This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.
Compliance tests were conducted on the subject, 2006 Ford Five Hundred Passenger Car in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP-225-01 for the determination of FMVSS 225 compliance.

Test failures identified were as follows:
NONE
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Purpose of Compliance Test</td>
</tr>
<tr>
<td>2</td>
<td>Compliance Test Results</td>
</tr>
<tr>
<td>3</td>
<td>Compliance Test Data</td>
</tr>
<tr>
<td>4</td>
<td>Test Equipment List</td>
</tr>
<tr>
<td>5</td>
<td>Photographs</td>
</tr>
</tbody>
</table>

5.1 Left Side View of Vehicle
5.2 Right Side View of Vehicle
5.3 ¾ Frontal Right Side View of Vehicle
5.4 ¾ Rearward Left Side View of Vehicle
5.5 Close-up View of Vehicle Certification Label
5.6 Close-up View of Vehicle Tire Information Label
5.7 Row 2, Left Side, Lower Anchors Pre-Test
5.8 Row 2, Left side, Top Tether Anchor Pre-Test
5.9 Row 2, Center, Top Tether Anchor Pre-Test
5.10 Row 2, Right Side, Lower Anchors, Pre-Test
5.11 Row 2, Right Side, Top Tether Anchor Pre-Test
5.12 Overall View of Row 2 Seating Positions Pre-Test
5.13 Row 2, Left Side With CRF
5.14 Row 2, Left Side with 2-D Template
5.15 Row 2, Left Side Top Tether Routing
5.16 Row 2, Right Side with CRF
5.17 Row 2, Right Side with 2-D Template
5.18 Row 2, Right Side Top Tether Routing
5.19 Row 2, Center with CRF
5.20 Row 2, Center with 2-D Template
5.21 Row 2, Center Top Tether Routing
5.22 Row 2, Right Side Inboard CRF Measurement
5.23 Row 2, Right Side Outboard CRF Measurement
5.24 Row 2, Left Side Inboard CRF Measurement
5.25 Row 2, Left Side Outboard CRF Measurement
5.26 Row 2, Center Left Side CRF Measurement
5.27 Row 2, Center Right Side CRF Measurement
5.28 Symbol Measurement
5.29 Row 2, Left Side CRF Pitch Measurement
5.30 Row 2, Right Side CRF Pitch Measurement
5.31 Row 2, Center CRF Pitch Measurement
5.32 Row 2, Left Side Outboard SRP Measurement
5.33 Row 2, Left Side Inboard SRP Measurement
5.34 Row 2, Right Side Outboard SRP Measurement
5.35 Row 2, Right Side Inboard SRP Measurement
5.36 Row 2, Center Left SRP Measurement
5.37 Row 2, Center Right SRP Measurement
TABLE OF CONTENTS (continued)

5.38 ¾ Left Rear View of Vehicle in Test Rig
5.39 ¾ Right Front View of Vehicle in Test Rig
5.40 Pre-Test Row 2, Left Side with SFAD 2
5.41 Post Test Row 2, Left Side with SFAD 2
5.42 Pre-Test Row 2, Right Side with SFAD 2
5.43 Post Test Row 2, Right Side with SFAD 2
5.44 Pre-Test Row 2, Center Position with SFAD 1
5.45 Post Test Row 2, Center Position with SFAD 1

6 Plots 73

6.1 2nd Row Left Side Top Tether, GTL 5633
6.2 2nd Row Left Side Top Tether, GTL 5633
6.3 2nd Row Center Position Top Tether, GTL 5634
6.4 2nd Row Center Position Top Tether, GTL 5634
6.5 2nd Row Right Side Lower Anchor, GTL 5635
6.6 2nd Row Right Side Lower Anchor, GTL 5635

Appendix A – Owner’s Manual Child Restraint Information
Appendix B – Manufacturer’s Data
SECTION 1

PURPOSE OF COMPLIANCE TEST

1.0 PURPOSE OF COMPLIANCE TEST

A 2006 Ford Five Hundred Passenger Car was subjected to Federal Motor Vehicle Safety Standard (FMVSS) No. 225 testing to determine if the vehicle was in compliance with the requirements of the standard. The purpose of this standard is to establish requirements for child restraint anchorage systems to ensure their proper location and strength for the effective securing of child restraints, to reduce the likelihood of the anchorage systems’ failure and to increase the likelihood that child restraints are properly secured and thus more fully achieve their potential effectiveness in motor vehicles.

1.1 The test vehicle was a 2006 Ford Five Hundred Passenger Car. Nomenclature applicable to the test vehicle are:

A. **Vehicle Identification Number**: 1FAFP23106G104130

B. **NHTSA No.**: C60200

C. **Manufacturer**: FORD MOTOR COMPANY

D. **Manufacture Date**: 07/05

1.2 TEST DATE

The test vehicle was subjected to FMVSS No. 225 testing during the time period July 6 through September 25, 2006.
2.0 TEST RESULTS

All tests were conducted in accordance with NHTSA, Office of Vehicle Safety Compliance (OVSC) Laboratory Procedures, TP-225-01 dated 11 April 2005.

Based on the test performed, the 2006 Ford Five Hundred Passenger Car appeared to meet the requirements of FMVSS 225 testing.
SECTION 3

COMPLIANCE TEST DATA

3.0 TEST DATA

The following data sheets document the results of testing on the 2006 Ford Five Hundred Passenger Car.
DATA SHEET 1
SUMMARY OF RESULTS

VEH. MOD YR/MAKE/MODEL/BODY: 2006 FORD FIVE HUNDRED PASSENGER CAR
VEH. NHTSA NO: C60200; VIN: 1F AFP23106G104130
VEH. BUILD DATE: 07/05; TEST DATE: JULY 6 – SEPTEMBER 25, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

A. VISUAL INSPECTION OF TEST VEHICLE

Upon receipt for completeness, function, and discrepancies or damage which might influence the testing.

