SAFETY COMPLIANCE TESTING FOR
FMVSS NO. 225
CHILD RESTRAINT ANCHORAGE SYSTEMS
LOWER AND TETHER ANCHORAGES

HONDA OF AMERICA MFG., INC.
2006 HONDA CIVIC, PASSENGER CAR
NHTSA NO. C65302

GENERAL TESTING LABORATORIES, INC.
1623 LEEDSTOWN ROAD
COLONIAL BEACH, VIRGINIA 22443

OCTOBER 29, 2006

FINAL REPORT

PREPARED FOR
U. S. DEPARTMENT OF TRANSPORTATION
NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
SAFETY ENFORCEMENT
OFFICE OF VEHICLE SAFETY COMPLIANCE
400 SEVENTH STREET, SW
ROOM 6111 (NVS-220)
WASHINGTON, D.C. 20590
This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.
Abstract
Compliance tests were conducted on the subject, 2006 Honda Civic Passenger Car in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP-225-01 for the determination of FMVSS 225 compliance. Test failures identified were as follows:

Child Restraint Fixture will not attach to lower anchor bars due to interference with the seat back assembly. S225 Paragraph S9.3.

Key Words
Compliance Testing
Safety Engineering
FMVSS 225

Distribution Statement
Copies of this report are available from NHTSA Technical Reference Div., Rm. PL-403 (NPO-230)
400 7th St., S.W. Washington, DC 20590
Telephone No. (202) 366-4946
<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Purpose of Compliance Test</td>
<td>1</td>
</tr>
<tr>
<td>2 Compliance Test Results</td>
<td>2</td>
</tr>
<tr>
<td>3 Compliance Test Data</td>
<td>3</td>
</tr>
<tr>
<td>4 Test Equipment List</td>
<td>21</td>
</tr>
<tr>
<td>5 Photographs</td>
<td>22</td>
</tr>
<tr>
<td>5.1 Left Side View of Vehicle</td>
<td></td>
</tr>
<tr>
<td>5.2 Right Side View of Vehicle</td>
<td></td>
</tr>
<tr>
<td>5.3 ¾ Frontal View from Left side of Vehicle</td>
<td></td>
</tr>
<tr>
<td>5.4 ¾ Rear View from Right Side of Vehicle</td>
<td></td>
</tr>
<tr>
<td>5.5 Vehicle Certification Label</td>
<td></td>
</tr>
<tr>
<td>5.6 Vehicle Tire Information Label</td>
<td></td>
</tr>
<tr>
<td>5.7 Location of Child Restraints</td>
<td></td>
</tr>
<tr>
<td>5.8 Visibility of Lower Restraints</td>
<td></td>
</tr>
<tr>
<td>5.9 Pre-Test 2nd Row Right Lower Anchors</td>
<td></td>
</tr>
<tr>
<td>5.10 Pre-Test 2nd Row Right Top Tether Anchors</td>
<td></td>
</tr>
<tr>
<td>5.11 Pre-Test 2nd Row Left Lower Anchors</td>
<td></td>
</tr>
<tr>
<td>5.12 Pre-Test 2nd Row Left Top Tether Anchor</td>
<td></td>
</tr>
<tr>
<td>5.13 Pre-Test 2nd Row Center Top Tether Anchor</td>
<td></td>
</tr>
<tr>
<td>5.14 Cap Over Top Tether Anchor</td>
<td></td>
</tr>
<tr>
<td>5.15 Lower Anchor Bar Identification</td>
<td></td>
</tr>
<tr>
<td>5.16 Measurement of Lower Anchor Bar Identification</td>
<td></td>
</tr>
<tr>
<td>5.17 View of 2D Template in 2nd Row Right Seat</td>
<td></td>
</tr>
<tr>
<td>5.18 View of 2D Template in 2nd Row Right Seat</td>
<td></td>
</tr>
<tr>
<td>5.19 View of 2D Template in 2nd Row Left Side</td>
<td></td>
</tr>
<tr>
<td>5.20 View of 2D Template in 2nd row Left Seat</td>
<td></td>
</tr>
<tr>
<td>5.21 View of 2D Template in 2nd Row Center Seat</td>
<td></td>
</tr>
<tr>
<td>5.22 View of 2D Template in 2nd Row Center Seat</td>
<td></td>
</tr>
<tr>
<td>5.23 View of Outboard “H” Point Measurement Right Seat</td>
<td></td>
</tr>
<tr>
<td>5.24 View of Inboard “H” Point Measurement Right Seat</td>
<td></td>
</tr>
<tr>
<td>5.25 View of Outboard “H” Point Measurement in 2nd Row Left Seat</td>
<td></td>
</tr>
<tr>
<td>5.26 View of Inboard “H” Point Measurement Left Seat</td>
<td></td>
</tr>
<tr>
<td>5.27 View of CRF in 2nd Row Right Seat</td>
<td></td>
</tr>
<tr>
<td>5.28 View of Angle Measurement 2nd Row Right Seat</td>
<td></td>
</tr>
<tr>
<td>5.29 View of Outboard “Z” Measurement 2nd Row Right Seat</td>
<td></td>
</tr>
<tr>
<td>5.30 View of Inboard Anchor Fit 2nd Row Right Seat</td>
<td></td>
</tr>
<tr>
<td>5.31 View of Inboard Anchor Fit 2nd Row Right Seat</td>
<td></td>
</tr>
<tr>
<td>5.32 View of CRF Fixture in 2nd Row Left Seat</td>
<td></td>
</tr>
<tr>
<td>5.33 View of Angle Measurement in 2nd Row Left Seat</td>
<td></td>
</tr>
<tr>
<td>5.34 View of Outboard “Z” Measurement in 2nd Row Left Seat</td>
<td></td>
</tr>
<tr>
<td>5.35 View of Inboard Anchor Fit 2nd Row Left Seat</td>
<td></td>
</tr>
<tr>
<td>5.36 Interference of Seat Back Frame</td>
<td></td>
</tr>
<tr>
<td>5.37 Interference of Seat Back Frame</td>
<td></td>
</tr>
<tr>
<td>5.38 Interference of Seat Back Frame</td>
<td></td>
</tr>
<tr>
<td>5.39 Interference of Seat Back Frame</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (continued)

