This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Prepared By: [Signature]
Approved By: [Signature]
Approval Date: 6/24/05

FINAL REPORT ACCEPTANCE BY OVSC:

Accepted By: [Signature]
Acceptance Date: 7/11/05
1. Report No. 207-GTL-05-001
2. Government Accession No. N/A
3. Recipient’s Catalog No. N/A

4. Title and Subtitle
Final Report of FMVSS 207 Indicant Testing of 2005 TOYOTA AVALON PASSENGER CAR
NHTSA No. C55104

5. Report Date
June 24, 2005

GTL

7. Author(s)
Grant Farrand, Project Engineer
Debbie Messick, Project Manager

8. Performing Organ. Rep#
GTL-DOT-05-207-001

9. Performing Organization Name and Address
General Testing Laboratories, Inc.
1623 Leedstown Road
Colonial Beach, Va 22443

10. Work Unit No. (TRAIS)
N/A

11. Contract or Grant No.
DTNH22-01-C-11025

12. Sponsoring Agency Name and Address
U.S. Department of Transportation
National Highway Traffic Safety Admin. Enforcement
Office of Vehicle Safety Compliance (NVS-220)
400 7th Street, S.W., Room 6115
Washington, DC 20590

13. Type of Report and Period Covered
Final Test Report
June 13, 2005

NVS-220

15. Supplementary Notes

16. Abstract
Indicant tests were conducted on the subject 2005 Toyota Avalon passenger car in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP-207-09 for the determination of FMVSS 207 compliance. Test failures identified were as follows:
NONE

17. Key Words
Compliance Testing
Safety Engineering
FMVSS 207

18. Distribution Statement
Copies of this report are available from
NHTSA
Technical Information Services (TIS)
Room 2338 (NPO-405)
400 7th St., S.W.
Washington, DC 20590
Telephone No. (202) 366-4947

19. Security Classif. (of this report)
UNCLASSIFIED

20. Security Classif. (of this page)
UNCLASSIFIED

21. No. of Pages 51
22. Price

Form DOT F 1700.7 (8-72)
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction 1</td>
</tr>
<tr>
<td>2</td>
<td>Test Procedure and Summary of Results 2</td>
</tr>
<tr>
<td>3</td>
<td>Test Data 4</td>
</tr>
<tr>
<td>4</td>
<td>Test Equipment List 7</td>
</tr>
<tr>
<td>5</td>
<td>Photographs 8</td>
</tr>
<tr>
<td>5.1</td>
<td>¾ Frontal Left Side View of Vehicle 8</td>
</tr>
<tr>
<td>5.2</td>
<td>¾ Rear Right Side View of Vehicle 9</td>
</tr>
<tr>
<td>5.3</td>
<td>Vehicle Certification Label 10</td>
</tr>
<tr>
<td>5.4</td>
<td>Vehicle Tire Information Label 11</td>
</tr>
<tr>
<td>5.5</td>
<td>¾ Left Rear View of Vehicle in Test Rig 12</td>
</tr>
<tr>
<td>5.6</td>
<td>¾ Left Front View of Vehicle in Test Rig 13</td>
</tr>
<tr>
<td>5.7</td>
<td>¾ Right Front View of Vehicle in Test Rig 14</td>
</tr>
<tr>
<td>5.8</td>
<td>¾ Right Rear View of Vehicle in Test Rig 15</td>
</tr>
<tr>
<td>5.9</td>
<td>Pre-Test Row 1, Left Side View 16</td>
</tr>
<tr>
<td>5.10</td>
<td>Pre-Test Row 1, ¾ Left Front View 17</td>
</tr>
<tr>
<td>5.11</td>
<td>Pre-Test Row 1, ¾ Right Front View 18</td>
</tr>
<tr>
<td>5.12</td>
<td>Pre-Test Row 1, Right Side View 19</td>
</tr>
<tr>
<td>5.13</td>
<td>Full Load Row 1, Left Side View 20</td>
</tr>
<tr>
<td>5.14</td>
<td>Full Load Row 1, Right Side View 21</td>
</tr>
<tr>
<td>5.15</td>
<td>Full Load Row 1, ¾ Right Front View 22</td>
</tr>
<tr>
<td>5.16</td>
<td>Full Load Row 1, ¾ Left Front View 23</td>
</tr>
<tr>
<td>5.17</td>
<td>Post Test Row 1, Left Side View 24</td>
</tr>
<tr>
<td>5.18</td>
<td>Post Test Row 1, ¾ Left Front View 25</td>
</tr>
<tr>
<td>5.19</td>
<td>Post Test Row 1, ¾ Right Front View 26</td>
</tr>
<tr>
<td>5.20</td>
<td>Post Test Row 1, Right Side View 27</td>
</tr>
<tr>
<td>5.21</td>
<td>Pre-Test Row 2, Left Side View 28</td>
</tr>
<tr>
<td>5.22</td>
<td>Pre-Test Row 2, Front View 29</td>
</tr>
<tr>
<td>5.23</td>
<td>Pre-Test Row 2, Right Side View 30</td>
</tr>
<tr>
<td>5.24</td>
<td>Full Load Row 2, Left Side View 31</td>
</tr>
<tr>
<td>5.25</td>
<td>Full Load Row 2, Right Side View 32</td>
</tr>
<tr>
<td>5.26</td>
<td>Post Test Row 2, Left Side View 33</td>
</tr>
<tr>
<td>5.27</td>
<td>Post Test Row 2, Front View 34</td>
</tr>
<tr>
<td>5.28</td>
<td>Post Test Row 2, Right Side View 35</td>
</tr>
<tr>
<td>6</td>
<td>Test Plots 36</td>
</tr>
<tr>
<td>7</td>
<td>37</td>
</tr>
</tbody>
</table>
1.0 PURPOSE OF INDICANT TEST