RESULTS: OK FOR TEST

B. REQUIREMENTS FOR CHILD RESTRAINT SYSTEMS AND TETHER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

C. LOCATION OF TETHER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

D. LOWER ANCHORAGE DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Summary of Results

E. Conspicuity and Marking of Lower Anchorages

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

F. Strength of Tether Anchorages

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

G. Strength of Lower Anchorages (Forward Force)

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

H. Strength of Lower Anchorages (Lateral Force)

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

I. Owner’s Manual

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Remarks: DSP a = Left Rear Outboard, DSP b = Center, DSP c = Right Rear Outboard

Recorded by: G. Farrand
Date: 09/25/06
Approved by: D. Messick
DATA SHEET 2
REQUIREMENTS FOR CHILD RESTRAINT ANCHORAGE SYSTEMS
AND TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 FORD FIVE HUNDRED PASSENGER CAR
VEH. NHTSA NO: C60200; VIN: 1FAPF23106G104130
VEH. BUILD DATE: 07/05; TEST DATE: JULY 6, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

Number of rows of seats: 2
Number of rear, forward-facing designated seating positions: 3
Number of required CRAS (lower anchorages only, for convertibles/school buses): 2
Number of required tether anchorages (can be additional CRAS): 1
Is the vehicle a convertible? NO
Is the vehicle a school bus? NO

Does the vehicle have a CRAS (lower anchorage only, for convertibles/school buses) installed at a front passenger seating position? NO
If NO, skip to next question.
If YES, does the vehicle have rear designated seating positions? ____________
If NO, does the vehicle have an air bag on-off switch or a special exemption for no passenger air bag?
If NO = FAIL If YES = PASS
If Yes, does the vehicle meet the requirements of S4.5.4.1 (b) of S208 and have an air bag on-off switch or a special exemption for no passenger air bag?____
Record the distance between the front and rear seat back:_____
If Distance < 720 mm and vehicle has an air bag on-off switch or special exemption = PASS
If Distance ≥ 720 mm or no air bag on-off switch or no special exemption = FAIL

Does the vehicle have rear designated seating position(s) where the lower bars of a CRAS are prevented from being located because of transmission and/or suspension component interference? NO
If NO, skip to next question.
If YES, does the vehicle have a tether anchorage at a front passenger seating position?
YES = PASS NO = FAIL (S5(e))

Number of provided CRAS (lower anchorage only, for convertibles/school buses), indicate if a built-in child restraint is counted as a CRAS: 3

Is the number of provided CRAS (lower anchorages only, for convertible/school buses) greater than or equal to the number of required CRAS (lower anchorages only, for convertibles/school buses)? YES
YES = PASS NO = FAIL (S4.4(a) or (b) or (c))
If the vehicle has 3 or more rows of seats is a CRAS (lower anchorage only for convertibles/school buses) provided in the second row: N/A
YES = PASS NO = FAIL (S4.4(a)(1))

Number of provided tether anchorages (can be additional CRAS) indicate if a built-in child restraint is counted as tether anchorage (NOTE: a built-in child restraint can only be counted toward either the required number of CRAS or tether anchorages, not both): 3

Is the number of provided tether anchorages greater than or equal to the number of required tether anchorages? YES
YES = PASS NO = FAIL (S4.4 (a) or (b) or (c))

If the vehicle has 3 or more rear cps and a non-outboard dsp, is a tether anchorage or CRAS provided at a non-outboard dsp? YES
YES = PASS NO = FAIL (S4.4 (a)(2))

Are all tether and lower anchorages available for use at all times when the seat is configured for passenger use? YES
YES = PASS NO = FAIL (S4.6 (b))

Provide a diagram showing the location of lower anchorages and/or tether anchorages.

X X X

* * *
A B C

X = Top Tether
* = Lower Anchors

RECORDED BY: G. FARRAND DATE: 07/06/06
APPROVED BY: D. MESSICK
DATA SHEET 3
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 FORD FIVE HUNDRED PASSENGER CAR
VEH. NHTSA NO: C60200; VIN: 1FAFP23106G104130
VEH. BUILD DATE: 07/05; TEST DATE: JULY 6, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

Detailed description of the location of the tether anchorage:
Located on rear shelf behind seat back.

Based on visual inspection, is the tether anchorage within the shaded zone? _______ YES _______
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone?

If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component?
If YES = FAIL (S6.2.1)
If NO, Is a tether routing device provided?
If YES = PASS
IF NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? _______ YES _______
If NO, skip to next question
If YES, is it outside of the tether strap wraparound area? _______ YES _______
YES = PASS NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? _______ YES _______
YES = PASS NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? _______ YES _______
YES = PASS NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? _______ YES _______
YES = PASS NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? _______ YES _______
YES = PASS NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? _______ N/A _______
DATA SHEET 3 CONTINUED

DESIGNATED SEATING POSITION: _ROW 2 LEFT SIDE (DSP A)_

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension: _____ N/A_____ (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device: _____ N/A_____
Greater than or equal to 65mm = PASS Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device: _____ N/A_______
Greater than or equal to 100mm = PASS Less than 100mm = FAIL

COMMENTS:

RECORDED BY: __G. FARRAND__________ DATE: __07/06/06__________

APPROVED BY: __D. MESSICK__________
DATA SHEET 3A
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 FORD FIVE HUNDRED PASSENGER CAR
VEH. NHTSA NO: C60200; VIN: 1F AFP23106G104130
VEH. BUILD DATE: 07/05; TEST DATE: JULY 6, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 CENTER POSITION (DSP B)

Detailed description of the location of the tether anchorage:
Located on shelf behind seat back.