Appendix A – Owner’s Manual Child Restraint Information	62
Appendix B – Manufacturer’s Data	69
Appendix C – Laboratory Notice of Test Failure	79
1.0 PURPOSE OF COMPLIANCE TEST

A 2006 Honda Civic Passenger Car was subjected to Federal Motor Vehicle Safety Standard (FMVSS) No. 225 testing to determine if the vehicle was in compliance with the requirements of the standard. The purpose of this standard is to establish requirements for child restraint anchorage systems to ensure their proper location and strength for the effective securing of child restraints, to reduce the likelihood of the anchorage systems’ failure and to increase the likelihood that child restraints are properly secured and thus more fully achieve their potential effectiveness in motor vehicles.

1.1 The test vehicle was a 2006 Honda Civic Passenger Car. Nomenclature applicable to the test vehicle are:

A. Vehicle Identification Number: 1HGFA16576L054629

B. NHTSA No.: C65302

C. Manufacturer: HONDA OF AMERICA MFG., INC.

D. Manufacture Date: 01/06

1.2 TEST DATE

The test vehicle was subjected to FMVSS No. 225 testing during the time period July 14-19, 2006.
SECTION 2

COMPLIANCE TEST RESULTS

2.0 TEST RESULTS

All tests were conducted in accordance with NHTSA, Office of Vehicle Safety Compliance (OVSC) Laboratory Procedures, TP-225-01 dated 11 April 2005.

Based on the test performed, the 2006 HONDA CIVIC PASSENGER CAR did not appear to meet the requirements of FMVSS 225 testing.
SECTION 3

COMPLIANCE TEST DATA

3.0 TEST DATA

The following data sheets document the results of testing on the 2006 Honda Civic Passenger Car.
VEH. MOD YR/MAKE/MODEL/BODY: 2006 HONDA CIVIC PASSENGER CAR
VEH. NHTSA NO: C65302; VIN: 1HGFA16576L054629
VEH. BUILD DATE: 01/06; TEST DATE: JULY 14-19, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

A. VISUAL INSPECTION OF TEST VEHICLE

Upon receipt for completeness, function, and discrepancies or damage which might influence the testing.

RESULTS: OK FOR TEST

B. REQUIREMENTS FOR CHILD RESTRAINT SYSTEMS AND TETHER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

C. LOCATION OF TETHER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

D. LOWER ANCHORAGE DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
E. CONSPICUITY AND MARKING OF LOWER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

F. STRENGTH OF TETHER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

G. STRENGTH OF LOWER ANCHORAGES (Forward Force)

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

H. STRENGTH OF LOWER ANCHORAGE (Lateral Force)

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

I. OWNER’S MANUAL

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS: DSP a = Left Rear Outboard, DSP b = Center, DSP c = Right Rear Outboard

Strength tests were not performed due to failure of lower anchorage dimensions and fit.

RECORDED BY: G. Farrand
DATE: 07/19/06
APPROVED BY: D. Messick
DATA SHEET 2
REQUIREMENTS FOR CHILD RESTRAINT ANCHORAGE SYSTEMS
AND TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 HONDA CIVIC PASSENGER CAR
VEH. NHTSA NO: C65302; VIN: 1HGFA16576L054629
VEH. BUILD DATE: 01/06; TEST DATE: JULY 14-19, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

Number of rows of seats: 2
Number of rear, forward-facing designated seating positions: 3
Number of required CRAS (lower anchorages only, for convertibles/school buses): 2
Number of required tether anchorages (can be additional CRAS): 3
Is the vehicle a convertible? NO
Is the vehicle a school bus? NO

Does the vehicle have a CRAS (lower anchorage only, for convertibles/school buses) installed at a front passenger seating position? NO
If NO, skip to next question.
If YES, does the vehicle have rear designated seating positions? NO
If NO, does the vehicle have an air bag on-off switch or a special exemption for no passenger air bag?
If NO = FAIL If YES = PASS
If Yes, does the vehicle meet the requirements of S4.5.4.1 (b) of S208 and have an air bag on-off switch or a special exemption for no passenger air bag?
Record the distance between the front and rear seat back:
If Distance < 720 mm and vehicle has an air bag on-off switch or special exemption = PASS
If Distance ≥ 720 mm or no air bag on-off switch or no special exemption = FAIL

