SAFETY COMPLIANCE TESTING FOR
FMVSS NO. 225
CHILD RESTRAINT ANCHORAGE SYSTEMS
LOWER AND TETHER ANCHORAGES

HONDA OF CANADA MFG.
A DIVISION OF HONDA CANADA INC.
2006 HONDA RIDGELINE, TRUCK
NHTSA NO. C65300

GENERAL TESTING LABORATORIES, INC.
1623 LEEDSTOWN ROAD
COLONIAL BEACH, VIRGINIA 22443

OCTOBER 27, 2006

FINAL REPORT
PREPARED FOR
U. S. DEPARTMENT OF TRANSPORTATION
NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
SAFETY ENFORCEMENT
OFFICE OF VEHICLE SAFETY COMPLIANCE
400 SEVENTH STREET, SW
ROOM 6111 (NVS-220)
WASHINGTON, D.C. 20590
This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.
Final Report of FMVSS 225 Compliance Testing of 2006 HONDA RIDGELINE, TRUCK
NHTSA No. C65300

Compliance tests were conducted on the subject, 2006 Honda Ridgeline Truck in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP-225-01 for the determination of FMVSS 225 compliance. Test failures identified were as follows:
NONE
<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>27</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>5.10</td>
<td></td>
</tr>
<tr>
<td>5.11</td>
<td></td>
</tr>
<tr>
<td>5.12</td>
<td></td>
</tr>
<tr>
<td>5.13</td>
<td></td>
</tr>
<tr>
<td>5.14</td>
<td></td>
</tr>
<tr>
<td>5.15</td>
<td></td>
</tr>
<tr>
<td>5.16</td>
<td></td>
</tr>
<tr>
<td>5.17</td>
<td></td>
</tr>
<tr>
<td>5.18</td>
<td></td>
</tr>
<tr>
<td>5.19</td>
<td></td>
</tr>
<tr>
<td>5.20</td>
<td></td>
</tr>
<tr>
<td>5.21</td>
<td></td>
</tr>
<tr>
<td>5.22</td>
<td></td>
</tr>
<tr>
<td>5.23</td>
<td></td>
</tr>
<tr>
<td>5.24</td>
<td></td>
</tr>
<tr>
<td>5.25</td>
<td></td>
</tr>
<tr>
<td>5.26</td>
<td></td>
</tr>
<tr>
<td>5.27</td>
<td></td>
</tr>
<tr>
<td>5.28</td>
<td></td>
</tr>
<tr>
<td>5.29</td>
<td></td>
</tr>
<tr>
<td>5.30</td>
<td></td>
</tr>
<tr>
<td>5.31</td>
<td></td>
</tr>
<tr>
<td>5.32</td>
<td></td>
</tr>
<tr>
<td>5.33</td>
<td></td>
</tr>
<tr>
<td>5.34</td>
<td></td>
</tr>
<tr>
<td>5.35</td>
<td></td>
</tr>
<tr>
<td>5.36</td>
<td></td>
</tr>
<tr>
<td>5.37</td>
<td></td>
</tr>
<tr>
<td>5.38</td>
<td></td>
</tr>
<tr>
<td>5.39</td>
<td></td>
</tr>
</tbody>
</table>

5.1 Left Side View of Vehicle
5.2 Right Side View of Vehicle
5.3 ¾ Frontal Left Side View of Vehicle
5.4 ¾ Rearward Right Side View of Vehicle
5.5 Close-up View of Vehicle Certification Label
5.6 Close-up View of Vehicle Tire Information Label
5.7 Row 2, Left Side, Lower Anchors Pre-Test
5.8 Row 2, Left Side Routing Device, Pre-Test
5.9 Row 2, Left Side, Top Tether Anchor Pre-Test
5.10 Row 2, Center, Lower Anchors and Top Tether Anchor, Pre-Test
5.11 Row 2, Center Routing Device Pre-Test
5.12 Row 2, Right Side, Lower Anchors Pre-Test
5.13 Row 2, Right Side Routing Device Pre-Test
5.14 Row 2, Right Side Top Tether Anchor Pre-Test
5.15 Overall View of Row 2 Seating Positions Pre-Test
5.16 Row 2, Left Side with CRF
5.17 Row 2, Left Side with 2-D Template
5.18 Row 2, Left Side Top Tether Routing
5.19 Row 2, Left Side Tether Routing
5.20 Row 2, Right Side with CRF
5.21 Row 2, Right Side with 2-D Template
5.22 Row 2, Right Side Top Tether Routing
5.23 Row 2, Right Side Tether Routing
5.24 Row 2, Center with CRF
5.25 Row 2, Center with 2-D Template
5.26 Row 2, Center Tether Routing
5.27 Row 2, Center Tether Routing
5.28 Row 2, Right Side Inboard CRF Measurement
5.29 Row 2, Right Side Outboard CRF Measurement
5.30 Row 2, Left Side Inboard CRF Measurement
5.31 Row 2, Left Side Outboard CRF Measurement
5.32 Row 2, Center Left Side CRF Measurement
5.33 Row 2, Center Right Side CRF Measurement
5.34 Symbol Measurement
5.35 Row 2, Left Side CRF Pitch Measurement
5.36 Row 2, Right Side CRF Pitch Measurement
5.37 Row 2, Center Pitch Measurement
5.38 Row 2, Left Side Outboard SRP Measurement
5.39 Row 2, Left Side Inboard SRP Measurement
TABLE OF CONTENTS (continued)

5.40 Row 2, Right Side Outboard SRP Measurement
5.41 Row 2, Right Side Inboard SRP Measurement
5.42 Row 2, Center Left Side SRP Measurement
5.43 Row 2, Center Right Side SRP Measurement
5.44 ¾ Left Rear View of Vehicle in Test Rig
5.45 ¾ Right Front View of Vehicle in Test Rig
5.46 Pre-Test Row 2, Left Side with SFAD 2
5.47 Post Test Row 2, Left Side with SFAD 2
5.48 Post Test Row 2, Left Side with SFAD 2
5.49 Post Test Row 2, Left Side with SFAD 2
5.50 Pre-Test Row 2, Right Side with SFAD 2
5.51 Post Test Row 2, Right Side with SFAD 2
5.52 Pre-Test Row 2, Center Position with SFAD 1
5.53 Post Test Row 2, Center Position with SFAD 1
5.54 Post Test Row 2, Center Position with SFAD 1

6 Plots 82

6.1 2nd Row Left Side Top Tether, GTL 5657
6.2 2nd Row Left Side Top Tether, GTL 5657
6.3 2nd Row Center Position Top Tether, GTL 5658
6.4 2nd Row Center Position Top Tether, GTL 5658
6.5 2nd Row Right Side Lower Anchor, GTL 5659
6.6 2nd Row Right Side Lower Anchor, GTL 5659

Appendix A – Owner’s Manual Child Restraint Information
Appendix B – Manufacturer’s Data
1.0 PURPOSE OF COMPLIANCE TEST

A 2006 Honda Ridgeline Truck was subjected to Federal Motor Vehicle Safety Standard (FMVSS) No. 225 testing to determine if the vehicle was in compliance with the requirements of the standard. The purpose of this standard is to establish requirements for child restraint anchorage systems to ensure their proper location and strength for the effective securing of child restraints, to reduce the likelihood of the anchorage systems’ failure and to increase the likelihood that child restraints are properly secured and thus more fully achieve their potential effectiveness in motor vehicles.

