SAFETY COMPLIANCE TESTING FOR
FMVSS NO. 225
CHILD RESTRAINT ANCHORAGE SYSTEMS
LOWER AND TETHER ANCHORAGES

SUZUKI MOTOR CORPORATION, JAPAN
2007 SUZUKI AERIO, PASSENGER CAR
NHTSA NO. C70503

GENERAL TESTING LABORATORIES, INC.
1623 LEEDSTOWN ROAD
COLONIAL BEACH, VIRGINIA 22443

APRIL 18, 2008

FINAL REPORT

PREPARED FOR
U. S. DEPARTMENT OF TRANSPORTATION
NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
ENFORCEMENT
OFFICE OF VEHICLE SAFETY COMPLIANCE
1200 NEW JERSEY AVE., SE
WASHINGTON, D.C. 20590
This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers’ names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.
Compliance tests were conducted on the subject, 2007 Suzuki Aerio Passenger Car in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP-225-01 for the determination of FMVSS 225 compliance. Test failures identified were as follows:
None

Compliance Testing
Safety Engineering
FMVSS 225

Copies of this report are available from NHTSA Technical Information Services (TIS) Room W45-212 (NPO-411) 1200 New Jersey Ave., S.E. Washington, DC 20590 Telephone No. (202) 366-4947

Form DOT F 1700.7 (8-72)
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Purpose of Compliance Test</td>
<td>1</td>
</tr>
<tr>
<td>2 Compliance Test Results</td>
<td>2</td>
</tr>
<tr>
<td>3 Compliance Test Data</td>
<td>3</td>
</tr>
<tr>
<td>4 Test Equipment List</td>
<td>24</td>
</tr>
<tr>
<td>5 Photographs</td>
<td>25</td>
</tr>
<tr>
<td>5.1 ¾ Frontal View from Right Side of Vehicle</td>
<td></td>
</tr>
<tr>
<td>5.2 ¾ Rear View from Left Side of Vehicle</td>
<td></td>
</tr>
<tr>
<td>5.3 Vehicle Certification Label</td>
<td></td>
</tr>
<tr>
<td>5.4 Vehicle Tire Information Label</td>
<td></td>
</tr>
<tr>
<td>5.5 Visibility of Lower Anchors</td>
<td></td>
</tr>
<tr>
<td>5.6 Pre-Test Row 2 Left Side, Outboard Lower Anchor</td>
<td></td>
</tr>
<tr>
<td>5.7 Pre-Test Row 2 Left Side, Inboard Lower Anchor</td>
<td></td>
</tr>
<tr>
<td>5.8 Pre-Test Row 2 Left Side, Top Tether Anchor</td>
<td></td>
</tr>
<tr>
<td>5.9 Pre-Test Row 2 Center, Top Tether Anchor</td>
<td></td>
</tr>
<tr>
<td>5.10 Pre-Test Row 2 Right Side, Inboard Lower Anchor</td>
<td></td>
</tr>
<tr>
<td>5.11 Pre Test Row 2, Right Side Outboard Lower Anchor</td>
<td></td>
</tr>
<tr>
<td>5.12 Pre-Test Row 2, Right Side Top Tether Anchor</td>
<td></td>
</tr>
<tr>
<td>5.13 Row 2 Seating Positions</td>
<td></td>
</tr>
<tr>
<td>5.14 Row 2, Left Side CRF</td>
<td></td>
</tr>
<tr>
<td>5.15 Row 2, Left Side with 2-D Template</td>
<td></td>
</tr>
<tr>
<td>5.16 Row 2, Left Side Top Tether Routing</td>
<td></td>
</tr>
<tr>
<td>5.17 Row 2, Right Side with CRF</td>
<td></td>
</tr>
<tr>
<td>5.18 Row 2, Right Side with 2-D Template</td>
<td></td>
</tr>
<tr>
<td>5.19 Row 2, Right Side Top Tether Routing</td>
<td></td>
</tr>
<tr>
<td>5.20 Row 2 Center with 2-D Template</td>
<td></td>
</tr>
<tr>
<td>5.21 Row 2, Center Top Tether Routing</td>
<td></td>
</tr>
<tr>
<td>5.22 Row 2, Right Side Inboard CRF Measurement</td>
<td></td>
</tr>
<tr>
<td>5.23 Row 2, Right Side Outboard CRF Measurement</td>
<td></td>
</tr>
<tr>
<td>5.24 Row 2, Left Side, Inboard CRF Measurement</td>
<td></td>
</tr>
<tr>
<td>5.25 Row 2, Left Side, Outboard CRF Measurement</td>
<td></td>
</tr>
<tr>
<td>5.26 Symbol Measurement</td>
<td></td>
</tr>
<tr>
<td>5.27 Row 2, Left Side CRF Pitch Measurement</td>
<td></td>
</tr>
<tr>
<td>5.28 Row 2, Right Side CRF Pitch Measurement</td>
<td></td>
</tr>
<tr>
<td>5.29 Row 2, Left Side Outboard SRP Measurement</td>
<td></td>
</tr>
<tr>
<td>5.30 Row 2, Left Side Inboard SRP Measurement</td>
<td></td>
</tr>
<tr>
<td>5.31 Row 2, Right Side Outboard SRP Measurement</td>
<td></td>
</tr>
<tr>
<td>5.32 Row 2, Right Side Inboard SRP Measurement</td>
<td></td>
</tr>
<tr>
<td>5.33 ¾ Left Front View of Vehicle in Test Rig</td>
<td></td>
</tr>
<tr>
<td>5.34 ¾ Right Front View of Vehicle in Test Rig</td>
<td></td>
</tr>
<tr>
<td>5.35 Pre-Test Row 2, Left Side with SFAD 2</td>
<td></td>
</tr>
<tr>
<td>5.36 Post Test Row 2, Left Side with SFAD 2</td>
<td></td>
</tr>
<tr>
<td>5.37 Pre-Test Row 2, Right Side with SFAD 2</td>
<td></td>
</tr>
<tr>
<td>5.38 Post Test Row 2, Right Side with SFAD 2</td>
<td></td>
</tr>
<tr>
<td>5.39 Pre-Test Row 2, Center Position with SFAD 1</td>
<td></td>
</tr>
<tr>
<td>5.40 Post Test Row 2, Center Position with SFAD 1</td>
<td></td>
</tr>
<tr>
<td>Appendix A – Owner’s Manual Child Restraint Information</td>
<td>66</td>
</tr>
<tr>
<td>Appendix B – Manufacturer’s Data</td>
<td>75</td>
</tr>
<tr>
<td>Appendix C - Plots</td>
<td>85</td>
</tr>
</tbody>
</table>
SECTION 1
PURPOSE OF COMPLIANCE TEST