Does the vehicle have rear designated seating position(s) where the lower bars of a CRAS are prevented from being located because of transmission and/or suspension component interference? NO
If NO, skip to next question.
If YES, does the vehicle have a tether anchorage at a front passenger seating position?
YES = PASS NO = FAIL (S5(e))

Number of provided CRAS (lower anchorage only, for convertibles/school buses), indicate if a built-in child restraint is counted as a CRAS: 2

Is the number of provided CRAS (lower anchorages only, for convertible/school buses) greater than or equal to the number of required CRAS (lower anchorages only, for convertibles/school buses)? YES
YES = PASS NO = FAIL (S4.4(a) or (b) or (c))
If the vehicle has 3 or more rows of seats is a CRAS (lower anchorage only for convertibles/school buses) provided in the second row: N/A
YES = PASS NO = FAIL (S4.4(a)(1))

Number of provided tether anchorages (can be additional CRAS) indicate if a built-in child restraint is counted as tether anchorage (NOTE: a built-in child restraint can only be counted toward either the required number of CRAS or tether anchorages, not both): 3

Is the number of provided tether anchorages greater than or equal to the number of required tether anchorages? YES
YES = PASS NO = FAIL (S4.4 (a) or (b) or (c))

If the vehicle has 3 or more rear dsps and a non-outboard dsp, is a tether anchorage or CRAS provided at a non-outboard dsp? YES
YES = PASS NO = FAIL (S4.4 (a)(2))

Are all tether and lower anchorages available for use at all times when the seat is configured for passenger use? YES
YES = PASS NO = FAIL (S4.6 (b))

Provide a diagram showing the location of lower anchorages and/or tether anchorages.

X X X
X

* * * *
A B C

X = Top Tether
* = Lower Anchors

RECORDED BY: G. Farrand DATE: 07/14/06
APPROVED BY: D. Messick
DATA SHEET 3
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 HONDA CIVIC PASSENGER CAR
VEH. NHTSA NO: C65302; VIN: 1HGFA16576L054629
VEH. BUILD DATE: 01/06; TEST DATE: JULY 14-19, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

Detailed description of the location of the tether anchorage:
Located on rear shelf behind seat back.

Based on visual inspection, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component?
If YES = FAIL (S6.2.1)
If NO, Is a tether routing device provided?
If YES = PASS
If NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? YES
If NO, skip to next question
If YES, is it outside of the tether strap wraparound area? YES
YES = PASS
NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? YES
YES = PASS
NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? YES
YES = PASS
NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? YES
YES = PASS
NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? YES
YES = PASS
NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? N/A
DATA SHEET 3 CONTINUED

DESIGNATED SEATING POSITION: ___ROW 2 LEFT SIDE (DSP A)___

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension: _____N/A_____ (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device: _____N/A_____
 Greater than or equal to 65mm = PASS Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device: _____N/A_____
 Greater than or equal to 100mm = PASS Less than 100mm = FAIL

COMMENTS:

RECORDED BY: G. Farrand DATE: 07/14/06
APPROVED BY: D. Messick
DATA SHEET 3A
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 HONDA CIVIC PASSENGER CAR
VEH. NHTSA NO: C65302; VIN: 1HGFA16576L054629
VEH. BUILD DATE: 01/06; TEST DATE: JULY 14-19, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 CENTER POSITION (DSP B)

Detailed description of the location of the tether anchorage:
Located on rear shelf behind seat back.

Based on visual inspection, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component?
If YES = FAIL (S6.2.1)
If NO, Is a tether routing device provided?
If YES = PASS
If NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? YES
If NO, skip to next question
If YES, is it outside of the tether strap wraparound area? YES
YES = PASS NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? YES
YES = PASS NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? YES
YES = PASS NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? YES
YES = PASS NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? YES
YES = PASS NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? N/A
DATA SHEET 3A CONTINUED

DESIGNATED SEATING POSITION: ROW 2 CENTER POSITION (DSP B)

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension: _____ N/A ____ (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device: _____ N/A _____
 Greater than or equal to 65mm = PASS Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device: _____ N/A _____
 Greater than or equal to 100mm = PASS Less than 100mm = FAIL

COMMENTS:

RECORDED BY: G. Farrand
DATE: 07/14/06

APPROVED BY: D. Messick
DATA SHEET 3B
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 HONDA CIVIC PASSENGER CAR
VEH. NHTSA NO: C65302; VIN: 1HGFA16576L054629
VEH. BUILD DATE: 01/06; TEST DATE: JULY 14-19, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Detailed description of the location of the tether anchorage:
Located on rear shelf behind seat back.