1.1 The test vehicle was a 2006 Honda Ridgeline Truck. Nomenclature applicable to the test vehicle are:

A. **Vehicle Identification Number**: 2HJYK16206H531467

B. **NHTSA No.**: C65300

C. **Manufacturer**: HONDA OF CANADA MFG. A DIVISION OF HONDA CANADA INC.

D. **Manufacturer Date**: 07/05

1.2 TEST DATE

The test vehicle was subjected to FMVSS No. 225 testing during the time period July 24 through September 29, 2006.
2.0 TEST RESULTS

All tests were conducted in accordance with NHTSA, Office of Vehicle Safety Compliance (OVSC) Laboratory Procedures, TP-225-01 dated 11 April 2005.

Based on the test performed, the 2006 Honda Ridgeline Truck appeared to meet the requirements of FMVSS 225 testing.
3.0 TEST DATA

The following data sheets document the results of testing on the 2006 Honda Ridgeline Truck.
DATA SHEET 1
SUMMARY OF RESULTS

VEH. MOD YR/MAKE/MODEL/BODY: 2006 HONDA RIDGELINE TRUCK
VEH. NHTSA NO: C65300; VIN: 2HJYK16206H531467
VEH. BUILD DATE: 07/05; TEST DATE: JULY 24 – SEPTEMBER 29, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

A. VISUAL INSPECTION OF TEST VEHICLE

Upon receipt for completeness, function, and discrepancies or damage which might influence the testing.

RESULTS: OK FOR TEST

B. REQUIREMENTS FOR CHILD RESTRAINT SYSTEMS AND TETHER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

C. LOCATION OF TETHER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

D. LOWER ANCHORAGE DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY OF RESULTS

E. CONSPICUITY AND MARKING OF LOWER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

F. STRENGTH OF TETHER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

G. STRENGTH OF LOWER ANCHORAGES (Forward Force)

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

H. STRENGTH OF LOWER ANCHORAGE (Lateral Force)

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

I. OWNER’S MANUAL

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS: DSP a = Left Rear Outboard, DSP b = Center, DSP c = Right Rear Outboard

RECORDED BY: G. Farrand **DATE:** 09/29/06

APPROVED BY: D. Messick
DATA SHEET 2
REQUIREMENTS FOR CHILD RESTRAINT ANCHORAGE SYSTEMS
AND TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 HONDA RIDGELINE TRUCK
VEH. NHTSA NO: C65300; VIN: 2HJYK16206H531467
VEH. BUILD DATE: 07/05; TEST DATE: JULY 24, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

Number of rows of seats: _______2_____
Number of rear, forward-facing designated seating positions: _______3_____
Number of required CRAS (lower anchorages only, for convertibles/school buses): _______2_____
Number of required tether anchorages (can be additional CRAS): _______3_____
Is the vehicle a convertible? _______NO_____
Is the vehicle a school bus? _______NO_____

Does the vehicle have a CRAS (lower anchorage only, for convertibles/school buses) installed at a
front passenger seating position? _______NO_____
 If NO, skip to next question.
 If YES, does the vehicle have rear designated seating positions? _________
 If NO, does the vehicle have an air bag on-off switch or a special exemption for no
 passenger air bag?
 If NO = FAIL If YES = PASS
 If Yes, does the vehicle meet the requirements of S4.5.4.1 (b) of S208 and have and
 air bag on-off switch or a special exemption for no passenger air bag?_____
 Record the distance between the front and rear seat back:_____
 If Distance < 720 mm and vehicle has an air bag on-off switch or special exemption =
 PASS
 If Distance ≥ 720 mm or no air bag on-off switch or no special exemption = FAIL

Does the vehicle have rear designated seating position(s) where the lower bars of a CRAS are
prevented from being located because of transmission and/or suspension component interference?
______NO_____
 If NO, skip to next question.
 If YES, does the vehicle have a tether anchorage at a front passenger seating position?
 YES = PASS NO = FAIL (S5(e))

Number of provided CRAS (lower anchorage only, for convertibles/school buses), indicate if a built-
in child restraint is counted as a CRAS: _______3_____

Is the number of provided CRAS (lower anchorages only, for convertible/school buses) greater than
or equal to the number of required CRAS (lower anchorages only, for convertibles/school buses)?
______YES_____
 YES = PASS NO = FAIL (S4.4(a) or (b) or (c))
DATA SHEET 2 CONTINUED

If the vehicle has 3 or more rows of seats is a CRAS (lower anchorage only for convertibles/school buses) provided in the second row: N/A
YES = PASS NO = FAIL (S4.4(a)(1))

Number of provided tether anchorages (can be additional CRAS) indicate if a built-in child restraint is counted as tether anchorage (NOTE: a built-in child restraint can only be counted toward either the required number of CRAS or tether anchorages, not both): 3

Is the number of provided tether anchorages greater than or equal to the number of required tether anchorages? YES
YES = PASS NO = FAIL (S4.4 (a) or (b) or (c))

If the vehicle has 3 or more rear dsps and a non-outboard dsp, is a tether anchorage or CRAS provided at a non-outboard dsp? YES
YES = PASS NO = FAIL (S4.4 (a)(2))

Are all tether and lower anchorages available for use at all times when the seat is configured for passenger use? YES
YES = PASS NO = FAIL (S4.6 (b))

Provide a diagram showing the location of lower anchorages and/or tether anchorages.

X = Top Tether
* = Lower Anchors
▼ = Tether Routing Device

X

C

B

A

RECORDED BY: G. FARRAND DATE: 07/24/06

APPROVED BY: D. MESSICK
DATA SHEET 3
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 HONDA RIDGELINE TRUCK
VEH. NHTSA NO: C65300; VIN: 2HJYK16206H531467
VEH. BUILD DATE: 07/05; TEST DATE: JULY 24, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

Detailed description of the location of the tether anchorage:
Top Tether is routed through a rigid loop at the top of the seat back and then down to the anchorage at the outboard left side of the seat bottom.

Based on visual inspection, is the tether anchorage within the shaded zone? _____ YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone?

