SAFETY COMPLIANCE TESTING FOR FMVSS NO. 225
CHILD RESTRAINT ANCHORAGE SYSTEMS
LOWER AND TETHER ANCHORAGES

GM DAEWOO AUTO & TECHNOLOGY COMPANY
2005 SUZUKI FORENZA, PASSENGER CAR
NHTSA NO. C50505

GENERAL TESTING LABORATORIES, INC.
1623 LEEDSTOWN ROAD
COLONIAL BEACH, VIRGINIA 22443

NOVEMBER 2, 2005
FINAL REPORT
PREPARED FOR
U.S. DEPARTMENT OF TRANSPORTATION
NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
SAFETY ENFORCEMENT
OFFICE OF VEHICLE SAFETY COMPLIANCE
400 SEVENTH STREET, SW
ROOM 6111 (MV9-220)
WASHINGTON, D.C. 20590
This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Prepared By: __________________________

Approved By: __________________________

Approval Date: __________________________

FINAL REPORT ACCEPTANCE BY OVSC:

Accepted By: __________________________

Acceptance Date: 12/21/05
16. Abstract
Compliance tests were conducted on the subject, 2005 Suzuki Forenza Passenger Car in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP-225-01 for the determination of FMVSS 225 compliance.

Test failures identified were as follows:
38.2.2(a) Not more than 70 mm behind point Z of the CRF. The lower child restraint anchor bars for the 2nd row seating positions are more than 70 mm behind point Z when measured with the CRF.
<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Purpose of Compliance Test</td>
</tr>
<tr>
<td>2</td>
<td>Compliance Test Results</td>
</tr>
<tr>
<td>3</td>
<td>Compliance Test Data</td>
</tr>
<tr>
<td>4</td>
<td>Test Equipment List</td>
</tr>
<tr>
<td>5</td>
<td>Photographs</td>
</tr>
<tr>
<td>5.1</td>
<td>¾ Frontal Right Side View of Vehicle</td>
</tr>
<tr>
<td>5.2</td>
<td>¾ Rearward Left Side View of Vehicle</td>
</tr>
<tr>
<td>5.3</td>
<td>Close-up View of Vehicle Certification Label</td>
</tr>
<tr>
<td>5.4</td>
<td>Close-up View of Vehicle Tire Information Label</td>
</tr>
<tr>
<td>5.5</td>
<td>Row 2, Left Side, Outboard Lower Anchor, Pre-Test</td>
</tr>
<tr>
<td>5.6</td>
<td>Row 2, Left Side, Inboard Lower Anchor, Pre-Test</td>
</tr>
<tr>
<td>5.7</td>
<td>Row 2, Left Side, Top Tether Anchor, Pre-Test</td>
</tr>
<tr>
<td>5.8</td>
<td>Row 2, Center, Top Tether Anchor, Pre-Test</td>
</tr>
<tr>
<td>5.9</td>
<td>Row 2, Right Side, Inboard Lower Anchor, Pre-Test</td>
</tr>
<tr>
<td>5.10</td>
<td>Row 2, Right Side, Outboard Lower Anchor, Pre-Test</td>
</tr>
<tr>
<td>5.11</td>
<td>Row 2, Right Side, Top Tether Anchor, Pre-Test</td>
</tr>
<tr>
<td>5.12</td>
<td>Overall View of Row 2 Seating Positions, Pre-Test</td>
</tr>
<tr>
<td>5.13</td>
<td>Row 2, Left Side with CRF</td>
</tr>
<tr>
<td>5.14</td>
<td>Row 2, Left Side with 2-D Template</td>
</tr>
<tr>
<td>5.15</td>
<td>Row 2, Left Side Top Tether Routing</td>
</tr>
<tr>
<td>5.16</td>
<td>Row 2, Right Side with CRF</td>
</tr>
<tr>
<td>5.17</td>
<td>Row 2, Right Side with 2-D Template</td>
</tr>
<tr>
<td>5.18</td>
<td>Row 2, Right Side Top Tether Routing</td>
</tr>
<tr>
<td>5.19</td>
<td>Row 2, Center with 2-D Template</td>
</tr>
<tr>
<td>5.20</td>
<td>Row 2, Center Top Tether Routing</td>
</tr>
<tr>
<td>5.21</td>
<td>Row 2, Right Side Inboard CRF Measurement</td>
</tr>
<tr>
<td>5.22</td>
<td>Row 2, Right Side Outboard CRF Measurement</td>
</tr>
<tr>
<td>5.23</td>
<td>Row 2, Left Side, Inboard CRF Measurement</td>
</tr>
<tr>
<td>5.24</td>
<td>Row 2, Left Side, Outboard CRF Measurement</td>
</tr>
<tr>
<td>5.25</td>
<td>Symbol Measurement</td>
</tr>
<tr>
<td>5.26</td>
<td>Row 2, Left Side CRF Measurement</td>
</tr>
<tr>
<td>5.27</td>
<td>Row 2, Right Side CRF Pitch Measurement</td>
</tr>
<tr>
<td>5.28</td>
<td>Row 2, Left Side Outboard SRP Measurement</td>
</tr>
<tr>
<td>5.29</td>
<td>Row 2, Left Side Inboard SRP Measurement</td>
</tr>
<tr>
<td>5.30</td>
<td>Row 2, Right Side Outboard SRP Measurement</td>
</tr>
<tr>
<td>5.31</td>
<td>Row 2, Right Side Inboard SRP Measurement</td>
</tr>
<tr>
<td>5.32</td>
<td>¾ Left Front View of Vehicle in Test Rig</td>
</tr>
<tr>
<td>5.33</td>
<td>¾ Right Front View of Vehicle in Test Rig</td>
</tr>
<tr>
<td>5.34</td>
<td>Pre-Test Row 2, Left Side with SFAD 2</td>
</tr>
<tr>
<td>5.35</td>
<td>Pre-Test Row 2, Left Side with SFAD 2</td>
</tr>
<tr>
<td>5.36</td>
<td>Post Test Row 2, Left Side with SFAD 2</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (continued)

5.37 Post Test Row 2, Left Side with SFAD 2
5.38 Pre-Test Row 2, Right Side with SFAD 2
5.39 Post Test Row 2, Right Side with SFAD 1
5.40 Pre-Test Row 2, Center Position with SFAD 1
5.41 Pre-Test Row 2, Center Position with SFAD 1
5.42 Post Test Row 2, Center Position with SFAD 1
5.43 Post Test Row 2, Center Position with SFAD 1

6.1 2nd Row Left Side Top Tether, GTL 5337
6.2 2nd Row Left Side Top Tether, GTL 5337
6.3 2nd Row Right Side Lower Anchor, GTL 5338
6.4 2nd Row Right Side Lower Anchor, GTL 5338
6.5 2nd Row Center Position Top Tether, GTL 5339
6.6 2nd Row Center Position Top Tether, GTL 5339

Appendix A – Owner’s Manual Child Restraint Information
Appendix B – Manufacturer’s Data
Appendix C – Laboratory Notice of Test Failure
SECTION 1

PURPOSE OF COMPLIANCE TEST

1.0 **PURPOSE OF COMPLIANCE TEST**

A 2005 Suzuki Forenza Passenger Car was subjected to Federal Motor Vehicle Safety Standard (FMVSS) No. 225 testing to determine if the vehicle was in compliance with the requirements of the standard. The purpose of this standard is to establish requirements for child restraint anchorage systems to ensure their proper location and strength for the effective securing of child restraints, to reduce the likelihood of the anchorage systems' failure and to increase the likelihood that child restraints are properly secured and thus more fully achieve their potential effectiveness in motor vehicles.

