SAFETY COMPLIANCE TESTING FOR
FMVSS NO. 225
CHILD RESTRAINT ANCHORAGE SYSTEMS
LOWER AND TETHER ANCHORAGES

MAZDA MOTOR CORPORATION
2006 MAZDA 5, PASSENGER CAR
NHTSA NO. C65401

GENERAL TESTING LABORATORIES, INC.
1623 LEEDSTOWN ROAD
COLONIAL BEACH, VIRGINIA 22443

OCTOBER 27, 2006
FINAL REPORT
PREPARED FOR
U. S. DEPARTMENT OF TRANSPORTATION
NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
SAFETY ENFORCEMENT
OFFICE OF VEHICLE SAFETY COMPLIANCE
400 SEVENTH STREET, SW
ROOM 6111 (NVS-220)
WASHINGTON, D.C. 20590
This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.
Compliance tests were conducted on the subject, 2006 Mazda 5 Passenger Car in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP-225-01 for the determination of FMVSS 225 compliance. Test failures identified were as follows: NONE.

Compliance Testing
Safety Engineering
FMVSS 225
<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Purpose of Compliance Test</td>
</tr>
<tr>
<td>2</td>
<td>Compliance Test Results</td>
</tr>
<tr>
<td>3</td>
<td>Compliance Test Data</td>
</tr>
<tr>
<td>4</td>
<td>Test Equipment List</td>
</tr>
<tr>
<td>5</td>
<td>Photographs</td>
</tr>
<tr>
<td>5.1</td>
<td>Left Side View of Vehicle</td>
</tr>
<tr>
<td>5.2</td>
<td>Right Side View of Vehicle</td>
</tr>
<tr>
<td>5.3</td>
<td>¾ Frontal Left Side View of Vehicle</td>
</tr>
<tr>
<td>5.4</td>
<td>¾ Rearward Right Side View of Vehicle</td>
</tr>
<tr>
<td>5.5</td>
<td>Close-up View of Vehicle Certification Label</td>
</tr>
<tr>
<td>5.6</td>
<td>Close-up View of Vehicle Tire Information Label</td>
</tr>
<tr>
<td>5.7</td>
<td>Row 2, Left Side, Lower Anchors Pre-Test</td>
</tr>
<tr>
<td>5.8</td>
<td>Row 2, Left side, Top Tether Anchor Pre-Test</td>
</tr>
<tr>
<td>5.9</td>
<td>Row 2, Right Side, Lower Anchors Pre-Test</td>
</tr>
<tr>
<td>5.10</td>
<td>Row 2, Right Side, Top Tether Anchor, Pre-Test</td>
</tr>
<tr>
<td>5.11</td>
<td>Overall View of Row 2 Seating Positions Pre-Test</td>
</tr>
<tr>
<td>5.12</td>
<td>Row 2, Left Side, Top Tether Anchor Pre-Test</td>
</tr>
<tr>
<td>5.13</td>
<td>Row 3, Right Side, Top Tether Anchor Pre-Test</td>
</tr>
<tr>
<td>5.14</td>
<td>Overall View of Row 3 Seating Positions, Pre-Test</td>
</tr>
<tr>
<td>5.15</td>
<td>Row 2, Left Side with CRF</td>
</tr>
<tr>
<td>5.16</td>
<td>Row 2, Left Side with 2-D Template</td>
</tr>
<tr>
<td>5.17</td>
<td>Row 2, Left Side Top Tether Routing</td>
</tr>
<tr>
<td>5.18</td>
<td>Row 2, Right Side with CRF</td>
</tr>
<tr>
<td>5.19</td>
<td>Row 2, Right Side with 2-D Template</td>
</tr>
<tr>
<td>5.20</td>
<td>Row 2, Right Side Top Tether Routing</td>
</tr>
<tr>
<td>5.21</td>
<td>Row 3, Left Side with 2-D Template</td>
</tr>
<tr>
<td>5.22</td>
<td>Row 3, Left Side Top Tether Routing</td>
</tr>
<tr>
<td>5.23</td>
<td>Row 3, Right Side with 2-D Template</td>
</tr>
<tr>
<td>5.24</td>
<td>Row 3, Right Side Top Tether Routing</td>
</tr>
<tr>
<td>5.25</td>
<td>Row 2, Right Side Inboard CRF Measurement</td>
</tr>
<tr>
<td>5.26</td>
<td>Row 2, Right Side Outboard CRF Measurement</td>
</tr>
<tr>
<td>5.27</td>
<td>Row 2, Left Side Inboard CRF Measurement</td>
</tr>
<tr>
<td>5.28</td>
<td>Row 2, Left Side Outboard CRF Measurement</td>
</tr>
<tr>
<td>5.29</td>
<td>Symbol Measurement</td>
</tr>
<tr>
<td>5.30</td>
<td>Row 2, Left Side CRF Pitch Measurement</td>
</tr>
<tr>
<td>5.31</td>
<td>Row 2, Right Side CRF Pitch Measurement</td>
</tr>
<tr>
<td>5.32</td>
<td>Row 2, Left Side Outboard SRP Measurement</td>
</tr>
<tr>
<td>5.33</td>
<td>Row 2, Left Side Inboard SRP Measurement</td>
</tr>
<tr>
<td>5.34</td>
<td>Row 2, Right Side Outboard SRP Measurement</td>
</tr>
<tr>
<td>5.35</td>
<td>Row 2, Right Side Inboard SRP Measurement</td>
</tr>
<tr>
<td>5.36</td>
<td>¾ Left Rear View of Vehicle in Test Rig</td>
</tr>
<tr>
<td>5.37</td>
<td>¾ Right Front View of Vehicle in Test Rig</td>
</tr>
<tr>
<td>5.38</td>
<td>Pre-Test Row 2, Left Side with SFAD 2</td>
</tr>
<tr>
<td>5.39</td>
<td>Pre-Test Row 2, Left Side with SFAD 2</td>
</tr>
</tbody>
</table>
5.40 Post Test Row 2, Left Side with SFAD 2
5.41 Post Test Row 2, Left Side with SFAD 2
5.42 Pre-Test Row 2, Right Side with SFAD 2
5.43 Post Test Row 2, Right Side with SFAD 2
5.44 Pre-Test Row 3, Left Side with SFAD 1
5.45 Pre-Test Row 3, Left Side with SFAD 1
5.46 Post Test Row 3, Left Side with SFAD 1
5.47 Post Test Row 3, Left Side with SFAD 1
5.48 Pre-Test Row 3, Right Side with SFAD 1
5.49 Pre-Test Row 3, Right Side with SFAD 1
5.50 Post Test Row 3, Right Side with SFAD 1
5.51 Post Test Row 3, Right Side with SFAD 1

6. Plots

6.1 2nd Row Left Side Top Tether, GTL 5652
6.2 2nd Row Left Side Top Tether, GTL 5652
6.3 2nd Row Right Side Lower Anchor, GTL 5653
6.4 2nd Row Right Side Lower Anchor, GTL 5653
6.5 3rd Row Left Side Top Tether, GTL 5654
6.6 3rd Row Left Side Top Tether, GTL 5654
6.7 3rd Row Left Side Top Tether, GTL 5655
6.8 3rd Row Left Side Top Tether, GTL 5655
6.9 3rd Row Right Side Top Tether, GTL 5656
6.10 3rd Row Right Side Top Tether, GTL 5656

Appendix A – Owner’s Manual Child Restraint Information
Appendix B – Manufacturer’s Data
SECTION 1

PURPOSE OF COMPLIANCE TEST

1.0 PURPOSE OF COMPLIANCE TEST

A 2006 Mazda 5 Passenger Car was subjected to Federal Motor Vehicle Safety Standard (FMVSS) No. 225 testing to determine if the vehicle was in compliance with the requirements of the standard. The purpose of this standard is to establish requirements for child restraint anchorage systems to ensure their proper location and strength for the effective securing of child restraints, to reduce the likelihood of the anchorage systems’ failure and to increase the likelihood that child restraints are properly secured and thus more fully achieve their potential effectiveness in motor vehicles.