If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component?
If YES = FAIL (S6.2.1)
If NO, Is a tether routing device provided?
If YES = PASS
IF NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? ______ NO
If NO, skip to next question
If YES, is it outside of the tether strap wraparound area? _____ YES
YES = PASS NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? _____ YES
YES = PASS NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? _____ YES
YES = PASS NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? _____ YES
YES = PASS NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? _____ YES
YES = PASS NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? _____ RIGID
DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension: N/A (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device: N/A
 Greater than or equal to 65mm = PASS Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device: 190 mm
 Greater than or equal to 100mm = PASS Less than 100mm = FAIL

COMMENTS:

RECORDED BY: G. FARRAND DATE: 07/24/06
APPROVED BY: D. MESSICK
DATA SHEET 3A
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 HONDA RIDGELINE TRUCK
VEH. NHTSA NO: C65300; VIN: 2HJYK16206H531467
VEH. BUILD DATE: 07/05; TEST DATE: JULY 24, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Detailed description of the location of the tether anchorage:
Top Tether is routed through a rigid loop at the top of the seat back and then down to the anchorage at the outboard right side of the seat bottom.

Based on visual inspection, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone?

If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component?
If YES = FAIL (S6.2.1)
If NO, Is a tether routing device provided?
If YES = PASS
If NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? NO
If NO, Is it outside of the tether strap wraparound area? YES
YES = PASS NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? YES
YES = PASS NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? YES
YES = PASS NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? YES
YES = PASS NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? YES
YES = PASS NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? RIGID
DATA SHEET 3A CONTINUED

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension:

_____ N/A _____ (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device:

_____ N/A _____
Greater than or equal to 65mm = PASS Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device:

_____ 190 mm _____
Greater than or equal to 100mm = PASS Less than 100mm = FAIL

COMMENTS:

RECORDED BY: G. FARRAND DATE: 07/24/06
APPROVED BY: D. MESSICK
DATA SHEET 3B
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 HONDA RIDGELINE TRUCK
VEH. NHTSA NO: C65300; VIN: 2HJYK16206H531467
VEH. BUILD DATE: 07/05; TEST DATE: JULY 24, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 CENTER (DSP B)

Detailed description of the location of the tether anchorage:
Top Tether is routed through a rigid loop at the top of the seat back and then down to the anchorage at the junction of the seat back and seat bottom cushion.

Based on visual inspection, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone?
YES = PASS
If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component?
If YES = FAIL (S6.2.1)
If NO, Is a tether routing device provided?
If YES = PASS
If NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? NO
If NO, skip to next question
If YES, is it outside of the tether strap wraparound area? YES
YES = PASS
NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? YES
YES = PASS
NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? YES
YES = PASS
NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? YES
YES = PASS
NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? YES
YES = PASS
NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? RIGID
DATA SHEET 3B CONTINUED

DESIGNATED SEATING POSITION: ROW 2 CENTER (DSP B)

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension: _____N/A____ (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device: _____N/A____
 Greater than or equal to 65mm = PASS Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device: _____230 mm_______
 Greater than or equal to 100mm = PASS Less than 100mm = FAIL

COMMENTS:

RECORDED BY: G. FARRAND DATE: 07/24/06
APPROVED BY: D. MESSICK
DATA SHEET 4
LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2006 HONDA RIDGELINE TRUCK
VEH. NHTSA NO: C65300; VIN: 2HJYK16206H531467
VEH. BUILD DATE: 07/05; TEST DATE: JULY 24, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

Outboard Lower Anchorage bar diameter: 6.05 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: 6.05 mm
6mm ± 0.1mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? YES
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): 30 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length of the straight portion of the bar (inboard lower anchorage): 30 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length between the anchor bar supports (outboard lower anchorage): 38 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

Length between the anchor bar supports (inboard lower anchorage): 38 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

CRF Pitch angle: 13.5º
Angle = 15º±10º = PASS Angle≠15º±10º = FAIL (S9.2.1)

CRF Roll angle: 0.0
Angle = 0º±5º = PASS Angle≠0º±5º = FAIL (S9.2.1)

CRF Yaw angle: 0.0
Angle = 0º±10º = PASS Angle≠0º±10º = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 55 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: 55 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL
DATA SHEET 4 CONTINUED

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

Distance between SgRP and the front surface of outboard anchor bar: 161 mm
Distance \geq 120mm = PASS Distance < 120mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: 161 mm
Distance \geq 120mm = PASS Distance < 120mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm? NO

If NO = PASS
If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:

COMMENTS:

RECORDED BY: G. FARRAND DATE: 07/24/06
APPROVED BY: D. MESSICK
DATA SHEET 4A
LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2006 HONDA RIDGELINE TRUCK
VEH. NHTSA NO: C65300; VIN: 2HJYK16206H531467
VEH. BUILD DATE: 07/05; TEST DATE: JULY 24, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 CENTER (DSP B)

Outboard Lower Anchorage bar diameter: 6.07 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: 6.07 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? YES
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): 28 mm
Length ≥25mm = PASS Length <25mm = FAIL (S9.1.1(c) (i))

Length of the straight portion of the bar (inboard lower anchorage): 28 mm
Length ≥25mm = PASS Length <25mm = FAIL (S9.1.1(c) (i))

Length between the anchor bar supports (outboard lower anchorage): 35 mm
Length ≤60mm = PASS Length >60mm = FAIL (S9.1.1(c) (ii))

Length between the anchor bar supports (inboard lower anchorage): 37 mm
Length ≤60mm = PASS Length >60mm = FAIL (S9.1.1(c) (ii))

CRF Pitch angle: 11.7º
Angle = 15º±10º = PASS Angle≠15º±10º = FAIL (S9.2.1)

CRF Roll angle: 0.0
Angle = 0º±5º = PASS Angle≠0º±5º = FAIL (S9.2.1)

CRF Yaw angle: 0.0
Angle = 0º±10º = PASS Angle≠0º±10º = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 50 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: 50 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL
DATA SHEET 4A CONTINUED

DESIGNATED SEATING POSITION: ROW 2 CENTER (DSP B)

Distance between SgRP and the front surface of outboard anchor bar: 170 mm
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: 172 mm
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm?

