SAFETY COMPLIANCE TESTING FOR
FMVSS NO. 225
CHILD RESTRAINT ANCHORAGE SYSTEMS
LOWER AND TETHER ANCHORAGES

DAIMLERCHRYSLER CORPORATION
2005 CHRYSLER 300, PASSENGER CAR
NHTSA NO. C50301

GENERAL TESTING LABORATORIES, INC.
1623 LEEDSTOWN ROAD
COLONIAL BEACH, VIRGINIA 22433

SEPTEMBER 12, 2005
FINAL REPORT
PREPARED FOR
U.S. DEPARTMENT OF TRANSPORTATION
NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
SAFETY ENFORCEMENT
OFFICE OF VEHICLE SAFETY COMPLIANCE
400 SEVENTH STREET, SW
ROOM 5111 (NVS-230)
WASHINGTON, D.C. 20590
This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Prepared By: _______________________

Approved By: _____________________

Approval Date: ____________________

FINAL REPORT ACCEPTANCE BY OVSC:

Accepted By: _____________________

Acceptance Date: __________________
225-GTL-05-001
2. Government Accession No.
N/A
3. Recipient's Catalog No.
N/A
4. Title and Subtitle
Final Report of FMVSS 225 Compliance Testing of
2005 CHRYSLER 300, PASSENGER CAR
NHTSA No. C50301
5. Report Date
September 12, 2005
GTL
7. Author(s)
Grant Farrand, Project Engineer
Debbie Messick, Project Manager
8. Performing Organ. Rep#
GTL-DOT-05-225-001
9. Performing Organization Name and Address
General Testing Laboratories, Inc.
1623 Leedstown Road
Colonial Beach, Va. 22443
10. Work Unit No. (TRAiS)
N/A
11. Contract or Grant No.
DTNH22-02-D-01043
12. Sponsoring Agency Name and Address
U.S. Department of Transportation
Safety Enforcement
Office of Vehicle Safety Compliance (NVS-220)
400 7th Street, S.W., Room 6111
Washington, DC 20590
13. Type of Report and Period Covered
Final Test Report
August 11-31, 2005
NVS-220
15. Supplementary Notes

16. Abstract
Compliance tests were conducted on the subject, 2005 Chrysler 300 Passenger Car in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP-225-01 for the determination of FMVSS 225 compliance. Test failures identified were as follows:
NONE

17. Key Words
Compliance Testing
Safety Engineering
FMVSS 225
18. Distribution Statement
Copies of this report are available from
NHTSA Technical Reference Div.,
Rm. PL-403 (NPO-230)
400 7th St., S.W. Washington, DC 20590
Telephone No. (202) 368-4946

19. Security Classif. (of this report)
UNCLASSIFIED
21. No. of Pages
101
22. Price

20. Security Classif. (of this page)
UNCLASSIFIED

Form DOT F 1700.7 (8-72)
<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Purpose of Compliance Test</td>
</tr>
<tr>
<td>2</td>
<td>Compliance Test Results</td>
</tr>
<tr>
<td>3</td>
<td>Compliance Test Data</td>
</tr>
<tr>
<td>4</td>
<td>Test Equipment List</td>
</tr>
<tr>
<td>5</td>
<td>Photographs</td>
</tr>
</tbody>
</table>

5.1 ¾ Frontal Right Side View of Vehicle
5.2 ¾ Rearward Left Side View of Vehicle
5.3 Close-up View of Vehicle Certification Label
5.4 Close-up View of Vehicle Tire Information Label
5.5 Overall View of Row 2 Seating Positions, Pre-Test
5.6 Row 2, Left Side Outboard Lower Anchor, Pre-Test
5.7 Row 2, Left Side Inboard Lower Anchor, Pre-Test
5.8 Typical Top Tether Cover with Symbol
5.9 Row 2, Left Side Top Tether Anchor, Pre-Test
5.10 Row 2, Right Side Outboard Lower Anchor, Pre-Test
5.11 Row 2, Right Side Inboard Lower Anchor, Pre-Test
5.12 Row 2, Right Side Top Tether Anchor, Pre-Test
5.13 Row 2, Center, Right Lower Anchor, Pre-Test
5.14 Row 2, Center, Left Lower Anchor, Pre-Test
5.15 Lower Anchor Symbol Measurement
5.16 Row 2, Left Side with CRF
5.17 Row 2, Left Side CRF Pitch Measurement
5.18 Row 2, Left Side Outboard CRF Measurement
5.19 Row 2, Left Side Inboard CRF Measurement
5.20 Row 2, Center with CRF
5.21 Row 2, Center CRF Pitch Measurement
5.22 Row 2, Center, Left Side CRF Measurement
5.23 Row 2, Center, Right Side CRF Measurement
5.24 Row 2, Right Side with CRF
5.25 Row 2, Right Side with CRF Pitch Measurement
5.26 Row 2, Right Side Inboard CRF Measurement
5.27 Row 2, Right Side Outboard CRF Measurement
5.28 Row 2, Left Side with 2-D Template
5.29 Row 2, Left Side Top Tether Routing
5.30 Row 2, Center with 2-D Template
5.31 Row 2, Center Top Tether Routing
5.32 Row 2, Right Side with 2-D Template
5.33 Row 2, Right Side Top Tether Routing
5.34 Row 2, Left Side Lower Outboard SRP Measurement
5.35 Row 2, Left Side Lower Inboard SRP Measurement
5.36 Row 2, Center, Lower Left SRP Measurement
5.37 Row 2, Center, Lower Right SRP Measurement
5.38 Row 2, Right Side Lower Inboard SRP Measurement
5.39 Row 2, Right Side Lower Outboard SRP Measurement
TABLE OF CONTENTS (continued)

5.40 ¾ Left Front View of Vehicle in Test Rig
5.41 ¾ Right Front View of Vehicle in Test Rig
5.42 Pre-Test Set-up, Row 2, Center Position
5.43 Post Test, Row 2, Center Position
5.44 Pre-Test, Row 2, Right Side
5.45 Post Test, Row 2, Right Side
5.46 Pre-Test, Row 2, Left Side
5.47 Post Test, Row 2, Left Side

