REPORT NUMBER: 208-MGA-2005-005

VEHICLE SAFETY COMPLIANCE TESTING
FOR
FMVSS 208, OCCUPANT CRASH PROTECTION
FMVSS 212, WINDSHIELD MOUNTING
FMVSS 219, WINDSHIELD INTRUSION (PARTIAL)
FMVSS 301, FUEL SYSTEM INTEGRITY

Toyota Motor Corporation
2005 Toyota Highlander
NHTSA No.: C55107

PREPARED BY:
MGA RESEARCH CORPORATION
5000 WARREN ROAD
BURLINGTON, WI 53105

Test Date: April 26, 2005
Final Report Date: June 1, 2005

FINAL REPORT

PREPARED FOR:
U.S. DEPARTMENT OF TRANSPORTATION
NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
OFFICE OF ENFORCEMENT
OFFICE OF VEHICLE SAFETY COMPLIANCE
MAIL CODE: NVS-220
400 SEVENTH STREET, SW, ROOM 6115
WASHINGTON, D.C. 20590
This final test report was prepared for the U.S. Department of Transportation, National Highway Traffic Safety Administration, in response to Contract Number DTNH22-03-D-11002.

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Prepared _____________________________ Date: June 1, 2005
Jeff Lewandowski, Project Engineer

Reviewed by: _____________________________ Date: June 1, 2005
David Winkelbauer, Facility Director

FINAL REPORT ACCEPTED BY OVSC:

Accepted By: _____________________________

Acceptance Date: ___________________________
Compliance tests were conducted on the subject 2005 Toyota Highlander in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP208-12 for the determination of FMVSS 208 compliance. Test failures identified were as follows:

TEST FAILURES: None
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Purpose of Compliance Test</td>
</tr>
<tr>
<td>2</td>
<td>Tests Performed</td>
</tr>
<tr>
<td>3</td>
<td>Injury Result Summary</td>
</tr>
<tr>
<td>4</td>
<td>Discussion of Test (if applicable)</td>
</tr>
<tr>
<td>5</td>
<td>Test Data Sheets</td>
</tr>
</tbody>
</table>

Data Sheet

<table>
<thead>
<tr>
<th>Data Sheet</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COTR Vehicle Work Order</td>
</tr>
<tr>
<td>2</td>
<td>Report of Vehicle Condition</td>
</tr>
<tr>
<td>3</td>
<td>Certification Label and Tire Placard Information</td>
</tr>
<tr>
<td>14</td>
<td>Marking of Reference Points for Various Test Positions & Points</td>
</tr>
<tr>
<td>30</td>
<td>Vehicle Weight, Fuel Tank, and Attitude Data</td>
</tr>
<tr>
<td>31</td>
<td>Vehicle Accelerometer Locations and Measurements</td>
</tr>
<tr>
<td>32</td>
<td>Photographic Targets</td>
</tr>
<tr>
<td>33</td>
<td>Camera Locations</td>
</tr>
<tr>
<td>34</td>
<td>Dummy Positioning</td>
</tr>
<tr>
<td>35</td>
<td>Dummy Measurements</td>
</tr>
<tr>
<td>36</td>
<td>Crash Test</td>
</tr>
<tr>
<td>38</td>
<td>Accident Investigation Measurements</td>
</tr>
<tr>
<td>39</td>
<td>Windshield Mounting (FMVSS 212)</td>
</tr>
<tr>
<td>40</td>
<td>Windshield Zone Intrusion (FMVSS 219)</td>
</tr>
<tr>
<td>41</td>
<td>Fuel System Integrity (FMVSS 301)</td>
</tr>
</tbody>
</table>

Appendix

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Crash Test Data</td>
</tr>
<tr>
<td>B</td>
<td>Crash Test Photographs</td>
</tr>
<tr>
<td>C</td>
<td>Instrumentation Calibration</td>
</tr>
</tbody>
</table>
SECTION 1
PURPOSE OF COMPLIANCE TEST

This Federal Motor Vehicle Safety Standard (FMVSS) 208 compliance test is part of a program conducted for the National Highway Traffic Safety Administration (NHTSA) by MGA Research Corporation (MGA) under Contract No. DTNH22-03-D-11002. The purpose of this test was to determine whether the subject vehicle, a 2005 Toyota Highlander MPV, NHTSA No. C55107, meets certain performance requirements of FMVSS 208, "Occupant Crash Protection"; FMVSS 212, "Windshield Mounting"; FMVSS 219, "Windshield Zone Intrusion"; and FMVSS 301, "Fuel System Integrity". The compliance test was conducted in accordance with OVSC Laboratory Test Procedure No. TP208-12 dated January 14, 2003.
TESTS PERFORMED

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rear outboard seating position seat belts (S4.1.1.2(b) & (S4.2.4)</td>
<td></td>
</tr>
<tr>
<td>2. Air bag labels (S4.5.1)</td>
<td></td>
</tr>
<tr>
<td>3. Readiness indicator (S4.5.2)</td>
<td></td>
</tr>
<tr>
<td>4. Passenger air bag manual cut-off device (S4.5.4)</td>
<td></td>
</tr>
<tr>
<td>5. Lap belt lockability (S7.1.1.5)</td>
<td></td>
</tr>
<tr>
<td>6. Seat belt warning system (S7.3)</td>
<td></td>
</tr>
<tr>
<td>7. Seat belt contact force (S7.4.4)</td>
<td></td>
</tr>
<tr>
<td>8. Seat belt latch plate access (S7.4.4)</td>
<td></td>
</tr>
<tr>
<td>9. Seat belt retraction (S7.4.5)</td>
<td></td>
</tr>
<tr>
<td>10. Seat belt guides and hardware (S7.4.6)</td>
<td></td>
</tr>
<tr>
<td>11. Suppression tests with 12-month-old CRABI dummy (Part 572, Subpart R)</td>
<td></td>
</tr>
<tr>
<td>12. Suppression tests with newborn infant (Part 572, Subpart K)</td>
<td></td>
</tr>
<tr>
<td>13. Suppression tests with 3-year-old dummy (Part 572, Subpart P)</td>
<td></td>
</tr>
<tr>
<td>14. Suppression tests with 6-year-old dummy (Part 572, Subpart N)</td>
<td></td>
</tr>
<tr>
<td>15. Test of reactivation of the passenger air bag system with an unbelted 5th</td>
<td></td>
</tr>
<tr>
<td>percentile female dummy</td>
<td></td>
</tr>
<tr>
<td>16. Low risk deployment test with 12-month-old dummy (Part 572, Subpart R)</td>
<td></td>
</tr>
<tr>
<td>17. Low risk deployment test with 3-year-old dummy (Part 572, Subpart P)</td>
<td></td>
</tr>
<tr>
<td>18. Low risk deployment test with 6-year-old dummy (Part 572, Subpart N)</td>
<td></td>
</tr>
<tr>
<td>19. Low risk deployment test with 5th female dummy (Part 572, Subpart O)</td>
<td></td>
</tr>
<tr>
<td>20. Impact Tests</td>
<td></td>
</tr>
<tr>
<td>Frontal Oblique</td>
<td></td>
</tr>
<tr>
<td>Belted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.1.(b)(1) or</td>
<td></td>
</tr>
<tr>
<td>S5.1.1(a))</td>
<td></td>
</tr>
<tr>
<td>Unbelted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.2(a)(1))</td>
<td></td>
</tr>
<tr>
<td>Unbelted 50th male dummy driver and passenger (32 to 40 kmph)</td>
<td></td>
</tr>
<tr>
<td>(S5.1.2(a) (1) or S5.1.2(b))</td>
<td></td>
</tr>
<tr>
<td>X Frontal 0°</td>
<td></td>
</tr>
<tr>
<td>Belted 50th male dummy driver (0 to 48 kmph) (S5.1.1.(b)(1) or S5.1.1(a))</td>
<td></td>
</tr>
<tr>
<td>Belted 50th male dummy passenger (0 to 48 kmph) (S5.1.1.(b)(1) or S5.1.1(a))</td>
<td></td>
</tr>
<tr>
<td>Belted 5th female dummy driver (0 to 48 kmph) (S16.1(a))</td>
<td></td>
</tr>
<tr>
<td>Belted 5th female dummy passenger (0 to 48 kmph) (S16.1(a))</td>
<td></td>
</tr>
<tr>
<td>Belted 50th male dummy driver and passenger (0 to 56 kmph) (S5.1.1.(b)(2))</td>
<td></td>
</tr>
<tr>
<td>Unbelted 50th male dummy driver and passenger (0 to 48 kmph)</td>
<td></td>
</tr>
<tr>
<td>(S5.1.2(a) (1))</td>
<td></td>
</tr>
<tr>
<td>Unbelted 50th male dummy driver (32 to 40 kmph)</td>
<td></td>
</tr>
<tr>
<td>(S5.1.2(a)(2) or S5.1.2(b))</td>
<td></td>
</tr>
<tr>
<td>Unbelted 50th male dummy passenger (32 to 40 kmph)</td>
<td></td>
</tr>
<tr>
<td>(S5.1.2(a)(2) or S5.1.2(b))</td>
<td></td>
</tr>
</tbody>
</table>
Unbelted 5th female dummy driver (32 to 40 kmph) (S16.1(b))

Unbelted 5th female dummy passenger (32 to 40 kmph) (S16.1(b))

40% Offset 0° Belted 5th male dummy driver and passenger (0 to 40 kmph) (S18.1)

For the crash tests, the vehicle was instrumented with 8 accelerometers. The accelerometer data from the vehicle and dummies were sampled at 10,000 samples per second and processed as specified in SAE J211/1 MAR95 and FMVSS 208, S4.13.

The dynamic tests were recorded using high-speed film and high-speed digital video.
SECTION 3

INJURY RESULT SUMMARY FOR FMVSS 208 TESTS

Test Vehicle: 2005 Toyota Highlander MPV
Test Program: FMVSS 208 Compliance
NHTSA No.: C55107
Test Date: 04/26/05

40 kmph Frontal Crash

Impact Angle: Zero degrees

Belted Dummies: Yes
Speed Range: 0 to 40 kmph
Test Speed: 39.8 kmph
Test Weight: 1814.4 kg

Driver Dummy: 5th female
Passenger Dummy: 5th female

5th Percentile Female Frontal Crash Test

Vehicles certified to S16.1(a), S16.1(b), or S18.1

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Driver</th>
<th>Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>79</td>
<td>61</td>
</tr>
<tr>
<td>N_{le}</td>
<td>1.0</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>N_{eq}</td>
<td>1.0</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>N_{ce}</td>
<td>1.0</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>N_{cf}</td>
<td>1.0</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2620 N</td>
<td>1083</td>
<td>405</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>166</td>
<td>512</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>46</td>
<td>34</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>3807</td>
<td>4328</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>4078</td>
<td>4503</td>
</tr>
</tbody>
</table>
SECTION 4
DISCUSSION OF TESTS

Test Vehicle: 2005 Toyota Highlander MPV NHTSA No.: C55107
Test Program: FMVSS 208 Compliance Test Date: 4/26/05

The vehicle was tested in a 25 mph frontal impact only. FMVSS 208Datasheets not used for this test have been removed from the report.

An advanced load cell rigid barrier was used for the test. The details of the barrier are shown below. A photograph of the vehicle in relation to the load cell grid is included in Appendix A. Plots of the total force of all 9 rows and an overlay plot of the summed force from each row are included in Appendix B. The vehicle impacted the barrier 4mm higher than the initial target.

144 Load Cell Rigid Barrier
Load Cell Locations on Fixed Barrier

Load Cells are 121 mm x 121 mm with a 7 mm gap between each load cell.
<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2005 Toyota Highlander MPV</th>
<th>NHTSA No.:</th>
<th>C55107</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program:</td>
<td>FMVSS 208 Compliance</td>
<td>Test Dates:</td>
<td>4/26/05</td>
</tr>
</tbody>
</table>
DATA SHEET 1
COTR VEHICLE WORK ORDER

Test Vehicle: 2005 Toyota Highlander MPV
NHTSA No.: C55107
Test Program: FMVSS 208 Compliance
Test Dates: 4/26/05
COTR Signature: Charles R. Case

Test to be performed for this vehicle are checked below:

1. Rear Outboard Seating Position Seat Belts (S4.1.2(b)) & (S4.2.4)
2. Air Bag Labels (S4.5.1)
3. Readiness Indicator (S4.5.2)
4. Passenger Air Bag Manual Cut-off Device (S4.5.4)
5. Lap Belt Lockability (S7.1.1.5)
6. Seat Belt Warning System (S7.3)
7. Seat Belt Contact Force (S7.4.4)
8. Seat Belt Latch Plate Access (S7.4.4)
9. Seat Belt Retraction (S7.4.5)
10. Suppression tests with 12-month-old CRABI dummy (Part 572, Subpart R) using the following indicated child restraints.

<table>
<thead>
<tr>
<th>Section B</th>
<th>Britax Handle with Care 191</th>
<th>Century Assura 4553</th>
<th>Century Avanta SE 41530</th>
<th>Century Smart Fit 4543</th>
<th>Cosco Arriva 02727</th>
<th>Cosco Opus 35 02603</th>
<th>Evenflo Discovery Adjust Right 212</th>
<th>Evenflo First Choice 204</th>
<th>Evenflo On My Way Position Right V 282</th>
<th>Graco Infant 8457</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
<td>Full Rearward</td>
</tr>
</tbody>
</table>

11. Suppression tests with newborn infant (Part 572, Subpart K) using the following indicated child restraints.

<table>
<thead>
<tr>
<th>Section C</th>
<th>Britax Roundabout 161</th>
<th>Century Encore 4612</th>
<th>Century STE 1000 4416</th>
<th>Cosco Olympian 02803</th>
<th>Cosco Touriva 02519</th>
<th>Evenflo Horizon V 425</th>
<th>Evenflo Medallion 254</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
<td>Full Rearward</td>
</tr>
</tbody>
</table>

12. Suppression tests with 3-year-old dummy (Part 572, Subpart P) using the following indicated child restraints where a child restraint is required.

<table>
<thead>
<tr>
<th>Section A</th>
<th>Cosco Dream Ride 02-719</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Rearward</td>
</tr>
</tbody>
</table>
Section C

<table>
<thead>
<tr>
<th>Child Restraint</th>
<th>Rearward Position</th>
<th>Middle Position</th>
<th>Forward Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Britax Roundabout 161</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Century Encore 4612</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Century STE 1000 4416</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Cosco Olympian 02803</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Cosco Touriva 02519</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Evenflo Horizon V 425</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Evenflo Medallion 254</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
</tbody>
</table>

Section D

<table>
<thead>
<tr>
<th>Child Restraint</th>
<th>Rearward Position</th>
<th>Middle Position</th>
<th>Forward Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Britax Roadster 9004</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Century Next Step 4920</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Cosco High Back Booster 02-442</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Evenflo Right Fit 245</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
</tbody>
</table>

14. Suppression tests with representative 3-year-old child using the following indicated child restraints where a child restraint is required. (Appendix H, Data Sheet 16H and 17H)

Section C

<table>
<thead>
<tr>
<th>Child Restraint</th>
<th>Rearward Position</th>
<th>Middle Position</th>
<th>Forward Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Britax Roundabout 161</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Century Encore 4612</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Century STE 1000 4416</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Cosco Olympian 02803</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Cosco Touriva 02519</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Evenflo Horizon V 425</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Evenflo Medallion 254</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
</tbody>
</table>

Section D

<table>
<thead>
<tr>
<th>Child Restraint</th>
<th>Rearward Position</th>
<th>Middle Position</th>
<th>Forward Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Britax Roadster 9004</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Century Next Step 4920</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Cosco High Back Booster 02-442</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Evenflo Right Fit 245</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
</tbody>
</table>

15. Suppression tests with 3-year-old dummy (Part 572, Subpart P) in the following Forward, Middle, and Rearward seat track positions:

- Sitting on seat with back against seat back (S22.2.2.1)
- Sitting on seat with back against reclined seat back (S22.2.2.2)
- Sitting on seat with back not against seat back (S22.2.2.3)
- Sitting on seat edge, spine vertical, hands by the child’s side (S22.2.2.4)
- Standing on seat, facing forward (S22.2.2.5)
- Kneeling on seat facing forward (S22.2.2.6)
- Kneeling on seat facing rearward (S22.2.2.7)
- Lying on seat (S22.2.2.8)

16. Suppression tests with representative 3-year-old child in the following positions:

- Sitting on seat with back against seat back (S22.2.2.1)
- Sitting on seat with back against reclined seat back (S22.2.2.2)
- Sitting on seat with back not against seat back (S22.2.2.3)
- Sitting on seat edge, spine vertical, hands by the child’s side (S22.2.2.4)
- Standing on seat, facing forward (S22.2.2.5)
- Kneeling on seat facing forward (S22.2.2.6)
- Kneeling on seat facing rearward (S22.2.2.7)
- Lying on seat (S22.2.2.8)

17. Suppression tests with 6-year-old dummy (Part 572, Subpart N) using the following indicated child restraints where a child restraint is required.
18. Suppression tests with representative 6-year-old child using the following indicated child restraints where a child restraint is required.

19. Suppression tests with 6-year-old dummy (Part 572, Subpart N) in the following Forward, Middle, and Rearward seat track positions.

20. Suppression tests with representative 6-year-old child in the following positions.

21. Test of Reactivation of the Passenger Air Bag System with an Unbelted 5th percentile female dummy (S20.3, 22.3, S24.3). Perform this test after the following suppression tests: After each restraint.

22. Test of Reactivation of the passenger air bag system with a representative 5th percentile female (S20.3, 22.3, S24.3). Perform this test after the following suppression tests:

23. Low risk deployment test with 12-month-old dummy (Part 572, Subpart R) using the following indicated child restraints.
24. Low risk deployment test with 3-year-old dummy (Part 572, Subpart P) in the following positions
 - Position 1
 - Position 2

25. Low risk deployment test with 6-year-old dummy (Part 572, Subpart N) in the following positions
 - Position 1
 - Position 2

26. Low risk deployment test with 5th percentile female dummy (Part 572, Subpart O) in the following positions
 - Position 1
 - Position 2

27. Impact Tests

 Frontal Oblique – Test Speed:
 - Belted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.1(a))
 - Unbelted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.2(a)(1))
 - Unbelted 50th male dummy driver and passenger (32 to 40 kmph) (S5.1.2(a)(1) or S5.1.2(b))

 Frontal 0° - Test Speed: 39.8 kmph
 - Belted 50th male dummy driver (0 to 48 kmph) (S5.1.1.(b)(1) or S5.1.1(a))
 - Belted 50th male dummy passenger (0 to 48 kmph) (S5.1.1.(b)(1) or S5.1.1(a))
 - Belted 5th female dummy driver (0 to 48 kmph) (S16.1(a))
 - Belted 5th female dummy passenger (0 to 48 kmph) (S16.1(a))
 - Belted 50th male dummy driver and passenger (0 to 56 kmph) (S5.1.1.(b)(2))
 - Unbelted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.2(a)(1))
 - Unbelted 50th male dummy driver (32 to 40 kmph) (S5.1.2.(a)(2) or S5.1.2(b))
 - Unbelted 50th male dummy passenger (32 to 40 kmph) (S5.1.2.(a)(2) or S5.1.2(b))
 - Unbelted 50th male dummy driver and passenger (32 to 40 kmph) (S5.1.2.(a)(2) or S5.1.2(b))
 - Unbelted 5th female dummy driver (32 to 40 kmph) (S16.1(b))
 - Unbelted 5th female dummy passenger (32 to 40 kmph) (S16.1(b))
 - 40% Offset 0° Belted 5th male dummy driver and passenger (0 to 40 kmph) (S18.1) – Test Speed:

28. Sled Test: Unbelted 50th male dummy driver and passenger (S13)

29. FMVSS 204 Indicant Test

30. FMVSS 212 Indicant Test

31. FMVSS 219 Indicant Test

32. FMVSS 301 Indicant Frontal Test
DATA SHEET 2
REPORT OF VEHICLE CONDITION

Test Vehicle: 2005 Toyota Highlander MPV NHTSA No.: C55107
Test Program: FMVSS 208 Compliance Test Dates: 4/26/05

CONTRACT NO. DTNH22-03-D-11002 Date: 7/28/04
FROM (Lab and rep name): MGA Research Corporation
TO: NHTSA, OVSC (NVS-220)

PURPOSE: (X) Initial Receipt () Received via Transfer (X) Present vehicle condition

MODEL YEAR/MAKE/MODEL/BODY STYLE: 2005 Toyota Highlander MPV
MANUFACTURE DATE: 12/04
NHTSA NO. C55107 GVWR: 2430 kg (5360 lbs)
BODY COLOR: Super White GAWR (Fr): 1300 kg (2865 lbs)
VIN: JTEGP21A650062275 GAWR (Rr): 1340 kg (2950 lbs)

ODOMETER READINGS: ARRIVAL (miles): 69 DATE: 3/28/05
COMPLETION (miles): 71 DATE: 4/26/05
PURCHASE PRICE: ($) 23,600
DEALER’S NAME: Wilde Toyota, INC; 3225 S. 108th Street; West Allis, WI 53227

A. All options listed on window sticker are present on the test vehicle:
 X Yes ___No
B. Tires and wheel rims are new and the same as listed:
 X Yes ___No
C. There are no dents or other interior or exterior flaws:
 X Yes ___No
D. The vehicle has been properly prepared and is in running condition:
 X Yes ___No
E. Keyless remote is available and working:
 X Yes ___No
F. The glove box contains an owner’s manual, warranty document, consumer information, and extra set of keys:
 X Yes ___No
G. Proper fuel filler cap is supplied on the test vehicle:
 X Yes ___No
H. Using permanent marker, identify vehicle with NHTSA number and FMVSS test type(s) on roof line above driver door or for school buses, place a placard with NHTSA number inside the windshield and to the exterior front and rear side of bus:
 X Yes ___No
I. Place vehicle in storage area:
 X Yes ___No
J. Inspect the vehicle’s interior and exterior, including all windows, seats, doors, etc. to confirm that each system is complete and functional per the manufacturer’s specifications. Any damage, misadjustment, or other unusual condition that could influence the test program or test results shall be recorded. Report any abnormal condition to the NHTSA COTR before beginning any test:
 X Vehicle OK ___Conditions reported below
REPORT OF VEHICLE CONDITION AT THE COMPLETION OF TESTING

LIST OF FMVSS TESTS PERFORMED BY THIS LAB: FMVSS 208, 212, 219, 301

VEHICLE: 2005 Toyota Highlander MPV NHTSA NO. C55107

REMARKS:

Equipment that is no longer on the test vehicle as noted on previous page:

Tool and jack, trunk interior, right rear taillight

Explanation for equipment removal:
Components removed for instrumentation installation and to meet target weight.

Test Vehicle Condition:
25 mph frontal impact damage- front suspension & structure damaged, hood & front quarter panels damaged, radiator damaged, air bags & pretensioners deployed, Stoddard in fuel system

RECORDED BY: Jeff Lewandowski DATE: 4/26/2005
APPROVED BY: David Winkelbauer DATE: 4/26/2005

#

RELEASE OF TEST VEHICLE

The vehicle described above is released from MGA to be delivered to:

Date:
Time:
Odometer:

Lab Rep’s Signature:
Title:
Carrier/Customer Rep:
Date:

#
DATA SHEET 3
CERTIFICATION LABEL AND TIRE PLACARD INFORMATION

Test Vehicle: 2005 Toyota Highlander MPV
Test Program: FMVSS 208 Compliance
Test Technician: Nick Kosinski

<table>
<thead>
<tr>
<th>Certification Label</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer:</td>
<td>Toyota Motor Corp.</td>
</tr>
<tr>
<td>Date of Manufacture:</td>
<td>12/04</td>
</tr>
<tr>
<td>VIN:</td>
<td>JTEGP21A650062275</td>
</tr>
<tr>
<td>Vehicle Certified As (Pass. Car/MPV/Truck/Bus):</td>
<td>MPV</td>
</tr>
<tr>
<td>Front Axle GVWR:</td>
<td>1300 kg (2865 lbs)</td>
</tr>
<tr>
<td>Rear Axle GVWR:</td>
<td>1340 kg (2950 lbs)</td>
</tr>
<tr>
<td>Total GVWR:</td>
<td>2430 kg (5360 lbs)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tire Placard</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Not applicable, vehicle is not a passenger car and does not have a tire placard.</td>
<td>MPV</td>
</tr>
<tr>
<td>This is not a passenger car, but all or part of this information is still contained on a vehicle label and is reported here.</td>
<td>MPV</td>
</tr>
<tr>
<td>Vehicle Capacity Weight:</td>
<td>390 kg (860 lbs)</td>
</tr>
<tr>
<td>Designated Seating Capacity Front:</td>
<td>2</td>
</tr>
<tr>
<td>Designated Seating Capacity Rear:</td>
<td>3</td>
</tr>
<tr>
<td>Total Designated Seating Capacity:</td>
<td>5</td>
</tr>
<tr>
<td>Recommended Cold Tire Inflation Pressure Front:</td>
<td>210 kpa (30 psi)</td>
</tr>
<tr>
<td>Recommended Cold Tire Inflation Pressure Rear:</td>
<td>210 kpa (30 psi)</td>
</tr>
<tr>
<td>Recommended Tire Size:</td>
<td>P225/70R16</td>
</tr>
</tbody>
</table>

Signature: Nick Kosinski
Date: 04/26/05
DATA SHEET 14
MARKING OF REFERENCE POINTS FOR VARIOUS TEST POSITIONS AND POINTS

Test Vehicle: 2005 Toyota Highlander MPV NHTSA No.: C55107
Test Program: FMVSS 208 Compliance Test Date: 4/26/05
Test Technician: Eric Peschman

1. Driver Designated Seating Position:
 X 1.1 Position the seat's adjustable lumbar supports so that the lumbar supports are in the lowest, retracted or deflated adjustment positions. (S16.2.10.1)
 N/A – No lumbar adjustment
 X 1.2 Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position (S16.2.10.2)
 N/A – No additional support adjustment
 X 1.3 Mark a point (seat cushion reference point) on the side of the seat cushion that is between 150 mm and 250 mm from the front edge of the seat cushion.
 X 1.4 Draw a line (seat cushion reference line) through the seat cushion reference point.
 X 1.5 Using only the controls that primarily move the seat in the fore-aft direction, move the seat cushion reference point to the rearmost position.
 X 1.6 If the seat cushion adjusts fore-aft, independent of the seat back, use only the controls that primarily move the seat cushion in the fore-aft direction to move the seat cushion reference point to the rearmost position (S16.2.10.3)
 N/A – No independent fore-aft seat cushion adjustment
 X 1.7 Using any part of any control, other than the parts just used for fore-aft positioning, determine the range of angles of the seat cushion reference line and set the seat cushion reference line at the mid-angle.
 Maximum Angle: 7.3 Degrees, Nose Up
 Minimum Angle: 3.8 Degrees Nose Down
 Mid-angle: 1.8 Degrees, Nose Up
 X 1.8 If the seat and/or seat cushion height is adjustable, use any part of any control other than those which primarily move the seat or seat cushion fore-aft, to put the seat cushion reference point in its lowest position with the seat cushion reference line angle at the mid-angle found in 1.7.
 N/A – No seat height adjustment
 X 1.9 Using only the controls that primarily move the seat in the fore-aft direction, verify the seat is in the rearmost position.
 X 1.10 Using only the controls that primarily move the seat in the fore-aft direction, mark for future reference the fore-aft seat positions. Mark each position so that there is a visual indication when the seat is at a particular position. For manual seats, move the seat forward one detent at a time and mark each detent. For power seats, mark only the rearmost, middle, and foremost positions. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the closest adjustment position to the rear of the mid-point), and R for rearmost.
 X 1.11 Use only the controls that primarily move the seat in the fore-aft direction to place the seat in the rearmost position.
1.12 Using any controls, other than the controls that primarily move the seat and/or seat cushion in the fore-aft direction, find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line at the mid-angle determined in 1.7.

1.13 Using only the controls that primarily move the seat and/or seat cushion in the fore-aft direction, place the seat in the mid-fore-aft position.

1.14 Using any controls, other than the controls that primarily move the seat in the fore-aft direction, find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line at the mid-angle determined in 1.7.

1.15 Using only the controls that change the seat in the fore-aft direction, place the seat in the foremost position.

1.16 Using any controls, other than the controls that primarily move the seat in the fore-aft direction, find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line at the mid-angle determined in 1.7.

1.17 Visually mark for future reference the seat back angle, if adjustable, at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer.

- N/A – No seat back angle adjustment

Manufacturer’s design seat back angle: 3° on headrest post

1.18 Is the seat a bucket seat?

- Yes, go to 1.18.1 and skip 1.18.2
- No, go to 1.18.2 and skip 1.18.1

1.18.1 Bucket seats:

- Locate and mark for future reference the longitudinal centerline of the seat cushion. The longitudinal centerline of a bucket seat cushion is determined at the widest part of the seat cushion. Measure perpendicular to the longitudinal centerline of the vehicle. (S16.3.1.10)

- Record the width of the seat cushion: 525 mm

- One half the width of the seat cushion is: 262 mm

- Record the distance from the edge of the seat cushion to the seat mark: 262 mm

1.18.2 Bench seats:

- Locate and mark for future reference the longitudinal line on the seat cushion that marks the longitudinal vertical plane through the centerline of the steering wheel.

2. Passenger Designated Seating Position

2.1 Is the seat adjustable independent of the driver seating position?

- Yes, go to 2.2
- No, go to 2.18

2.2 Position the seat’s adjustable lumbar supports so that the lumbar supports are in the lowest, retracted or deflated adjustment positions (S16.2.10.1, S20.1.9.1, S22.1.7.1)

- N/A – No lumbar adjustment

2.3 Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2, S20.1.9.2, S22.1.7.2)

- N/A – No additional support adjustment
2.4 Mark a point (seat cushion reference point) on the side of the seat cushion that is between 150 mm and 250 mm from the front edge of the seat cushion.

2.5 Draw a line (seat cushion reference line) through the seat cushion reference point.

2.6 Using only the controls that primarily move the seat in the fore-aft direction, move the seat cushion reference point to the rearmost position.

2.7 If the seat cushion adjusts fore-aft, independent of the seat back, use only the controls that primarily move the seat cushion in the fore-aft direction to move the seat cushion reference point to the rearmost position (S16.2.10.3, S20.1.9.3, S22.1.7.3)

N/A – No independent fore-aft seat cushion adjustment.

2.8 Using any part of the control, other than the parts just used for fore-aft positioning, determine the range of angles of the seat cushion reference line and set the seat cushion reference line at the mid-angle.

Maximum Angle: Zero Degrees

Minimum Angle: Zero Degrees

Mid-angle: Zero Degrees

2.9 If the seat and/or seat cushion height is adjustable, use any part of any control other than those which primarily move the seat or seat cushion fore-aft, to put the seat cushion reference point in its lowest position with the seat cushion reference line angle at the mid-range angle.

N/A – No seat height adjustment

2.10 Using only the controls that primarily move the seat and/or seat cushion in the fore-aft direction, verify the seat is in the rearmost position.

2.11 Using only the controls that primarily move the seat in the fore-aft direction, mark for future reference the fore-aft seat positions. Mark each position so that there is a visual indication when the seat is at a particular position. For manual seats, move the seat forward one detent at a time and mark each detent. For power seats, mark only the rearmost, middle, and foremost positions. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the closest adjustment position to the rear of the mid-point), and R for rearmost.

2.12 Using only the controls that primarily move the seat in the fore-aft direction, place the seat in the rearmost position.

2.13 Using any controls, other than the controls that primarily move the seat in the fore-aft direction, find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line angle at the mid-angle determined in 2.8.

N/A – No seat height adjustment Go to 2.18

2.14 Using only the controls that primarily move the seat in the fore-aft direction, place the seat in the mid-fore-aft position.

2.15 Using any controls, other than the controls that primarily move the seat in the fore-aft direction, find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line angle at the mid-angle determined in 2.8.

2.16 Using only the controls that change the seat in the fore-aft direction, place the seat in the foremost position.

2.17 Using any controls, other than the controls that primarily move the seat in the fore-aft direction, find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line angle at the mid-angle determined in 2.8.
2.18 Visually mark for future reference the seat back angle, if adjustable, at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer.

- N/A – No seat back angle adjustment
- N/A – The seat back angle adjustment is controlled by the setting of the driver seat back angle.

Manufacture's design seat back angle: 3° on headrest post
Actual seat back angle: 3° on headrest post

2.19 Is the seat a bucket seat?
- Yes, go to 2.19.1 and skip 2.19.2
- No, go to 2.19.2 and skip 2.19.1

2.19.1 Bucket seats:
- Locate and mark for future reference the longitudinal centerline of the seat cushion. (S20.2.1.3, S22.2.1.3) The longitudinal centerline of a bucket seat cushion is determined at the widest part of the seat cushion. Measure perpendicular to the longitudinal centerline of the vehicle. (S20.1.10)

- Record the width of the seat cushion: 525 mm
- One half the width of the seat cushion is: 262 mm

2.19.2 Bench seats:
- Locate and mark for future reference the longitudinal centerline of the passenger seat cushion. The longitudinal centerline is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel. (S20.2.1.3, S22.2.1.3)
- Record the distance from the longitudinal centerline of the vehicle to the center of the steering wheel:
- Record the distance from the longitudinal centerline of the vehicle to the longitudinal centerline of the seat cushion. (The vertical plane through this longitudinal centerline is Plane B for suppression.)

3. Head Restraints
- N/A, vehicle contains automatic head restraints
- N/A, there is no head restraint adjustment

3.1 Left outboard
- Adjust the head restraint to its lowest position. (S16.3.4.2)
- Any adjustment of the head restraint shall be used to position it full forward. For example, if it rotates, rotate it such that the head restraint extends as far forward as possible. Mark the foremost position.
- Measure the vertical distance from the top most point of the head restraint to the bottom most point. Locate and mark a horizontal plane through the midpoint of this distance.

3.2 Right outboard
- Adjust the head restraint to its lowest position. (S16.3.4.2)
3.2.2 Any adjustment of the head restraint shall be used to position it full forward. For example, if it rotates, rotate it such that the head restraint extends as far forward as possible. **Mark** the foremost position.

3.2.3 Measure the vertical distance from the top most point of the head restraint to the bottom most point. Locate and **mark** a horizontal plane through the midpoint of this distance.

Vertical height of head restraint (mm): 196

Mid-point height (mm): 98

4. **Steering Wheel**

4.1 Is the steering wheel adjustable up and down and/or in and out?

- **Yes**, go to 4.2
- **No**, this form is complete

4.2 Find and **mark** for future reference each up and down position. Label three of the positions with the following: H for highest, M for mid-position (if there is no mid-position, label the next lowest adjustment position), and L for lowest.

- **N/A**, steering wheel is not adjustable up and down

4.3 Find and **mark** for future references each in and out position. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the next rearmost adjustment position), and R for rearmost.

- **N/A**, steering wheel is not adjustable in and out

5. **Driver Low Risk Deployment**

5.1 Position the steering wheel so the front wheels are in the straight-ahead position. (S26.2.1)

5.2 Position any adjustable parts of the steering controls to the mid-position as determined in item 3 above. If a mid-position adjustment is not achievable, position the controls to the next lowest detent position. (S26.2.1)

5.3 Locate the vertical plane parallel to the vehicle longitudinal centerline through the geometric center of the opening through which the driver air bag deploys into the occupant compartment. This is referred to as “Plane E”. (Check determination method below.) (S26.2.6)

- Plane E determined using manufacturer’s information supplied by the COTR.
- Plane E determined by test lab personnel and approved by the COTR. (Include supporting documentation in the test report.)

<table>
<thead>
<tr>
<th>"Plane E" Measurement::</th>
<th>Ey (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured:</td>
<td></td>
</tr>
<tr>
<td>Specified:</td>
<td></td>
</tr>
<tr>
<td>Verify Measured Equals Specified +/- 6mm:</td>
<td></td>
</tr>
</tbody>
</table>
5.4 Locate the horizontal plane through the highest point of the air bag module cover. This is referred to as "Plane F." (Check determination method below.) (S26.2.6)

- Plane F determined using manufacturer’s information supplied by the COTR.
- Plane F determined by test lab personnel and approved by the COTR.
 (Include supporting documentation in the test report.)

<table>
<thead>
<tr>
<th>“Plane F” Measurement:</th>
<th>Fz (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured:</td>
<td></td>
</tr>
<tr>
<td>Specified:</td>
<td></td>
</tr>
<tr>
<td>Verify Measured Equals Specified +/- 6mm:</td>
<td></td>
</tr>
</tbody>
</table>

6. Passenger Low Risk Deployment – Planes C and D

- N/A, no low risk deployment tests scheduled

6.1 Locate the horizontal plane through the geometric center of the opening through which the right front air bag deploys into the occupant compartment. This is referred to as "Plane C." (Check location method below.) (S22.4.1.3)

- Plane C located using manufacturer’s information supplied by the COTR.
 (Include manufacturer’s information in the test report.) OR
- Plane C located by test lab personnel and approved by the COTR.
 (Include supporting documentation in the test report.)

<table>
<thead>
<tr>
<th>“Plane C” Measurement:</th>
<th>Cz (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured:</td>
<td></td>
</tr>
<tr>
<td>Specified:</td>
<td></td>
</tr>
<tr>
<td>Verify Measured Equals Specified +/- 6mm:</td>
<td></td>
</tr>
</tbody>
</table>

6.2 Locate the vertical plane parallel to the vehicle longitudinal centerline through the geometric center of the opening through which the right front air bag deploys into the occupant compartment. This is referred to as “Plane D.” (Check determination method below.) (S22.4.1.2)

- Plane D determined using manufacturer’s information supplied by the COTR.
 (Include manufacturer’s information in the test report.) OR
- Plane D determined by test lab personnel and approved by the COTR.
 (Include supporting documentation in the test report.)

<table>
<thead>
<tr>
<th>“Plane D” Measurement:</th>
<th>Dy (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured:</td>
<td></td>
</tr>
<tr>
<td>Specified:</td>
<td></td>
</tr>
<tr>
<td>Verify Measured Equals Specified +/- 6mm:</td>
<td></td>
</tr>
</tbody>
</table>

6.3 Mark the intersection of Planes C and D on the instrument panel.

7. 5th Female Dummy

- Mark a point on the chin of the dummy 40 mm below the center of the mouth. (Chin Point) (S26.2.6)

8. 6-Year-Old Dummy

- Locate and mark a point on the front of the dummy’s chest jacket on the midsagittal plane which is 139 mm (5.5 in) ± 3 mm (± 0.1 in) along the surface of the skin down from the top of the skin at the neck line. Designate this point as “Point 1.” (S24.4.1.1)

- "Point 1” measurement (mm):
9. 3-Year-Old Dummy

Locate and mark a point on the front of the dummy’s chest jacket on the midsaggital plane which is 114 mm (4.5 in) ± 3 mm (± 0.1 in) along the surface of the skin down from the top of the skin at the neck line. Designate this point as "Point 1." (S22.4.1.1)

"Point 1" measurement (mm +/- 3 mm):

REMARKS:

I certify that I have read and performed each instruction.

Signature: ____________________ Date: 04/26/05
DATA SHEET 30
VEHICLE WEIGHT, FUEL TANK, AND ATTITUDE DATA

Test Vehicle: 2005 Toyota Highlander MPV
NHTSA No.: C55107
Test Program: FMVSS 208 Compliance
Test Technician: Jamie Aide

IMPACT ANGLE: Zero Degrees
BELTED DUMMIES (YES/NO): No – Front Occupants
TEST SPEED: X 32 to 40 kmph
DRIVER DUMMY: X 5TH female
PASSENGER DUMMY: X 5TH female

1. Fill the transmission with transmission fluid to the satisfactory range.

2. Drain fuel from vehicle

3. Run the engine until fuel remaining in the fuel delivery system is used and the engine stops.

4. Record the useable fuel tank capacity supplied by the COTR
Useable Fuel Tank Capacity supplied by COTR: 72.5 liters (19.2 gallons)

5. Record the fuel tank capacity supplied in the owner’s manual.
Useable Fuel Tank Capacity in owner’s manual: 72.5 liters (19.2 gallons)

6. Using purple dyed Stoddard solvent having the physical and chemical properties of Type 1 solvent or cleaning fluid, Table 1, ASTM Standard D484-71, “Standard Specifications for Hydrocarbon Dry-cleaning Solvents,” or gasoline, fill the fuel tank.
Amount Added: 72.5 liters (19.2 gallons)

7. Fill the coolant system to capacity.

8. Fill the engine with motor oil to the Max. mark on the dip stick.

9. Fill the brake reservoir with brake fluid to its normal level.

10. Fill the windshield washer reservoir to capacity.

11. Inflate the tires to the tire pressure on the tire placard. If no tire placard is available, inflate the tires to the recommended pressure in the owner’s manual.

Tire placard pressure: RF: 30 psi LF: 30 psi RR: 30 psi LR: 30 psi
Owner’s manual pressure: RF: 30 psi LF: 30 psi RR: 30 psi LR: 30 psi
Actual inflated pressure: RF: 30 psi LF: 30 psi RR: 30 psi LR: 30 psi

12. Record the vehicle weight at each wheel to determine the unloaded vehicle weight (UVW), i.e. "as delivered" weight.

<table>
<thead>
<tr>
<th>Wheel Type</th>
<th>Right Front (kg)</th>
<th>Left Front (kg)</th>
<th>Right Rear (kg)</th>
<th>Left Rear (kg)</th>
<th>Total Front (kg)</th>
<th>Total Rear (kg)</th>
<th>% Total Weight</th>
<th>% Total Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>984.3</td>
<td>501.2</td>
<td>345.2</td>
<td>345.6</td>
<td>1675.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13. UVW Test Vehicle Attitude: (All dimensions in millimeters)
13.1 Mark a point on the vehicle above the center of each wheel.
13.2 Place the vehicle on a level surface.
13.3 Measure perpendicular to the level surface to the 4 points marked on the body and record the measurements

<table>
<thead>
<tr>
<th>RF</th>
<th>LF</th>
<th>RR</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>797</td>
<td>792</td>
<td>805</td>
<td>802</td>
</tr>
</tbody>
</table>

14. Calculate the Rated Cargo and Luggage Weight (RCLW): 50 kg

14.1 Does the vehicle have the vehicle capacity weight (VCW) on the certification label or tire placard?

- Yes, go to 14.3
- No, go to 14.2

14.2 VCW = Gross Vehicle Weight – UVW

VCW = _____ - _____ = _____

14.3 VCW = 390 kg (860 lbs)

14.4 Does the certification or tire placard contain the Designated Seating Capacity (DSC)?

- Yes, go to 14.6
- No, go to 14.5 and skip 14.6

14.5 DSC = Total number of seat belt assemblies = _________

14.6 DSC = 5

14.7 RCLW = VCW – (68 kg x DSC) = 390 kg - (68 kg x 5) = 50 kg

14.8 Is the vehicle certified as a truck, MPV or bus (see the certification label on the door jamb)?

- Yes, if the calculated RCLW is greater than 136 kg, use 136 kg as the RCLW. (S8.1.1)
- No, use the RCLW calculated in 14.7

15. Fully Loaded Weight (100% fuel fill): 1833.4 kg

15.1 Place the appropriate test dummy in both front outboard seating positions.

- Driver: 5th female 50th male
- Passenger: 5th female 50th male

15.2 Load the vehicle with the RCLW from 14.7 or 14.8 whichever is applicable.

15.3 Place the RCLW in the cargo area. Center the load over the longitudinal centerline of the vehicle. (S8.1.1 (d))

15.4 Record the vehicle weight at each wheel to determine the Fully Loaded Weight.

<table>
<thead>
<tr>
<th>Right Front (kg):</th>
<th>518.0</th>
<th>Right Rear (kg):</th>
<th>396.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Front (kg):</td>
<td>525.7</td>
<td>Left Rear (kg):</td>
<td>392.8</td>
</tr>
<tr>
<td>Total Front (kg):</td>
<td>1043.7</td>
<td>Total Rear (kg):</td>
<td>789.7</td>
</tr>
<tr>
<td>% Total Weight:</td>
<td>56.9</td>
<td>% Total Weight:</td>
<td>43.1</td>
</tr>
<tr>
<td>% GVW</td>
<td>53.5</td>
<td>% GVW</td>
<td>55.1</td>
</tr>
<tr>
<td>Fully Loaded Weight = Total Front Plus Total Rear (kg):</td>
<td>1833.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16. Fully Loaded Test Vehicle Attitude: (All dimensions in millimeters)

16.1 Place the vehicle on a level surface.

16.2 Measure perpendicular to the level surface to the 4 points marked on the body (see 13.1 above) and record the measurements

<table>
<thead>
<tr>
<th>RF</th>
<th>LF</th>
<th>RR</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>786</td>
<td>784</td>
<td>787</td>
<td>787</td>
</tr>
</tbody>
</table>
17. Drain the fuel system

18. Using purple dyed Stoddard solvent having the physical and chemical properties of Type 1 solvent or cleaning fluid, Table 1, ASTM Standard D484-71, “Standard Specifications for Hydrocarbon Dry-cleaning Solvents,” fill the fuel tank to 92 - 94 percent of useable capacity.

Fuel tank capacity x .94 = 72.5 liters (19.2 gallons) x .94 = 68.1 liters (18.0 gallons)

Amount added 68.1 liters (18.0 gallons) 94%

19. Crank the engine to fill the fuel delivery system with Stoddard solvent

20. Calculate the test weight range.

20.1 Calculated Weight = UVW (see 12 above) + RCLW (see 14 above) + 2x(dummy weight)

\[1823.1 \text{ kg} = 1675.1 \text{ kg} + 50.0 \text{ kg} + 98.0 \text{ kg}\]

20.2 Test Weight Range = Calculated Weight (- 4.5 kg, - 9 kg.)

Max. Test Weight = Calculated Test Weight – 4.5 kg = 1818.6 kg

Min. Test Weight = Calculated Test Weight – 9 kg = 1814.1 kg

21. Remove the RCLW from the cargo area.

22. Drain transmission fluid, engine coolant, motor oil, and windshield washer fluid from the test vehicle so that Stoddard solvent leakage from the fuel system will be evident.

23. Vehicle Components Removed For Weight Reduction:

Tool and jack, trunk interior, right rear taillight

24. Secure the equipment and ballast in the load carrying area and distribute it, as nearly as possible, to obtain the proportion of axle weight indicated by the gross axle weight ratings and center it over the longitudinal centerline of the vehicle.

25. If necessary, add ballast to achieve the actual test weight.

N/A

Weight of Ballast: 20.4 kg

26. Ballast, including test equipment, must be contained so that it will not shift during the impact event or interfere with data collection or interfere with high-speed film recordings or affect the structural integrity of the vehicle or do anything else to affect test results. Care must be taken to assure that any attachment hardware added to the vehicle is not in the vicinity of the fuel tank or lines.

27. Record the vehicle weight at each wheel to determine the actual test weight.

Right Front (kg):	496.2	Right Rear (kg):	391.0
Left Front (kg):	529.4	Left Rear (kg):	397.8
Total Front (kg):	1025.6	Total Rear (kg):	788.8
% Total Weight:	56.5	% Total Weight:	43.5
% GVW	53.5	% GVW	55.1

(\% \text{GVW} = \text{Axle GVW} \text{divided by Vehicle GVW})

TOTAL FRONT PLUS TOTAL REAR (kg): 1814.4

28. Is the test weight between the Max. Weight and the Min. Weight (See 20.2)?

Yes

No, explain why not.

29. Test Weight Vehicle Attitude: (all dimensions in millimeters)

29.1 Place the vehicle on a level surface
29.2 Measure perpendicular to the level surface to the 4 points marked on the body (see 13 above) and record the measurements

<table>
<thead>
<tr>
<th></th>
<th>RF</th>
<th>LF</th>
<th>RR</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>793</td>
<td>787</td>
<td>793</td>
<td>788</td>
</tr>
</tbody>
</table>

30. Summary of test attitude

30.1 AS DELIVERED:

<table>
<thead>
<tr>
<th></th>
<th>RF</th>
<th>LF</th>
<th>RR</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>797</td>
<td>792</td>
<td>805</td>
<td>802</td>
</tr>
</tbody>
</table>

AS TESTED:

<table>
<thead>
<tr>
<th></th>
<th>RF</th>
<th>LF</th>
<th>RR</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>793</td>
<td>787</td>
<td>793</td>
<td>788</td>
</tr>
</tbody>
</table>

FULLY LOADED:

<table>
<thead>
<tr>
<th></th>
<th>RF</th>
<th>LF</th>
<th>RR</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>786</td>
<td>784</td>
<td>787</td>
<td>787</td>
</tr>
</tbody>
</table>

30.2 Is the “as tested” test attitude equal to or between the “fully loaded” and “as delivered” attitude?

Yes

No, explain why not.

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 04/26/05
VEHICLE ACCELEROMETER LOCATION AND MEASUREMENT

IMPACT ANGLE: Zero Degrees
BELTED DUMMIES (YES/NO): No – Front Occupants
TEST SPEED: _X_ 32 to 40 kmph _ _ 0 to 48 kmph _ _ 0 to 56 kmph
DRIVER DUMMY: _X_ 5th female _ _ 50th Male
PASSENGER DUMMY: _X_ 5th female _ _ 50th Male

1. Find the location where the vertical plane parallel to the longitudinal centerline of the vehicle and through the center of the left front outboard seating position intersects the left rear seat cross member. Install an accelerometer at this intersection on the rear seat cross member to record x-direction accelerations. Record the location on the following chart.

2. Find the location where the vertical plane parallel to the longitudinal centerline of the vehicle and through the center of the right front outboard seating position intersects the right rear seat cross member. Install an accelerometer at this intersection on the rear seat cross member to record x-direction accelerations. Record the location on the following chart.

3. Find the location where a vertical plane through the longitudinal centerline of the vehicle and a vertical transverse plane through the center of the two wheels on opposite sides of the engine intersect at the top of the engine. Install an accelerometer at this intersection to record x-direction accelerations. Record the location on the following chart.

4. Find the location where a vertical plane through the longitudinal centerline of the vehicle and a vertical transverse plane through the center of the two wheels on opposite sides of the engine intersect the bottom of the engine. Install an accelerometer at this intersection to record x-direction accelerations. Record the location on the following chart.

5. Install an accelerometer on the right front brake caliper to record x-direction accelerations. Record the location on the following chart.

6. Find the location where a vertical plane through the longitudinal centerline of the vehicle intersects the top of the instrument panel. Install an accelerometer at this intersection to record x-direction accelerations. Record the location on the following chart.

7. Install an accelerometer on the left front brake caliper to record x-direction accelerations. Record the location on the following chart.

8. Find the location where a vertical plane through the longitudinal centerline of the vehicle intersects the floor of the trunk. Install an accelerometer on the trunk floor at this intersection to record z-direction accelerations. Record the location on the following chart.

REMARKS:

I certify that I have read and performed each instruction.

Signature: Nick Kosinski Date: 04/26/05
Dimensions Corresponding To The Letters “A” Through “K” (Excluding “I”) Are Recorded In The Table On The Following Page. Accelerometers Corresponding To The Numbers 1 Through 8 Are Specified On The Preceding Page.
<table>
<thead>
<tr>
<th>DIMENSION</th>
<th>LENGTH (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRETEST VALUES</td>
<td></td>
</tr>
<tr>
<td>A (LH Rear Seat Xmbr)</td>
<td>483</td>
</tr>
<tr>
<td>B (RH Rear Seat Xmbr)</td>
<td>482</td>
</tr>
<tr>
<td>C (Engine Top)</td>
<td>4027</td>
</tr>
<tr>
<td>D (Engine Bottom)</td>
<td>3996</td>
</tr>
<tr>
<td>E (Caliper)</td>
<td></td>
</tr>
<tr>
<td>F (Left Caliper)</td>
<td>725</td>
</tr>
<tr>
<td>G (IP)</td>
<td>3056</td>
</tr>
<tr>
<td>H (Seat)</td>
<td>1884</td>
</tr>
<tr>
<td>J (Right Caliper)</td>
<td>720</td>
</tr>
<tr>
<td>K (Trunk)</td>
<td>976</td>
</tr>
<tr>
<td>POST TEST VALUES</td>
<td></td>
</tr>
<tr>
<td>A (LH Rear Seat Xmbr)</td>
<td>483</td>
</tr>
<tr>
<td>B (RH Rear Seat Xmbr)</td>
<td>482</td>
</tr>
<tr>
<td>C (Engine Top)</td>
<td>3995</td>
</tr>
<tr>
<td>D (Engine Bottom)</td>
<td>3971</td>
</tr>
<tr>
<td>E (Caliper)</td>
<td></td>
</tr>
<tr>
<td>F (Left Caliper)</td>
<td>660</td>
</tr>
<tr>
<td>G (IP)</td>
<td>3041</td>
</tr>
<tr>
<td>H (Seat)</td>
<td>1876</td>
</tr>
<tr>
<td>J (Right Caliper)</td>
<td>675</td>
</tr>
<tr>
<td>K (Trunk)</td>
<td>973</td>
</tr>
</tbody>
</table>
DATA SHEET 32
PHOTOGRAPHIC TARGETS

Test Vehicle: 2005 Toyota Highlander MPV
Test Program: FMVSS 208 Compliance
Test Technician: Nick Kosinski

Impact Angle: Zero Degrees

BELTED DUMMIES (YES/NO): No – Front Occupants

TEST SPEED:
- X 32 to 40 kmph
- __ 0 to 48 kmph
- __ 0 to 56 kmph

DRIVER DUMMY:
- X 5th female
- __ 50th Male

PASSENGER DUMMY:
- __ 5th female
- __ 50th Male

1. FMVSS 208 vehicle targeting requirements (See Figures 28A and 28B)
 1.1 Targets A1 and A2 are on flat rectangular panels.
 1.2 Three circular targets at least 90 mm in diameter and with black and yellow quadrants are mounted at the front on the outboard sides of A1 and A2. The center of each circular target is 100 mm from the one next to it.
 1.3 Distance between targets (mm): 100 mm
 1.4 The distance between the first circular target at the front of A1 and A2 and the last circular target at the back of A1 and A2 is at least 915 mm.
 1.5 Distance between the first and last circular targets (mm): 915 mm
 1.6 Firmly fix target A1 on the vehicle roof in the vertical longitudinal plane that is coincident with the midsagittal plane of the driver dummy.
 1.7 Two circular targets (C1 and C2) at least 90 mm in diameter and with black and yellow quadrants are mounted on the outside of the driver door. The centers of each circular target are at least 610 mm apart.
 1.8 Distance between targets (mm): 614 mm
 1.9 Place tape with squares having alternating colors on the top portion of the steering wheel.
 1.10 Chalk the bottom portion of the steering wheel
 1.11 Is this an offset test?
 - Yes, continue with this section
 - X No, go to 2.
 1.12 Measure the width of the vehicle.
 Vehicle width (mm):
1.13 Find the centerline of the vehicle. (½ of the vehicle width)

1.14 Find the line parallel to the centerline of the vehicle and 0.1 x vehicle width from the centerline of the vehicle.

1.15 Apply 25 mm wide tape with alternating black and yellow squares parallel to and on each side of the line found in 1.14. The edge of each tape shall be 50 mm from the line found in 1.14. The tape shall extend from the bottom of the bumper to the front edge of the windshield. (Figure 28D)

2. Barrier Targeting

2.1 Fix two stationary targets D1 and D2 to the barrier as shown in the Figure 28A. One target is in the vertical longitudinal plane that is coincident with the midsagittal plane of the driver dummy. The other is in the vertical longitudinal plane that is coincident with the midsagittal plane of the passenger dummy

2.2 Targets D1 and D2 are on a rectangular panel.

2.3 Three circular targets at least 90 mm in diameter and with black and yellow quadrants are mounted on the sides of the rectangular panel away from the longitudinal centerline of the vehicle. The center of each circular target is 100 mm from the one next to it.

Distance between circular targets on D1 (mm): 100mm
Distance between circular targets on D2 (mm): 100mm

3. FMVSS 208 Dummy Targeting Requirements

3.1 Place a circular target with black and yellow quadrants on both sides of the driver dummy head as close as possible to the center of gravity of the head in the x and z direction (relative to the measuring directions of the accelerometers).

3.2 Place a circular target with black and yellow quadrants on both sides of the passenger dummy head as close as possible to the center of gravity of the head in the x and z direction (relative to the measuring directions of the accelerometers).

3.3 Place a circular target with black and yellow quadrants on the outboard shoulder of the driver dummy. Place the target as high up on the arm as possible at the intersection of the arm and shoulder. The sleeve of the shirt on the dummy may be cut to make the target visible, but do not remove any material.

3.4 Place a circular target with black and yellow quadrants on the outboard shoulder of the passenger dummy. Place the target as high up on the arm as possible at the intersection of the arm and shoulder. The sleeve of the shirt on the dummy may be cut to make the target visible, but do not remove any material.

4. FMVSS 204 Targeting Requirements

4.1 Is an FMVSS 204 indicant test ordered on the “COTR Vehicle Work Order?”

Yes, continue with this form.

No, this form is complete. (Removed at manufacturer’s request with COTR approval)

4.2 Resection panel (Figure 28C)

4.2.1 The panel deviates no more than 6 mm from perfect flatness when suspended vertically

4.2.2 The 8 targets on the panel are circular targets at least 90 mm in diameter and with black and yellow quadrants.

4.2.3 The center of each of the 4 outer targets are placed within 1 mm of the corners of a square measuring 914 mm on each side.

4.2.4 Locate another square with 228 mm sides and with the center of this square coincident with the center of the 914 mm square.

4.2.5 The center of the 4 inner targets are placed at the midpoints of each of the 228 mm sides.
4.3 Place a circular target at least 90 mm in diameter and with black and yellow quadrants on a material (cardboard, metal, etc.) that can be taped to the top of the steering column.

4.4 Tape the target from 4.3 to the top of the steering column in a manner that does not interfere with the movement of the steering column in a crash.

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 04/26/05
REFERENCE PHOTO TARGETS

CONCRETE BARRIER

A1

B

C1

C2

915 mm

100 mm 100 mm

610 mm

MONORAIL

COVERED PHOTO PIT

LEFT SIDE VIEW
RESECTION PANEL TARGETING ALIGNMENT

CAR TOP TARGETS A1 & A2

RESECTION CONTROL POINTS PANEL

STEERING WHEEL

STEERING COLUMN TARGET B

REAR VIEW

TEST RUN STEERING COLUMN CAMERA VIEW OF TYPICAL TIME ZERO VEHICLE POSITION

LEFT SIDE VIEW

A1 A2
PRE-RUN STEERING COLUMN HIGH SPEED CAMERA VIEW

LEFT SIDE VIEW

914 mm
DATA SHEET 33

CAMERA LOCATIONS

Test Vehicle: 2005 Toyota Highlander MPV
Test Program: FMVSS 208 Compliance
NHTSA No.: C55107
Test Date: 4/26/05
Time: 11:30 am

<table>
<thead>
<tr>
<th>CAMERA NO.</th>
<th>VIEW</th>
<th>CAMERA POSITIONS (mm)*</th>
<th>LENS (mm)</th>
<th>SPEED (fps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Real Time Left Side View</td>
<td>13</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Left Side View (Barrier face to front seat backs)</td>
<td>1055 -5415 1460</td>
<td>24 1000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Left Side View (Driver)</td>
<td>1705 -7010 1535</td>
<td>35 1000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Left Side View (B-post aimed toward center of steering wheel)</td>
<td>6635 -5340 2250</td>
<td>50 1000</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Left Side View (Steering Column)</td>
<td>2230 -6140 1555</td>
<td>19 1000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Left Side View (Steering Column)</td>
<td>2205 -6105 1025</td>
<td>19 1000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Right Side View (Overall)</td>
<td>2170 8455 1500</td>
<td>25 1000</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Right Side View (Passenger)</td>
<td>1650 9205 1495</td>
<td>50 1000</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Right Side View (Angle)</td>
<td>6545 5290 2300</td>
<td>50 1000</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Right Side View (Front door)</td>
<td>1140 5160 1365</td>
<td>24 1000</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Front View Windshield</td>
<td>-590 0 2760</td>
<td>19 1000</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Front View Driver</td>
<td>-240 -370 2130</td>
<td>12.5 1000</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Front View Passenger</td>
<td>-74 515 2065</td>
<td>12.5 1000</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Overhead Barrier Impact View</td>
<td>650 0 5050</td>
<td>19 1000</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Pit Camera Engine View</td>
<td>975 0 -3150</td>
<td>24 1000</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Pit Camera Fuel Tank View</td>
<td>3010 0 -3150</td>
<td>24 1000</td>
<td></td>
</tr>
</tbody>
</table>

*COORDINATES:
+X – forward of impact plane
+Y – right of monorail centerline
+Z – above ground level
CAMERA POSITIONS FOR FMVSS 208

TOP VIEW

CONCRETE BARRIER

TOW ROAD

COVERED PHOTO PIT

REAL TIME CAMERA

LEFT SIDE VIEW

CONCRETE BARRIER

TOW ROAD

COVERED PHOTO PIT

MONORAIL
DATA SHEET 34

APPENDIX G

DUMMY POSITIONING PROCEDURES

FOR 5th% DRIVER TEST DUMMY CONFORMING TO SUBPART O OF PART 572

<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2005 Toyota Highlander MPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program:</td>
<td>FMVSS 208 Compliance</td>
</tr>
<tr>
<td>Test Technician:</td>
<td>Eric Peschman</td>
</tr>
<tr>
<td>NHTSA No.:</td>
<td>C55107</td>
</tr>
<tr>
<td>Test Date:</td>
<td>4/26/05</td>
</tr>
</tbody>
</table>

IMPACT ANGLE: Zero Degrees

BELTED DUMMIES (YES/NO): No – Front Occupants

TEST SPEED:
- X 32 to 40 kmph
- _ 0 to 48 kmph
- _ 0 to 56 kmph

DRIVER DUMMY:
- X 5th female
- _ 50th Male

PASSENGER DUMMY:
- X 5th female
- _ 50th Male

1. Position the seat’s adjustable lumbar supports so that the lumbar supports are in the lowest, retracted or deflated adjustment position. (S16.2.10.1)
 - N/A – No lumbar adjustment

2. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - N/A – No additional support adjustment

3. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 - N/A – No independent fore-aft seat cushion adjustment

4. Use the seat markings determined during the completion of Data Sheet 14 to set the rearmost fore-aft position, mid-height position and the seat cushion mid-angle. (S16.3.2.1.1)

5. If the vehicle has an adjustable accelerator pedal, place it in the full forward position. (S16.3.2.2.1)
 - N/A accelerator pedal not adjustable

6. Set the steering wheel hub at the geometric center of the full range of driving positions including any telescoping positions as determined in data sheet 14. (S16.2.9)

7. Fully recline the seat back. (S16.3.2.1.2)
 - N/A seat back not adjustable.

8. Place the dummy in the seat with the legs at an angle of 120 degrees to the thighs. The calves should not be touching the seat cushion. (S16.3.2.1.2)

9. Position the dummy in the seat such that the midsagittal plane is coincident with the longitudinal seat cushion markings as determined in item 1.18 of Data Sheet 14 (S16.3.2.1.3 and S16.3.2.1.4)

10. Hold down the dummy’s thighs and push rearward on the upper torso to maximize the pelvic angle. (S16.3.2.1.5)

11. Set the angle between the legs and the thighs to 120 degrees. (S16.3.2.1.6)
12. Set the transverse distance between the centers of the front of the knees at 160 to 170 mm. (6.3 to 6.7 inches) Center the knee separation with respect to the longitudinal seat cushion marking as determined in item 1.18 of Data Sheet 14. (S16.3.2.1.6) Record Knee Separation 170 mm

13. Push rearward on the dummy’s knees until the pelvis contacts the seat back, or the backs of the calves contact the seat cushion, whichever occurs first. (S16.3.2.1.6) __Pelvis contacted seat back.
 X Calves contacted seat cushion.

14. Gently rock the upper torso ± 5 degrees (approximately 51 mm (2 inches)) side to side three time. (S16.3.2.1.7)

15. If needed, extend the legs until the feet do not contact the floor pan. The thighs should be resting on the seat cushion. (S16.3.2.1.8)

16. Position the right foot until the foot is in line with a longitudinal vertical plane passing through the center of the accelerator pedal. Maintain the leg and thigh in a vertical plane. (S16.3.2.1.8)

17. Rotate the left leg and thigh laterally to equalize the distance between each knee and the longitudinal seat cushion marking as determined in item 1.18 of Data Sheet 14. (S16.3.2.1.8)

18. Attempt to return the seat to the foremost fore-aft position, mid-height, and seat cushion mid-angle. The foot may contact and depress the accelerator and/or change the angle of the foot with respect to the leg. (S16.3.2.1.8)
 X Foremost position achieved. Proceed to step 23.
 __Foremost not achieved because of foot interference. Proceed to step 20.
 __Foremost not achieved because of steering wheel contact.

19. If the dummy’s legs contact the steering wheel, move the steering wheel up the minimum amount required to avoid contact. If the steering wheel is not adjustable separate the knees the minimum required to avoid contact. (S16.3.2.1.8)
 __N/A- there was no leg contact
 __Steering wheel repositioned
 __Knees separated

20. If the left foot interferes with the clutch or brake pedals, rotate the left foot about the leg to provide clearance. If this is not sufficient, rotate the thigh outboard at the hip the minimum amount required for clearance. (S16.3.2.1.8)
 __N/A, No foot interference with pedals.
 __Foot adjusted to provide clearance.
 __Foot and Thigh adjusted to provide clearance.
21. Continue to move the seat. Use seat controls to line up the seat markings determined during the completion of Data Sheet 14 to set the foremost fore-aft position, mid-height position and the seat cushion mid-angle. If the dummy contacts the interior move the seat rearward until a maximum clearance of 5 mm (0.2 inches) is achieved or the seat is in the closest detent position that does not cause dummy contact. (S16.3.2.1.8)

Foremost, mid-height position and the seat cushion mid-angle reached

Dummy contact. Clearance set at maximum of 5mm

Measured Clearance

Dummy Contact. Seat set at nearest detent position.

Seat position ___ detent positions rearward of foremost

(Foremost is position zero)

22. If the steering wheel was repositioned in step 19, return the steering wheel to the original position. If the steering wheel contacts the dummy before reaching the original position, position the wheel until a maximum clearance of 5mm (.2 inches) is achieved, or the steering wheel is in the closest detent position that does not cause dummy contact. (S16.3.2.1.8)

N/A Steering wheel was not repositioned.

Original position achieved.

Dummy contact. Clearance set at maximum of 5mm

Measured Clearance

Dummy Contact. Steering wheel set at nearest detent position.

Steering wheel position ___ detent positions upward of original position.

(Original position is position zero)

23. If the seat back is adjustable, rotate the seat back forward while holding the thighs in place. Continue rotating the seat back forward until the transverse instrument platform of the dummy head is level ± 0.5 degrees. If the head cannot be leveled using the seat back adjustment, or the seat back is not adjustable, use the lower neck bracket adjustment to level the head. If a level position cannot be achieved, minimize the angle. (S16.3.2.1.9)

Head Level Achieved. (Check all that apply)

X Head leveled using the adjustable seat back

__Head leveled using the neck bracket.

Head Angle ________0.2_______ degrees

__Head Level NOT Achieved. (Check all that apply)

__Head adjusted using the adjustable seat back

__Head adjusted using the neck bracket.

Head Angle ____________ degrees

24. Verify the pelvis is not interfering with the seat bight. (S16.3.2.1.9)

X No interference

Pelvis moved forward the minimum amount so that it is not caught in the seat bight.
X 25. Verify the dummy abdomen is properly installed. (S16.3.2.1.9)
 X Abdomen still seated properly into dummy
 ___Abdomen was adjusted because it was not seated properly into dummy

X 26. Head Angle
 ___N/A, neither the pelvis nor the abdomen were adjusted.

 ___26.1 Head still level (Go to 27)
 ___26.2 Head level adjusted

 ___Head Level Achieved. (Check all that apply)
 ___Head leveled using the adjustable seat back
 ___Head leveled using the neck bracket.
 __________ degrees

 ___Head Level NOT Achieved. (Check all that apply)
 ___Head level adjusted using the adjustable seat back
 ___Head level adjusted using the neck bracket.
 __________ degrees

X 27. If the dummy torso contacts the steering wheel while performing step 23, reposition the
steering wheel in the following order to eliminate contact.
 ___N/A, No dummy torso contact with the steering wheel.

 ___27.1 Adjust telescoping mechanism.
 ___N/A No telescoping adjustment.
 ___Adjustment performed (fill in appropriate change)
 Steering wheel moved ____ detent positions in the forward direction.
 Steering wheel moved ____ mm in the forward direction.

 ___27.2 Adjust tilt mechanism.
 ___N/A No tilt adjustment.
 ___No adjustment performed.
 ___Adjustment performed.
 Steering wheel moved ____ detent positions Upward/Downward.
 (circle one)
 Steering wheel moved ____ degrees Upward/Downward

 ___27.3 Adjust Seat in the aft direction.
 ___No Adjustment performed.
 ___Seat moved aft ____ mm from original position.
 ___Seat moved aft ____ detent positions from the original position.

X 28. Measure and set the pelvic angle using the pelvic angle gage TE-2504. The pelvic
angle should be 20.0 degrees ± 2.5 degrees. If the pelvic angle cannot be set to the
specified range because the head will not be level, adjust the pelvis as closely as
possible to the angle range, but keep the head level.
 ___Pelvic angle set to 20.0 degrees ± 2.5 degrees.
 X Pelvic angle of 20.0 degrees not achieved, the angular difference was minimized.
 X Record the pelvic angle. ______ 23.4 ______ degrees
X 29. Check the dummy for contact with the interior after completing adjustments.
 X No contact.
 __Dummy in contact with interior.
 ___Seat moved aft ___ mm from the previous position.
 ___Seat moved aft ___ detent positions from the previous position.

X 30. Check the dummy to see if additional interior clearance is obtained, allowing the seat to
be moved forward.
 X N/A, Seat already at foremost position.
 ___Clearance unchanged. No adjustments required.
 ___Additional clearance available
 ___Seat moved Forward ___ mm from the previous position.
 ___Seat moved Forward ___ detent positions from the previous position.

X 31. Driver’s foot positioning, right foot. Place the foot perpendicular to the leg and determine
if the heel contacts the floor pan at any leg position. If the heel contacts the floor pan
proceed to step 32 otherwise, proceed to step 33.

X 32. Perform the following steps until either all steps are completed, or the foot contacts the
accelerator pedal. Step 32.6 shall be completed in all cases.

X 32.1 With the rear of the heel contacting the floor pan, move the foot forward until pedal
contact occurs or the foot is at the full forward position.

 32.2 If the vehicle has an adjustable accelerator pedal, move the pedals rearward until pedal
contact occurs or the pedals reach the full rearward position. Not Applicable

 32.3 Extend the leg, allowing the heel to lose contact with the floor until the foot contacts the
pedal. Do not raise the toe of the foot higher than the top of the accelerator pedal. If the
foot does not contact the pedal, proceed to the next step. If pedal contact does occur,
place a tapered foam block as shown in Figure G1 under the heel with the shallow part
of the taper facing forward.

 32.4 Angle the foot to achieve contact between the foot and the pedal. If the foot does not
contact the pedal, return the foot to the perpendicular orientation. If pedal contact does
occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part
of the taper facing forward.

 32.5 Align the centerline of the foot with the vertical-longitudinal plane passing through the
center of the accelerator pedal. Place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward.

X 32.6 Record foot position
 X Pedal Contact achieved. Contact occurred at step 32.1.
 X Heel contacts floor pan
 ___Heel set _____ mm from floor pan.
 ___Pedal Contact not achieved. Heel set _____ mm from the floor pan.
FIGURE G1

33. Perform the following steps until either all steps are completed, or the foot contacts the accelerator pedal. Step 33.5 shall be completed in all cases.

33.1 Extend the leg until the foot contacts the pedal. Do not raise the toe of the foot higher than the top of the accelerator pedal. If the foot does not contact the pedal, proceed to the next step. If pedal contact does occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward.

33.2 If the vehicle has an adjustable accelerator pedal, move the pedals rearward until pedal contact occurs or the pedals reach the full rearward position. If pedal contact does occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward.

33.3 Angle the foot to achieve contact between the foot and the pedal. If the foot does not contact the pedal, return the foot to the perpendicular orientation. If pedal contact does occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward.

33.4 Align the centerline of the foot in the same horizontal plane as the centerline of the accelerator pedal. Place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward.
33.5 Record foot position
 ___Pedal Contact achieved. Contact occurred at step ____.
 ___ Heel set _____ mm from floor pan.

 ___Pedal Contact not achieved. Heel set _____ mm from the floor pan.

X 34. Driver’s foot positioning, left foot.

X 34.1 Place the foot perpendicular to the leg and determine if the heel contacts the floor pan at
any leg position. If the heel contacts the floor pan proceed to step 34.2, otherwise
position the leg as perpendicular to the thigh as possible with the foot parallel to the floor
pan.

X 34.2 Place the foot on the toe board with the heel resting on the floor pan as close to the
intersection of the floor pan and the toe board as possible. Adjust the angle of the foot if
necessary to contact the toe board. If the foot will not contact the toe board, set the foot
perpendicular to the leg, and set the heel on the floor pan as far forward as possible. Do
not place the foot on the wheel well projection or footrest. If the pedals interfere with the
placement of the foot, reposition the foot by rotating the foot about the leg, or rotate the
leg outboard about the hip if necessary.
 ___Foot rotated about the leg
 ___Foot rotated about the leg, and the leg rotated about the hip.
 X No pedal interference

X 34.3 Record foot position.
 ___Heel does not contact floor pan.
 ___Foot placed on toe board.
 ___Foot placed on floor pan.

X 35. Driver arm/hand positioning.

X 35.1 Place the dummy’s upper arms adjacent to the torso with the arm centerlines as close to
a vertical longitudinal plane as possible. (S16.3.2.3.1)

X 35.2 Place the palms of the dummy in contact with the outer part of the steering wheel rim at
its horizontal centerline with the thumbs over the steering wheel rim. (S16.3.2.3.2)

X 35.3 If it is not possible to position the thumbs inside the steering wheel rim at its horizontal
centerline, then position them above and as close to the horizontal centerline of the
steering wheel rim as possible. (S16.3.2.3.3)

X 35.4 Lightly tape the hands to the steering wheel rim so that if the hand of the test dummy is
pushed upward by a force of not less than 9 N (2 lb) and not more than 22 N (5 lb), the
tape releases the hand from the steering wheel rim. S16.3.2.3.4

X 36. Adjustable head restraints
 ___N/A, there is no head restraint adjustment

X 36.1 If the head restraint has an automatic adjustment, leave it where the system positions
the restraint after the dummy is placed in the seat. (S16.3.4.1) Go to 37.
36.2 Adjust each head restraint vertically so that the horizontal plane determined in item 3 of Data Sheet 14 is aligned with the center of gravity (CG) of the dummy head. (S16.3.4.3)

36.3 If the above position is not attainable, move the vertical center of the head restraint to the closest detent below the center of the head CG. (S16.3.4.3)

N/A midpoint position attained in previous step
Headrest set at nearest detent below the head CG

36.4 If the head restraint has a fore and aft adjustment, place the restraint in the foremost position or until contact with the head is made, whichever occurs first. (S16.3.4.4)

37. Driver and passenger manual belt adjustment (for tests conducted with a belted dummy). (S16.3.5) Unbelted Test

37.1 If an adjustable seat belt D-ring anchorage exists, place it in the manufacturer’s design position for a 5th percentile adult female.
This information will be supplied by the COTR.
Manufacturer’s specified position ________________________________
Actual Position __

37.2 Place the Type 2 manual belt around the test dummy and fasten the latch. (S16.3.5.2)

37.3 Ensure that the dummy’s head remains as level as possible. (S16.3.5.3)

37.4 Remove all slack from the lap belt. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this operation four times. Apply a 9 N (2 lbf) to 18 N (4 lbf) tension load to the lap belt. If the belt system is equipped with a tension-relieving device, introduce the maximum amount of slack into the upper torso belt that is recommended by the manufacturer. If the belt system is not equipped with a tension-relieving device, allow the excess webbing in the shoulder belt to be retracted by the retractive force of the retractor. (S16.3.5.4)

REMARKS: NONE

I certify that I have read and performed each instruction.

Signature: ______________________ Date: 04/26/05
APPENDIX G
DUMMY POSITIONING PROCEDURES
FOR 5th% PASSENGER TEST DUMMY CONFORMING TO SUBPART O OF PART 572

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No – Front Occupants</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>X 5th Female</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>X 5th Female</td>
</tr>
</tbody>
</table>

(Check this item ONLY if it applies to this vehicle.)

The passenger seat adjustments are controlled by the adjustments made to the driver’s seat. Therefore, positioning of the passenger dummy is made simultaneously with the driver dummy. Adjustments made to the seat to position the driver will over ride any adjustments that would normally be made to position the passenger. (S16.2.10.3)

1. Position the seat’s adjustable lumbar supports so that the lumbar supports are in the lowest, retracted or deflated adjustment position. (S16.2.10.1)
 X N/A – No lumbar adjustment

2. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 X N/A – No additional support adjustment

3. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 X N/A – No independent fore-aft seat cushion adjustment

4. Use the seat markings determined during the completion of Data Sheet 14 to set the rearmost fore-aft position, mid-height position and the seat cushion mid-angle. (S16.3.3.1.1)

5. Fully recline the seat back. (S16.3.3.1.2)
 __ N/A seat back not adjustable.

6. Place the dummy in the seat with the legs at an angle of 120 degrees to the thighs. The calves should not be touching the seat cushion. (S16.3.3.1.2)

7. Position the dummy in the seat such that the midsagittal plane is coincident with the longitudinal seat cushion marking that was determined in item 2.19 of Data Sheet 14 (S16.3.3.1.3 and S16.3.3.1.4)

8. Hold down the dummy’s thighs and push rearward on the upper torso to maximize the pelvic angle. (S16.3.3.1.5)

9. Set the angle between the legs and the thighs to 120 degrees. (S16.3.3.1.6)
X 10. Set the transverse distance between the centers of the front of the knees at 160 to 170 mm. (6.3 to 6.7 inches) Center the knee separation with respect to the longitudinal seat cushion marking that was determined in item 2.19 of Data Sheet 14. (S16.3.3.1.6) Record Knee Separation 169 mm.

X 11. Push rearward on the dummy’s knees until the pelvis contacts the seat back, or the backs of the calves contact the seat cushion, whichever occurs first. (S16.3.3.1.6)
 Pelvis contacted seat back.
 X Calves contacted seat cushion.

X 12. Gently rock the upper torso ± 5 degrees (approximately 51 mm (2 inches)) side-to-side three times. (S16.3.3.1.7)

X 13. If needed, extend the legs until the feet do not contact the floor pan. The thighs should be resting on the seat cushion. (S16.3.3.1.8)

X 14. Use seat controls to line up the seat markings determined during the completion of Data Sheet 14 to set the foremost fore-aft position, mid-height position and the seat cushion mid-angle. If the dummy contacts the interior move the seat rearward until a maximum clearance of 5 mm (0.2 inches) is achieved or the seat is in the closest detent position that does not cause dummy contact. (S16.3.3.1.8)
 Foremost, mid-height position and the seat cushion mid-angle reached.

 Dummy Contact. Clearance set at maximum of 5mm
 Measured Clearance__________

 Dummy Contact. Seat set at nearest detent position.
 Seat position ___ detent positions rearward of foremost
 (Foremost is position zero)

X 15. If the seat back is adjustable, rotate the seat back forward while holding the thighs in place. Continue rotating the seat back forward until the transverse instrument platform of the dummy head is level ± 0.5 degrees. If head cannot be leveled using the seat back adjustment, or the seat back is not adjustable, use the lower neck bracket adjustment to level the head. If a level position cannot be achieved, adjust the head as closely as possible to the ± 0.5 degree range. (S16.3.3.1.9 and S16.3.3.1.10) (Check All That Apply)
 Seat back not adjustable

 Seat back not independent of driver side seat back

 X Head Level Achieved. (Check all that apply)
 Head leveled using the adjustable seat back
 Head leveled using the neck bracket.
 Head Angle ____ 0.2_____ degrees

 Head Level NOT Achieved. (Check all that apply)
 Head adjusted using the adjustable seat back
 Head adjusted using the neck bracket.
 Head Angle ______________ degrees
X 16. Verify the pelvis is not interfering with the seat bight. (S16.3.3.1.9)
 _X No interference
 _Pelvis moved forward the minimum amount so that it is not caught in the seat bight.

X 17. Verify the dummy abdomen is properly installed. (S16.3.3.1.9)
 _X Abdomen still seated properly into dummy
 _Abdomen was adjusted because it was not seated properly into dummy

X 18. Head Angle
 _X N/A, neither the pelvis nor the abdomen were adjusted.

X 18.1 Head still level (Go to 19)

 _18.2 Head level adjusted

 _Head Level Achieved. (Check all that apply)
 _Head leveled using the adjustable seat back
 _Head leveled using the neck bracket.
 _Head Angle ____________ degrees

 _Head Level NOT Achieved. (Check all that apply)
 _Head adjusted using the adjustable seat back
 _Head adjusted using the neck bracket.
 _Head Angle ____________ degrees

X 19. Measure and set the pelvic angle using the pelvic angle gage TE-2504. The pelvic angle should be 20.0 degrees ± 2.5 degrees. If the pelvic angle cannot be set to the specified range because the head will not be level, adjust the pelvis as closely as possible to the angle range, but keep the head level.
 _Pelvic angle set to 20.0 degrees ± 2.5 degrees.
 _X Pelvic angle of 20.0 degrees not achieved, the angular difference was minimized.
 _X Record the pelvic angle. _____ 24.8 _____ degrees

X 20. Check the dummy for contact with the interior after completing adjustments.
 _X No contact.
 _ dummy in contact with interior.
 _Seat moved aft ___ mm from the previous position.
 _Seat moved aft ___ detent positions from the previous position.

X 21. Verify the transverse instrument platform of the dummy head is level +/- 0.5 degrees. Use the lower neck bracket adjustment to level the head. If a level position cannot be achieved, minimize the angle. (S16.3.3.1.9, S16.3.3.1.10, and S16.3.3.1.11)
 _X Head Level Achieved
 _Head Angle _____ 0.2 _____ degrees
 _Head Level NOT Achieved.
 _Head Angle ____________ degrees
22. Check the dummy to see if additional interior clearance is obtained, allowing the seat to be moved forward. (S16.3.3.1.12)
 - N/A Bench Seat
 - X N/A Seat already at full forward position.
 - _Clearance unchanged. No adjustments required.
 - __Additional clearance available
 - __Seat moved Forward ___ mm from the previous position.
 - __Seat moved Forward ___ detent positions from the previous position.
 - __Seat moved Forward, Full Forward position reached.

23. Passenger foot positioning. (Indicate final position achieved) (S16.3.3.2)
 - __23.1 Place feet flat on the toe board; OR
 - X 23.2 If the feet cannot be placed flat on the toe board, set the feet perpendicular to the lower leg, and rest the heel as far forward on the floor pan as possible; OR
 - __23.3 If the heels do not touch the floor pan, set the legs to vertical and set the feet parallel to the floor pan.

24. Passenger arm/hand positioning. (S16.3.3.3)
 - X 24.1 Place the dummy’s upper arms adjacent to the torso with the arm centerlines as close to a vertical longitudinal plane as possible. (S16.3.2.3.1)
 - X 24.2 Place the palms of the dummy in contact with the outer part of the thighs (S16.3.3.3.2)
 - X 24.3 Place the little fingers in contact with the seat cushion. (S16.3.3.3.3)

25. Adjustable head restraints
 - _N/A, there is no head restraint adjustment
 - X 25.1 If the head restraint has an automatic adjustment, leave it where the system positions the restraint after the dummy is placed in the seat. (S16.3.4.1) Go to 26.
 - X 25.2 Adjust each head restraint vertically so that the horizontal plane determined in item 3 of Data Sheet 14 is aligned with the center of gravity (CG) of the dummy head. (S16.3.4.3)
 - X 25.3 If the above position is not attainable, move the vertical center of the head restraint to the closest detent below the center of the head CG. (S16.3.4.3)
 - _N/A midpoint position attained in previous step
 - X Headrest set at nearest detent below the head CG
 - X 25.4 If the head restraint has a fore and aft adjustment, place the restraint in the foremost position or until contact with the head is made, whichever occurs first. (S16.3.4.4)

26. Manual belt adjustment (for tests conducted with a belted dummy) S16.3.5
 - X N/A, Unbelted test
26.1 If an adjustable seat belt D-ring anchorage exists, place it in the manufacturer’s design position for a 5th percentile adult female. This information will be supplied by the COTR.
Manufacturer’s specified position ____________________________
Actual Position ____________________________

26.2 Place the Type 2 manual belt around the test dummy and fasten the latch. (S16.3.5.2)

26.3 Ensure that the dummy’s head remains as level as possible. (S16.3.5.3)

26.4 Remove all slack from the lap belt. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this operation four times. Apply a 9 N (2 lbf) to 18 N (4 lbf) tension load to the lap belt. If the belt system is equipped with a tension-relieving device, introduce the maximum amount of slack into the upper torso belt that is recommended by the manufacturer. If the belt system is not equipped with a tension-relieving device, allow the excess webbing in the shoulder belt to be retracted by the retractive force of the retractor. (S16.3.5.4)

REMARKS: NONE

I certify that I have read and performed each instruction.

Signature: ____________________ Date: 04/26/05
DATA SHEET 35
DUMMY MEASUREMENTS

Test Vehicle: 2005 Toyota Highlander MPV
Test Program: FMVSS 208 Compliance
Test Technician: Eric Peschman

NHTSA No.: C55107
Test Date: 4/26/05

DUMMY MEASUREMENTS FOR FRONT SEAT OCCUPANTS

- CD: Chest to Dash
- CS: Chest to Steering Wheel Hub
- HH: Head to Header
- HW: Head to Windshield
- HZ: Head to Roof
- KDA: Knee to Dash Angle
- KDL: Left Knee to Dash
- KDR: Right Knee to Dash
- NA: Nose to Rim Angle
- NR: Nose to Rim
- PA: Pelvic Angle
- RA: Rim to Abdomen
- SA: Seat Back Angle
- SCA: Steering Column Angle
- SH: Striker to H-Point
- SK: Striker to Knee
- ST: Striker to Head
- SWA: Steering Wheel Angle
- TA: Tibial Angle
- WA: Windshield Angle

Test Vehicle: 2005 Toyota Highlander MPV
Test Program: FMVSS 208 Compliance
Test Technician: Eric Peschman

NHTSA No.: C55107
Test Date: 4/26/05

DUMMY MEASUREMENTS FOR FRONT SEAT OCCUPANTS

- AD: Arm to Door
- HD: H-Point to Door
- HR: Head to Side Header
- HS: Head to Side Window
- KK: Knee to Knee
- SHY: Striker to H-Point (Y Axis)

Test Vehicle: 2005 Toyota Highlander MPV
Test Program: FMVSS 208 Compliance
Test Technician: Eric Peschman

NHTSA No.: C55107
Test Date: 4/26/05

DUMMY MEASUREMENTS FOR FRONT SEAT OCCUPANTS

- AD: Arm to Door
- HD: H-Point to Door
- HR: Head to Side Header
- HS: Head to Side Window
- KK: Knee to Knee
- SHY: Striker to H-Point (Y Axis)

Test Vehicle: 2005 Toyota Highlander MPV
Test Program: FMVSS 208 Compliance
Test Technician: Eric Peschman

NHTSA No.: C55107
Test Date: 4/26/05

DUMMY MEASUREMENTS FOR FRONT SEAT OCCUPANTS

- AD: Arm to Door
- HD: H-Point to Door
- HR: Head to Side Header
- HS: Head to Side Window
- KK: Knee to Knee
- SHY: Striker to H-Point (Y Axis)

Test Vehicle: 2005 Toyota Highlander MPV
Test Program: FMVSS 208 Compliance
Test Technician: Eric Peschman

NHTSA No.: C55107
Test Date: 4/26/05

DUMMY MEASUREMENTS FOR FRONT SEAT OCCUPANTS

- AD: Arm to Door
- HD: H-Point to Door
- HR: Head to Side Header
- HS: Head to Side Window
- KK: Knee to Knee
- SHY: Striker to H-Point (Y Axis)

Test Vehicle: 2005 Toyota Highlander MPV
Test Program: FMVSS 208 Compliance
Test Technician: Eric Peschman

NHTSA No.: C55107
Test Date: 4/26/05

DUMMY MEASUREMENTS FOR FRONT SEAT OCCUPANTS

- AD: Arm to Door
- HD: H-Point to Door
- HR: Head to Side Header
- HS: Head to Side Window
- KK: Knee to Knee
- SHY: Striker to H-Point (Y Axis)

Test Vehicle: 2005 Toyota Highlander MPV
Test Program: FMVSS 208 Compliance
Test Technician: Eric Peschman

NHTSA No.: C55107
Test Date: 4/26/05

DUMMY MEASUREMENTS FOR FRONT SEAT OCCUPANTS

- AD: Arm to Door
- HD: H-Point to Door
- HR: Head to Side Header
- HS: Head to Side Window
- KK: Knee to Knee
- SHY: Striker to H-Point (Y Axis)

Test Vehicle: 2005 Toyota Highlander MPV
Test Program: FMVSS 208 Compliance
Test Technician: Eric Peschman

NHTSA No.: C55107
Test Date: 4/26/05

DUMMY MEASUREMENTS FOR FRONT SEAT OCCUPANTS

- AD: Arm to Door
- HD: H-Point to Door
- HR: Head to Side Header
- HS: Head to Side Window
- KK: Knee to Knee
- SHY: Striker to H-Point (Y Axis)

Test Vehicle: 2005 Toyota Highlander MPV
Test Program: FMVSS 208 Compliance
Test Technician: Eric Peschman

NHTSA No.: C55107
Test Date: 4/26/05

DUMMY MEASUREMENTS FOR FRONT SEAT OCCUPANTS

- AD: Arm to Door
- HD: H-Point to Door
- HR: Head to Side Header
- HS: Head to Side Window
- KK: Knee to Knee
- SHY: Striker to H-Point (Y Axis)

Test Vehicle: 2005 Toyota Highlander MPV
Test Program: FMVSS 208 Compliance
Test Technician: Eric Peschman

NHTSA No.: C55107
Test Date: 4/26/05

DUMMY MEASUREMENTS FOR FRONT SEAT OCCUPANTS

- AD: Arm to Door
- HD: H-Point to Door
- HR: Head to Side Header
- HS: Head to Side Window
- KK: Knee to Knee
- SHY: Striker to H-Point (Y Axis)

Test Vehicle: 2005 Toyota Highlander MPV
Test Program: FMVSS 208 Compliance
Test Technician: Eric Peschman

NHTSA No.: C55107
Test Date: 4/26/05

DUMMY MEASUREMENTS FOR FRONT SEAT OCCUPANTS

- AD: Arm to Door
- HD: H-Point to Door
- HR: Head to Side Header
- HS: Head to Side Window
- KK: Knee to Knee
- SHY: Striker to H-Point (Y Axis)

Test Vehicle: 2005 Toyota Highlander MPV
Test Program: FMVSS 208 Compliance
Test Technician: Eric Peschman

NHTSA No.: C55107
Test Date: 4/26/05

DUMMY MEASUREMENTS FOR FRONT SEAT OCCUPANTS

- AD: Arm to Door
- HD: H-Point to Door
- HR: Head to Side Header
- HS: Head to Side Window
- KK: Knee to Knee
- SHY: Striker to H-Point (Y Axis)
DATA SHEET 35
DUMMY MEASUREMENTS

Test Vehicle: 2005 Toyota Highlander MPV
Test Program: FMVSS 208 Compliance
Test Technician: Eric Peschman
NHTSA No.: C55107
Test Date: 4/26/05

<table>
<thead>
<tr>
<th>Code</th>
<th>Measurement Description</th>
<th>Driver SN 506</th>
<th>Passenger SN 511</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Length (mm)</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>WA</td>
<td>Windshield Angle</td>
<td>31.3</td>
<td></td>
</tr>
<tr>
<td>SWA</td>
<td>Steering Wheel Angle</td>
<td>62.0</td>
<td></td>
</tr>
<tr>
<td>SCA</td>
<td>Steering Column Angle</td>
<td>28.6</td>
<td></td>
</tr>
<tr>
<td>SA</td>
<td>Seat Back Angle*</td>
<td>5.0</td>
<td>7.0</td>
</tr>
<tr>
<td>HZ</td>
<td>Head to Roof (Z)</td>
<td>258</td>
<td>90</td>
</tr>
<tr>
<td>HH</td>
<td>Head to Header</td>
<td>332</td>
<td>43.3</td>
</tr>
<tr>
<td>HW</td>
<td>Head to Windshield</td>
<td>617</td>
<td>0</td>
</tr>
<tr>
<td>HR</td>
<td>Head to Side Header (Y)</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>Nose to Rim</td>
<td>306</td>
<td>6.9</td>
</tr>
<tr>
<td>CD</td>
<td>Chest to Dash</td>
<td>465</td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>Chest to Steering Hub</td>
<td>225</td>
<td>2.3</td>
</tr>
<tr>
<td>RA</td>
<td>Rim to Abdomen</td>
<td>88</td>
<td>0</td>
</tr>
<tr>
<td>KDL</td>
<td>Left Knee to Dash</td>
<td>94</td>
<td>35.1</td>
</tr>
<tr>
<td>KDR</td>
<td>Right Knee to Dash</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>Pelvic Angle</td>
<td>23.4</td>
<td></td>
</tr>
<tr>
<td>TA</td>
<td>Tibia Angle</td>
<td>52.9</td>
<td></td>
</tr>
<tr>
<td>KK</td>
<td>Knee to Knee (Y)</td>
<td>276</td>
<td></td>
</tr>
<tr>
<td>SK</td>
<td>Striker to Knee</td>
<td>682</td>
<td>84.1</td>
</tr>
<tr>
<td>ST</td>
<td>Striker to Head</td>
<td>487</td>
<td>25.4</td>
</tr>
<tr>
<td>SH</td>
<td>Striker to H-Point</td>
<td>370</td>
<td>106.3</td>
</tr>
<tr>
<td>SHY</td>
<td>Striker to H-Point (Y)</td>
<td>307</td>
<td></td>
</tr>
<tr>
<td>HS</td>
<td>Head to Side Window</td>
<td>376</td>
<td></td>
</tr>
<tr>
<td>HD</td>
<td>H-Point to Door (Y)</td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>Arm to Door (Y)</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Ankle to Ankle</td>
<td>257</td>
<td></td>
</tr>
</tbody>
</table>

*Measured on the headrest post
SEAT BELT POSITIONING DATA

DUMMY’S CENTERLINE

SHOULDER BELT PORTION

TBI

‘D’ RING

LAP BELT PORTION

PBU

INBOARD ANCHORAGE

FLOORPAN

MALE BLADE

BUCKLE ASSEMBLY

1/8" THICK ALUMINUM PLATE

EMERGENCY LOCKING RETRACTOR

OUTBOARD ANCHORAGE

REEL

FRONT VIEW OF DUMMY

SEAT BELT POSITIONING MEASUREMENTS

<table>
<thead>
<tr>
<th>Measurement Description</th>
<th>Units</th>
<th>Driver</th>
<th>Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBU - Top surface of reference to belt upper edge</td>
<td>mm</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>PBL - To surface of reference to belt lower edge</td>
<td>mm</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
DATA SHEET 36

CRASH TEST

<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2005 Toyota Highlander MPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program:</td>
<td>FMVSS 208 Compliance</td>
</tr>
<tr>
<td>Test Technician:</td>
<td>Eric Peschman</td>
</tr>
<tr>
<td>NHTSA No.:</td>
<td>C55107</td>
</tr>
<tr>
<td>Test Date:</td>
<td>4/26/05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No – Front Occupants</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph, __ 0 to 48 kmph, __ 0 to 56 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>X 5TH female, __ 50th Male</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>X 5TH female, __ 50th Male</td>
</tr>
</tbody>
</table>

1. Vehicle underbody painted
2. The speed measuring devices are in place and functioning.
3. The speed measuring devices are _1.0_ m from the barrier (spec. 1.5m) and _30_ cm from the barrier (spec. is 30 cm)
4. Convertible top is in the closed position.
 - X N/A, not a convertible
5. Instrumentation and wires are placed so the motion of the dummies during impact is not affected.
6. Tires inflated to pressure on tire placard or if it does not have a tire placard because it is not a passenger car, then inflated to the tire pressure specified in the owner information.
 - 210 kpa front left tire: 210 kpa specified on tire placard or in owner information
 - 210 kpa front right tire: 210 kpa specified on tire placard or in owner information
 - 210 kpa rear left tire: 210 kpa specified on tire placard or in owner information
 - 210 kpa rear right tire: 210 kpa specified on tire placard or in owner information
7. Time zero contacts on barrier in place.
8. Pre test zero and shunt calibration adjustments performed and recorded
9. Dummy temperature meets requirements of section 12.2 of the test procedure.
10. Vehicle hood closed and latched
11. Transmission placed in neutral
12. Parking brake off
13. Ignition in the ON position
14. Doors closed and latched but not locked
15. Posttest zero and shunt calibration checks performed and recorded
16. Actual test speed _39.8_ kmph
17. Vehicle rebound from the barrier _317_ cm
18. Describe whether the doors open after the test and what method is used to open the doors.
 - X Left Front Door: Door remained closed and latched; Door opened without tools
 - X Right Front Door: Door remained closed and latched; Door opened without tools
 - X Left Rear Door: Door remained closed and latched; Door opened without tools
 - X Right Rear Door: Door remained closed and latched; Door opened without tools
19. Describe the contact points of the dummy with the interior of the vehicle.

- Driver Dummy: Head to air bag and headrest; Chest to air bag; Knees to knee bolster.
- Passenger Dummy: Head to air bag; Chest to air bag; Knees to glove box.

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature] Date: 04/26/05
DATA SHEET NO. 38

ACCIDENT INVESTIGATION DIVISION DATA

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No – Front Occupants</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>X 5th female</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>X 5th female</td>
</tr>
</tbody>
</table>

Vehicle Year/Make/Model/Body Style:	2005 Toyota Highlander MPV
VIN:	JTEGP21A650062275
Wheelbase:	2709 mm
Build Date:	12/04
Vehicle Size Category:	3
Test Weight:	1814.4 kg
Front Overhang:	1034 mm
Overall Width:	1831 mm
Overall Length Center:	4666 mm

Accelerometer Data

Location:	As per measurements on Data Sheet 31
Linearity:	>99.9%
Integration Algorithm:	Trapezoidal
Vehicle Impact Speed:	39.8 kmph
Time of Separation:	93.9 ms *
Velocity Change:	39.8 kmph *

The accelerometers on the rear seat cross member during the moved impact.
CRUSH PROFILE

Collision Deformation Classification: 12FDEW6
Midpoint of Damage: Vehicle Longitudinal Centerline
Damage Region Length (mm): 1222
Impact Mode: Frontal Barrier

<table>
<thead>
<tr>
<th>No.</th>
<th>Measurement Description</th>
<th>Units</th>
<th>Pre-Test</th>
<th>Post-Test</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Crush zone 1 at left side</td>
<td>mm</td>
<td>4514</td>
<td>4340</td>
<td>174</td>
</tr>
<tr>
<td>C2</td>
<td>Crush zone 2 at left side</td>
<td>mm</td>
<td>4608</td>
<td>4342</td>
<td>266</td>
</tr>
<tr>
<td>C3</td>
<td>Crush zone 3 at left side</td>
<td>mm</td>
<td>4659</td>
<td>4366</td>
<td>293</td>
</tr>
<tr>
<td>C4</td>
<td>Crush zone 4 at right side</td>
<td>mm</td>
<td>4660</td>
<td>4383</td>
<td>277</td>
</tr>
<tr>
<td>C5</td>
<td>Crush zone 5 at right side</td>
<td>mm</td>
<td>4620</td>
<td>4347</td>
<td>273</td>
</tr>
<tr>
<td>C6</td>
<td>Crush zone 6 at right side</td>
<td>mm</td>
<td>4515</td>
<td>4334</td>
<td>181</td>
</tr>
</tbody>
</table>

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 04/26/05
DATA SHEET 39
WINDSHIELD MOUNTING (FMVSS 212)

Test Vehicle: 2005 Toyota Highlander MPV
Test Program: FMVSS 208 Compliance
Test Technician: Nick Kosinski

IMPACT ANGLE: Zero Degrees
BELTED DUMMIES (YES/NO): No – Front Occupants
TEST SPEED: X 32 to 40 kmph, 0 to 48 kmph, 0 to 56 kmph
DRIVER DUMMY: X 5th female
PASSENGER DUMMY: X 5th female

1. Pre-Crash
 1.1 Describe from visual inspection how the windshield is mounted and describe any trim material.

 Retained with glue
 Rubber and plastic trim

 1.2 Mark the longitudinal centerline of the windshield
 1.3 Measure pre-crash A, B, and C for the left side and record in the chart below.
 1.4 Measure pre-crash C, D, and E for the right side and record in the chart below.
 1.5 Measure from the edge of the retainer or molding to the edge of the windshield.
 Dimension G (mm): 17

2. Post Crash
 2.1 Can a single thickness of copier type paper (as small a piece as necessary) slide between the windshield and the vehicle body?

 X No – Pass. Skip to the table of measurements, complete it by repeating the pre-crad measurements in the post crash column, and calculate the retention percentage, which will be 100%.

 Yes, go to 2.2

 2.2 Visibly mark the beginning and end of the portions of the periphery where the paper slides between the windshield and the vehicle body.

 2.3 Measure and record post-crash A, B, C, D, E, and F such that the measurements do not include any of the parts of the windshield where the paper slides between the windshield and the vehicle body.

 2.4 Calculate and record the percent retention for the right and left side of the windshield.

 2.5 Is total right side percent retention less than 75%?

 Yes, Fail
 No, Pass

 2.6 Is total left side percent retention less than 75%?

 Yes, Fail
 No, Pass
WINDSHIELD RETENTION MEASUREMENTS

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Pre-Crash (mm)</th>
<th>Post-Crash (mm)</th>
<th>Percent Retention (Post-Test ÷ Pre-Crash)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>605</td>
<td>605</td>
<td>100%</td>
</tr>
<tr>
<td>B</td>
<td>742</td>
<td>742</td>
<td>100%</td>
</tr>
<tr>
<td>C</td>
<td>760</td>
<td>760</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>2107</td>
<td>2107</td>
<td>100%</td>
</tr>
<tr>
<td>D</td>
<td>605</td>
<td>605</td>
<td>100%</td>
</tr>
<tr>
<td>E</td>
<td>742</td>
<td>742</td>
<td>100%</td>
</tr>
<tr>
<td>F</td>
<td>760</td>
<td>760</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>2107</td>
<td>2107</td>
<td>100%</td>
</tr>
</tbody>
</table>

Indicate area of mounting failure. NONE

FRONT VIEW OF WINDSHIELD

INDICATE WIDTH OF MOLDING

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 04/26/05
DATA SHEET 40
WINDSHIELD ZONE INTRUSION (FMVSS 219)

Test Vehicle: 2005 Toyota Highlander MPV
Test Program: FMVSS 208 Compliance
Test Technician: Nick Kosinski

IMPACT ANGLE: Zero Degrees
BELTED DUMMIES (YES/NO): No – Front Occupants
TEST SPEED: X 32 to 40 kmph | 0 to 48 kmph | 0 to 56 kmph
DRIVER DUMMY: X 5th female | 50th Male
PASSENGER DUMMY: X 5th female | 50th Male

1. Place a 165 mm diameter rigid sphere, with a mass of 6.8 kg on the instrument panel so that it is simultaneously touching the instrument panel and the windshield. (571.219 S6.1(a))

2. Roll the sphere from one side of the windshield to the other while marking on the windshield where the sphere contacts the windshield. (571.219 S6.1(b))

3. From the outermost contactable points on the windshield draw a horizontal line to the edges of the windshield. (571.219 S6.1(b))

4. Draw a line on the inner surface of the windshield that is 13 mm below the line determined in items 2 and 3

5. After the crash test, record any points where a part of the exterior of the vehicle has marked, penetrated, or broken the windshield.

Provide all dimensions necessary to reproduce the protected area.

FRONT VIEW OF WINDSHIELD
WINDSHIELD DIMENSIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>mm</td>
<td>1210</td>
</tr>
<tr>
<td>B</td>
<td>mm</td>
<td>480</td>
</tr>
<tr>
<td>C</td>
<td>mm</td>
<td>1520</td>
</tr>
<tr>
<td>D</td>
<td>mm</td>
<td>742</td>
</tr>
<tr>
<td>E</td>
<td>mm</td>
<td>485</td>
</tr>
<tr>
<td>F</td>
<td>mm</td>
<td>505</td>
</tr>
</tbody>
</table>

AREA OF PROTECTED ZONE FAILURES:

B. Provide coordinates of the area that the protected zone was penetrated more than 0.25 inches by a vehicle component other than one which is normally in contact with the windshield.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

C. Provide coordinates of the area beneath the protected zone template that the inner surface of the windshield was penetrated by a vehicle component.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature] Date: 04/26/05
DATA SHEET 41
FUEL SYSTEM INTEGRITY (FMVSS 301)

<table>
<thead>
<tr>
<th>Test Vehicle</th>
<th>2005 Toyota Highlander MPV</th>
<th>NHTSA No.: C55107</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program</td>
<td>FMVSS 208 Compliance</td>
<td>Test Date: 4/26/05</td>
</tr>
<tr>
<td>Test Technician</td>
<td>Wayne Dahlke</td>
<td></td>
</tr>
</tbody>
</table>

| TYPE OF IMPACT: | 25 mph Unbelted Flat Frontal |

Stoddard Solvent Spillage Measurements

A. From impact until vehicle motion ceases: 0 grams
 (Maximum Allowable = 28 grams)

B. For the 5 minute period after motion ceases: 0 grams
 (Maximum Allowable = 142 grams)

C. For the following 25 minutes: 0 grams
 (Maximum Allowable = 28 grams/minute)

D. Spillage: 0
DATA SHEET NO. 41
FMVSS 301 STATIC ROLLOVER DATA

Test Vehicle: 2005 Toyota Highlander MPV
Test Program: FMVSS 208 Compliance
NHTSA No.: C55107
Test Date: 4/26/05

1. The specified fixture rollover rate for each 90° of rotation is 60 to 180 seconds.
2. The position hold time at each position is 300 seconds (minimum).
3. Details of Stoddard Solvent spillage locations:

<table>
<thead>
<tr>
<th>Test Phase</th>
<th>Rotation Time (sec.)</th>
<th>Hold Time (sec.)</th>
<th>Spillage (grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0° to 90°</td>
<td>161</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>90° to 180°</td>
<td>149</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>180° to 270°</td>
<td>145</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>270° to 360°</td>
<td>166</td>
<td>300</td>
<td>0</td>
</tr>
</tbody>
</table>
APPENDIX A

CRASH TEST DATA
<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Driver Head X Acceleration vs. Time</td>
<td>A-1</td>
</tr>
<tr>
<td>2</td>
<td>Driver Head Y Acceleration vs. Time</td>
<td>A-1</td>
</tr>
<tr>
<td>3</td>
<td>Driver Head Z Acceleration vs. Time</td>
<td>A-1</td>
</tr>
<tr>
<td>4</td>
<td>Driver Head Resultant Acceleration vs. Time</td>
<td>A-1</td>
</tr>
<tr>
<td>5</td>
<td>Driver Head X Velocity vs. Time</td>
<td>A-2</td>
</tr>
<tr>
<td>6</td>
<td>Driver Head Y Velocity vs. Time</td>
<td>A-2</td>
</tr>
<tr>
<td>7</td>
<td>Driver Head Z Velocity vs. Time</td>
<td>A-2</td>
</tr>
<tr>
<td>8</td>
<td>Driver Neck Force X vs. Time</td>
<td>A-3</td>
</tr>
<tr>
<td>9</td>
<td>Driver Neck Force Y vs. Time</td>
<td>A-3</td>
</tr>
<tr>
<td>10</td>
<td>Driver Neck Force Z vs. Time</td>
<td>A-3</td>
</tr>
<tr>
<td>11</td>
<td>Driver Neck Force Resultant vs. Time</td>
<td>A-3</td>
</tr>
<tr>
<td>12</td>
<td>Driver Neck Moment X vs. Time</td>
<td>A-4</td>
</tr>
<tr>
<td>13</td>
<td>Driver Neck Moment Y vs. Time</td>
<td>A-4</td>
</tr>
<tr>
<td>14</td>
<td>Driver Neck Moment Z vs. Time</td>
<td>A-4</td>
</tr>
<tr>
<td>15</td>
<td>Driver Neck Moment Resultant vs. Time</td>
<td>A-4</td>
</tr>
<tr>
<td>16</td>
<td>Driver Chest X Acceleration vs. Time</td>
<td>A-5</td>
</tr>
<tr>
<td>17</td>
<td>Driver Chest Y Acceleration vs. Time</td>
<td>A-5</td>
</tr>
<tr>
<td>18</td>
<td>Driver Chest Z Acceleration vs. Time</td>
<td>A-5</td>
</tr>
<tr>
<td>19</td>
<td>Driver Chest Resultant Acceleration vs. Time</td>
<td>A-5</td>
</tr>
<tr>
<td>20</td>
<td>Driver Chest X Velocity vs. Time</td>
<td>A-6</td>
</tr>
<tr>
<td>21</td>
<td>Driver Chest Y Velocity vs. Time</td>
<td>A-6</td>
</tr>
<tr>
<td>22</td>
<td>Driver Chest Z Velocity vs. Time</td>
<td>A-6</td>
</tr>
<tr>
<td>23</td>
<td>Driver Chest Displacement vs. Time</td>
<td>A-6</td>
</tr>
<tr>
<td>24</td>
<td>Driver Left Femur Force vs. Time</td>
<td>A-7</td>
</tr>
<tr>
<td>25</td>
<td>Driver Right Femur Force vs. Time</td>
<td>A-7</td>
</tr>
<tr>
<td>26</td>
<td>Passenger Head X Acceleration vs. Time</td>
<td>A-8</td>
</tr>
<tr>
<td>27</td>
<td>Passenger Head Y Acceleration vs. Time</td>
<td>A-8</td>
</tr>
<tr>
<td>28</td>
<td>Passenger Head Z Acceleration vs. Time</td>
<td>A-8</td>
</tr>
<tr>
<td>29</td>
<td>Passenger Head Resultant Acceleration vs. Time</td>
<td>A-8</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>30</td>
<td>Passenger Head X Velocity vs. Time</td>
<td>A-9</td>
</tr>
<tr>
<td>31</td>
<td>Passenger Head Y Velocity vs. Time</td>
<td>A-9</td>
</tr>
<tr>
<td>32</td>
<td>Passenger Head Z Velocity vs. Time</td>
<td>A-9</td>
</tr>
<tr>
<td>33</td>
<td>Passenger Neck Force X vs. Time</td>
<td>A-10</td>
</tr>
<tr>
<td>34</td>
<td>Passenger Neck Force Y vs. Time</td>
<td>A-10</td>
</tr>
<tr>
<td>35</td>
<td>Passenger Neck Force Z vs. Time</td>
<td>A-10</td>
</tr>
<tr>
<td>36</td>
<td>Passenger Neck Force Resultant vs. Time</td>
<td>A-10</td>
</tr>
<tr>
<td>37</td>
<td>Passenger Neck Moment X vs. Time</td>
<td>A-11</td>
</tr>
<tr>
<td>38</td>
<td>Passenger Neck Moment Y vs. Time</td>
<td>A-11</td>
</tr>
<tr>
<td>39</td>
<td>Passenger Neck Moment Z vs. Time</td>
<td>A-11</td>
</tr>
<tr>
<td>40</td>
<td>Passenger Neck Moment Resultant vs. Time</td>
<td>A-11</td>
</tr>
<tr>
<td>41</td>
<td>Passenger Chest X Acceleration vs. Time</td>
<td>A-12</td>
</tr>
<tr>
<td>42</td>
<td>Passenger Chest Y Acceleration vs. Time</td>
<td>A-12</td>
</tr>
<tr>
<td>43</td>
<td>Passenger Chest Z Acceleration vs. Time</td>
<td>A-12</td>
</tr>
<tr>
<td>44</td>
<td>Passenger Chest Resultant Acceleration vs. Time</td>
<td>A-12</td>
</tr>
<tr>
<td>45</td>
<td>Passenger Chest X Velocity vs. Time</td>
<td>A-13</td>
</tr>
<tr>
<td>46</td>
<td>Passenger Chest Y Velocity vs. Time</td>
<td>A-13</td>
</tr>
<tr>
<td>47</td>
<td>Passenger Chest Z Velocity vs. Time</td>
<td>A-13</td>
</tr>
<tr>
<td>48</td>
<td>Passenger Chest Displacement vs. Time</td>
<td>A-13</td>
</tr>
<tr>
<td>49</td>
<td>Passenger Left Femur Force vs. Time</td>
<td>A-14</td>
</tr>
<tr>
<td>50</td>
<td>Passenger Right Femur Force vs. Time</td>
<td>A-14</td>
</tr>
<tr>
<td>51</td>
<td>Driver Nij (N_{TF}) vs. Time</td>
<td>A-15</td>
</tr>
<tr>
<td>52</td>
<td>Driver Nij (N_{TE}) vs. Time</td>
<td>A-15</td>
</tr>
<tr>
<td>53</td>
<td>Driver Nij (N_{CF}) vs. Time</td>
<td>A-15</td>
</tr>
<tr>
<td>54</td>
<td>Driver Nij (N_{CE}) vs. Time</td>
<td>A-15</td>
</tr>
<tr>
<td>55</td>
<td>Passenger Nij (N_{TF}) vs. Time</td>
<td>A-16</td>
</tr>
<tr>
<td>56</td>
<td>Passenger Nij (N_{TE}) vs. Time</td>
<td>A-16</td>
</tr>
<tr>
<td>57</td>
<td>Passenger Nij (N_{CF}) vs. Time</td>
<td>A-16</td>
</tr>
<tr>
<td>58</td>
<td>Passenger Nij (N_{CE}) vs. Time</td>
<td>A-16</td>
</tr>
<tr>
<td>59</td>
<td>Driver Occipital Condyle Moment vs. Time</td>
<td>A-17</td>
</tr>
</tbody>
</table>
Figure No. 60. Passenger Occipital Condyle Moment vs. Time A-17
Figure No. 61. Left Rear Seat Crossmember X Acceleration vs. Time A-18
Figure No. 62. Left Rear Seat Crossmember X Velocity vs. Time A-18
Figure No. 63. Right Rear Seat Crossmember X Acceleration vs. Time A-18
Figure No. 64. Right Rear Seat Crossmember X Velocity vs. Time A-18
Figure No. 65. Top of Engine X Acceleration vs. Time A-19
Figure No. 66. Top of Engine X Velocity vs. Time A-19
Figure No. 67. Bottom of Engine X Acceleration vs. Time A-19
Figure No. 68. Bottom of Engine X Velocity vs. Time A-19
Figure No. 69. Left Brake Caliper X Acceleration vs. Time A-20
Figure No. 70. Left Brake Caliper X Velocity vs. Time A-20
Figure No. 71. Right Brake Caliper X Acceleration vs. Time A-20
Figure No. 72. Right Brake Caliper X Velocity vs. Time A-20
Figure No. 73. Instrument Panel X Acceleration vs. Time A-21
Figure No. 74. Instrument Panel X Velocity vs. Time A-21
Figure No. 75. Trunk Z Acceleration vs. Time A-21
Figure No. 76. Trunk Z Velocity vs. Time A-21
Figure No. 77. Barrier Sum Row 1 vs. Time A-22
Figure No. 78. Barrier Sum Row 2 vs. Time A-22
Figure No. 79. Barrier Sum Row 3 vs. Time A-22
Figure No. 80. Barrier Sum Row 4 vs. Time A-22
Figure No. 81. Barrier Sum Row 5 vs. Time A-23
Figure No. 82. Barrier Sum Row 6 vs. Time A-23
Figure No. 83. Barrier Sum Row 7 vs. Time A-23
Figure No. 84. Barrier Sum Row 8 vs. Time A-23
Figure No. 85. Barrier Sum Row 9 vs. Time A-24
Figure No. 86. Barrier Total Force vs. Time A-24
Figure No. 87. Barrier Rows 1 to 9 vs. Time A-25
Figure No. 88. Barrier Total Force vs. Time A-25
25MPH FRONTAL UNBELTED
2005 TOYOTA HIGHLANDER (C55107)

Test Date: 04/26/05
Speed: 24.7 mph (39.8 km/h)

Max: 39.8 kph
Tmax: 33.9 ms
Min: -16.8 kph
Tmin: 184.8 ms
CFC 180

Max: 0.0 kph
Tmax: 16.2 ms
Min: -17.5 kph
Tmin: 141.8 ms
CFC 180

Max: 17.8 kph
Tmax: 300.0 ms
Min: -1.4 kph
Tmin: 58.1 ms
CFC 180
25MPH FRONTAL UNBELTED
2005 TOYOTA HIGHLANDER (C55107)

Test Date: 04/26/05
Speed: 24.7 mph (39.8 km/h)

DRIVER NECK FX (N) vs TIME (ms)
Max: 464.3 N
Tmax: 77.6 ms
Min: -225.9 N
Tmin: 124.9 ms
CFC 1000

DRIVER NECK FY (N) vs TIME (ms)
Max: 174.7 N
Tmax: 75.5 ms
Min: -158.1 N
Tmin: 101.9 ms
CFC 1000

DRIVER NECK FZ (N) vs TIME (ms)
Max: 1083.4 N
Tmax: 73.7 ms
Min: -166.0 N
Tmin: 48.4 ms
CFC 1000

DRIVER NECK FResultant (N) vs TIME (ms)
Max: 1160.2 N
Tmax: 75.8 ms
Min: 0.2 N
Tmin: 2.0 ms
CFC 1000
25MPH FRONTAL UNBELTED
2005 TOYOTA HIGHLANDER (C55107)
Test Date: 04/26/05
Speed: 24.7 mph (39.8 km/h)

DRIVER NECK MX (Nm) vs TIME (ms)
Max: 4.8 Nm
Tmax: 160.4 ms
Min: -15.2 Nm
Tmin: 114.6 ms
CFC 600

DRIVER NECK MY (Nm) vs TIME (ms)
Max: 21.7 Nm
Tmax: 77.3 ms
Min: -12.6 Nm
Tmin: 67.3 ms
CFC 600

DRIVER NECK MZ (Nm) vs TIME (ms)
Max: 11.5 Nm
Tmax: 94.2 ms
Min: -3.5 Nm
Tmin: 149.9 ms
CFC 600

DRIVER NECK MResultant (Nm) vs TIME (ms)
Max: 26.8 Nm
Tmax: 76.8 ms
Min: 0.0 Nm
Tmin: 0.0 ms
CFC 600
25MPH FRONTAL UNBELTED
2005 TOYOTA HIGHLANDER (C55107)

Test Date: 04/26/05
Speed: 24.7 mph (39.8 km/h)

Max: 2.4 G's
Tmax: 288.7 ms
Min: -46.5 G's
Tmin: 78.6 ms
CFC 180

Max: 5.9 G's
Tmax: 78.5 ms
Min: -6.3 G's
Tmin: 50.4 ms
CFC 180

Max: 7.1 G's
Tmax: 54.8 ms
Min: -16.5 G's
Tmin: 77.0 ms
CFC 180

Max: 48.9 G's
Tmax: 78.4 ms
Min: 0.0 G's
Tmin: 0.0 ms
CFC 180
25MPH FRONTAL UNBELTED
2005 TOYOTA HIGHLANDER (C55107)

Test Date: 04/26/05
Speed: 24.7 mph (39.8 km/h)

DRIVER CHEST X Velocity (kph) vs TIME (ms)
- Max: 39.8 kph
- Tmax: 0.0 ms
- Min: -13.5 kph
- Tmin: 105.4 ms
- CFC 180

DRIVER CHEST Y Velocity (kph) vs TIME (ms)
- Max: 0.1 kph
- Tmax: 49.3 ms
- Min: -1.7 kph
- Tmin: 77.4 ms
- CFC 180

DRIVER CHEST Z Velocity (kph) vs TIME (ms)
- Max: 4.8 kph
- Tmax: 66.2 ms
- Min: -7.4 kph
- Tmin: 300.0 ms
- CFC 180

DRIVER CHEST DISPLACEMENT (mm) vs TIME (ms)
- Max: 0.5 mm
- Tmax: 21.5 ms
- Min: -21.7 mm
- Tmin: 76.7 ms
- CFC 600
25MPH FRONTAL UNBELTED
2005 TOYOTA HIGHLANDER (C55107)

Test Date: 04/26/05
Speed: 24.7 mph (39.8 km/h)

Max: 169.6 N
Tmax: 146.4 ms
Min: -3807.0 N
Tmin: 55.3 ms
CFC 600

Max: 198.1 N
Tmax: 144.2 ms
Min: -4077.5 N
Tmin: 54.8 ms
CFC 600
25MPH FRONTAL UNBELTED
2005 TOYOTA HIGHLANDER (C55107)

Test Date: 04/26/05
Speed: 24.7 mph (39.8 km/h)

PASSENGER HEAD X (G's) vs TIME (ms)
Max: 7.3 G's
Tmax: 34.5 ms
Min: -38.1 G's
Tmin: 142.9 ms
CFC 1000

PASSENGER HEAD Y (G's) vs TIME (ms)
Max: 6.4 G's
Tmax: 44.0 ms
Min: -13.9 G's
Tmin: 27.4 ms
CFC 1000

PASSENGER HEAD Z (G's) vs TIME (ms)
Max: 11.5 G's
Tmax: 126.4 ms
Min: -12.2 G's
Tmin: 104.8 ms
CFC 1000

PASSENGER HEAD Resultant (G's) vs TIME (ms)
Max: 38.3 G's
Tmax: 142.9 ms
Min: 0.0 G's
Tmin: 7.7 ms
CFC 1000
25MPH FRONTAL UNBELTED
2005 TOYOTA HIGHLANDER (C55107)

Test Date: 04/26/05
Speed: 24.7 mph (39.8 km/h)

PASSENGER HEAD X Velocity (kph) vs TIME (ms)
Max: 39.8 kph
Tmax: 0.0 ms
Min: -15.3 kph
Tmin: 182.1 ms
CFC 180

PASSENGER HEAD Y Velocity (kph) vs TIME (ms)
Max: 0.8 kph
Tmax: 274.4 ms
Min: -1.3 kph
Tmin: 93.0 ms
CFC 180

PASSENGER HEAD Z Velocity (kph) vs TIME (ms)
Max: 21.4 kph
Tmax: 300.0 ms
Min: -0.6 kph
Tmin: 53.9 ms
CFC 180
25MPH FRONTAL UNBELTED
2005 TOYOTA HIGHLANDER (C55107)

Test Date: 04/26/05
Speed: 24.7 mph (39.8 km/h)

PASSENGER NECK FX (N) vs TIME (ms)
Max: 1165.4 N
Tmax: 70.5 ms
Min: -70.3 N
Tmin: 125.9 ms
CFC 1000

PASSENGER NECK FY (N) vs TIME (ms)
Max: 94.6 N
Tmax: 79.7 ms
Min: -32.5 N
Tmin: 43.8 ms
CFC 1000

PASSENGER NECK FZ (N) vs TIME (ms)
Max: 404.8 N
Tmax: 127.2 ms
Min: -511.8 N
Tmin: 104.9 ms
CFC 1000

PASSENGER NECK FResultant (N) vs TIME (ms)
Max: 1240.3 N
Tmax: 71.3 ms
Min: 0.3 N
Tmin: 7.5 ms
CFC 1000
25MPH FRONTAL UNBELTED
2005 TOYOTA HIGHLANDER (C55107)

Test Date: 04/26/05
Speed: 24.7 mph (39.8 km/h)

PASSENGER NECK MX (Nm) vs TIME (ms)
Max: 5.8 Nm
Tmax: 46.6 ms
Min: -7.7 Nm
Tmin: 79.9 ms
CFC 600

PASSENGER NECK MY (Nm) vs TIME (ms)
Max: 86.7 Nm
Tmax: 69.1 ms
Min: -14.5 Nm
Tmin: 119.0 ms
CFC 600

PASSENGER NECK MZ (Nm) vs TIME (ms)
Max: 3.3 Nm
Tmax: 42.2 ms
Min: -0.4 Nm
Tmin: 127.2 ms
CFC 600

PASSENGER NECK MResultant (Nm) vs TIME (ms)
Max: 86.9 Nm
Tmax: 69.1 ms
Min: 0.0 Nm
Tmin: 0.0 ms
CFC 600
25MPH FRONTAL UNBELTED
2005 TOYOTA HIGHLANDER (C55107)

Test Date: 04/26/05
Speed: 24.7 mph (39.8 km/h)

PASSENGER CHEST X (G's) vs TIME (ms)
Max: 37.2 G's
Tmax: 103.8 ms
Min: -34.6 G's
Tmin: 71.7 ms
CFC 180

PASSENGER CHEST Y (G's) vs TIME (ms)
Max: 16.3 G's
Tmax: 103.4 ms
Min: -15.6 G's
Tmin: 101.9 ms
CFC 180

PASSENGER CHEST Z (G's) vs TIME (ms)
Max: 9.2 G's
Tmax: 69.3 ms
Min: -7.6 G's
Tmin: 53.6 ms
CFC 180

PASSENGER CHEST Resultant (G's) vs TIME (ms)
Max: 39.8 G's
Tmax: 103.7 ms
Min: 0.0 G's
Tmin: 0.0 ms
CFC 180
25MPH FRONTAL UNBELTED
2005 TOYOTA HIGHLANDER (C55107)

Test Date: 04/26/05
Speed: 24.7 mph (39.8 km/h)

Max: 85.9 N
Tmax: 29.9 ms
Min: -4327.9 N
Tmin: 63.4 ms
CFC 600

Max: 80.4 N
Tmax: 150.9 ms
Min: -4502.7 N
Tmin: 56.3 ms
CFC 600
25MPH FRONTAL UNBELTED
2005 TOYOTA HIGHLANDER (C55107)
Test Date: 04/26/05
Speed: 24.7 mph (39.8 km/h)

Drv. nij (NTF) () vs TIME (ms)
- Max: 0.3
- Tmax: 75.7 ms
- Min: 0.0
- Tmin: 0.0 ms
- CFC 600

Drv. nij (NTE) () vs TIME (ms)
- Max: 0.4
- Tmax: 67.3 ms
- Min: 0.0
- Tmin: 0.0 ms
- CFC 600

Drv. nij (NCF) () vs TIME (ms)
- Max: 0.2
- Tmax: 137.4 ms
- Min: 0.0
- Tmin: 0.0 ms
- CFC 600

Drv. nij (NCE) () vs TIME (ms)
- Max: 0.0
- Tmax: 40.8 ms
- Min: 0.0
- Tmin: 0.0 ms
- CFC 600
25MPH FRONTAL UNBELTED
2005 TOYOTA HIGHLANDER (C55107)

Test Date: 04/26/05
Speed: 24.7 mph (39.8 km/h)

Pass. nij (NTF) () vs TIME (ms)

Max: 0.3
Tmax: 64.1 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600

Pass. nij (NTE) () vs TIME (ms)

Max: 0.2
Tmax: 119.1 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600

Pass. nij (NCF) () vs TIME (ms)

Max: 0.5
Tmax: 71.0 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600

Pass. nij (NCE) () vs TIME (ms)

Max: 0.2
Tmax: 114.2 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600
25MPH FRONTAL UNBELTED
2005 TOYOTA HIGHLANDER (C55107)

Test Date: 04/26/05
Speed: 24.7 mph (39.8 km/h)

Drv. Occipital Condyle Moment (Nm) vs TIME (ms)

Max: 22.6 Nm
Tmax: 131.5 ms
Min: -12.9 Nm
Tmin: 67.1 ms
CFC 600

Pass. Occipital Condyle Moment (Nm) vs TIME (ms)

Max: 66.2 Nm
Tmax: 69.0 ms
Min: -14.2 Nm
Tmin: 118.2 ms
CFC 600
25MPH FRONTAL UNBELTED
2005 TOYOTA HIGHLANDER (C55107)

Test Date: 04/26/05
Speed: 24.7 mph (39.8 km/h)

LEFT REAR SEAT CROSSMEMBER X (G's) vs TIME (ms)
Max: 3.9 G's
Tmax: 110.8 ms
Min: -32.5 G's
Tmin: 46.9 ms
CFC 60

LEFT REAR SEAT CROSSMEMBER X Velocity (kph) vs TIME (ms)
Max: 39.8 kph
Tmax: 3.4 ms
Min: 5.7 kph
Tmin: 84.7 ms
CFC 180

RIGHT REAR SEAT CROSSMEMBER X (G's) vs TIME (ms)
Max: 2.9 G's
Tmax: 123.3 ms
Min: -31.2 G's
Tmin: 47.4 ms
CFC 60

RIGHT REAR SEAT CROSSMEMBER X Velocity (kph) vs TIME (ms)
Max: 39.8 kph
Tmax: 0.0 ms
Min: 7.9 kph
Tmin: 103.1 ms
CFC 180
25MPH FRONTAL UNBELTED
2005 TOYOTA HIGHLANDER (C55107)

Test Date: 04/26/05
Speed: 24.7 mph (39.8 km/h)

LEFT BRAKE CALIPER X (G's) vs TIME (ms)
Max: 9.4 G's
Tmax: 67.9 ms
Min: -40.6 G's
Tmin: 44.3 ms
CFC 60

LEFT BRAKE CALIPER X Velocity (kph) vs TIME (ms)
Max: 39.9 kph
Tmax: 0.0 ms
Min: -6.0 kph
Tmin: 133.3 ms
CFC 180

RIGHT BRAKE CALIPER X (G's) vs TIME (ms)
Max: 15.2 G's
Tmax: 72.3 ms
Min: -47.7 G's
Tmin: 44.4 ms
CFC 60

RIGHT BRAKE CALIPER X Velocity (kph) vs TIME (ms)
Max: 39.9 kph
Tmax: 0.0 ms
Min: -7.2 kph
Tmin: 111.5 ms
CFC 180
25MPH FRONTAL UNBELTED
2005 TOYOTA HIGHLANDER (C55107)

Test Date: 04/26/05
Speed: 24.7 mph (39.8 km/h)

INSTRUMENT PANEL X (G's) vs TIME (ms)
Max: 14.6 G's
Tmax: 37.0 ms
Min: -61.8 G's
Tmin: 44.0 ms
CFC 60

INSTRUMENT PANEL X Velocity (kph) vs TIME (ms)
Max: 39.8 kph
Tmax: 6.3 ms
Min: -18.9 kph
Tmin: 300.0 ms
CFC 180

TRUNK Z (G's) vs TIME (ms)
Max: 11.7 G's
Tmax: 34.9 ms
Min: -9.1 G's
Tmin: 18.9 ms
CFC 60

TRUNK Z Velocity (kph) vs TIME (ms)
Max: 8.5 kph
Tmax: 300.0 ms
Min: -1.9 kph
Tmin: 64.2 ms
CFC 180
25MPH FRONTAL UNBELTED
2005 TOYOTA HIGHLANDER (C55107)

Test Date: 04/26/05
Speed: 24.7 mph (39.8 km/h)

BARRIER - SUM ROW 1 (kN) vs TIME (ms)
Max: 1.1 kN
Tmax: 46.6 ms
Min: -1.8 kN
Tmin: 19.3 ms
CFC 60

BARRIER - SUM ROW 2 (kN) vs TIME (ms)
Max: 2.5 kN
Tmax: 9.5 ms
Min: -8.9 kN
Tmin: 41.0 ms
CFC 60

BARRIER - SUM ROW 3 (kN) vs TIME (ms)
Max: 2.3 kN
Tmax: 8.1 ms
Min: -22.2 kN
Tmin: 20.6 ms
CFC 60

BARRIER - SUM ROW 4 (kN) vs TIME (ms)
Max: 2.7 kN
Tmax: 6.9 ms
Min: -11.4 kN
Tmin: 34.5 ms
CFC 60
25MPH FRONTAL UNBELTED
2005 TOYOTA HIGHLANDER (C55107)

Test Date: 04/26/05
Speed: 24.7 mph (39.8 km/h)

Max: 5.7 kN
Tmax: 20.5 ms
Min: -8.8 kN
Tmin: 12.6 ms
CFC 60

Max: 2.8 kN
Tmax: 0.0 ms
Min: -583.5 kN
Tmin: 42.4 ms
CFC 60
THE VEHICLE IMPACTED THE BARRIER 4mm HIGHER THAN THE INITIAL TARGET.

Test Date: 04/26/05
Speed: 24.7 mph (39.8 km/h)

BARRIER - ROWS 1 TO 9 (kN) vs Time (ms)

Max: 2.8 kN
Tmax: -0.2 ms
Min: -583.5 kN
Tmin: 42.4 ms

CFC 60
<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vehicle Certification Label</td>
<td>B-1</td>
</tr>
<tr>
<td>2</td>
<td>Tire Placard</td>
<td>B-2</td>
</tr>
<tr>
<td>3</td>
<td>Pre-Test Front View of Test Vehicle</td>
<td>B-3</td>
</tr>
<tr>
<td>4</td>
<td>Post-Test Front View of Test Vehicle</td>
<td>B-4</td>
</tr>
<tr>
<td>5</td>
<td>Pre-Test Left Side View of Test Vehicle</td>
<td>B-5</td>
</tr>
<tr>
<td>6</td>
<td>Post-Test Left Side View of Test Vehicle</td>
<td>B-6</td>
</tr>
<tr>
<td>7</td>
<td>Pre-Test Right Side View of Test Vehicle</td>
<td>B-7</td>
</tr>
<tr>
<td>8</td>
<td>Post-Test Right Side View of Test Vehicle</td>
<td>B-8</td>
</tr>
<tr>
<td>9</td>
<td>Pre-Test Right Front Three-Quarter View of Test Vehicle</td>
<td>B-9</td>
</tr>
<tr>
<td>10</td>
<td>Post-Test Right Front Three-Quarter View of Test Vehicle</td>
<td>B-10</td>
</tr>
<tr>
<td>11</td>
<td>Pre-Test Left Front Three-Quarter View of Test Vehicle</td>
<td>B-11</td>
</tr>
<tr>
<td>12</td>
<td>Post-Test Left Front Three-Quarter View of Test Vehicle</td>
<td>B-12</td>
</tr>
<tr>
<td>13</td>
<td>Pre-Test Right Rear Three-Quarter View of Test Vehicle</td>
<td>B-13</td>
</tr>
<tr>
<td>14</td>
<td>Post-Test Right Rear Three-Quarter View of Test Vehicle</td>
<td>B-14</td>
</tr>
<tr>
<td>15</td>
<td>Pre-Test Left Rear Three-Quarter View of Test Vehicle</td>
<td>B-15</td>
</tr>
<tr>
<td>16</td>
<td>Post-Test Left Rear Three-Quarter View of Test Vehicle</td>
<td>B-16</td>
</tr>
<tr>
<td>17</td>
<td>Pre-Test Rear View of Test Vehicle</td>
<td>B-17</td>
</tr>
<tr>
<td>18</td>
<td>Post-Test Rear View of Test Vehicle</td>
<td>B-18</td>
</tr>
<tr>
<td>19</td>
<td>Pre-Test Windshield View</td>
<td>B-19</td>
</tr>
<tr>
<td>20</td>
<td>Post-Test Windshield View</td>
<td>B-20</td>
</tr>
<tr>
<td>21</td>
<td>Pre-Test Engine Compartment View</td>
<td>B-21</td>
</tr>
<tr>
<td>22</td>
<td>Post-Test Engine Compartment View</td>
<td>B-22</td>
</tr>
<tr>
<td>23</td>
<td>Pre-Test Fuel Filler Cap View</td>
<td>B-23</td>
</tr>
<tr>
<td>24</td>
<td>Post-Test Fuel Filler Cap View</td>
<td>B-24</td>
</tr>
<tr>
<td>25</td>
<td>Pre-Test Front Underbody View</td>
<td>B-25</td>
</tr>
<tr>
<td>26</td>
<td>Post-Test Front Underbody View</td>
<td>B-26</td>
</tr>
<tr>
<td>Photo No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>55</td>
<td>Post-Test Passenger Dummy Feet Position</td>
<td>B-55</td>
</tr>
<tr>
<td>56</td>
<td>Pre-Test Passenger Side Knee Bolster View</td>
<td>B-56</td>
</tr>
<tr>
<td>57</td>
<td>Post-Test Passenger Side Knee Bolster View</td>
<td>B-57</td>
</tr>
<tr>
<td>58</td>
<td>Post-Test Passenger Dummy Knee Contact</td>
<td>B-58</td>
</tr>
<tr>
<td>59</td>
<td>Post-Test Passenger Dummy Airbag Contact</td>
<td>B-59</td>
</tr>
<tr>
<td>60</td>
<td>Rollover 90 Degrees</td>
<td>B-60</td>
</tr>
<tr>
<td>61</td>
<td>Rollover 180 Degrees</td>
<td>B-61</td>
</tr>
<tr>
<td>62</td>
<td>Rollover 270 Degrees</td>
<td>B-62</td>
</tr>
<tr>
<td>63</td>
<td>Rollover 360 Degrees</td>
<td>B-63</td>
</tr>
<tr>
<td>64</td>
<td>Vehicle Impact</td>
<td>B-64</td>
</tr>
<tr>
<td>65</td>
<td>Temperature Plot</td>
<td>B-65</td>
</tr>
<tr>
<td>66</td>
<td>Vehicle in Relation to The Load Cell Grid</td>
<td>B-66</td>
</tr>
</tbody>
</table>
MFD. BY: TOYOTA MOTOR CORPORATION

GVWR: 2430KG (5360LB)

GAWR: FRT. 1300KG (2865LB) WITH P225/70R16 TIRES.

16x6 1/2JJ RIMS, AT 210KPA (30PSI) COLD.

RR. 1340KG (2950LB) WITH P225/70R16 TIRES.

16x6 1/2JJ RIMS, AT 210KPA (30PSI) COLD.

THIS VEHICLE CONFORMS TO ALL APPLICABLE FEDERAL MOTOR VEHICLE SAFETY AND THEFT PREVENTION STANDARDS IN EFFECT ON THE DATE OF MANUFACTURE SHOWN ABOVE.

JTEGP21A650062275 MPV

C/TR: 040/FA03
A/TM: -04A/U151E MADE IN JAPAN 067
TIRE AND LOADING INFORMATION

SEATING CAPACITY: TOTAL 5
FRONT 2: REAR 3

The combined weight of occupants and cargo should never exceed 390 kg or 860 lbs.

INFORMATION SUR LES PNEUS ET LE CHARGEMENT

NOMBRE DE PLACES ASSISES : TOTAL 5
AVANT 2 : ARRIÈRE 3

Le poids total des occupants et du chargement ne doit jamais être supérieur à 390 kg ou 860 lb.

ORIGINAL TIRE SIZE COLD TIRE INFLATION PRESSURE ORIGINAL TIRE SIZE COLD TIRE INFLATION PRESSURE
P225/70R16 FRONT 210kPa,30PSI P225/70R16 AVANT 210kPa,30PSI
REAR 210kPa,30PSI ARRIÈRE 210kPa,30PSI

SEE OWNER'S MANUAL FOR ADDITIONAL INFORMATION

POUR DE PLUS AMPLES INFORMATIONS, VOIR LE MANUEL DU PROPRIÉTAIRE

4E

48200

Tire Placard
Pre-Test Front View of Test Vehicle
Post-Test Front View of Test Vehicle
Post-Test Left Side View of Test Vehicle
Pre-Test Right Side View of Test Vehicle
Pre-Test Right Front Three-Quarter View of Test Vehicle
Pre-Test Left Front Three-Quarter View of Test Vehicle
Post-Test Right Rear Three-Quarter View of Test Vehicle
Pre-Test Left Rear Three-Quarter View of Test Vehicle
Post-Test Left Rear Three-Quarter View of Test Vehicle
Post-Test Rear View of Test Vehicle
Post-Test Windshield View
Post-Test Engine Compartment View
Post-Test Fuel Filler Cap View

C55107
25 MPH FRONTAL UNBELTED
05042601
MGA RESEARCH CORP.
2005 TOYOTA HIGHLANDER
Post-Test Front Underbody View
Pre-Test Rear Underbody View
Post-Test Driver Dummy Front View (head position)
Pre-Test Driver Dummy Position Left Side View
Post-Test Driver Dummy Position Left Side View
Pre-Test Driver Dummy Position Left Side View (Door Open)
Pre-Test Driver Dummy Seat Position
Post-Test Driver Dummy Seat Position

POST-TEST

C55107
25 MPH FRONTAL UNBELTED
05042601
MGA RESEARCH CORP.
2005 TOYOTA HIGHLANDER
Pre-Test Driver Dummy Feet Position
Post-Test Driver Dummy Feet Position
Pre-Test Driver Side Knee Bolster View
Post-Test Driver Side Knee Bolster View
Post-Test Driver Dummy Head Contact (headrest)
Post-Test Driver Knee Contact
Post-Test Driver Dummy Airbag Contact
Pre-Test Passenger Dummy Front View (head position)
Post-Test Passenger Dummy Front View (head position)
Pre-Test Passenger Dummy Position Right Side View (Door Open)
Post-Test Passenger Dummy Seat Position
Pre-Test Passenger Dummy Feet Position
Post-Test Passenger Dummy Feet Position
Pre-Test Passenger Side Knee Bolster View
Post-Test Passenger Dummy Knee Contact
Post-Test Passenger Dummy Airbag Contact
Rollover 90 Degrees
Rollover 270 Degrees
Temperature Plot
APPENDIX C

INSTRUMENTATION CALIBRATION
INSTRUMENTS FOR DRIVER DUMMY NO. 506

<table>
<thead>
<tr>
<th>SERIAL NO.</th>
<th>MANUFACTURER</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head X</td>
<td>AGTM8</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Y</td>
<td>AMRR4</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Z</td>
<td>P27012</td>
<td>Endevco</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>376</td>
<td>Denton</td>
</tr>
<tr>
<td>Chest X</td>
<td>AJ819</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Y</td>
<td>AJ7A2</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Z</td>
<td>AJ9J7</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>506</td>
<td>Servo</td>
</tr>
<tr>
<td>Left Femur Load Cell</td>
<td>946</td>
<td>GSE</td>
</tr>
<tr>
<td>Right Femur Load Cell</td>
<td>945</td>
<td>GSE</td>
</tr>
</tbody>
</table>

INSTRUMENTS FOR PASSENGER DUMMY NO. 511

<table>
<thead>
<tr>
<th>SERIAL NO.</th>
<th>MANUFACTURER</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head X</td>
<td>AP2D6</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Y</td>
<td>AHR15</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Z</td>
<td>J21612</td>
<td>Endevco</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>253</td>
<td>Denton</td>
</tr>
<tr>
<td>Chest X</td>
<td>AHY71</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Y</td>
<td>B05-J18</td>
<td>Entran</td>
</tr>
<tr>
<td>Chest Z</td>
<td>F11-H01</td>
<td>Entran</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>511</td>
<td>Servo</td>
</tr>
<tr>
<td>Left Femur Load Cell</td>
<td>9428</td>
<td>GSE</td>
</tr>
<tr>
<td>Right Femur Load Cell</td>
<td>9427</td>
<td>GSE</td>
</tr>
</tbody>
</table>
VEHICLE INSTRUMENTS

<table>
<thead>
<tr>
<th>SERIAL NO.</th>
<th>MANUFACTURER</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Rear Seat Crossmember X</td>
<td>K03-J17</td>
<td>01/21/05</td>
</tr>
<tr>
<td>Right Rear Seat Crossmember X</td>
<td>B19-Z09</td>
<td>03/09/05</td>
</tr>
<tr>
<td>Top of Engine X</td>
<td>C04-L15</td>
<td>03/24/05</td>
</tr>
<tr>
<td>Bottom of Engine X</td>
<td>C10-Z03</td>
<td>03/31/05</td>
</tr>
<tr>
<td>Left Brake Caliper X</td>
<td>J07-M13</td>
<td>10/29/04</td>
</tr>
<tr>
<td>Right Brake Caliper X</td>
<td>J07-M16</td>
<td>10/29/04</td>
</tr>
<tr>
<td>Instrument Panel X</td>
<td>C04-L14</td>
<td>03/24/05</td>
</tr>
<tr>
<td>Trunk Z</td>
<td>B28-Z15</td>
<td>03/17/05</td>
</tr>
</tbody>
</table>