REPORT NUMBER: 201-CAL-05-02

SAFETY COMPLIANCE TESTING FOR FMVSS 201
OCCUPANT PROTECTION IN INTERIOR IMPACT

FORD MOTOR COMPANY
2005 FORD FREESTYLE

NHTSA NUMBER: CS0205
CALSPAN TEST NUMBER: 8655-P201-30

CALSPAN
TRANSPORTATION SCIENCES CENTER
P.O. BOX 490
BUFFALO, NEW YORK 14225

Test Date: June 16, 2005
FINAL REPORT

PREPARED FOR:

U. S. DEPARTMENT OF TRANSPORTATION
National Highway Traffic Safety Administration
Enforcement
Office of Vehicle Safety Compliance
Mail Code: NVS-226, Room 6111
400 Seventh Street, SW
Washington, DC 20590
Technical Report Standard Title Page

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>201-CAL-05-02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Title and Subtitle</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5. Report Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 28, 2005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Performing Organization Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>David J. Travale, Program Manager</td>
</tr>
<tr>
<td>James Czarnowski, Project Engineer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8655-F201-30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. Performing Organization Name and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calypso</td>
</tr>
<tr>
<td>4455 Genesee Street</td>
</tr>
<tr>
<td>Buffalo, New York 14225</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Work Unit No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Contract or Grant No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTNH22-01-C-01025</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Sponsoring Agency Name and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Department of Transportation</td>
</tr>
<tr>
<td>Office of Vehicle Safety Compliance</td>
</tr>
<tr>
<td>Mail Code: NVS-220</td>
</tr>
<tr>
<td>400 Seventh, SW, Room 6111</td>
</tr>
<tr>
<td>Washington, D.C. 20590</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Type of Report and Period Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Report</td>
</tr>
<tr>
<td>JUNE -- JULY 2005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NVS-220</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Supplementary Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliance tests were conducted on the subject vehicle, a 2005 Ford Freestyle, in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure TP-201-02 for determination of FMVSS 201 compliance. Test failures identified were as follows: None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Key Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliance Testing</td>
</tr>
<tr>
<td>Safety Engineering</td>
</tr>
<tr>
<td>FMVSS 201</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Distribution Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copies of this report are available from: NHTSA Technical Reference Division National Highway Traffic Safety Admin. 400 Seventh St., SW, Washington, DC 20590</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. Security Classification (of this report)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNCLASSIFIED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. Security Classification (of this page)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNCLASSIFIED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>21. No. of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>22. Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PURPOSE AND TEST PROCEDURE</td>
<td>1-1</td>
</tr>
<tr>
<td>2</td>
<td>SUMMARY OF OCCUPANT PROTECTION INTERIOR IMPACTS</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>APPENDIX A PHOTOS</td>
<td>A-1</td>
</tr>
<tr>
<td></td>
<td>APPENDIX B INTERIOR COMPARTMENT CALCULATIONS</td>
<td>B-1</td>
</tr>
<tr>
<td></td>
<td>APPENDIX C DATA PLOTS</td>
<td>C-1</td>
</tr>
</tbody>
</table>
LIST OF DATA SHEETS

<table>
<thead>
<tr>
<th>DATA SHEET</th>
<th>DESCRIPTION</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>TEST VEHICLE RECEIVING INSPECTION DATA SHEET</td>
<td>2-2</td>
</tr>
<tr>
<td>2-2</td>
<td>HEADFORM IMPACT TEST RESULTS INSTRUMENT PANEL</td>
<td>2-3</td>
</tr>
<tr>
<td>2-3</td>
<td>HEADFORM IMPACT TEST RESULTS SEAT BACKS</td>
<td>2-4</td>
</tr>
<tr>
<td>2-4</td>
<td>SUN VISOR AND ARMREST EVALUATION</td>
<td>2-5</td>
</tr>
<tr>
<td>2-5</td>
<td>DOOR LATCH EVALUATION</td>
<td>2-6</td>
</tr>
<tr>
<td>2-6</td>
<td>SUMMARY OF RESULTS</td>
<td>2-7</td>
</tr>
</tbody>
</table>
SECTION I

PURPOSE AND TEST PROCEDURE

This head impact compliance test is part of the FMVSS 201, Occupant Protection in Interior Impact, Test Program sponsored by the National Highway Traffic Safety Administration (NHTSA) under Contract No. DTNH22-01-C-01025. The purpose of this impact compliance test was to determine whether the subject vehicle, a 2003 Ford Freestyle, NHTSA No. C50205, meets the performance requirements of FMVSS 201, Occupant Protection in Interior Impact. The compliance test was conducted using the requirements found in the GVSC Laboratory Test Procedure No. TP-201-02 dated March 3, 1989.
SECTION 2

SUMMARY OF OCCUPANT PROTECTION IN INTERIOR IMPACTS

A 2003 Ford Freestyle, NHTSA No. C50205, was impacted at various locations throughout its instrument cluster/dash panel and seat back area by a 15 lb, 6.5 inch diameter steel headform. A total of four (4) impacts were performed in this test series. The target area impacts were chosen by the NHTSA Contracting Officer's Technical Representative (COTR). The four (4) chosen impact points were:

- Seat Back / Head Retractnt Area
- Instrument Panel Cluster Area
- Airbag Cover / Dash Panel Area (2 impacts)

The selected impact areas on the test vehicle appeared to comply with the performance requirements of FMVSS 201.

The 6.5 inch diameter steel headform weighed 15 lb and had an accelerometer mounted along the centerline of the head.

One (1) channel of data for each target impact test was recorded on a Keyser-Throte data acquisition system. Data plots can be found in Appendix C along with still photographs can be found in Appendix A of this report.

To document each target area impact test, a digital picture was taken pre- and post-test at various locations to view the headform contact with the selected target areas.
TEST VEHICLE RECEIVING INSPECTION DATA SHEET

<table>
<thead>
<tr>
<th>VEHICLE YEAR/MAKE/MODEL/STYLE:</th>
<th>2005 Ford Freestyle</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHTSA NO.:</td>
<td>CS021S</td>
</tr>
<tr>
<td>VIN:</td>
<td>1FMZK011S5GA30899</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>01/05 (SEE CERTIFICATION LABEL)</td>
</tr>
<tr>
<td>COLOR:</td>
<td>Red</td>
</tr>
<tr>
<td>ODOMETER READING:</td>
<td>25</td>
</tr>
<tr>
<td>LABORATORY:</td>
<td>Calspan</td>
</tr>
<tr>
<td>TEST DATE:</td>
<td>June 16, 2005</td>
</tr>
</tbody>
</table>

NUMBER OF SEATING POSITIONS:

 FRONT: 2 REAR: 3

INSTRUMENT PANEL:

 NOTE UNUSUAL FEATURES: None

TYPE OF FRONT SEATS:

 BENCH: - BUCKET: X SPLIT BACKS: -

TYPE OF HEAD RESTRAINTS:

 FIXED: - ADJUSTABLE: X

VEHICLE EQUIPPED WITH ARMRESTS?

 NO: - YES: X NUMBER: 3

 LOCATION: Front and rear door panels and center console arm rest

VEHICLE EQUIPPED WITH SUN VISORS?

 NO: - YES: X

VEHICLE EQUIPPED WITH INTERIOR DOOR LATCHES?

 NO: - YES: X NUMBER: 5

 LOCATION: Glove Box, Top Center Storage Bin, Front Seat Overhead Console, Front Seat Floor Console, and Rear (2nd Row) Seat Floor Console
HEADFORM IMPACT TEST RESULTS
INSTRUMENT PANEL

<table>
<thead>
<tr>
<th>VEHICLE YEAR/MAKE/MODEL/STYLE:</th>
<th>2005 Ford Freestyle</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHTSA NO.:</td>
<td>C50205</td>
</tr>
<tr>
<td>VIN:</td>
<td>1FMZK0115GA30899</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>01/05 (SEE CERTIFICATION LABEL)</td>
</tr>
<tr>
<td>COLOR:</td>
<td>Red</td>
</tr>
<tr>
<td>ODOMETER READING:</td>
<td>25</td>
</tr>
<tr>
<td>LABORATORY:</td>
<td>Calspan</td>
</tr>
<tr>
<td>TEST DATE:</td>
<td>June 16, 2005</td>
</tr>
</tbody>
</table>

IMPACT LOCATION AND NUMBER

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>X (inches)</th>
<th>Y (inches)</th>
<th>ANGLE (degrees)</th>
<th>VELOCITY (mph)</th>
<th>PEAK ACCELERATION (3 ms Clip) Gs</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP1 Center cluster air vent</td>
<td>24.25</td>
<td>12.75</td>
<td>-12</td>
<td>11.70</td>
<td>40.62</td>
</tr>
<tr>
<td>IP2 Airbag Seam, Left Side, Bottom</td>
<td>26.50</td>
<td>4.25</td>
<td>-68</td>
<td>11.41</td>
<td>51.40</td>
</tr>
<tr>
<td>IP3 Airbag Seam, Right Side, Bottom</td>
<td>26.25</td>
<td>4.25</td>
<td>-68</td>
<td>11.58</td>
<td>55.28</td>
</tr>
</tbody>
</table>

REFERENCE POINT: Seating Reference Position (SgRP) on front outboard passenger designated seating position is the reference point (x positive forward of SgRP and y positive right of SgRP).