6 Plots

6.1 2nd Row Center Top Tether Anchor, GTL 5318
6.2 2nd Row Right Side Top Tether Anchor, GTL 5319
6.3 2nd Row Left Side Lower Anchor, GTL 5320
6.4 2nd Row Left Side Lower Anchor, GTL 5320

Appendix A – Owner’s Manual Child Restraint Information
Appendix B – Manufacturer’s Data
SECTION 1

PURPOSE OF COMPLIANCE TEST

1.0 PURPOSE OF COMPLIANCE TEST

A 2005 Chrysler 300 Passenger Car was subjected to Federal Motor Vehicle Safety Standard (FMVSS) No. 225 testing to determine if the vehicle was in compliance with the requirements of the standard. The purpose of this standard is to establish requirements for child restraint anchorage systems to ensure their proper location and strength for the effective securing of child restraints, to reduce the likelihood of the anchorage systems' failure and to increase the likelihood that child restraints are properly secured and thus more fully achieve their potential effectiveness in motor vehicles.

1.1 The test vehicle was a 2005 Chrysler 300 Passenger Car. Nomenclature applicable to the test vehicle are:

 A. Vehicle Identification Number: 2C3JA43R95H150151
 B. NHTSA No.: C50301
 C. Manufacturer: DAIMLERCHRYSLER CORPORATION
 D. Manufacture Date: 05/04

1.2 TEST DATE

The test vehicle was subjected to FMVSS No. 225 testing during the time period August 11-31, 2005.
SECTION 2

COMPLIANCE TEST RESULTS

2.0 TEST RESULTS

All tests were conducted in accordance with NHTSA, Office of Vehicle Safety Compliance (OVSC) Laboratory Procedures, TP-225-01 dated 11 April 2005.

Based on the test performed, the 2005 CHRYSLER 300 PASSENGER CAR appeared to meet the requirements of FMVSS 225 testing.
SECTION 3

COMPLIANCE TEST DATA

3.0 TEST DATA

The following data sheets document the results of testing on the 2005 Chrysler 300 Passenger Car.

DATA SHEET 1
SUMMARY OF RESULTS
A. VISUAL INSPECTION OF TEST VEHICLE

Upon receipt for completeness, function, and discrepancies or damage which might influence the testing.

RESULTS: OK FOR TEST

B. REQUIREMENTS FOR CHILD RESTRAINT SYSTEMS AND TETHER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. LOCATION OF TETHER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D. LOWER ANCHORAGE DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATA SHEET 1 CONTINUED
SUMMARY OF RESULTS
E. CONSPICUITY AND MARKING OF LOWER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

F. STRENGTH OF TETHER ANCHORAGES

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP b</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

G. STRENGTH OF LOWER ANCHORAGES (Forward Force)

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

H. STRENGTH OF LOWER ANCHORAGE (Lateral Force)

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP b</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DSP c</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

I. OWNER'S MANUAL

<table>
<thead>
<tr>
<th></th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS: DSP a = Center, DSP b = Right Rear Outboard, DSP c = Left Rear Outboard

RECORDED BY: ___________________________ **DATE:** 08/31/05

APPROVED BY: ___________________________
DATA SHEET 2
REQUIREMENTS FOR CHILD RESTRAINT ANCHORAGE SYSTEMS
AND TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2005 CHRYSLER 300 PASSENGER CAR
VEH. NHTSA NO: 503301; VIN: 2C3JA43R99H150151
VEH. BUILD DATE: 05/04; TEST DATE: AUGUST 11-31, 2005
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

Number of rows of seats: 2
Number of rear, forward-facing designated seating positions: 3
Number of required CRAS (lower anchorages only, for convertibles/school buses): 2
Number of required tether anchorages (can be additional CRAS): 1
Is the vehicle a convertible? NO
Is the vehicle a school bus? NO

Does the vehicle have a CRAS (lower anchorage only, for convertibles/school buses) installed at a front passenger seating position? NO

If NO, skip to next question.
If YES, does the vehicle have rear designated seating positions?

If NO, does the vehicle have an air bag on-off switch or a special exemption for no passenger air bag?

If NO = FAIL
If YES = PASS

If Yes, does the vehicle meet the requirements of S4.5.4.1 (b) of S208 and have an air bag on-off switch or a special exemption for no passenger air bag?

Record the distance between the front and rear seat back:

If Distance < 720 mm and vehicle has an air bag on-off switch or special exemption = PASS
If Distance ≥ 720 mm or no air bag on-off switch or no special exemption = FAIL

Does the vehicle have rear designated seating position(s) where the lower bars of a CRAS are prevented from being located because of transmission and/or suspension component interference? NO

If NO, skip to next question.
If YES, does the vehicle have a tether anchorage at a front passenger seating position?

YES = PASS NO = FAIL (S5(e))

Number of provided CRAS (lower anchorage only, for convertibles/school buses), indicate if a built-in child restraint is counted as a CRAS: 3

Is the number of provided CRAS (lower anchorages only, for convertible/school buses) greater than or equal to the number of required CRAS (lower anchorages only, for convertibles/school buses)? YES

YES = PASS NO = FAIL (S4.4(a) or (b) or (c))

DATA SHEET 2 CONTINUED
If the vehicle has 3 or more rows of seats is a CRAS (lower anchorage only for convertibles/school buses) provided in the second row: N/A

YES = PASS NO = FAIL (S4.4(a)(1))

Number of provided tether anchorages (can be additional CRAS) indicate if a built-in child restraint is counted a s tether anchorage (NOTE: a built-in child restraint can only be counted toward either the required number of CRAS or tether anchorages, not both): 3

Is the number of provided tether anchorages greater than or equal to the number of required tether anchorages? YES

YES = PASS NO = FAIL (S4.4 (a) or (b) or (c))

If the vehicle has 3 or more rear dsps and a non-outboard dsp, is a tether anchorage or CRAS provided at a non-outboard dsp? YES

YES = PASS NO = FAIL (S4.4 (a)(2))

Are all tether and lower anchorages available for use at all times when the seat is configured for passenger use? YES

YES = PASS NO = FAIL (S4.6 (b))

Provide a diagram showing the location of lower anchorages and/or tether anchorages.