1.1 The test vehicle was a 2005 Suzuki Forenza Passenger Car. Nomenclature applicable to the test vehicle are:

A. **Vehicle Identification Number:** KL5JD56Z15K080227

B. **NHTSA No.:** C50505

C. **Manufacturer:** DAEWOO AUTO & TECHNOLOGY COMPANY

D. **Manufacture Date:** 08/04

1.2 **TEST DATE**

The test vehicle was subjected to FMVSS No. 225 testing during the time period August 8, 2005 - October 12, 2005.
SECTION 2

COMPLIANCE TEST RESULTS

2.0 TEST RESULTS

All tests were conducted in accordance with NHTSA, Office of Vehicle Safety Compliance (OVSC) Laboratory Procedures, TP-225-01 dated 11 April 2005.

Based on the test performed, the 2005 SUZUKI FORENZA Passenger Car does not appear to meet the requirements of FMVSS 225 testing.
SECTION 3
COMPLIANCE TEST DATA

3.0 TEST DATA

The following data sheets document the results of testing on the 2005 Suzuki Forenza Passenger Car.
DATA SHEET 1
SUMMARY OF RESULTS

VEH. MOD YR/MAKE/MODEL/BODY: 2005 SUZUKI FORENZA PASSENGER CAR
VEH. NHTSA NO: C50505; VIN: KL5JD6Z15K089327
VEH. BUILD DATE: 06/04; TEST DATE: AUGUST 8 - OCTOBER 12, 2005
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

A. VISUAL INSPECTION OF TEST VEHICLE

Upon receipt for completeness, function, and discrepancies or damage which might influence the testing.

RESULTS: OK FOR TEST

B. REQUIREMENTS FOR CHILD RESTRAINT SYSTEMS AND TETHER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. LOCATION OF TETHER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D. LOWER ANCHORAGE DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
DATA SHEET 1 CONTINUED
SUMMARY OF RESULTS

E. CONSPICUITY AND MARKING OF LOWER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

F. STRENGTH OF TETHER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

G. STRENGTH OF LOWER ANCHORAGES (Forward Force)

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

H. STRENGTH OF LOWER ANCHORAGE (Lateral Force)

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

I. OWNER'S MANUAL

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS: DSP a = Left Rear Outboard, DSP b = Center, DSP c = Right Rear Outboard

RECORDED BY:__________________________ DATE: 10/12/05

APPROVED BY:__________________________
DATA SHEET 2
REQUIREMENTS FOR CHILD RESTRAINT ANCHORAGE SYSTEMS AND TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2005 SUZUKI FORENZA PASSENGER CAR
VEH. NHTSA NO: C50505; VIN: KL5JD56Z15K080227
VEH. BUILD DATE: 08/04; TEST DATE: AUGUST 8, 2005
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

Number of rows of seats: 2
Number of rear, forward-facing designated seating positions: 3
Number of required CRAS (lower anchorages only, for convertibles/school buses): 2
Number of required tether anchorages (can be additional CRAS): 1
Is the vehicle a convertible? NO
Is the vehicle a school bus? NO

Does the vehicle have a CRAS (lower anchorage only, for convertibles/school buses) installed at a front passenger seating position? NO
If NO, skip to next question.
If YES, does the vehicle have rear designated seating positions? NO
If NO, does the vehicle have an air bag on-off switch or a special exemption for no passenger air bag?
If NO = FAIL If YES = PASS
If Yes, does the vehicle meet the requirements of S4.5.4.1 (b) of S208 and have an air bag on-off switch or special exemption for no passenger air bag?
Record the distance between the front and rear seat back:
If Distance < 720 mm and vehicle has an air bag on-off switch or special exemption = PASS
If Distance ≥ 720 mm or no air bag on-off switch or no special exemption = FAIL

Does the vehicle have rear designated seating position(s) where the lower bars of a CRAS are prevented from being located because of transmission and/or suspension component interference? NO
If NO, skip to next question.
If YES, does the vehicle have a tether anchorage at a front passenger seating position?
YES = PASS NO = FAIL (S5(e))

Number of provided CRAS (lower anchorage only, for convertibles/school buses), indicate if a built-in child restraint is counted as a CRAS: __2__

Is the number of provided CRAS (lower anchorages only, for convertibles/school buses) greater than or equal to the number of required CRAS (lower anchorages only, for convertibles/school buses)?
YES

YES = PASS NO = FAIL (S4.4(a) or (b) or (c))
DATA SHEET 2 CONTINUED

If the vehicle has 3 or more rows of seats is a CRAS (lower anchorage only for convertibles/school buses) provided in the second row:

YES = PASS NO = FAIL (S4.4(a)(1))

Number of provided tether anchorages (can be additional CRAS) indicate if a built-in child restraint is counted as tether anchorage (NOTE: a built-in child restraint can only be counted toward either the required number of CRAS or tether anchorages, not both):

3

Is the number of provided tether anchorages greater than or equal to the number of required tether anchorages?

YES = PASS NO = FAIL (S4.4 (a) or (b) or (c))

If the vehicle has 3 or more rear dsps and a non-outboard dsp, is a tether anchorage or CRAS provided at a non-outboard dsp?

YES = PASS NO = FAIL (S4.4 (a)(2))

Are all tether and lower anchorages available for use at all times when the seat is configured for passenger use?

YES = PASS NO = FAIL (S4.6 (b))

Provide a diagram showing the location of lower anchorages and/or tether anchorages.

\[
\begin{array}{ccc}
 X & X & X \\
 & * & * \\
 & C & B & A \\
\end{array}
\]

X = Top Tether
* = Lower Anchors

RECORDED BY:____________________ DATE: 08/06/05

APPROVED BY:___________________
DATA SHEET 3
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2005 SUZUKI FORENZA PASSENGER CAR
VEH. NHTSA NO: C50505; VIN: KL5JD56Z15K080227
VEH. BUILD DATE: 08/04; TEST DATE: AUGUST 8, 2005
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSEVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

Detailed description of the location of the tether anchorage:
Located on rear shelf behind seat.