NO

If NO = PASS
If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:

COMMENTS:

RECORDED BY: G. FARRAND DATE: 07/24/06
APPROVED BY: D. MESSICK
DATA SHEET 4B
LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2006 HONDA RIDGELINE TRUCK
VEH. NHTSA NO: C65300; VIN: 2HJYK16206H531467
VEH. BUILD DATE: 07/05; TEST DATE: JULY 24, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Outboard Lower Anchorage bar diameter: 6.07 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: 6.07 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? YES
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): 30 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length of the straight portion of the bar (inboard lower anchorage): 30 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length between the anchor bar supports (outboard lower anchorage): 36 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

Length between the anchor bar supports (inboard lower anchorage): 38 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

CRF Pitch angle: 13.5º
Angle = 15º±10º = PASS Angle≠15º±10º = FAIL (S9.2.1)

CRF Roll angle: 0.0º
Angle = 0º±5º = PASS Angle≠0º±5º = FAIL (S9.2.1)

CRF Yaw angle: 0.0º
Angle = 0º±10º = PASS Angle≠0º±10º = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 57 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: 57 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL
DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Distance between SgRP and the front surface of outboard anchor bar: 170 mm
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: 170 mm
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm? NO

If NO = PASS
If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:

COMMENTS:

RECORDED BY: G. FARRAND DATE: 07/24/06
APPROVED BY: D. MESSICK
DATA SHEET 5
CONSPICUITY AND MARKING OF LOWER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 HONDA RIDGELINE TRUCK
VEH. NHTSA NO: C65300; VIN: 2HJYK16206H531467
VEH. BUILD DATE: 07/05; TEST DATE: JULY 24, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A), ROW 2 CENTER (DSP B) AND ROW 2 RIGHT SIDE (DSP C)

MARKING (Circles)

Diameter of the circle: 15
Diameter \(\geq 13\text{mm} = \text{PASS}\) \(\text{Diameter} < 13\text{mm} = \text{FAIL}\) (S9.5(a)(1))

Does the circle have words, symbols or pictograms? YES Symbol
NO skip to next question
YES, are the meaning of the words, symbols or pictograms explained in the owner’s manual?
YES \(\text{YES} = \text{PASS}\) \(\text{NO} = \text{FAIL}\) (S9.5(a)(2))

Where is the circle located? Seat back or seat Cushion: Seat Back

For circles on seat backs, vertical distance from the center of the circle to the center of the anchor bar: 68
Distance between 50&100mm = PASS Other Distance=FAIL (S9.5(a)(3))

For circles on seat cushions, horizontal distance from the center of the circle to the center of the bar: N/A
Distance between 75&125mm= PASS Other Distance=FAIL (S9.5(a)(3))

Lateral distance from the center of the circle to the center of the anchor bar: 0
Distance\(\leq 25\text{mm} = \text{PASS}\) \(\text{Distance} > 25\text{mm} = \text{FAIL}\) (S9.5(a)(3))

CONSPICUITY (No Circles)

Is the anchor bar or guide visible when viewed from a point 30\(^{\circ}\) above the horizontal in a vertical longitudinal plane bisecting the anchor bar or guide? N/A
YES = PASS \(\text{NO} = \text{FAIL}\) (S9.5(b))

If there is a guide, is it permanently attached? N/A
YES = PASS \(\text{NO} = \text{FAIL}\) (S9.5(b))
Is there a cap or cover over the anchor bar? __ N/A ______
If YES, Is the cap or cover marked with words, symbols or pictograms? ________
If NO = FAIL (S9.5(b))
If YES, is the meaning of the words, symbols or pictograms explained in the owner’s manual?
 YES = PASS NO = FAIL (S9.5(b))
If NO, there are no requirements for having a cover. ______ N/A ______
DATA SHEET 6
STRENGTH OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 HONDA RIDGELINE TRUCK
VEH. NHTSA NO: C65300; VIN: 2HJYK16206H531467
VEH. BUILD DATE: 07/05; TEST DATE: SEPTEMBER 29, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 5657

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)
SFAD: 2

Seat Back Angle: 23º FIXED

Location of seat back angle measurement: 2D Template

Head Restraint Position: UP

D-ring Position: N/A

Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: 135 N

Lap belt tension: N/A (SFAD 1 only)

Tether strap tension: 58 N

Angle (measured above the horizontal at 500 N): 10º

Separation of tether anchorage at 500 N: NO
NO = PASS YES = FAIL (S6.3.1)

Force application rate: 575 N/S

Time to reach maximum force (24-30 s): 26 sec.

Maximum force (14,950 N ± 50 N): 14,950 N

Tested simultaneously with another DSP? NO

COMMENTS: Displacement at maximum load 65 mm.

RECORDED BY: G. FARRAND DATE: 09/29/06
APPROVED BY: D. MESSICK
DATA SHEET 6A
STRENGTH OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 HONDA RIDGELINE TRUCK
VEH. NHTSA NO: C65300; V vin: 2HJYK16206H531467
VEH. BUILD DATE: 07/05; TEST DATE: SEPTEMBER 29, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 5658

DESIGNATED SEATING POSITION: __ROW 2 CENTER (DSP B) __
SFAD: ____ 1 ____

Seat Back Angle: __21° FIXED__
Location of seat back angle measurement: __2D Template__

Head Restraint Position: __DOWN__
D-ring Position: __N/A__

Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: __N/A__
Lap belt tension: __58 N__ (SFAD 1 only)
Tether strap tension: __58 N__

Angle (measured above the horizontal at 500 N): __10°__
Separation of tether anchorage at 500 N: __NO__
 NO = PASS YES = FAIL (S6.3.1)

Force application rate: __575 N/S__
Time to reach maximum force (24-30 s): __26 sec__

Maximum force (14,950 N ± 50 N): __14,950 N__
Tested simultaneously with another DSP? __NO__

COMMENTS: Displacement at maximum load 94.5 mm.

RECORDED BY: __G. FARRAND__ DATE: __09/29/06__
APPROVED BY: __D. MESSICK__
DATA SHEET 7
STRENGTH OF LOWER ANCHORAGES (Forward Force)

VEH. MOD YR/MAKE/MODEL/BODY: 2006 HONDA RIDGELINE TRUCK
VEH. NHTSA NO: C65300; VIN: 2HJYK16206H531467
VEH. BUILD DATE: 07/05; TEST DATE: SEPTEMBER 29, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 5659

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Seat Back Angle: __23° FIXED__

Location of seat back angle measurement: __2D Template____

Head Restraint Position: __UP__

Force at lower front crossmember for SFAD2 while tightening rearward extensions: __135 N

Angle (measured above the horizontal at 500 N): __10°__

Force application rate: __421 N/S__

Time to reach maximum force (24-30 s): ____26 sec.____

Maximum force (10,950 N ± 50 N): __10,969 N__

Displacement, H1 (at 500 N): __0.0__

Displacement, H2 (at maximum load): __34.5 mm__

Displacement of Point X: __34.5 mm (H2-H1) (H2-H1) Displacement > 175 mm = FAIL (S9.4.1(a))

Tested simultaneously with another DSP? ____ NO ____

Distance between adjacent DSP's: ____365 mm____

COMMENTS:

RECORDED BY: __G. FARRAND__ DATE: ____09/29/06____

APPROVED BY: __D. MESSICK__
Description of which DSP’s are equipped with tether anchorages and child restraint anchorage systems: __YES__

PASS ___ FAIL _____

Step-by-step instructions for properly attaching a child restraint system’s tether strap to the tether anchorage. Diagrams are required. ____YES____

PASS ___ FAIL _____

Description of how to properly use the tether anchorage and lower anchor bars: ___YES___