1.0 PURPOSE OF COMPLIANCE TEST

A 2007 Suzuki Aerio Passenger Car was subjected to Federal Motor Vehicle Safety Standard (FMVSS) No. 225 testing to determine if the vehicle was in compliance with the requirements of the standard. The purpose of this standard is to establish requirements for child restraint anchorage systems to ensure their proper location and strength for the effective securing of child restraints, to reduce the likelihood of the anchorage systems’ failure and to increase the likelihood that child restraints are properly secured and thus more fully achieve their potential effectiveness in motor vehicles.

1.1 The test vehicle was a 2007 Suzuki Aerio Passenger Car. Nomenclature applicable to the test vehicle are:

A. **Vehicle Identification Number:** JS2RA62S675353819

B. **NHTSA No.:** C70503

C. **Manufacturer:** SUZUKI MOTOR CORPORATION, JAPAN

D. **Manufacture Date:** 12/06

1.2 TEST DATE

The test vehicle was subjected to FMVSS No. 225 testing on November 5, 2007 through April 1, 2008.
2.0 TEST RESULTS

All tests were conducted in accordance with NHTSA, Office of Vehicle Safety Compliance (OVSC) Laboratory Procedures, TP-225-01 dated 11 April 2005.

Based on the test performed, the 2007 SUZUKI AERIO PASSENGER CAR appears to meet the requirements of FMVSS 225 testing.
SECTION 3
COMPLIANCE TEST DATA

3.0 TEST DATA

The following data sheets document the results of testing on the 2007 Suzuki Aerio Passenger Car.
DATA SHEET 1
SUMMARY OF RESULTS

VEH. MOD YR/MAKE/MODEL/BODY: 2007 SUZUKI AERIO PASSENGER CAR
VEH. NHTSA NO: C70503; VIN: JS2RA62S675353819
VEH. BUILD DATE: 12/06; TEST DATE: NOVEMBER 5, 2007-APRIL 1, 2008
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

A. VISUAL INSPECTION OF TEST VEHICLE

Upon receipt for completeness, function, and discrepancies or damage which might influence the testing.

RESULTS: OK FOR TEST

B. REQUIREMENTS FOR CHILD RESTRAINT SYSTEMS AND TETHER ANCHORAGES

<table>
<thead>
<tr>
<th>DSP</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

C. LOCATION OF TETHER ANCHORAGES

<table>
<thead>
<tr>
<th>DSP</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

D. LOWER ANCHORAGE DIMENSIONS

<table>
<thead>
<tr>
<th>DSP</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY OF RESULTS

E. CONSPICUITY AND MARKING OF LOWER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

F. STRENGTH OF TETHER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

G. STRENGTH OF LOWER ANCHORAGES (Forward Force)

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

H. STRENGTH OF LOWER ANCHORAGE (Lateral Force)

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

I. OWNER’S MANUAL

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS: DSP a = Left Rear Outboard, DSP b = Center, DSP c = Right Rear Outboard

RECORDED BY: __G. Farrand__________ DATE: ______04/01/08____

APPROVED BY: __D. Messick__________
DATA SHEET 2
REQUIREMENTS FOR CHILD RESTRAINT ANCHORAGE SYSTEMS
AND TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2007 SUZUKI AERIO PASSENGER CAR
VEH. NHTSA NO: C70503; VIN: JS2RA6S675353819
VEH. BUILD DATE: 12/06; TEST DATE: NOVEMBER 5, 2007
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

Number of rows of seats: 2
Number of rear, forward-facing designated seating positions: 3
Number of required CRAS (lower anchorages only, for convertibles/school buses): 2
Number of required tether anchorages (can be additional CRAS): 3
Is the vehicle a convertible? NO
Is the vehicle a school bus? NO

Does the vehicle have a CRAS (lower anchorage only, for convertibles/school buses) installed at a front passenger seating position? NO
If NO, skip to next question.
If YES, does the vehicle have rear designated seating positions?
If NO, does the vehicle have an air bag on-off switch or a special exemption for no passenger air bag?
If NO = FAIL If YES = PASS
If Yes, does the vehicle meet the requirements of S4.5.4.1 (b) of S208 and have an air bag on-off switch or a special exemption for no passenger air bag?
Record the distance between the front and rear seat back:
If Distance <720 mm and vehicle has an air bag on-off switch or special exemption = PASS
If Distance ≥ 720 mm or no air bag on-off switch or no special exemption = FAIL

Does the vehicle have rear designated seating position(s) where the lower bars of a CRAS are prevented from being located because of transmission and/or suspension component interference? NO
If NO, skip to next question.
If YES, does the vehicle have a tether anchorage at a front passenger seating position? YES = PASS NO = FAIL (S5(e))

Number of provided CRAS (lower anchorage only, for convertibles/school buses), indicate if a built-in child restraint is counted as a CRAS: 2