Based on visual inspection, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone?

If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component?
If YES = FAIL (S6.2.1)
If NO, Is a tether routing device provided?
If YES = PASS
IF NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? NO
If NO, skip to next question
If YES, is it outside of the tether strap wraparound area? YES = PASS NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? YES
YES = PASS NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? YES
YES = PASS NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? YES
YES = PASS NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? YES
YES = PASS NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? N/A
DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension:

______ N/A ______ (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device: ______ N/A ______

Greater than or equal to 65mm = PASS
Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device: ______ N/A ______

Greater than or equal to 100mm = PASS
Less than 100mm = FAIL

COMMENTS:

RECORDED BY: ___________________________ DATE: _______08/08/05______

APPROVED BY: ___________________________
DATA SHEET 3A
LOCATION OF TETHER ANCHORAGE

VEH. MOD YR/MAKE/MODEL/BODY: 2005 SUZUKI FORENZA PASSENGER CAR
VEH. NHTSA NO: C50505; VIN: KL5JD66Z15K080227
VEH. BUILD DATE: 08/04; TEST DATE: AUGUST 8, 2005
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 CENTER POSITION (DSP B)

Detailed description of the location of the tether anchorage:
Located on rear shelf behind seat.

Based on visual inspection, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone?

If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component?
 If YES = FAIL (S6.2.1)
 If NO, Is a tether routing device provided?
 If YES = PASS
 IF NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? NO
If NO, skip to next question
If YES, Is it outside of the tether strap wraparound area? YES = PASS NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? YES
YES = PASS NO = FAIL (S8.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? YES
YES = PASS NO = FAIL (S8.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? YES
YES = PASS NO = FAIL (S8.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? YES
YES = PASS NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? N/A
DATA SHEET 3A CONTINUED

DESIGNATED SEATING POSITION: **ROW 2 CENTER POSITION (DSP B)**

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension:

--- N/A ---(Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device: --- N/A ---

Greater than or equal to 65mm = PASS Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device: --- N/A ---

Greater than or equal to 100mm = PASS Less than 100mm = FAIL

COMMENTS:

RECORDED BY: ___________________________ DATE: 08/08/05

APPROVED BY: ___________________________
DATA SHEET 3B
LOCATION OF TETHER ANCHORAGE

VEH. MOD YR/MAKE/MODEL/BODY: 2005 SUZUKI FORENZA PASSENGER CAR

VEH. NHTSA NO: C50505; VIN: KL5JD56Z15K080227

VEH. BUILD DATE: 08/04; TEST DATE: AUGUST 8, 2005

TEST LABORATORY: GENERAL TESTING LABORATORIES

OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Detailed description of the location of the tether anchorage:
Located on rear shelf behind seat.

Based on visual inspection, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone?

If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component?
If YES = FAIL (S6.2.1)
If NO, Is a tether routing device provided?
If YES = PASS
If NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? NO
If NO, skip to next question
If YES, is it outside of the tether strap wraparound area?

YES = PASS
NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? YES

YES = PASS
NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? YES

YES = PASS
NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? YES

YES = PASS
NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? YES

YES = PASS
NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? N/A
DESIGNATED SEATING POSITION: __ROW 2 RIGHT SIDE (DSP C)___

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension:
___ N/A ___ (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device: ___ N/A ___
 Greater than or equal to 65mm = PASS Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device: ___ N/A ___
 Greater than or equal to 100mm = PASS Less than 100mm = FAIL

COMMENTS:

RECORDED BY: ___________________________ DATE: 08/08/05
APPROVED BY: ___________________________
DATA SHEET 4
LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2005 SUZUKI FORENZA PASSENGER CAR
VEH. NHTSA NO: C50505; VIN: KL5JD58Z15K080227
VEH. BUILD DATE: 08/04 ; TEST DATE: AUGUST 8, 2005
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

Outboard Lower Anchorage bar diameter: 5.93 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: 5.93 mm
6mm ± 0.1mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? YES
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): 30 mm
Length ≥25mm = PASS Length <25mm = FAIL (S9.1.1(c)(i))

Length of the straight portion of the bar (inboard lower anchorage): 30 mm
Length ≥25mm = PASS Length <25mm = FAIL (S9.1.1(c)(i))

Length between the anchor bar supports (outboard lower anchorage): 40 mm
Length ≤60mm = PASS Length >60mm = FAIL (S9.1.1(c)(ii))

Length between the anchor bar supports (inboard lower anchorage): 40 mm
Length ≤60mm = PASS Length >60mm = FAIL (S9.1.1(c)(ii))

CRF Pitch angle: 13.7°
Angle = 15°±10° = PASS Angle≠15°±10° = FAIL (S9.2.1)

CRF Roll angle: 0.0°
Angle = 0°±5° = PASS Angle≠0°±5° = FAIL (S9.2.1)

CRF Yaw angle: 0.0°
Angle = 0°±10° = PASS Angle≠0°±10° = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 74 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: 75 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL
DESIGNATED SEATING POSITION: ___ROW 2 LEFT SIDE (DSP A)___

Distance between SgRP and the front surface of outboard anchor bar: ___193 mm___
Distance ≥ 120mm = PASS Distance < 120mm = FAIL.

Distance between SgRP and the front surface of inboard anchor bar: ___193 mm___
Distance ≥ 120mm = PASS Distance < 120mm = FAIL.

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm?

___NO___

If NO = PASS
If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:

COMMENTS:

RECORDED BY: ___________________________ DATE: 08/08/05

APPROVED BY: ___________________________
DATA SHEET 4A
LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2005 SUZUKI FORENZA PASSENGER CAR
VEH. NHTSA NO: C50503; VIN: KL5JD66Z15K080227
VEH. BUILD DATE: 08/04; TEST DATE: AUGUST 8, 2005
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Outboard Lower Anchorage bar diameter: 5.93 mm
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: 5.93 mm
6mm ± 0.1mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? YES
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): 30 mm
Length ≥25mm = PASS Length <25mm = FAIL (S9.1.1(c) (i))

Length of the straight portion of the bar (inboard lower anchorage): 30 mm
Length ≥25mm = PASS Length <25mm = FAIL (S9.1.1(c) (i))

Length between the anchor bar supports (outboard lower anchorage): 40 mm
Length ≤60mm = PASS Length >60mm = FAIL (S9.1.1(c) (ii))

Length between the anchor bar supports (inboard lower anchorage): 40 mm
Length ≤60mm = PASS Length >60mm = FAIL (S9.1.1(c) (ii))

CRF Pitch angle: 13.7°
Angle = 15°±10° = PASS Angle≠15°±10° = FAIL (S9.2.1)

CRF Roll angle: 0.0°
Angle = 0°±5° = PASS Angle≠0°±5° = FAIL (S9.2.1)

CRF Yaw angle: 0.0°
Angle = 0°±10° = PASS Angle≠0°±10° = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 75 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: 75 mm
Distance ≤70mm = PASS Distance > 70mm = FAIL
DATA SHEET 4A CONTINUED

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Distance between SgRP and the front surface of outboard anchor bar: 195 mm
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: 195 mm
Distance ≥ 120mm = PASS Distance < 120mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm?