REMARKS: None
HEADFORM IMPACT TEST RESULTS
SEAT BACKS

VEHICLE YEAR/MAKE/MODEL/STYLE: 2005 Ford Freestyle
NHTSA NO.: CS0205
VIN: 1FMZK01115GA30899
DATE OF MANUFACTURE: 01/05 (SEE CERTIFICATION LABEL)
COLOR: Red
ODOMETER READING: 25
LABORATORY: Calspan
TEST DATE: June 16, 2005

<table>
<thead>
<tr>
<th>IMPACT LOCATION AND NUMBER</th>
<th>VELOCITY (mph)</th>
<th>PEAK ACCELERATION (3 ms Clipped Gs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB1 Seat Back</td>
<td>15.5</td>
<td>0</td>
</tr>
</tbody>
</table>

REFERENCE POINT: SgRP on rear outboard passenger designated seating position is the reference point
(x positive forward of SgRP and y positive right of SgRP).
SUN VISOR AND ARMREST EVALUATION

<table>
<thead>
<tr>
<th>VEHICLE YEAR/MAKE/MODEL/STYLE:</th>
<th>2005 Ford Freestyle</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHTSA NO.:</td>
<td>C50205</td>
</tr>
<tr>
<td>VIN:</td>
<td>1FMZK01156GA30889</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>01/05 (SEE CERTIFICATION LABEL)</td>
</tr>
<tr>
<td>COLOR:</td>
<td>Red</td>
</tr>
<tr>
<td>ODOMETER READING:</td>
<td>25</td>
</tr>
<tr>
<td>LABORATORY:</td>
<td>Calspan</td>
</tr>
<tr>
<td>TEST DATE:</td>
<td>June 16, 2005</td>
</tr>
</tbody>
</table>

SUN VISOR INFORMATION:

1. Are sun visors constructed of or covered with energy absorbing material?

 YES (PASS): X NO (FAIL): -

2. Are any edges statically contactable by a spherical 6.5 inch diameter headform of radius less than 0.125 inch?

 YES (FAIL): - NO (PASS): X

ARMREST INFORMATION:

A. FIXED ARMREST

1. Is it constructed of energy absorbing material with the capability of laterally deflecting 2 inches without contacting any underlying rigid material?

 YES: N/A NO: N/A

2. Is it constructed of energy absorbing material that deflects or collapses within 1.25 inches of the rigid test panel surface without contacting underlying rigid material between 0.50 and 1.25 inches from the panel which has a vertical height of less than 1 inch?

 YES: N/A NO: N/A

3. Does it provide adequate pelvic area impact protection?

 YES: X NO: -

4. Does it meet at least one of the criteria No. 1 to 3?

 YES (PASS): X NO (FAIL): -

B. FOLDING ARMREST

Is it made of or covered with energy absorbing material? Or does it meet at least one of the criteria No. 1 to 3?

YES (PASS): X NO (FAIL): -
DOOR LATCH EVALUATION

<table>
<thead>
<tr>
<th>VEHICLE YEAR/MAKE/MODEL/STYLE:</th>
<th>2005 Ford Freestyle</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHTSA NO.:</td>
<td>CS0205</td>
</tr>
<tr>
<td>VIN:</td>
<td>1FMZK011S5GA30899</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>01/05 (SEE CERTIFICATION LABEL)</td>
</tr>
<tr>
<td>COLOR:</td>
<td>Red</td>
</tr>
<tr>
<td>ODOMETER READING:</td>
<td>75</td>
</tr>
<tr>
<td>LABORATORY:</td>
<td>Calspan</td>
</tr>
<tr>
<td>TEST DATE:</td>
<td>June 16, 2005</td>
</tr>
</tbody>
</table>

LATCH ENGAGEMENT INTERFERENCE

<table>
<thead>
<tr>
<th>DESCRIPTION OF LATCH LOCATION</th>
<th>NO LOAD</th>
<th>10G HORIZONTAL TRANSVERSE</th>
<th>10G VERTICAL</th>
<th>30G HORIZONTAL LONGITUDINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glove Box</td>
<td>PASS</td>
<td>PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>Top Center Storage Bin</td>
<td>PASS</td>
<td>PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>Front Seat Overhead Console</td>
<td>PASS</td>
<td>PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>Front Seat Floor Console</td>
<td>PASS</td>
<td>PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>Rear (2nd Row) Seat Floor Console</td>
<td>PASS</td>
<td>PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
</tbody>
</table>

(APPENDIX B CONTAINS CALCULATION SHEETS ARE BASED ON MANUFACTURER'S DATA)
SUMMARY OF RESULTS

<table>
<thead>
<tr>
<th>VEHICLE YEAR/MAKE/MODEL/STYLE:</th>
<th>2005 Ford Freestyle</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHTSA NO.:</td>
<td>CS0205</td>
</tr>
<tr>
<td>VIN:</td>
<td>1FMZK01115GA30899</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>01/05 (SEE CERTIFICATION LABEL)</td>
</tr>
<tr>
<td>COLOR:</td>
<td>Red</td>
</tr>
<tr>
<td>ODOMETER READING:</td>
<td>25</td>
</tr>
<tr>
<td>LABORATORY:</td>
<td>Calspan</td>
</tr>
<tr>
<td>TEST DATE:</td>
<td>June 16, 2005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>NUMBER OF IMPACTS</th>
<th>PASS/FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTRUMENT PANEL</td>
<td>3</td>
<td>PASS</td>
</tr>
<tr>
<td>SEAT BACK</td>
<td>1</td>
<td>PASS</td>
</tr>
<tr>
<td>SUN VISORS</td>
<td>N/A</td>
<td>PASS</td>
</tr>
<tr>
<td>ARMRESTS</td>
<td>N/A</td>
<td>PASS</td>
</tr>
<tr>
<td>INTERIOR COMPARTMENT DOORS</td>
<td>N/A</td>
<td>PASS</td>
</tr>
</tbody>
</table>

REMARKS:
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>VIEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>LEFT SIDE VIEW OF VEHICLE</td>
</tr>
<tr>
<td>A-2</td>
<td>RIGHT SIDE VIEW OF VEHICLE</td>
</tr>
<tr>
<td>A-3</td>
<td>3/4 FRONTAL VIEW FROM LEFT SIDE OF VEHICLE</td>
</tr>
<tr>
<td>A-4</td>
<td>3/4 REAR VIEW FROM RIGHT SIDE OF VEHICLE</td>
</tr>
<tr>
<td>A-5</td>
<td>VEHICLE'S CERTIFICATION LABEL</td>
</tr>
<tr>
<td>A-6</td>
<td>VEHICLE'S Tire INFORMATION LABEL</td>
</tr>
<tr>
<td>A-7</td>
<td>SUN VISOR CONSTRUCTION</td>
</tr>
<tr>
<td>A-8</td>
<td>ARMREST LEFT FRONT DOOR</td>
</tr>
<tr>
<td>A-9</td>
<td>ARMREST FRONT CONSOLE</td>
</tr>
<tr>
<td>A-10</td>
<td>ARMREST LEFT REAR DOOR</td>
</tr>
<tr>
<td>A-11</td>
<td>INSTRUMENT PANEL</td>
</tr>
<tr>
<td>A-12</td>
<td>DELINEATED INSTRUMENT PANEL IMPACT ZONE PRE-TEST</td>
</tr>
<tr>
<td>A-13</td>
<td>DELINEATED INSTRUMENT PANEL IMPACT ZONE POST-TEST</td>
</tr>
<tr>
<td>A-14</td>
<td>INSTRUMENT PANEL LEFT SIDE AIRBAG COVER IMPACT PRE-TEST</td>
</tr>
<tr>
<td>A-15</td>
<td>INSTRUMENT PANEL LEFT SIDE AIRBAG COVER IMPACT POST-TEST</td>
</tr>
<tr>
<td>A-16</td>
<td>INSTRUMENT PANEL RIGHT SIDE AIRBAG COVER IMPACT PRE-TEST</td>
</tr>
<tr>
<td>A-17</td>
<td>INSTRUMENT PANEL RIGHT SIDE AIRBAG COVER IMPACT POST-TEST</td>
</tr>
<tr>
<td>A-18</td>
<td>INSTRUMENT PANEL ABOVE CENTER CLUSTER VENT IMPACT PRE-TEST</td>
</tr>
<tr>
<td>A-19</td>
<td>INSTRUMENT PANEL ABOVE CENTER CLUSTER VENT IMPACT POST-TEST</td>
</tr>
<tr>
<td>A-20</td>
<td>HEAD RESTRAINT</td>
</tr>
<tr>
<td>A-21</td>
<td>HEAD RESTRAINT IMPACT AREA PRE-TEST</td>
</tr>
<tr>
<td>A-22</td>
<td>HEAD RESTRAINT IMPACT AREA POST-TEST</td>
</tr>
</tbody>
</table>
APPENDIX B

INTERIOR COMPARTMENT DOOR CALCULATIONS
Latch component analysis information for each interior compartment door assembly located in an instrument panel, console assembly, seat, back, or side panel or windshield, described herein shall be submitted in accordance with the procedures described in clauses 2.2.7.1-2.7.2.2 of the referenced Service Manual "Passenger Car Side Door Latch Systems".