Is the number of provided CRAS (lower anchorages only, for convertible/school buses) greater than or equal to the number of required CRAS (lower anchorages only, for convertibles/school buses)? YES
YES = PASS NO = FAIL (S4.4(a) or (b) or (c))
DATA SHEET 2 CONTINUED

If the vehicle has 3 or more rows of seats is a CRAS (lower anchorage only for convertibles/school buses) provided in the second row: N/A
YES = PASS NO = FAIL (S4.4(a)(1))

Number of provided tether anchorages (can be additional CRAS) indicate if a built-in child restraint is counted as tether anchorage (NOTE: a built-in child restraint can only be counted toward either the required number of CRAS or tether anchorages, not both): 3

Is the number of provided tether anchorages greater than or equal to the number of required tether anchorages? YES
YES = PASS NO = FAIL (S4.4 (a) or (b) or (c))

If the vehicle has 3 or more rear dps and a non-outboard dsp, is a tether anchorage or CRAS provided at a non-outboard dsp? YES
YES = PASS NO = FAIL (S4.4 (a)(2))

Are all tether and lower anchorages available for use at all times when the seat is configured for passenger use? YES
YES = PASS NO = FAIL (S4.6 (b))

Provide a diagram showing the location of lower anchorages and/or tether anchorages.

X
* A
* B
* C

DRVR
PSGR

X = Top Tether
* = Lower Anchors

RECORDED BY: G. Farrand DATE: 11/05/07
APPROVED BY: D. Messick
DATA SHEET 3
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2007 SUZUKI AERIO PASSENGER CAR
VEH. NHTSA NO: C70503; VIN: JS2RA62S675353819
VEH. BUILD DATE: 12/06; TEST DATE: NOVEMBER 5, 2007
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

Detailed description of the location of the tether anchorage:
Located on hat shelf behind rear seat.

Based on visual inspection, is the tether anchorage within the shaded zone? _____YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone? _____
If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component?
 If YES = FAIL (S6.2.1)
 If NO, Is a tether routing device provided?
 If YES = PASS
 IF NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? _____NO
If NO, skip to next question
If YES, is it outside of the tether strap wraparound area? _____YES
 YES = PASS NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? _____YES
 YES = PASS NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? _____YES
 YES = PASS NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? _____YES
 YES = PASS NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? _____YES
 YES = PASS NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? _____N/A
DATA SHEET 3 CONTINUED

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension: N/A (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device: N/A
 Greater than or equal to 65mm = PASS Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device: N/A
 Greater than or equal to 100mm = PASS Less than 100mm = FAIL

COMMENTS:

RECORDED BY: G. Farrand DATE: 11/05/07

APPROVED BY: D. Messick
DATA SHEET 3A
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2007 SUZUKI AERIO PASSENGER CAR
VEH. NHTSA NO: C70503; VIN: JS2RA62S675353819
VEH. BUILD DATE: 12/06; TEST DATE: NOVEMBER 5, 2007
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 CENTER POSITION (DSP B)

Detailed description of the location of the tether anchorage:
Located on hat shelf behind rear seat.

Based on visual inspection, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component? YES = FAIL (S6.2.1)
If NO, Is a tether routing device provided? If YES = PASS
If NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? NO
If NO, skip to next question
If YES, is it outside of the tether strap wraparound area? YES = PASS
NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? YES
YES = PASS
NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? YES
YES = PASS
NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? YES
YES = PASS
NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? YES
YES = PASS
NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? N/A
DESIGNATED SEATING POSITION: ROW 2 CENTER POSITION (DSP B)

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension: N/A (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device: N/A
 Greater than or equal to 65mm = PASS Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device: N/A
 Greater than or equal to 100mm = PASS Less than 100mm = FAIL

COMMENTS:

RECORDED BY: G. Farrand DATE: 11/05/07

APPROVED BY: D. Messick
DATA SHEET 3B
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2007 SUZUKI AERIO PASSENGER CAR
VEH. NHTSA NO: C70503; VIN: JS2RA62S675353819
VEH. BUILD DATE: 12/06; TEST DATE: NOVEMBER 5, 2007
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Detailed description of the location of the tether anchorage:
Located on hat shelf behind rear seat.

Based on visual inspection, is the tether anchorage within the shaded zone? ____ YES
 If YES = PASS, skip to next section
 If NO, After constructing the shaded zone, is the tether anchorage within the shaded
 zone? ______
 If YES = PASS, skip to next section
 If NO, Is it possible to locate a tether anchorage within the shaded zone without
 removing a seating component?
 If YES = FAIL (S6.2.1)
 If NO, Is a tether routing device provided?
 If YES = PASS
 IF NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? ____ NO
 If NO, skip to next question
 If YES, is it outside of the tether strap wraparound area? ____ YES
 YES = PASS NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? ____ YES
 YES = PASS NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or
coin? ____ YES
 YES = PASS NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? ____ YES
 YES = PASS NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger
compartment? ____ YES
 YES = PASS NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? ____ N/A
DESIGNATED SEATING POSITION: _ROW 2 RIGHT SIDE (DSP C)_

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension: _N/A_ (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device: _N/A_

 Greater than or equal to 65mm = PASS
 Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device: _N/A_

 Greater than or equal to 100mm = PASS
 Less than 100mm = FAIL

COMMENTS:

RECORDED BY: G. Farrand DATE: 11/05/07

APPROVED BY: D. Messick
Lower Anchorage Dimensions

VEH. MOD YR/MAKE/MODEL/BODY: 2007 SUZUKI AERIO PASSENGER CAR
VEH. NHTSA NO: C70503; VIN: JS2RA62S675353819
VEH. BUILD DATE: 12/06; TEST DATE: NOVEMBER 5, 2007
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

Outboard Lower Anchorage bar diameter: 6.06 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: 6.03 mm
6mm ± 0.1mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? YES
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): 33 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length of the straight portion of the bar (inboard lower anchorage): 32 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length between the anchor bar supports (outboard lower anchorage): 44 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