X X X

* * * * *

B A C

X = Top Tether
* = Lower Anchors

RECORDED BY: ___________________________ DATE: 08/11/05

APPROVED BY: _________________________
DATA SHEET 3
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2005 CHRYSLER 300 PASSENGER CAR
VEH. NHTSA NO: C50301; VIN: 2C3JA43R95H150151
VEH. BUILD DATE:05/04 ; TEST DATE: AUGUST 11-31, 2005
TEST LABORATORY; GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ______ ROW 2 LEFT SIDE (DSP C) ______

Detailed description of the location of the tether anchorage:
Located on top of rear deck just behind seat back.

Based on visual inspection, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone?

If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component?
If YES = FAIL (S6.2.1)
If NO, Is a tether routing device provided?
If YES = PASS
If NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? YES
If NO, skip to next question
If YES, is it outside of the tether strap wraparound area? YES
YES = PASS NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? YES
YES = PASS NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? YES
YES = PASS NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? YES
YES = PASS NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? YES
YES = PASS NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? N/A

DATA SHEET 3 CONTINUED
DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension: _____N/A_____ (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device: _____N/A_____
 Greater than or equal to 65mm = PASS Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device: _____N/A_____
 Greater than or equal to 100mm = PASS Less than 100mm = FAIL

COMMENTS:

RECORDED BY:_________________________ DATE:____08/11/05_____

APPROVED BY:________________________

DATA SHEET 3A
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2005 CHRYSLER 300 PASSENGER CAR
VEH. NHTSA NO: C50301; VIN: 2C3JA43R95H150151
VEH. BUILD DATE: 05/04; TEST DATE: AUGUST 11-31, 2005
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATEANE

DESIGNATED SEATING POSITION: ROW 2 CENTER POSITION (DSP A)

Detailed description of the location of the tether anchorage:
Located on top of rear deck just behind seat back.

Based on visual inspection, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component?
If YES = FAIL (S6.2.1)
If NO, Is a tether routing device provided?
If YES = PASS
If NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? YES
If NO, skip to next question
If YES, Is it outside of the tether strap wraparound area? YES
YES = PASS
NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? YES
YES = PASS
NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? YES
YES = PASS
NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? YES
YES = PASS
NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? YES
YES = PASS
NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? N/A

DATA SHEET 3A CONTINUED

DESIGNATED SEATING POSITION: ROW 2 CENTER POSITION

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension: N/A (Must be 60 N ± 5 N)
If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device: N/A
Greater than or equal to 65mm = PASS Less than 65mm = FAIL

If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device: N/A
Greater than or equal to 100mm = PASS Less than 100mm = FAIL

COMMENTS:

RECORDED BY: __________________________ DATE: 08/11/05
APPROVED BY: __________________________

DATA SHEET 3B
LOCATION OF TETHER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2005 CHRYSLER 300 PASSENGER CAR
VEH. NHTSA NO: C50301; VIN: 2C3JA43R95H150151
VEH. BUILD DATE: 05/04; TEST DATE: AUGUST 11-31, 2005
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP B)

Detailed description of the location of the tether anchorage:
Located on top of rear deck just behind seat back.

Based on visual inspection, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, After constructing the shaded zone, is the tether anchorage within the shaded zone? YES
If YES = PASS, skip to next section
If NO, Is it possible to locate a tether anchorage within the shaded zone without removing a seating component?
If YES = FAIL (S6.2.1)
If NO, Is a tether routing device provided?
If YES = PASS
If NO = FAIL (S6.2.1.2)

Is the tether anchorage recessed? YES
If NO, skip to next question
If YES, Is it outside of the tether strap wraparound area? YES
YES = PASS
NO = FAIL (S6.2.1)

Does the tether anchorage permit attachment of a tether hook? YES
YES = PASS
NO = FAIL (S6.1(a))

Is the tether anchorage accessible without the need for any tools other than a screwdriver or coin? YES
YES = PASS
NO = FAIL (S6.1(b))

After the tether anchorage is accessed, is it ready for use without the need for tools? YES
YES = PASS
NO = FAIL (S6.1(c))

Is the tether anchorage sealed to prevent the entry of exhaust fumes into the passenger compartment? YES
YES = PASS
NO = FAIL (S6.1(d))

If the DSP has a tether routing device, is it flexible or rigid? N/A

DATA SHEET 3B CONTINUED

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE

If the DSP has a flexible tether routing device, after installing SFAD2 record the tether strap tension: N/A (Must be 60 N ± 5 N)

If the DSP has a flexible tether routing device, record the horizontal distance between the torso reference plane and the routing device: N/A
Greater than or equal to 65mm = PASS Less than 65mm = FAIL
If the DSP has a rigid tether routing device, record the horizontal distance between the torso reference plane and the routing device:

N/A

Greater than or equal to 100mm = PASS
Less than 100mm = FAIL

COMMENTS:

RECORDED BY:________________________________ DATE: 08/11/05

APPROVED BY:________________________________

DATA SHEET 4
LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2005 CHRYSLER 300 PASSENGER CAR
VEH. NHTSA NO: C50301; VIN: 2C3JA43R95H150151
VEH. BUILD DATE: 05/04; TEST DATE: AUGUST 11-31, 2005
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE

Outboard Lower Anchorage bar diameter: 5.98
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: 5.98
6mm ± 0.1mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? YES
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): 26
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length of the straight portion of the bar (inboard lower anchorage): 26
Length ≥25mm = PASS Length <25mm = FAIL(S9.1.1(c) (i))

Length between the anchor bar supports (outboard lower anchorage): 32
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

Length between the anchor bar supports (inboard lower anchorage): 32
Length ≤60mm = PASS Length >60mm = FAIL(S9.1.1(c) (ii))

CRF Pitch angle: 9.3
Angle = 15°±10° = PASS Angle≠15°±10° = FAIL (S9.2.1)

CRF Roll angle: 0.0
Angle = 0°±5° = PASS Angle≠0°±5° = FAIL (S9.2.1)

