Use the center of anchorage.
TETHER ANCHORAGE LOCATIONS

MODEL YEAR: 2008 MY / MAKE: Mitsubishi / MODEL: Lancer / BODY STYLE: 4-Door Sedan

SEAT STYLE: FRONT ROW: Bucket / SECOND ROW: Bench / THIRD ROW: Not applicable

(Note: The location shall be measured at the center of anchorage.)

%: SRP *: Tether anchorage

(All dimensions in mm)
<table>
<thead>
<tr>
<th>Seating Reference Point (SRP)</th>
<th>Distance from SRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>N/A</td>
</tr>
<tr>
<td>K1</td>
<td>N/A</td>
</tr>
<tr>
<td>H2</td>
<td>N/A</td>
</tr>
<tr>
<td>K2</td>
<td>N/A</td>
</tr>
<tr>
<td>H3</td>
<td>N/A</td>
</tr>
<tr>
<td>K3</td>
<td>N/A</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>I1</td>
<td>641</td>
</tr>
<tr>
<td>L1</td>
<td>-5</td>
</tr>
<tr>
<td>I2</td>
<td>651 (With ARMREST)</td>
</tr>
<tr>
<td></td>
<td>636 (W/O ARMREST)</td>
</tr>
<tr>
<td>L2</td>
<td>0</td>
</tr>
<tr>
<td>I3</td>
<td>641</td>
</tr>
<tr>
<td>L3</td>
<td>-5</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>N/A</td>
</tr>
<tr>
<td>M1</td>
<td>N/A</td>
</tr>
<tr>
<td>J2</td>
<td>N/A</td>
</tr>
<tr>
<td>M2</td>
<td>N/A</td>
</tr>
<tr>
<td>J3</td>
<td>N/A</td>
</tr>
<tr>
<td>M3</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: Use the center of anchorage.
NOMINAL DESIGN RIDING POSITION

For adjustable driver, passenger, 2nd row and 3rd row seat backs, describe how to position the inclinometer to measure the seat back angle. Include a description of the location of the seat back adjustment latch detent if applicable. Indicate if applicable, how the detents are numbered (is the first detent "0" or "1"?). Indicate if the seat back angle is measured with the dummy in the seat.

Seat back angle for driver's seat = _N/A (*)_ degrees.
(*) There is no plane or straight portion to position the inclinometer on seat properly.

Measurement Instructions:

___ Adjust to 2nd latch detent, counting the first forward detent as "0"

Seat back angle for passenger's seat = _N/A (*)_ degrees.

Measurement Instructions:

___ Same as driver's seat.

Seat back angle for 2nd row seat = _N/A_ degrees.

Measurement Instructions:

___ Not applicable (2nd row seat is not adjustable for seat back angle.)

Seat back angle for 3rd row seat = _N/A_ degrees.

Measurement Instructions:

___ Not applicable
TETHER ANCHORAGE LOCATIONS - VERTICAL
FMVSS No. 225
(All dimensions in mm)
MODEL YEAR: 2008 MY / MAKE: Mitsubishi / MODEL: Lancer / BODY STYLE: 4-Door Sedan
SEAT STYLE: FRONT ROW: Bucket / SECOND ROW: Bench / THIRD ROW: Not applicable

LEFT SIDE VIEW OF TEST VEHICLE
Table 4. Vertical Dimension For The Tether Anchorage

<table>
<thead>
<tr>
<th>Seating Row</th>
<th>Vertical Distance from Seating Reference Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>N1 (Driver)</td>
<td>N/A</td>
</tr>
<tr>
<td>N2 (Center)</td>
<td>N/A</td>
</tr>
<tr>
<td>N3 (Right)</td>
<td>N/A</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>O1 (Left)</td>
<td>500</td>
</tr>
<tr>
<td>O2 (Center)</td>
<td>470 (With ARMREST) 465 (W/O ARMREST)</td>
</tr>
<tr>
<td>O3 (Right)</td>
<td>500</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>P1 (Left)</td>
<td>N/A</td>
</tr>
<tr>
<td>P2 (Center)</td>
<td>N/A</td>
</tr>
<tr>
<td>P3 (Right)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: All dimensions are in mm. If not, provide the unit anchorage.

For each vehicle, provide the following information:

1. How many designated seating positions exist in the vehicle?
 Answer: 5 positions

2. How many designated seating positions are equipped with lower anchorages and tether anchorages? Specify which position(s).
 Answer: 2 positions, 2nd row LH & RH side

3. How many designated seating positions are equipped with tether anchorages? Specify which positions(s).
 Answer: 3 positions, 2nd row LH, Center & RH side

4. Lower Anchorages Marking and Conspicuity: Whether the anchorages are certified to S9.5(a) or S9.5(b) of FMVSS No. 225.
 Answer: S9.5(a)
APPENDIX C
PLOTS
GTL 6101, NHTSA C85603

225, Lower Anchor, Row 2 Right Side

Force in Newtons (Thousands)

Time in Seconds
GTL 6102, NHTSA C85603

225, Top Tether, Row 2 Center.

Force in Newtons (Thousands)

Time in Seconds

Graph showing a linear relationship between force in Newtons (in thousands) and time in seconds.