NO

If NO = PASS
If YES = FAIL (S9.1.1(g)). Provide further description of the attachment of the anchor bar:

COMMENTS:

RECORDED BY: ___________________________ DATE: 08/08/05

APPROVED BY: ___________________________
DATA SHEET 5
CONSPICUITY AND MARKING OF LOWER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2005 SUZUKI FORENZA PASSENGER CAR
VEH. NHTSA NO: C50505; VIN: KL5JD56Z15K090227
VEH. BUILD DATE: 08/04; TEST DATE: AUGUST 8, 2005
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

MARKING (Circles)

Diameter of the circle: 16 mm
Diameter ≥13mm = PASS Diameter <13mm = FAIL (S9.5(a)(1))

Does the circle have words, symbols or pictograms? YES
NO skip to next question
YES, are the meaning of the words, symbols or pictograms explained in the owner's manual?
YES = PASS NO = FAIL (S9.5(a)(2))

Where is the circle located? Seat back or seat cushion: Seat back

For circles on seat backs, vertical distance from the center of the circle to the center of the anchor bar: 67 mm
Distance between 50&100mm = PASS Other Distance = FAIL (S9.5(a)(3))

For circles on seat cushions, horizontal distance from the center of the circle to the center of the bar: N/A
Distance between 75&125mm = PASS Other Distance = FAIL (S9.5(a)(3))

Lateral distance from the center of the circle to the center of the anchor bar: 0.0
Distance ≤25mm = PASS Distance >25mm = FAIL (S9.6(a)(3))

CONSPICUITY (No Circles)

Is the anchor bar or guide visible when viewed from a point 30° above the horizontal in a vertical longitudinal plane bisecting the anchor bar or guide? N/A
YES = PASS NO = FAIL (S9.5(b))

If there is a guide, is it permanently attached? N/A
YES = PASS NO = FAIL (S9.5(b))
DATA SHEET 5 CONTINUED

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)

Is there a cap or cover over the anchor bar? __ N/A ______
 If YES, is the cap or cover marked with words, symbols or pictograms? ______
 If NO = FAIL ($9.5(b))
 If YES, is the meaning of the words, symbols or pictograms explained in the owner’s manual?
 YES = PASS NO = FAIL ($9.5(b))
 If NO, there are no requirements for having a cover. ____________

RECORDED BY: ______________________________ DATE: 08/08/05

APPROVED BY: ____________________________
DATA SHEET 5A
CONSPICUITY AND MARKING OF LOWER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2005 SUZUKI FORENZA PASSENGER CAR
VEH. NHTSA NO: C50505; VIN: KL5JD56Z15K080227
VEH. BUILD DATE: 06/04; TEST DATE: AUGUST 8, 2005
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

MARKING (Circles)

Diameter of the circle: __17 mm__
Diameter ≥13mm = PASS Diameter <13mm = FAIL (S9.5(a)(1))

Does the circle have words, symbols or pictograms? YES
NO skip to next question
YES, are the meaning of the words, symbols or pictograms explained in the owner's manual?
YES YES = PASS NO = FAIL (S9.5(a)(2))

Where is the circle located? Seat back or seat cushion: Seat Back

For circles on seat backs, vertical distance from the center of the circle to the center of the anchor bar: __40 mm__
Distance between 50&100mm = PASS Other Distance=FAIL (S9.5(a)(3))

For circles on seat cushions, horizontal distance from the center of the circle to the center of the bar: __N/A__
Distance between 75&125mm= PASS Other Distance=FAIL (S9.5(a)(3))

Lateral distance from the center of the circle to the center of the anchor bar: __0.0__
Distance≤25mm = PASS Distance >25mm = FAIL (S9.5(a)(3))

CONSPICUITY (No Circles)

Is the anchor bar or guide visible when viewed from a point 30° above the horizontal in a vertical longitudinal plane bisecting the anchor bar or guide? __N/A__
YES = PASS NO = FAIL (S9.5(b))

If there is a guide, is it permanently attached? __N/A__
YES = PASS NO = FAIL (S9.5(b))
DATA SHEET 5A CONTINUED

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Is there a cap or cover over the anchor bar? N/A

If YES, is the cap or cover marked with words, symbols or pictograms?

If NO = FAIL (S9.5(b))

If YES, is the meaning of the words, symbols or pictograms explained in the owner’s manual?

YES = PASS NO = FAIL (S9.5(b))

If NO, there are no requirements for having a cover.

RECORDED BY: ___________________________ DATE: 08/08/05

APPROVED BY: ___________________________
DATA SHEET 6
STRENGTH OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2005 SUZUKI FORENZA PASSENGER CAR
VEH. NHTSA NO: C50505; VIN: KL5JD56Z15K080227
VEH. BUILD DATE: 08/04; TEST DATE: OCTOBER 12, 2005
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 5337

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP A)
SFAD: 2

Seat Back Angle: 28°
Location of seat back angle measurement: 2D Template

Head Restraint Position: UP
D-ring Position: N/A

Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: 135 N
Lap belt tension: N/A (SFAD 1 only)
Tether strap tension: 60 N

Angle (measured above the horizontal at 500 N): 10°
Separation of tether anchorage at 500 N: NO
NO = PASS YES = FAIL (S6.3.1)

Force application rate: 575 N/S

Time to reach maximum force (24-30 s): 26

Maximum force (14,950 N ± 50 N): 14,972 N

Tested simultaneously with another DSP? NO

COMMENTS: Displacement at maximum load 33 mm.

RECORDED BY: ______________________ DATE: 10/12/05
APPROVED BY: ______________________
DATA SHEET 6A
STRENGTH OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2005 SUZUKI FORENZA PASSENGER CAR
VEH. NHTSA NO: C50505; VIN: KLJJD56Z15K080227
VEH. BUILD DATE: 08/04; TEST DATE: OCTOBER 12, 2005
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSEVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 5339

DESIGNATED SEATING POSITION: ROW 2 CENTER (DSP B)
SFAD: 1

Seat Back Angle: 23°

Location of seat back angle measurement: 2D Template

Head Restraint Position: UP

D-ring Position: N/A

Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: 135 N

Lap belt tension: 60 N (SFAD 1 only)

Tether strap tension: 60 N

Angle (measured above the horizontal at 500 N): 10°

Separation of tether anchorage at 500 N: NO
NO = PASS YES = FAIL (S6.3.1)

Force application rate: 575 N/S

Time to reach maximum force (24-30 s): 26

Maximum force (14,950 N ± 50 N): 14,954 N

Tested simultaneously with another DSP? NO

COMMENTS: Displacement at maximum load 76 mm.