A 2005 Toyota Avalon 4-door passenger car was subjected to the following tests to
determine the effects of the newly developed FMVSS 207/210 force application devices
(FAD) (a.k.a. Tommy (FAD 1) and Tommy Jr (FAD 2) as compared to the current
FMVSS 207/210 seat belt body blocks.

1.1 TEST VEHICLE

The test vehicle was a 2005 Toyota Avalon 4-door passenger car. Nomenclature
applicable to the test vehicle are:

A. Vehicle Identification Number: 4T1BK36B75U024613

B. NHTSA No.: C55104

C. Manufacturer: TOYOTA MOTOR MANUFACTURING, KENTUCKY, INC.

D. Manufacture Date: 03/05

1.2 TEST DATE

The test vehicle was subjected to testing on June 13, 2005.
SECTION 2
TEST PROCEDURE AND SUMMARY OF RESULTS

2.0 GENERAL

The 2005 Toyota Avalon 4-door passenger car, NHTSA No. C55104, was subjected to testing on June 13, 2005.

2.1 TEST PROCEDURE

FAD Positioning Procedure:

1. Place seat in full rearward and full downward position.
2. Set seatback angle per manufacturers recommendation.
3. Identify and mark the centerline of the seat and seat back for each seating position.
4. Place the FAD so the midsagittal plane of the FAD contains the centerline for both the seat and back support of the seat. (Centerline of Body aligns with the centerline of the seat)
5. Rotate torso forward.
6. Push on pelvis parallel to surface of seating surface so the back of the pelvis is solidly against the seat back.
7. Rotate the torso up against the seatback while holding the pelvis in place.
8. Push on torso at center of gravity, perpendicular to the seat back with a force of 40 pounds.
9. Attach seatbelt and position the seatbelt so lap belt is over the FAD’s hips and the shoulder strap over the torso (chest).
10. If seatbelts need to be replaced with wire rope, install ratchet-type-belt tensioner on B-pillar between D-Ring and retractor and remove excess belt from the retractor. If a second retractor is installed on the lap belt, install a second ratchet type-belt tensioner between the FAD and the lap belt retractor.
11. Attach one actuator to the torso pull yoke and one to the pelvis eyelet.

