This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.
Final Report of FMVSS 103 Compliance Testing of 2006 FORD MUSTANG, PASSENGER CAR
NHTSA No. C60203

Compliance tests were conducted on the subject, 2006 Ford Mustang Passenger Car in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP-103-13 for the determination of FMVSS 103 compliance. Test failures identified were as follows: None

Compliance Testing
Safety Engineering
FMVSS 103

Copies of this report are available from NHTSA Technical Information Services (TIS) Room 2336 (NP0-405) 400 7th St., S.W. Washington, DC 20590 Telephone No. (202) 366-4947
<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>5.10</td>
<td></td>
</tr>
<tr>
<td>5.11</td>
<td></td>
</tr>
<tr>
<td>5.12</td>
<td></td>
</tr>
<tr>
<td>5.13</td>
<td></td>
</tr>
<tr>
<td>5.14</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>24</td>
</tr>
</tbody>
</table>

1 Purpose of Compliance Test
2 Compliance Test Procedure and Results Summary
3 Compliance Test Data
4 Test Equipment List
5 Photographs
5.1 Left Side View of Vehicle
5.2 Right Side View of Vehicle
5.3 ¾ Frontal View From Left Side of Vehicle
5.4 ¾ Rear View From Right Side of Vehicle
5.5 Vehicle Certification Label
5.6 Vehicle Tire Information Label
5.7 Close-up View of Defroster Control Setting on Dash
5.8 Instrumentation Set-up
5.9 Windshield, Pre-Test Frosted State Test #1
5.10 Defrosted Area at 20 minutes Test #1
5.11 Windshield Vellum Pattern, Test #1
5.12 Windshield Pre-Test Frosted State Test #2
5.13 Defrosted Area at 20 minutes Test #2
5.14 Windshield Vellum Pattern, Post Test #2

6 Copy of Owner's Manual Defroster Instructions
SECTION 1

PURPOSE OF COMPLIANCE TEST

1.0 PURPOSE OF COMPLIANCE TEST

A 2006 Ford Mustang Passenger Car was subjected to Federal Motor Vehicle Safety Standard (FMVSS) No. 103 testing to determine if the vehicle was in compliance with the requirements of the standard. All tests were conducted in accordance with NHTSA, Office of Vehicle Safety Compliance (OVSC) Laboratory Procedure, TP-103-13 dated 26 June 1996 and General Testing Laboratories, Inc. (GTL) Test Procedure, “Windshield Defrosting and Defogging Systems – Passenger Vehicles, Multi-purpose Vehicles, Trucks and Buses”.

1.1 TEST VEHICLE

The test vehicle was a 2006 Ford Mustang Passenger Car. Nomenclature applicable to the test vehicle are:

A. Vehicle Identification Number: 1ZVFT80N265107331
B. NHTSA No.: C60203
C. Manufacturer: FORD MOTOR COMPANY
D. Manufacture Date: 08/05

1.2 TEST DATE

The test vehicle was subjected to FMVSS No. 103 testing on May 18-19, 2006.
SECTION 2

COMPLIANCE TEST PROCEDURE AND SUMMARY OF RESULTS

2.0 GENERAL

The 2006 Ford Mustang 2-door passenger car, NHTSA No. C60203 was subjected to FMVSS No. 103 tests on May 18-19, 2006. Photographs of the test vehicle are shown in Figures 5.1 through 5.4. The manufacturer’s certification and tire information labels are shown in Figures 5.5 and 5.6. The test instrumentation and instrument panel setups are depicted in Figures 5.7 and 5.8. Figures 5.9 through 5.14 depict the windshield pre and post test defrost conditions.

2.1 TEST PROCEDURE

Prior to test the test vehicle was inspected for completeness, systems operability, and appropriate fuel and liquid levels, i.e., oil and coolant to include antifreeze protection. The vehicle was then photographically documented as required by the DOT/NHTSA test procedure. The windshield patterns for areas A, B and C had been furnished prior to testing and these areas were outlined on the windshield with a marker. The vehicle was then installed in the cold chamber and pre-conditioned for a 14-hour minimum, 0º ±5º F temperature soak for the first test run. After the pre-condition, the hood was raised to assure engine coolant and lubricant were stabilized within the test temperature range for a minimum of 2 hours.