Such data shall include:

1. Geometric details of the latch mechanism configuration.

 Vehicle Location of Glove Box Latch - Left Side View
2. Mass data for each element in the linkage:
 Latch Handle: 0.050 kg
 Latch Plate: 0.000 kg
 Mass of spring: 0.000837 kg

3. Spring rates for each spring element in the configuration:
 Spring Plate: 1.697 N/mm (note: this is the only spring in this design)
 Free spring length: 24.8 mm
 Installed spring length: 91.8 mm
 Compressed spring length: 17.5 mm

4. Any additional details unique to the design yet necessary for the calculations.
 None.
2006 - D219 / D258
Glove compartment latch strength verification - F/CMVSS 201

Introduction

Interior compartment doors and latches are required to stay closed/latched when subjected to 10G vertical, 10G transverse and 30G longitudinal loads (Paragraphs (a) and (c) of FMVSS 201, 55.3.1 Interior Compartment Doors). There are two parts to the analysis of an interior compartment door assembly. Part 1) analysis of the latch separately, and Part 2) analysis of the entire interior compartment door system. In the first part the latch is examined by itself to see whether the inertial loads will cause sufficient opening moments about the latch’s pivot point due to the forces of its own inertia, to cause unlatching. The second part is an examination of the ultimate strength of the latch in its environment, i.e. the inertial effects on the interior compartment door cause opening moments about point H (the hinge pivot), and opening forces at the latch. Pull tests are done and compared to the forces generated at the latch by the inertial loads. If the latch withstands a greater laboratory static load than is generated by the inertial loads, the latch and interior compartment door system comply with the requirements of the regulation.

Objective:

Verify that the glove compartment door and its latch meet the requirements of F/CMVSS 201.

Definitions:

\[W = \text{weight of the compartment door or latch.} \]
\[m = \text{mass of the compartment door or latch.} \]
\[CG = \text{center of gravity of the moving part or latch.} \]
\[\Sigma M_H = \text{sum of moments about the compartment door hinge point or latch pivot point.} \]
\[F_{100} = \text{vertical 10G inertial load acting on the CG of the compartment door or latch.} \]
\[F_{300} = \text{longitudinal 30G inertial load acting on the CG of the compartment door or latch.} \]
\[F_1 = \text{calculated force at the pull test location that generates the equivalent opening moment about the latch pivot point due to the inertial loads in Part 1.} \]
\[F_2 = \text{calculated force at the pull test location that generates the equivalent opening moment about the compartment door hinge point due to the inertial loads in Part 2.} \]
\[F_{\text{min}} = \text{minimum force that holds the compartment door closed.} \]
\[F_{op} = \text{moment arm of the weight of the compartment door or latch measured from the door hinge point or the latch pivot point respectively.} \]
\[L_{100} = \text{moment arm of the vertical 10G inertial load measured from the door hinge point or the latch pivot point.} \]
\[L_{200} = \text{moment arm of the longitudinal 30G inertial load measured from the door hinge point or the latch pivot point.} \]
\[L_1 = \text{moment arm of the force, } F_1, \text{ measured from the latch pivot point.} \]
\[L_2 = \text{moment arm of the force, } F_2, \text{ measured from the door hinge point.} \]

Part 1: Analysis of latch by itself
The D219 and D258 have the same glove box and latch system. The latch is supplied by NYX, Inc. and is carry-over from the U222. Reference the attached inertial analysis done by NYX, Inc. on the glove compartment latch for the 2003 MY U222.

Part 2: Analysis of entire interior compartment door system

For Part 2, both the 10G vertical load and 30G longitudinal load will cause opening moments about the hinge pivot point. The 10G transverse load does not cause any opening moments in this case. The 30G longitudinal load is the worst case in this instance and is the only scenario examined in this package. Refer to the illustration on page 4 throughout this analysis.

Calculations:

\[W = 2.77 \text{ lbs (12.32 N)} \]
\[\text{Mass} = 1.255 \text{ kg} \]

30G longitudinal load:

Opening moments due to inertia through the CG about Point H.

\[\sum M_H = F_{30G}L_{30G} + WL_{CG} \]
\[\sum M_H = \text{mass} \cdot (30 \text{g}) \cdot L_{30G} + WL_{CG} \]
\[\sum M_H = (1.255 \text{ kg})(30)(9.81)(76.92 \text{ mm}) + (12.32 \text{ N})(24.0 \text{ mm}) \]
\[\sum M_H = 28705.8N \text{ N-mm} \]

10G vertical load:

The 30G longitudinal load case above is the worst case for this analysis (causes the highest opening moments about the hinge pivot) and is the only case examined in this evaluation.

\[M_H \] is the total opening moment that would be generated at Point H by an applied 30G longitudinal load.

A single force is assumed acting through the pull test location that generates the equivalent opening moment due to the 30G longitudinal load acting through the CG of the assembly, the worst case. This force will be the minimum force (adjusted from the center of gravity up to the pull location) that the latch must be designed to withstand in order to prevent the opening event due to the inertial load.

Summing the moments about the hinge point
\[\sum M_y = F_1 L_2 \]
\[F_1 L_2 = \sum M_y \]
\[F_1 L_2 = 28705.8N - m \]
\[F_2 = \frac{28705.8N - m}{209.5mm} \]
\[F_2 = 137.0N \]
\[F_2 = 30.8lbs \]

Conclusion

\(F_2 \), the calculated force acting at the designated test location, that generates the equivalent opening moments as a 30 G longitudinal load, is 137.0 N. Therefore, the latch must be designed so that \(P_{eq} \) is greater than \(F_2 \).

Test verification:

A pull test on the U222 system (same latch) resulted in an ultimate load of 680 N at which point the striker wire-form pulled free of the glove box latch. There was no apparent damage to the latch, and it still functioned properly. This ultimate load results in a Design factor of \(680 / 137.0 = 4.96 \).
Latch component inertial analysis information for each interior compartment door assembly located in instrument panel, console assembly, seat back, or side panel assembly. The design must be evaluated in accordance with the procedure described in section 5 of NASA Recommended Practice J8860: 'Passenger Car Side Door Latch Systems.'

Such data shall include:

1. Geometry details of the latch lock configuration.

[Diagram of latch lock configuration]
3. Read data for each element in the design:

- Push button: 5.091 kg
- Latch hook: 3.005 kg

4. Spring rates for each spring element in the configuration:

- Conical Compression Spring: (see load-displacement curve on next page)
 - Free length: 50.5 mm
 - Installed length: 38.8 mm (9.45 N preload at installed length)
 - Wire form: 5.008 mm
 - Top coil diameter: 17.0 mm
 - Bottom coil diameter: 21.0 mm
Conical Spring Load vs. Displacement

Torsion Spring:
Spring rate: 0.05 kgf/mm111imeter per degree

4. Any additional details unique to the design yet necessary for the calculations.
None
2005 - D219
Instrument Panel Storage Bin Lid Latch Strength and Latch Inertial Analysis

Interior compartment doors and latches are required to stay closed/latched when subjected to 10G vertical, 10G transverse and 30G longitudinal loads (Paragraphs (a) and (c) of FMVSS 201, S5.3.1 Interior Compartment Doors). There are two parts to the analysis of an interior compartment door assembly. Part 1) analysis of the latch separately, and Part 2) analysis of the entire interior compartment door system. In the first part the latch is examined by itself to see whether the inertial loads will cause opening moments about the latch's pivot point due to the forces of its own inertia. The second part is an examination of the ultimate strength of the latch in its environment, i.e. the inertial effects on the interior compartment door cause opening moments about point H (the hinge pivot), and opening forces at the latch. Full tests are done and compared to the forces generated at the latch by the inertial loads. If the latch withstands a greater laboratory static load than is generated by the inertial loads, the latch and interior compartment door system comply with the requirements of the regulation.

Objective:
Verify that the storage bin lid and its latch meet the requirements of FMVSS 201.

Definitions:

\[W = \] weight of the compartment door or latch.
\[m = \] mass of the compartment door or latch.
\[CG = \] center of gravity of the moving door or latch.
\[\Sigma M_h = \] summation of moments about the compartment door hinge point or latch pivot point in the clockwise direction.
\[F_{10G} = \] vertical 10G inertial load acting on the CG of the compartment door or latch.
\[F_{30G} = \] longitudinal 30G inertial load acting on the CG of the compartment door or latch.
\[F_1 = \] calculated force at the test location that generates the equivalent opening moment about the latch pivot point due to the inertial loads in Part 1.
\[F_2 = \] calculated force at the pull test location that generates the equivalent opening moment about the compartment door hinge point due to the inertial loads in Part 2.
\[F_a = \] ultimate force that holds the compartment door closed.
\[F_o = \] minimum force that opens the latch, opening effort.
\[L_{CG} = \] moment arm of the weight of the compartment door or latch measured from the door hinge point or the latch pivot point respectively.
\[L_{10G} = \] moment arm of the vertical 10G inertial load measured from the door hinge point or the latch pivot point.
\[L_{30G} = \] moment arm of the longitudinal 30G inertial load measured from the door hinge point or the latch pivot point.
\[L_1 = \] moment arm of the force, \(F_1 \), measured from the latch pivot point.
\[L_2 = \] moment arm of the force, \(F_2 \), measured from the door hinge point.

Part 1: Analysis of latch by itself
Plotax supplies the latch being used for the 2005 MY D219 and D238 storage bin. For this part of the analysis, refer to the figure of the latch on page 5.

10G transverse loads:

The transverse load condition will not cause any opening moments about the latch hooks pivot.