Based on visual inspection, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component?
 If YES = FAIL (S6.2.1)
 If NO, Is a tether routing device provided?
 If YES = PASS
 IF NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? YES
If NO, skip to next question
If YES, is it outside of the tether strap wraparound area? YES
 YES = PASS NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? YES
 YES = PASS NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? YES
 YES = PASS NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? YES
 YES = PASS NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? YES
 YES = PASS NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? N/A
DATA SHEET 3B CONTINUED

DESIGNATED SEATING POSITION: **ROW 2 RIGHT SIDE (DSP C)**

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension: ____N/A____ (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device: ____N/A____
 Greater than or equal to 65mm = PASS Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device: ____N/A____
 Greater than or equal to 100mm = PASS Less than 100mm = FAIL

COMMENTS:

RECORDED BY: G. Farrand DATE: 07/14/06

APPROVED BY: D. Messick
DATA SHEET 4
LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2006 HONDA CIVIC PASSENGER CAR
VEH. NHTSA NO: C65302; VIN: 1HGFA16576L054629
VEH. BUILD DATE: 01/06; TEST DATE: JULY 14-19, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES

OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

Outboard Lower Anchorage bar diameter: 6.04 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: 6.04 mm
6mm ± 0.1mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? YES
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): 27 mm
Length ≥25mm = PASS Length <25mm = FAIL (S9.1.1(c) (i))

Length of the straight portion of the bar (inboard lower anchorage): 26 mm
Length ≥25mm = PASS Length <25mm = FAIL (S9.1.1(c) (i))

Length between the anchor bar supports (outboard lower anchorage): 30 mm
Length ≤60mm = PASS Length >60mm = FAIL (S9.1.1(c) (ii))

Length between the anchor bar supports (inboard lower anchorage): 28 mm
Length ≤60mm = PASS Length >60mm = FAIL (S9.1.1(c) (ii))

CRF Pitch angle: 13
Angle = 15º±10º = PASS Angle ≠ 15º±10º = FAIL (S9.2.1)

CRF Roll angle: 0.0
Angle = 0º±5º = PASS Angle ≠ 0º±5º = FAIL (S9.2.1)

CRF Yaw angle: 0.0
Angle = 0º±10º = PASS Angle ≠ 0º±10º = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 55 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: *
Distance ≤70mm = PASS Distance > 70mm = FAIL
DATA SHEET 4 CONTINUED

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

Distance between SgRP and the front surface of outboard anchor bar: 174 mm
 Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: 175 mm
 Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm? NO

 If NO = PASS
 If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:

COMMENTS: *CRF WILL NOT FIT ON INBOARD ANCHOR BAR DUE TO INTERFERENCE WITH SEAT BACK.

RECORDED BY: G. Farrand DATE: 07/19/06
APPROVED BY: D. Messick
DATA SHEET 4A
LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2006 HONDA CIVIC PASSENGER CAR
VEH. NHTSA NO: C65302; VIN: 1HGFA16576L054629
VEH. BUILD DATE: 01/06; TEST DATE: JULY 14-19, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Outboard Lower Anchorage bar diameter: 6.04 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: 6.04 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? YES
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): 27 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length of the straight portion of the bar (inboard lower anchorage): 25 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length between the anchor bar supports (outboard lower anchorage): 30 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

Length between the anchor bar supports (inboard lower anchorage): 28 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

CRF Pitch angle: 12.5
Angle = 15º±10º = PASS Angle≠15º±10º = FAIL (S9.2.1)

CRF Roll angle: 0.0
Angle = 0º±5º = PASS Angle≠0º±5º = FAIL (S9.2.1)

CRF Yaw angle: 0.0
Angle = 0º±10º = PASS Angle≠0º±10º = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 50 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: *
Distance ≤70mm = PASS Distance > 70mm = FAIL
DATA SHEET 4A CONTINUED

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Distance between SgRP and the front surface of outboard anchor bar: 190 mm
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: 190 mm
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm? NO

If NO = PASS
If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:

COMMENTS: *CRF WILL NOT FIT ON INBOARD ANCHOR BAR DUE TO INTERFERENCE WITH SEAT BACK.

RECORDED BY: G. Farrand DATE: 07/19/06
APPROVED BY: D. Messick
DATA SHEET 5
CONSPICUITY AND MARKING OF LOWER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 HONDA CIVIC PASSENGER CAR
VEH. NHTSA NO: C65302; VIN: 1HGFA1656L054629
VEH. BUILD DATE: 01/06; TEST DATE: JULY 14-19, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT AND RIGHT SIDE (DSP A & C)

MARKING (Circles)

Diameter of the circle: 15 mm
Diameter ≥13 mm = PASS Diameter <13 mm = FAIL (S9.5(a)(1))

Does the circle have words, symbols or pictograms? SYMBOL
NO skip to next question
YES, are the meaning of the words, symbols or pictograms explained in the owner’s manual? YES
YES = PASS NO = FAIL (S9.5(a)(2))

Where is the circle located? Seat back or seat Cushion: Seat Back

For circles on seat backs, vertical distance from the center of the circle to the center of the anchor bar: 55 mm
Distance between 50 & 100 mm = PASS Other Distance = FAIL (S9.5(a)(3))

For circles on seat cushions, horizontal distance from the center of the circle to the center of the bar: N/A
Distance between 75 & 125 mm = PASS Other Distance = FAIL (S9.5(a)(3))

Lateral distance from the center of the circle to the center of the anchor bar: 0
Distance ≤ 25 mm = PASS Distance > 25 mm = FAIL (S9.5(a)(3))

CONSPICUITY (No Circles)

Is the anchor bar or guide visible when viewed from a point 30° above the horizontal in a vertical longitudinal plane bisecting the anchor bar or guide? N/A
YES = PASS NO = FAIL (S9.5(b))

If there is a guide, is it permanently attached? N/A
YES = PASS NO = FAIL (S9.5(b))
DATA SHEET 5 CONTINUED

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE AND RIGHT SIDE (DSP A & C)

Is there a cap or cover over the anchor bar? N/A
 If YES, is the cap or cover marked with words, symbols or pictograms?
 If NO = FAIL (S9.5(b))
 If YES, is the meaning of the words, symbols or pictograms explained in the
 owner’s manual?
 YES = PASS
 NO = FAIL (S9.5(b))
 If NO, there are no requirements for having a cover.