Based on visual inspection, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone?

If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without
removing a seating component?
 If YES = FAIL (S6.2.1)
 If NO, Is a tether routing device provided?
 If YES = PASS
 IF NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? YES
If NO, skip to next question
If YES, is it outside of the tether strap wraparound area? YES
 YES = PASS NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? YES
 YES = PASS NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? YES
 YES = PASS NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? YES
 YES = PASS NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger
compartment? YES
 YES = PASS NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? N/A
DESIGNATED SEATING POSITION: ROW 2 CENTER POSITION (DSP B)

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension: N/A (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device: N/A
 Greater than or equal to 65mm = PASS Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device: N/A
 Greater than or equal to 100mm = PASS Less than 100mm = FAIL

COMMENTS:

RECORDED BY: G. FARRAND DATE: 07/06/06
APPROVED BY: D. MESSICK
DATA SHEET 3B
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 FORD FIVE HUNDRED PASSENGER CAR
VEH. NHTSA NO: C60200; VIN: 1FAFP23106G104130
VEH. BUILD DATE: 07/05; TEST DATE: JULY 6, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Detailed description of the location of the tether anchorage:
Located on shelf behind seat back.

Based on visual inspection, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone?

If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component?
If YES = FAIL (S6.2.1)
If NO, Is a tether routing device provided?
If YES = PASS
IF NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? YES
If NO, skip to next question
If YES, is it outside of the tether strap wraparound area? YES
YES = PASS NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? YES
YES = PASS NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? YES
YES = PASS NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? YES
YES = PASS NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? YES
YES = PASS NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? N/A
DATA SHEET 3B CONTINUED

DESIGNATED SEATING POSITION: ____ ROW 2 RIGHT SIDE DSP C____

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension:

_____ N/A _____ (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device:

_____ N/A _____

Greater than or equal to 65mm = PASS Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device:

_____ N/A _____

Greater than or equal to 100mm = PASS Less than 100mm = FAIL

COMMENTS:

RECORDED BY: G. FARRAND DATE: 07/06/06

APPROVED BY: D. MESSICK
DATA SHEET 4
LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2006 FORD FIVE HUNDRED PASSENGER CAR
VEH. NHTSA NO: C60200; VIN: 1FAFP23106G104130
VEH. BUILD DATE: 07/05; TEST DATE: JULY 6, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

Outboard Lower Anchorage bar diameter: 6.04 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: 6.06 mm
6mm ± 0.1mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? YES
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): 37 mm
Length ≥25mm = PASS Length <25mm = FAIL (S9.1.1(c) (i))

Length of the straight portion of the bar (inboard lower anchorage): 26 mm
Length ≥25mm = PASS Length <25mm = FAIL (S9.1.1(c) (i))

Length between the anchor bar supports (outboard lower anchorage): 45 mm
Length ≤60mm = PASS Length >60mm = FAIL (S9.1.1(c) (ii))

Length between the anchor bar supports (inboard lower anchorage): 35 mm
Length ≤60mm = PASS Length >60mm = FAIL (S9.1.1(c) (ii))

CRF Pitch angle: 12.1º
Angle = 15º±10º = PASS Angle ≠15º±10º = FAIL (S9.2.1)

CRF Roll angle: 0.0
Angle = 0º±5º = PASS Angle ≠0º±5º = FAIL (S9.2.1)

CRF Yaw angle: 0.0
Angle = 0º±10º = PASS Angle ≠0º±10º = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 36 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: 35 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL
DATA SHEET 4 CONTINUED

DESIGNATED SEATING POSITION: __ ROW 2 LEFT SIDE (DSP A) __

Distance between SgRP and the front surface of outboard anchor bar: ___ 160 mm
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: ___ 150 mm
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm?
____ NO ____

If NO = PASS
If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:

COMMENTS:

RECORDED BY: ___ G. FARRAND _______ DATE: ___ 07/06/06 _______

APPROVED BY: ___ D. MESSICK _______
DATA SHEET 4A
LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2006 FORD FIVE HUNDRED PASSENGER CAR
VEH. NHTSA NO: C60200; VIN: 1FAFP23106G104130
VEH. BUILD DATE:07/05 ; TEST DATE: JULY 6, 2006
TEST LABORATORY:GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Outboard Lower Anchorage bar diameter: 6.05 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: 6.07 mm
6mm ± 0.1mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? YES
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): 36 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length of the straight portion of the bar (inboard lower anchorage): 32 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length between the anchor bar supports (outboard lower anchorage): 45 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

Length between the anchor bar supports (inboard lower anchorage): 45 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

CRF Pitch angle: 11.9º
Angle = 15º±10º = PASS Angle≠15º±10º = FAIL (S9.2.1)

CRF Roll angle: 0.0º
Angle = 0º±5º = PASS Angle≠0º±5º = FAIL (S9.2.1)

CRF Yaw angle: 0.0º
Angle = 0º±10º = PASS Angle≠0º±10º = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 40 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: 40 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL
DATA SHEET 4A CONTINUED

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Distance between SgRP and the front surface of outboard anchor bar: 168 mm
Distance ≥ 120 mm = PASS Distance < 120 mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: 158 mm
Distance ≥ 120 mm = PASS Distance < 120 mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm? NO