Length between the anchor bar supports (inboard lower anchorage): 44 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

CRF Pitch angle: 14.0
Angle = 15°±10° = PASS Angle≠15°±10° = FAIL (S9.2.1)

CRF Roll angle: 0.0
Angle = 0°±5° = PASS Angle≠0°±5° = FAIL (S9.2.1)

CRF Yaw angle: 0.0
Angle = 0°±10° = PASS Angle≠0°±10° = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 48
Distance ≤70mm = PASS Distance > 70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: 48
Distance ≤70mm = PASS Distance > 70mm = FAIL
DATA SHEET 4 CONTINUED

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

Distance between SgRP and the front surface of outboard anchor bar: 153 mm
Distance \geq 120mm = PASS Distance < 120mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: 156 mm
Distance \geq 120mm = PASS Distance < 120mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm? NO

If NO = PASS
If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:

COMMENTS:

RECORDED BY: G. Farrand DATE: 11/06/07

APPROVED BY: D. Messick
DATA SHEET 4A
LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2007 SUZUKI AERIO PASSENGER CAR
VEH. NHTSA NO: C70503; VIN: JS2RA62S675353819
VEH. BUILD DATE: 12/06; TEST DATE: NOVEMBER 5, 2007
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Outboard Lower Anchorage bar diameter: 6.00 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: 6.02 mm
6mm ± 0.1mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? YES
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): 34 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length of the straight portion of the bar (inboard lower anchorage): 33 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length between the anchor bar supports (outboard lower anchorage): 44 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

Length between the anchor bar supports (inboard lower anchorage): 44 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

CRF Pitch angle: 13.3
Angle = 15°±10° = PASS Angle ≠15°±10° = FAIL (S9.2.1)

CRF Roll angle: 0.0
Angle = 0°±5° = PASS Angle ≠0°±5° = FAIL (S9.2.1)

CRF Yaw angle: 0.0
Angle = 0°±10° = PASS Angle ≠0°±10° = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 48
Distance ≤70mm = PASS Distance > 70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: 48
Distance ≤70mm = PASS Distance > 70mm = FAIL
DATA SHEET 4A CONTINUED

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Distance between SgRP and the front surface of outboard anchor bar: 156 mm
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: 156 mm
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm? NO

If NO = PASS
If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:

COMMENTS:

RECORDED BY: G. Farrand DATE: 11/06/07
APPROVED BY: D. Messick
DATA SHEET 5
CONSPICUITY AND MARKING OF LOWER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2007 SUZUKI AERIO PASSENGER CAR
VEH. NHTSA NO: C70503; VIN: JS2RA62S675353819
VEH. BUILD DATE: 12/06; TEST DATE: NOVEMBER 6, 2007
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT AND RIGHT SIDE (DSP A & C)

MARKING (Circles)

Diameter of the circle: 16.7 mm
Diameter ≥13 mm = PASS Diameter <13mm = FAIL (S9.5(a)(1))

Does the circle have words, symbols or pictograms? PICTOGRAPH
NO skip to next question
YES, are the meaning of the words, symbols or pictograms explained in the owner's manual? YES
YES = PASS NO = FAIL (S9.5(a)(2))

Where is the circle located? Seat back or seat Cushion: Seat Back

For circles on seat backs, vertical distance from the center of the circle to the center of the anchor bar: 51 mm
Distance between 50&100mm = PASS Other Distance=FAIL (S9.5(a)(3))

For circles on seat cushions, horizontal distance from the center of the circle to the center of the bar: N/A
Distance between 75&125mm= PASS Other Distance=FAIL (S9.5(a)(3))

Lateral distance from the center of the circle to the center of the anchor bar: 5
Distance≤25mm = PASS Distance >25mm = FAIL (S9.5(a)(3))

CONSPICUITY (No Circles)

Is the anchor bar or guide visible when viewed from a point 30º above the horizontal in a vertical longitudinal plane bisecting the anchor bar or guide? N/A
YES = PASS NO = FAIL (S9.5(b))

If there is a guide, is it permanently attached? N/A
YES = PASS NO = FAIL (S9.5(b))
DATA SHEET 5 CONTINUED

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE AND RIGHT SIDE (DSP A & C)

Is there a cap or cover over the anchor bar? N/A

If YES, Is the cap or cover marked with words, symbols or pictograms?

If NO = FAIL (S9.5(b))

If YES, is the meaning of the words, symbols or pictograms explained in the owner’s manual?

YES = PASS NO = FAIL (S9.5(b))

If NO, there are no requirements for having a cover.

RECORDED BY: G. Farrand DATE: 11/06/07

APPROVED BY: D. Messick
DATA SHEET 6
STRENGTH OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2007 SUZUKI AERIO PASSENGER CAR
VEH. NHTSA NO: C70503; VIN: JS2RA62S675353819
VEH. BUILD DATE: 12/06; TEST DATE: MARCH 31, 2008
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 5981

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)
SFAD: 2

Seat Back Angle: 24º FIXED

Location of seat back angle measurement: 2D Template

Head Restraint Position: UP

D-ring Position: N/A

Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: 135 N
Lap belt tension: N/A (SFAD 1 only)
Tether strap tension: 65 N

Angle (measured above the horizontal at 500 N): 10º

Separation of tether anchorage at 500 N: NO
NO = PASS YES = FAIL (S6.3.1)

Force application rate: 575 N/S

Time to reach maximum force (24-30 s): 26 sec.

Maximum force (14,950 N ± 50 N): 14,959 N

Tested simultaneously with another DSP? NO

COMMENTS: Displacement at maximum load 42 mm.