PASS ___ FAIL _____

If the lower anchor bars are marked with a circle, an explanation of what the circle indicates as well as any words or pictograms: ____YES___

PASS ___ FAIL _____

COMMENTS:

RECORDED BY: G. FARRAND DATE: 09/29/06

APPROVED BY: D. MESSICK
TABLE 1 - INSTRUMENTATION & EQUIPMENT LIST

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>DESCRIPTION</th>
<th>MODEL/ SERIAL NO.</th>
<th>CAL. DATE</th>
<th>NEXT CAL. DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER</td>
<td>AT&T</td>
<td>486DX266</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>LOAD CELL</td>
<td>INTERFACE</td>
<td>215709</td>
<td>09/06</td>
<td>09/07</td>
</tr>
<tr>
<td>LINEAR TRANSDUCER</td>
<td>SERVO SYSTEMS</td>
<td>20</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SEAT BELT LOAD CELL</td>
<td>TRANSDUCER</td>
<td>135</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SEAT BELT LOAD CELL</td>
<td>TRANSDUCER</td>
<td>137</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>LEVEL</td>
<td>STANLEY</td>
<td>42-449</td>
<td>02/06</td>
<td>02/07</td>
</tr>
<tr>
<td>FORCE GAUGE</td>
<td>CHATILLON</td>
<td>8761</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>CALIPER</td>
<td>N/A</td>
<td>Q9322365</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>CRF</td>
<td>MEASUREMENT FIXTURE</td>
<td>GTL CRF</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 1</td>
<td>FORCE APPLICATION DEVICE</td>
<td>GTL SFAD 1</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 2</td>
<td>FORCE APPLICATION DEVICE</td>
<td>GTL SFAD 2</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
</tbody>
</table>
FIGURE 5.1
LEFT SIDE VIEW OF VEHICLE

2006 HONDA RIDGELINE
NHTSA NO. C65300
FMVSS NO. 225
2006 HONDA RIDGELINE
NHTSA NO. C65300
FMVSS NO. 225

FIGURE 5.2
RIGHT SIDE VIEW OF VEHICLE
MFD. IN CANADA BY HONDA OF CANADA MFG.,
A DIVISION OF HONDA CANADA INC. 07/05
GVWR 2745KG (6050LBS) TIRE SIZE RIM SIZE
GAWR F 1410KG (3105LBS)P245/65R17 105S 17X7.5J
GAWR R 1475KG (3245LBS)P245/65R17 105S 17X7.5J
THIS VEHICLE CONFORMS TO ALL APPLICABLE
FEDERAL MOTOR VEHICLE SAFETY
AND THEFT PREVENTION STANDARDS IN EFFECT
ON THE DATE OF MANUFACTURE SHOWN ABOVE.
V.I.N.: 2HJYK16206H531467 TYPE: TRUCK

FIGURE 5.5
CLOSE-UP VIEW OF VEHICLE CERTIFICATION LABEL
<table>
<thead>
<tr>
<th>Original Tire Size</th>
<th>Cold Tire Inflation Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>P245/65R17 105S</td>
<td>Front 220kPa, 32PSI</td>
</tr>
<tr>
<td></td>
<td>Rear 220kPa, 32PSI</td>
</tr>
<tr>
<td>Compact Spare Tire</td>
<td>Cold Tire Inflation Pressure</td>
</tr>
<tr>
<td>T165/90R17 105M</td>
<td>420kPa, 60PSI</td>
</tr>
</tbody>
</table>

TIRE AND LOADING INFORMATION

SEATING CAPACITY
- TOTAL 5: FRONT 2: REAR 3

The combined weight of occupants and cargo should never exceed 690kg or 1530lbs

FIGURE 5.6
CLOSE-UP VIEW OF TIRE INFORMATION LABEL
FIGURE 5.7
ROW 2, LEFT SIDE, LOWER ANCHORS, PRE-TEST
2006 HONDA RIDGELINE
NHTSA NO. C65300
FMVSS NO. 225

FIGURE 5.8
ROW 2, LEFT SIDE ROUTING DEVICE, PRE-TEST
2006 HONDA RIDGELINE
NHTSA NO. C65300
FMVSS NO. 225

FIGURE 5.9
ROW 2, LEFT SIDE, TOP TETHER ANCHOR,
PRE-TEST
2006 HONDA RIDGELINE
NHTSA NO. C65300
FMVSS NO. 225

FIGURE 5.12
ROW 2, RIGHT SIDE, LOWER ANCHORS,
PRE-TEST
FIGURE 5.13
ROW 2, RIGHT SIDE ROUTING DEVICE, PRE-TEST
2006 HONDA RIDGELINE
NHTSA NO. C65300
FMVSS NO. 225

FIGURE 5.16
ROW 2, LEFT SIDE WITH CRF
2006 HONDA RIDGELINE
NHTSA NO. C65300
FMVSS NO. 225

FIGURE 5.17
ROW 2, LEFT SIDE WITH 2-D TEMPLATE
2006 HONDA RIDGELINE
NHTSA NO. C65300
FMVSS NO. 225

FIGURE 5.18
ROW 2, LEFT SIDE TOP TETHER ROUTING
2006 HONDA RIDGELINE
NHTSA NO. C65300
FMVSS NO. 225

FIGURE 5.22
ROW 2, RIGHT SIDE TOP TETHER ROUTING
2006 HONDA RIDGELINE
NHTSA NO. C65300
FMVSS NO. 225

FIGURE 5.23
ROW 2, RIGHT SIDE TETHER ROUTING
2006 HONDA RIDGELINE
NHTSA NO. C65300
FMVSS NO. 225

FIGURE 5.24
ROW 2, CENTER WITH CRF
FIGURE 5.25
ROW 2, CENTER WITH 2-D TEMPLATE
FIGURE 5.26
ROW 2, CENTER TETHER ROUTING
FIGURE 5.27
ROW 2, CENTER TETHER ROUTING
2006 HONDA RIDGELINE
NHTSA NO. C65300
FMVSS NO. 225

FIGURE 5.32
ROW 2, CENTER, LEFT SIDE CRF MEASUREMENT
FIGURE 5.33
ROW 2, CENTER, RIGHT SIDE CRF MEASUREMENT
2006 HONDA RIDGELINE
NHTSA NO. C65300
FMVSS NO. 225