If NO = PASS
If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:

COMMENTS:

RECORDED BY: G. FARRAND DATE: 07/06/06
APPROVED BY: D. MESSICK
DATA SHEET 4B
LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2006 FORD FIVE HUNDRED PASSENGER CAR
VEH. NHTSA NO: C60200; VIN: 1FAFP23106G104130
VEH. BUILD DATE: 07/05; TEST DATE: JULY 6, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 CENTER (DSP B)

Outboard Lower Anchorage bar diameter: 6.06 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: 6.07 mm
6mm ± 0.1mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? YES
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): 26 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length of the straight portion of the bar (inboard lower anchorage): 32 mm
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length between the anchor bar supports (outboard lower anchorage): 35 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

Length between the anchor bar supports (inboard lower anchorage): 45 mm
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

CRF Pitch angle: 15.1º
Angle = 15º±10º = PASS Angle≠15º±10º = FAIL (S9.2.1)

CRF Roll angle: 0.0º
Angle = 0º±5º = PASS Angle≠0º±5º = FAIL (S9.2.1)

CRF Yaw angle: 0.0º
Angle = 0º±10º = PASS Angle≠0º±10º = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 66 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: 66 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL
DATA SHEET 4B CONTINUED

DESIGNATED SEATING POSITION: ___ ROW 2 CENTER (DSP B)___

Distance between SgRP and the front surface of outboard anchor bar: ___181 mm___
Distance \geq 120mm = PASS Distance < 120mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: ___183 mm___
Distance \geq 120mm = PASS Distance < 120mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm? __NO____

If NO = PASS
If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:

COMMENTS:

RECORDED BY: __G. FARRAND__________ DATE: ____ 07/06/06 ________

APPROVED BY: __D. MESSICK__________

DATA SHEET 5
CONSPICUITY AND MARKING OF LOWER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 FORD FIVE HUNDRED PASSENGER CAR
VEH. NHTSA NO: C60200; VIN: 1FAFP23106G104130
VEH. BUILD DATE:07/05 ; TEST DATE: JULY 7, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ___ROW 2 LEFT SIDE (DSP A), ROW 2 RIGHT SIDE (DSP C), AND ROW 2 CENTER (DSP B) ___

MARKING (Circles)

Diameter of the circle: __15 mm__
Diameter ≥13mm = PASS Diameter <13mm = FAIL (S9.5(a)(1))

Does the circle have words, symbols or pictograms? YES Lower Anchor Symbol

NO skip to next question
YES, are the meaning of the words, symbols or pictograms explained in the owner’s manual?

_______ YES = PASS NO = FAIL (S9.5(a)(2))

Where is the circle located? Seat back or seat Cushion: ___ Seat Back ___

For circles on seat backs, vertical distance from the center of the circle to the center of the anchor bar: __60 mm__
Distance between 50&100mm = PASS Other Distance=FAIL (S9.5(a)(3))

For circles on seat cushions, horizontal distance from the center of the circle to the center of the bar: ___N/A___
Distance between 75&125mm= PASS Other Distance=FAIL (S9.5(a)(3))

Lateral distance from the center of the circle to the center of the anchor bar: __10__
Distance≤25mm = PASS Distance >25mm = FAIL (S9.5(a)(3))

CONSPICUITY (No Circles)

Is the anchor bar or guide visible when viewed from a point 30º above the horizontal in a vertical longitudinal plane bisecting the anchor bar or guide? _____ YES

YES = PASS NO = FAIL (S9.5(b))

If there is a guide, is it permanently attached? ___N/A___

YES = PASS NO = FAIL (S9.5(b))
DATA SHEET 5 CONTINUED

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A), ROW 2 RIGHT SIDE (DSP C), AND ROW 2 CENTER (DSP B)

Is there a cap or cover over the anchor bar? N/A

If YES, Is the cap or cover marked with words, symbols or pictograms?

If NO = FAIL (S9.5(b))

If YES, Is the meaning of the words, symbols or pictograms explained in the owner’s manual?

YES = PASS NO = FAIL (S9.5(b))

If NO, there are no requirements for having a cover.

RECORDED BY: G. FARRAND

DATE: 07/07/06

APPROVED BY: D. MESSICK
DATA SHEET 6
STRENGTH OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 FORD FIVE HUNDRED PASSENGER CAR
VEH. NHTSA NO: C60200; VIN: 1FAFP23106G104130
VEH. BUILD DATE: 07/05; TEST DATE: SEPTEMBER 25, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 5633

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)
SFAD: 2

Seat Back Angle: 25º FIXED

Location of seat back angle measurement: 2D Template

Head Restraint Position: FIXED

D-ring Position: N/A

Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: 135 N

Lap belt tension: N/A (SFAD 1 only)

Tether strap tension: 60 N

Angle (measured above the horizontal at 500 N): 10º

Separation of tether anchorage at 500 N: NO
NO = PASS YES = FAIL (S6.3.1)

Force application rate: 575 N/S

Time to reach maximum force (24-30 s): 26 sec.

Maximum force (14,950 N ± 50 N): 14,914 N

Tested simultaneously with another DSP? NO

COMMENTS: Displacement at maximum load 55 mm.