Pull Test Procedure:

1. Connect load cells and actuators to the FAD’s so they pull in a plane that is inclined 10° ± 4° above the horizontal. The applied load shall be parallel to the vehicle’s centerline ± 3°. Also connect the standard test blocks in accordance with FMVSS 207/210 compliance testing.
2. Take pre-test photographs.
3. Ramp to holding load within 30 seconds.
4. Take photographs
5. Hold the maximum force for a period of not less than ten seconds.
6. Take post test photographs.
SECTION 2 Continued

Test Configuration for Toyota Avalon 5 Passenger Sedan:

1. LF FAD1
2. RF Standard Blocks
3. LR Standard Blocks
4. CR FAD2
5. RR FAD1

2.2 SUMMARY OF RESULTS

The test results are provided in Section 3, Test Data.
SECTION 3
TEST DATA

3.0 DATA

The following items were noted during the conduct of these tests.

1. The new FMVSS 207/210 FAD (Tommy Blocks) are much easier to position and set for lap and shoulder belts than the current FMVSS 207/210 body blocks.

2. The current FMVSS 207/210 shoulder belt body block wants to slide down and rest on top of the lower body block. This is no longer a problem with the new FMVSS 207/210 FAD (Tommy Blocks).

3. The new FMVSS 207/210 FAD (Tommy Blocks) appear to be more “seat belt friendly” than the current FMVSS 207/210 body blocks. i.e: A remote chance of breakage of the lap belt buckle due to bending around the corner of the current FMVSS 207/210 lap belt body block and less pay-out of shoulder belt during the test due to the torso being connected to the lap on the new FMVSS 207/210 FAD (Tommy Blocks).

4. Using existing body block, pay-out of seat belt webbing due to load limiters causes hydraulic test load application cylinders to bottom-out and test cannot be completed without resetting and starting the test over again. The resetting of the hydraulic test load application cylinders was not necessary using the new proposed FMVSS 207/210 FAD (Tommy Blocks).

5. This vehicle appears to meet the requirements of FMVSS 210 when tested with current FMVSS 207/210 body blocks and the proposed FMVSS 207/210 FAD force application device (a.k.a.) Tommy (FAD 1) and Tommy Jr. (FAD 2).
DATA SHEET 1
LAP AND SHOULDERS BELT ASSEMBLY ANCHORAGE LOADING

VEHICLE MAKE/MODEL/BODY STYLE: 2005 TOYOTA AVALON PASSENGER CAR
VEHICLE NHTSA NO.: C55104 ; VIN: 4T1BK36E75U024613
LABORATORY: GENERAL TESTING LABORATORIES
TEST DATE: 06/13/05
OBSERVERS: G. Ferrand, J. Latane

<table>
<thead>
<tr>
<th>SEAT</th>
<th>BELT ASSEMBLY TESTED</th>
<th>MAXIMUM LOAD REQUIREMENT</th>
<th>APPLIED LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONT</td>
<td>Left Lap</td>
<td>3000 lbs, -10, -50</td>
<td>2972</td>
</tr>
<tr>
<td></td>
<td>Left Shoulder</td>
<td>3000 lbs, -10, -50</td>
<td>2972</td>
</tr>
<tr>
<td></td>
<td>Right Lap</td>
<td>3000 lbs, -10, -50</td>
<td>2977</td>
</tr>
<tr>
<td></td>
<td>Right Shoulder</td>
<td>3000 lbs, -10, -50</td>
<td>2990</td>
</tr>
<tr>
<td>REAR</td>
<td>Left Lap</td>
<td>3000 lbs, -10, -50</td>
<td>2975</td>
</tr>
<tr>
<td></td>
<td>Left Shoulder</td>
<td>3000 lbs, -10, -50</td>
<td>2972</td>
</tr>
<tr>
<td></td>
<td>Right Lap</td>
<td>3000 lbs, -10, -50</td>
<td>2979</td>
</tr>
<tr>
<td></td>
<td>Right Shoulder</td>
<td>3000 lbs, -10, -50</td>
<td>2977</td>
</tr>
<tr>
<td></td>
<td>Center Lap</td>
<td>3000 lbs, -10, -50</td>
<td>2972</td>
</tr>
<tr>
<td></td>
<td>Center Shoulder</td>
<td>3000 lbs, -10, -50</td>
<td>2972</td>
</tr>
</tbody>
</table>

REMARKS:

RECORDED BY: [Signature]
DATE: 06/13/05
APPROVED BY: [Signature]
DATA SHEET 2
SEAT BELT ASSEMBLY LOAD ANGLE MEASUREMENT

VEHICLE MAKE/MODEL/BODY STYLE: 2005 TOYOTA AVALON PASSENGER CAR
VEHICLE NHTSA NO.: C55104
VIN: 4T1BK38B75U024613
LABORATORY: GENERAL TESTING LABORATORIES
TEST DATE: 06/13/05
OBSERVERS: G. Farrand, J. Latane

<table>
<thead>
<tr>
<th>TYPE</th>
<th>ANGLE MEASURED</th>
<th>ANGLE REFERENCE</th>
<th>ANGLE AT 10% LOAD (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAP BELT</td>
<td>Load Application Angle (degrees)</td>
<td>From Side View Horizontal 10 ± 4</td>
<td>11° 8° N/A 8° 11° 8°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>From Plan View Vehicle Centerline 0 ± 3</td>
<td>0° 0° N/A 0° 0° 0°</td>
</tr>
<tr>
<td>SHOULDER BELT</td>
<td>Load Application Angle (degrees)</td>
<td>From Side View Horizontal 10 ± 4</td>
<td>12° 0° N/A 9° 12° 9°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>From Plan View Vehicle Centerline 0 ± 3</td>
<td>0° 0° N/A 0° 11° 0°</td>
</tr>
</tbody>
</table>

REMARKS:

RECORDED BY: [Signature]
DATE: 06/13/05

APPROVED BY: [Signature]
SECTION 4
INSTRUMENTATION AND EQUIPMENT LIST

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>DESCRIPTION</th>
<th>MODEL/ SERIAL NO.</th>
<th>CAL. DATE</th>
<th>NEXT CAL. DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER</td>
<td>AT&T</td>
<td>486DX266</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>TEST FIXTURE</td>
<td>GTL</td>
<td>N/A</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>SIGNAL CONDITIONER</td>
<td>METRABYTE</td>
<td>EXP-RES</td>
<td>BEFORE USE</td>
<td>BEFORE USE</td>
</tr>
<tr>
<td>LOAD CELL</td>
<td>REVERE</td>
<td>46021</td>
<td>01/05</td>
<td>01/06</td>
</tr>
<tr>
<td>LOAD CELL</td>
<td>REVERE</td>
<td>46022</td>
<td>01/05</td>
<td>01/06</td>
</tr>
<tr>
<td>LOAD CELL</td>
<td>REVERE</td>
<td>46023</td>
<td>01/05</td>
<td>01/06</td>
</tr>
<tr>
<td>LOAD CELL</td>
<td>REVERE</td>
<td>46024</td>
<td>01/05</td>
<td>01/06</td>
</tr>
<tr>
<td>LOAD CELL</td>
<td>REVERE</td>
<td>46025</td>
<td>01/05</td>
<td>01/06</td>
</tr>
<tr>
<td>LOAD CELL</td>
<td>REVERE</td>
<td>44243</td>
<td>01/05</td>
<td>01/06</td>
</tr>
</tbody>
</table>
GTL 5305, NHTSA C55104

210, Lap Belt, Row 1 Left DSP.

Load in Pounds (Thousands)

Time in Seconds
GTL 5305, NHTSA C55104

210, Lap Belt, Row 1 Right DSP.

Load in Pounds (Thousands)

Time in Seconds
GTL 5305, NHTSA C55104

210. Shoulder Belt, Row 1 Left DSP.

Load in Pounds (Thousands)

Time in Seconds
GTL 5306, NHTSA C55104

210, Lap Belt, Row 2 Left DSP.
GTL 5306, NHTSA C55104

210, Shoulder Belt, Row 2 Left DSP.

Load in Pounds (Thousands)

Time in Seconds

0 10 20 30 40
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
GTL 5306, NHTSA C55104

210, Lap Belt, Row 2 Right DSP.

Load in Pounds (Thousands)

Time in Seconds
GTL 5306, NHTSA C55104

210, Shoulder Belt, Row 2 Right DSP.

Load in Pounds (Thousands)

Time in Seconds
GTL 5306, NHTSA C55104

210, Lap Belt, Row 2 Center DSP.

Graph showing the relationship between load in pounds (thousands) and time in seconds.
GTL 5306, NHTSA C55104

210, Shoulder Belt, Row 2 Center DSP.

Load in Pounds (Thousands)

Time in Seconds