1.1 The test vehicle was a 2006 Mazda 5 Passenger Car. Nomenclature applicable to the test vehicle are:

A. **Vehicle Identification Number:** JM1CR293760102352

B. **NHTSA No.:** C65401

C. **Manufacturer:** MAZDA MOTOR CORPORATION

D. **Manufacture Date:** 05/05

1.2 TEST DATE

The test vehicle was subjected to FMVSS No. 225 testing during the time period July 28 through September 28, 2006.
2.0 TEST RESULTS

All tests were conducted in accordance with NHTSA, Office of Vehicle Safety Compliance (OVSC) Laboratory Procedures, TP-225-01 dated 11 April 2005.

Based on the test performed, the 2006 Mazda 5 Passenger Car appeared to meet the requirements of FMVSS 225 testing.
SECTION 3
COMPLIANCE TEST DATA

3.0 TEST DATA

The following data sheets document the results of testing on the 2006 Mazda 5 Passenger Car.
DATA SHEET 1
SUMMARY OF RESULTS

VEH. MOD YR/MAKE/MODEL/BODY: 2006 MAZDA 5 PASSENGER CAR
VEH. NHTSA NO: C65401; VIN: JM1CR293760102352
VEH. BUILD DATE: 05/05; TEST DATE: JULY 28 – SEPTEMBER 28, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

A. VISUAL INSPECTION OF TEST VEHICLE

Upon receipt for completeness, function, and discrepancies or damage which might influence the testing.

RESULTS: OK FOR TEST

B. REQUIREMENTS FOR CHILD RESTRAINT SYSTEMS AND TETHER ANCHORAGES

<table>
<thead>
<tr>
<th>DSP a</th>
<th>DSP b</th>
<th>DSP c</th>
<th>DSP d</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASS</td>
<td>FAIL</td>
<td>PASS</td>
<td>FAIL</td>
</tr>
</tbody>
</table>

C. LOCATION OF TETHER ANCHORAGES

<table>
<thead>
<tr>
<th>DSP a</th>
<th>DSP b</th>
<th>DSP c</th>
<th>DSP d</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASS</td>
<td>FAIL</td>
<td>PASS</td>
<td>FAIL</td>
</tr>
</tbody>
</table>

D. LOWER ANCHORAGE DIMENSIONS

<table>
<thead>
<tr>
<th>DSP a</th>
<th>DSP b</th>
<th>DSP c</th>
<th>DSP d</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASS</td>
<td>FAIL</td>
<td>PASS</td>
<td>FAIL</td>
</tr>
</tbody>
</table>
E. **CONSPICUITY AND MARKING OF LOWER ANCHORAGES**

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP d</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

F. **STRENGTH OF TETHER ANCHORAGES**

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP d</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

G. **STRENGTH OF LOWER ANCHORAGES (Forward Force)**

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP d</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

H. **STRENGTH OF LOWER ANCHORAGE (Lateral Force)**

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP d</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

I. **OWNER’S MANUAL**

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS: DSP a = 2nd Row Left Rear Outboard, DSP b = 2nd Row Right Rear Outboard, DSP c = 3rd Row Left Rear Outboard DSP d = 3rd Row Right Rear Outboard

RECORDED BY: G. Farrand
DATE: 09/28/06

APPROVED BY: D. Messick
DATA SHEET 2
REQUIREMENTS FOR CHILD RESTRAINT ANCHORAGE SYSTEMS
AND TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 MAZDA 5 PASSENGER CAR
VEH. NHTSA NO: C65401; VIN: JM1CR293760102352
VEH. BUILD DATE: 05/05; TEST DATE: JULY 28, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

Number of rows of seats: 3
Number of rear, forward-facing designated seating positions: 4
Number of required CRAS (lower anchorages only, for convertibles/school buses): 2
Number of required tether anchorages (can be additional CRAS): 3
Is the vehicle a convertible? NO
Is the vehicle a school bus? NO

Does the vehicle have a CRAS (lower anchorage only, for convertibles/school buses) installed at a front passenger seating position? NO
 If NO, skip to next question.
 If YES, does the vehicle have rear designated seating positions? YES
 If NO, does the vehicle have an air bag on-off switch or a special exemption for no passenger air bag?
 If NO = FAIL If YES = PASS
 If Yes, does the vehicle meet the requirements of S4.5.4.1 (b) of S208 and have an air bag on-off switch or special exemption for no passenger air bag?
 Record the distance between the front and rear seat back: 720 mm or less = PASS
 If Distance ≥ 720 mm or no air bag on-off switch or no special exemption = FAIL

Does the vehicle have rear designated seating position(s) where the lower bars of a CRAS are prevented from being located because of transmission and/or suspension component interference? NO
 If NO, skip to next question.
 If YES, does the vehicle have a tether anchorage at a front passenger seating position?
 YES = PASS NO = FAIL (S5(e))

Number of provided CRAS (lower anchorage only, for convertibles/school buses), indicate if a built-in child restraint is counted as a CRAS: 2

Is the number of provided CRAS (lower anchorages only, for convertible/school buses) greater than or equal to the number of required CRAS (lower anchorages only, for convertibles/school buses)? YES
 YES = PASS NO = FAIL (S4.4(a) or (b) or (c))
If the vehicle has 3 or more rows of seats is a CRAS (lower anchorage only for convertibles/school buses) provided in the second row: \[\text{YES} \]
YES = PASS NO = FAIL (S4.4(a)(1))

Number of provided tether anchorages (can be additional CRAS) indicate if a built-in child restraint is counted as a tether anchorage (NOTE: a built-in child restraint can only be counted toward either the required number of CRAS or tether anchorages, not both): \[\text{4} \]

Is the number of provided tether anchorages greater than or equal to the number of required tether anchorages? \[\text{YES} \]
YES = PASS NO = FAIL (S4.4 (a) or (b) or (c))

If the vehicle has 3 or more rear dsps and a non-outboard dsp, is a tether anchorage or CRAS provided at a non-outboard dsp? \[\text{N/A} \]
YES = PASS NO = FAIL (S4.4 (a)(2))

Are all tether and lower anchorages available for use at all times when the seat is configured for passenger use? \[\text{YES} \]
YES = PASS NO = FAIL (S4.6 (b))

Provide a diagram showing the location of lower anchorages and/or tether anchorages.

\[\begin{array}{c}
\text{X} \\
* \quad * \\
D \\
\text{X} \\
\text{B} \\
\end{array} \quad \begin{array}{c}
\text{X} \\
* \quad * \\
C \\
\text{X} \\
\text{A} \\
\end{array} \]

\[\text{X} = \text{Top Tether} \]
\[* = \text{Lower Anchors} \]

RECORDED BY: G. FARRAND DATE: 07/28/06

APPROVED BY: D. MESSICK
DATA SHEET 3
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 MAZDA 5 PASSENGER CAR
VEH. NHTSA NO: C65401; VIN: JM1CR293760102352
VEH. BUILD DATE: 05/05; TEST DATE: JULY 28, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

Detailed description of the location of the tether anchorage:
Location on lower rear seat frame behind seat.

Based on visual inspection, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone?

If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component?
If YES = FAIL (S6.2.1)
If NO, Is a tether routing device provided?
If YES = PASS
IF NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? NO
If NO, skip to next question
If YES, is it outside of the tether strap wraparound area? YES
YES = PASS NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? YES
YES = PASS NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? YES
YES = PASS NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? YES
YES = PASS NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? YES
YES = PASS NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? N/A
DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension: N/A (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device: N/A
 Greater than or equal to 65mm = PASS Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device: N/A
 Greater than or equal to 100mm = PASS Less than 100mm = FAIL

COMMENTS:

RECORDED BY: G. FARRAND DATE: 07/28/06
APPROVED BY: D. MESSICK
DATA SHEET 3A
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 MAZDA 5 PASSENGER CAR
VEH. NHTSA NO: C65401; VIN: JM1CR293760102352
VEH. BUILD DATE: 05/05; TEST DATE: JULY 28, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP B)

Detailed description of the location of the tether anchorage:
Located on lower rear seat frame behind seat.

Based on visual inspection, is the tether anchorage within the shaded zone? ______YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone?
______YES
If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component?
If YES = FAIL (S6.2.1)
If NO, Is a tether routing device provided?
If YES = PASS
If NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? ______NO
If NO, skip to next question
If YES, is it outside of the tether strap wraparound area? ______YES
YES = PASS NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? ______YES
YES = PASS NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? ______YES
YES = PASS NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? ______YES
YES = PASS NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? ______YES
YES = PASS NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? ______N/A
DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP B)

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension: N/A (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device: N/A
 Greater than or equal to 65mm = PASS Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device: N/A
 Greater than or equal to 100mm = PASS Less than 100mm = FAIL

COMMENTS:

RECORDED BY: G. FARRAND DATE: 07/28/06
APPROVED BY: D. MESSICK
DATA SHEET 3B
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 MAZDA 5 PASSENGER CAR
VEH. NHTSA NO: C65401; VIN: JM1CR293760102352
VEH. BUILD DATE: 05/05; TEST DATE: JULY 28, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 3 LEFT SIDE (DSP C)

Detailed description of the location of the tether anchorage:
Located behind seat on seat back.

Based on visual inspection, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone?

If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component?
If YES = FAIL (S6.2.1)
If NO, Is a tether routing device provided?
If YES = PASS
If NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? YES
If NO, skip to next question
If YES, is it outside of the tether strap wraparound area? YES
YES = PASS
NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? YES
YES = PASS
NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? YES
YES = PASS
NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? YES
YES = PASS
NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? YES
YES = PASS
NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? N/A
DESIGNATED SEATING POSITION: [ROW 3 LEFT SIDE (DSP C)]

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension: ____ N/A ____ (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device: ____ N/A ____
 Greater than or equal to 65mm = PASS Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device: ____ N/A ____
 Greater than or equal to 100mm = PASS Less than 100mm = FAIL

COMMENTS:

RECORDED BY: [G. FARRAND] DATE: 07/28/06

APPROVED BY: [D. MESSICK]
DATA SHEET 3C
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 MAZDA 5 PASSENGER CAR
VEH. NHTSA NO: C65401; VIN: JM1CR293760102352
VEH. BUILD DATE: 05/05; TEST DATE: JULY 28, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 3 RIGHT SIDE (DSP D)

Detailed description of the location of the tether anchorage:
Located behind seat on seat back.

Based on visual inspection, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone?

Is the tether anchorage recessed? YES
If NO, skip to next question
If YES, is it outside of the tether strap wraparound area? YES
YES = PASS NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? YES
YES = PASS NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? YES
YES = PASS NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? YES
YES = PASS NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? YES
YES = PASS NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? N/A
DESIGNATED SEATING POSITION: ROW 3 RIGHT SIDE (DSP D)

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension: N/A (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device: N/A
 Greater than or equal to 65mm = PASS Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device: N/A
 Greater than or equal to 100mm = PASS Less than 100mm = FAIL

COMMENTS:

RECORDED BY: G. FARRAND DATE: 07/28/06
APPROVED BY: D. MESSICK
DATA SHEET 4
LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2006 MAZDA 5 PASSENGER CAR
VEH. NHTSA NO: C65401; VIN: JM1CR293760102352
VEH. BUILD DATE: 05/05; TEST DATE: JULY 28, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

Outboard Lower Anchorage bar diameter: 6.02 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: 6.02 mm
6mm ± 0.1mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? YES
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): 34 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length of the straight portion of the bar (inboard lower anchorage): 34 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length between the anchor bar supports (outboard lower anchorage): 43 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

Length between the anchor bar supports (inboard lower anchorage): 43 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

CRF Pitch angle: 16.2º
Angle = 15º±10º = PASS Angle≠15º±10º = FAIL (S9.2.1)

CRF Roll angle: 0.0
Angle = 0º±5º = PASS Angle≠0º±5º = FAIL (S9.2.1)

CRF Yaw angle: 0.0
Angle = 0º±10º = PASS Angle≠0º±10º = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 60 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: 61 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL
DATA SHEET 4 CONTINUED

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

Distance between SgRP and the front surface of outboard anchor bar: 157 mm
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: 155 mm
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm?
_____NO_____

If NO = PASS
If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:

COMMENTS:

RECORDED BY: G. FARRAND DATE: 07/28/06
APPROVED BY: D. MESSICK
DATA SHEET 4A
LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2006 MAZDA 5 PASSENGER CAR
VEH. NHTSA NO: C65401; VIN: JM1CR293760102352
VEH. BUILD DATE: 05/05; TEST DATE: JULY 28, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Outboard Lower Anchorage bar diameter: 6.02 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: 6.02 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? YES
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): 34 mm
Length ≥25mm = PASS Length <25mm = FAIL (S9.1.1(c) (i))

Length of the straight portion of the bar (inboard lower anchorage): 34 mm
Length ≥25mm = PASS Length <25mm = FAIL (S9.1.1(c) (i))

Length between the anchor bar supports (outboard lower anchorage): 43 mm
Length ≤60mm = PASS Length >60mm = FAIL (S9.1.1(c) (ii))

Length between the anchor bar supports (inboard lower anchorage): 43 mm
Length ≤60mm = PASS Length >60mm = FAIL (S9.1.1(c) (ii))

CRF Pitch angle: 16.3º
Angle = 15º±10º = PASS Angle≠15º±10º = FAIL (S9.2.1)

CRF Roll angle: 0.0º
Angle = 0º±5º = PASS Angle≠0º±5º = FAIL (S9.2.1)

CRF Yaw angle: 0.0º
Angle = 0º±10º = PASS Angle≠0º±10º = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 61 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: 61 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL
DATA SHEET 4A CONTINUED

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Distance between SgRP and the front surface of outboard anchor bar: 156 mm
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: 157 mm
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm?
______NO_____

If NO = PASS
If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:

COMMENTS:

RECORDED BY: G. FARRAND DATE: 07/28/06
APPROVED BY: D. MESSICK
DATA SHEET 5
CONSPICUITY AND MARKING OF LOWER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 MAZDA 5 PASSENGER CAR
VEH. NHTSA NO: C65401; VIN: JM1CR293760102352
VEH. BUILD DATE: 05/05; TEST DATE: JULY 28, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A), ROW 2 RIGHT SIDE (DSP B)

MARKING (Circles)

Diameter of the circle: 15 mm
Diameter ≥13mm = PASS Diameter <13mm = FAIL (S9.5(a)(1))

Does the circle have words, symbols or pictograms? YES Symbol
NO skip to next question
YES, are the meaning of the words, symbols or pictograms explained in the owner’s manual?
YES = PASS NO = FAIL (S9.5(a)(2))

Where is the circle located? Seat back or seat Cushion: Seat Back

For circles on seat backs, vertical distance from the center of the circle to the center of the anchor bar:
70 mm
Distance between 50&100mm = PASS Other Distance=FAIL (S9.5(a)(3))

For circles on seat cushions, horizontal distance from the center of the circle to the center of the bar:
N/A
Distance between 75&125mm= PASS Other Distance=FAIL (S9.5(a)(3))

Lateral distance from the center of the circle to the center of the anchor bar: 0
Distance≤25mm = PASS Distance >25mm = FAIL (S9.5(a)(3))

CONSPICUITY (No Circles)

Is the anchor bar or guide visible when viewed from a point 30° above the horizontal in a vertical longitudinal plane bisecting the anchor bar or guide? N/A
YES = PASS NO = FAIL (S9.5(b))

If there is a guide, is it permanently attached? N/A
YES = PASS NO = FAIL (S9.5(b))
DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A), ROW 2 RIGHT SIDE (DSP B)

Is there a cap or cover over the anchor bar? N/A

If YES, Is the cap or cover marked with words, symbols or pictograms?

If NO = FAIL (S9.5(b))

If YES, is the meaning of the words, symbols or pictograms explained in the owner’s manual?

YES = PASS NO = FAIL (S9.5(b))

If NO, there are no requirements for having a cover.
DATA SHEET 6
STRENGTH OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 MAZDA 5 PASSENGER CAR
VEH. NHTSA NO: C65401; VIN: JM1CR293760102352
VEH. BUILD DATE: 05/05; TEST DATE: SEPTEMBER 28, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 5652

DESIGNATED SEATING POSITION:__ROW 2 LEFT SIDE (DSP A)___
SFAD: 2

Seat Back Angle: __24º FIXED___

Location of seat back angle measurement: __2D Template___

Head Restraint Position: __UP__

D-ring Position: __N/A___

Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: __135 N___

Lap belt tension: __N/A__ (SFAD 1 only)

Tether strap tension: __55 N___

Angle (measured above the horizontal at 500 N): __10º___

Separation of tether anchorage at 500 N: __NO___
NO = PASS YES = FAIL (S6.3.1)

Force application rate: __575 N/S___

Time to reach maximum force (24-30 s): __26 sec. ___

Maximum force (14,950 N ± 50 N): __14,950 N___

Tested simultaneously with another DSP? __NO___

COMMENTS: Displacement at maximum load 101 mm.

RECORDED BY: __G. FARRAND__ DATE: __09/28/06__
APPROVED BY: __D. MESSICK__
DATA SHEET 6A
STRENGTH OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 MAZDA 5 PASSENGER CAR
VEH. NHTSA NO: C65401; VIN: JM1CR293760102352
VEH. BUILD DATE: 05/05; TEST DATE: SEPTEMBER 28, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 5654

DESIGNATED SEATING POSITION: ROW 3 LEFT SIDE (DSP C)
SFAD: 1

Seat Back Angle: 22° FIXED
Location of seat back angle measurement: 2D Template
Head Restraint Position: DOWN
D-ring Position: N/A

Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: 135 N
Lap belt tension: 55 N (SFAD 1 only)
Tether strap tension: 55 N

Angle (measured above the horizontal at 500 N): 10°
Separation of tether anchorage at 500 N: NO
NO = PASS YES = FAIL (S6.3.1)

Force application rate: 575 N/S
Time to reach maximum force (24-30 s): 26 sec.
Maximum force (14,950 N ± 50 N): 13,344 N
Tested simultaneously with another DSP? NO

COMMENTS: Displacement at maximum load was 153 mm at which time the loading ram ran out of stroke. The loading ram was re-hooked and the test was continued with test #5655.

RECORDED BY: G. FARRAND DATE: 09/28/06
APPROVED BY: D. MESSICK
VEH. MOD YR/MAKE/MODEL/BODY: 2006 MAZDA 5 PASSENGER CAR
VEH. NHTSA NO: C65401; VIN: JM1CR293760102352
VEH. BUILD DATE:05/05 ; TEST DATE: SEPTEMBER 28, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 5655 (Continuation of Test #5654)

DESIGNATED SEATING POSITION: ROW 3 LEFT SIDE (DSP C)
SFAD: 1
Seat Back Angle: 22º FIXED
Location of seat back angle measurement: 2D Template
Head Restraint Position: DOWN
D-ring Position: N/A
Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: 135 N
Lap belt tension: 55 N (SFAD 1 only)
Tether strap tension: 55 N
Angle (measured above the horizontal at 500 N): 10º
Separation of tether anchorage at 500 N: NO
NO = PASS YES = FAIL (S6.3.1)
Force application rate: 575 N/S
Time to reach maximum force (24-30 s): 26 sec.
Maximum force (14,950 N ± 50 N): 14,932 N
Tested simultaneously with another DSP? NO

COMMENTS: Displacement at maximum load was 91.6 mm.

RECORDED BY: G. FARRAND DATE: 09/28/06
APPROVED BY: D. MESSICK
VEH. MOD YR/MAKE/MODEL/BODY: 2006 MAZDA 5 PASSENGER CAR
VEH. NHTSA NO: C65401; VIN: JM1CR293760102352
VEH. BUILD DATE: 05/05; TEST DATE: SEPTEMBER 28, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 5656

DESIGNATED SEATING POSITION: ROW 3 RIGHT SIDE (DSP D)
SFAD: 1

Seat Back Angle: 22º FIXED

Location of seat back angle measurement: 2D Template

Head Restraint Position: DOWN

D-ring Position: N/A

Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: 135 N

Lap belt tension: 58 N (SFAD 1 only)

Tether strap tension: 58 N

Angle (measured above the horizontal at 500 N): 10º

Separation of tether anchorage at 500 N: NO
NO = PASS YES = FAIL (S6.3.1)

Force application rate: 575 N/S

Time to reach maximum force (24-30 s): 26 sec.

Maximum force (14,950 N ± 50 N): 14,923 N

Tested simultaneously with another DSP? NO

COMMENTS: Displacement at maximum load was 169.8 mm.

RECORDED BY: G. FARRAND DATE: 09/28/06

APPROVED BY: D. MESSICK
VEH. MOD YR/MAKE/MODEL/BODY: 2006 MAZDA 5 PASSENGER CAR
VEH. NHTSA NO: C65401; VIN: JM1CR293760102352
VEH. BUILD DATE: 05/05; TEST DATE: SEPTEMBER 28, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 5653

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP B)

Seat Back Angle: 24º FIXED

Location of seat back angle measurement: 2D Template

Head Restraint Position: UP

Force at lower front crossmember for SFAD2 while tightening rearward extensions: 135 N

Angle (measured above the horizontal at 500 N): 10º

Force application rate: 421 N/S

Time to reach maximum force (24-30 s): 26 sec.

Maximum force (10,950 N ± 50 N): 10,964 N

Displacement, H1 (at 500 N): 0.0

Displacement, H2 (at maximum load): 58.6 mm

Displacement of Point X: 58.6 mm (H2-H1)

Displacement > 175 mm = FAIL (S9.4.1(a))

Tested simultaneously with another DSP? NO

Distance between adjacent DSP's: 750 mm

COMMENTS:

RECORDED BY: G. FARRAND DATE: 09/28/06

APPROVED BY: D. MESSICK
Description of which DSP’s are equipped with tether anchorages and child restraint anchorage systems: ___YES___

PASS X FAIL ______

Step-by-step instructions for properly attaching a child restraint system’s tether strap to the tether anchorage. Diagrams are required. ___YES___

PASS X FAIL ______

Description of how to properly use the tether anchorage and lower anchor bars: ___YES___

PASS X FAIL ______

If the lower anchor bars are marked with a circle, an explanation of what the circle indicates as well as any words or pictograms: ___YES___

PASS X FAIL ______

COMMENTS:

RECORDED BY: ___G. FARRAND_________ DATE: ___09/28/06_________

APPROVED BY: ___D. MESSICK_________
TABLE 1 - INSTRUMENTATION & EQUIPMENT LIST

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>DESCRIPTION</th>
<th>MODEL/ SERIAL NO.</th>
<th>CAL. DATE</th>
<th>NEXT CAL. DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER</td>
<td>AT&T</td>
<td>486DX266</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>LOAD CELL INTERFACE</td>
<td></td>
<td>215709</td>
<td>09/06</td>
<td>09/07</td>
</tr>
<tr>
<td>LINEAR TRANSDUCER</td>
<td>SERVO SYSTEMS</td>
<td>20</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SEAT BELT LOAD CELL</td>
<td>TRANSUDCER</td>
<td>135</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SEAT BELT LOAD CELL</td>
<td>TRANSUDCER</td>
<td>137</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>LEVEL</td>
<td>STANLEY</td>
<td>42-449</td>
<td>02/06</td>
<td>02/07</td>
</tr>
<tr>
<td>FORCE GAUGE</td>
<td>CHATILLON</td>
<td>8761</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>CALIPER</td>
<td>N/A</td>
<td>Q9322365</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>CRF</td>
<td>MEASUREMENT FIXTURE</td>
<td>GTL CRF</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 1</td>
<td>FORCE APPLICATION DEVICE</td>
<td>GTL SFAD 1</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 2</td>
<td>FORCE APPLICATION DEVICE</td>
<td>GTL SFAD 2</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
</tbody>
</table>
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.1
LEFT SIDE VIEW OF VEHICLE
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.2
RIGHT SIDE VIEW OF VEHICLE
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.3
¾ FRONT VIEW FROM LEFT SIDE OF VEHICLE
MFD. BY MAZDA MOTOR CORPORATION

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>05/05</td>
</tr>
<tr>
<td>GVWR/PNBU</td>
<td>4572 LB 2074 KG</td>
</tr>
<tr>
<td>Front GaW/PNBE AV</td>
<td>2218 LB 1006 KG</td>
</tr>
<tr>
<td>With/Avec</td>
<td>/</td>
</tr>
<tr>
<td>Tires/Pneus With/Avec</td>
<td>/</td>
</tr>
<tr>
<td>X</td>
<td>/</td>
</tr>
<tr>
<td>Rims/Jantes</td>
<td>X</td>
</tr>
<tr>
<td>KPa/PSI Cold/A Froid</td>
<td>KPa/PSI Cold/A Froid</td>
</tr>
</tbody>
</table>

This vehicle conforms to all applicable Federal Motor Vehicle Safety, Bumper, and Theft Prevention Standards in effect on the date of manufacture shown above.

<table>
<thead>
<tr>
<th>VIN</th>
<th>JM1CP293760102352</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Passenger</td>
</tr>
<tr>
<td>Color Code</td>
<td>28B</td>
</tr>
<tr>
<td>Made in Japan</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 5.5

VEHICLE CERTIFICATION LABEL
<table>
<thead>
<tr>
<th></th>
<th>Front/Av.</th>
<th>Rear/Ar.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIRE INFLATION PRESSURE</td>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td>PRESSION DE GONFLAGE DES PNEUS</td>
<td>(34)</td>
<td>(34)</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIRE SIZE</td>
<td>205/50R17</td>
<td>89V</td>
</tr>
</tbody>
</table>

2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.6
VEHICLE TIRE INFORMATION LABEL
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.8
ROW 2, LEFT SIDE, TOP TETHER ANCHOR,
PRE-TEST
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.9
ROW 2, RIGHT SIDE LOWER ANCHORS,
PRE-TEST
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.11
OVERALL VIEW OF ROW 2 SEATING POSITIONS,
PRE-TEST
FIGURE 5.12
ROW 3, LEFT SIDE TOP TETHER ANCHOR,
PRE-TEST
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.13
ROW 3, RIGHT SIDE, TOP TETHER ANCHOR,
PRE-TEST
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.14
OVERALL VIEW OF ROW 3 SEATING POSITIONS
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.17
ROW 2, LEFT SIDE TOP TETHER ROUTING
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.18
ROW 2, RIGHT SIDE WITH CRF
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.25
ROW 2, RIGHT SIDE INBOARD CRF MEASUREMENT
FIGURE 5.27
ROW 2, LEFT SIDE, INBOARD CRF MEASUREMENT
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.28
ROW 2, LEFT SIDE, OUTBOARD CRF MEASUREMENT
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.32
ROW 2, LEFT SIDE OUTBOARD SRP MEASUREMENT
FIGURE 5.33
ROW 2, LEFT SIDE INBOARD SRP MEASUREMENT
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.35
ROW 2, RIGHT SIDE INBOARD SRP MEASUREMENT
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.36
¾ LEFT REAR VIEW OF VEHICLE IN TEST RIG
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.37
¾ RIGHT FRONT VIEW OF VEHICLE IN TEST RIG
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.38
PRE-TEST ROW 2, LEFT SIDE WITH SFAD 2
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.39
PRE-TEST ROW 2, LEFT SIDE WITH SFAD 2
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.41
POST TEST ROW 2, LEFT SIDE WITH SFAD 2
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.42
PRE-TEST ROW 2, RIGHT SIDE WITH SFAD 2
FIGURE 5.43
POST TEST ROW 2, RIGHT SIDE WITH SFAD 2
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.45
PRE-TEST ROW 3, LEFT SIDE WITH SFAD 1
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.47
POST TEST ROW 3 LEFT SIDE WITH SFAD 1
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.48
PRE-TEST ROW 3, RIGHT SIDE WITH SFAD 1
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.50
POST TEST ROW 3, RIGHT SIDE WITH SFAD 1
2006 MAZDA 5
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.51
POST TEST ROW 3, RIGHT SIDE WITH SFAD 1
SECTION 6
PLOTS
GTL 5653, NHTSA C65401
225, Child Restraint, Lower Anchors

Force in Newtons (Thousands) vs. Time in Seconds.
Child Restraint Precautions

Mazda strongly urges the use of child-restraint systems for children small enough to use them.

You are required by law to use a child-restraint system for children in the U.S. and Canada. Check your local and state or provincial laws for specific requirements regarding the safety of children riding in your vehicle.

Whatever child-restraint system you consider, please pick the appropriate one for the age and size of the child, obey the law and follow the instructions that come with the individual child-restraint system.

A child who has outgrown child-restraint systems should sit in the rear and use seat belts, both lap and shoulder. If the shoulder belt crosses the neck or face, move the child closer to the center of the vehicle.

Statistics confirm that the rear seats are the best place for all children up to 12 years of age, and more so with a supplemental restraint system (air bags).

A rear-facing child-restraint system should NEVER be used on the front seat with the air bag system activated. The front passenger's seat is also the least preferred seat for other child-restraint systems.

To reduce the chance of injuries caused by deployment of the front passenger air bag, the front passenger seat weight sensors work as a part of the supplemental restraint system. This system deactives the front passenger front and side air bags and also the front passenger seat belt pretensioner system when the total seated weight on the front passenger seat is less than approximately 30 kg (66 lb).

When an infant or small child sits on the front passenger seat, the system shuts off the front passenger front and side air bags and seat belt pretensioner system, so make sure the front passenger air bag deactivation indicator light illuminates.

Even if the front passenger air bag is shut off, Mazda strongly recommends that children be properly restrained and child-restraint systems of all kinds are properly secured on the rear seats which are the best place for children.

For more details, refer to “Front passenger seat weight sensors (page 2-46)”.

⚠️ WARNING

Proper Size of Child-Restraint System:
For effective protection in vehicle accidents and sudden stops, a child must be properly restrained using a seat belt or child-restraint system depending on age and size. If not, the child could be seriously injured or even killed in an accident.

Follow the Manufacturer’s Instructions and Always Keep the Child-Restraint System Buckled Down:
An unsecured child-restraint system is dangerous. In a sudden stop or a collision it could move causing serious injury or death to the child or other occupants. Make sure any child-restraint system is properly secured in place according to the child-restraint system manufacturer’s instructions. When not in use, remove it from the vehicle or fasten it with a seat belt, or latch it down to BOTH LATCH lower anchors for LATCH child-restraint systems and the corresponding tether anchor.

Holding a Child While the Vehicle is Moving:
Holding a child in your arms while the vehicle is moving is extremely dangerous. No matter how strong the person may be, he or she cannot hold onto a child in a sudden stop or collision and it could result in serious injury or death to the child or other occupants. Even in a moderate accident, the child may be exposed to air bag forces that could result in serious injury or death to the child, or the child may be slammed into the adults, injuring the adults. Always secure a child in a proper child-restraint system.

Rear-Facing Child-Restraint System:
Rear-facing child-restraint systems on the front seat are particularly dangerous.
The child-restraint system can be hit by a deploying air bag and moved violently backward resulting in serious injury or death to the child. Even though you may feel assured that a front passenger air bag will not deploy based on the fact that the front passenger air bag deactivation indicator light illuminates, NEVER use a rear-facing child-restraint system in the front seat with an air bag that could deploy even in a moderate collision.
WARNING

Front Passenger Seat Position:
A front-facing child-restraint system should only be put on the front seat when it is unavoidable. Always move the seat as far back as possible, because the force of a deploying air bag could cause serious injury or death to the child.

Seating Children in a Child-Restraint System on the Front Passenger Seat:
If your vehicle is equipped with front passenger seat weight sensors, the vehicle is also equipped with an air bag deactivation indicator light (page 2-33). Even with the front passenger seat weight sensors, if you must use the front passenger seat for children, seating a child in a child-restraint system on the front passenger seat under the following conditions increases the danger of the front passenger air bag deploying and could result in serious injury or death to the child.

- The total seated weight of the child with the child-restraint system on the front passenger seat is approximately 30 kg (66 lb) or more.
- Luggage or other items are placed on the seat with the child in the child-restraint system.
- A rear passenger or luggage push or pull down on the front passenger seat back.
- A rear passenger puts their feet on the front seat rail.
- Luggage or other items are placed on the seat back or hung on the assist grip, head restraint, or armrest.
- The seat is washed.
- Liquids are spilled on the seat.
- The front passenger seat is moved backward, pushing into luggage or other items placed behind it.
- The front passenger seatback contacts the second-row seat.
- Luggage or other items are placed between the front passenger seat and driver seat.
- Any accessories which might increase the total seated weight on the front passenger seat are attached to the front passenger seat.

The designated positions with seat belts on the rear seats are the safest places for children. Always use seat belts and child restraints.

WARNING

Children and Seating Position with Side and Curtain Air Bags:
Allowing anyone to lean over or against the side window, the area of the front passenger seat, front and rear window pillars and the roof edge along both sides from which the side and curtain air bags deploy, even if a child-restraint system is used, is dangerous. If the vehicle is equipped with side and curtain air bags, the impact of inflation could cause serious injury or death to the child. Furthermore, leaning over or against the front door could block the side and curtain air bags and eliminate the advantages of supplemental protection. With the front air bag and the additional side air bag that comes out of the front seat, the rear seat is always a better location for children. Do not allow a child to lean over or against the side window, even if the child is seated in a child-restraint system.

One Belt, One Passenger:
Using one seat belt for more than one person at a time is dangerous. A seat belt used this way can't spread the impact forces properly and the two passengers could be crushed together and seriously injured or even killed. Never use one belt for more than one person at a time.

CAUTION

A seat belt or child-restraint system can become very hot in a closed vehicle during warm weather. To avoid burning yourself or a child, check them before you or your child touches them.

NOTE

Your Maada is equipped with LATCH lower anchors for attachment of specially designed LATCH child-restraint systems in the rear seats. When using these anchors to secure a child-restraint system, refer to "LATCH Child-Restraint Systems" (page 2-35).
Installing Child-Restraint Systems

Accident statistics reveal that a child is safer in the rear seats. The front passenger's seat is clearly the worst choice for any child under 12, and with rear-facing child-restraint systems it is clearly unsafe due to air bags.

Some child-restraint systems now come with tethers and therefore must be installed on the seats that take tethers to be effective. In your Mazda, tethered child-restraint systems can only be accommodated in the four positions on the rear seats.

Even if your vehicle is equipped with the front passenger air bag cut-off system (page 2-46), which automatically deactivates the front passenger air bag, a rear seat is the safest place for a child of any age or size.

Some child-restraint systems also employ specially designed LATCH attachments; refer to "LATCH Child-Restraint Systems" (page 2-35).

WARNING

Tethered Child-Restraint Systems
Work Only on Tether-Equipped Rear Seats:
Installation of a tether equipped child-restraint system in the front passenger's seat defeats the safety design of the system and will result in an increased chance of serious injury if the child-restraint system goes forward without benefit of being tethered.
Place tether equipped child-restraint systems where there are tether anchors.

Rear Seats Child-Restraint System Installation

Follow these instructions when using a child-restraint system, unless you are attaching a LATCH-equipped child-restraint system to the rear LATCH lower anchors. Refer to "LATCH Child-Restraint Systems" (page 2-35).

NOTE

Follow the child-restraint system manufacturer's instructions carefully. If you are not sure whether you have a LATCH system or tether, check in the child-restraint system manufacturer's instructions and follow them accordingly. Depending on the type of child-restraint system, it may not employ seat belts which are in automatic locking mode.

1. If the seat in which you install a child-restraint system has a seat slide function, slide the seat as far back as possible.
2. Make sure the seatback is securely latched by pushing it back until it is fully locked.
3. Secure the child-restraint system with the lap portion of the lap/shoulder belt. See the manufacturer's instructions on the child-restraint system for belt routing instructions.
4. To get the retractor into the automatic locking mode, pull the shoulder belt portion of the seat belt until the entire length of the belt is out of the retractor.
5. Push the child-restraint system firmly into the vehicle seat. Be sure the belt retracts as snugly as possible. Clicking from the retractor will be heard during retraction if the system is in the automatic locking mode. If the belt does not lock the seat down tight, repeat this step.

NOTE

Inspect this function before each use of the child-restraint system. You should not be able to pull the shoulder belt out of the retractor while the system is in the automatic locking mode. When you remove the child-restraint system, be sure the belt fully retracts to return the system to emergency locking mode before occupants use the seat belts.

6. If your child-restraint system requires the use of a tether strap, hook and tighten the tether strap after raising the head restraint (Second-row seats) by following the manufacturer's instructions.
WARNING

Child-Restraint Tether Usage:
Using the tether or tether anchor to secure anything but a child-restraint system is dangerous. This could weaken or damage the tether or tether anchor and result in injury. Use the tether and tether anchor only for a child-restraint system.

Incorrect Attachment of the Tether Strap (Second-row seats):
Routing the tether strap on top of the head restraint is dangerous. In a collision, the tether strap could slide off the head restraint and loosen the child-restraint system. The child-restraint system could move which may result in death or injury to the child. Always route the tether strap between the head restraint posts.

WARNING

Incorrect Attachment of the Tether Strap (Third-row seat):
Routing the tether strap between the head restraint posts is dangerous as it could damage or weaken the seatback, resulting in the child-restraint system not being correctly secured. In a collision, the child-restraint system could shift or loosen which may result in death or injury to the child. Always route the tether strap over the head restraint.

If You Must Use the Front Seat for Children

If you cannot put all children in the rear seats, at least put the smallest children in the rear and be sure the largest child up front uses the shoulder belt over the shoulder.

NEVER put a rear-facing child-restraint system on the front passenger seat, even with a seat weight sensor equipped vehicle. This seat is also not set up for tethered child-restraint systems, put them in one of the rear seat positions set up with tether anchors.

Likewise the LATCH child-restraint system cannot be secured in the front passenger's seat and should be used in the second-row seats.

Don't allow anyone to sleep against the side window if you have an optional side and curtain air bag, it could cause serious injuries to an out of position occupant. As children more often sleep in cars, it is better to put them in the rear seat. If installing the child-restraint system on the front seat is unavoidable, follow these instructions when using a front-facing child-restraint system in the front passenger's seat.
Child Restraint

NOTE

- To check if your front seats have side air bags:
 Every Mazda side air bag will have a “SRS AIRBAG” tag on the outboard shoulder of the front seats.
- To check if your vehicle has curtain air bags:
 Every Mazda curtain air bag will have an “SRS AIRBAG” marking on the front and rear window pillars along the roof edge.

⚠️ WARNING

Front Passenger’s Seat Position:
As your vehicle has front air bags and doubly so if your vehicle has side air bags, a front-facing child-restraint system should be put on the front seat only when it is unavoidable.
Even if the front passenger air bag deactivation indicator light illuminates, always move the seat as far back as possible, because the force of a deploying air bag could cause serious injury or death to the child.

⚠️ WARNING

Rear-Facing Child-Restraint System:
Rear-facing child-restraint systems on the front seat are particularly dangerous.
The child-restraint system can be hit by a deploying air bag and moved violently backward resulting in serious injury or death to the child. Even though you may feel assured that the front passenger air bag will not deploy based on the fact that the front passenger air bag deactivation indicator light illuminates, NEVER use a rear-facing child-restraint system in the front seat with an air bag that could deploy even in a moderate collision.

⚠️ WARNING

Children and Seating Position with Side and Curtain Air Bags:
Allowing anyone to lean over or against the side window, the area of the front passenger seat, front and rear window pillars and the roof edge along both sides from which the side and curtain air bags deploy, even if a child-restraint system is used, is dangerous. If the vehicle is equipped with side and curtain air bags, the impact of inflation could cause serious injury or death to the child.
Furthermore, leaning over or against the front door could block the side and curtain air bags and eliminate the advantages of supplemental protection. With the front air bag and the additional side air bag that comes out of the front seat, the rear seat is always a better location for children. Do not allow a child to lean over or against the side window, even if the child is seated in a child-restraint system.

Front Passenger’s Seat Child-Restraint System Installation

1. Slide the seat as far back as possible.

2. Secure the child-restraint system with the lap portion of the lap/shoulder belt. See the manufacturer's instructions on the child-restraint system for belt routing instructions.

3. To get the retractor into the automatic locking mode, pull the shoulder belt portion of the seat belt until the entire length of the belt is out of the retractor.

4. Push the child-restraint system firmly into the vehicle seat. Be sure the belt retracts as snugly as possible. Clicking from the retractor will be heard during retraction if the system is in automatic locking mode. If the belt does not lock the seat down tight, repeat the previous step and also this one.
5. Make sure the front passenger air bag deactivation indicator light illuminates after installing a child-restraint system on the front passenger seat. Refer to Front passenger air bag deactivation indicator light on page 2-46.
LATCH Child-Restraint System Installation Procedure (Second-Row Seats Only)

1. Slide the second-row seat as far back as possible.

2. Make sure the seatback is securely latched by pushing it back until it is fully locked.

3. Expand the area between the seat bottom and the seatback slightly to verify the locations of the LATCH lower anchors.

NOTE
The markings above the LATCH lower anchors indicate the locations of LATCH lower anchors for the attachment of a child-restraint system.

4. Secure the child-restraint system using BOTH LATCH lower anchors, following the child-restraint system manufacturer's instruction.

5. If your child-restraint system came equipped with a tether, that probably means it is very important to properly secure the tether for child safety, please carefully follow the child-restraint system manufacturer's instructions when installing tethers.

Anchor bracket location

WARNING

Child-Restraint Tether Usage:
Using the tether or tether anchor to secure anything but a child-restraint system is dangerous. This could weaken or damage the tether or tether anchor and result in injury. Use the tether and tether anchor only for a child-restraint system.

Incorrect Attachment of the Tether Strap:
Attaching the tether strap on top of the head restraint is dangerous. In a collision, the tether strap could slide off the head restraint, and loosen the child-restraint system. The child-restraint system could move and injure the child or someone else. Always attach the tether strap between the head restraint and the seatback.
APPENDIX B
MANUFACTURER’S DATA
SEAT REFERENCE POINT (SRP) AND TORSO ANGLE DATA
FOR FMVSS 225
(All dimensions in mm)

Model Year: 2006; Make: Mazda; Model: Mazda5; Body Style: 4-dr wagon
Seat Style: Front row: Bucket; Second row: Bucket; Third row: Split bench

LEFT SIDE VIEW OF TEST VEHICLE
Table 1. Seating Positions\(^1\) and Torso Angles

<table>
<thead>
<tr>
<th></th>
<th>Left (Driver Side)</th>
<th>Center (if any)</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>(Driver) 297.3</td>
<td>N/A</td>
<td>(Front Passenger) 295.2</td>
</tr>
<tr>
<td>A2</td>
<td>353.4</td>
<td>N/A</td>
<td>353.4</td>
</tr>
<tr>
<td>A3</td>
<td>377.4</td>
<td>N/A</td>
<td>377.4</td>
</tr>
<tr>
<td>B</td>
<td>329.7</td>
<td>N/A</td>
<td>329.7</td>
</tr>
<tr>
<td>C</td>
<td>1104.4</td>
<td>N/A</td>
<td>1104.4</td>
</tr>
<tr>
<td>D</td>
<td>199.4</td>
<td>N/A</td>
<td>1900.4</td>
</tr>
<tr>
<td>Torso Angle (degree)</td>
<td>Front Row</td>
<td>N/A</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Second Row</td>
<td>24</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Third Row</td>
<td>22</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: 1. All dimensions are in mm. If not, provide the unit used.
SEATING REFERENCE POINT
FOR FMVSS 225
(All dimensions in mm)

Model Year: 2006 ; Make: Mazda ; Model: Mazda5 ; Body Style: 4-dr wagon
Seat Style: Front row: Bucket ; Second row: Bucket ; Third row: Split bench

Driver’s seat front outboard seat adjuster anchorage

Front

Second

Third
Table 2. Seating Reference Point and Tether Anchorage Locations

<table>
<thead>
<tr>
<th>Seating Reference Point (SRP)</th>
<th>Distance from Driver’s front outboard seat adjuster anchorage¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>329.7</td>
</tr>
<tr>
<td>E1</td>
<td>212.0</td>
</tr>
<tr>
<td>B2</td>
<td>N/A</td>
</tr>
<tr>
<td>E2</td>
<td>N/A</td>
</tr>
<tr>
<td>B3</td>
<td>329.7</td>
</tr>
<tr>
<td>E3</td>
<td>922.0</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>1104.4</td>
</tr>
<tr>
<td>F1</td>
<td>202.0</td>
</tr>
<tr>
<td>C2</td>
<td>N/A</td>
</tr>
<tr>
<td>F2</td>
<td>N/A</td>
</tr>
<tr>
<td>C3</td>
<td>1104.4</td>
</tr>
<tr>
<td>F3</td>
<td>932.0</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>1900.4</td>
</tr>
<tr>
<td>G1</td>
<td>322.0</td>
</tr>
<tr>
<td>D2</td>
<td>N/A</td>
</tr>
<tr>
<td>G2</td>
<td>N/A</td>
</tr>
<tr>
<td>D3</td>
<td>1900.4</td>
</tr>
<tr>
<td>G3</td>
<td>812.0</td>
</tr>
</tbody>
</table>

Note: 1. Use the center of anchorage.
TETHER ANCHORAGE LOCATIONS
FOR FMVSS 225
(All dimensions in mm)

Model Year: 2006 ; Make: Mazda ; Model: Mazda5 ; Body Style: 4-dr wagon
Seat Style: Front row: Bucket ; Second row: Bucket ; Third row: Split bench

H1: SRP
†: Tether anchorage

Note: 1. The location shall be measured at the center of the bar.
Table 3. Seating Reference Point and Tether Anchorage Locations

<table>
<thead>
<tr>
<th>Seating Reference Point (SRP)</th>
<th>Distance from SRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>N/A</td>
</tr>
<tr>
<td>K1</td>
<td>N/A</td>
</tr>
<tr>
<td>H2</td>
<td>N/A</td>
</tr>
<tr>
<td>K2</td>
<td>N/A</td>
</tr>
<tr>
<td>H3</td>
<td>N/A</td>
</tr>
<tr>
<td>K3</td>
<td>N/A</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>I1</td>
<td>206.0</td>
</tr>
<tr>
<td>L1</td>
<td>0</td>
</tr>
<tr>
<td>I2</td>
<td>N/A</td>
</tr>
<tr>
<td>L2</td>
<td>N/A</td>
</tr>
<tr>
<td>I3</td>
<td>206.0</td>
</tr>
<tr>
<td>L3</td>
<td>0</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>202.0</td>
</tr>
<tr>
<td>M1</td>
<td>0</td>
</tr>
<tr>
<td>J2</td>
<td>N/A</td>
</tr>
<tr>
<td>M2</td>
<td>N/A</td>
</tr>
<tr>
<td>J3</td>
<td>202.0</td>
</tr>
<tr>
<td>M3</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: 1. Use the center of anchorage.
TETHER ANCHORAGE LOCATIONS - VERTICAL
FOR FMVSS 225
(All dimensions in mm)

Model Year: 2006 ; Make: Mazda ; Model: Mazda5 ; Body Style: 4-dr wagon
Seat Style: Front row: Bucket ; Second row: Bucket ; Third row: Split bench

LEFT SIDE VIEW OF TEST VEHICLE
Table 4. Vertical Dimension For The Tether Anchorage

<table>
<thead>
<tr>
<th>Seating Row</th>
<th>Vertical Distance from Seating Reference Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>N1 (Driver)</td>
<td>N/A</td>
</tr>
<tr>
<td>N2 (Center)</td>
<td>N/A</td>
</tr>
<tr>
<td>N3 (Right)</td>
<td>N/A</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>O1 (Left)</td>
<td>133.3</td>
</tr>
<tr>
<td>O2 (Center)</td>
<td>N/A</td>
</tr>
<tr>
<td>O3 (Right)</td>
<td>133.3</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>P1 (Left)</td>
<td>6.4</td>
</tr>
<tr>
<td>P2 (Center)</td>
<td>N/A</td>
</tr>
<tr>
<td>P3 (Right)</td>
<td>6.4</td>
</tr>
</tbody>
</table>

Note: 1. All dimensions are in mm. If not, provide the unit used.
For each vehicle, provide the following information:

1. **How many designated seating positions exist in the vehicle?**

 6 persons

2. **How many designated seating positions are equipped with lower anchorages and tether anchorages?** Specify which position(s).

 2 seating positions in the 2nd row

3. **How many designated seating positions are equipped with tether anchorages?** Specify which position(s).

 2 seating positions in the 3rd row

4. **Lower Anchorage Marking and Conspicuity:** Whether the anchorages are certified to S9.5(a) or S9.5(b) of FMVSS 225.

 S9.5(a)