RECORDED BY: G. FARRAND DATE: 09/25/06
APPROVED BY: D. MESSICK
DATA SHEET 6A
STRENGTH OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2006 FORD FIVE HUNDRED PASSENGER CAR
VEH. NHTSA NO: C60200; VIN: 1FAFP23106G104130
VEH. BUILD DATE: 07/05; TEST DATE: SEPTEMBER 25, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 5634

DESIGNATED SEATING POSITION: ROW 2 CENTER (DSP B)
SFAD: 1
Seat Back Angle: 25º FIXED
Location of seat back angle measurement: 2D Template
Head Restraint Position: FIXED
D-ring Position: N/A

Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: 135 N
Lap belt tension: 60 N (SFAD 1 only)

Tether strap tension: 60 N
Angle (measured above the horizontal at 500 N): 10º

Separation of tether anchorage at 500 N: NO
NO = PASS YES = FAIL (S6.3.1)

Force application rate: 575 N/S
Time to reach maximum force (24-30 s): 26 sec.

Maximum force (14,950 N ± 50 N): 14,923 N

Tested simultaneously with another DSP? NO

COMMENTS: Displacement at maximum load 82 mm.

RECORDED BY: G. FARRAND DATE: 09/25/06
APPROVED BY: D. MESSICK
DATA SHEET 7
STRENGTH OF LOWER ANCHORAGES (Forward Force)

VEH. MOD YR/MAKE/MODEL/BODY: 2006 FORD FIVE HUNDRED PASSENGER CAR
VEH. NHTSA NO: C60200; VIN: 1FAFP23106G104130
VEH. BUILD DATE: 07/05 ; TEST DATE: SEPTEMBER 25, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 5635

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Seat Back Angle: 25º FIXED

Location of seat back angle measurement: 2D Template

Head Restraint Position: FIXED

Force at lower front crossmember for SFAD2 while tightening rearward extensions: 135 N

Angle (measured above the horizontal at 500 N): 10º

Force application rate: 421 N/S

Time to reach maximum force (24-30 s): 26 sec.

Maximum force (10,950 N ± 50 N): 10,995 N

Displacement, H1 (at 500 N): 0.0

Displacement, H2 (at maximum load): 44 mm

Displacement of Point X: 44 mm (H2-H1)

Displacement > 175 mm = FAIL (S9.4.1(a))

Tested simultaneously with another DSP? NO

Distance between adjacent DSP’s: 280 mm

COMMENTS:

RECORDED BY: G. FARRAND DATE: 09/25/06
APPROVED BY: D. MESSICK
DATA SHEET 8
OWNER’S MANUAL

VEH. MOD YR/MAKE/MODEL/BODY: 2006 FORD FIVE HUNDRED PASSENGER CAR
VEH. NHTSA NO: C60200; VIN: 1FAFP23106G104130
VEH. BUILD DATE: 07/05; TEST DATE: SEPTEMBER 25, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

Description of which DSP’s are equipped with tether anchorages and child restraint anchorage systems: YES

PASS X FAIL _______

Step-by-step instructions for properly attaching a child restraint system’s tether strap to the tether anchorage. Diagrams are required. YES

PASS X FAIL _______

Description of how to properly use the tether anchorage and lower anchor bars: YES

PASS X FAIL _______

If the lower anchor bars are marked with a circle, an explanation of what the circle indicates as well as any words or pictograms: YES

PASS X FAIL _______

COMMENTS:

RECORDED BY: G. FARRAND DATE: 09/25/06
APPROVED BY: D. MESSICK
Section 4
Instrumentation and Equipment List

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Description</th>
<th>Model/Serial No.</th>
<th>Cal. Date</th>
<th>Next Cal. Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer</td>
<td>AT&T</td>
<td>486DX266</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>Load Cell</td>
<td>Interface</td>
<td>215709</td>
<td>09/06</td>
<td>09/07</td>
</tr>
<tr>
<td>Linear Transducer</td>
<td>Servo Systems</td>
<td>20</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>Seat Belt Load Cell</td>
<td>Transducer</td>
<td>135</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>Seat Belt Load Cell</td>
<td>Transducer</td>
<td>137</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>Level</td>
<td>Stanley</td>
<td>42-449</td>
<td>02/06</td>
<td>02/07</td>
</tr>
<tr>
<td>Force Gauge</td>
<td>Chatillon</td>
<td>8761</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>Caliper</td>
<td>N/A</td>
<td>Q9322365</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>CRF</td>
<td>Measurement Fixture</td>
<td>GTL CRF</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 1</td>
<td>Force Application Device</td>
<td>GTL SFAD 1</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 2</td>
<td>Force Application Device</td>
<td>GTL SFAD 2</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
</tbody>
</table>
2006 FORD FIVE HUNDRED
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.1
LEFT SIDE VIEW OF VEHICLE
2006 FORD FIVE HUNDRED
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.2
RIGHT SIDE VIEW OF VEHICLE
2006 FORD FIVE HUNDRED
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.3
¾ FRONTAL VIEW FROM LEFT SIDE OF VEHICLE
2006 FORD FIVE HUNDRED
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.4
¾ REAR VIEW FROM RIGHT SIDE OF VEHICLE
32

2006 FORD FIVE HUNDRED
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.5
VEHICLE CERTIFICATION LABEL
<table>
<thead>
<tr>
<th>SEATING CAPACITY</th>
<th>TOTAL: 5</th>
<th>FRONT: 2</th>
<th>REAR: 3</th>
</tr>
</thead>
</table>

ORIGINAL TIRE SIZE

<table>
<thead>
<tr>
<th></th>
<th>FRONT</th>
<th>REAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>P215/60R17</td>
<td>P215/60R17</td>
<td></td>
</tr>
</tbody>
</table>

COLD TIRE INFLATION PRESSURE

<table>
<thead>
<tr>
<th>COLD TIRE INFLATION PRESSURE</th>
<th>FRONT</th>
<th>REAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>220 KPA, 32 PSI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPARE TIRE SIZE