FIGURE 5.35
ROW 2, LEFT SIDE CRF PITCH MEASUREMENT
2006 HONDA RIDGELINE
NHTSA NO. C65300
FMVSS NO. 225

FIGURE 5.37
ROW 2, CENTER PITCH MEASUREMENT
FIGURE 5.38
ROW 2, LEFT SIDE OUTBOARD SRP MEASUREMENT

2006 HONDA RIDGELINE
NHTSA NO. C65300
FMVSS NO. 225
2006 HONDA RIDGELINE
NHTSA NO. C65300
FMVSS NO. 225

FIGURE 5.39
ROW 2, LEFT SIDE INBOARD SRP MEASUREMENT
2006 HONDA RIDGELINE
NHTSA NO. C65300
FMVSS NO. 225

FIGURE 5.41
ROW 2, RIGHT SIDE INBOARD SRP MEASUREMENT
2006 HONDA RIDGELINE
NHTSA NO. C65300
FMVSS NO. 225

FIGURE 5.45
¾ RIGHT FRONT VIEW OF VEHICLE IN TEST RIG
FIGURE 5.46
PRE-TEST ROW 2, LEFT SIDE WITH SFAD 2
2006 HONDA RIDGELINE
NHTSA NO. C65300
FMVSS NO. 225

FIGURE 5.48
POST TEST ROW 2, LEFT SIDE WITH SFAD 2
2006 HONDA RIDGELINE
NHTSA NO. C65300
FMVSS NO. 225

FIGURE 5.49
POST TEST ROW 2, LEFT SIDE WITH SFAD 2
FIGURE 5.53
POST TEST ROW 2, CENTER POSITION WITH SFAD 1
SECTION 6
PLOTS
Protecting Infants

Two types of seats may be used: a seat designed exclusively for infants, or a convertible seat used in the rear-facing, reclining mode.

Do not put a rear-facing child seat in a forward-facing position. If placed facing forward, an infant could be very seriously injured during a frontal collision.

Rear-facing Child Seat Placement
A rear-facing child seat can be placed in any seating position in the back seat, but not in the front. *Never put a rear-facing child seat in the front seat.*

If the passenger’s front airbag inflates, it can hit the back of the child seat with enough force to kill or seriously injure an infant.

When properly installed, a rear-facing child seat may prevent the driver or a front passenger from moving the seat as far back as recommended, or from locking the seat-back in the desired position.

Child Seat Type
An infant must be properly restrained in a rear-facing, reclining child seat until the child reaches the seat maker’s weight or height limit for the seat and the child is at least one year old.

Only a rear-facing child seat provides proper support for a baby’s head, neck, and back.
Protecting Infants and Small Children

In either situation, we strongly recommend that you install the child seat directly behind the front passenger seat, move the seat as far forward as needed, and leave it unoccupied. Or you may wish to get a smaller rear-facing child seat.

WARNING

Placing a rear-facing child seat in the front seat can result in serious injury or death if the passenger’s front airbag inflates.

Always place a rear-facing child seat in the back seat, not the front.

Protecting Small Children

Child Seat Placement

We strongly recommend placing a forward-facing child seat in a back seat, not the front.

Placing a forward-facing child seat in the front seat of a vehicle equipped with a passenger’s airbag can be hazardous. If the vehicle seat is too far forward, or the child’s head is thrown forward during a collision, an inflating airbag can strike the child with enough force to cause very serious or fatal injuries.

Child Seat Type

A child who is at least 1 year old, and who fits within the child seat maker’s weight and height limits, should be restrained in a forward-facing, upright child seat.

Of the different seats available, we recommend those that have a five-point harness system as shown.
Protecting Infants and Small Children, Selecting a Child Seat

If it is necessary to put a forward-facing child seat in the front, move the vehicle seat as far to the rear as possible, and be sure the child seat is firmly secured to the vehicle and the child is properly strapped in the seat.

WARNING

Placing a forward-facing child seat in the front seat can result in serious injury or death if the front airbag inflates.

If you must place a forward-facing child seat in front, move the vehicle seat as far back as possible, and properly restrain the child.

Selecting a Child Seat

When buying a child seat, you need to choose either a conventional child seat, or one designed for use with the Lower Anchors and Tethers for Children (LATCH) system.

Conventional child seats must be secured to a vehicle with a seat belt, whereas LATCH-compatible seats are secured by attaching the seat to hardware built into each rear seating position in the back seat.

Since LATCH-compatible child seats are easier to install and reduce the possibility of improper installation, we recommend selecting this style.

We also recommend selecting a LATCH-compatible seat with a rigid, rather than a flexible, anchor (see page 39).

In seating positions and vehicles not equipped with LATCH, a LATCH-compatible child seat can be installed using a seat belt.

Whatever type of seat you choose, to provide proper protection, a child seat should meet three requirements:

1. **The child seat should meet U.S. or Canadian Motor Vehicle Safety Standard 213.** Look for FMVSS 213 or CMVSS 213 on the box.

2. **The child seat should be of the proper type and size to fit the child.** Rear-facing for infants, forward-facing for small children.

CONTINUED
Selecting a Child Seat, Installing a Child Seat

3. The child seat should fit the vehicle seating position (or positions) where it will be used.

Before purchasing a conventional child seat, or using a previously purchased one, we recommend that you test the seat in the specific vehicle seating position, or positions, where the seat will be used.

Installing a Child Seat

After selecting a proper child seat, and a good place to install the seat, there are three main steps in installing the seat:

1. Properly secure the child seat to the vehicle. All child seats must be secured to the vehicle with the lap part of a lap/shoulder belt or with the LATCH (Lower Anchors and Tethers for Children) system. A child whose seat is not properly secured to the vehicle can be endangered in a crash.

2. Make sure the child seat is firmly secured. After installing a child seat, push and pull the seat forward and from side to side to verify that it is secure.

A child seat secured with a seat belt should be installed as firmly as possible. However, it does not need to be "rock solid." Some side-to-side movement can be expected and should not reduce the child seat’s effectiveness.

If the child seat is not secure, try installing it in a different seating position, or use a different style of child seat that can be firmly secured.

3. Secure the child in the child seat. Make sure the child is properly strapped in the child seat according to the child seat maker’s instructions. A child who is not properly secured in a child seat can be seriously injured in a crash.

The following pages provide guidelines on how to properly install a child seat. A forward-facing child seat is used in all examples, but the instructions are the same for rear-facing child seats.
Installing a Child Seat with LATCH
Your vehicle is equipped with LATCH (Lower Anchors and Tethers for Children) at each rear seating position.

The lower anchors are located between the seat-back and seat bottom, and are to be used only with a child seat designed for use with LATCH.

The location of each lower anchor is indicated by a small button above the anchor point.

Whenever using the center tether anchor point, make sure to push down the head restraint to the lowest position, route the strap over the seat-back, then around the upper guide before attaching the tether strap hook to the center tether anchor (see page 44).

To install a LATCH-compatible child seat:

1. If needed, move the seat belt buckle or tongue away from the lower anchors.
2. Make sure there are no objects near the anchors that could prevent a secure connection between the child seat and the anchors.

3. On the center seating position
When using the tether strap on the child seat, attach the tether strap hook to the center tether anchor before installing the child seat to the lower anchors for the LATCH system, because the center tether anchor is positioned behind the child seat.