RECORDED BY: G. FARRAND DATE: 03/31/08
APPROVED BY: D. MESSICK
DATA SHEET 7
STRENGTH OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2007 SUZUKI AERIO PASSENGER CAR
VEH. NHTSA NO: C70503; VIN: JS2RA62S675353819
VEH. BUILD DATE: 12/06; TEST DATE: APRIL 1, 2008
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 5983

DESIGNATED SEATING POSITION: ROW 2 CENTER (DSP B)

SFAD: 1

Seat Back Angle: 18° FIXED

Location of seat back angle measurement: 2D Template

Head Restraint Position: UP

D-ring Position: N/A

Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: 135 N

Lap belt tension: 65 N (SFAD 1 only)

Tether strap tension: 65 N

Angle (measured above the horizontal at 500 N): 10°

Separation of tether anchorage at 500 N: NO

NO = PASS YES = FAIL (S6.3.1)

Force application rate: 575 N/S

Time to reach maximum force (24-30 s): 26 sec.

Maximum force (14,950 N ± 50 N): 14,923 N

Tested simultaneously with another DSP? NO

COMMENTS:

RECORDED BY: G. FARRAND DATE: 04/01/08

APPROVED BY: D. MESSICK
DATA SHEET 8
STRENGTH OF LOWER ANCHORAGES (Forward Force)

VEH. MOD YR/MAKE/MODEL/BODY: 2007 SUZUKI AERIO PASSENGER CAR
VEH. NHTSA NO: C70503; VIN: JS2RA62S675353819
VEH. BUILD DATE: 12/06; TEST DATE: APRIL 1, 2008
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 5982

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Seat Back Angle: 24º FIXED

Location of seat back angle measurement: 2D Template

Head Restraint Position: N/A

Force at lower front crossmember for SFAD2 while tightening rearward extensions: 135 N

Angle (measured above the horizontal at 500 N): 10º

Force application rate: 423 N/S

Time to reach maximum force (24-30 s): 26 sec.

Maximum force (10,950 N ± 50 N): 10,947 N

Displacement, H1 (at 500 N): 0.0

Displacement, H2 (at maximum load): 55 mm

Displacement of Point X: 55 mm (H2-H1)

Displacement > 175 mm = FAIL (S9.4.1(a))

Tested simultaneously with another DSP? NO

Distance between adjacent DSP's: 368 mm

COMMENTS:

RECORDED BY: G. FARRAND DATE: 04/01/08
APPROVED BY: D. MESSICK
Description of which DSP’s are equipped with tether anchorages and child restraint anchorage systems: YES

PASS X FAIL

Step-by-step instructions for properly attaching a child restraint system’s tether strap to the tether anchorage. Diagrams are required. YES

PASS X FAIL

Description of how to properly use the tether anchorage and lower anchor bars: YES

PASS X FAIL

If the lower anchor bars are marked with a circle, an explanation of what the circle indicates as well as any words or pictograms: YES

PASS X FAIL

COMMENTS:

RECORDED BY: G. Farrand DATE: 11/05/07

APPROVED BY: D. Messick
TABLE 1 - INSTRUMENTATION & EQUIPMENT LIST

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>DESCRIPTION</th>
<th>MODEL/ SERIAL NO.</th>
<th>CAL. DATE</th>
<th>NEXT CAL. DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER</td>
<td>AT&T</td>
<td>486DX266</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>LOAD CELL</td>
<td>INTERFACE</td>
<td>496</td>
<td>03/07</td>
<td>03/08</td>
</tr>
<tr>
<td>LINEAR TRANSUDER</td>
<td>SERVO SYSTEMS</td>
<td>20</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SEAT BELT LOAD CELL</td>
<td>TRANSUDER</td>
<td>135</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SEAT BELT LOAD CELL</td>
<td>TRANSUDER</td>
<td>137</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>LEVEL</td>
<td>STANLEY</td>
<td>42-449</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>FORCE GAUGE</td>
<td>CHATILLON</td>
<td>8761</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>CALIPER</td>
<td>N/A</td>
<td>Q9322365</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>CRF</td>
<td>MEASUREMENT FIXTURE</td>
<td>GTL CRF</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 1</td>
<td>FORCE APPLICATION DEVICE</td>
<td>GTL SFAD 1</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 2</td>
<td>FORCE APPLICATION DEVICE</td>
<td>GLT SFAD 2</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
</tbody>
</table>
SECTION 5

PHOTOGRAPHS
FIGURE 5.1
¾ FRONTAL RIGHT SIDE VIEW OF VEHICLE
2007 SUZUKI AERIO
NHTSA NO. C70503
FMVSS NO. 225

FIGURE 5.2
¾ REARWARD LEFT SIDE VIEW OF VEHICLE
TIRE AND LOADING INFORMATION

SEATING CAPACITY
- Total: 5
- Front: 2
- Rear: 3

The combined weight of occupants and cargo should never exceed 440 kg or 968 lbs.

<table>
<thead>
<tr>
<th>TIRE</th>
<th>ORIGINAL TIRE SIZE</th>
<th>COLD TIRE PRESSURE</th>
<th>SEE OWNER'S MANUAL FOR ADDITIONAL INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONT</td>
<td>P185/65R14</td>
<td>210 KPA, 30 PSI</td>
<td></td>
</tr>
<tr>
<td>REAR</td>
<td>P185/65R14</td>
<td>210 KPA, 30 PSI</td>
<td></td>
</tr>
<tr>
<td>SPARE</td>
<td>T125/70D15</td>
<td>420 KPA, 60 PSI</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5.5
VISIBILITY OF LOWER ANCHORS
FIGURE 5.6
ROW 2, LEFT SIDE, OUTBOARD LOWER ANCHOR, PRE-TEST
FIGURE 5.7
ROW 2, LEFT SIDE, INBOARD LOWER ANCHOR,
PRE-TEST