<table>
<thead>
<tr>
<th>SPARE TIRE SIZE</th>
<th>COLD TIRE INFLATION PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>T135/90D17</td>
<td>415 KPA, 60 PSI</td>
</tr>
</tbody>
</table>
2006 FORD FIVE HUNDRED
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.8
ROW 2, LEFT SIDE, TOP TETHER ANCHOR,
PRE-TEST
2006 FORD FIVE HUNDRED
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.11
ROW 2, RIGHT SIDE, TOP TETHER ANCHOR,
PRE-TEST
FIGURE 5.12
OVERALL VIEW OF ROW 2 SEATING POSITIONS,
PRE-TEST
2006 FORD FIVE HUNDRED
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.13
ROW 2, LEFT SIDE WITH CRF
2006 FORD FIVE HUNDRED
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.15
ROW 2, LEFT SIDE TOP TETHER ROUTING
2006 FORD FIVE HUNDRED
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.16
ROW 2, RIGHT SIDE WITH CRF
2006 FORD FIVE HUNDRED
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.18
ROW 2, RIGHT SIDE TOP TETHER ROUTING
FIGURE 5.20
ROW 2, CENTER WITH 2-D TEMPLATE

2006 FORD FIVE HUNDRED
NHTSA NO. C65401
FMVSS NO. 225
2006 FORD FIVE HUNDRED
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.21
ROW 2, CENTER TOP TETHER ROUTING
2006 FORD FIVE HUNDRED
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.22
ROW 2, RIGHT SIDE INBOARD CRF MEASUREMENT
2006 FORD FIVE HUNDRED
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.23
ROW 2, RIGHT SIDE, OUTBOARD CRF MEASUREMENT
2006 FORD FIVE HUNDRED
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.29
ROW 2, LEFT SIDE CRF PITCH MEASUREMENT
2006 FORD FIVE HUNDRED
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.30
ROW 2, RIGHT SIDE CRF PITCH MEASUREMENT
FIGURE 5.31
ROW 2, CENTER CRF PITCH MEASUREMENT
2006 FORD FIVE HUNDRED
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.34
ROW 2, RIGHT SIDE OUTBOARD SRP MEASUREMENT
2006 FORD FIVE HUNDRED
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.36
ROW 2, CENTER LEFT SRP MEASUREMENT
FIGURE 5.37
ROW 2, CENTER RIGHT SRP MEASUREMENT
2006 FORD FIVE HUNDRED
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.38
¼ LEFT REAR VIEW OF VEHICLE IN TEST RIG
2006 FORD FIVE HUNDRED
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.41
POST TEST ROW 2, LEFT SIDE WITH SFAD 2
FIGURE 5.42
PRE-TEST ROW 2, RIGHT SIDE WITH SFAD 2
2006 FORD FIVE HUNDRED
NHTSA NO. C65401
FMVSS NO. 225

FIGURE 5.43
POST TEST ROW 2, RIGHT SIDE WITH SFAD 2
SECTION 6
PLOTS
Seating and Safety Restraints

Move a child to a different seating location if the shoulder belt does not stay positioned on the shoulder during use.

Follow all instructions provided by the manufacturer of the booster seat.

Never put the shoulder belt under a child's arm or behind the back because it eliminates the protection for the upper part of the body and may increase the risk of injury or death in a collision.

Never use pillows, books, or towels to boost a child. They can slide around and increase the likelihood of injury or death in a collision.

SAFETY SEATS FOR CHILDREN

Child and infant or child safety seats

Use a safety seat that is recommended for the size and weight of the child. Carefully follow all of the manufacturer's instructions with the safety seat you put in your vehicle. If you do not install and use the safety seat properly, the child may be injured in a sudden stop or collision.

When installing a child safety seat:

• Review and follow the information presented in the Airbag Supplemental Restraint System section in this chapter.
• Use the correct safety belt buckle for that seating position.
• Insert the belt tongue into the proper buckle until you hear a snap and feel it latch. Make sure the tongue is securely fastened in the buckle.
• Keep the buckle release button pointing up and away from the safety seat, with the tongue between the child seat and the release button, to prevent accidental unbuckling.

Ford Motor Company recommends the use of a child safety seat having a top tether strap. Install the child safety seat in a seating position with LATCH and tether anchors. For more information on top tether straps and anchors, refer to Attaching safety seats with tether straps in this chapter. For more information of LATCH anchors refer toAttaching safety seats with LATCH (Lower Anchors and Tethers for Children) attachments in this chapter.

• Carefully follow all of the manufacturer's instructions included with the safety seat you put in your vehicle. If you do not install and use the safety seat properly, the child may be injured in a sudden stop or collision.

• Rear-facing child seats or infant carriers should never be placed in front of an active passenger airbag.

Installing child safety seats with combination lap and shoulder belts

Airbags can kill or injure a child in a child seat. NEVER place a rear-facing child seat in front of an active airbag. If you must use a forward-facing child seat in the front seat, move the seat all the way back.

• Children 12 and under should be properly restrained in the rear seat whenever possible.
Seating and Safety Restraints

1. Position the child safety seat in a seat with a combination lap and shoulder belt.

2. Pull down on the shoulder belt and then grasp the shoulder belt and lap belt together.

3. While holding the shoulder and lap belt portions together, route the tongue through the child seat according to the child seat manufacturer's instructions. Be sure the belt webbing is not twisted.

4. Insert the belt tongue into the proper buckle (the buckle closest to the direction the tongue is coming from) for that seating position until you hear a snap and feel the latch engage. Make sure the tongue is latched securely by pulling on it.