RECORDED BY: ______________________ DATE: 10/12/05

APPROVED BY: _______________________
DATA SHEET 7
STRENGTH OF LOWER ANCHORAGES (Forward Force)

VEH. MOD YR/MAKE/MODEL/BODY: 2005 SUZUKI FORENZA PASSENGER CAR
VEH. NHTSA NO: C50505; VIN: KL5JD66Z16K080227
VEH. BUILD DATE: 08/04; TEST DATE: OCTOBER 12, 2005
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 5339

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP C)

Seat Back Angle: 26°

Location of seat back angle measurement: 2D Template

Head Restraint Position: UP

Force at lower front crossmember for SFAD2 while tightening rearward extensions: 135 N

Angle (measured above the horizontal at 500 N): 10°

Force application rate: 423 N/S

Time to reach maximum force (24-30 s): 26

Maximum force (10,950 N ± 50 N): 10,978 N

Displacement, H1 (at 500 N): 0.0

Displacement, H2 (at maximum load): 47 mm

Displacement of Point X: 47 mm (H2-H1)
Displacement > 175 mm = FAIL (S9.4.1(a))

Tested simultaneously with another DSP? NO
Distance between adjacent DSP's: 340

COMMENTS:

RECORDED BY: __________________________ DATE: 10/12/05

APPROVED BY: __________________________
DATA SHEET 8
OWNER'S MANUAL

VEH. MOD YR/MAKE/MODEL/BODY: 2005 SUZUKI FORENZA PASSENGER CAR
VEH. NHTSA NO: C50505; VIN: KJ5JD56Z15K080227
VEH. BUILD DATE: 08/04; TEST DATE: AUGUST 10, 2005
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

Description of which DSP's are equipped with tether anchorages and child restraint anchorage systems: YES
PASS X FAIL

Step-by-step instructions for properly attaching a child restraint system's tether strap to the tether anchorage. Diagrams are required: YES
PASS X FAIL

Description of how to properly use the tether anchorage and lower anchor bars: YES
PASS X FAIL

If the lower anchor bars are marked with a circle, an explanation of what the circle indicates as well as any words or pictograms: YES
PASS X FAIL

COMMENTS:

RECORDED BY: ______________________ DATE: 08/10/05
APPROVED BY: ______________________
SECTION 4
INSTRUMENTATION AND EQUIPMENT LIST

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>DESCRIPTION</th>
<th>MODEL/ SERIAL NO.</th>
<th>CAL. DATE</th>
<th>NEXT CAL. DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER</td>
<td>AT&T</td>
<td>486DX266</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>LOAD CELL</td>
<td>INTERFACE</td>
<td>496</td>
<td>01/05</td>
<td>01/06</td>
</tr>
<tr>
<td>LINEAR TRANSDUCER</td>
<td>SERVO SYSTEMS</td>
<td>20</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SEAT BELT LOAD CELL</td>
<td>TRANSDUCER</td>
<td>135</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SEAT BELT LOAD CELL</td>
<td>TRANSDUCER</td>
<td>137</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>LEVEL</td>
<td>STANLEY</td>
<td>42-449</td>
<td>02/05</td>
<td>02/06</td>
</tr>
<tr>
<td>FORCE GAUGE</td>
<td>CHATILLON</td>
<td>8761</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>CALIPER</td>
<td>N/A</td>
<td>Q9322365</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>CRF</td>
<td>MEASUREMENT FIXTURE</td>
<td>GTL CRF</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 1</td>
<td>FORCE APPLICATION DEVICE</td>
<td>GTL SFAD 1</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 2</td>
<td>FORCE APPLICATION DEVICE</td>
<td>GTL SFAD 2</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
</tbody>
</table>
Figure 3.29
Row 2, Left side Inboard SRP Measurement
GTL 5337, NHTSA C50505

225, Top Tether, Raw 2 Left Side.
GTL 5337, NHTSA C50505

225, Top Tether, Row 2 Left Side.

Displacement in Millimeters

Force in Newtons
GTL 5338, NHTSA C50505

225, Lower Anchorages, Row 2 Right Side

Force in Newtons (thousands)

Time in Seconds
GTL 5339, NHTSA C50505

225 Top Tether, Row 2 Center Position.
GTL 5339, NHTSA C50505

225, Top Tether, Row 2 Center Position.

Displacement in Millimeters

(Thousands)

Force in Newtons
Child Restraints

Older Children

Older children who have outgrown booster seats should wear the vehicle's safety belts.

Q: What is the proper way to wear safety belts?
A: If possible, an older child should wear a lap-shoulder belt and get the additional restraint a shoulder belt can provide. The shoulder belt should cross the chest or neck. The lap belt should fit snugly between the leg and the hips, just touching the top of the thighs. It should never be worn over the abdomen, which could cause severe or even fatal internal injuries in a crash.

SEATS AND RESTRAINT SYSTEMS

Infants and Young Children

Everyone in a vehicle needs protection. This includes infants and all other children. Neither the distance traveled nor the age and size of the traveler changes the need to use safety restraints. In fact, the law in every state in the United States and in every Canadian province says children up to some age must be restrained while in a vehicle.

Everytime infants and young children ride in vehicles, they should have the protection provided by appropriate restraints. Young children should not use the vehicle's adult safety belts alone, unless there is no other choice. Instead, they need to use a child restraint.

Never do this. Here two children are wearing the same belt. The belt can't properly spread the impact forces. If a crash occurs, the two children can be crushed together and severely injured. A belt must be used by only one person at a time.

People should never hold a baby in their arms while riding in a vehicle. A baby doesn't weigh much - until a crash occurs. During a crash a baby will become so heavy it is not possible to hold it. For example, it is crush at only 25 mph (40 kilometers) a 12-kg (26-lb) baby will suddenly become a 400-lb (180-kg) toss on a parent's arms. A baby should be secured in an appropriate restraint.
Q: What are the different types of add-on child restraints?

Add-on child restraints, which are purchased by the vehicle’s owner, are available in four basic types. Selection of a particular restraint should take into consideration not only the child’s weight, height and age, but also whether or not the restraint will be compatible with the motor vehicle in which it will be used.

For most basic types of child restraints, there are many different models available. When purchasing a child restraint, be sure it is designed to be used in a motor vehicle. If it is, the restraint will have a label saying that it meets federal motor vehicle safety standards.