RECORDED BY: G. Farrand DATE: 07/19/06
APPROVED BY: D. Messick
DATA SHEET 6
OWNER’S MANUAL

VEH. MOD YR/MAKE/MODEL/BODY: 2006 HONDA CIVIC PASSENGER CAR
VEH. NHTSA NO: C65302; VIN: 1HGFA16576L054629
VEH. BUILD DATE: 01/06; TEST DATE: JULY 14-19, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

Description of which DSP’s are equipped with tether anchorages and child restraint anchorage systems: YES

PASS X FAIL

Step-by-step instructions for properly attaching a child restraint system’s tether strap to the tether anchorage. Diagrams are required. YES

PASS X FAIL

Description of how to properly use the tether anchorage and lower anchor bars: YES

PASS X FAIL

If the lower anchor bars are marked with a circle, an explanation of what the circle indicates as well as any words or pictograms: YES

PASS X FAIL

COMMENTS:

RECORDED BY: G. Farrand DATE: 07/19/06
APPROVED BY: D. Messick
SECTION 4
INSTRUMENTATION AND EQUIPMENT LIST

TABLE 1 - INSTRUMENTATION & EQUIPMENT LIST

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>DESCRIPTION</th>
<th>MODEL/ SERIAL NO.</th>
<th>CAL. DATE</th>
<th>NEXT CAL. DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER</td>
<td>AT&T</td>
<td>486DX266</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>LOAD CELL</td>
<td>INTERFACE</td>
<td>496</td>
<td>01/05</td>
<td>01/06</td>
</tr>
<tr>
<td>LINEAR TRANSDUCER</td>
<td>SERVO SYSTEMS</td>
<td>20</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SEAT BELT LOAD CELL</td>
<td>TRANSUDER</td>
<td>135</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SEAT BELT LOAD CELL</td>
<td>TRANSUDER</td>
<td>137</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>LEVEL</td>
<td>STANLEY</td>
<td>42-449</td>
<td>02/06</td>
<td>02/07</td>
</tr>
<tr>
<td>FORCE GAUGE</td>
<td>CHATILLON</td>
<td>8761</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>CALIPER</td>
<td>N/A</td>
<td>Q9322365</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>CRF</td>
<td>MEASUREMENT FIXTURE</td>
<td>GTL CRF</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 1</td>
<td>FORCE APPLICATION DEVICE</td>
<td>GTL SFAD 1</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 2</td>
<td>FORCE APPLICATION DEVICE</td>
<td>GLT SFAD 2</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
</tbody>
</table>
SECTION 5

PHOTOGRAPHS
FIGURE 5.1
LEFT SIDE VIEW OF VEHICLE
2006 HONDA CIVIC
NHTSA NO. C65302
FMVSS NO. 225

FIGURE 5.3
¾ FRONTAL VIEW FROM LEFT SIDE OF VEHICLE
<table>
<thead>
<tr>
<th>TIRE</th>
<th>SIZE</th>
<th>COLD TIRE PRESSURE</th>
<th>SEE OWNER’S MANUAL FOR ADDITIONAL INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONT</td>
<td>P205/55R16 89H</td>
<td>220KPA, 32PSI</td>
<td></td>
</tr>
<tr>
<td>REAR</td>
<td>P205/55R16 89H</td>
<td>220KPA, 32PSI</td>
<td></td>
</tr>
<tr>
<td>SPARE</td>
<td>T125/70D15 95M</td>
<td>420KPA, 60PSI</td>
<td></td>
</tr>
</tbody>
</table>

The combined weight of occupants and cargo should never exceed 385kg or 850lbs.
FIGURE 5.7
LOCATIONS OF CHILD RESTRAINTS
FIGURE 5.8
VISIBILITY OF LOWER Restraints
FIGURE 5.11
PRE-TEST 2ND ROW LEFT LOWER ANCHORS
FIGURE 5.12
PRE-TEST 2ND ROW LEFT TOP TETHER ANCHOR

2006 HONDA CIVIC
NHTSA NO. C65302
FMVSS NO. 225
2006 HONDA CIVIC
NHTSA NO. C65302
FMVSS NO. 225

FIGURE 5.15
LOWER ANCHOR BAR IDENTIFICATION
FIGURE 5.16
MEASUREMENT OF LOWER ANCHOR BAR ID.
FIGURE 5.17
VIEW OF 2D TEMPLATE IN 2ND ROW RIGHT SEAT