CRF Yaw angle: 0.0
Angle = 0°±10° = PASS Angle≠0°±10° = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 38
Distance ≤70mm = PASS Distance >70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: 38
Distance ≤70mm = PASS Distance >70mm = FAIL

DATA SHEET 4 CONTINUED

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE

Distance between SgRP and the front surface of outboard anchor bar: 155
Distance ≥120mm = PASS Distance <120mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: 155
Distance ≥120mm = PASS Distance <120mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm? NO

If NO = PASS
If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor
COMMENTS:

RECORDED BY: ___________________________ **DATE:** 08/11/05

APPROVED BY: ___________________________

DATA SHEET 4A

LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2005 CHRYSLER 300 PASSENGER CAR
VEH. NHTSA NO: C50301; **VIN:** 2C3JA43R95H150151

VEH. BUILD DATE: 05/04; **TEST DATE:** AUGUST 11-31, 2005

TEST LABORATORY: GENERAL TESTING LABORATORIES

OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ROW 2 CENTER

Outboard Lower Anchorage bar diameter: **5.98**
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: **5.98**
6mm ± 0.1mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? **YES**
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): 26
Length ≥25mm = PASS Length <25mm = FAIL (S9.1.1(c) (i))

Length of the straight portion of the bar (inboard lower anchorage): 26
Length ≥25mm = PASS Length <25mm = FAIL (S9.1.1(c) (ii))

Length between the anchor bar supports (outboard lower anchorage): 32
Length ≤80mm = PASS Length >80mm = FAIL (S9.1.1(c) (ii))

Length between the anchor bar supports (inboard lower anchorage): 32
Length ≤80mm = PASS Length >80mm = FAIL (S9.1.1(c) (ii))

CRF Pitch angle: 16.5
Angle = 15°±10° = PASS Angle≠15°±10° = FAIL (S9.2.1)

CRF Roll angle: 0.0
Angle = 0°±5° = PASS Angle≠0°±5° = FAIL (S9.2.1)

CRF Yaw angle: 0.0
Angle = 0°±10° = PASS Angle≠0°±10° = FAIL (S9.2.1)

Distance between point Z on the CRF and the front surface of outboard anchor bar: 70
Distance ≤70mm = PASS Distance >70mm = FAIL

Distance between point Z on the CRF and the front surface of inboard anchor bar: 70
Distance ≤70mm = PASS Distance >70mm = FAIL

DATA SHEET 4A CONTINUED

DESIGNATED SEATING POSITION: ROW 2 CENTER

Distance between SgRP and the front surface of outboard anchor bar: 173
Distance ≥120mm = PASS Distance <120mm = FAIL

Distance between SgRP and the front surface of inboard anchor bar: 174
Distance ≥120mm = PASS Distance <120mm = FAIL

Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm? NO

If NO = PASS
If YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:
COMMENTS:

RECORDED BY:__________________________ DATE:____08/11/05_____

APPROVED BY:__________________________

DATA SHEET 4B
LOWER ANCHORAGE DIMENSIONS

VEH. MOD YR/MAKE/MODEL/BODY: 2005 CHRYSLER 300 PASSENGER CAR
VEH. NHTSA NO: C50301; VIN: 2C3JA43R85H150151
VEH. BUILD DATE: 05/04; TEST DATE: AUGUST 11-31, 2005
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: _______ROW 2 RIGHT SIDE_____

Outboard Lower Anchorage bar diameter: _______5.98_____
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Inboard Lower Anchorage bar diameter: _______5.98_____
6mm ± 0.1 mm = PASS Other size = FAIL (S9.1.1(a))

Are the bars straight, horizontal and transverse? _______YES____
YES = PASS NO = FAIL

Length of the straight portion of the bar (outboard lower anchorage): _______26_____
Length ≥25mm = PASS Length <25mm = FAIL (S9.1.1(c)(i))

Length of the straight portion of the bar (inboard lower anchorage): _______26_____

Length ≥25mm = PASS Length <25mm = FAIL (S9.1.1(c)(ii))
Length ≥25mm = PASS Length <25mm = FAIL (S9.1.1(c) (i))
Length ≤60mm = PASS Length >60mm = FAIL (S9.1.1(c) (ii))
Length between the anchor bar supports (outboard lower anchorage): __32__
Length ≤60mm = PASS Length >60mm = FAIL (S9.1.1(c) (ii))
Length between the anchor bar supports (inboard lower anchorage): __32__
Length ≤60mm = PASS Length >60mm = FAIL (S9.1.1(c) (ii))
CRF Pitch angle: __9.4__
Angle = 15°±10° = PASS Angle≠15°±10° = FAIL (S9.2.1)
CRF Roll angle: __0.0__
Angle = 0°±5° = PASS Angle≠0°±5° = FAIL (S9.2.1)
CRF Yaw angle: __0.0__
Angle = 0°±10° = PASS Angle≠0°±10° = FAIL (S9.2.1)
Distance between point Z on the CRF and the front surface of outboard anchor bar: __36__
Distance ≤70mm = PASS Distance > 70mm = FAIL
Distance between point Z on the CRF and the front surface of inboard anchor bar: __36__
Distance ≤70mm = PASS Distance > 70mm = FAIL
DATA SHEET 4B CONTINUED
DESIGNATED SEATING POSITION: __ROW 2 RIGHT SIDE__
Distance between SgRP and the front surface of outboard anchor bar: __152__
Distance ≥ 120mm = PASS Distance < 120mm = FAIL
Distance between SgRP and the front surface of inboard anchor bar: __153__
Distance ≥ 120mm = PASS Distance < 120mm = FAIL
Based on visual observation, would a 100 N load cause the anchor bar to deform more than 5 mm? NO
If NO = PASS
if YES = FAIL (S9.1.1(g)), Provide further description of the attachment of the anchor bar:
COMMENTS:

RECORDED BY:_______________________ DATE:____08/11/05__________

APPROVED BY:_______________________

DATA SHEET 5

CONSPICUITY AND MARKING OF LOWER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2005 CHRYSLER 300 PASSENGER CAR
VEH. NHTSA NO: C50301; VIN: 2C3JA43R95H150161
VEH. BUILD DATE:05/04 ; TEST DATE: AUGUST 11-31, 2005
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ___ROW 2 LEFT SIDE