10G vertical load upward:

The button would tend to move upward, and the moment generated about the latch hook pivot would act in a CW direction keeping the latch closed.

10G vertical load downward:

The button would tend to move down putting a force into the hook generating an opening moment, and the inertia of the hook would tend to rotate it CCW in the direction of opening.

\[
\sum M_{load} = M_{vertical} + M_{hook}
\]

\[
M_{vertical} = F_{10G_vertical} \times L_{10G_vertical}
\]

\[
M_{vertical} = (0.001\text{kg})(10)(9.81)(\cos 20)(9.762\text{mm}) = 0.9N - mm
\]

\[
M_{hook} = F_{10G_hook} \times L_{10G_hook}
\]

\[
M_{hook} = (0.003\text{kg})(10)(9.81)(2.52\text{mm}) = 0.742N - mm
\]

\[
\sum M_{load} = 0.9N - mm + 0.742N - mm = 1.64N - mm
\]

A 10G vertical load generates 1.64 N-mm of opening moment about the latch hook pivot. The minimum opening effort required to actuate the latch is 4 N. A 4 N force on the button would generate a moment of: 4 N * 9.762 mm = 39.0 N-mm about the latch hook pivot. This means that 39.0 N-mm of moment is needed to open the latch. The latch will not open due to the inertia generated by a 10G downward vertical load, with a design factor of 39.0/1.64 = 23.8.

30G longitudinal load forward:

The button would tend to move downward, but the hook, which weighs 3 times more than the button would tend to rotate CW keeping the system latched. The bin would not open.

30G longitudinal load rearward:

The button would tend to move upward, but the hook would tend to rotate CCW in the opening direction.

\[
M_{hook} = F_{30G_hook} \times L_{30G_hook}
\]

\[
M_{hook} = (0.003\text{kg})(30)(9.81)(6.95\text{mm})
\]

\[
M_{hook} = 6.136N - mm
\]
The 30G rearward longitudinal load would generate an opening moment about the latch pivot of 6.136 N-mm. The minimum opening effort required to actuate the latch is 4 N. A 4 N force on the button would generate a moment of 39.0 N-mm about the latch hook pivot. This means that 39.0 N-mm of moment is needed to open the latch. The latch will not open due to the inertia generated by a 30G rearward longitudinal load, with a design factor of 39.0/6.136 = 6.36.

The latch will not open by its own inertia under any of the loading conditions called out in 35.3.1 (a) and (c) of FMVSS 201.

Part 2: Analysis of entire interior compartment door system

For Part 2, the 10G transverse loads do not cause any opening moments about the lid pivot and are not considered in this analysis. Both the 10G vertical load upward and 30G longitudinal loads will cause opening moments about the hinge pivot point. But the moment arm of the 10G vertical load is >> 3 times the length of the 30G longitudinal loads moment arm, so the 10G vertical load upward is the worst case and will be the only condition examined in this analysis. Refer to the illustration on page 6 of the lid and latch system throughout this analysis.

Calculations:

- W = 0.86 lbs (3.83 N)
- Mass = 0.39 kg

10G vertical load upward:

The moment generated about the hinge point H by the 10G load, neglecting the moment due to the weight of the assembly (worst case) is:

\[\sum M_N = F_{10G} \cdot L_{10G} = 10 \cdot 9.81 \cdot 130.84 \text{ mm} = 1505.81 \text{ N-mm} \]

A pull test was done on physical parts. The force was applied at the rearward in vehicle edge of the lid. The result was 320 N. A 320 N force at this location would generate, 320 N * 245 mm = 78400 N-mm of moment about the hinge pivot. This means that 78400 N-mm of moment is needed to overcome the strength of the latch, and the 10G vertical load only generated 5005.8 N-mm of moment. The latch will not open due to the inertia generated by a 10G vertical load, with a design factor of 78400 / 5005.8 = 15.6.
FMVSS No. 201
Latch Component Analysis Information

D219/D258 Overhead Console Latch

Latch component inertial analysis information for each interior compartment door assembly located in an instrument panel, console assembly, seat back, or side panel adjacent to a designated seating position in accordance with the procedure described in section 5 of SAE Recommended Practice J639b, "Passenger Car Side Door Latch Systems."

Such data shall include:

1. Geometric details of the latch/lock configuration.

2. Mass data for each element in the linkage.

Mass of the latch: 1 g.
3. Spring rates for each spring element in the configuration.

\[F = K \cdot x \Rightarrow \text{Linear approximation for calculating spring constant} \]
\[F \text{ average} = 7.5 \text{ N} \]
\[x = 3.5 \text{ mm} \]
\[F = K \cdot x \]
\[K = F / x = 7.5 \text{ N} / (3.5 \text{ mm}) \]
\[K = 2.14 \text{ N/mm} \]

4. Any additional details unique to the design yet necessary for the calculations.

There are no unique design features. The latch is a standard off the shelf "living hinge" design.

\[\text{Latch 3g Deceleration} \]

\[\text{Latch Pullout} \]

\[\text{m} \]
\[\text{Mass} = 0.001 \text{ Kg} \]
\[\text{Fd} \]
\[\text{Force of Deceleration (m)(g)(D) = (0.001)(9.81)(30) = 0.29 \text{ N}} \]
\[\text{F_s} \]
\[\text{Spring force of Latch (measured) = 7 \text{ N}} \]
\[\text{F_r} \]
\[\text{Calculated min retention force of Latch} \]

\[2 \text{M} = (\text{F_r} \cdot 0.016) - (\text{Fd} \cdot 0.026) = 0 \]

\[\text{F_r} = (0.26 \cdot 0.026) \]

\[\text{Factor of Safety} = \frac{F_s}{F_r} = 18.6 \]

<table>
<thead>
<tr>
<th>Latch Shear (3g Decel) & Axial Load (10g Rollover) Calculations</th>
</tr>
</thead>
</table>

\[\text{Latch Pullout} \]

\[\text{Fd} \]
\[\text{Shear load on latch (3g decel) = (30)(30)(0.001)(0.81) = 0.29 \text{ N}} \]
\[\text{A} \]
\[\text{Area of latch (at Latch Pullout point) = (10 \times 1.25 \text{ mm}^2) = 12.5 \text{ mm}^2} \]
\[\text{Yield Modulus (PC-402R) = 57 \text{ Mpa}} \]

<table>
<thead>
<tr>
<th>Shear Calculations</th>
<th>Axial Load Calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau = \frac{F_d \cdot A}{2})</td>
<td>(\sigma = \frac{F_s \cdot A}{2})</td>
</tr>
<tr>
<td>0.01 \text{ Mpa}</td>
<td>0.0003 \text{ Mpa}</td>
</tr>
<tr>
<td>(F_d = 5700)</td>
<td>(F_s = 10000)</td>
</tr>
</tbody>
</table>
FMVSS 201 COMPLIANCE REPORT
AND CALCULATIONS
D219 MODEL YEAR 2003
CONSOLE ASSEMBLY ROOF
ASSEMBLY NO.: 6F93-74519A58-A/B
5G13-54519A58-A
JANUARY 29, 2003
TABLE OF CONTENTS

1 Revision Log .. 3
2 FMVSS 201 Test Requirements .. 4
3 Calculations
 a. Single Bin 30 G Decal ... 5
 b. Single Bin 10 G Roll .. 6
 c. Dual Bin 30 G Decal .. 7
 d. Dual Bin 10 G Roll ... 8
 e. Sunglass Door 30 G Decal ... 9
 f. Sunglass Door 10 G Roll .. 10
 g. Mirror Door 30 G Decal .. 11
 h. Mirror Door 10 G Roll ... 12
 i. Latch .. 13
REVISION LOG

1 Original Completion... 1-Jul-2003
2 Revised to include 1PP changes... 28-Jan-2004
FMVSS 201 REQUIREMENTS

FMVSS 201 requires all interior compartment doors remained closed when subjected to:

1. An inertial load of 3G in the +/- X Direction (Vehicle forward/rearward)
2. An inertial load of 10G in the +/- Z Direction (Vehicle up/down)
3. An inertial load of 10G in the +/- Y Direction (Vehicle inboard/outboard)
\[\Sigma M_o = (F_r)(D_r) - \{(F_{mg})(D_{mg}) + (F_d)(D_d)\} = 0 \]

\[Fr = \frac{\{(F_{mg})(D_{mg}) + (F_d)(D_d)\}}{D_r} \]

\[Fr = \frac{(4.1)(0.102) + (123.6)(0.017)}{0.102} \]

\[Fr = \frac{0.42 + 2.102}{0.102} \]

\[Fr = 24.7 \text{ N} \]

Factor of Safety \(\rightarrow 486.2 / 24.7 = 19.7\)
Mass = 0.42 Kg
Force of Gravity \((m)(g) = (0.42)(9.81) = 4.1 \text{ N} \)
Calc. for retention of clip \((N) \) = Solve N
Force of Deceleration \((m)(g)(D) = (0.42)(9.81)(30) = 123.6 \text{ N} \)
Radial arm of Deceleration = 0.017 m
Radial arm of clip = 0.102 m
Distance radial arm of Fmg = 0.102 m
Factor of Safety = 19.7