At the end of the 2-hour minimum stabilization period, the entire windshield was sprayed evenly with 0.010 ounces of water per square inch of glass area. Refer to Section 3, Compliance Test Data, for test specifics such as total amount of water sprayed, spray gun identification, and air pressure regulation. The vehicle soak continued for an additional 30 minutes minimum but no more than 40 minutes after the windshield was sprayed.

At the conclusion of the additional soak time the vehicle’s engine was started and operated at a target speed of 1500-1600 rpm or at the manufacturer’s specification if different as noted on data sheets. The defroster blower was turned on to the high speed setting with the heater selector in the de-ice (defrost) position, and the temperature control in the maximum temperature position. All doors and windows were closed. The heater air intake was fully open and the vehicle’s hood closed. At no time during the test were the windshield wipers used.
At start of testing and during test, at each 5-minute interval after engine start, cold chamber, engine coolant, heater coolant in and defroster air left/defroster air right temperatures were recorded. Likewise at each 5-minute interval the boundary of the defrosted area was marked on the inside surface of the windshield. The test was run for a maximum of 40 minutes from engine start, or until such time as 100 percent windshield clearance was achieved. Photographs were made of the windshield at the pre-test frosted state and 20-minute and 25-minute intervals. Post test actions included placing a vellum pattern on the windshield and tracing the windshield’s 5-minute interval defrosted area boundary lines onto the vellum pattern.

After the traces were obtained, the windshield was again thoroughly cleaned and the vehicle engine coolant and lubricant stabilization period at 0°C ±5°C F temperature commenced for a repeat of the procedure discussed. The windshield patterns for both tests were used subsequently to determine the cleared area percentages.

2.2 SUMMARY OF RESULTS

Based on the test performed, the test vehicle appears to be in compliance with the requirements of FMVSS 103.
SECTION 3
COMPLIANCE TEST DATA

3.0 TEST RESULTS

The following data sheets document the results of testing on the 2006 Ford Mustang.
SUMMARY DATA SHEET
FMVSS 103, WINDSHIELD DEFROSTING AND DEFOGGING SYSTEMS

VEH. MOD YR/MAKE/MODEL/BODY: 2006 FORD MUSTANG PASSENGER CAR
VEH. NHTSA NO: C60203; VIN: 1ZVFT80N265107331
VEH. BUILD DATE: 08/05
TEST DATE: MAY 18-19, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

WINDSHIELD AREA: 1730 in² AREA C = 234.5 in² AREA D = 234.5 in² AREA A = 938.5 in²
MANUFACTURER’S WINDSHIELD PATTERN USED: Yes X No
ENGINE THERMOSTAT NOMINAL REGULATING TEMPERATURE: 200 °F
HEATER-DEFROSTER SYSTEM INCLUDES AIR CONDITIONER: YES X NO
DESCRIBE UNUSUAL FEATURES OF DEFROSTING SYSTEM: NONE
DESCRIBE UNUSUAL FEATURES OF TEST CAR: NONE

<table>
<thead>
<tr>
<th>DESIGNATION</th>
<th>AREA PERCENT DEFROSTED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TEST 1</td>
</tr>
<tr>
<td>CRITICAL AREA C AT 20 MINUTES</td>
<td>100%</td>
</tr>
<tr>
<td>PASSENGER AREA D AT 25 MINUTES</td>
<td>100%</td>
</tr>
<tr>
<td>TOTAL AREA A AT 40 MINUTES</td>
<td>100%</td>
</tr>
</tbody>
</table>

REMARKS:

RECORDED BY: G. FARRAND DATE: 05/19/06
APPROVED BY: D. MESSICK
If 1st Test Run, chamber conditioned __22__ hours @ 0º ±5º F (14 hrs. min.)

Cold Soak Period: ___________________ 22 HOURS _____________________

Time engine coolant and lubricant remained stabilized at 0º F: __17__ hrs. __30__ minutes

Water Spray Gun and Nozzle Type: _______ BINKS #66 __________

Spray Gun Pressure: __________________ 50 __________________ psi (50 psi ± 3 psi)

Water used: __17.3__ fluid oz. (0.010 ounces per square inch of windshield area)

Soak Period Between Ice Application and Test Start: __35__ minutes (30 to 40 minutes)

Engine Speed: __1500__ (Target engine speed 1500 to 1600 rpm)

Wind at specified location in front of windshield: __.6__ mph (0 to 2 mph)