2006 HONDA CIVIC
NHTSA NO. C65302
FMVSS NO. 225
2006 HONDA CIVIC
NHTSA NO. C65302
FMVSS NO. 225

FIGURE 5.18
VIEW OF 2D TEMPLATE IN 2ND ROW RIGHT SEAT
2006 HONDA CIVIC
NHTSA NO. C65302
FMVSS NO. 225

FIGURE 5.19
VIEW OF 2D TEMPLATE IN 2ND ROW LEFT SIDE
FIGURE 5.20
VIEW OF 2D TEMPLATE IN 2ND ROW LEFT SEAT
43 2006 HONDA CIVIC NHTSA NO. C65302 FMVSS NO. 225

FIGURE 5.21
VIEW OF 2D TEMPLATE IN 2ND ROW CENTER SEAT
FIGURE 5.22
VIEW OF 2D TEMPLATE IN 2ND ROW CENTER
SEAT
2006 HONDA CIVIC
NHTSA NO. C65302
FMVSS NO. 225

FIGURE 5.23
VIEW OF OUTBOARD "H" POINT MEASUREMENT
RIGHT SEAT
2006 HONDA CIVIC
NHTSA NO. C65302
FMVSS NO. 225

FIGURE 5.25
VIEW OF OUTBOARD "H" POINT MEASUREMENT
IN 2ND ROW LEFT SEAT
2006 HONDA CIVIC
NHTSA NO. C65302
FMVSS NO. 225

FIGURE 5.26
VIEW OF INBOARD "H" POINT MEASUREMENT
LEFT SEAT
2006 HONDA CIVIC
NHTSA NO. C65302
FMVSS NO. 225

FIGURE 5.27
VIEW OF CRF IN 2ND ROW RIGHT SEAT
2006 HONDA CIVIC
NHTSA NO. C65302
FMVSS NO. 225

FIGURE 5.28
VIEW OF ANGLE MEASUREMENT 2ND ROW
RIGHT SEAT
FIGURE 5.29
VIEW OF OUTBOARD “Z” MEASUREMENT 2ND ROW
RIGHT SEAT
FIGURE 5.30
VIEW OF INBOARD ANCHOR FIT 2ND ROW RIGHT SEAT
FIGURE 5.32
VIEW OF CRF FIXTURE IN 2ND ROW LEFT SEAT
2006 HONDA CIVIC
NHTSA NO. C65302
FMVSS NO. 225

FIGURE 5.33
VIEW OF ANGLE MEASUREMENT IN 2ND ROW
LEFT SEAT
FIGURE 5.34
VIEW OF OUTBOARD “Z” MEASUREMENT IN 2ND ROW LEFT SEAT
2006 HONDA CIVIC
NHTSA NO. C65302
FMVSS NO. 225

FIGURE 5.35
VIEW OF INBOARD ANCHOR FIT 2ND ROW LEFT SEAT
FIGURE 5.36
INTERFERENCE OF SEAT BACK FRAME
FIGURE 5.38
INTERFERENCE OF SEAT BACK FRAME
FIGURE 5.39
INTERFERENCE OF SEAT BACK FRAME
2. The child seat should be of the proper type and size to fit the child. Rear-facing for infants, forward-facing for small children.

3. The child seat should fit the vehicle seating position (or positions) where it will be used.

Before purchasing a conventional child seat, or using a previously purchased one, we recommend that you test the seat in the specific vehicle seating position, or positions, where the seat will be used.

Installing a Child Seat

After selecting a proper child seat and a good place to install the seat, there are three main steps in installing the seat:

1. Properly secure the child seat to the vehicle. All child seats must be secured to the vehicle with the lap part of a lap/shoulder belt or with the LATCH (lower anchors and tethers for children) system. A child whose seat is not properly secured to the vehicle can be endangered in a crash.

2. Make sure the child seat is firmly secured. After installing a child seat, push and pull the seat forward and from side-to-side to verify that it is secure.

A child seat secured with a seat belt should be installed as firmly as possible. However, it does not need to be "rock solid." Some side-to-side movement can be expected and should not reduce the child seat’s effectiveness.

If the child seat is not secure, try installing it in a different seating position, or use a different style of child seat that can be firmly secured.

3. Secure the child in the child seat. Make sure the child is properly strapped in the child seat according to the child seat maker’s instructions. A child who is not properly secured in a child seat can be seriously injured in a crash.

The following pages provide guidelines on how to properly install a child seat. A forward-facing child seat is used in all examples, but the instructions are the same for rear-facing child seats.
Installing a Child Seat

Installing a Child Seat Using LATCH
Your vehicle is equipped with LATCH (lower anchors and tethers for children) at the outer rear seats.

The lower anchors are located between the seat back and seat bottom, and are to be used only with a child seat designed for use with LATCH.

The location of each lower anchor is indicated by a small button above the anchor point.

To install a LATCH-compatible child seat:

1. Move the seat belt buckle or tongue away from the lower anchors.

2. Make sure there are no objects near the anchors that could prevent a secure connection between the child seat and the anchors.

3. Place the child seat on the vehicle seat, then attach the seat to the lower anchors according to the child seat maker's instructions.

Some LATCH-compatible seats have a rigid-type connector as shown above.
Installing a Child Seat

Flexible type
Other LATCH-compatible seats have a flexible-type connector as shown above.

4. Whatever type you have, follow the child seat maker's instructions for adjusting or tightening the fit.

TETHER STRAP HOOK

5. Lift the head restraint (see page 89), then route the tether strap through the legs of the head restraint and over the seat-back, making sure the strap is not twisted.