<table>
<thead>
<tr>
<th>S</th>
<th>LB</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>135</td>
<td></td>
</tr>
</tbody>
</table>

\[
\Sigma M_o = (Fr)(Dr) - \{(Fmg)(Dmg) + (Fd)(Od)\} = 0
\]

\[
Fr = \frac{(Fmg)(Dmg) + (Fd)(Od)}{Dr}
\]

\[
Fr = \frac{(4.1)(0.102) + (123.6)(0.017)}{0.102}
\]

\[
Fr = \frac{2.10 + 2.10}{0.102}
\]

\[
Fr = 247 \text{ N}
\]

Factor of Safety = \(\frac{490.2}{247} = 19.7 \)
Single Bin OHC - 10G Roll Over

\[
\begin{align*}
\text{m} & \quad \text{Mass} = \quad 0.42 \text{ Kg} \\
F_{mg} & \quad \text{Force of Gravity } (m)(g) = (0.42)(9.81) = 4.1 \text{ N} \\
Fr & \quad \text{Calc. for retention of clip (N)} = \quad \text{Solve N} \\
F_d & \quad \text{Force of Deceleration } (m)(g)(D) = (0.42)(9.81)(10) = 41.2 \text{ N} \\
D_d & \quad \text{Radial arm of Deceleration} = \quad 0.102 \text{ M} \\
D_r & \quad \text{Radial arm of clip} = \quad 0.102 \text{ M} \\
Dmg & \quad \text{Distance radial arm of Fmg} = \quad 0.102 \text{ M} \\
FS & \quad \text{Factor of Safety} = \quad 10.7
\end{align*}
\]

<table>
<thead>
<tr>
<th>B</th>
<th>LB</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>128</td>
</tr>
<tr>
<td>4</td>
<td>131</td>
</tr>
<tr>
<td>5</td>
<td>135</td>
</tr>
</tbody>
</table>

\[\Sigma M = (Fr)(Dr) - (Fmg)(Dmg) - (F_d)(D_d) = 0\]

\[Fr = \left[(Fmg)(Dmg) + (F_d)(D_d) \right] / Dr\]

\[Fr = \left[(4.1)(0.102) + (41.2)(0.102) \right] / 0.102\]

\[Fr = \left(0.42 + 4.2 \right) / 0.102\]

\[Fr = 4.6 / 0.102\]

\[Fr = 45.3 \text{ N}\]

Factor of Safety \(\rightarrow\) 466.2 / 45.3 = 10.7
Dual Bin OHC - 30G Deceleration

\[m \text{ Mass} = \frac{(0.84)(9.81)}{0.28 \text{ N}} = 0.64 \text{ Kg} \]

\[Fmg \text{ Force of Gravity} = m(g) = (0.64)(9.81) = 6.28 \text{ N} \]

\[Fr \text{ Calc. for retention of clip} (N) \text{ Solve N} \]

\[Fd \text{ Force of Deceleration} = m(g)(D) = (0.64)(9.81)(30) = 188.362 \text{ N} \]

\[Dr \text{ Radial arm of deceleration} = 0.0108 \text{ M} \]

\[Dr \text{ Radial arm of clip} = 0.214 \text{ M} \]

\[Dmg \text{ Distance radial arm of Fmg} = 0.1487 \text{ M} \]

<table>
<thead>
<tr>
<th>S</th>
<th>LS</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>135</td>
<td></td>
</tr>
</tbody>
</table>

\[\sum M_o = (Fr)(Dr) - ((Fmg)(Dmg) - (Fd)(Dd)) = 0 \]

\[Fr = \frac{(Fmg)(Dmg) - (Fd)(Dd))}{Dr} \]

\[Fr = \frac{((0.28)(0.1487) - (188.362)(0.0108))}{0.214} \]

\[Fr = (0.94 - 2.03) / 0.214 \]

\[Fr = -1.09 / 0.214 \]

\[Fr = -5.1 \text{ N} \quad \text{Calc. suggest OHC will pivot up in headliner.} \]
Dual Bin OHC - 10G Roll Over

\[m = \text{Mass} = 0.84 \text{ Kg} \]
\[F_{mg} = \text{Force of Gravity (m)(g)} = (0.94)(9.81) = 9.28 \text{ N} \]
\[F_r = \text{Calc. for retention of clip (N)} = 52.8 \text{ N} \]
\[F_d = \text{Force of Deceleration (m)(g)(D)} = (0.94)(9.81)(10) = 94.5 \text{ N} \]
\[D_d = \text{Radial arm of Deceleration} = 0.1487 \text{ M} \]
\[D_r = \text{Radial arm of clip} = 0.214 \text{ M} \]
\[D_{mg} = \text{Distance radial arm of } F_{mg} = 0.1487 \text{ M} \]
\[FS = \text{Factor of Safety} = 10 \]

<table>
<thead>
<tr>
<th>B</th>
<th>LB</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>138</td>
<td></td>
</tr>
</tbody>
</table>

\[\Sigma M_o = (F_r)(D_r) - [(F_{mg})(D_{mg}) + (F_d)(D_d)] = 0 \]
\[F_r = \frac{[(F_{mg})(D_{mg}) + (F_d)(D_d)]}{D_r} \]
\[F_r = \frac{[(9.28)(0.1487) + (52.8)(0.01487)]}{0.214} \]
\[F_r = \frac{0.93 - 0.3}{0.214} \]
\[F_r = \frac{10.23}{0.214} \]
\[F_r = 47.8 \text{ N} \]

Factor of Safety $\rightarrow 486.2 / 47.8 = 10$
Sunglass Door 30g Deceleration

\[
\begin{align*}
\text{m} & \quad \text{Mass} = 0.06 \text{ Kg} \\
\text{Fmg} & \quad \text{Force of Gravity (m)(g)} = (0.06)(9.81) = 0.78 \text{ N} \\
\text{Fr} & \quad \text{Calc. for retention of latch (N)} = \text{Solve N} \\
\text{Fd} & \quad \text{Force of Deceleration (m)(g)(D)} = (0.06)(9.81)(30) = 23.4 \text{ N} \\
\text{Dd} & \quad \text{Radial arm of Deceleration} = 0.003 \text{ M} \\
\text{Dr} & \quad \text{Radial arm of latch} = 0.062 \text{ M} \\
\text{Dmg} & \quad \text{Distance radial arm of Fmg} = 0.022 \text{ M}
\end{align*}
\]

\[
\begin{array}{|c|c|c|}
\hline
\text{S} & \text{LB} & \text{N} \\
\hline
1 & 50 & \\
3 & 85 & \\
4 & 60 & \\
5 & 50 & \\
\hline
\end{array}
\]

\[
\sum \text{Mo} = (\text{Fr})(\text{Dr}) - ((\text{Fmg})(\text{Dmg}) - (\text{Fd})(\text{Dd})) = 0
\]

\[
\text{Fr} = \frac{((\text{Fmg})(\text{Dmg}) - (\text{Fd})(\text{Dd}))}{\text{Dr}}
\]

\[
\text{Fr} = \frac{((0.78)(0.022) - (23.4)(0.003))}{0.062}
\]

\[
\text{Fr} = (0.017 - 0.007) / 0.062
\]

\[
\text{Fr} = 0.053 / 0.062
\]

\[
\text{Fr} = -1.02 \text{ N} \quad \text{Calculation suggest door will pivot upward in the OHC.}
\]
Sunglass Door 10g Roll Over

- **m**: Mass = 0.08 Kg
- **Fmg**: Force of Gravity (m)(g) = (0.08)(9.81) = 0.78 N
- **Fr**: Calc. for retention of latch (N) = Solve N
- **Fd**: Force of Deceleration (m)(g)(D) = (6.08)(9.81)(10) = 7.8 N
- **Dd**: Radial arm of Deceleration = 0.022 M
- **Dr**: Radial arm of latch = 0.062 M
- **Dmg**: Distance radial arm of Fmg = 0.022 M
- **FS**: Factor of Safety = 55

<table>
<thead>
<tr>
<th>S</th>
<th>LB</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

\[
2 \cdot Mo = (Fr)(Dr) - [(Fmg)(Dmg) + (Fd)(Dd)] = 0
\]

\[
Fr = \frac{[(Fmg)(Dmg) + (Fd)(Dd)]}{Dr}
\]

\[
Fr = \frac{(0.78)(0.022) + (7.8)(0.022)}{0.052}
\]

\[
Fr = 0.19 / 0.052 = 3.63 N
\]

Factor of Safety → 196 / 3.63 = 55
Mirror Door 30g Deceleration

\[m \quad \text{Mass} = \quad 0.14 \text{ Kg} \]

\[F_{mg} \quad \text{Force of Gravity} (m)(g) = (0.14)(9.81) = \quad 1.37 \text{ N} \]

\[F_r \quad \text{Calc. for retention of latch} (N) = \quad \text{Solve N} \]

\[F_d \quad \text{Force of Deceleration} (m)(a)(D) = (0.14)(9.81)(30) = \quad 41.1 \text{ N} \]

\[D_d \quad \text{Radial arm of Deceleration} = \quad 0.0065 \text{ M} \]

\[D_r \quad \text{Radial arm of latch} = \quad 0.082 \text{ M} \]

\[D_{mg} \quad \text{Distance radial arm of } F_{mg} = \quad 0.0095 \text{ M} \]