5. To put the retractor in the automatic locking mode, grasp the shoulder portion of the belt and pull downward until all of the belt is pulled out and a click is heard.

6. Allow the belt to retract. The belt will click as it retracts to indicate it is in the automatic locking mode.

7. Pull the lap belt portion across the child seat toward the buckle and pull up on the shoulder belt while pushing down with your knee on the child seat.
Seating and Safety Restraints

8. Allow the safety belt to retract to remove any slack in the belt.
9. Before placing the child in the seat, forcibly move the seat forward and back to make sure the seat is securely held in place. To check this, grab the seat at the belt path and attempt to move it side to side and forward. There should be no more than one inch of movement for proper installation.
10. Try to pull the belt out of the retractor to make sure the retractor is in the automatic locking mode (you should not be able to pull more belt out). If the retractor is not locked, unbuckle the belt and repeat Steps 2 through 9.

Check to make sure the child seat is properly secured before each use.

Attaching child safety seats with tether straps

Most new forward-facing child safety seats include a tether strap which goes over the back of the seat and hooks to an anchoring point. Tether straps are available as an accessory for many older safety seats. Contact the manufacturer of your child seat for information about ordering a tether strap.

The rear seats of your vehicle are equipped with built-in tether strap anchors located behind the seats as described below.

The tether anchors in your vehicle are located under a cover marked with the tether anchor symbol (shown with title).

The tether strap anchors in your vehicle are in the following positions (shown from top view):

⚠️ Attach the tether strap only to the appropriate tether anchor as shown. The tether strap may not work properly if attached somewhere other than the correct tether anchor.

1. Position the child safety seat on the seat cushion.

2. Route the child safety seat tether strap over the back of the seat.
For vehicles with adjustable head restraints, route the tether strap under the head restraint and between the head restraint posts, otherwise route the tether strap over the top of the seatback.

3. Locate the correct anchor for the selected seat position.

4. Open the tether anchor cover.

5. Clip the tether strap to the anchor as shown.

⚠️ If the tether strap is clipped incorrectly, the child safety seat may not be retained properly in the event of a collision.

6. Install the child safety seat tightly using the LATCH anchors or safety belts. Follow the instructions in this chapter.

7. Tighten the child safety seat tether strap according to the manufacturer's instructions.

⚠️ If the safety seat is not anchored properly, the risk of a child being injured in a collision greatly increases.
Tires, Wheels and Loading

INFORMATION ABOUT UNIFORM TIRE QUALITY GRADING

New vehicles are fitted with tires that have a rating on them called Tire Quality Grades. The Quality grades can be found where applicable on the tire sidewall between tread shoulder and maximum section width. For example:

- **Treadwear 200 Traction AA Temperature A**

These Tire Quality Grades are determined by standards that the United States Department of Transportation has set.

Tire Quality Grades apply to new pneumatic tires for use on passenger cars. They do not apply to deep tread, winter-type snow tires, space-saver or temporary use spare tires, tires with nominal rim diameters of 10 to 12 inches or limited production tires as defined in Title 49 Code of Federal Regulations Part 575.104(c)(2).

U.S. Department of Transportation - Tire quality grades: The U.S. Department of Transportation requires Ford Motor Company to give you the following information about tire grades exactly as the government has written it.

Treadwear

The treadwear grade is a comparative rating based on the wear rate of the tire when tested under controlled conditions on a specified government test course. For example, a tire graded 150 would wear one and one-half (1 1/2) times as well on the government course as a tire graded 100. The relative performance of tires depends upon the actual conditions of their use, however, and may depart significantly from the norm due to variations in driving habits, service practices, and differences in road characteristics and climate.

Traction AA A B C

The traction grades, from highest to lowest are AA, A, B, and C. The grades represent the tire's ability to stop on wet pavement as measured under controlled conditions on specified government test surfaces of asphalt and concrete. A tire marked C may have poor traction performance.
APPENDIX B
MANUFACTURER’S DATA
SEAT REFERENCE POINT (SRP) AND TORSO ANGLE DATA
FOR FMVSS 225
(All dimensions in mm)

Model Year: _2006_____; Make: _Ford______; Model: _Five Hundred_; Body Style: _4 Door Sedan____
Seat Style: Front row: _Buckets______; Second row: _3 Pass Bench_, Third row: _N/A________

[Diagram of seat reference points and torso angles with measurements labeled A1, A2, A3, B, C, D, and SRP.

LEFT SIDE VIEW OF TEST VEHICLE]
Table 1. Seating Positions\(^1\) and Torso Angles

<table>
<thead>
<tr>
<th>Torso Angle (degree)</th>
<th>Front Row</th>
<th>Center (if any)</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>281.54</td>
<td>NA</td>
<td>281.54</td>
</tr>
<tr>
<td>A2</td>
<td>286.54</td>
<td>311.54</td>
<td>286.54</td>
</tr>
<tr>
<td>A3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>B</td>
<td>388</td>
<td>N/A</td>
<td>388</td>
</tr>
<tr>
<td>C</td>
<td>1310.78</td>
<td>1285.78</td>
<td>1310.89</td>
</tr>
<tr>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Torso Angle (degree)</td>
<td>Front Row</td>
<td>Center (if any)</td>
<td>Right</td>
</tr>
<tr>
<td>A1</td>
<td>22</td>
<td>N/A</td>
<td>22</td>
</tr>
<tr>
<td>A2</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>A3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: 1. All dimensions are in mm. If not, provide the unit used.
SEATING REFERENCE POINT
FOR FMVSS 225
(All dimensions in mm)