2007 SUZUKI AERIO
NHTSA NO. C70503
FMVSS NO. 225
2007 SUZUKI AERIO
NHTSA NO. C70503
FMVSS NO. 225

FIGURE 5.8
ROW 2, LEFT SIDE, TOP TETHER ANCHOR,
PRE-TEST
2007 SUZUKI AERIO
NHTSA NO. C70503
FMVSS NO. 225

FIGURE 5.9
ROW 2, CENTER, TOP TETHER ANCHOR,
PRE-TEST
FIGURE 5.10
ROW 2, RIGHT SIDE, INBOARD LOWER ANCHOR, PRE-TEST
2007 SUZUKI AERIO
NHTSA NO. C70503
FMVSS NO. 225

FIGURE 5.12
ROW 2, RIGHT SIDE, TOP TETHER ANCHOR,
PRE-TEST
FIGURE 5.13
OVERALL VIEW OF ROW 2 SEATING POSITIONS,
PRE-TEST

2007 SUZUKI AERIO
NHTSA NO. C70503
FMVSS NO. 225
FIGURE 5.14
ROW 2, LEFT SIDE WITH CRF
FIGURE 5.16
ROW 2, LEFT SIDE TOP TETHER ROUTING
FIGURE 5.17
ROW 2, RIGHT SIDE WITH CRF
FIGURE 5.18
ROW 2, RIGHT SIDE WITH 2-D TEMPLATE

2007 SUZUKI AERIO
NHTSA NO. C70503
FMVSS NO. 225
2007 SUZUKI AERIO
NHTSA NO. C70503
FMVSS NO. 225

FIGURE 5.19
ROW 2, RIGHT SIDE TOP TETHER ROUTING
FIGURE 5.21
ROW 2, CENTER TOP TETHER ROUTING
2007 SUZUKI AERIO
NHTSA NO. C70503
FMVSS NO. 225

FIGURE 5.22
ROW 2, RIGHT SIDE INBOARD CRF
MEASUREMENT
2007 SUZUKI AERIO NHTSA NO. C70503 FMVSS NO. 225

FIGURE 5.23 ROW 2, RIGHT SIDE OUTBOARD CRF MEASUREMENT
FIGURE 5.29
ROW 2, LEFT SIDE OUTBOARD SRP MEASUREMENT
FIGURE 5.31
ROW 2, RIGHT SIDE OUTBOARD SRP
MEASUREMENT
2007 SUZUKI AERIO
NHTSA NO. C70503
FMVSS NO. 225

FIGURE 5.32
ROW 2, RIGHT SIDE INBOARD SRP
MEASUREMENT
2007 SUZUKI AERIO
NHTSA NO. C70503
FMVSS NO. 225

FIGURE 5.33
¾ LEFT FRONT VIEW OF VEHICLE IN TEST RIG
FIGURE 5.34
¼ RIGHT FRONT VIEW OF VEHICLE IN TEST RIG
FIGURE 5.35
PRE-TEST ROW 2, LEFT SIDE WITH SFAD 2
FIGURE 5.36
POST TEST ROW 2, LEFT SIDE WITH SFAD 2
FIGURE 5.37
PRE-TEST ROW 2, RIGHT SIDE WITH SFAD 2
2007 SUZUKI AERIO
NHTSA NO. C70503
FMVSS NO. 225

FIGURE 5.39
PRE-TEST ROW 2, CENTER POSITION WITH SFAD 1
FIGURE 5.40
POST TEST ROW 2, CENTER POSITION WITH SFAD 1
Seat Belt Inspection

EXAMPLE

Be sure to inspect all seat belt assemblies after any collision. Any seat belt assembly which was in use during a collision (other than a very minor one) should be replaced, even if damage to the assembly is not obvious. Any seat belt assembly which was not in use during a collision should be replaced if it does not function properly, it is damaged in any way or the seat belt pretensioners were activated.

Periodically inspect the seat belts to make sure they work properly and are not damaged. Check the webbing, buckles, latch plates, retractors, anchorages and guide loops. Replace any seat belts which do not work properly or are damaged.

Child Restraint Systems

Infant restraint - rear seat only

EXAMPLE
BEFORE DRIVING

Infant restraint - rear seat only

SUZUKI highly recommends that you use a child restraint system to restrain infants and small children. Many different types of child restraint systems are available; make sure that the restraint system you select meets Federal Motor Vehicle Safety Standards.

All child restraint systems are designed to be secured in vehicle seats by either seat belts (lap belts or the lap portion of lap-shoulder belts) or by special rigid lower anchor bars built into the seats. Whenever possible, SUZUKI recommends that child restraint systems be installed on the rear seat. According to accident statistics, children are safer when properly restrained in rear seating positions than in front seating positions.

If you must use a front-facing child restraint in the front passenger's seat, be sure to move the front passenger's seat as far back as possible.

Booster seat

EXAMPLE

WARNING

Do not install a rear-facing child restraint in the front passenger's seat. If the passenger's air bag inflates, a child in a rear-facing child restraint could be killed or seriously injured. The back of a rear-facing child restraint would be too close to the inflating air bag.
WARNING

Children could be endangered in a crash if their child restraints are not properly secured in the vehicle. When installing a child restraint system, be sure to follow the instructions below. Be sure to secure the child in the restraint system according to the manufacturer’s instructions.

Installation with Lap-Shoulder Seat Belts (child restraint with no top strap)

EXAMPLE

Install your child restraint system according to the instructions provided by the child restraint system manufacturer. If you install the child restraint system in the front seat, be sure to slide the seat to the rearmost position. After making sure that the seat belt is securely latched:
BEFORE DRIVING

1) Pull all of the remaining webbing out of the retractor. You will hear a click, which means that the emergency locking retractor (ELR) has converted to function as an automatic locking retractor (ALR).

2) Allow the extra webbing to retract, and pull the webbing toward the retractor to take up any slack. Make sure that the lap portion of the belt is tight around the child restraint system and the shoulder portion of the belt is positioned so that it can not interfere with the child’s head or neck.