<table>
<thead>
<tr>
<th>Pull Force on Latch</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

\[\sum M_o = (F_r)(D_r) - [(F_{mg})(D_{mg}) - (F_d)(D_d)] = 0 \]

\[F_r = \frac{[(F_{mg})(D_{mg}) - (F_d)(D_d)]}{D_r} \]

\[F_r = [((1.37)(0.0095) - (41.4)(0.0065))] / 0.082 \]

\[F_r = (0.013 - 0.27) / 0.082 \]

\[F_r = -0.26 / 0.082 \]

\[F_r = -3.08 \text{ N} \]

\[F_r = -2.9 \text{ N} \quad \text{Calculation suggests door will pivot upward in the OHC.} \]
Mirror Door 10g Roll Over

- Mass = $m = 0.14 \text{ Kg}$
- Force of Gravity (m)(g) = $(0.14)(9.81) = 1.37 \text{ N}$
- Calc. for retention of latch (N) = N
- Force of Deceleration (m)(g)(D) = $(0.14)(9.81)(10) = 13.7 \text{ N}$
- Radial arm of Deceleration = D
- Radial arm of latch = D
- Distance radial arm of Fmg = D
- Factor of Safety = FS
- Pull Force on Latch

<table>
<thead>
<tr>
<th>S</th>
<th>LB</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

\[2Mo = (Fr)(Dr) - ((Fmg)(Dmg) + (Fd)(Dd)) = 0 \]
\[Fr = \frac{(Fmg)(Dmg) + (Fd)(Dd)}{Dr} \]
\[Fr = \frac{(1.37)(0.0095) + (13.7)(0.0095)}{0.052} \]
\[Fr = \frac{(0.013 + 0.13)}{0.052} \]
\[Fr = 0.143 / 0.052 \]
\[Fr = 2.75 \text{ N} \]

Factor of Safety = $\frac{198}{2.75} = 72$
Latch 30g Deceleration

\[
\begin{align*}
\text{Mass} &= \frac{m \times \text{Force of Deceleration (m)(g)(D)} = (0.001)(9.81)(30) = 0.001 \text{ Kg}}{0.29 \text{ N}} \\
F_d &= \text{Spring force of Latch (measured)} \\
F_{lc} &= \text{Calculated Min. retention force of Latch} \\
\Sigma \text{Mo} &= (F_{lc} \times 0.018) - (F_d \times 0.028) = 0 \\
F_{lc} &= \frac{(0.29 \times 0.028)}{0.018} \\
F_{lc} &= 0.45 \text{ N} \\
\text{Factor of Safety} &= \frac{F_d}{F_{lc}} = 16.6
\end{align*}
\]

Latch Shear (30g Decel) & Axial Loads (10g Rollover) Calcs

\[
\begin{align*}
F_A &= \text{Axial load on latch (10g rollover)} = (10)(0.001)(9.81) = 0.10 \text{ N} \\
F_d &= \text{Shear load on latch (30g decel)} = (30)(0.001)(9.81) = 0.29 \text{ N} \\
A &= \text{Area of latch @ Latch Pivot point} = (19 \times 1.75 \text{ mm}^2) = 33.26 \text{ mm}^2 \\
\text{Yield Modulus (PC-ABS)} &= 57 \text{ Mpa}
\end{align*}
\]

Shear Calcs

\[
\begin{align*}
\tau &= \frac{F_d}{A} = 0.01 \text{ Mpa} \\
FS &= \frac{5700}{5700} = 10000
\end{align*}
\]

Axial Load Calcs

\[
\begin{align*}
\sigma &= \frac{F_A}{A} = 0.003 \text{ Mpa} \\
FS &= 19000
\end{align*}
\]
Latch component inertia analysis information for each interior compartment door assembly located in an instrument panel, console assembly, seat back, or side panel adjacent to a designated seating position in accordance with the procedure described in section 5 of SAE Recommended Practice J839b, "Passenger Car Side Door Latch Systems."

Such data shall include:

1. Geometric details of the latch/lock configuration.
 See Attachment 1

2. Mass data for each element in the linkage.
 1) Latch = 14.2 Grams
 2) Armrest w/Latch = 1.259 Kg

3. Spring rates for each spring element in the configuration.
 - Linear Approximation for calculating Spring Constant for System (Latch and Bumper)
 $F=kx$ where $F=$ Force, $k=$ Spring Constant, $x=$ Distance
 $k = F / x \rightarrow k = 24.1 \text{N} / 0.82 \text{cm} = 29.39 \text{ N/cm}$

 \triangleright Note: Lowest Tested Effort = 24.1 Newtons (used in calculations)
 Average = 28.0 Newtons
 See Attachment 2

4. Any additional details unique to the design yet necessary for the calculations.
 See Attachment 3
Attachment 1

LATCH WEIGHT (MOVING SIDE) 14.2g
2005 – D219/D258
Front Floor Console Lid Latch Strength and Latch Inertial Analysis

Interior compartment doors and latches are required to stay closed/latched when subjected to 10G vertical, 10G transverse and 30G longitudinal loads (Paragraphs (a) and (c) of FMVSS 201, 85.3.1 Interior Compartment Doors). There are two parts to the analysis of an interior compartment door assembly. Part 1) analysis of the latch separately, and Part 2) analysis of the entire interior compartment door system. In the first part the latch is examined by itself to see whether the inertial loads will cause opening moments about the latch's pivot point due to the forces of its own inertia. The second part is an examination of the ultimate strength of the latch in its environment, i.e. the inertial effects on the interior compartment door cause opening moments about point H (the hinge pivot), and opening forces at the latch. Full tests are done and compared to the forces generated at the latch by the inertial loads. If the latch withstands a greater laboratory static load than is generated by the inertial loads, the latch and interior compartment door system comply with the requirements of the regulation.

Objective:

Verify that the floor console lid and its latch meet the requirements of FMVSS 201.

Definitions: (if used in this analysis)

- **W** = weight of the compartment door or latch.
- **m** = mass of the compartment door or latch.
- **CG** = center of gravity of the moving door or latch.
- **ΣM_H** = summation of moments about the compartment door hinge point or latch pivot point in the clockwise direction.
- **F_{10G}** = vertical 10G inertial load acting on the CG of the compartment door or latch.
- **F_{30G}** = longitudinal 30G inertial load acting on the CG of the compartment door or latch.
- **F_L** = calculated force at the test location that generates the equivalent opening moment about the latch pivot point due to the inertial loads in Part 1.
- **F_{10G}** = calculated force at the pull test location that generates the equivalent opening moment about the compartment door hinge point due to the inertial loads in Part 2.
- **F_{ult}** = ultimate force that holds the compartment door closed.
- **F_{op}** = minimum force that opens the latch, opening effort.
- **L_{CG}** = moment arm of the weight of the compartment door or latch measured from the door hinge point or the latch pivot point respectively.
- **L_{10G}** = moment arm of the vertical 10G inertial load measured from the door hinge point or the latch pivot point.
- **L_{30G}** = moment arm of the longitudinal 30G inertial load measured from the door hinge point or the latch pivot point.
- **L₁** = moment arm of the force, **F₁**, measured from the latch pivot point.
- **L₂** = moment arm of the force, **F₂**, measured from the door hinge point.
For this part of the analysis, refer to the figure of the latch on page 5.

10G transverse loads:

The transverse load condition will not cause any opening moments about the latch pivot.

10G vertical load downward:

The moments generated about the latch pivot would act in a direction keeping the latch closed.

10G vertical load upward:

There would be opening moments generated about the latch pivot by a 10G vertical load upward.

\[M_{\text{pivot}} = F_{10G, \text{land}} \times L_{10G, \text{land}} \]

\[M_{\text{pivot}} = m_{\text{land}}(10)(9.81 \text{m/s}^2)(23.04 \text{mm}) \]

\[M_{\text{pivot}} = 0.0142 \text{kg}(10)(9.81)(23.04) \]

\[M_{\text{pivot}} = 32.1 \text{N-mm} \]

A 10G vertical load upward would generate 32.1 N-mm of moment about the latch pivot point. The latch will withstand at least a 14.0N load at the finger activation point of the latch, as measured in laboratory testing (lowest load experienced out of 3 samples). This 14.0N load results in (14.0N)(40.92mm) = 572.9 N-mm of moment about the latch pivot. This means that the latch will withstand 572.9 N-mm of moment. The latch will stay closed, with a design factor of 572.9/32.1 = 17.8.

30G longitudinal load forward:

There would be opening moments generated about the latch pivot by a 30G forward inertia load.

\[M_{\text{pivot}} = F_{30G, \text{land}} \times L_{30G, \text{land}} \]

\[M_{\text{pivot}} = m_{\text{land}}(30)(9.81 \text{m/s}^2)(6.74 \text{mm}) \]

\[M_{\text{pivot}} = 0.0142 \text{kg}(30)(9.81)(6.74) \]

\[M_{\text{pivot}} = 28.17 \text{N-mm} \]

A 30G longitudinal load forward would generate 28.17 N-mm of moment about the latch pivot point. The latch will withstand at least a 14.0N load at the finger activation point of the latch, as measured in laboratory testing (lowest load experienced out of 3 samples). This 14.0N load results in (14.0N)(40.92mm) = 572.9 N-mm of moment about the latch pivot. This means that the latch will withstand 572.9 N-mm of moment. The latch will stay closed, with a design factor of 572.9/28.17 = 20.3.

30G longitudinal load rearward:

The moments generated about the latch pivot would act in a direction keeping the latch closed.
For Part 2, the 10G transverse loads do not cause any opening moments about the lid pivot and are not considered in this analysis. Both the 10G vertical load upward and 30G longitudinal load rearward will cause opening moments about the hinge pivot point. Refer to the illustration on page 6 of the lid and latch system throughout this analysis.