MARKING (Circles)

Diameter of the circle: ___15_____ Diameter <13mm = FAIL (S9.5(a)(1))

Diameter ≥13mm = PASS

Does the circle have words, symbols or pictograms? ___SYMBOL___

NO skip to next question

YES, are the meaning of the words, symbols or pictograms explained in the owner’s manual? ___YES___

YES = PASS

NO = FAIL (S9.5(a)(2))

Where is the circle located? Seat back or seat Cushion: ___Seat Back___

For circles on seat backs, vertical distance from the center of the circle to the center of the anchor bar: ___55___

Distance between 50 & 100mm = PASS Other Distance = FAIL (S9.5(a)(3))

For circles on seat cushions, horizontal distance from the center of the circle to the center of the bar: ___N/A___
Distance between 75 & 125mm = PASS Other Distance = FAIL (S9.5(a)(3))

Lateral distance from the center of the circle to the center of the anchor bar: 15

Distance ≤ 25mm = PASS Distance > 25mm = FAIL (S9.5(a)(3))

CONSPICUITY (No Circles)

Is the anchor bar or guide visible when viewed from a point 30° above the horizontal in a vertical longitudinal plane bisecting the anchor bar or guide? N/A

YES = PASS NO = FAIL (S9.5(b))

If there is a guide, is it permanently attached? N/A

YES = PASS NO = FAIL (S9.5(b))

DATA SHEET 5 CONTINUED

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE

Is there a cap or cover over the anchor bar? N/A

If YES, is the cap or cover marked with words, symbols or pictograms?

If NO = FAIL (S9.5(b))

If YES, is the meaning of the words, symbols or pictograms explained in the owner's manual?

YES = PASS NO = FAIL (S9.5(b))

If NO, there are no requirements for having a cover.
DATA SHEET 5A
CONSPICUITY AND MARKING OF LOWER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2005 CHRYSLER 300 PASSENGER CAR
VEH. NHTSA NO: C50301; VIN: 2C3JA47R95H150151
VEH. BUILD DATE: 05/04; TEST DATE: AUGUST 11-31, 2005
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ____ ROW 2 CENTER

MARKING (Circles)

Diameter of the circle: 15
Diameter ≥13mm = PASS Diameter <13mm = FAIL (S9.5(a)(1))

Does the circle have words, symbols or pictograms? ____SYMBOL____
NO skip to next question
YES, are the meaning of the words, symbols or pictograms explained in the owner's manual?
____ YES_____
YES = PASS NO = FAIL (S9.5(a)(2))

Where is the circle located? Seat back or seat Cushion: ____ Seat Back ____

For circles on seat backs, vertical distance from the center of the circle to the center of the anchor bar: 55
Distance between 50&100mm = PASS Other Distance=FAIL (S9.5(a)(3))

For circles on seat cushions, horizontal distance from the center of the circle to the center of the bar: N/A
Distance between 75&125mm= PASS Other Distance=FAIL (S9.5(a)(3))

Lateral distance from the center of the circle to the center of the anchor bar: 0
Distance≤25mm = PASS Distance >25mm = FAIL (S9.5(a)(3))

CONSPICUITY (No Circles)

Is the anchor bar or guide visible when viewed from a point 30° above the horizontal in a vertical longitudinal plane bisecting the anchor bar or guide? ____ N/A
YES = PASS NO = FAIL (S9.5(b))

If there is a guide, is it permanently attached? ____ N/A
YES = PASS NO = FAIL (S9.5(b))

DATA SHEET 5A CONTINUED
DESIGNATED SEATING POSITION: ROW 2 CENTER

Is there a cap or cover over the anchor bar? N/A

If YES, is the cap or cover marked with words, symbols or pictograms?

If NO = FAIL (S9.5(b))
If YES, is the meaning of the words, symbols or pictograms explained in the owner's manual?

YES = PASS NO = FAIL (S9.5(b))
If NO, there are no requirements for having a cover.

RECORDED BY: ___________________________ DATE: 08/11/05

APPROVED BY: ___________________________ DATA SHEET 5B
CONSPICUITY AND MARKING OF LOWER ANCHORAGES

VEH. MOD YR/MAKE/MODEL/BODY: 2005 CHRYSLER 300 PASSENGER CAR
VEH. NHTSA NO: G50301; VIN: 2C3JA43R95H150151
VEH. BUILD DATE: 05/04; TEST DATE: AUGUST 11-31, 2005
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE

DESIGNATED SEATING POSITION: ___ ROW 2 RIGHT SIDE

MARKING (Circles)

Diameter of the circle: ___ 15 ___
 Diameter ≥13mm = PASS Diameter <13mm = FAIL (S9.5(a)(1))

Does the circle have words, symbols or pictograms? ___ SYMBOL ___
 NO skip to next question
 YES, are the meaning of the words, symbols or pictograms explained in the owner’s manual?
 ___ YES ___
 YES = PASS NO = FAIL (S9.5(a)(2))

Where is the circle located? Seat back or seat Cushion: ___ Seat Back ___

For circles on seat backs, vertical distance from the center of the circle to the center of the anchor bar: ___ 55 ___
 Distance between 50&100mm = PASS Other Distance=FAIL (S9.5(a)(3))

For circles on seat cushions, horizontal distance from the center of the circle to the center of the bar: ___ N/A ___
 Distance between 75&125mm= PASS Other Distance=FAIL (S9.5(a)(3))

Lateral distance from the center of the circle to the center of the anchor bar: ___ 15 ___
 Distance≤25mm = PASS Distance >25mm = FAIL (S9.5(a)(3))

CONSPICUITY (No Circles)

Is the anchor bar or guide visible when viewed from a point 30° above the horizontal in a vertical longitudinal plane bisecting the anchor bar or guide? ___ N/A ___
 YES = PASS NO = FAIL (S9.5(b))

If there is a guide, is it permanently attached? ___ N/A ___
 YES = PASS NO = FAIL (S9.5(b))

DATA SHEET 5B CONTINUED

DESIGNATED SEATING POSITION: ___ ROW 2 RIGHT SIDE ___

Is there a cap or cover over the anchor bar? ___ N/A ___
 If YES, is the cap or cover marked with words, symbols or pictograms? ___
If NO = FAIL (S9.5(b))
If YES, is the meaning of the words, symbols or pictograms explained in the owner’s manual?