Number of Vehicle Occupants: __1__ (2 maximum)

Describe window openings, if any: _______ NONE _______

<table>
<thead>
<tr>
<th>TIME FROM START (minutes)</th>
<th>MOTOR VOLTAGE (volts)</th>
<th>TEMPERATURE, ºF</th>
<th>DEFROSTED AREA, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TEST ROOM</td>
<td>ENGINE WATER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>13.4</td>
<td>-4.0</td>
<td>-4.0</td>
</tr>
<tr>
<td>5</td>
<td>14.6</td>
<td>-4.0</td>
<td>-3.5</td>
</tr>
<tr>
<td>10</td>
<td>14.6</td>
<td>-3.0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>14.6</td>
<td>-2.0</td>
<td>3.9</td>
</tr>
<tr>
<td>20</td>
<td>14.6</td>
<td>0</td>
<td>7.3</td>
</tr>
</tbody>
</table>

REMARKS:

RECORDED BY: G. FARRAND DATE: 05/18/06

APPROVED BY: D. MESSICK
FMVSS 103 TEST DATA RECORD – TEST RUN NO. 2

VEH. MOD YR/MAKE/MODEL/BODY: 2006 FORD MUSTANG PASSENGER CAR
VEH. NHTSA NO: C60203; VIN: 1ZVFT80N265107331
VEH. BUILD DATE: 08/05; TEST DATE: MAY 18-19, 2006
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

If 1st Test Run, chamber conditioned N/A hours @ 0º ±5º F (14 hrs. min.)

Cold Soak Period: 20.5 HOURS

Time engine coolant and lubricant remained stabilized at 0º F: 16 hrs. ___ minutes

Water Spray Gun and Nozzle Type: BINKS #66

Spray Gun Pressure: 50 psi (50 psi ± 3 psi)

Water used: 17.3 fluid oz. (0.010 ounces per square inch of windshield area)

Soak Period Between Ice Application and Test Start: 35 minutes (30 to 40 minutes)

Engine Speed: 1500 (Target engine speed 1500 to 1600 rpm)

Wind at specified location in front of windshield: 0.6 mph (0 to 2 mph)

Number of Vehicle Occupants: 1 (2 maximum)

Describe window openings, if any: NONE

<table>
<thead>
<tr>
<th>TIME FROM START</th>
<th>MOTOR VOLTAGE</th>
<th>TEMPERATURE, ºF</th>
<th>DEFROSTED AREA, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(minutes)</td>
<td>(volts)</td>
<td>TEST ROOM</td>
<td>ENGINE WATER</td>
</tr>
<tr>
<td>0</td>
<td>13.4</td>
<td>-4.0</td>
<td>-4.0</td>
</tr>
<tr>
<td>5</td>
<td>14.9</td>
<td>-4.0</td>
<td>-3.6</td>
</tr>
<tr>
<td>10</td>
<td>14.9</td>
<td>-3.0</td>
<td>-0.7</td>
</tr>
<tr>
<td>15</td>
<td>14.9</td>
<td>-1.9</td>
<td>2.2</td>
</tr>
<tr>
<td>20</td>
<td>14.9</td>
<td>0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

REMARKS:

RECORDED BY: G. FARRAND DATE: 05/19/06

APPROVED BY: D. MESSICK
SECTION 4
INSTRUMENTATION AND EQUIPMENT LIST

TABLE 1 - INSTRUMENTATION & EQUIPMENT LIST

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>DESCRIPTION</th>
<th>MODEL/ SERIAL NO.</th>
<th>CAL. DATE</th>
<th>NEXT CAL. DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMER</td>
<td>ACCU-SPLIT</td>
<td>ACT2</td>
<td>04/06</td>
<td>04/07</td>
</tr>
<tr>
<td>TEMPERATURE READOUT</td>
<td>OMEGA</td>
<td>43P</td>
<td>04/06</td>
<td>04/07</td>
</tr>
<tr>
<td>TEMPERATURE RECORDER</td>
<td>OMEGA</td>
<td>CT91</td>
<td>04/06</td>
<td>04/07</td>
</tr>
<tr>
<td>SPRAY GUN</td>
<td>BINKS</td>
<td>6655</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>AIR VELOCITY METER</td>
<td>OMEGA</td>
<td>HHF-616</td>
<td>04/06</td>
<td>04/07</td>
</tr>
<tr>
<td>AIR PRESSURE GAGE</td>
<td>BINKS</td>
<td>0-160</td>
<td>05/06</td>
<td>05/07</td>
</tr>
<tr>
<td>SCALE</td>
<td>METTLER</td>
<td>200A4M</td>
<td>05/06</td>
<td>05/07</td>
</tr>
<tr>
<td>TACHOMETER</td>
<td>MONARCH</td>
<td>ACT-3</td>
<td>04/06</td>
<td>04/07</td>
</tr>
<tr>
<td>GRADUATED BEAKER</td>
<td>PHOTAX</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>EVENT RECORDER</td>
<td>COMPUTER</td>
<td>GEO1</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>DATA LOGGER</td>
<td>FLUKE</td>
<td>7471026</td>
<td>12/05</td>
<td>12/06</td>
</tr>
</tbody>
</table>
SECTION 5