ANCHOR

If the tether strap is too long and cannot be tightened firmly, find a route where the strap can be tightened securely.

6. Attach the tether strap hook to the tether anchor, then tighten the strap as instructed by the child seat maker.

7. Push and pull the child seat forward and from side-to-side to verify that it is secure.
Installing a Child Seat

Installing a Child Seat with a Lap/Shoulder Belt
When not using the LATCH system, all child seats must be secured to the vehicle with the lap part of a lap/shoulder belt.

In addition, the lap/shoulder belts in all seating positions except the driver's have a locking mechanism that must be activated to secure a child seat.

1. With the child seat in the desired seating position, route the belt through the child seat according to the seat maker's instructions, then insert the latch plate into the buckle.

2. To activate the lockable retractor, slowly pull the shoulder part of the belt all the way out until it stops, then let the belt feed back into the retractor.

3. After the belt has retracted, tug on it. If the belt is locked, you will not be able to pull it out. If you can pull the belt out, it is not locked, and you will need to repeat these steps.
4. After confirming that the belt is locked, grab the shoulder part of the belt near the buckle, and pull up to remove any slack from the lap part of the belt. Remember, if the lap part of the belt is not tight, the child seat will not be secure.

To remove slack, it may help to put weight on the child seat, or push on the back of the seat while pulling up on the belt.

5. Push and pull the child seat forward and from side-to-side to verify that it is secure enough to stay upright during normal driving maneuvers. If the child seat is not secure, unlatch the belt, allow it to retract fully, then repeat these steps.

To deactivate the locking mechanism and remove a child seat, unlatch the buckle, unroute the seat belt, and let the belt fully retract.

A child seat with a tether can be installed in any seating position in the back seat, using one of the anchorage points shown above.

Since a tether can provide additional security to the lap/shoulder belt installation, we recommend using a tether whenever one is required or available.
Installing a Child Seat

1. After properly securing the child seat (see page 46), lift the head restraint, then route the tether strap over the seat-back and through the head restraint legs. If the tether strap is too long and cannot be tightened firmly, find a route where the strap can be tightened securely.

2. Lift the anchor cover, then attach the tether strap hook to the anchor, making sure the strap is not twisted.

3. Tighten the strap according to the seat maker's instructions.
APPENDIX B

MANUFACTURER’S DATA
SEAT REFERENCE POINT (SRP) AND TORSO ANGLE DATA
FOR FMVSS 225
(All dimensions in mm)

Model Year: 2006; Make: HONDA; Model: CIVIC Sedan; Body Style: 4-Door Sedan
Seat Style: Front row: Bucket; Second row: Bench; Third row: N/A

LEFT SIDE VIEW OF TEST VEHICLE

Driver's Seat Front Outboard Seat Adjuster Anchorage
Table 1. Seating Positions\(^1\) and Torso Angles

<table>
<thead>
<tr>
<th>Torso Angle (degree)</th>
<th>Front Row</th>
<th>Second Row</th>
<th>Third Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 (Driver)</td>
<td>220</td>
<td>N/A</td>
<td>(Front Passenger) 220</td>
</tr>
<tr>
<td>A2</td>
<td>252</td>
<td>265</td>
<td>252</td>
</tr>
<tr>
<td>A3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>B</td>
<td>284</td>
<td>N/A</td>
<td>284</td>
</tr>
<tr>
<td>C</td>
<td>1094</td>
<td>1054 (with Armrest) 1064 (without Armrest)</td>
<td>1094</td>
</tr>
<tr>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: 1. All dimensions are in mm. If not, provide the unit used.
SEATING REFERENCE POINT
FOR FMVSS 225
(All dimensions in mm)

Model Year: 2006; Make: HONDA; Model: CIVIC Sedan; Body Style: 4-Door Sedan
Seat Style: Front row: Bucket; Second row: Bench; Third row: N/A

Front

Second

Third

Driver’s seat front outboard seat adjuster anchorage
Table 2. Seating Reference Point and Tether Anchorage Locations

<table>
<thead>
<tr>
<th>Seating Reference Point (SRP)</th>
<th>Distance from Driver’s front outboard seat adjuster anchorage<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>293</td>
</tr>
<tr>
<td>E1</td>
<td>212</td>
</tr>
<tr>
<td>B2</td>
<td>N/A</td>
</tr>
<tr>
<td>E2</td>
<td>N/A</td>
</tr>
<tr>
<td>B3</td>
<td>293</td>
</tr>
<tr>
<td>E3</td>
<td>912</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>1094</td>
</tr>
<tr>
<td>F1</td>
<td>232</td>
</tr>
<tr>
<td>C2</td>
<td>1054 (with Armrest)</td>
</tr>
<tr>
<td></td>
<td>1064 (without Armrest)</td>
</tr>
<tr>
<td>F2</td>
<td>562</td>
</tr>
<tr>
<td>C3</td>
<td>1094</td>
</tr>
<tr>
<td>F3</td>
<td>892</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>N/A</td>
</tr>
<tr>
<td>G1</td>
<td>N/A</td>
</tr>
<tr>
<td>D2</td>
<td>N/A</td>
</tr>
<tr>
<td>G2</td>
<td>N/A</td>
</tr>
<tr>
<td>D3</td>
<td>N/A</td>
</tr>
<tr>
<td>G3</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: 1. Use the center of anchorage.
TETHER ANCHORAGE LOCATIONS
FOR FMVSS 225
(All dimensions in mm)

Model Year: __2006__; Make: __HONDA__; Model: __CIVIC Sedan__; Body Style: __4-Door Sedan__
Seat Style: Front row: __Bucket__; Second row: __Bench__; Third row: __N/A__

*: SRP
†: Tether anchorage

Note: 1. The location shall be measured at the center of the bar.
Table 3. Seating Reference Point and Tether Anchorage Locations

<table>
<thead>
<tr>
<th>Seating Reference Point (SRP)</th>
<th>Distance from SRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>N/A</td>
</tr>
<tr>
<td>K1</td>
<td>N/A</td>
</tr>
<tr>
<td>H2</td>
<td>N/A</td>
</tr>
<tr>
<td>K2</td>
<td>N/A</td>
</tr>
<tr>
<td>H3</td>
<td>N/A</td>
</tr>
<tr>
<td>K3</td>
<td>N/A</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>I1</td>
<td>491.5</td>
</tr>
<tr>
<td>L1</td>
<td>5.5</td>
</tr>
<tr>
<td>I2</td>
<td>532 (with Armrest)</td>
</tr>
<tr>
<td></td>
<td>522 (without Armrest)</td>
</tr>
<tr>
<td>L2</td>
<td>0.0</td>
</tr>
<tr>
<td>I3</td>
<td>491.5</td>
</tr>
<tr>
<td>L3</td>
<td>5.5</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>N/A</td>
</tr>
<tr>
<td>M1</td>
<td>N/A</td>
</tr>
<tr>
<td>J2</td>
<td>N/A</td>
</tr>
<tr>
<td>M2</td>
<td>N/A</td>
</tr>
<tr>
<td>J3</td>
<td>N/A</td>
</tr>
<tr>
<td>M3</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: 1. Use the center of anchorage.
TETHER ANCHORAGE LOCATIONS - VERTICAL
FOR FMVSS 225
(All dimensions in mm)

Model Year: 2006; Make: HONDA; Model: CIVIC Sedan;
Body Style: 4-Door Sedan
Seat Style: Front row: Bucket; Second row: Bench; Third row: N/A

LEFT SIDE VIEW OF TEST VEHICLE
Table 4. Vertical Dimension For The Tether Anchorage

<table>
<thead>
<tr>
<th>Seating Row</th>
<th>Vertical Distance from Seating Reference Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>N1 (Driver)</td>
<td>N/A</td>
</tr>
<tr>
<td>N2 (Center)</td>
<td>N/A</td>
</tr>
<tr>
<td>N3 (Right)</td>
<td>N/A</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>O1 (Left)</td>
<td>520</td>
</tr>
<tr>
<td>O2 (Center)</td>
<td>507</td>
</tr>
<tr>
<td>O3 (Right)</td>
<td>520</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>P1 (Left)</td>
<td>N/A</td>
</tr>
<tr>
<td>P2 (Center)</td>
<td>N/A</td>
</tr>
<tr>
<td>P3 (Right)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: 1. All dimensions are in mm. If not, provide the unit used.
For each vehicle, provide the following information:

1. **How many designated seating positions exist in the vehicle?**
 Five positions

2. **How many designated seating positions are equipped with lower anchorages and tether anchorages? Specify which position(s).**
 There are four lower anchorages and three tether anchorages.
 Lower anchorages are equipped at the outer rear seat.
 Tether anchorages are equipped at the any seating position in the rear seat.

3. **How many designated seating positions are equipped with tether anchorages? Specify which position(s).**
 There are three tether anchorages.
 Tether anchorages are equipped at the any seating position in the rear seat.

4. **Lower Anchorage Marking and Conspicuity:** Whether the anchorages are certified to S9.5(a) or S9.5(b) of FMVSS 225.
 It is certified with S9.5 (a) of FMVSS 225.
LABORATORY NOTICE OF TEST FAILURE TO OVSC

FMVSS NO.: 225 TEST DATE: 07/19/06

LABORATORY: General Testing Laboratories, Inc.

CONTRACT NO.: DTNH22-02-D-01043; DELV. ORDER NO.:

LABORATORY PROJECT ENGINEER'S NAME: Grant Farrand

TEST VEHICLE MAKE/MODEL/BODY STYLE: 2006 HONDA CIVIC

VEHICLE NHTSA NO.: C65302 VIN: 1HGFA16576L054629

VEHICLE MODEL YEAR: 2006 BUILD DATE: 01/06

TEST FAILURE DESCRIPTION: Child restraint fixture (CRF) will not attach to lower anchor bars due to interference with the seat back assembly.

S225 REQUIREMENT, PARAGRAPH S9.3: Adequate fit of lower anchorages. Shall be designed such that the CRF can be placed inside the vehicle and attached to the lower anchorages of each child restraint anchorage system.

NOTIFICATION TO NHTSA (COTR): John Finneran, Ed Chan, Bob Krauss

DATE: 07/21/06 BY: Grant Farrand

REMARKS: Inboard left side lower anchor and inboard right side lower anchor cannot be attached due to the child seat anchor butting into the seat back cushion frame assembly.