Model Year: __2006____; Make: ___Ford____; Model: ___Five Hundred___; Body Style: ___4Dr Sedan___
Table 2. Seating Reference Point and Tether Anchorage Locations

<table>
<thead>
<tr>
<th>Seating Reference Point (SRP)</th>
<th>Distance from Driver’s front outboard seat adjuster anchorage¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>388</td>
</tr>
<tr>
<td>E1</td>
<td>203.84</td>
</tr>
<tr>
<td>B2</td>
<td>N/A</td>
</tr>
<tr>
<td>E2</td>
<td>N/A</td>
</tr>
<tr>
<td>B3</td>
<td>388</td>
</tr>
<tr>
<td>E3</td>
<td>960.24</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>1310.78</td>
</tr>
<tr>
<td>F1</td>
<td>202.04</td>
</tr>
<tr>
<td>C2</td>
<td>1285.78</td>
</tr>
<tr>
<td>F2</td>
<td>582.04</td>
</tr>
<tr>
<td>C3</td>
<td>1310.78</td>
</tr>
<tr>
<td>F3</td>
<td>962.04</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>N/A</td>
</tr>
<tr>
<td>G1</td>
<td>N/A</td>
</tr>
<tr>
<td>D2</td>
<td>N/A</td>
</tr>
<tr>
<td>G2</td>
<td>N/A</td>
</tr>
<tr>
<td>D3</td>
<td>N/A</td>
</tr>
<tr>
<td>G3</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: ¹ Use the center of anchorage.
TETHER ANCHORAGE LOCATIONS
FOR FMVSS 225
(All dimensions in mm)

Model Year: _2006________; Make: ___Ford_______; Model: _Five Hundred_; Body Style: ___4 Dr. Sedan
Seat Style: Front row: _Buckets________; Second row: 3 Passenger Bench__; Third row: ___NA____________

⊕: SRP
♀: Tether anchorage

Note: 1. The location shall be measured at the center of the bar.
Table 3. Seating Reference Point and Tether Anchorage Locations

<table>
<thead>
<tr>
<th>Seating Reference Point (SRP)</th>
<th>Distance from SRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>N/A</td>
</tr>
<tr>
<td>K1</td>
<td>N/A</td>
</tr>
<tr>
<td>H2</td>
<td>N/A</td>
</tr>
<tr>
<td>K2</td>
<td>N/A</td>
</tr>
<tr>
<td>H3</td>
<td>N/A</td>
</tr>
<tr>
<td>K3</td>
<td>N/A</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>I1</td>
<td>684</td>
</tr>
<tr>
<td>L1</td>
<td>0</td>
</tr>
<tr>
<td>I2</td>
<td>709</td>
</tr>
<tr>
<td>L2</td>
<td>0</td>
</tr>
<tr>
<td>I3</td>
<td>684</td>
</tr>
<tr>
<td>L3</td>
<td>0</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>N/A</td>
</tr>
<tr>
<td>M1</td>
<td>N/A</td>
</tr>
<tr>
<td>J2</td>
<td>N/A</td>
</tr>
<tr>
<td>M2</td>
<td>N/A</td>
</tr>
<tr>
<td>J3</td>
<td>N/A</td>
</tr>
<tr>
<td>M3</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: 1. Use the center of anchorage.
TETHER ANCHORAGE LOCATIONS - VERTICAL
FOR FMVSS 225
(All dimensions in mm)

Model Year: _2006_; Make: _Ford_; Model: _Five Hundred; Body Style: 4 Dr Sedan_
Seat Style: _Front row: _Buckets; Second row: 3 Passenger Bench_; Third row: ___N/A___________

![Diagram of vehicle interior with tether anchorages labeled N, O, and P, and a note for vehicle floorpan.]

LEFT SIDE VIEW OF TEST VEHICLE
Table 4. Vertical Dimension For The Tether Anchorage

<table>
<thead>
<tr>
<th>Seating Row</th>
<th>Vertical Distance from Seating Reference Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>N1 (Driver)</td>
<td>N/A</td>
</tr>
<tr>
<td>N2 (Center)</td>
<td>N/A</td>
</tr>
<tr>
<td>N3 (Right)</td>
<td>N/A</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>O1 (Left)</td>
<td>494.79</td>
</tr>
<tr>
<td>O2 (Center)</td>
<td>469.79</td>
</tr>
<tr>
<td>O3 (Right)</td>
<td>494.79</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>P1 (Left)</td>
<td>NA</td>
</tr>
<tr>
<td>P2 (Center)</td>
<td>NA</td>
</tr>
<tr>
<td>P3 (Right)</td>
<td>NA</td>
</tr>
</tbody>
</table>

Note: 1. All dimensions are in mm. If not, provide the unit used.
For each vehicle, provide the following information:

1. **How many designated seating positions exist in the vehicle?**
 - Five

2. **How many designated seating positions are equipped with lower anchorages and tether anchorages? Specify which position(s).**

 Each of the three rear seat positions is equipped with a tether anchorage, and the outboard seats are also equipped with lower anchorages. Additionally, the lower anchorages are equally spaced across the rear seat to allow a child seat to be installed at the rear center seating position. If three child safety seats are to be installed, the lower anchors should be used for the center seat, and lap/shoulder belts should be used for the outboard seats.

3. **How many designated seating positions are equipped with tether anchorages? Specify which position(s).**

 All three of the rear seating positions.

4. **Lower Anchorage Marking and Conspicuity:** Whether the anchorages are certified to S9.5 (a) or S9.5 (b) of FMVSS 225.

 The anchorages are certified to S9.5 (a) of FMVSS 225.