PHOTOGRAPHS
FIGURE 5.1
LEFT SIDE VIEW OF VEHICLE
2006 FORD MUSTANG
NHTSA NO. C60203
FMVSS NO. 103

FIGURE 5.2
RIGHT SIDE VIEW OF VEHICLE
FIGURE 5.3
¼ FRONTAL VIEW FROM LEFT SIDE OF VEHICLE
MFD. BY FORD MOTOR CO.

DATE: 08/05 GVWR: 1969KG/4340LB
FRONT GAWR: 955KG/2105LB REAR GAWR: 1032KG/2275LB

THIS VEHICLE CONFORMS TO ALL APPLICABLE FEDERAL MOTOR
VEHICLE SAFETY, BUMPER, AND THEFT PREVENTION STANDARDS
IN EFFECT ON THE DATE OF MANUFACTURE SHOWN ABOVE.

VIN: 1ZVFT80N265107331 TYPE: Passenger Car
MAXIMUM LOAD = OCCUPANTS + LUGGAGE = 326KG/720LB
OCCUPANTS = 4 TOTAL; 2 FRONT, 2 REAR

TIRE (FR): P215/65R16 RIMS (FR): 16 X 7.0J
(RR): P215/65R16 (RR): 16 X 7.0J
PRESSURE (FR): 240 kPa/35 PSI COLD PRESSURE (RR): 240 kPa/35 PSI COLD

1ZVFT80N265107331

TRAILER TOWING - SEE OWNER GUIDE
EXT PNT: G9
INT TR TP/PS R AXLE TR SPR RC: 47 DSO: 6Z2B
47
P2 5 BG F AAAA 605
120050817534B CMC 5U5A-5420472-AA

2006 FORD MUSTANG
NHTSA NO. C60203
FMVSS NO. 103

FIGURE 5.5
VEHICLE CERTIFICATION LABEL
<table>
<thead>
<tr>
<th>TIRE</th>
<th>SIZE</th>
<th>COLD TIRE PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONT</td>
<td>P215/65R16</td>
<td>240 KPA, 35 PSI</td>
</tr>
<tr>
<td>REAR</td>
<td>P215/65R16</td>
<td>240 KPA, 35 PSI</td>
</tr>
<tr>
<td>SPARE</td>
<td>T155/70R17</td>
<td>415 KPA, 60 PSI</td>
</tr>
</tbody>
</table>

The combined weight of occupants and cargo should never exceed: 326 kg or 720 lbs.
2006 FORD MUSTANG
NHTSA NO. C60203
FMVSS NO. 103

FIGURE 5.7
CLOSE-UP VIEW OF DEFROSTER CONTROL
SETTING ON DASH
2006 FORD MUSTANG
NHTSA NO. C60203
FMVSS NO. 103

FIGURE 5.8
INSTRUMENTATION SET-UP
2006 FORD MUSTANG
NHTSA NO. C60203
FMVSS NO. 103

FIGURE 5.10
DEFROSTED AREA AT 20 MINUTES TEST #1
FIGURE 5.12
WINDSHIELD PRE-TEST FROSTED STATE
TEST #2
2006 FORD MUSTANG
NHTSA NO. C60203
FMVSS NO. 103

FIGURE 5.13
DEFROSTED AREA AT 20 MINUTES TEST #2
2006 FORD MUSTANG
NHTSA NO. C60203
FMVSS NO. 103

FIGURE 5.14
WINDSHIELD VELLUM PATTERN, POST TEST #2
SECTION 6
OWNER’S MANUAL DEFROSTER INSTRUCTIONS
MANUAL HEATING AND AIR CONDITIONING SYSTEM

1. **Temperature selection:** Controls the temperature of the airflow in the vehicle.