3) Make sure that the retractor has converted to the ALR mode by trying to pull webbing out of the retractor. If the retractor is in the ALR mode, the belt will be locked.

WARNING

If the retractor is not in the ALR mode, the child restraint system can move or tip over when your vehicle turns or stops abruptly.

WARNING

Before installing a child restraint in the rear center seat, make sure the detachable connector is securely latched and the webbing is not twisted.
To revert from ALR to ELR

When you unbuckle the seat belt and allow it to retract to a certain length, the retractor will automatically revert back to the normal ELR mode.

Installation with the LATCH System

Your vehicle is equipped with lower anchors for securing up to two standard LATCH-type child restraints in the second row seats. (LATCH stands for Lower
Anchors and Tethers for Children. The anchors are located where the rear of the seat cushion meets the bottom of the seatback. Their position is identified by a small round label affixed to the seatback as shown in the illustration.

Install a LATCH-type child restraint system according to the instructions provided by the child restraint system manufacturer. After installing the child restraint system, try moving it in all directions, especially forward, to make sure the flexible straps or rigid connecting bars are securely latched to the anchors.

NOTE:
Although there are three second row seating positions, you cannot install three LATCH type child restraints in the second row seats. You can install one or two LATCH restraint(s). Be sure to install the LATCH type child restraint(s) in the outboard seating positions.

If your LATCH restraint has flexible lower connecting straps, these general instructions apply:
1) If possible, fold the seatback rearward for easier installation.

2) Place the child restraint in the second row seat, feeding the strap hooks through the slots in the seat cushion or the slots in the seatback bottom.

3) Snap the strap hooks to the anchors. Take care not to pinch your fingers.

4) Return the seatback to the normal, upright position. Tighten the lower straps as described in the child restraint.
If your LATCH restraint has rigid lower connecting bars, these general instructions apply:
1) If possible, fold the seatback rearward for easier installation.

2) Place the child restraint in the second row seat, inserting the connecting bars through the slots in the seat cushion or the slots in the seatback bottom.

3) Use your hands to carefully align the connecting bar tips with the anchors. Take care not to pinch your fingers.

4) Push the child restraint toward the anchors so that the connecting bar tips

owner's manual. Attach the top tether strap, if applicable.

5) Make sure the child restraint is securely fastened by trying to move the child restraint system in all directions, especially forward.

⚠️ WARNING
The seatback should always be securely latched in a fairly upright position when any type of child seat is installed. An unlatched or reclined seatback will reduce the intended effectiveness of the child restraint system.
BEFORE DRIVING

are partially hooked to the anchors. Use your hands to confirm the position.

EXAMPLE

 Installation-Child Restraint with Top Strap

EXAMPLE

5) Grasp the front of the child restraint and push the child restraint forcefully to latch the connecting bars. Make sure they are securely latched by trying to move the child restraint system in all directions, especially forward.

6) Return the seatback if folded. Attach the top tether strap, if applicable.

WARNING

The seatback should always be securely latched in a fairly upright position when any type of child seat is installed. An unlatched or reclined seatback will reduce the intended effectiveness of the child restraint system.

Some child restraint systems require the use of a top strap. Top strap anchor brackets are provided in your vehicle at the locations shown in the illustrations. Install the child restraint system as follows:

1) Secure the child restraint on the rear seat using the procedure described above for securing a restraint system that does not require a top strap.

2) Hook the top strap to the anchor bracket and tighten the top strap according to the instructions provided by the child restraint system manufacturer. Be sure to attach the top strap to the corresponding anchor located directly behind the child restraint.

3) When routing the top strap, be sure to pass it between the head restraint and the rear seatback as shown. (Refer to “Head Restraints” section for details on how to raise or lower the head restraint.)

4) Make sure that cargo does not interfere with routing of the top strap.
APPENDIX B

MANUFACTURER’S DATA
Table 1. Seating Positions\(^1\) and Torso Angles

<table>
<thead>
<tr>
<th>Torso Angle (degree)</th>
<th>Left (Driver Side)</th>
<th>Center (if any)</th>
<th>Right (Front Passenger)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>(Driver) 259.4</td>
<td>N/A</td>
<td>(Front Passenger) 259.4</td>
</tr>
<tr>
<td>A2</td>
<td>162.4</td>
<td>157.5</td>
<td>162.4</td>
</tr>
<tr>
<td>A3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>B</td>
<td>360.3</td>
<td>N/A</td>
<td>360.3</td>
</tr>
<tr>
<td>C</td>
<td>1150.3</td>
<td>1130.3</td>
<td>1150.3</td>
</tr>
<tr>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: All dimensions are in mm. If not, provide the unit used.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SEATING REFERENCE POINT
FMVSS No. 225
(All dimensions in mm)
MODEL YEAR: 07MY / MAKE: SUZUKI / MODEL: Aerio / BODY STYLE: 4-Dr Sedan
SEAT STYLE: FRONT ROW: SEPARATE / SECOND ROW: SPLIT BENCH / THIRD ROW: N/A

Diagram with labeled points A1, A2, A3, B1, B2, B3, C1, C2, C3, D1, D2, D3, E1, E2, E3, F1, F2, F3, G1, G2, G3, illustrating the seating arrangement and anchorages.
<table>
<thead>
<tr>
<th>Seating Reference Point (SRP)</th>
<th>Distance from Driver’s front outboard seat adjuster anchorage¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>360.3</td>
</tr>
<tr>
<td>E1</td>
<td>251.5</td>
</tr>
<tr>
<td>B2</td>
<td>N/A</td>
</tr>
<tr>
<td>E2</td>
<td>N/A</td>
</tr>
<tr>
<td>B3</td>
<td>360.3</td>
</tr>
<tr>
<td>E3</td>
<td>921.5</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>1150.3</td>
</tr>
<tr>
<td>F1</td>
<td>246.5</td>
</tr>
<tr>
<td>C2</td>
<td>770.0</td>
</tr>
<tr>
<td>F2</td>
<td>586.5</td>
</tr>
<tr>
<td>C3</td>
<td>1150.3</td>
</tr>
<tr>
<td>F3</td>
<td>926.5</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>N/A</td>
</tr>
<tr>
<td>G1</td>
<td>N/A</td>
</tr>
<tr>
<td>D2</td>
<td>N/A</td>
</tr>
<tr>
<td>G2</td>
<td>N/A</td>
</tr>
<tr>
<td>D3</td>
<td>N/A</td>
</tr>
<tr>
<td>G3</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: Use the center of anchorage.
TETHER ANCHORAGE LOCATIONS
FMVSS No. 225
(All dimensions in mm)