CONTINUED
Installing a Child Seat

Make sure the head restraint is in the lowest position. Lift the cover, then route the tether strap around the upper guide. Route the tether strap downward properly, making sure the strap is not twisted, then attach the strap hook to the center tether anchor.

Rigid type

4. Place the child seat on the vehicle seat, then attach the seat to the lower anchors according to the child seat maker's instructions.

Some LATCH-compatible seats have a rigid-type connector as shown above.

Flexible type

Other LATCH-compatible seats have a flexible-type connector as shown above.

5. Whatever type you have, follow the child seat maker's instructions for adjusting or tightening the fit.
6. **On the outer seating position**
 Lift the head restraint (see page 99), then route the tether strap over the seat-back and through the head restraint legs.
 Lift the cover, then route the tether strap around the upper guide. Route the tether strap downward properly, making sure the strap is not twisted, then attach the strap hook to the tether anchor on the outside of the seat bottom (see page 44).

7. Tighten the strap according to the seat maker's instructions.

8. Push and pull the child seat forward and from side to side to verify that it is secure.
Installing a Child Seat

Installing a Child Seat with a Lap/Shoulder Belt
When not using the LATCH system, all child seats must be secured to the vehicle with the lap part of a lap/shoulder belt.

In addition, the lap/shoulder belts in all seating positions except the driver’s have a locking mechanism that must be activated to secure a child seat.

If you place the child seat in the rear center seating position and use the tether strap for additional security, make sure to push down the head restraint to the lowest position and hook the tether strap hook to the anchor before securing the child seat with the lap/shoulder belt. Refer to page 44 for how to route the tether strap properly.

1. With the child seat in the desired seating position, route the belt through the child seat according to the seat maker’s instructions, then insert the latch plate into the buckle.

2. To activate the lockable retractor, slowly pull the shoulder part of the belt all the way out until it stops, then let the belt feed back into the retractor.

3. After the belt has retracted, tug on it. If the belt is locked, you will not be able to pull it out. If you can pull the belt out, it is not locked, and you will need to repeat these steps.
4. After confirming that the belt is locked, grab the shoulder part of the belt near the buckle, and pull up to remove any slack from the lap part of the belt. Remember, if the lap part of the belt is not tight, the child seat will not be secure.

To remove slack, it may help to put weight on the child seat, or push on the back of the seat while pulling up on the belt.

5. Push and pull the child seat forward and from side to side to verify that it is secure enough to stay upright during normal driving maneuvers. If the child seat is not secure, unlash the belt, allow it to retract fully, then repeat these steps.

To deactivate the locking mechanism and remove a child seat, unlash the buckle, unroute the seat belt, and let the belt fully retract.
Installing a Child Seat

Installing a Child Seat with a Tether

A child seat with a tether can be installed in any seating position in the rear seat. Each outer seating position has the tether anchor at the outside of the seat bottom. The center seating position has the tether anchor between the lower anchors for the LATCH-compatible child seat. Each anchor point is shown above.

When using the tether anchor, always hook the tether strap through the upper guide to route it properly.

Since a tether can provide additional security to the lap/shoulder belt installation, we recommend using a tether whenever one is required or available.

Using an Outer Tether Anchor

1. After properly securing the child seat (see page 42), lift the head restraint, then route the tether strap over the seat-back and through the head restraint legs.

2. Lift the cover, then hook the tether strap through the upper guide as shown.
3. Route the tether strap downward properly, making sure the strap is not twisted.

4. Attach the tether strap hook to the outer tether anchor on the outside of the seat bottom.

5. Tighten the strap according to the seat maker’s instructions.

Using the Center Tether Anchor
Make sure to attach the tether strap hook to the anchor before installing the child seat, because the tether anchor is positioned behind the child seat.

1. Place the child seat on the rear seat.

2. Push down the rear center head restraint to the lowest position.

3. Route the tether strap over the seat-back, lift the cover, then hook the tether strap through the upper guide as shown.

4. Route the tether strap downward properly along the seat-back, making sure the strap is not twisted.

CONTINUED
Installing a Child Seat

5. Attach the tether strap hook to the center tether anchor between the lower anchors for the LATCH-compatible child seat.

6. Properly secure the child seat (see page 42), then tighten the tether strap according to the seat maker’s instructions.

Whenever using the tether strap, make sure to route the strap through the upper guide before attaching the tether strap hook to the tether anchor. If the tether strap is not routed properly and secured, the child seat may not be secured. This could lead to serious injury or death.
APPENDIX B
MANUFACTURER’S DATA
2006 Honda Ridgeline
FMVSS 225
SEAT REFERENCE POINT (SRP) AND TORSO ANGLE DATA
FOR FMVSS 225
(All dimensions in mm)

Model Year: 2006; Make: HONDA; Model: RIDGELINE; Body Style: 4Door Truck
Seat Style: Front row: Bucket; Second row: Contoured; Third row: N/A

LEFT SIDE VIEW OF TEST VEHICLE

Torso Angle
SRP
Torso Line

A1
B
C
D
Vehicle Floorpan

Driver's Seat Front Outboard Seat Adjuster Anchorage

Use Center of Adjuster Anchorage

See the attachment 1 for the size details of A2
Table 1. Seating Reference Point and Seat Adjuster Anchorage Locations

<table>
<thead>
<tr>
<th>Torso Angle (degree)</th>
<th>Front Row</th>
<th>Center (if any)</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>(Driver) 356</td>
<td>N/A</td>
<td>(Front Passenger) 366</td>
</tr>
<tr>
<td>A2 *1</td>
<td>391</td>
<td>403</td>
<td>391</td>
</tr>
<tr>
<td>A3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>B</td>
<td>345</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>C</td>
<td>1153</td>
<td>1122</td>
<td>1153</td>
</tr>
<tr>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: 1. All dimensions are in mm. If not, provide the unit used.

*1: See the attachment 1 for the size details of A2
Table 2. Seating Reference Point and Seat Adjuster Anchorage Locations

<table>
<thead>
<tr>
<th>Seating Reference Point (SRP)</th>
<th>Distance from Driver's front outboard seat adjuster anchorage (^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>345</td>
</tr>
<tr>
<td>E1</td>
<td>215</td>
</tr>
<tr>
<td>B2</td>
<td>N/A</td>
</tr>
<tr>
<td>E2</td>
<td>N/A</td>
</tr>
<tr>
<td>B3</td>
<td>339</td>
</tr>
<tr>
<td>E3</td>
<td>1035</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>1153</td>
</tr>
<tr>
<td>F1</td>
<td>210</td>
</tr>
<tr>
<td>C2</td>
<td>1122</td>
</tr>
<tr>
<td>F2</td>
<td>605</td>
</tr>
<tr>
<td>C3</td>
<td>1153</td>
</tr>
<tr>
<td>F3</td>
<td>1040</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>N/A</td>
</tr>
<tr>
<td>G1</td>
<td>N/A</td>
</tr>
<tr>
<td>D2</td>
<td>N/A</td>
</tr>
<tr>
<td>G2</td>
<td>N/A</td>
</tr>
<tr>
<td>D3</td>
<td>N/A</td>
</tr>
<tr>
<td>G3</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: 1. Use the center of anchorage.
TETHER ANCHORAGE LOCATIONS
FOR FMVSS 225
(All dimensions in mm)