Newborn infants need complete support, including support for the head and neck. This is necessary because a newborn infant’s neck is weak and the head weight so much compared with the rest of the body. In a crash, an infant in a rear-facing seat settles into the restraint, so the crash forces can be distributed across the strongest part of an infant’s body, the back and shoulders. Infants always should be secured in appropriate infant restraints.

Children who are up against or very close to, say, the air bag when it inflates can be severely injured or killed. Air bags plus lap-shoulder belts offer outstanding protection for adults and older children, but not for young children and infants. Neither the vehicle’s safety belt system nor the air bag system is designed for them. Young children and infants need the protection that a child restraint system can provide.

The restraint manufacturer’s instructions that come with the restraint state the weight and height limitations for a particular child restraint. In addition, there are many kinds of restraints available for children with special needs.

The body structure of a young child is quite unlike that of an adult or older child, for whom the safety belts are designed. A young child’s hips are still so small that the vehicle’s regular safety belt may not remain fastened on the hip bones, so it should instead. It may settle up around the child’s abdomen. In a crash, the belt would apply force on a body area that’s unattached by any bone structure. This alone could cause extensive or fatal injuries. Young children always should be secured in appropriate child restraints.

SEATS AND RESTRACEMENT SYSTEMS

Child Restraint Systems:

An infant car bed (A), a special bed made for use in a motor vehicle, is an infant restraint system designed to restrain or position a child on a continuous flat surface. Make sure that the infant’s head rests toward the center of the vehicle.

A rear-facing infant seat (B) provides restraint with the seating surface against the back of the infant. The harness system fastens the infant in place and, in a crash, helps to keep the infant positioned in the restraint.

A forward-facing child seat (C–E) provides restraint for the entire body with the harness and also can be used with surfaces such as T-shaped or shelf-like objects.
A booster seat (F-G) is a child restraint designed to improve the fit of the vehicle's safety belt system. Some booster seats have a shoulder belt positioner, and some high-back booster seats have a five-point harness. A booster seat can also help a child to see out the window.

Q: How do child restraints work?
A: A child restraint system is any device designed for use in a motor vehicle to restrain, seat, or position children. A built-in child restraint system is a permanent part of the motor vehicle. An add-on child restraint system is a portable one, which is purchased by the vehicle’s owner.

For many years, add-on child restraints have used the adult belt system in the vehicle. To help reduce the chance of injury, the child must be securely within the restraint. The vehicle's seat system places the shoulder belt restraint in the vehicle, and the add-on child restraint's harness system holds the child in place within the restraint.

One system, the three-point harness, has straps that cross-over over each shoulder, around the waist, and buckle together at the rear. The five-point harness system has two shoulder, one hip, and a chest strap. A child may take the place of his straps. A 3-point seat belt has shoulder straps that are attached to a belt that runs across the hips and back to the buckle at the rear.

When choosing a child restraint, be sure the seat restraint is designed to be used in a vehicle. If it is, it will have a label stating that it meets Federal Motor Vehicle Safety Standards.

Then follow the instructions for the restraint. You may find these instructions in a booklet, or on the restraint itself. These instructions are your guide to the instructions that came with the restraint. If you need help, ask your local dealership or a child restraint store, or call the customer service number for the manufacturer. The child restraint instructions are important, as well as the consumer.
SEATS AND RESTRAINT SYSTEMS

located at both sides of the luggage compartment floor.

4) Hook the top strap to the anchor bracket and tighten the top strap according to the instructions provided by the child restraint system manufacturer. Be sure to attach the top strap to the corresponding anchor located directly behind the child restraint.

Each top tether bracket is designed to anchor only one child restraint. Attaching more than one child restraint to a single bracket could cause the bracket to come loose or even break during a crash. A child or others could be injured if this happens. To help prevent injury to people and damage to your vehicle, attach only one child restraint per bracket.

5) When routing the top strap, be sure to pass it between the head restraint and the seat back as shown. (Refer to "Head Restraint" in this section for details on how to raise or lower the head restraint.)

6) Make sure that cargo does not interfere with routing of the top strap.

The slats are located near the base of the two rear outside seating positions.

Canada only

Lower Anchors and Top Tethers for Children (LATCH System)
Your vehicle has a LATCH system. You'll find anchors (A) in the rear outside seat positions.

To assist you in locating the lower anchors, each seating position with the LATCH system has a circular disk on the headrest at each lower anchor position.

BEATS AND WRESTRAINT SYSTEMS

Each top tether bracket is designed to anchor only one child restraint. Attaching more than one child restraint to a single bracket could cause the bracket to come loose or even break during a crash. A child or others could be injured if this happens. To help prevent injury to people and damage to your vehicle, attach only one child restraint per bracket.

Once you have the top strap attached, you'll be ready to acquire the child restraint itself. Tighten the top strap when and as the child restraint manufacturer's instructions say.

Top Strap Anchor Location
Top strap anchors are already installed in your vehicle for the three rear seating positions.

Do not use a child restraint with a top strap in the right front passenger’s position because there is no place to anchor the top strap.

You will find the anchors on your vehicle behind the rear seat on the floor panel. Pull the front part of the plastic cover upward to access the top strap anchors.

Securing a Child Restraint with Top Strap
Install the child restraint system as follows:

1) Remove the luggage compartment cover (if equipped).
2) Secure the child restraint on the rear seat using the procedure described in "Securing a Child Restraint in a Rear Seat Position" of this section.
3) Pull the front part of the plastic cover upward to access the top strap anchors.

For the Wagon model, open the plastic cover to access the center top strap anchor. Slide top strap anchors are
Securing a Child Restraint

Seat Belt Position

If your child restraint is equipped with the LATCH system, use "Lower Anchorage and Top Tethers for Children (LATCH System)" in this section. See "Top Strap" in this section if the child restraint has one.

If your child restraint does not have the LATCH system, you will be using the lap-shoulder belt to secure the child restraint in this position. Be sure to follow the instructions that came with the child restraint. Secure the child in the child restraint when and as the instructions say.

1. Put the restraint on the seat.
2. Pick up the latch plate, and run the lap and shoulder portions of the vehicle's safety belt through or around the restraint. The child restraint instructions will show you how.
3. Buckle the belt. Make sure the release button is positioned so you would be able to unbuckle the safety belt quickly if you ever had to.
4. Pull the rest of the shoulder belt all the way out of the retractor to set the lock.
5. To tighten the belt, feed the shoulder belt back into the retractor while you push down on the child restraint. If you're using a forward-facing child restraint, you may find it helpful to use your knees to push down on the child restraint as you tighten the belt.
6. Push and pull the child restraint in different directions to be sure it is secure.

To remove the child restraint, just unbuckle the vehicle's safety belt and let it go back all the way. The safety belt will move freely and be ready to work for an adult or larger child passenger.
Securing a Child Restraint in the Right Front Seat Position

Your vehicle has a right front passenger air bag. A rear seat is a safer place to secure a child restraint. See "Where to Put the Restraint" in this section.