MODEL YEAR: 07MY / MAKE: SUZUKI / MODEL: Aerio / BODY STYLE: 4-Dr Sedan

SEAT STYLE: FRONT ROW: SEPARATE / SECOND ROW: SPLIT BENCH / THIRD ROW: N/A

Note: The location shall be measured at the center of anchorage.
Table 3. Seating Reference Point and Tether Anchorage Locations

<table>
<thead>
<tr>
<th>Seating Reference Point (SRP)</th>
<th>Distance from SRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>N/A</td>
</tr>
<tr>
<td>K1</td>
<td>N/A</td>
</tr>
<tr>
<td>H2</td>
<td>N/A</td>
</tr>
<tr>
<td>K2</td>
<td>N/A</td>
</tr>
<tr>
<td>H3</td>
<td>N/A</td>
</tr>
<tr>
<td>K3</td>
<td>N/A</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>I1</td>
<td>545.9</td>
</tr>
<tr>
<td>L1</td>
<td>0</td>
</tr>
<tr>
<td>I2</td>
<td>661.9</td>
</tr>
<tr>
<td>L2</td>
<td>0</td>
</tr>
<tr>
<td>I3</td>
<td>545.9</td>
</tr>
<tr>
<td>L3</td>
<td>0</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>N/A</td>
</tr>
<tr>
<td>M1</td>
<td>N/A</td>
</tr>
<tr>
<td>J2</td>
<td>N/A</td>
</tr>
<tr>
<td>M2</td>
<td>N/A</td>
</tr>
<tr>
<td>J3</td>
<td>N/A</td>
</tr>
<tr>
<td>M3</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: Use the center of anchorage.
NOMINAL DESIGN RIDING POSITION

For adjustable driver, passenger, 2nd row and 3rd row seat backs, describe how to position the inclinometer to measure the seat back angle. Include a description of the location of the seat back adjustment latch detent if applicable. Indicate if applicable, how the detents are numbered (is the first detent "0" or "1")? Indicate if the seat back angle is measured with the dummy in the seat.

Seat back angle for driver's seat = _16_ degrees.
(In case of measuring the head restraint stay angle.)

Measurement Instructions: See \textit{DWG-1}
- Set the inclinometer on the headrest stand.
- Set the seat back adjuster to the 4th detent. (First detent (First lock) is "0")
- As a result seat back angle for driver's seat is 16 degrees. (Nominal design position)

Seat back angle for passenger's seat = _16_ degrees.
(In case of measuring the head restraint stay angle.)

Measurement Instructions: See \textit{DWG-2}
- Set the inclinometer on the headrest stand.
- Set the seat back adjuster to the 6th detent. (First detent (First lock) is "0")
- As a result seat back angle for passenger's seat is 16 degrees. (Nominal design position)

Seat back angle for 2nd row seat = _13.9_ degrees.
(In case of measuring the side head restraint stay angle.)

Measurement Instructions:
- 2nd row seat has no recliner. (Seat back angle is only one position.)
- Set the inclinometer on the side headrest stay stand.
- As a result seat back angle for 2nd row seat is 13.9 degrees. (Nominal design position)

Seat back angle for 3rd row seat = _N/A_ degrees.

Measurement Instructions:

N/A
TETHER ANCHORAGE LOCATIONS - VERTICAL
FMVSS No. 225
(All dimensions in mm)

MODEL YEAR: **07MY** / MAKE: **SUZUKI** / MODEL: **Aerio** / BODY STYLE: **4-Dr Sedan**
SEAT STYLE: FRONT ROW: **SEPARATE** / SECOND ROW: **SPLIT BENCH** / THIRD ROW: **N/A**

LEFT SIDE VIEW OF TEST VEHICLE

Vehicle Floorpan
Table 4. Vertical Dimension For The Tether Anchorage

<table>
<thead>
<tr>
<th>Seating Row</th>
<th>Vertical Distance from Seating Reference Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>N1 (Driver)</td>
<td>N/A</td>
</tr>
<tr>
<td>N2 (Center)</td>
<td>N/A</td>
</tr>
<tr>
<td>N3 (Right)</td>
<td>N/A</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>O1 (Left)</td>
<td>489</td>
</tr>
<tr>
<td>O2 (Center)</td>
<td>470.7</td>
</tr>
<tr>
<td>O3 (Right)</td>
<td>489</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>P1 (Left)</td>
<td>N/A</td>
</tr>
<tr>
<td>P2 (Center)</td>
<td>N/A</td>
</tr>
<tr>
<td>P3 (Right)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: All dimensions are in mm. If not, provide the unit anchorage.

For each vehicle, provide the following information:

1. How many designated seating positions exist in the vehicle? 5 positions
2. How many designated seating positions are equipped with lower anchorages and tether anchorages? Specify which position(s). 2 positions. (2nd row right seat / 2nd row left seat)
3. How many designated seating positions are equipped with tether anchorages? Specify which positions(s). 1 position. (2nd row center seat)
4. Lower Anchorages Marking and Conspicuity: Whether the anchorages are certified to S9.5(a) or S9.5(b) of FMVSS No. 225. S9.5(a)