Model Year: 2006 ; Make: HONDA ; Model: RIDGELINE ; Body Style: 4Door Truck
Seat Style: Front row: Bucket ; Second row: Contoured ; Third row: N/A

Φ: SRP
Φ: Tether anchorage

Note: 1. The location shall be measured at the center of the bar.
<table>
<thead>
<tr>
<th>Seating Reference Point (SRP)</th>
<th>Distance from SRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>N/A</td>
</tr>
<tr>
<td>K1</td>
<td>N/A</td>
</tr>
<tr>
<td>H2</td>
<td>N/A</td>
</tr>
<tr>
<td>K2</td>
<td>N/A</td>
</tr>
<tr>
<td>H3</td>
<td>N/A</td>
</tr>
<tr>
<td>K3</td>
<td>N/A</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>I1</td>
<td>72</td>
</tr>
<tr>
<td>L1</td>
<td>226</td>
</tr>
<tr>
<td>I2</td>
<td>182</td>
</tr>
<tr>
<td>L2</td>
<td>0</td>
</tr>
<tr>
<td>I3</td>
<td>72</td>
</tr>
<tr>
<td>L3</td>
<td>226</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>N/A</td>
</tr>
<tr>
<td>M1</td>
<td>N/A</td>
</tr>
<tr>
<td>J2</td>
<td>N/A</td>
</tr>
<tr>
<td>M2</td>
<td>N/A</td>
</tr>
<tr>
<td>J3</td>
<td>N/A</td>
</tr>
<tr>
<td>M3</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: 1. Use the center of anchorage.
TETHER ANCHORAGE LOCATIONS - VERTICAL
FOR FMVSS 225
(All dimensions in mm)

Model Year: 2006; Make: HONDA; Model: RIDGERLINE; Body Style: 4Door Truck
Seat Style: Front row: Bucket; Second row: Contoured; Third row: N/A

LEFT SIDE VIEW OF TEST VEHICLE

Vehicle Floorpan
Table 4. Vertical Dimension For The Tether Anchorage

<table>
<thead>
<tr>
<th>Seating Row</th>
<th>Vertical Distance from Seating Reference Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>N1 (Driver)</td>
<td>N/A</td>
</tr>
<tr>
<td>N2 (Center)</td>
<td>N/A</td>
</tr>
<tr>
<td>N3 (Right)</td>
<td>N/A</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>O1 (Left)</td>
<td>-271</td>
</tr>
<tr>
<td>O2 (Center)</td>
<td>-99</td>
</tr>
<tr>
<td>O3 (Right)</td>
<td>-271</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>P1 (Left)</td>
<td>N/A</td>
</tr>
<tr>
<td>P2 (Center)</td>
<td>N/A</td>
</tr>
<tr>
<td>P3 (Right)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: 1. All dimensions are in mm. If not, provide the unit used.
<table>
<thead>
<tr>
<th>Seating Reference Point (SRP)</th>
<th>Distance from SRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>N/A</td>
</tr>
<tr>
<td>T1</td>
<td>N/A</td>
</tr>
<tr>
<td>Q2</td>
<td>N/A</td>
</tr>
<tr>
<td>T2</td>
<td>N/A</td>
</tr>
<tr>
<td>Q3</td>
<td>N/A</td>
</tr>
<tr>
<td>T3</td>
<td>N/A</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>390</td>
</tr>
<tr>
<td>U1</td>
<td>0</td>
</tr>
<tr>
<td>R2</td>
<td>421</td>
</tr>
<tr>
<td>U2</td>
<td>0</td>
</tr>
<tr>
<td>R3</td>
<td>390</td>
</tr>
<tr>
<td>U3</td>
<td>0</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>N/A</td>
</tr>
<tr>
<td>V1</td>
<td>N/A</td>
</tr>
<tr>
<td>S2</td>
<td>N/A</td>
</tr>
<tr>
<td>V2</td>
<td>N/A</td>
</tr>
<tr>
<td>S3</td>
<td>N/A</td>
</tr>
<tr>
<td>V3</td>
<td>N/A</td>
</tr>
</tbody>
</table>
CHILD TETHER ROUTING DEVICE - VERTICAL
FOR FMVSS 225
(All dimensions in mm)

Model Year: 2006; Make: HONDA; Model: RIDGERLINE; Body Style: 4Door Truck
Seat Style: Front row: Bucket; Second row: Contoured; Third row: N/A

LEFT SIDE VIEW OF TEST VEHICLE
Table 6. Vertical Dimension For The Routing Device Locations

<table>
<thead>
<tr>
<th>Seating Row</th>
<th>Vertical Distance from Seating Reference Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td>W1 (Driver) N/A</td>
</tr>
<tr>
<td></td>
<td>W2 (Center) N/A</td>
</tr>
<tr>
<td></td>
<td>W3 (Right) N/A</td>
</tr>
<tr>
<td>Second Row</td>
<td>X1 (Left) 499</td>
</tr>
<tr>
<td></td>
<td>X2 (Center) 487</td>
</tr>
<tr>
<td></td>
<td>X3 (Right) 499</td>
</tr>
<tr>
<td>Third Row</td>
<td>Y1 (Left) N/A</td>
</tr>
<tr>
<td></td>
<td>Y2 (Center) N/A</td>
</tr>
<tr>
<td></td>
<td>Y3 (Right) N/A</td>
</tr>
</tbody>
</table>

Note: 1. All dimensions are in mm. If not, provide the unit used.
For each vehicle, provide the following information:

1. **How many designated seating positions exist in the vehicle?**

 Front 2 positions, Rear 3 positions, Total 5 positions

2. **How many designated seating positions are equipped with lower anchorages and tether anchorages? Specify which position(s).**

 There are three designated seating positions equipped with lower anchorages and tether anchorages in rear seats.

 Both anchorages are located in right, left and center seats. And they are fitted out a body.

3. **How many designated seating positions are equipped with tether anchorages? Specify which position(s).**

 There is no designated seating position equipped with only tether anchorages.

 (Designated seating positions equipped with both anchorages are as above facts (2)).

4. **Lower Anchorage Marking and Conspicuity:** Whether the anchorages are certified to S9.5(a) or S9.5(b) of FMVSS 225.

 Lower anchorage marking and visibility are certified to S9.5(a)
attachment.1

CENTER SEAT

OUTSIDE SEAT (R.L.)

Routing device center

Routing device

Base line is at the bottom of seat foot.