YES = PASS NO = FAIL (S9.5(b))
If NO, there are no requirements for having a cover.

RECORDERD BY: ______________________ DATE: ________08/11/05__________

APPROVED BY: ______________________

DATA SHEET 8
STRENGTH OF TETHER ANCHORAGE

VEH. MOD YR/MAKE/MODEL/BODY: 2005 CHRYSLER 300 PASSENGER CAR
VEH. NHTSA NO: C50301: VIN: 2C3JA43R95H150151
VEH. BUILD DATE: 05/04 ; TEST DATE: AUGUST 11-31, 2005
TEST LABORATORY: GENERAL TESTING LABORATORIES
OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: __5318__

DESIGNATED SEATING POSITION: ___ROW 2 CENTER___ (DSP "A")

SFAD: ___ 2 ___

Seat Back Angle: __27°__

Location of seat back angle measurement: ___ 2D Template ___

Head Restraint Position: ___ N/A ___

D-ring Position: ___ N/A ___

Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: ___135 N___

Lap belt tension: ___ N/A ___ (SFAD 1 only)

Tether strap tension: ___ 62 N ___

Angle (measured above the horizontal at 500 N): ___10°___

Separation of tether anchorage at 500 N: ___ NO ___

NO = PASS YES = FAIL (S6.3.1)

Force application rate: ___ 575 N/S ___

Time to reach maximum force (24-30 s): ___ 26 ___

Maximum force (14,950 N ± 50 N): ___ 14,932 N ___

Tested simultaneously with another DSP? ___ NO ___

COMMENTS:

RECORDED BY: ______________________ DATE: __06/31/05___

APPROVED BY: ______________________ DATA SHEET 6A

STRENGTH OF TETHER ANCHORAGES

VEH. MOD/yr/MAKE/MODEL/BODY: 2005 CHRYSLER 300 PASSENGER CAR

VEH. NHTSA NO: C50301; VIN: 2C3JA43R95H150151

VEH. BUILD DATE: 05/04; TEST DATE: AUGUST 11-31, 2005

TEST LABORATORY: GENERAL TESTING LABORATORIES

OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 5319

DESIGNATED SEATING POSITION: ROW 2 RIGHT SIDE (DSP "B")

SFAD: 2

Seat Back Angle: 27°

Location of seat back angle measurement: 2D Template

Head Restraint Position: Fixed

D-ring Position: N/A

Force at Point X (lower front crossmember for SFAD2) while securing belts and tether: 135 N

Lap belt tension: N/A (SFAD 1 only)

Tether strap tension: 58 N

Angle (measured above the horizontal at 500 N): 10°

Separation of tether anchorage at 500 N: NO

NO = PASS

YES = FAIL (S6.3.1)

Force application rate: 575 N/S

Time to reach maximum force (24-30 s): 26

Maximum force (14,950 N ± 50 N): 14,919 N

Tested simultaneously with another DSP? NO

COMMENTS:

RECORDED BY: ____________________________ DATE: 08/31/05

APPROVED BY: ____________________________ DATA SHEET 7

STRENGTH OF LOWER ANCHORAGES (Forward Force)

VEH. MOD YR/MAKE/MODEL/BODY: 2005 CHRYSLER 300 PASSENGER CAR

VEH. NHTSA NO: C50301; VIN: 2C3JA43R95H150151

VEH. BUILD DATE: 05/04; TEST DATE: AUGUST 11-31, 2005

TEST LABORATORY: GENERAL TESTING LABORATORIES

OBSERVERS: GRANT FARRAND, JIMMY LATANE
TEST NO: 5320

DESIGNATED SEATING POSITION: ROW 2 LEFT SIDE (DSP "C")

Seat Back Angle: 27°

Location of seat back angle measurement: 2D Template

Head Restraint Position: Fixed

Force at lower front crossmember for SFAD2 while tightening rearward extensions: 135 N

Angle (measured above the horizontal at 500 N): 10°

Force application rate: 423 N/S

Time to reach maximum force (24-30 s): 26

Maximum force (10,850 N ± 50 N): 10,973 N (3357 lbs.)

Displacement, H1 (at 500 N): 0.0

Displacement, H2 (at maximum load): 51 mm

Displacement > 175 mm = FAIL (S9.4.1(a))

Tested simultaneously with another DSP? No

Distance between adjacent DSP's: 380

COMMENTS:

RECORDED BY: ________________________ DATE: 08/31/05

APPROVED BY: ________________________
Description of which DSP's are equipped with tether anchorages and child restraint anchorage systems: YES

PASS X FAIL

Step-by-step instructions for properly attaching a child restraint system's tether strap to the tether anchorage. Diagrams are required: YES

PASS X FAIL

Description of how to properly use the tether anchorage and lower anchor bars: YES

PASS X FAIL

If the lower anchor bars are marked with a circle, an explanation of what the circle indicates as well as any words or pictograms: YES

PASS X FAIL

COMMENTS:

RECORDED BY: __________________________ DATE: __________ 08/11/05

APPROVED BY: _________________________
SECTION 4
INSTRUMENTATION AND EQUIPMENT LIST

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>DESCRIPTION</th>
<th>MODEL/ SERIAL NO.</th>
<th>CAL. DATE</th>
<th>NEXT CAL. DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER</td>
<td>AT&T</td>
<td>486DX268</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>LOAD CELL</td>
<td>INTERFACE</td>
<td>498</td>
<td>01/05</td>
<td>01/06</td>
</tr>
<tr>
<td>LINEAR TRANSUDER</td>
<td>SERVO SYSTEMS</td>
<td>20</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SEAT BELT LOAD CELL</td>
<td>TRANSUDER</td>
<td>135</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SEAT BELT LOAD CELL</td>
<td>TRANSUDER</td>
<td>137</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>LEVEL</td>
<td>STANLEY</td>
<td>42-449</td>
<td>02/05</td>
<td>02/06</td>
</tr>
<tr>
<td>FORCE GAUGE</td>
<td>CHATILLON</td>
<td>8761</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>CALIPER</td>
<td>N/A</td>
<td>Q9322365</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>CRF</td>
<td>MEASUREMENT FIXTURE</td>
<td>GTL CRF</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 1</td>
<td>FORCE APPLICATION DEVICE</td>
<td>GTL SFAD 1</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SFAD 2</td>
<td>FORCE APPLICATION DEVICE</td>
<td>GLT SFAD 2</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
</tbody>
</table>
SECTION 5

PHOTOGRAPHS
SECTION 6

PLOTS
GTL 531B, NHTSA C50301

226, Top Tether, 2nd Row Center.

Force in Newtons (Thousands)

Time in Seconds
GTL 5320, NHTSA C50301

225, Lower Anchors, Row 2 Left Side.

Force in Newtons (Thousands) vs. Time in Seconds
50 THINGS TO KNOW BEFORE STARTING YOUR VEHICLE

- Seatbelt status
- Brake status (service and parking brakes)
- Accelerator status (including vehicle speed)
- Engine control status (including engine speed)
- Cruise control status
- Traction/stability control status

Child Restraint

Everyone in your vehicle needs to be buckled up all the time, babies and children, too. Every state in the United States and all Canadian provinces require that small children ride in proper restraint systems. This is the law, and you can be prosecuted for ignoring it.

Children 12 years and under should ride properly buckled up in a rear seat, if available. According to crash statistics, children are safer when properly restrained in the rear seats rather than in the front.

In a collision, an unrestrained child, even a tiny baby, can become a missile inside the vehicle. The force required to hold even an infant on your lap could become so great that you could not hold the child, no matter how strong you are. The child and others could be badly injured. Any child riding in your vehicle should be in a proper restraint for the child's size.

There are different sizes and types of restraints for children from newborn size to the child almost large enough for an adult safety belt. Always check the child seat Owner's Manual to ensure you have the right seat for your child. Use the restraint that is correct for your child:

Infants and Child Restraints

- Safety experts recommend that children ride rearward-facing in the vehicle until they are at least one year old and weigh at least 9 kg (20 lbs). Two types of child restraints can be used rearward-facing: infant carriers and “convertible” child seats.

- The infant carrier is only used rearward-facing in the vehicle. It is recommended for children who weigh up to about 20 lbs (9 kg). “Convertible” child seats can be used either rearward-facing or forward-facing in the vehicle. Convertible child seats often have a higher weight limit in the rearward-facing direction than infant carriers do, so they can be used rearward-facing by children who weigh more than 20 lbs (9 kg) but are less than one year old. Both types of child restraints are held in the vehicle by the lap/shoulder belt or the LATCH child restraint anchorage system. (See the LATCH — Child Seat Anchorage System section.)

- Rearward-facing child seats must NEVER be used in the front seat of a vehicle with the front passenger airbag unless the airbag is turned off. An airbag deployment could cause severe injury or death to infants in this position.

**WARNING!

- Improper installation can lead to failure of an infant or child restraint. It could come loose in a collision. The child could be badly injured or killed. Follow the manufacturer's directions exactly when installing an infant or child restraint.

- A rearward facing child restraint should only be used in a rear seat. A rearward facing child restraint in the front seat may be struck by a deploying passenger airbag which may cause severe or fatal injury to the infant.

Here are some tips on getting the most out of your child restraint:

- Before buying any restraint system, make sure that it has a label certifying that it meets all applicable Safety Standards. We also recommend that you make sure that you can install the child restraint in the vehicle where you will use it before you buy it.
Older Children and Child Restraints
Children who weigh more than 20 lbs (9 kg) and who are older than one year can ride forward-facing in the vehicle. Forward-facing child seats and convertible child seats used in the forward-facing direction are for children who weigh 20 to 40 lbs (9 to 18 kg) and who are older than one year. These child seats are also held in the vehicle by the lap/shoulder belt or the LATCH child restraint anchorage system. (See the LATCH — Child Seat Anchorage System Section.)

The belt-positioning booster seat is for children weighing more than 40 lbs (18 kg), but who are still too small to fit the vehicle’s seat belts properly. If the child cannot sit with knees bent over the vehicle’s seat cushion while the child’s back is against the seat back, they should use a belt-positioning booster seat. The child and belt-positioning booster seat are held in the vehicle by the lap/shoulder belt.

Children Too Large For Booster Seats
Children who are large enough to wear the shoulder belt comfortably, and whose legs are long enough to bend over the front of the seat when their back is against the seat back, should use the lap/shoulder belt in a rear seat.

- Make sure that the child is upright in the seat.
- The lap portion should be low on the hips and as snug as possible.
- Check belt fit periodically. A child’s squirming or slouching can move the belt out of position.
- If the shoulder belt contacts the face or neck, move the child closer to the center of the vehicle. Never allow a child to put the shoulder belt under an arm or behind their back.

LATCH — Child Seat Anchorage System (Lower Anchors and Tether for CHildren)
Your vehicle’s rear seat is equipped with the child restraint anchorage system called LATCH. The LATCH system provides for the installation of the child restraint without using the vehicle’s seat belts, instead securing the child restraint using lower anchorages and upper tether straps from the child restraint to the vehicle structure.

LATCH-compatible child restraint systems are now available. However, because the lower anchorages are to be introduced over a period of years, child restraint systems having attachments for those anchorages will continue to also have features for installation using the vehicle’s seat belts. Child restraints having tether straps and hooks for connection to the top tether anchorages have been available for some time. For some older child restraints, many child restraint manufacturers offer add-on tether strap kits or retrofit kits. You are urged to take advantage of all the available attachments provided with your child restraint in any vehicle.
All three rear seating positions have lower anchorages that are capable of accommodating LATCH-compatible child seats. You should NEVER install LATCH-compatible child seats such that two seats share a common lower anchorage. If installing child seats in adjacent rear seating positions or if your child restraints are not LATCH-compatible, install the restraints using the vehicle's seat belts.