Calculations:

Mass = 1.259 kg

30G longitudinal load rearward:

The moment generated about the hinge point by the 30G load, neglecting the moment due to the weight of the assembly (worst case) is:

\[\sum M_H = F_{30G} \times L_{30G} \]
\[\sum M_H = m \times (30G) \times L_{30G} \]
\[\sum M_H = (1.259kg)(30)(9.81)(38.72mm) \]
\[\sum M_H = 14346.7N \cdot mm \]

A pull test was done on physical parts. The force was applied at the latch area, 325.72 mm from the hinge pivot. The lowest result experienced out of 3 tests was 245 N. A 245 N force at this location would generate, 245 N \times 325.72 mm = 79801.4 N-mm of moment about the hinge pivot. This means that 79801.4 N-mm of moment is needed to overcome the strength of the latch, and the 30G load only generated 14346.7 N-mm of moment. The latch will not open due to the inertia generated by a 30G load, with a design factor of 79801.4 / 14346.7 = 5.56.

42G longitudinal load rearward (this calculation done at request of customer):

The moment generated about the hinge point by a 42G load, neglecting the moment due to the weight of the assembly (worst case) is:

\[\sum M_H = F_{42G} \times L_{42G} \]
\[\sum M_H = m \times (42G) \times L_{42G} \]
\[\sum M_H = (1.259kg)(42)(9.81)(38.72mm) \]
\[\sum M_H = 20085.3N \cdot mm \]

A pull test was done on physical parts. The force was applied at the latch area, 325.72 mm from the hinge pivot. The lowest result experienced out of 3 tests was 245 N. A 245 N force at this location would generate, 245 N \times 325.72 mm = 79801.4 N-mm of moment about the hinge pivot. This means that 79801.4 N-mm of moment is needed to overcome the strength of the latch, and a 42G load only generated 20085.3
N-mm of moment. The latch will not open due to the inertia generated by a 42G load, with a design factor of 79801.4 / 20085.3 = 3.97.

10G vertical load upward:

The moment generated about the hinge point by the 10G load, neglecting the moment due to the weight of the assembly (worst case) is:

\[\sum M_H = F_{10G} \cdot L_{10G} \]
\[\sum M_H = m \cdot (10G) \cdot L_{10G} \]
\[\sum M_H = (1.259 \text{ kg})(10)(9.81)(180.58 \text{ mm}) \]
\[\sum M_H = 22303.1 \text{ N-mm} \]

A pull test was done on physical parts. The force was applied at the latch area, 325.72 mm from the hinge pivot. The lowest result experienced out of 3 tests was 245 N. A 245 N force at this location would generate, 245 N \times 325.72 \text{ mm} = 79801.4 \text{ N-mm} of moment about the hinge pivot. This means that 79801.4 N-mm of moment is needed to overcome the strength of the latch, and the 10G vertical load only generated 22303.1 N-mm of moment. The latch will not open due to the inertia generated by a 10G vertical load, with a design factor of 79801.4 / 22303.1 = 3.57.

The latch and lid will not open by their own inertia under any of the loading conditions called out in SSJ.1 (a) and (c) of FMVSS 201.
HINGE PIVOT

FINGER ACTIVATION

LATCH WEIGHT (MOVING SIDE) 14.2g
FMVSS No. 201
Latch Component Analysis Information

D219 Second Row Console Storage Latch

Latch component inertia analysis information for each interior compartment door assembly located in an instrument panel, console assembly, seat back, or side panel adjacent to a designated seating position in accordance with the procedure described in section 5 of SAE Recommended Practice J839b, "Passenger Car Side Door Latch Systems."

Such data shall include:

1. Geometric details of the latch/lock configuration.
2. Mass data for each element in the linkage.

Mass of the latch: 18 g.

3. Spring rates for each spring element in the configuration.

\[F = K \times x \Rightarrow \text{Linear approximation for calculating spring constant} \]

\[F \text{ average } = 19 \text{ N} \]
\[x = 3.1 \text{ mm} \]
\[F = K \times x \]
\[K = \frac{F}{x} = \frac{19 \text{ N}}{3.1 \text{ mm}} \]
\[K = 6.13 \text{ N/mm} \]

4. Any additional details unique to the design yet necessary for the calculations.

The latch has a maximum throw of 8.5 mm as there is a hard stop that would prevent overcompressing the molded in springs.
FMVSS No. 201
Latch Component Analysis Information

D210 Second Row Console - Storage Tray Latch

Latch component inertial analysis information for each interior compartment door assembly located in an instrument panel, console assembly, seat back, or side panel adjacent to a designated seating position in accordance with the procedure described in section 5 of SAE Recommended Practice J639b, "Passenger Car Side Door Latch Systems."

Such data shall include:

1. Geometric details of the latch/lock configuration.

2. Mass data for each element in the linkage.

The latch is not a separate assembly, but is molded into the storage tray as shown above.
Mass of tray = 0.25 kg
3. Spring rates for each spring element in the configuration.

\[F = K \cdot x \Rightarrow \text{Linear approximation for calculating spring constant} \]
\[F \text{ average } = 19.6 \text{ N} \]
\[x = 0.60 \text{ mm} \]
\[F = K \cdot x \]
\[K = \frac{F}{x} = 19.6 \text{ N} / (0.6 \text{ mm}) \]
\[K = 24.75 \text{ N/mm} \]

4. Any additional details unique to the design yet necessary for the calculations.

\[\sum F_x = 0 = F_0 - F_R = 0 \]
\[F = F_0 = 73.8 \text{ N} \]
\[F_R = 73.8 \text{ N} \]
\[F_{mm} = 119.7 > 73.8 \text{ N} \]
\[F_{th} = 1.8 \text{ N} \]

Tray Stop Retention Force (Measured) 119.7 - 155.0 N
FMVSS 201 COMPLIANCE REPORT
AND CALCULATIONS

D219 MODEL YEAR 2006

CONSOLE ASSEMBLY 2ND ROW SEAT

ASSEMBLY NO.: 6F93-7487442-AKW

JANUARY 29, 2003
TABLE OF CONTENTS

1 Revision Log 3
2 FMVSS 201 Test Requirements 4
3 Free Body Diagram 5
4 Calculations
 a. Case 1 - Console Armrest 30G in X 6
 b. Case 2 - Latch 30G in X 7
 c. Case 3 - Console Armrest 10G in Rollover (-Z) 8
 d. Case 4 - Latch 10G in Rollover (-Z) 9
 e. Case 5 - Console Drawer 30G in X 10
 f. Case 6 - Console Armrest in 10g (+/-Y) 11
5 Summary 12
6 Notes 13
REVISION LOG

1. Original Completion .. 7-Apr-2003
2. Revised to include Push Button Latch 30-Sep-2003
3. Revised to include 1PP changes 3-Dec-2003
4. 1PP Latch & Tray efforts verified & recalculated 29-Jan-2004
FMVSS 201 REQUIREMENTS

FMVSS 201 requires all interior compartment doors remain closed when subjected to:

1. An inertial load of 30G in the +/- X Direction (Vehicle forward/rearward)
2. An inertial load of 10G in the +/- Z Direction (Vehicle up/down)
3. An inertial load of 10G in the +/- Y Direction (Vehicle inboard/outboard)

The requirement applies to all stowage compartment doors of which the D219 ReaR Console has two (2):

1. Console Armrest opening rearward to allow access to console bin
2. Console Sliding Tray which allows access to a small stowage bin at the front of the console

The D219 ReaR Console has a portion of the armrest that folds forward to become a part of the load floor. This 'Load Floor panel' is not considered a stowage compartment door and, therefore, is not subjected to FMVSS 201.
30G Rear Open - Rear Impact
(Rear Hinge Cycle)
Calculated without breaking down into Z and X components

Case 1 - Console Armrest 30G in X

Components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.O.G.</td>
<td>center of gravity</td>
<td>X = 4222.8, Y = 0, Z = 1487.7</td>
</tr>
<tr>
<td>M L</td>
<td>mass of lid</td>
<td>1.25 Kg</td>
</tr>
<tr>
<td>F G</td>
<td>acceleration of lid at 30G (F=MA)</td>
<td>(30)(1.25)(9.81) = 367.9 N</td>
</tr>
<tr>
<td>F LCR</td>
<td>calculated retention force of latch</td>
<td>(active for)</td>
</tr>
<tr>
<td>F LR</td>
<td>measured with retention force of latch</td>
<td>158.1 N</td>
</tr>
<tr>
<td>T SR</td>
<td>spring torque of hinge (measured)</td>
<td>2.92 NM</td>
</tr>
<tr>
<td>F MG</td>
<td>effect of gravity on lid (F=MG)</td>
<td>12.3 N</td>
</tr>
</tbody>
</table>

\[2 \times MO = 0 = (F \times LCR) \times (0.276) + (F \times MG) \times (0.145) - T \times SR - ([F \times G \times (0.047)] \]

\[F \times LCR = \frac{[F \times G \times (0.047) + T \times SR - ([F \times MG \times (0.145)])}{0.276} \]

\[F \times LCR = \frac{[367.9 \times (0.047) + 2.92 - 1.78]}{0.276} = \]

\[F \times LCR = 65.9 N \]

\[F \times LR = 158.1 N > 65.9 N = F \times LCR \]

FS = Plan Fl = 2.4
Components:

- **M**: mass of latch = 0.02 Kg
- **Fg**: acceleration of latch at 30G (%) = (30) (0.02) (9.81) = 0.59 N
- **Fl**: Latch push Force (measured) = 17.1 N
- **Ts**: Resistant Torque of latch spring = (Fl) (D2) = (17.1 * 0.024) = 0.41 NM (Solve for) NM
- **Tsc**: Calculated Torque of latch
- **D1**: Radial Arm (1) = 0.023 M
- **D2**: Radial Arm (2) = 0.024 M

\[\sum M_0 = 0 = T_a = (F_o)(D_1) \]

\[T_a = (F_o)(D_1) = 0.14 \text{ NM} \]

\[T_s = 17.1 \text{ N} \times 0.024 \text{ m} = 0.41 \text{ NM} \]

\[T_s = 0.41 \text{ NM} > 0.14 \text{ NM} = T_a \]

\[\text{Factor of Safety} = \frac{T_s}{T_a} = 3.03 \]

* Worst case scenario - applied decal loads (30G) at catch area instead of center of gravity
10G Front-Open - CNGL Opening: (Rollover Load)
(Rear Hinge Cycle)

Case 3 - Console Armrest 10G in Rollover (-Z)

Components:

- C.O.G. (center of gravity) = X = 4222.8, Y = 0, Z = 1467.7
- M L (mass of lid) = 1.25 Kg
- F a (acceleration of lid at 10G) = (10) (1.25) (9.81) = 122.8 N (solve for)
- F L (calculated retention force of latch) = 12.3 N
- F MO (effect of gravity on lid) = 2.82 Nm
- T SR (spring torque of hinge (measured)) = 158.1 N
- F LM (retention force of latch (measured))

\[\Sigma M_0 = 0 = (F_l)(0.278) + (F_{mo})(0.145) - (F_a)(0.145) + T_{sr} = 0 \]

\[F_l = \frac{(F_a)(0.145) + 2.82 - [(F_{mo})(0.145)]}{0.278} \]

\[F_l = \frac{17.8 + 2.82 - (1.78)}{0.278} \]

\[F_l = 57.8 \]

\[F_{fs} = \frac{F_{mu}}{F_l}, \quad 2.39 \]
10G Front Open - Latch Failure (Roll over Load) (Factor of Safety) Calculation

Case 4 - Latch 10G in Roll over (-Z)

- **F\text{L}**: Force of lid applied to latch = 50.85 N
- **R**: Residual Force of Pin = 60.88 N
- **A\text{P}**: Area of Pin = 22.95 mm²
- **A\text{H}**: Area of latch head (1/16") = 12.57 mm²
- **A\text{H}**: Area of latch arm = 42 mm²
- **M\text{L}**: Material Strength = 660 MPa
- **W\text{E}**: Effect of gravity on lid (F\text{L}\text{L}\text{H}) = 0.49 N
- **F\text{L}\text{A}**: Effect of Roll over on Latch (F\text{L}\text{A}L) = 4.91 N
- **F\text{M}**: Min. Force at force of assisted in spring = 17.1 N
- **F\text{M}**: Measured force of assisted in spring = 17.1 N

\[\text{I} \text{ MO} = 0 \text{ N} = \left[F\text{F}^0.023 \right] - \left[F\text{F}^0.007 \right] \]

\[F\text{F} = \frac{16.91^0.023 \left[16.91^0.023 \right]}{16.91} \]

\[F\text{F} = 1.64 \text{ N} \]

Factor of Safety = \(\frac{F\text{F}}{F\text{F}} = 17.1 \times 1.64 = 28.4 \)

Shear Force at Pin

\[\tau = \frac{F\text{L}}{A\text{P}} = \frac{50.85}{22.95} = 2.22 \text{ MPa} \]

Factor of Safety (FS) = 28.4

Shear Force at Latch head

\[\tau = \frac{F\text{L}}{A\text{H}} = \frac{50.85}{12.57} = 3.9 \text{ MPa} \]

Factor of Safety (FS) = 28.4

Axial Load (Tensile) on Latch arm

\[\sigma = \frac{F\text{L}}{A\text{H}} = \frac{50.85}{42} = 1.2 \text{ MPa} \]

Factor of Safety (FS) = 28.4
30G - Tray Latch Failure (Factor of Safety Calculation)

Case 5 - Console Drawer 30G in X

Q.O.G. = center of gravity
F G = acceleration of lid at 30G (F=MA)
F RM = measured retention force of tray
F R = required retention force of tray
M = mass of tray
A L = Area of Latch

Material Strength

\[F_G = 119.7 \text{ N} \]
\[F_{RM} = 73.6 \text{ N} \]
\[F_{AM} = 119.7 > 73.6 \text{ N} \]

\[\Sigma F_x = 0 = F_G - F_R = 0 \]

\[t = \frac{F_R}{A_L} = 4.34 \text{ MPa} \]

\[F_R = 119.7 \approx 4.9 \text{ (MFA failure of latch)} \]

\[(F \text{actor of } S \text{afety}) \]

Tray Stop Retention Force (Measured)

\[119.7 - 185.0 \text{ N} \]
Case 6 - Cross Car 10G Loads

Console Latch & Hinge are aligned with centerline of vehicle (Y0 Axis) The latch and hinge mechanisms, along with the sliding tray were shown to sustain a 30G vehicle fore/aft load. Therefore, neither the tray, hinges or the latch should fail under a 10G cross car load.

Latch Shear and tensile strength calculations below:

<table>
<thead>
<tr>
<th>FL</th>
<th>Force at lid applied to latch</th>
<th>50.65 N</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Resultant Force at Pin</td>
<td>50.65 N</td>
</tr>
<tr>
<td>AP</td>
<td>Area of Pin</td>
<td>19.63 mm²</td>
</tr>
<tr>
<td>AH</td>
<td>Area of latch head</td>
<td>12.36 mm²</td>
</tr>
<tr>
<td>A</td>
<td>Area of latch arm</td>
<td>42 mm²</td>
</tr>
<tr>
<td>σ</td>
<td>Stress at latch arm</td>
<td>66 MPa</td>
</tr>
</tbody>
</table>

Shear Force at Pin

\[\tau = \frac{R}{AP} = \frac{50.65}{19.63} = 2.59 \text{ MPa} \]

Factor of Safety (FS) = \frac{66}{2.59} = 25.6

Shear Force at latch head

\[\tau = \frac{F}{UAH} = \frac{50.65}{12.36} = 4.1 \text{ MPa} \]

Factor of Safety (FS) = \frac{66}{4.1} = 16.1

Axial Load (Tensile) on Latch arm

\[\sigma = \frac{F}{A} = \frac{50.65}{42} = 1.2 \text{ MPa} \]

Factor of Safety (FS) = \frac{66}{1.2} = 55
SUMMARY

Case 1 - Console Armrest 30G in X
The armrest will remain closed during a 30G longitudinal load with a factor of safety of 2.4.

Case 2 - Latch 30G in X
The latch will remain closed (thereby not allowing the armrest to open) during a 30G longitudinal load with a factor of safety of 3.03.

Case 3 - Console Armrest 10G in Rollover (-Z)
The armrest will remain closed during a 10G vertical load with a factor of safety of 2.30.

Case 4 - Latch 10G in Rollover (-Z)
The latch will remain closed (thereby not allowing the armrest to open) during a 10G vertical load with a factor of safety of 28.6 for shear at latch pin, 16.1 for shear at latch head and 55 for tensile loads and 10.4 for latch inertial loads.

Case 5 - Console Drawer 30G in X
The console drawer will remain closed during a 30G longitudinal load with a factor of safety of 1.6 for the latch failure and 4.8 for the latch material yield failure

Case 6 - Console Armrest in 10G (Y-Y)
The console armrest will remain closed during a 10G cross car load with a factor of safety of 1.84 for the armrest and 28.6 for shear at latch pin, 16.9 for shear at latch head and 55 for tensile loads.
FMVSS 201 Linear Impact - 2005 Ford Freestyle - IP1 -12 Degrees
Impactor Headform A\(x\) Velocity

Max: 11.9 [mph] at 0.049 [s]
Min: -4.0 [mph] at 0.086 [s]
FMVSS 201 Linear Impact - 2005 Ford Freestyle - IP2 -68 Degrees

Impactor Headform Ax

Max: 32.7 [g] at 0.041 [s]
Min: -54.0 [g] at 0.065 [s]
FMVSS 201 Linear Impact - 2005 Ford Freestyle - IP2 -68 Degrees

Impactor Headform Ax Velocity

Max: 11.5 [mph] at 0.049 [s]
Min: -5.2 [mph] at 0.081 [s]
FMVSS 201 Linear Impact - 2005 Ford Freestyle - IP3 -68 Degrees

Impactor Headform Ax

Max: 32.4 [g] at 0.040 [s]
Min: -58.3 [g] at 0.065 [s]
FMVSS 201 Linear Impact - 2005 Ford Freestyle - IP3 -68 Degrees

Impactor Headform Ax Velocity

Max: 11.7 [mph] at 0.049 [s]
Min: -5.2 [mph] at 0.083 [s]
FMVSS 201 Linear Impact - 2005 Ford Freestyle - SB -37 Degrees

Impactor Headform Ax Velocity

Max: 14.8 [mph] at 0.048 [s]
Min: -2.1 [mph] at 0.091 [s]