2. **Mode selections:** Controls the location of the airflow in the vehicle. See the following for a brief description of each selection.

MAX A/C: Distributes recirculated air through the instrument panel vents to cool the vehicle. This re-cooling of the interior air is more economical and efficient. Recirculated air may also help reduce undesirable odors from entering the vehicle.

![Climate Controls Diagram](image)

- 5: Distributes air through the instrument panel vents and the floor vents.
- 6: Distributes air through the instrument panel vents.
- 2: Distributes air through the floor vents.
- 3: Distributes air through the windshield defroster vents and floor vents.
- 4: Distributes air through the windshield defroster vents. Can be used to clear the windshield of fog and thin ice.

3. **Rear defroster (R [/**]:** Press to activate/deactivate the rear window defroster. Refer to Rear window defroster later in this section for more information.

4. **Recirculation control ():** Press to activate/deactivate air recirculation in cabin. Recirculated air may reduce the amount of time to cool down the interior of the vehicle and may also help reduce undesirable exterior odors from reaching the interior of the vehicle. Recirculation engages automatically with selection of MAX A/C or can be engaged manually in any other mode selection except (defrost). Recirculation may turn off automatically in all airflow selections except MAX A/C.

5. **A/C:** Press to activate/deactivate air conditioning. Use with recirculated air to improve cooling performance. Engages automatically in MAX A/C, (defrost) and (floor/defrost).

6. **Fan speed adjustment:** Controls the volume of air circulated in the vehicle.

Operating tips
- To reduce fog build up on the windshield during humid weather, place the air flow selector in the (defrost) position.
- To reduce humidity build up inside the vehicle, do not drive with the airflow selector in the O (OFF) position or with recirculated air engaged.
- Do not put objects under the front seats that will interfere with the airflow to the back seats.
- Remove any snow, ice or leaves from the air intake area at the base of the windshield.
- To improve the A/C cool down, drive with the windows slightly open for 2-3 minutes after start up or until the vehicle has been “aired out.”

For maximum cooling performance in MAX A/C mode:
- 1. Move temperature control to the coolest setting.
- 2. Set the fan to the highest speed initially, then adjust to maintain comfort.

For maximum cooling performance in panel or panel/floor modes:
- 1. Move temperature control to the coolest setting.
- 2. Select A/C and recirculated air () to provide colder airflow.
- 3. Set the fan to the highest speed initially, then adjust to maintain comfort.

To aid in side window defogging/demisting in cold weather:
- 1. Select.
- 2. Select A/C.
- 3. Adjust the temperature control to maintain comfort.
- 4. Set the fan speed to the highest setting.
- 5. Direct the outer instrument panel vents towards the side windows.
- 6. To increase airflow to the outer instrument panel vents, close the vents located in the middle of the instrument panel.

⚠️ Do not place objects on top of the instrument panel as these objects may become projectiles in a collision or sudden stop.
Climate Controls

REAR WINDOW DEFROSTER (R(\(\text{on}\))
Ensure that the ignition is in the 3 (ON) position. Press the control to clear the rear window of thin ice and fog. The LED will illuminate.
The rear window defroster turns off automatically after 10 minutes, or when the ignition is turned to the 1 (OFF/LOCK) position. To manually turn off the defroster before 10 minutes have passed, push the control again.

Do not use razor blades or other sharp objects to clean the inside of the rear window or to remove decals from the inside of the rear window. This may cause damage to the heated grid lines and will not be covered by your warranty.

CABIN AIR FILTER
Your vehicle is equipped with a cabin air filter, which is located just in front of the windshield under the cowl grille on the passenger side of the vehicle.
The particulate air filtration system is designed to reduce the concentration of airborne particles such as dust, spores and pollen in the air being supplied to the interior of the vehicle. The particulate filtration system gives the following benefits to customers:
- Improves the customer’s driving comfort by reducing particle concentration
- Improves the interior compartment cleanliness
- Protects the climate control components from particle deposits
For more information regarding the interval at which you should replace the cabin air filter, refer to your scheduled maintenance information. For additional cabin air filter information, or to replace the filter, see an authorized dealer.