Installing the LATCH-Compatible Child Restraint System

We urge that you carefully follow the directions of the manufacturer when installing your child restraint. Not all child restraint systems will be installed as described here. Again, carefully follow the installation instructions that were provided with the child restraint system.

The rear seat lower anchorages are round bars, located at the rear of the seat cushion where it meets the seat back, and are just visible when you lean into the rear seat to install the child restraint. You will easily feel them if you run your finger along the intersection of the seatback and seat cushion surfaces.

In addition, there are tether strap anchorages behind each rear seating position located in the panel between the rear seat back and the rear window. These tether strap anchorages are under a plastic cover with this symbol on it.

Many, but not all restraint systems will be equipped with separate straps on each side, with each having a hook or connector for attachment to the lower anchorage and a means of adjusting the tension in the strap. Forward-facing toddler restraints and some rear-facing infant restraints will also be equipped with a tether strap, a hook for attachment to the tether strap anchorage and a means of adjusting the tension of the strap.

You will first loosen the adjusters on the lower straps and on the tether strap so that you can more easily attach the hooks or connectors to the vehicle anchorages. Next attach the lower hooks or connectors over the top of the seat cover material. Then rotate the tether anchorage cover directly behind the seat where you are placing the child restraint and attach the tether strap to the anchorage, being careful to route the tether strap to provide the most direct path between the anchor and the child restraint. If your vehicle is equipped with adjustable rear head restraints, raise the head restraint and, where possible, route the tether strap under the head restraint and between the two posts. If not possible, lower the head restraint and route the tether strap around the outboard side of the head restraint. Finally, tighten all three straps as you push the child restraint rearward and downward into the seat, removing slack in the straps according to the child restraint manufacturer's instructions.

WARNING!

Improper installation of a child restraint to the LATCH anchorages can lead to failure of an infant or child restraint. The child could be badly injured or killed. Follow the manufacturer's directions exactly when installing an infant or child restraint.

Installing Child Restraints Using the Vehicle Seat Belt

The passenger seat belts are equipped with cinching latch plates which are designed to keep the lap portion tight around the child restraint so that it is not necessary to use a locking clip. Pulling up on the shoulder portion of the lap/shoulder belt will tighten the belt. The cinching latch plate will keep the belt tight, however, any seat belt system will loosen with time, so check the belt occasionally and pull it tight if necessary.
In the rear seat, you may have trouble tightening the lap/shoulder belt on the child restraint because the buckle or latch plate is too close to the belt path opening on the restraint. Disconnect the latch plate from the buckle and twist the short buckle-end belt several times to shorten it. Insert the latch plate into the buckle with the release button facing out.

If the belt still can't be tightened, or if by pulling and pushing on the restraint loosens the belt, you may need to do something more. Disconnect the latch plate from the buckle, turn the buckle around, and insert the latch plate into the buckle again. If you still can't make the child restraint secure, try a different seating position.

To attach a child restraint tether strap:

1. Route the cover over the anchor directly behind the seat where you are placing the child restraint.

2. Route the tether strap to provide the most direct path for the strap between the anchor and the child seat. If your vehicle is equipped with adjustable rear head restraints, raise the head restraint and, where possible, route the tether strap under the head restraint and between the two posts. If not possible, lower the head restraint and pass the tether strap around the outboard side of the head restraint.

3. Attach the tether strap hook (A) of the child restraint to the anchor (B) and remove slack in the tether strap according to the child restraint manufacturer's instructions.

WARNING!

An incorrectly anchored tether strap could lead to increased head motion and possible injury to the child. Use only the anchor positions directly behind the child seat to secure a child restraint top tether strap.

Transplanting Pets

Airbags deploying in the front seat could harm your pet. An unrestrained pet will be thrown about and possibly injured, or injure a passenger during panic braking or in a collision.

Pets should be restrained in the rear seat in pet harnesses or pet carriers that are secured by seat belts.

ENGINE BREAK-IN RECOMMENDATIONS

A long break-in period is not required for the engine in your new vehicle.

Drive moderately during the first 300 miles (500 km). After the initial 60 miles (100 km), speeds up to 50 or 55 mph (80 or 90 km/h) are desirable.

While cruising, brief full-throttle acceleration, within the limits of local traffic laws, contributes to a good break-in. Wide open throttle acceleration in low gear can be detrimental and should be avoided.

The engine oil installed in the engine at the factory is a high quality energy conserving type lubricant. Oil changes should be consistent with anticipated climate conditions under which vehicle operations will occur. The recommended viscosity and quality grades are shown in Section 7 of this manual. NON-DETERGENT OR STRAIGHT MINERAL OILS MUST NEVER BE USED.
APPENDIX B

MANUFACTURER'S DATA
SEAT REFERENCE POINT (SRP) AND TORSO ANGLE DATA
FOR FMVSS 225
(All dimensions in mm)

Model Year: 2005 Make: Chrysler Model: 300 Body Style: Sedan
Seat Style: Front Row: ALL Second Row: ALL Third Row: N/A

<Diagram of seat reference points and torso angles>

LEFT SIDE VIEW OF TEST VEHICLE

Table 1. Seating Positions and Torso Angles

<table>
<thead>
<tr>
<th>Left (Driver Side)</th>
<th>Center (if any)</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 (Driver)</td>
<td>N/A</td>
<td>222.17</td>
</tr>
<tr>
<td>A2</td>
<td>109.35</td>
<td>158.35</td>
</tr>
<tr>
<td>A3</td>
<td>N/A</td>
<td>109.35</td>
</tr>
<tr>
<td>B</td>
<td>298.24</td>
<td>N/A</td>
</tr>
<tr>
<td>C</td>
<td>1199.24</td>
<td>1164.24</td>
</tr>
<tr>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Torso Angle (degree)</th>
<th>Front Row</th>
<th>Second Row</th>
<th>Third Row</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: 1. All dimensions are in mm. If not, provide the unit used.

Page 1 of 7