In addition, your vehicle has a passenger sensing system. The passenger sensing system is designed to turn off the right front passenger air bag under certain conditions, as described in this section. See "Passenger Sensing System" and "Manual Seatbelts" in this section for more information on this feature and the information it provides.

1) Your vehicle has a right front passenger air bag. See "Passenger Sensing System" in this section. Always secure a rear-facing child restraint in the rear seat, even if the air bag is off. If your child restraint is forward-facing, move the seat as far back as it will go to secure the child restraint in this section. See "Manual Seatbelts" in this section.

When the passenger sensing system has turned off the right front passenger air bag, the passenger air bag off indicator should light. See "Passenger Sensing System" in this section.

A thick layer of additional material such as a blanket, or aftermarket equipment such as seat covers, brackets or accessories, located between the seat cushion and the child restraint or adult occupant, can affect how the passenger sensing system operates. If you have any additional material from the seat cushion before installing the child restraint or adult occupant.

2) Put the child restraint on the seat.

3) Pick up the latch plate, and run the lap and shoulder portions of the vehicle's safety belt through the proper portion of the restraint. The child restraint instructions will show you how.

Securing a Child Restraint in the Right Front Seat Position

A child in a rear-facing child restraint can be severely injured or killed if the right front passenger's frontal air bag inflates. This is because the back of the rear-facing child restraint would be very close to the inflating air bag. Even though the passenger sensing system is designed to turn off the passenger's frontal air bag under certain conditions, we recommend that children be secured in the rear seat, even if the air bag is off. Always secure a rear-facing child restraint in the rear seat, even if the air bag is off.

4) Buckle the belt. Make sure the release button is positioned so you would be able to unbuckle the safety belt quickly if ever needed.

5) Pull the rest of the safety belt all the way out of the retractor to set the lock.

6) To tighten the belt, feed the shoulder belt back into the retractor while you push down on the child restraint. You may need help to use your knees to push down on the child restraint as you tighten the belt.

7) Push and pull the child restraint in different directions to be sure it is secure.

8) If the air bag is off, the passenger air bag off indicator located in the clock display in the center of the instrument panel will be lit.

To remove the child restraint, just unbuckle the vehicle's safety belt and let it go back all the way. The safety belt will move freely again and be ready to work for an adult or larger child passenger.

Supplemental Restraint System (air bags)

This section explains the frontal and side impact air bag systems.

This section of the owner's manual describes the protection provided by your vehicle's SUPPLEMENTAL RESTRAINT SYSTEM (air bags). Please read and follow ALL the instructions carefully to minimize your risk of serious injury or death in the event of an accident.

Your vehicle has an advanced frontal air bag for the driver and an advanced frontal air bag for the right front passenger. Your vehicle also has side impact air bags for the driver and right front passenger.

Your vehicle is equipped with a Supplemental Restraint System consisting of the following components in addition to a lap-shoulder belt at each front seating position.

The Supplemental Restraint System includes:

- Frontal air bags for the driver and right front passenger
- Side impact air bags for the driver and right front passenger
- Knee air bags for the driver
- Supplemental air bags for seat-mounted side impact protection
APPENDIX B
MANUFACTURER'S DATA
SEAT REFERENCE POINT (SRP) AND TORSO ANGLE DATA
FOR FMVSS 225
(All dimensions in mm)

Model Year: 2005; Make: Suzuki; Model: Forenza; Body Style: 4-Door Notchback Sedan
Seat Style: Front row: Bucket; Second row: Bench; Third row: ———

[Diagram of seat reference point (SRP) and torso angle data]

Driver's Seat Front Outboard Seat Adjuster Anchorage

LEFT SIDE VIEW OF TEST VEHICLE
<table>
<thead>
<tr>
<th>Torso Angle (degree)</th>
<th>Front Row</th>
<th>Second Row</th>
<th>Third Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>(Driver) 213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>78</td>
<td>80</td>
<td>78</td>
</tr>
<tr>
<td>A3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>323</td>
<td>-</td>
<td>323</td>
</tr>
<tr>
<td>C</td>
<td>1139</td>
<td>1109</td>
<td>1139</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: 1. All dimensions are in mm. If not, provide the unit used.
SEATING REFERENCE POINT
FOR FMVSS 225
(All dimensions in mm)

Model Year: 2005 ; Make: Suzuki ; Model: Forenza ; Body Style: 4-Door Notchback Sedan
Seat Style: Front row: Bucket ; Second row: Bench ; Third row:

Front

Second

Third

Driver's seat front outboard seat adjuster anchorage
Table 2. Seating Reference Point and Tether Anchorage Locations

<table>
<thead>
<tr>
<th>Seating Reference Point (SRP)</th>
<th>Distance from Driver’s front outboard seat adjuster anchorage¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>323</td>
</tr>
<tr>
<td>E1</td>
<td>240</td>
</tr>
<tr>
<td>B2</td>
<td>-</td>
</tr>
<tr>
<td>E2</td>
<td>-</td>
</tr>
<tr>
<td>B3</td>
<td>323</td>
</tr>
<tr>
<td>E3</td>
<td>940</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>1139</td>
</tr>
<tr>
<td>F1</td>
<td>255</td>
</tr>
<tr>
<td>C2</td>
<td>1109</td>
</tr>
<tr>
<td>F2</td>
<td>596</td>
</tr>
<tr>
<td>C3</td>
<td>1139</td>
</tr>
<tr>
<td>F3</td>
<td>925</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>-</td>
</tr>
<tr>
<td>G1</td>
<td>-</td>
</tr>
<tr>
<td>D2</td>
<td>-</td>
</tr>
<tr>
<td>G2</td>
<td>-</td>
</tr>
<tr>
<td>D3</td>
<td>-</td>
</tr>
<tr>
<td>G3</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: 1. Use the center of anchorage.
TETHER ANCHORAGE LOCATIONS
FOR FMVSS 225
(All dimensions in mm)

Model Year: 2005; Make: Suzuki; Model: Forenza; Body Style: 4-Door Notchback Sedan
Seat Style: Front row: Bucket; Second row: Bench; Third row: _______

Diagram:

Note: 1. The location shall be measured at the center of the bar.
<table>
<thead>
<tr>
<th>Seating Reference Point (SRP)</th>
<th>Distance from SRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>N/A</td>
</tr>
<tr>
<td>K1</td>
<td>N/A</td>
</tr>
<tr>
<td>H2</td>
<td>N/A</td>
</tr>
<tr>
<td>K2</td>
<td>N/A</td>
</tr>
<tr>
<td>H3</td>
<td>N/A</td>
</tr>
<tr>
<td>K3</td>
<td>N/A</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>1008</td>
</tr>
<tr>
<td>L1</td>
<td>0</td>
</tr>
<tr>
<td>L2</td>
<td>1035</td>
</tr>
<tr>
<td>L2</td>
<td>0</td>
</tr>
<tr>
<td>L3</td>
<td>1006</td>
</tr>
<tr>
<td>L3</td>
<td>0</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>N/A</td>
</tr>
<tr>
<td>M1</td>
<td>N/A</td>
</tr>
<tr>
<td>J2</td>
<td>N/A</td>
</tr>
<tr>
<td>M2</td>
<td>N/A</td>
</tr>
<tr>
<td>J3</td>
<td>N/A</td>
</tr>
<tr>
<td>M3</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: 1. Use the center of anchorage.
TETHER ANCHORAGE LOCATIONS - VERTICAL
FOR FMVSS 225
(All dimensions in mm)

Model Year: 2005 ; Make: Suzuki ; Model: Forenza ; Body Style: 4-Door Notchback Sedan
Seat Style: Front row: Bucket ; Second row: Bench ; Third row:

Vehicle Roofpan

LEFT SIDE VIEW OF TEST VEHICLE
<table>
<thead>
<tr>
<th>Seating Row</th>
<th>Vertical Distance from Seating Reference Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Row</td>
<td></td>
</tr>
<tr>
<td>N1 (Driver)</td>
<td>N/A</td>
</tr>
<tr>
<td>N2 (Center)</td>
<td>N/A</td>
</tr>
<tr>
<td>N3 (Right)</td>
<td>N/A</td>
</tr>
<tr>
<td>Second Row</td>
<td></td>
</tr>
<tr>
<td>O1 (Left)</td>
<td>114</td>
</tr>
<tr>
<td>O2 (Center)</td>
<td>61</td>
</tr>
<tr>
<td>O3 (Right)</td>
<td>114</td>
</tr>
<tr>
<td>Third Row</td>
<td></td>
</tr>
<tr>
<td>P1 (Left)</td>
<td>N/A</td>
</tr>
<tr>
<td>P2 (Center)</td>
<td>N/A</td>
</tr>
<tr>
<td>P3 (Right)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: 1. All dimensions are in mm. If not, provide the unit used.
Test Procedures Used for Compliance Tests

Tether Anchorages

<table>
<thead>
<tr>
<th>Seating Location</th>
<th>FMVSS Section(s) - Req.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td></td>
</tr>
<tr>
<td>Driver</td>
<td>N/A</td>
</tr>
<tr>
<td>Center (if any)</td>
<td>N/A</td>
</tr>
<tr>
<td>Right (if any)</td>
<td>N/A</td>
</tr>
<tr>
<td>Second</td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>6.2.1, 6.3.1, 94.4</td>
</tr>
<tr>
<td>Center</td>
<td>6.2.1, 6.3.1, 94.4</td>
</tr>
<tr>
<td>Right (if any)</td>
<td>6.2.1, 6.3.1, 94.4</td>
</tr>
<tr>
<td>Third</td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>N/A</td>
</tr>
<tr>
<td>Center</td>
<td>N/A</td>
</tr>
<tr>
<td>Right</td>
<td>N/A</td>
</tr>
<tr>
<td>Fourth</td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>N/A</td>
</tr>
<tr>
<td>Center</td>
<td>N/A</td>
</tr>
<tr>
<td>Right</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Lower Anchorages

<table>
<thead>
<tr>
<th>Seating Location</th>
<th>FMVSS Section(s) - Req.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td></td>
</tr>
<tr>
<td>Driver</td>
<td>N/A</td>
</tr>
<tr>
<td>Center (if any)</td>
<td>N/A</td>
</tr>
<tr>
<td>Right (if any)</td>
<td>N/A</td>
</tr>
<tr>
<td>Second</td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>94.4</td>
</tr>
<tr>
<td>Center</td>
<td>N/A</td>
</tr>
<tr>
<td>Right</td>
<td>94.4</td>
</tr>
<tr>
<td>Third</td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>N/A</td>
</tr>
<tr>
<td>Center</td>
<td>N/A</td>
</tr>
<tr>
<td>Right</td>
<td>N/A</td>
</tr>
<tr>
<td>Fourth</td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>N/A</td>
</tr>
<tr>
<td>Center</td>
<td>N/A</td>
</tr>
<tr>
<td>Right</td>
<td>N/A</td>
</tr>
</tbody>
</table>
For each anchorage system, provide the following information:

1. **Lower Anchorage Dimensions**: Whether the anchorages are certified with S15.1.2.1 of FMVSS No. 225.

 O.K.

2. **Lower Anchorage Location**: Whether the anchorages are certified with S15.1.2.2 of FMVSS No. 225. If the anchorages are certified with S15.1.2.2, provide the pitch, roll, and yaw angles.

 Roll: -1.1° (RH) / +0.9° (LH) / Pitch: +10.3° (RH) / +10.4° (LH)

 Yaw: +0.9° (RH) / +0.9° (LH)

3. **Lower Anchorage Marking and Conspicuity**: Whether the anchorages are certified with S15.4 of FMVSS No. 225. If guidance fixtures are used, provide the location of the seating systems that are equipped with the guidance fixture.

Lower Anchorage Marking and Conspicuity

- ISOFIX circle markings with pictogram are used.

 (4EA/vehicle, material:ABS)

- Above Picture shows the location of marking in the seat
4. Location of Tether Anchorage: Applicable section of FMVSS No. 225 for the option used for its certification.

Above Picture shows the locations of Tether Anchor in the vehicle.

5. Number of Tether Anchorage: Applicable section of FMVSS No. 225 for the option used for its certification

3 Point
APPENDIX C
LABORATORY NOTICE OF TEST FAILURE
LABORATORY NOTICE OF TEST FAILURE TO OVSC

FMVSS NO.: 225 TEST DATE: 08/10/05

LABORATORY: General Testing Laboratories, Inc.

CONTRACT NO.: DTNH22-02-D-01043 DELV. ORDER NO.:

LABORATORY PROJECT ENGINEER'S NAME: Grant Farrand

TEST VEHICLE MAKE/MODEL/BODY STYLE: 2005 Suzuki Forenza

VEHICLE NHTSA NO.: C50505 VIN: KL5JD56Z15K080227

VEHICLE MODEL YEAR: 2005 BUILD DATE: 08/04

TEST FAILURE DESCRIPTION: The lower child restraint anchor bars for the 2nd row seating positions are more than 70 mm behind point Z when measured with the CRF. (Anchors measure 75 mm).

S225 REQUIREMENT, PARAGRAPH S15.1.2.2(1): Not more than 70 mm behind point Z of the CRF.

NOTIFICATION TO NHTSA (COTR): Amanda Prescott

DATE: 08/10/05 BY: Grant Farrand

REMARKS: