REPORT NUMBER: 208-MGA-2004-003

VEHICLE SAFETY COMPLIANCE TESTING
FOR
FMVSS 208, OCCUPANT CRASH PROTECTION
FMVSS 212, WINDSHIELD MOUNTING
FMVSS 219, WINDSHIELD INTRUSION (PARTIAL)
FMVSS 301, FUEL SYSTEM INTEGRITY

DaimlerChrysler Corp.
2004 Dodge Durango MPV
NHTSA No.: C40303

PREPARED BY:
MGA RESEARCH CORPORATION
5000 WARREN ROAD
BURLINGTON, WI 53105

Test Dates: January 26 – April 1, 2004
Final Report Date: September 24, 2004

FINAL REPORT

PREPARED FOR:
U.S. DEPARTMENT OF TRANSPORTATION
NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
OFFICE OF ENFORCEMENT
OFFICE OF VEHICLE SAFETY COMPLIANCE
MAIL CODE: NVS-220
400 SEVENTH STREET, SW, ROOM 8115
WASHINGTON, D.C. 20590
This final test report was prepared for the U.S. Department of Transportation, National Highway Traffic Safety Administration, in response to Contract Number DTNH22-03-D-11002.

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Prepared

Jeff Lewandowski, Project Engineer

Date: September 24, 2004

Reviewed by:

David Winklebauer, Facility Director

Date: September 24, 2004

FINAL REPORT ACCEPTED BY OVSC:

Accepted By: ________________________________

Acceptance Date: ________________________________
1. Title and Subtitle
Final Report of FMVSS 208 Compliance Testing of a 2004 Dodge Durango
NHTSA No.: C40303

2. Government Accession No.

3. Recipient's Catalog No.

4. Report Date
September 24, 2004

5. Performing Organization Code
MGA

6. Performing Organization Name and Address
MGA Research Corporation
5000 Warren Road
Burlington, WI 53105

7. Author(s)
Jeff Lewandowski, Project Engineer

8. Sponsoring Agency Name and Address
U.S. Department of Transportation
National Highway Traffic Safety Administration
Office of Enforcement
Office of Vehicle Safety Compliance
400 Seventh St., S.W., Room 6115 NVS-220
Washington, D.C. 20590

9. Type of Report and Period Covered
1/26/04 to 9/24/04

10. Contract or Grant No.
DTNH22-03-D-11002

11. Work Unit No.

12. Sponsoring Agency Code
NVS-220

13. Supplementary Notes
Compliance tests were conducted on the subject 2004 Dodge Durango in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP208-12 for the determination of FMVSS 208 compliance. Test failures identified were as follows:

TEST FAILURES: 5.4.5.1 Air Bag Labels

14. Key Words
Frontal Impact
40 kmph Vehicle Safety Compliance Testing
FMVSS 208, "Occupant Crash Protection"
FMVSS 212, "Windshield Mounting"
FMVSS 219, (partial), "Windshield Zone Intrusion"
FMVSS 301, "Fuel System integrity"

15. Distribution Statement
Copies of this report are available from the following:
NHTSA Technical Information Services (TIS), Mail Code: NPO-230
400 Seventh Street, S.W.,
Room 6108
Washington, D.C. 20590
Tel. No.: (202) 366-4948

16. Security Classif. (of this report)
Unclassified

17. Security Classif. (of this page)
Unclassified

18. No. of Pages
496

Form DOT F1700.7 (8-72)
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Purpose of Compliance Test</td>
</tr>
<tr>
<td>2</td>
<td>Tests Performed</td>
</tr>
<tr>
<td>3</td>
<td>Injury Result Summary</td>
</tr>
<tr>
<td>4</td>
<td>Discussion of Test (if applicable)</td>
</tr>
<tr>
<td>5</td>
<td>Test Data Sheets</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Sheet</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COTR Vehicle Work Order</td>
</tr>
<tr>
<td>2</td>
<td>Report of Vehicle Condition</td>
</tr>
<tr>
<td>3</td>
<td>Certification Label and Tire Placard Information</td>
</tr>
<tr>
<td>4</td>
<td>Rear Outboard Seating Position Seat Belts</td>
</tr>
<tr>
<td>5</td>
<td>Air Bag Labels</td>
</tr>
<tr>
<td>6</td>
<td>Readiness Indicator</td>
</tr>
<tr>
<td>7</td>
<td>Passenger Air Bag Manual Cut-Off Device</td>
</tr>
<tr>
<td>8</td>
<td>Lap Belt Lockability</td>
</tr>
<tr>
<td>9</td>
<td>Seat Belt Warning System</td>
</tr>
<tr>
<td>10</td>
<td>Belt Contact Force</td>
</tr>
<tr>
<td>11</td>
<td>Latch Plate Access</td>
</tr>
<tr>
<td>12</td>
<td>Seat Belt Retraction</td>
</tr>
<tr>
<td>13</td>
<td>Seat Belt Guides and Hardware</td>
</tr>
<tr>
<td>14</td>
<td>Marking of Reference Points for Various Test Positions & Points</td>
</tr>
<tr>
<td>15</td>
<td>Summary of Suppression Test Using 12-Month CRABI Dummy</td>
</tr>
<tr>
<td>16</td>
<td>Summary of Suppression Test Using Newborn Infant Dummy</td>
</tr>
<tr>
<td>23</td>
<td>Summary of Low Risk Deployment Using an Unbelted 3-Year-Old Dummy Position 1</td>
</tr>
<tr>
<td>24</td>
<td>Summary of Low Risk Deployment Using an Unbelted 3-Year-Old Dummy Position 2</td>
</tr>
<tr>
<td>25</td>
<td>Summary of Low Risk Deployment Using an Unbelted 6-Year-Old Dummy Position 1</td>
</tr>
<tr>
<td>26</td>
<td>Summary of Low Risk Deployment Using an Unbelted 6-Year-Old Dummy Position 2</td>
</tr>
<tr>
<td>27</td>
<td>Summary of Low Risk Deployment Using an Unbelted 5% Dummy Position 1</td>
</tr>
<tr>
<td>28</td>
<td>Summary of Low Risk Deployment Using an Unbelted 5% Dummy Position 2</td>
</tr>
<tr>
<td>30</td>
<td>Vehicle Weight, Fuel Tank, and Attitude Data</td>
</tr>
</tbody>
</table>
Data Sheet

31 Vehicle Accelerometer Locations and Measurements 118
32 Photographic Targets 121
33 Camera Locations 127
34 Dummy Positioning 129
35 Dummy Measurements 146
36 Crash Test 150
38 Accident Investigation Measurements 152
39 Windshield Mounting (FMVSS 212) 154
40 Windshield Zone Intrusion (FMVSS 219) 158
41 Fuel System Integrity (FMVSS 301) 158

Appendix

A Crash Test Data A-1
B Low Risk Test Data B-1
C Crash Test Photographs C-1
D Low Risk Photographs D-1
E Suppression Photographs E-1
F Instrumentation Calibration F-1
G Notice of Test Failure (If Applicable) G-1
SECTION 1
PURPOSE OF COMPLIANCE TEST

This Federal Motor Vehicle Safety Standard (FMVSS) 208 compliance test is part of a program conducted for the National Highway Traffic Safety Administration (NHTSA) by MGA Research Corporation (MGA) under Contract No. DTNH22-03-D-11002. The purpose of this test was to determine whether the subject vehicle, a 2004 Dodge Durango, NHTSA No. C40303, meets certain performance requirements of FMVSS 208, "Occupant Crash Protection"; FMVSS 212, "Windshield Mounting"; FMVSS 219, "Windshield Zone Intrusion"; and FMVSS 301, "Fuel System Integrity". The compliance test was conducted in accordance with OVSC Laboratory Test Procedure No. TP208-12 dated January 14, 2003.

A 50th percentile dummy was placed in the center rear designated seating position for the crash test. The data from this position will be used for research and development. This seating position does not have crash test performance requirements.
SECTION 2
TESTS PERFORMED

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
NHTSA No.: C40303
Test Dates: 1/28-4/1/04

The following checked items indicate the tests that were performed:

1. Rear outboard seating position seat belts (S4.1.2(b) & (S4.2.4)
2. Air bag labels (S4.5.1)
3. Readiness Indicator (S4.5.2)
4. Passenger air bag manual cut-off device (S4.5.4)
5. Lap belt lockability (S7.1.1.5)
6. Seat belt warning system (S7.3)
7. Seat belt contact force (S7.4.4)
8. Seat belt latch plate access (S7.4.4)
9. Seat belt retraction (S7.4.5)
10. Seat belt guides and hardware (S7.4.6)
11. Suppression tests with 12-month-old CRABI dummy (Part 572, Subpart R)
12. Suppression tests with newborn infant (Part 572, Subpart K)
13. Suppression tests with 3-year-old dummy (Part 572, Subpart P)
14. Suppression tests with 6-year-old dummy (Part 572, Subpart N)
15. Test of reactivation of the passenger air bag system with an unbelted 5th percentile female dummy
16. Low risk deployment test with 12-month-old dummy (Part 572, Subpart R)
17. Low risk deployment test with 3-year-old dummy (Part 572, Subpart P)
18. Low risk deployment test with 6-year-old dummy (Part 572, Subpart N)
19. Low risk deployment test with 5th female dummy (Part 572, Subpart O)
20. Impact Tests

Frontal Oblique

- Belted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.1(a))
- Unbelted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.2(a)(1))
- Unbelted 50th male dummy driver and passenger (32 to 40 kmph) (S5.1.2(a) (1) or S5.1.2(b))

Frontal 0°

- Belted 50th male dummy driver (0 to 48 kmph) (S5.1.1.(b)(1) or S5.1.1(a))
- Belted 50th male dummy passenger (0 to 48 kmph) (S5.1.1.(b)(1) or S5.1.1(a))
- Belted 5th female dummy driver (0 to 48 kmph) (S16.1(a))
- Belted 5th female dummy passenger (0 to 48 kmph) (S16.1(a))
- Belted 50th male dummy driver and passenger (0 to 56 kmph) (S5.1.1.(b)(2))
- Unbelted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.2(a) (1))
- Unbelted 50th male dummy driver (32 to 40 kmph) (S5.1.2.(a)(2) or S5.1.2(b))
- Unbelted 50th male dummy passenger (32 to 40 kmph) (S5.1.2.(a)(2) or S5.1.2(b))
For the crash tests, the vehicle was instrumented with 8 accelerometers. The accelerometer data from the vehicle and dummies were sampled at 10,000 samples per second and processed as specified in SAE J211/1 MAR95 and FMVSS 208, S4.13.

The dynamic tests were recorded using high speed film and high speed digital video.

The vehicle appears to meet the performance requirements to which it was tested with the exception of S4.5.1 Air Bag Labels.
SECTION 3

INJURY RESULT SUMMARY FOR FMVSS 208 TESTS

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
NHTSA No.: C40303
Test Dates: 1/29 & 2/12/04

5th Percentile Female Low Risk Deployments

5th Percentile Female SN 517 Position 1 (Chin On Module) 1-26-04

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>46</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>107.2</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>26.6</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>140.6</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>173.1</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>766</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>475</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>21</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>11</td>
</tr>
<tr>
<td>Left Femur</td>
<td>8805 N</td>
<td>321</td>
</tr>
<tr>
<td>Right Femur</td>
<td>8805 N</td>
<td>99</td>
</tr>
</tbody>
</table>

Second stage fire time of 130 ms; Injuries calculated on 0 ms to 255 ms

5th Percentile Female SN 517 Position 2 (Chin On Rim) 2-12-04

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>10</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>14.0</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>58.6</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>6.8</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>62.1</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>796</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>60</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>22</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>14</td>
</tr>
<tr>
<td>Left Femur</td>
<td>8805 N</td>
<td>85</td>
</tr>
<tr>
<td>Right Femur</td>
<td>8805 N</td>
<td>33</td>
</tr>
</tbody>
</table>

Second stage fire time of 130 ms; Injuries calculated on 0 ms to 255 ms
SECTION 3 ...(continued)

INJURY RESULT SUMMARY FOR FMVSS 208 TESTS

<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2004 Dodge Durango</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program:</td>
<td>FMVSS 208 Compliance</td>
</tr>
<tr>
<td>NHTSA No.:</td>
<td>C49303</td>
</tr>
<tr>
<td>Test Dates:</td>
<td>1/25 & 2/12/04</td>
</tr>
</tbody>
</table>

3-Year-Old Low Risk Deployments

3-Year-Old SN 031 Position 1 (Chest On Instrument Panel) 1-29-04

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>570</td>
<td>17</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>42.1</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>22.2</td>
</tr>
<tr>
<td>Peak Nij (Nco)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>83.4</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>18.0</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1130 N</td>
<td>426</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1380 N</td>
<td>124</td>
</tr>
<tr>
<td>Chest g</td>
<td>55 g</td>
<td>16</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>34 mm</td>
<td>10</td>
</tr>
</tbody>
</table>

Second stage fire time of 130 ms; Injuries calculated on 0 ms to 100 ms

3-Year-Old SN 031 Position 2 (Head On Instrument Panel) 2-12-04

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>570</td>
<td>81</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>78.6</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>40.0</td>
</tr>
<tr>
<td>Peak Nij (Nco)</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>22.5</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>25.5</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1130 N</td>
<td>336</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1380 N</td>
<td>771</td>
</tr>
<tr>
<td>Chest g</td>
<td>55 g</td>
<td>10</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>34 mm</td>
<td>1</td>
</tr>
</tbody>
</table>

Second stage fire time of 130 ms; Injuries calculated on 0 ms to 100 ms
SECTION 3 (continued)

INJURY RESULT SUMMARY FOR FMVSS 208 TESTS

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
NHTSA No.: C40303
Test Dates: 2/26/04

6-Year-Old Low Risk Deployments

6-Year-Old SN 153 Position 1 (Chest On Instrument Panel) 2-26-04

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>2</td>
</tr>
<tr>
<td>Peak Nij (Nta)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>40.0</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>22.0</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>13.3</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>17.2</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1490 N</td>
<td>349</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1820 N</td>
<td>50</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>11</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>40 mm</td>
<td>7</td>
</tr>
</tbody>
</table>

Second stage fire time of 130 ms; Injuries calculated on 0 ms to 100 ms

6-Year-Old SN 152 Position 2 (Head On Instrument Panel) 2-26-04

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>43</td>
</tr>
<tr>
<td>Peak Nij (Nta)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>54.2</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>11.3</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>25.7</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>16.5</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1490 N</td>
<td>20.5</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1820 N</td>
<td>549</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>8</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>40 mm</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Second stage fire time of 130 ms; Injuries calculated on 0 ms to 100 ms
INJURY RESULT SUMMARY FOR FMVSS 208 TESTS

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
NHTSA No.: C40303
Test Date: 4/1/04

40 kmph Frontal Crash

Impact Angle: Zero degrees

Belted Dummies:
X Yes (Rear Passenger)
X No (Driver and Front Passenger)

Speed Range:
0 to 40 kmph
32 to 40 kmph
0 to 48 kmph
0 to 56 kmph

Test Speed: 39.6 kmph
Test Weight: 2451.7 kg

Driver Dummy: X 5th female
50th male

Passenger Dummy: X 5th female
50th male

Center Rear Passenger Dummy: 5th female
X 50th male

5th Percentile Female in Frontal Crash Test

Vehicles certified to S16.1(a), S16.1(b), or S16.1

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max Allowable Inj. Assessment Values</th>
<th>Driver</th>
<th>Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>58</td>
<td>143</td>
</tr>
<tr>
<td>Nw</td>
<td>1.0</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Nw</td>
<td>1.0</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Nw</td>
<td>1.0</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Nw</td>
<td>1.0</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2620 N</td>
<td>1336</td>
<td>839</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>283</td>
<td>464</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>47</td>
<td>37</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>4114</td>
<td>4560</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>3636</td>
<td>4896</td>
</tr>
</tbody>
</table>

50th Percentile Male Center Rear Passenger in Frontal Crash Test

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Center Rear Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>241</td>
</tr>
<tr>
<td>Nw</td>
<td>0.4</td>
</tr>
<tr>
<td>Nw</td>
<td>1.8</td>
</tr>
<tr>
<td>Nw</td>
<td>0.0</td>
</tr>
<tr>
<td>Nw</td>
<td>0.0</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2009</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>78</td>
</tr>
<tr>
<td>Chest g</td>
<td>36</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>25</td>
</tr>
<tr>
<td>Left Femur</td>
<td>134</td>
</tr>
<tr>
<td>Right Femur</td>
<td>509</td>
</tr>
</tbody>
</table>
SECTION 4
DISCUSSION OF TESTS

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
NHTSA No.: C40303
Test Dates: 1/26-4/1/04

The vehicle did not meet the performance requirements of S.4.5.1 Air Bag Labels.

A blanket and visor were not used in the suppression testing because they did not affect the weight sensing system used on the vehicle.

Empty seat detection during Suppression testing was performed with the StarSCAN diagnostic tool.

The Cosco Dream Ride Car Bed would not fit at the forward and middle seat slide positions due to interference with the center console.

There were no 5th percentile Position 2 Low Risk Deployment high speed video views due to a camera software malfunction.

The 3-year-old Position 2 Low Risk Deployment front high speed video view had a double image due to a camera software malfunction.

The passenger air bag for the 6-year-old Position 2 Low Risk Deployment on 2-26-04 was replaced on site by MGA associates under the direction of NHTSA and DaimlerChrysler representatives.

The test vehicle fuel system was filled to 95.2% (97.3 liters, 25.7 gallons).

A 50th percentile dummy (SN 401) was positioned as a Center Rear Passenger (CRP) during the 25 mph frontal crash test. The CRP seat back translated forward from its locked position during the event. The CRP headrest became detached. MHD sensors were attached to the CRP seat back to record angular rotation.

The CRP Neck My signal was clipped at 141 ms at a magnitude of 501.7 nm. This occurred for approximately 4 ms and was an over-range condition. It did not affect the Nij calculations.

The CRP shoulder belt provided No Valid Data after 100 ms.

There were no other unexpected events or items to discuss.
SECTIO N 5
TEST DATA SHEETS

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
NHTSA No.: C40300
Test Dates: 1/25-4/1/04
DATA SHEET 1
COTR VEHICLE WORK ORDER

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
NHTSA No.: C403303
Test Dates: 1/25-4/1/04

COTR Signature: Charles R. Case

Test to be performed for this vehicle are checked below:

1. Rear Outboard Seating Position Seat Belts (S4.1.2(b)) & (S4.2.4)
2. Air Bag Labels (S4.5.1)
3. Readiness Indicator (S4.5.2)
4. Passenger Air Bag Manual Cut-off Device (S4.5.4)
5. Lap Belt Lockability (S7.1.1.5)
6. Seat Belt Warning System (S7.3)
7. Seat Belt Contact Force (S7.4.4)
8. Seat Belt Release Plate Access (S7.4.4)
9. Seat Belt Retraction (S7.4.5)
10. Seat Belt Guides and Hardware (S7.4.6)
11. Suppression tests with 12-month-old CRABI dummy (Part 572, Subpart R) using the following indicated child restraints.

Section B

<table>
<thead>
<tr>
<th>Britax Handle with Core 191</th>
<th>X</th>
<th>Full Rearward</th>
<th>X</th>
<th>Mid Position</th>
<th>X</th>
<th>Full Forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Century Assure 4553</td>
<td>X</td>
<td>Full Rearward</td>
<td>X</td>
<td>Mid Position</td>
<td>X</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Century Avanta SE 41630</td>
<td>X</td>
<td>Full Rearward</td>
<td>X</td>
<td>Mid Position</td>
<td>X</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Century Smart Fit 4643</td>
<td>X</td>
<td>Full Rearward</td>
<td>X</td>
<td>Mid Position</td>
<td>X</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Cosco Arriva 02727</td>
<td>X</td>
<td>Full Rearward</td>
<td>X</td>
<td>Mid Position</td>
<td>X</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Cosco Opus 35 02603</td>
<td>X</td>
<td>Full Rearward</td>
<td>X</td>
<td>Mid Position</td>
<td>X</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Evenflo Discovery Adjust Right 212</td>
<td>X</td>
<td>Full Rearward</td>
<td>X</td>
<td>Mid Position</td>
<td>X</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Evenflo First Choice 204</td>
<td>X</td>
<td>Full Rearward</td>
<td>X</td>
<td>Mid Position</td>
<td>X</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Evenflo On My Way Position Right V 262</td>
<td>X</td>
<td>Full Rearward</td>
<td>X</td>
<td>Mid Position</td>
<td>X</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Graco Infant 8467</td>
<td>X</td>
<td>Full Rearward</td>
<td>X</td>
<td>Mid Position</td>
<td>X</td>
<td>Full Forward</td>
</tr>
</tbody>
</table>

Section C

<table>
<thead>
<tr>
<th>Britax Roundabout 161</th>
<th>X</th>
<th>Full Rearward</th>
<th>X</th>
<th>Mid Position</th>
<th>X</th>
<th>Full Forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Century Encore 4612</td>
<td>X</td>
<td>Full Rearward</td>
<td>X</td>
<td>Mid Position</td>
<td>X</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Century STE 1000 4416</td>
<td>X</td>
<td>Full Rearward</td>
<td>X</td>
<td>Mid Position</td>
<td>X</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Cosco Olympian 02803</td>
<td>X</td>
<td>Full Rearward</td>
<td>X</td>
<td>Mid Position</td>
<td>X</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Cosco Tourna 02519</td>
<td>X</td>
<td>Full Rearward</td>
<td>X</td>
<td>Mid Position</td>
<td>X</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Evenflo Horizon V 425</td>
<td>X</td>
<td>Full Rearward</td>
<td>X</td>
<td>Mid Position</td>
<td>X</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Evenflo Medalist 254</td>
<td>X</td>
<td>Full Rearward</td>
<td>X</td>
<td>Mid Position</td>
<td>X</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Graco Infant 8467</td>
<td>X</td>
<td>Full Rearward</td>
<td>X</td>
<td>Mid Position</td>
<td>X</td>
<td>Full Forward</td>
</tr>
</tbody>
</table>

Section A

| Cosco Dream Ride 02-719 | X | Full Rearward | X | Mid Position | X | Full Forward |

12. Suppression tests with newborn infant (Part 572, Subpart K) using the following indicated child restraints.

13. Suppression tests with 3-year-old dummy (Part 572, Subpart P) using the following indicated child restraints where a child restraint is required.
14. Suppression tests with representative 3-year-old child using the following indicated child restraints where a child restraint is required. (Appendix H, Data Sheet 16H and 17H)

Section C

<table>
<thead>
<tr>
<th>Britax Roundabout 161</th>
<th>Full Rearward</th>
<th>Mid Position</th>
<th>Full Forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Century Encore 4812</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Century STE 1000 4416</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Cosco Olympian 02803</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Cosco Tour/ra 02919</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Evenflo Horizon V 425</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Evenflo Medalion 254</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
</tbody>
</table>

Section D

<table>
<thead>
<tr>
<th>Britax Roadster 9004</th>
<th>Full Rearward</th>
<th>Mid Position</th>
<th>Full Forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Century Next Step 4920</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Cosco High Back Booster 02-442</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Evenflo Right Fit 245</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
</tbody>
</table>

15. Suppression tests with 3-year-old dummy (Part 572, Subpart P) in the following positions

- Sitting on seat with back against seat back (S22.2.2.1)
- Sitting on seat with back against reclined seat back (S22.2.2.2)
- Sitting on seat with back not against seat back (S22.2.2.3)
- Sitting on seat edge, spine vertical, hands by the child's side (S22.2.2.4)
- Standing on seat, facing forward (S22.2.2.5)
- Kneeling on seat facing forward (S22.2.2.6)
- Kneeling on seat facing rearward (S22.2.2.7)
- Lying on seat (S22.2.2.8)

16. Suppression tests with representative 3-year-old child in the following positions

- Sitting on seat with back against seat back (S22.2.2.1)
- Sitting on seat with back against reclined seat back (S22.2.2.2)
- Sitting on seat with back not against seat back (S22.2.2.3)
- Sitting on seat edge, spine vertical, hands by the child's side (S22.2.2.4)
- Standing on seat, facing forward (S22.2.2.5)
- Kneeling on seat facing forward (S22.2.2.6)
- Kneeling on seat facing rearward (S22.2.2.7)
- Lying on seat (S22.2.2.8)

17. Suppression tests with 6-year-old dummy (Part 572, Subpart N) using the following indicated child restraints where a child restraint is required.
Section D

<table>
<thead>
<tr>
<th>Item</th>
<th>Full Rearward</th>
<th>Mid Position</th>
<th>Full Forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Britax Roadster 9004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Century Next Step 4920</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cosco High Back Booster 02-442</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evenflo Right Fit 245</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18. Suppression tests with representative 6-year-old child using the following indicated child restraints where a child restraint is required.

<table>
<thead>
<tr>
<th>Item</th>
<th>Full Rearward</th>
<th>Mid Position</th>
<th>Full Forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Britax Roadster 9004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Century Next Step 4920</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cosco High Back Booster 02-442</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evenflo Right Fit 245</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

19. Suppression tests with 6-year-old dummy (Part 572, Subpart N) in the following positions

<table>
<thead>
<tr>
<th>Sitting on seat with back against seat back (S22.2.2.1)</th>
<th>Full Rearward</th>
<th>Mid Position</th>
<th>Full Forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitting on seat with back against reclined seat back</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitting on seat edge, spine vertical, hands by the child's side</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Sitting back in the seat and leaning on the right front passenger door (S24.2.3)</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
</tbody>
</table>

20. Suppression tests with representative 6-year-old child in the following positions

<table>
<thead>
<tr>
<th>Sitting on seat with back against seat back (S22.2.2.1)</th>
<th>Full Rearward</th>
<th>Mid Position</th>
<th>Full Forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitting on seat with back against reclined seat back</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitting on seat edge, spine vertical, hands by the child's side</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Sitting back in the seat and leaning on the right front passenger door (S24.2.3)</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
</tbody>
</table>

21. Test of Reactivation of the Passenger Air Bag System with an Unbuckled 5th percentile female dummy (S20.3, 22.3, S24.3). Perform this test after the following suppression tests: After each restraint.

22. Test of Reactivation of the passenger air bag system with a representative 5th percentile female (S20.3, 22.3, S24.3). Perform this test after the following suppression tests:

23. Low risk deployment test with 12-month-old dummy (Part 572, Subpart R) using the following indicated child restraints.

Section B

<table>
<thead>
<tr>
<th>Item</th>
<th>Full Rearward</th>
<th>Mid Position</th>
<th>Full Forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Britax Handle with Care 191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Century Assure 4553</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Century Avanti SE 416530</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Century Smart Fit 4543</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cosco Arista 02727</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cosco Opus 35 02803</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evenflo Discovery Adjust Right 212</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Evenflo First Choice 204</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evenflo On My Way Position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right V 282</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greco Infant 8457</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section C

<table>
<thead>
<tr>
<th>Item</th>
<th>Full Rearward</th>
<th>Mid Position</th>
<th>Full Forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Britax Roundabout 181</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Century Encore 4612</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Century STE 1000 4416</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cosco Olympian 02803</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cosco Touche 02519</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evenflo Horizon V 425</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evenflo Medallion 284</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12
24. Low risk deployment test with 3-year-old dummy (Part 572, Subpart P) in the following positions

- Position 1
- Position 2

25. Low risk deployment test with 6-year-old dummy (Part 572, Subpart N) in the following positions

- Position 1
- Position 2

26. Low risk deployment test with 5th percentile female dummy (Part 572, Subpart O) in the following positions

- Position 1
- Position 2

27. Impact Tests

Frontal Oblique – Test Speed:

- Belted 50th male dummy driver and passenger (0 to 48 km/h) (S5.1.1(a))
- Unbelted 50th male dummy driver and passenger (0 to 48 km/h) (S5.1.2(a)(1))
- Unbelted 50th male dummy driver and passenger (32 to 40 km/h) (S5.1.2(a)(1) or S5.1.2(b))

Frontal 0° - Test Speed: 39.5 km/h

- Belted 50th male dummy driver (0 to 48 km/h) (S6.1.1(b)(1)) or S5.1.1(a))
- Belted 50th male dummy passenger (0 to 48 km/h) (S6.1.1(b)(1) or S5.1.1(a))
- Belted 6th female dummy driver (0 to 48 km/h) (S16.1(a))
- Belted 6th female dummy passenger (0 to 48 km/h) (S16.1(a))
- Belted 50th male dummy driver and passenger (0 to 48 km/h) (S5.1.1(b)(2))
- Unbelted 50th male dummy driver and passenger (0 to 48 km/h) (S5.1.2(a)(1))
- Unbelted 50th male dummy driver (32 to 40 km/h) (S5.1.2(a)(2) or S5.1.2(b))
- Unbelted 50th male dummy passenger (32 to 40 km/h) (S5.1.2(a)(2) or S5.1.2(b))
- Unbelted 5th female dummy driver (32 to 40 km/h) (S16.1(b))
- Unbelted 5th female dummy passenger (32 to 40 km/h) (S16.1(b))

- 40% Offset 0° Belted 5th male dummy driver and passenger (0 to 40 km/h) (S18.1) - Test Speed:

28. Sled Test: Unbelted 50th male dummy driver and passenger (S13)

29. FMVSS 204 Indicant Test

30. FMVSS 212 Indicant Test

31. FMVSS 219 Indicant Test

32. FMVSS 301 Frontal Indicant Test
DATA SHEET 2
REPORT OF VEHICLE CONDITION

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
NHTSA No.: C40303
Test Date: 12/26/1/04

CONTRACT NO. DTNH22- 03-D-11002
FROM: MGA Research Corporation
TO: NHTSA, OVSC (NVS-220)

Date: 3/12/04

PURPOSE: () Initial Receipt () Received via Transfer (X) Present vehicle condition

MODEL YEAR/MAKE/MODEL/BODY STYLE: 2004 DODGE DURANGO MPV
MANUFACTURE DATE: 10/03
NHTSA NO. C40303
BODY COLOR: BLACK
VIN: 1D4HD48N04F140504
GVWR: 2994 kg (6500 lbs)
GAWR (Fr): 1467 lbs (3100 lbs)
GAWR (Rr): 1770 lbs (3800 lbs)

ODOMETER READINGS:
ARRIVAL (miles): 94 DATE: 12/29/03
COMPLETION (miles): 111 DATE: 4/1/04

PURCHASE PRICE: ($) 27,405.00
DEALER'S NAME: Hub West Dodge Chrysler, 2838 Main St. East Troy, WI 53120

A. All options listed on window sticker are present on the test vehicle:
 X Yes No
B. Tires and wheel rims are new and the same as listed:
 X Yes No
C. There are no dents or other interior or exterior flaws:
 X Yes No
D. The vehicle has been properly prepared and is in running condition:
 X Yes No
E. Keyless remote is available and working:
 X Yes X No
F. The glove box contains an owner's manual, warranty document, consumer information, and extra set of keys:
 X Yes No
G. Proper fuel filler cap is supplied on the test vehicle:
 X Yes No
H. Using permanent marker, identify vehicle with NHTSA number and FMVSS test type(s) on roofline above driver door or for school buses, place a placard with NHTSA number inside the windshield and to the exterior front and rear side of bus:
 X Yes No
I. Place vehicle in storage area:
 X Yes No
J. Inspect the vehicle's interior and exterior, including all windows, seats, doors, etc. to confirm that each system is complete and functional per the manufacturer's specifications. Any damage, misadjustment, or other unusual condition that could influence the test program or test results shall be recorded. Report any abnormal condition to the NHTSA COTR before beginning any test:
 X Vehicle OK Conditions reported below
REPORT OF VEHICLE CONDITION AT THE COMPLETION OF TESTING

LIST OF FMVSS TESTS PERFORMED BY THIS LAB: FMVSS 208, 212, 219, 301
VEHICLE: 2004 DODGE DURANGO MPV NHTSA NO. C40303
REMARKS:

Equipment that is no longer on the test vehicle as noted on previous page:
LH rear window glass, RH rear tail light, hub covers, and third row seats.

Explanation for equipment removal:
Components removed for instrumentation installation and to meet target weight.

Test Vehicle Condition:
25 mph frontal impact damage- front suspension & structure damaged, hood & front quarter
panels damaged, radiator damaged, air bags & pretensioners deployed, Stoddard in fuel system

RECORDED BY: Jeff Lewandowski DATE: 4/8/2004
APPROVED BY: David Winkelbauer DATE: 4/8/2004

RELEASE OF TEST VEHICLE

The vehicle described above is released from MGA to be delivered to:

Date: Time: Odometer:
Lab Rep's Signature: Title:
Carrier/Customer Rep:
Date:
DATA SHEET 3
CERTIFICATION LABEL AND TIRE PLACARD INFORMATION

<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2004 Dodge Durango</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program:</td>
<td>FMVSS 208 Compliance</td>
</tr>
<tr>
<td>Test Technician:</td>
<td>Clark Subrt</td>
</tr>
<tr>
<td>NHTSA No.:</td>
<td>C40303</td>
</tr>
<tr>
<td>Test Date:</td>
<td>4/1/04</td>
</tr>
</tbody>
</table>

Certification Label

<table>
<thead>
<tr>
<th>Manufacturer:</th>
<th>DaimlerChrysler Corp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Manufacture:</td>
<td>10/03</td>
</tr>
<tr>
<td>VIN:</td>
<td>1LD4HD4E64F114309</td>
</tr>
<tr>
<td>Vehicle Certified As (Pass. Car/MPV/Truck/Bus):</td>
<td>MPV</td>
</tr>
<tr>
<td>Front Axle GVWR:</td>
<td>2394 kg (6660 lbs)</td>
</tr>
<tr>
<td>Rear Axle GVWR:</td>
<td>1407 kg (3100 lbs)</td>
</tr>
<tr>
<td>Total GVWR:</td>
<td>1270 kg (2800 lbs)</td>
</tr>
</tbody>
</table>

Tire Placard

Not applicable, vehicle is not a passenger car and does not have a tire placard.	YES (MPV)
This is not a passenger car, but all or part of this information is still contained on a vehicle label and is reported here. (From Owner's Manual)	YES (MPV)
Vehicle Capacity Weight:	767 kg (1692 lbs)
Designated Seating Capacity Front:	2
Designated Seating Capacity Rear:	3
Designated Seating Capacity Third Row:	2
Total Designated Seating Capacity:	7
Recommended Cold Tire Inflation Pressure Front:	227 kpa (33 psi)
Recommended Cold Tire Inflation Pressure Rear:	227 kpa (33 psi)
Recommended Tire Size:	P245/70R17

Signature: **Clark Subrt**

Date: 3/29/04
DATA SHEET 4
REAR OUTBOARD SEATING POSITION SEAT BELTS

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
Test Technician: Wayne Dahline
NHTSA No.: C40303
Test Date: 1/28/04

<table>
<thead>
<tr>
<th>Do all rear outboard seating positions have Type 2 seat belts?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

If NO, describe the seat belt installed, the seat location, and any other information about the seat that would explain why a Type 2 seat belt was not installed.

REMARKS: NONE

Signature: [Signature]
Date: 1/28/04
DATA SHEET 5
AIR BAG LABELS (S4.5.1)

Test Vehicle: 2004 Dodge Durango NHTSA No.: C40303
Test Program: FMVSS 208 Compliance Test Date: 1/28/04
Test Technician: Wayne Dahike

1. Air bag maintenance label and owner's manual instructions: (S4.5.1(a))
 1.1 Does the manufacturer recommend periodic maintenance or replacement of the air bag?
 □ Yes, go to 1.2
 X No – go to 2
 1.2 Does the vehicle have a label specifying air bag maintenance or replacement?
 □ Yes – Pass
 □ No – Fail
 1.3 Does the label contain one of the following?
 □ Yes – Pass
 □ No – Fail
 Check applicable schedule:
 □ Schedule on label specifies month and year (Record date_______)
 □ Schedule on label specified vehicle mileage (Record mileage_______)
 □ Schedule on label specifies interval measured from date on certification label
 (Record Interval_______)
 1.4 Is the label permanently affixed within the passenger compartment such that it cannot be removed without destroying or defacing the label or the surround?
 □ Yes – Pass
 □ No – Fail
 1.5 Is the label lettered in English?
 □ Yes – Pass
 □ No – Fail
 1.6 Is the label in block capitals and numerals?
 □ Yes – Pass
 □ No – Fail
 1.7 Are the letters and numerals at least 3/32 inches high?
 □ Yes – Pass
 □ No – Fail
 1.8 Does the owner's manual set forth the recommended schedule for maintenance or replacement?
 2. Does the owner's manual: (S4.5.1(f))
 2.1 Include a description of the vehicle's air bag system in an easily understandable format?
 X Yes – Pass
 □ No – Fail
 2.2 Include a statement that the vehicle is equipped with an air bag and a lap/shoulder belt at the front outboard seating position?
 X Yes – Pass
2.3 Include a statement that the air bag is a supplement restraint at the front outboard seating position?
- Yes – Pass
- No – Fail

2.4 Emphasize that all occupants, including the driver, should always wear their seat belts whether or not an air bag is also provided at their seating positions to minimize the risk of severe injury or death in the event of a crash?
- Yes – Pass
- No – Fail

2.5 Provide any necessary precautions regarding the proper positioning of occupants, including children, at seating positions equipped with air bags to ensure maximum safety protection for those occupants?
- Yes – Pass
- No – Fail

2.6 Explain that no objects should be placed over or near the air bag on the steering wheel or on the instrument panel, because any such objects could cause harm if the vehicle is in a crash severe enough to cause the air bag to inflate?
- Yes – Pass
- No – Fail

2.7 Is the vehicle certified to meet the requirements of S14.5, S15, S17, S19, S21, S23, and S25? (Obtain answer from COTR) (S4.5.1(f)(2))
- Yes – (Go to 2.7.1)
- No – (Go to 3.)

2.7.1 Explain the proper functioning of the advanced air bag system? (S4.5.1(f)(2))
- Yes – Pass
- No – Fail

2.7.2 Provide a summary of the actions that may affect the proper functioning of the system? (S4.5.1(f)(2))
- Yes – Pass
- No – Fail

2.7.3 Present and explain the main components of the advanced passenger air bag system? (S4.5.1(f)(2)(i))
- Yes – Pass
- No – Fail

2.7.4 Explain how the components function together as part of the advanced passenger air bag system? (S4.5.1(f)(2)(ii))
- Yes – Pass
- No – Fail

2.7.5 Contain the basic requirements for proper operation, including an explanation of the actions that may affect the proper functioning of the system? (S4.5.1(f)(2)(iii))
- Yes – Pass
- No – Fail

2.7.6 Is the vehicle certified to the requirements of S19.2, S21.2, or 23.2 (automatic suppression)?
- Yes, continue with 2.7.6
- No, go to 2.7.7
2.7.6.1 Contain a complete description of the passenger air bag suppression system installed in the vehicle, including a discussion of any suppression zone? (S4.5.1(f)(2)(iv))

X Yes - Pass

X No - Fail

2.7.6.2 Discuss the telltale light, specifying its location in the vehicle and explaining when the light is illuminated?

X Yes - Pass

X No - Fail

2.7.7 Explain the interaction of the advanced passenger air bag system with other vehicle components, such as seat belts, seats or other components? (S4.5.1(f)(2)(v))

X Yes - Pass

X No - Fail

2.7.8 Summarize the expected outcomes when child restraint systems, children and small teenagers or adults are both properly and improperly positioned in the passenger seat, including cautionary advice against improper placement of child restraint systems? (S4.5.1(f)(2)(vi))

X Yes - Pass

X No - Fail

2.7.9 Provide information on how to contact the vehicle manufacturer concerning modifications for persons with disabilities that may affect the advanced air bag system? (S4.5.1(f)(2)(vii))

X Yes - Pass

X No - Fail

3. Sun Visor Air Bag Warning Label (S4.5.1(b)) Check only one of the following:

☐ The vehicle is not certified to meet the requirements of S19, S21, and S23 (Obtain answer from CDTR) (S4.5.1(b)(1)) Go to 3.1 and skip 3.2 and 3.3

☐ The vehicle is certified to meet the requirements of S19, S21, and S23 before 9/1/03. (Obtain answer from CDTR) (S4.5.1(b)(2)) Go to 3.2 and skip 3.1 and 3.3

X The vehicle is certified to meet the requirements of S19, S21, and S23 on 9/1/03 or later. (Obtain answer from CDTR) (S4.5.1(b)(3)) Go to 3.3 and skip 3.1 and 3.2

3.1 Vehicles not certified to meet the requirements of S19, S21, and S23.

3.1.1 Is the label permanently affixed (including permanent marking on the visor material or molding into the visor material) to either side of the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing it? (S4.5.1(b)(1))

☐ Driver Side, Yes - Pass

☐ Driver Side, No - Fail

☐ Passenger Side, Yes - Pass

☐ Passenger Side, No - Fail

3.1.2 Does the label conform in content to the label shown in either Figure 6A or 6B (Figure 6b is for vehicles with passenger air bag on-off switches), as appropriate, at each front outboard seating position? (S4.5.1(b)(1)) (Vehicles without back seats may omit the statement: "The back seat is the safest place for children." (S4.5.1(b)(1)(iv))

20
3.1.3 Is the label heading area yellow with the word "WARNING" and the alert symbol in black? (§4.5.1(b)(1)(i))

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

3.1.4 Is the message area white with black text? (§4.5.1(b)(1)(ii))

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

3.1.5 Is the message area at least 30 cm²? (§4.5.1(b)(1)(ii))

- Driver Side: Length ________, Width ________
- Passenger Side: Length ________, Width ________
- Actual message area ________ cm²
3.16 Is the pictogram black with a red circle and slash on a white background? (S4.5.1(b)(2)(ii))

- Driver Side, Yes - Pass
- Driver Side, No - Fail
- Passenger Side, Yes - Pass
- Passenger Side, No - Fail

3.17 Is the pictogram at least 30 mm in diameter? (S4.5.1(b)(2)(iii))

- Driver Side, Yes - Pass
- Driver Side, No - Fail
- Passenger Side, Yes - Pass
- Passenger Side, No - Fail

3.2 Vehicles certified to meet the requirements of S19, S21, and S23 before 9/1/03.

3.2.1 Is the label permanently affixed (including permanent marking on the visor material or molding into the visor material) to either side of the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing the label or the sun visor? (S4.5.1(b)(2))

- Driver Side, Yes - Pass
- Driver Side, No - Fail
- Passenger Side, Yes - Pass
- Passenger Side, No - Fail

3.2.2 Does the label conform in content to the label shown in either Figure 8 or 11 at each front outboard seating position? (S4.5.1(b)(2)) (Vehicles without back seats may omit the statement: "The back seat is the safest place for children." (S4.5.1(b)(2)(iv))

- Driver Side, Yes - Pass
- Driver Side, No - Fail
- Passenger Side, Yes - Pass
- Passenger Side, No - Fail

Label Outline, Vertical and Horizontal Lines Black

![Warning Label](image)

Figure 8: Sun Visor Label Visible when Visor is in Down Position.
3.2.3 Is the label heading area yellow with the word "WARNING" and the alert symbol in black? (S4.5.1(b)(2)(i))
- [] Driver Side, Yes – Pass
- [] Driver Side, No – Fail
- [] Passenger Side, Yes – Pass
- [] Passenger Side, No – Fail

3.2.4 Is the message area white with black text? (S4.5.1(b)(2)(ii))
- [] Driver Side, Yes – Pass
- [] Driver Side, No – Fail
- [] Passenger Side, Yes – Pass
- [] Passenger Side, No – Fail

3.2.5 Is the message area at least 30 cm²? (S4.5.1(b)(2)(iii))
- [] Driver Side: Length ________, Width ________
- [] Passenger Side: Length ________, Width ________

Actual message area ________ cm²
- [] Driver Side, Yes – Pass
- [] Driver Side, No – Fail
- [] Passenger Side, Yes – Pass
- [] Passenger Side, No – Fail

3.2.6 Is the pictogram black on a white background? (S4.5.1(b)(2)(iii))
- [] Driver Side, Yes – Pass
- [] Driver Side, No – Fail
- [] Passenger Side, Yes – Pass
- [] Passenger Side, No – Fail

3.2.7 Is the pictogram at least 30 mm (1.2 inches) in length? (S4.5.1(b)(2)(iii))
- [] Driver Side: Length ________
- [] Passenger Side: Length ________
- [] Driver Side, Yes – Pass
- [] Driver Side, No – Fail
3.3 Vehicle certified to meet the requirements of S19, S21, and S23 on 9/1/03 and later. (S4.5.1(b)(3))

3.3.1 Is the label permanently affixed (including permanent marking on the visor material or molding into the visor material) to either side of the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing the label or the sun visor? (S4.5.1(b)(3))

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

3.3.2 Does the label conform in content to the label shown in either Figure 11 at each front outboard seating position? (S4.5.1(b)(2)) (Vehicles without back seats may omit the statement: “The back seat is the safest place for children.” (S4.5.1(b)(3)(iv)) Vehicles without back seats or the back seat is too small to accommodate a rear-facing child restraint may omit the statement “Never put a rear-facing child seat in the front.” (S4.5.1(b)(3)(v))

![WARNING](image)

Figure 11. Sun visor label Vehicle visor is in Down Position

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

3.3.3 Is the label heading area yellow with the word "WARNING" and the alert symbol in black? (S4.5.1(b)(3)(i))

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

3.3.4 Is the message area white with black text? (S4.5.1(b)(3)(ii))

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail
3.3.5 Is the message area at least 30 cm²? (S4.5.1(b)(3)(II))

Driver Side: Length 8.7 cm, Width 4.8 cm
Passenger Side: Length 8.7 cm, Width 4.8 cm
Driver Actual message area 41.76 cm²
Passenger Actual message area 41.76 cm²

X Driver Side, Yes – Pass
X Driver Side, No – Fail
X Passenger Side, Yes – Pass
X Passenger Side, No – Fail

3.3.6 Is the pictogram black on a white background? (S4.5.1(b)(3)(III))

X Driver Side, Yes – Pass
X Driver Side, No – Fail
X Passenger Side, Yes – Pass
X Passenger Side, No – Fail

3.3.7 Is the pictogram at least 30 mm (1.2 inches) in length? (S4.5.1(b)(3)(III))

Driver Side: Length 45 mm
Passenger Side: Length 45 mm

X Driver Side, Yes – Pass
X Driver Side, No – Fail
X Passenger Side, Yes – Pass
X Passenger Side, No – Fail

3.4 Is the same side of the sun visor that contains the air bag warning label free of other information with the exception of the air bag maintenance label and/or the rollover-warning label? (S4.5.1(b)(5)(I))

X Driver Side, Yes – Pass
X Driver Side, No – Fail
X Passenger Side, Yes – Pass
X Passenger Side, No – Fail

3.5 Is the sun visor free of other information about air bags or the need to wear seat belts with the exception of the air bag alert label and/or the rollover-warning label? (S4.5.1(b)(5)(II))

X Driver Side, Yes – Pass
X Driver Side, No – Fail
X Passenger Side, Yes – Pass
X Passenger Side, No – Fail

3.6 Does the driver side visor contain a rollover-warning label on the same side of the visor as the air bag warning label?

X Yes, go to 3.6.1

No, go to 4 (skipping 3.6.1 through 3.6.3)
3.6.1 Are both the rollover-warning label and the air bag warning label surrounded by a continuous solid-lined border?

☐ Yes, go to 3.6.2 and skip 3.6.3
☐ X No, go to 3.6.3 and skip 3.6.2

3.6.2 Is the shortest distance from the border of the rollover label to the border of the air bag warning label at least 1 cm? (576.105 (d)(1)(iv)(B))

☐ actual distance

3.6.3 Is the shortest distance from any of the lettering or graphics on the rollover-warning label to any of the lettering or graphics of the air bag warning label at least 3 cm? (576.105 (d)(1)(iv)(A))

17mm (1.7cm) actual distance

☐ Yes-Pass
☐ X No-FAIL

☐ 4. Air Bag Alert Label (54.5.1(c)) (A "Rollover Warning Label" or "Rollover Alert Label" may be on the same side of the driver’s sun visor as the "Air Bag Alert Label." 575.105(d))

☐ 4.1 Is the sun visor warning label visible when the sun visor is in the stowed position?

☐ X If yes for driver and passenger, go to 5.
☐ X Driver Side, Yes -- Pass
☐ Driver Side, No -- Fail
☐ X Passenger Side, Yes -- Pass
☐ Passenger Side, No -- Fail

☐ 4.2 Is the air bag alert label permanently affixed (including permanent marking on the visor material or molding into the visor material) to the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing the label or the sun visor? (54.5.1(c))

☐ Driver Side, Yes -- Pass
☐ Driver Side, No -- Fail
☐ Passenger Side, Yes -- Pass
☐ Passenger Side, No -- Fail

☐ 4.3 Is the air bag alert label visible when the visor is in the stowed position? (54.5.1(c))

☐ Driver Side, Yes -- Pass
☐ Driver Side, No -- Fail
☐ Passenger Side, Yes -- Pass
☐ Passenger Side, No -- Fail

☐ 4.4 Does the label conform in content to the label shown in Figure 6C? (54.5.1(c))

26
Figure 6. Sun Visor Label VIEWED When Visor is in Up Position.

[Diagram of Air Bag Warning]

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

4.5 Is the message area black with yellow text? (S4.5.1(c)(1))
- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

4.6 Is the message area at least 20 cm²? (S4.5.1(c)(1))
- Driver Side: Length ______, Width ______
- Passenger Side: Length ______, Width ______
- Actual message area ______ cm²

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

4.7 Is the pictogram black with a red circle and slash on a white background? (S4.5.1(c)(2))
- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

4.8 Is the pictogram at least 20 mm in diameter? (S4.5.1(c)(2))
- Driver Side Diameter ______ mm
- Passenger Side Diameter ______ mm

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail
5. Label on the Dashboard

5.1 Is the vehicle certified to meet the requirements of S19, S21, and S23? (Obtain answer from COTR) (S4.5.1(3)(2))
 - X Yes, go to 5.1.1 and skip 5.2
 - No, go to 5.2, skipping 5.1.1 through 5.1.6
 - Driver Side, Yes - Pass
 - Driver Side, No - Fail
 - Passenger Side, Yes - Pass
 - Passenger Side, No - Fail

5.1.1 Does the vehicle have a label on the dash or steering wheel hub? (S4.5.1(e)(2))
 - X Yes - Pass
 - No - Fail

5.1.2 Is the label clearly visible from all front seating positions? (S4.5.1(e)(2))
 - X Yes - Pass
 - No - Fail

5.1.3 Does the label conform in content to the label shown in Figure 8? (S4.5.1(e)(2))
 Vehicles without back seats may omit the statement: "The back seat is the safest place for children." (S4.5.1(e)(2)(II))

5.1.4 Is the heading area yellow with black text? (S4.5.1(e)(2)(I))
 - X Yes - Pass
 - No - Fail

5.1.5 Is the message white with black text? (S4.5.1(e)(2)(II))
 - X Yes - Pass
 - No - Fail

5.1.6 Is the message area at least 30 cm²? (S4.5.1(e)(2)(II))
 - Length 6.7 cm, Width 3.5 cm
 - Actual message area 20.45 cm²
| 5.2 | Does the vehicle have a label on the dash or steering wheel hub? *(S4.5.1(e)(1))*
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Yes - Pass</td>
</tr>
<tr>
<td></td>
<td>No - Fail</td>
</tr>
</tbody>
</table>

| 5.2.1 | Is the label clearly visible from all front seating positions? *(S4.5.1(e)(1))*
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Yes - Pass</td>
</tr>
<tr>
<td></td>
<td>No - Fail</td>
</tr>
</tbody>
</table>

5.2.2	Does the label conform in content to the label shown in Figure 7? *(S4.5.1(e)(1)(II))*
	Vehicles without back seats may omit the statement: "The back seat is the safest place for children." *(S4.5.1(e)(2)(iii))*

![WARNING](image)

| 5.2.3 | Is the heading area yellow with the word "WARNING" and the alert symbol in black? *(S4.5.1(e)(1)(I))*
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes - Pass</td>
</tr>
<tr>
<td></td>
<td>No - Fail</td>
</tr>
</tbody>
</table>

| 5.2.4 | Is the message white with black text? *(S4.5.1(e)(1)(II))*
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes - Pass</td>
</tr>
<tr>
<td></td>
<td>No - Fail</td>
</tr>
</tbody>
</table>

5.2.5	Is the message area at least 30 cm²? *(S4.5.1(e)(1)(II))
	Length _____, Width _____
	Actual message area _____ cm²
	Yes - Pass
	No - Fail

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 1/28/04
DATA SHEET 6
FMVSS 208 READINESS INDICATOR (34.5.2)

Test Vehicle: 2004 Dodge Durango NHTSA No.: C40303
Test Program: FMVSS 208 Compliance Test Date: 1/28/04
Test Technician: Wayne Dahlke

An occupant restraint system that deploys in the event of a crash shall have a monitoring system with a readiness indicator. A totally mechanical system is exempt from this requirement. (11/8/94 legal interpretation to Lawrence F. Hennagerger on behalf of Breed)

1. Is the system totally mechanical? If Yes, this data sheet is complete.
 X Yes
 X No

2. Describe the location of the readiness indicator. Left side of instrument cluster

3. Is the readiness indicator clearly visible to the driver?
 X Yes – Pass
 X No - Fail

4. Is a list of the elements in the occupant restraint system, being monitored by the readiness indicator, provided on a label or in the owner's manual?
 X Yes – Pass
 X No - Fail

5. Does the vehicle have an on-off switch for the passenger air bag?
 X If Yes, go to 6
 X If No, this form is complete.

6. Is the air bag readiness indicator off when the passenger air bag switch is in the off position?
 X Yes – Pass
 X No - Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: Wayne Dahlke

Date: 1/28/04
DATA SHEET 7

PASSenger Air Bag Manual Cut-off Device (S4.5.4)

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
Test Technician: Wayne Dahike
NHTSA No.: C40303
Test Date: 1/28/04

1. Is the vehicle equipped with an on-off switch that deactivates the air bag installed at the
right front outboard seating position?

☐ Yes, go to 2
☒ No, this sheet is complete

2. Does the vehicle have any forward-facing rear designated seating positions? (S4.5.4(a))

☐ Yes, go to 3
☐ No, go to 4

3. Verification of the lack of room for a child restraint in the rear seat behind the driver’s
seat. (S4.5.4(b))

☐ Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest,
retracted or deflated adjustment position (S8.1.3)

☐ N/A, no lumbar adjustment

☐ Position any adjustable parts of the seat that provide additional support so that they are
in the lowest or most open adjustment position. (S16.2.10.02)

☐ N/A, no additional support adjustment

☐ If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment
to the full rearward position. (S16.2.10.3.1)

☐ N/A, no independent fore-aft seat cushion adjustment

☐ If the seat cushion height adjusts independent of the seat back, set this adjustment to the
full down position (S16.2.10.3.1)

☐ N/A, no independent seat cushion height adjustment

☐ Put the seat in its full rearward position. (S16.2.10.3.1)

☐ N/A, the seat does not have a fore-aft adjustment

☐ If the seat height is adjustable, put it in the full down position. (S16.2.10.3.1)

☐ N/A, no seat height adjustment

☐ Draw a horizontal reference line on the side of the seat cushion.

☐ Using only the controls that change the seat in the fore-aft direction, mark the fore-aft
seat positions. Mark the side of the seat and a reference position directly below on a part
of the vehicle that does not adjust. For manual seats, move the seat forward one detent
at a time and mark each detent as was done for the full rearward position. For power
seats, mark only the full rearward, middle, and full forward positions. Label three of the
positions with the following: F for full forward, M for mid-position (if there is no mid
position, label the closest adjustment position to the rear of the mid-point), and R for full
rearward.

☐ N/A — the seat does not have a fore-aft adjustment.

☐ Using only the controls that change the seat in the fore-aft direction, place the seat in the
full rearward position and then place the seat in the middle fore-aft position. (S8.1.2)

☐ N/A — the seat does not have fore-aft adjustment.
3.10 If seat adjustments, other than fore-aft, are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal.

3.11 The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.5.4.1 (b) and S8.1.3)

3.12 Is the driver seat a bucket seat?

- Yes, go to 3.12.1 and skip 3.12.2
- No, go to 3.12.2 and skip 3.12.1

3.12.1 Bucket Seats:

3.12.1.1 Locate and mark a vertical Plane B through the longitudinal centerline of the seat driver's seat cushion. (S22.2.1.3) The longitudinal centerline of a bucket seat cushion is determined at the widest part of the seat cushion. Measure perpendicular to the longitudinal centerline of the vehicle.

Distance (mm):
- Less than 720 mm – Pass
- More than 720 mm – Fail

3.12.2 Bench seats (including split bench seats):

3.12.2.1 Locate and mark a vertical Plane B through the center of the steering wheel parallel to the vehicle longitudinal centerline.

Distance (mm):
- Less than 720 mm – Pass
- More than 720 mm – Fail

4. Does the device turn the air bag on and off using the vehicle's ignition key? (S4.5.4.2)

- Yes – Pass
5. Is the on-off device separate from the ignition switch? (§4.5.4.2)
 - Yes - Pass
 - No - Fail

6. Is there a telltale light that comes on when the passenger air bag is turned off? (§4.5.4.2)
 - Yes - Pass
 - No - Fail

7. Telltale light (§4.5.4.3)
 7.1 Is the light yellow? §4.5.4.3(a))
 - Yes - Pass
 - No - Fail
 7.2 Are the words "PASSENGER AIR BAG OFF" (§4.5.4.3(b))
 on the telltale?
 - Yes - Pass, go to 7.3
 - No - go to 7.2.2
 7.2.2 within 25 mm of the telltale?
 Measurement from the edge of the telltale light (mm):
 - Yes - Pass
 - No - Fail
 7.3 Does the telltale remain illuminated while the air bag is turned off? (§4.5.4.3(c)) (Leave the air bag off for 5 minutes.)
 - Yes - Pass
 - No - Fail
 7.4 Is the telltale illuminated while the air bag is turned on? (§4.5.4.3(d))
 - Yes - Fail
 - No - Pass
 7.5 Is the telltale combined with the air bag readiness indicator? (§4.5.4.3(e))
 - Yes - Fail
 - No - Pass

 8.1 Does the owner's manual contain complete instructions on the operation of the on-off switch? (§4.5.4.4(a))
 - Yes - Pass
 - No - Fail
 8.2 Does the owner's manual contain a statement that the on-off switch should only be used when a member of one of the following risk groups is occupying the right front passenger seating position? (§4.5.4.4(b))
 Infants: there is no back seat
 the rear seat is too small to accommodate a child restraint
 there is a medical condition that must be monitored constantly
 Children there is no back seat
 aged space is not always available in the rear seat
 1 to 12: there is a medical condition that must be monitored constantly
 Medical condition: greater risk for harm than with the air bag on
8.3 Does the owner’s manual contain a warning about the safety consequences of using the on-off switch at other times?

☐ Yes — Pass
☐ No — Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: ____________________________
Date: 1/28/04
DATA SHEET 8

LAP BELT LOCKABILITY
Passenger cars, trucks, buses, and multipurpose passenger
Vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Test Vehicle: 2004 Dodge Durango
NHTSA No.: C40303
Test Program: FMVSS 208 Compliance
Test Date: 1/28/04
Test Technician: Wayne Dahlke

Complete one of these forms for each designated seating position that can be adjusted to
forward-facing or that is a forward-facing seat, other than the driver's seat (S7.1.1.5(a), and that
has seat belt retractors that are not solely automatic locking retractors. (S7.1.1.5(c))

DESIGNATED SEATING POSITION: Front Passenger

☐ N/A – no retractor is at this position
☐ N/A – the retractor is an automatic locking retractor ONLY
☒ 1. Record test fore-aft seat position: Full Aft
 (S7.1.1.5(c)(1)) (Any position is acceptable)
☒ 2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be
 adjusted to forward-facing consist of a locking device that does NOT have to be attached
 by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle.
 (S7.1.1.5 (e))
☒ Yes – Pass
☐ No – Fail
☒ 3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be
 adjusted to forward-facing consist of a locking device that does NOT require inverting,
 twisting or deforming of the belt webbing. (S7.1.1.5 (e))
☒ Yes – Pass
☐ No – Fail
☒ 4. Buckle the seat belt. (S7.1.1.5(c)(1))
☒ 5. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))
☒ 6. Locate a reference point B on the attachment hardware or retractor assembly at the
 other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))
☒ 7. Does the vehicle user need to take some action to activate the locking feature on the lap
 belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to
 forward-facing?
☒ Yes, go to 7.1
☐ No, go to 8
☒ 7.1 Does the vehicle owner’s manual include a description in words and/or diagrams
 describing how to activate the locking feature so that the seat belt assembly can tightly
 secure a child restraint system and how to deactivate the locking feature to remove the
 child restraint system. (S7.1.1.5(b))
☒ Yes – Pass
☐ No – Fail
☒ 8. Adjust the lap belt or lap belt portion of the seat belt assembly according to any
 procedures recommended in the vehicle owner’s manual to activate any locking feature
 so that the webbing between points A and B is at the maximum length allowed by the
 belt system. (S7.1.1.5(c)(2) & S7.1.1.5(c)(1))
9. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.6(c)(2))

Measured distance between A and B (inches): 56 1/4

10. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(c)(3))

11. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

Measured force application angle (Spec: 5-15 degrees): 10.5

12. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

Measured distance between A and B (inches): 25 1/8

13. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractor are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

Record onset rate (lb/sec) (Spec: 10 to 60 lb/sec) (S7.1.1.5(c)(5)): 40

Measured distance between A and B (inches) (S7.1.1.5(c)(6)): 25 3/8

14. Subtract the measurement in 13 from the measurement in 12. Is the difference 2 inches or less? (S7.1.1.5(c)(7))

13 - 12 = 1/4

Yes - Pass

No - Fail

15. Subtract the measurement in 9 from the measurement in 13. Is the difference 3 inches or more? (S7.1.1.5(c)(8))

9 - 13 = 30 7/8

Yes - Pass

No - Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 1/28/04
DATA SHEET 8
LAP BELT LOCKABILITY
Passenger cars, trucks, buses, and multipurpose passenger Vehicles with a GVWR of 10,000 pounds or less. (§7.1.1.5)

<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2004 Dodge Durango</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHTSA No.:</td>
<td>C40303</td>
</tr>
<tr>
<td>Test Program:</td>
<td>FMVSS 208 Compliance</td>
</tr>
<tr>
<td>Test Date:</td>
<td>1/28/04</td>
</tr>
<tr>
<td>Test Technician:</td>
<td>Wayne Dahlie</td>
</tr>
</tbody>
</table>

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver's seat (§7.1.1.5(a), and that has seat belt retractors that are not solely automatic locking retractors. (§7.1.1.5(c))

DESIGNATED SEATING POSITION: Left Rear Passenger

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/A – no retractor is at this position</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A – the retractor is an automatic locking retractor ONLY</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Record test fore-aft seat position: Not Adjustable (§7.1.1.5(c)(1)) (Any position is acceptable)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (§7.1.1.5(a))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes – Pass</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No – Fail</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the seat webbing. (§7.1.1.5(a))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes – Pass</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No – Fail</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Buckle the seat belt. (§7.1.1.5(c)(1))</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Locate a reference point A on the seat belt buckle. (§7.1.1.5(c)(2))</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (§7.1.1.5(c)(2))</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes, go to 7.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No, go to 8</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Does the vehicle owner's manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (§7.1.1.5(b))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes – Pass</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No – Fail</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner's manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (§7.1.1.5(c)(2) & §7.1.1.5(c)(1))</td>
<td></td>
</tr>
</tbody>
</table>
9. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly.
(S7.1.1.5(c)(2))

Measured distance between A and B (inches): 65 1/4

10. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing.
(S7.1.1.5(c)(3))

11. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

Measured force application angle (Spec. 5-15 degrees): 10.9

12. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

Measured distance between A and B (inches): 43 1/2

13. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking reductors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

Record onset rate (lb/sec) (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5)): 40

Measured distance between A and B (inches) (S7.1.1.5(c)(6)): 44

14. Subtract the measurement in 13 from the measurement in 12. Is the difference 2 inches or less? (S7.1.1.5(c)(7))

13 - 12 = 1/2

Yes - Pass

No - Fail

15. Subtract the measurement in 9 from the measurement in 13. Is the difference 3 inches or more? (S7.1.1.5(c)(8))

9 - 13 = 21 1/4

Yes - Pass

No - Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 1/28/04

Figure 5 - Webbing Tension Pull Device
DATA SHEET 8
LAP BELT LOCKABILITY
Passenger cars, trucks, buses, and multipurpose passenger
Vehicles with a GVWR of 10,000 pounds or less. (§7.1.1.5)

Test Vehicle: 2004 Dodge Durango
NHTSA No.: C40393
Test Program: FMVSS 208 Compliance
Test Date: 1/28/04
Test Technician: Wayne Dahke

Complete one of these forms for each designated seating position that can be adjusted to
forward-facing or that is a forward-facing seat, other than the driver’s seat (§7.1.1.5(a)) and that
has seat belt restraints that are not solely automatic locking restraints. (§7.1.1.5(c))

<table>
<thead>
<tr>
<th>DESIGNATED SEATING POSITION:</th>
<th>Center Rear Passenger</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>N/A – no retractor is at this position</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/A – the retractor is an automatic locking retractor ONLY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Record test fore-aft seat position: Not Adjustable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(§7.1.1.5(c)(1)) (Any position is acceptable)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>adjusted to forward-facing consist of a locking device that does NOT have to be attached</td>
<td></td>
</tr>
<tr>
<td></td>
<td>by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(§7.1.1.5 (a))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes – Pass</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No – Fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>adjusted to forward-facing consist of a locking device that does NOT require inverting,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>twisting or deforming of the belt webbing. (§7.1.1.5 (a))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes – Pass</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No – Fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Buckle the seat belt. (§7.1.1.5(c)(1))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Locate a reference point A on the seat belt buckle. (§7.1.1.5(c)(2))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Locate a reference point B on the attachment hardware or retractor assembly at the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>other end of the lap belt or lap belt portion of the seat belt assembly. (§7.1.1.5(c)(2))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Does the vehicle user need to take some action to activate the locking feature on the lap</td>
<td></td>
</tr>
<tr>
<td></td>
<td>belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>forward-facing?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes, go to 7.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No, go to 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.1 Does the vehicle owner's manual include a description in words and/or diagrams</td>
<td></td>
</tr>
<tr>
<td></td>
<td>describing how to activate the locking feature so that the seat belt assembly can tightly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>secure a child restraint system and how to deactivate the locking feature to remove the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>child restraint system. (§7.1.1.5(b))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes – Pass</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No – Fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Adjust the lap belt or lap belt portion of the seat belt assembly according to any</td>
<td></td>
</tr>
<tr>
<td></td>
<td>procedures recommended in the vehicle owner's manual to activate any locking feature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>so that the webbing between points A and B is at the maximum length allowed by the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>belt system. (§7.1.1.5(c)(2) & §7.1.1.6(c)(1))</td>
<td></td>
</tr>
</tbody>
</table>
9. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.6(c)(2))

Measured distance between A and B (inches): 63 3/4

10. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(c)(3))

11. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 4 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

Measured force application angle (Spec. 5-15 degrees): 11

12. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

Measured distance between A and B (inches): 26

13. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

Record onset rate (ft/sec) (spec. 10 to 50 ft/sec) (S7.1.1.5(c)(5)): 40

Measured distance between A and B (inches) (S7.1.1.5(c)(6)): 26

14. Subtract the measurement in 13 from the measurement in 12. Is the difference 2 inches or less? (S7.1.1.5(c)(7))

13 - 12 = Zero

Yes – Pass

No – Fail

15. Subtract the measurement in 9 from the measurement in 13. Is the difference 3 inches or more? (S7.1.1.5(c)(8))

9 - 13 = 37 3/4

Yes – Pass

No – Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 1/28/04
DATA SHEET 8

LAP BELT LOCKABILITY

Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (57.1.1.5)

Test Vehicle: 2004 Dodge Durango
NHTSA No.: C40303
Test Program: FMVSS 208 Compliance
Test Date: 1/28/04
Test Technician: Wayne Dahlke

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver’s seat (57.1.1.5(a), and that has seat belt retractors that are not solely automatic locking retractors. (57.1.1.5(c))

<table>
<thead>
<tr>
<th>DESIGNATED SEATING POSITION:</th>
<th>Right Rear Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A – no retractor is at this position</td>
<td></td>
</tr>
<tr>
<td>N/A – the retractor is an automatic locking retractor ONLY</td>
<td></td>
</tr>
<tr>
<td>X 1. Record test fore-aft seat position: Not Adjustable (57.1.1.5(c)(1)) (Any position is acceptable)</td>
<td></td>
</tr>
<tr>
<td>X 2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (57.1.1.5 (a))</td>
<td></td>
</tr>
<tr>
<td>X Yes – Pass</td>
<td></td>
</tr>
<tr>
<td>No – Fail</td>
<td></td>
</tr>
<tr>
<td>X 3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (57.1.1.5 (a))</td>
<td></td>
</tr>
<tr>
<td>X Yes – Pass</td>
<td></td>
</tr>
<tr>
<td>No – Fail</td>
<td></td>
</tr>
<tr>
<td>X 4. Buckle the seat belt. (57.1.1.5(c)(1))</td>
<td></td>
</tr>
<tr>
<td>X 5. Locate a reference point A on the seat belt buckle. (57.1.1.5(c)(2))</td>
<td></td>
</tr>
<tr>
<td>X 6. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (57.1.1.5(c)(2))</td>
<td></td>
</tr>
<tr>
<td>X 7. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?</td>
<td></td>
</tr>
<tr>
<td>X Yes, go to 7.1</td>
<td></td>
</tr>
<tr>
<td>No, go to 8</td>
<td></td>
</tr>
<tr>
<td>X 7.1 Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (57.1.1.5(b))</td>
<td></td>
</tr>
<tr>
<td>X Yes – Pass</td>
<td></td>
</tr>
<tr>
<td>No – Fail</td>
<td></td>
</tr>
<tr>
<td>X 8. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (57.1.1.5(c)(2) & 57.1.1.5(c)(1))</td>
<td></td>
</tr>
</tbody>
</table>
9. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

X Measured distance between A and B (inches): 66

10. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(c)(3))

11. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 16 degrees above the horizontal. (S7.1.1.6(c)(4))

X Measured force application angle (Spec. 5-15 degrees): 11.3

12. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

X Measured distance between A and B (inches): 37

13. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking restraints are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

X Record onset rate (lb/sec) (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5)): 40

X Measured distance between A and B (inches) (S7.1.1.6(c)(6)): 37 3/4

14. Subtract the measurement in 13 from the measurement in 12. Is the difference 2 inches or less? (S7.1.1.5(c)(7))

X Yes - Pass

X No - Fail

15. Subtract the measurement in 9 from the measurement in 13. Is the difference 3 inches or more? (S7.1.1.6(c)(8))

X Yes - Pass

X No - Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 1/26/04
DATA SHEET 6

LAP BELT LOCKABILITY

Passenger cars, trucks, buses, and multipurpose passenger Vehicles with a GVWR of 10,000 pounds or less. (57.1.1.5)

Test Vehicle: 2004 Dodge Durango
NHTSA No.: C403983
Test Program: FMVSS 208 Compliance
Test Date: 1/28/04
Test Technician: Wayne Dahlke

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver's seat (57.1.1.5(a)), and that has seat belt retractors that are not solely automatic locking retractors. (57.1.1.5(c))

DESIGNATED SEATING POSITION: Left Third Row Passenger

☐ N/A – no retractor is at this position
☒ N/A – the retractor is an automatic locking retractor ONLY

1. Record test forward seat position: Not Adjustable (57.1.1.5(c)(1)) (Any position is acceptable)

☒ 2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (57.1.1.5(e))
☒ Yes – Pass
☐ No – Fail

☒ 3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (57.1.1.5(e))
☒ Yes – Pass
☐ No – Fail

☒ 4. Buckle the seat belt. (57.1.1.5(c)(1))

☒ 5. Locate a reference point A on the seat belt buckle. (57.1.1.5(c)(2))

☒ 6. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (57.1.1.5(c)(2))

☒ 7. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?
☒ Yes, go to 7.1
☐ No, go to 6

☒ 7.1 Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (57.1.1.5(b))
☒ Yes – Pass
☐ No – Fail

☒ 8. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (57.1.1.5(c)(2) & 57.1.1.5(c)(1))

43
9. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

 Measured distance between A and B (inches): 59

10. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(c)(3))

11. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 Measured force application angle (Spec. 5-15 degrees): 8

12. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

 Measured distance between A and B (inches): 38 1/2

13. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractor are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

 Record onset rate (lb/sec) (Spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5)): 40

 Measured distance between A and B (inches) (S7.1.1.5(c)(6)): 37

14. Subtract the measurement in 13 from the measurement in 12. Is the difference 2 inches or less? (S7.1.1.5(c)(7))

 13 - 12 = 1/2

 Yes - Pass
 No - Fail

15. Subtract the measurement in 8 from the measurement in 13. Is the difference 3 inches or more? (S7.1.1.5(c)(8))

 9 - 13 = 22

 Yes - Pass
 No - Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 1/28/04
LAP BELT LOCKABILITY

Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (57.1.1.5)

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
Test Technician: Wayne Dahlske

NHTSA No.: C49203
Test Date: 1/28/04

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver's seat (57.1.1.5(a)), and that has seat belt retractors that are not solely automatic locking retractors. (57.1.1.5(c))

DESIGNATED SEATING POSITION: Right Third Row Passenger

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

1. N/A - no retractor is at this position
 N/A - the retractor is an automatic locking retractor ONLY

 Record test fore-aft seat position: Not Adjustable (57.1.1.5(c)(1)) (Any position is acceptable)

 X Yes - Pass
 No - Fail

2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (57.1.1.5(a))

 X Yes - Pass
 No - Fail

3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require installing, twisting or deforming of the belt webbing. (57.1.1.5(a))

 X Yes - Pass
 No - Fail

4. Buckle the seat belt. (57.1.1.5(c)(1))

5. Locate a reference point A on the seat belt buckle. (57.1.1.5(c)(2))

6. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (57.1.1.5(c)(2))

7. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?

 X Yes, go to 7.1
 No, go to B

7.1 Does the vehicle owner's manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (57.1.1.5(b))

 X Yes - Pass
 No - Fail

8. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner's manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (57.1.1.5(c)(2) & 57.1.1.5(c)(1))

45
9. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

Measured distance between A and B (Inches): 58 1/2

10. Readjust the belt system so that the webbing between points A and B is at any length that is 6 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(c)(3))

11. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 6. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

Measured force application angle (Spec. 5-15 degrees): 5.6

12. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

Measured distance between A and B (Inches): 47

13. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

Record onset rate (lb/sec) (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5)): 15

Measured distance between A and B (Inches) (S7.1.1.5(c)(6)): 47 1/4

14. Subtract the measurement in 13 from the measurement in 12. Is the difference 2 inches or less? (S7.1.1.5(c)(7))

13 - 12 = 1/4

Yes – Pass

No – Fail

15. Subtract the measurement in 9 from the measurement in 13. Is the difference 3 inches or more? (S7.1.1.6(c)(8))

9 - 13 = 11 1/4

Yes – Pass

No – Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 1/28/04

Figure 6 – Webbing Tension Pull Device
DATA SHEET 9
FMVSS 208 SEAT BELT WARNING SYSTEM CHECK (S7.3)

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
Test Technician: Wayne Dahlke

1.	The occupant is in the driver's seat.
2.	The seat belt is in the stowed position.
3.	The key is in the "on" or "start" position.
4.	The time duration of the audible signal beginning with key "on" or "start" is
	Seconds: 6.0
5.	The occupant is in the driver's seat.
6.	The seat belt is in the stowed position.
7.	The key is in the "on" or "start" position.
8.	The time duration of the warning light beginning with key "on" or "start" is
	Seconds: Stays On
9.	The occupant is in the driver's seat.
10.	The seat belt is in the latched position and with at least 4 inches of belt webbing extended.
11.	The key is in the "on" or "start" position.
12.	The time duration of the audible signal beginning with key "on" or "start" is
	Seconds: 0.0
13.	The occupant is in the driver's seat.
14.	The seat belt is in the latched position and with at least 4 inches of belt webbing extended.
15.	The key is in the "on" or "start" position.
16.	The time duration of the warning light beginning with key "on" or "start" is
	Seconds: 6.0
17.	Complete the following table with the data from 4, 6, 12, and 16 to determine which option is used.

<table>
<thead>
<tr>
<th>Warning light</th>
<th>Warning light specification</th>
<th>Audible signal</th>
<th>Audible signal specification*</th>
</tr>
</thead>
<tbody>
<tr>
<td>S7.3 (a)(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belt latched</td>
<td>Item 16: 6</td>
<td>Item 12: 0</td>
<td>0 seconds**</td>
</tr>
<tr>
<td>& key on or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belt slowed</td>
<td>Item 8: 80 seconds</td>
<td>Item 4: 6</td>
<td>4 to 8 seconds</td>
</tr>
<tr>
<td>& key on or</td>
<td>minimum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S7.3 (a)(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belt latched</td>
<td>Item 16: 6</td>
<td>Item 12: 0</td>
<td>0 seconds**</td>
</tr>
<tr>
<td>& key on or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belt slowed</td>
<td>Item 8: 4 to 6 seconds</td>
<td>Item 4: 6</td>
<td>4 to 8 seconds</td>
</tr>
<tr>
<td>& key on or</td>
<td>Stays On</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 49 USC 30124 does NOT allow an audible signal to operate for more than 8 seconds.
** 8 seconds means the light or audible signal are NOT permitted to operate under these conditions.
See 7/12/90 Interpretation to Patrick Raher of Hogan and Hartson

47
18. The seat belt warning system meets the requirements of (manufacturers may comply with either section)

- [x] S7.3 (a)(1)
- [x] S7.3 (a)(2)
- [] FAIL – does not meet the requirements of either option

19. Note wording of visual warning: (S7.3(a)(1) and S7.3(a)(2))

- [x] Fasten seat belts
- [] Fasten belts
- [x] Symbol 101
- [] FAIL – does not used any of the above wording or symbol

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 1/28/04
DATA SHEET 10
BELT CONTACT FORCE (S7.4.3)

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
Test Technician: Wayne Dahike
NHTSA No.: C40303
Test Date: 1/26/04

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Left Front Driver

1. Does the vehicle incorporate a webbing tension-relieving device?
 - No, continue with this check sheet

2. Position the seat's adjustable lumbar support so that the lumbar support is in its lowest, retracted or deflected adjustment position. (S8.1.3)
 - N/A, no lumbar adjustment

3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - N/A, no additional support adjustment

4. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - N/A, no independent fore-aft seat cushion adjustment

5. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 - N/A, no independent seat cushion height adjustment

6. Put the seat in its full rearward position. (S16.2.10.3.1)
 - N/A, the seat does not have a fore-aft adjustment

7. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S16.2.10.3.1)
 - N/A, no seat height adjustment

8. Draw a horizontal reference line on the side of the seat cushion.

9. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one dentat at a time and mark each dentat as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions.

 Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the midpoint), and R for full rearward.

 - N/A, the seat does not have a fore-aft adjustment

10. Using only the controls that change the seat in the fore-aft direction, place the seat in the full rearward position and then place the seat in the middle fore-aft position for this test. (S8.1.2)
Mid position

If there is no mid position, put the seat in the closest adjustment position to the rear of the midpoint. Describe the location of the seat:

☐ N/A, no adjustments

Reference line angle as tested: Zero

12. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S16.2.10.3.2.1)

☐ N/A, no seat back angle adjustment

Manufacturer's design seat back angle: 12

Tested seat back angle: 12

13. Position the test dummies according to dummy position placement instructions in Appendix B and include the positioning check sheets.

14. Fasten the seat belt latch.

15. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest.

16. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (S10.8) Using a force measuring gage with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy's chest exerted by the belt webbing.

Contact Force (lb): 0.56

☐ 0.0 to 0.7 pounds – Pass
☐ Greater than 0.7 pounds – Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 1/26/04
DATA SHEET 10
BELT CONTACT FORCE (S7.4.3)

Test Vehicle: 2004 Dodge Durango NHTSA No.: C40303
Test Program: FMVSS 208 Compliance Test Date: 1/28/04
Test Technician: Wayne Dahlke

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

<table>
<thead>
<tr>
<th>DESIGNATED SEATING POSITION:</th>
<th>Right Front Passenger</th>
</tr>
</thead>
</table>

1. Does the vehicle incorporate a webbing tension-relieving device?
 - □ Yes, this form is complete
 - □ No, continue with this check sheet
2. Position the seat's adjustable lumbar support so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.5)
 - □ N/A, no lumbar adjustment
3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - □ N/A, no additional support adjustment
4. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - □ N/A, no independent fore-aft seat cushion adjustment
5. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 - □ N/A, no independent seat cushion height adjustment
6. Put the seat in its full rearward position. (S16.2.10.3.1)
 - □ N/A, the seat does not have a fore-aft adjustment
7. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S16.2.10.3.1)
 - □ N/A, no seat height adjustment
8. Draw a horizontal reference line on the side of the seat cushion.
9. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions.
 Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the midpoint), and R for full rearward.
 - □ N/A, the seat does not have a fore-aft adjustment
10. Using only the controls that change the seat in the fore-aft direction, place the seat in the full rearward position and then place the seat in the middle fore-aft position for this test. (S8.1.2)
X Mid position
 If there is no mid position, put the seat in the closest adjustment position to the rear of the midpoint. Describe the location of the seat:

X 11. If seat adjustments other than fore-aft are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal. (S16.2.10.3.2.1)

X N/A, no adjustments
 Reference line angle as tested: Zero

X 12. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.5.4.1 (b) and S8.1.3)

X N/A, no seat back angle adjustment
 Manufacturer's design seat back angle: 12
 Tested seat back angle: 12

X 13. Position the test dummies according to dummy position placement instructions in Appendix B and include the positioning check sheets.

X 14. Fasten the seat belt latch.

X 15. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest.

X 16. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal plane on the dummy's chest. At that point pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (S10.8) Using a force measuring gage with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy's chest exerted by the belt webbing.

X Contact Force (lb): 0.43
 0.0 to 0.7 pounds – Pass
 Greater than 0.7 pounds - Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature:
Date: 1/28/04
DATA SHEET 10
BELT CONTACT FORCE (§7.4.3)

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
Test Technician: Wayne Dahlke
NHTSA No.: CAD303
Test Date: 1/28/04

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Left Rear Passenger

1. Does the vehicle incorporate a webbing tension-relieving device?
 □ Yes, this form is complete
 □ No, continue with this check sheet

2. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (§8.1.9)
 □ N/A, no lumbar adjustment

3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (§16.2.10.2)
 □ N/A, no additional support adjustment

4. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (§16.2.10.2)
 □ N/A, no independent fore-aft seat cushion adjustment

5. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (§16.2.10.3.1)
 □ N/A, no independent seat cushion height adjustment

6. Put the seat in its full rearward position. (§16.2.10.3.1)
 □ N/A, the seat does not have a fore-aft adjustment

7. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (§16.2.10.3.1)
 □ N/A, no seat height adjustment

8. Draw a horizontal reference line on the side of the seat cushion.
 □ N/A, the seat does not have a fore-aft adjustment

9. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the midpoint), and R for full rearward.
 □ N/A, the seat does not have a fore-aft adjustment

10. Using only the controls that change the seat in the fore-aft direction, place the seat in the full rearward position and then place the seat in the middle fore-aft position for this test. (§8.1.2)
Mid position
If there is no mid position, put the seat in the closest adjustment position to the rear of the midpoint. Describe the location of the seat; Not adjustable

11. If seat adjustments other than fore-aft are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal. (S16.2.10.3.2.1)

X N/A, no adjustments
Reference line angle as tested: N/A

12. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.3.4.1 (b) and S6.1.3)

X N/A, no seat back angle adjustment
Manufacturer's design seat back angle:

X Tested seat back angle:

13. Position the test dummies according to dummy position placement instructions in Appendix B and include the positioning check sheets.

X 14. Fasten the seat belt latch.

X 15. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest.

X 16. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (S10.8) Using a force measuring gage with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy's chest exerted by the belt webbing.

X Contact Force (lb): 0.4

X 0.0 to 0.7 pounds – Pass

Greater than 0.7 pounds – Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 1/28/04
DATA SHEET 10
BELT CONTACT FORCE (87.4.3)

Test Vehicle: 2004 Dodge Durango
NHTSA No.: C40303
Test Program: FMVSS 208 Compliance
Test Date: 7/28/04
Test Technician: Wayne Dahlke

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front
dashboard designated seating positions in passenger cars. Complete a form for each applicable
seat belt.

DESIGNATED SEATING POSITION: Center Rear Passenger

1. Does the vehicle incorporate a webbing tension-relieving device?
 - Yes, this form is complete
 - No, continue with this check sheet

2. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest,
 retracted or deflected adjustment position. (8.1.3)
 - N/A, no lumbar adjustment

3. Position any adjustable parts of the seat that provide additional support so that they are
 in the lowest or most open adjustment position. (S16.2.10.2)
 - N/A, no additional support adjustment

4. Position any adjustable parts of the seat that provide additional support so that they are
 in the lowest or most open adjustment position. (S16.2.10.2)
 - N/A, no independent fore-aft seat cushion adjustment

5. If the seat cushion adjusts fore and aft, independent of the seat back, set this
 adjustment to the full rearward position. (S16.2.10.3.1)
 - N/A, no Independent seat cushion height adjustment

6. Put the seat in its full rearward position. (S16.2.10.3.1)
 - N/A, the seat does not have a fore-aft adjustment

7. If the seat cushion height adjusts independent of the seat back, set this adjustment
 to the full down position. (S16.2.10.3.1)
 - N/A, no seat height adjustment

8. Draw a horizontal reference line on the side of the seat cushion.

9. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft
 seat positions. Mark the side of the seat and a reference position directly below on a
 part of the vehicle that does not adjust. For manual seats, move the seat forward
 one detent at a time and mark each detent as was done for the full rearward position.
 For power seats, mark only the full rearward, middle, and full forward positions.
 Label three of the positions with the following: F for full forward, M for mid-position (if
 there is no mid position, label the closest adjustment position to the rear of the mid-
 point); and R for full rearward.

10. Using only the controls that change the seat in the fore-aft direction, place the seat in the
 full rearward position and then place the seat in the middle fore-aft position for this test.
 (S8.1.2)
\[\square\text{Mid position}
\]
If there is no mid position, put the seat in the closest adjustment position to the rear of the midpoint. Describe the location of the seat: Not adjustable.

\[\xmark\text{11. If seat adjustments other than fore-aft are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal. (S16.2.10.3.0.2.1)}\]

\[\xmark\text{N/A, no adjustments}\]
Reference line angle as tested: N/A

\[\xmark\text{12. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.5.4.1 (b) and S8.1.3)}\]

\[\xmark\text{N/A, no seat back angle adjustment}\]
Manufacturer's design seat back angle:

Tested seat back angle:

\[\xmark\text{13. Position the test dummies according to dummy position placement instructions in Appendix B and include the positioning check sheets.}\]

\[\xmark\text{14. Fasten the seat belt latch.}\]

\[\xmark\text{16. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest.}\]

\[\xmark\text{16. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (S10.8) Using a force measuring gage with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy's chest exerted by the belt webbing.}\]

\[\xmark\text{Contact Force (lb): 0.45}\]

\[\xmark\text{0.0 to 0.7 pounds – Pass}\]

\[\square\text{Greater than 0.7 pounds - Fail}\]

REMARKS:

I certify that I have read and performed each instruction.

Signature: \underline{Wayne Johnson}

Date: 1/28/04
DATA SHEET 10
BELT CONTACT FORCE (S7.4.3)

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
Test Technician: Wayne Dahlke
NHTSA No.: C40303
Test Date: 1/28/04

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Right Rear Passenger

1. Does the vehicle incorporate a webbing tension-relieving device?
 [X] Yes, this form is complete
 [X] No, continue with this check sheet

2. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.5)
 [X] N/A, no lumbar adjustment

3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 [X] N/A, no additional support adjustment

4. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 [X] N/A, no independent fore- aft seat cushion adjustment

5. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 [X] N/A, no independent seat cushion height adjustment

6. Put the seat in its full rearward position. (S16.2.10.3.1)

7. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S16.2.10.3.1)
 [X] N/A, no seat height adjustment

8. Draw a horizontal reference line on the side of the seat cushion.

9. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the midpoint); and R for full rearward.

 [X] N/A, the seat does not have a fore-aft adjustment

10. Using only the controls that change the seat in the fore-aft direction, place the seat in the full rearward position and then place the seat in the middle fore-aft position for this test. (S8.1.2)
Mid position

If there is no mid position, put the seat in the closest adjustment position to the rear of the midpoint. Describe the location of the seat: Not adjustable.

11. If seat adjustments other than fore-aft are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal. (§16.2.10.3.2.1)

X N/A, no adjustments

Reference line angle as tested: N/A

12. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (§4.5.4.1 (b) and SB.1.3)

X N/A, no seat back angle adjustment

Manufacturer's design seat back angle:

 Tested seat back angle:

13. Position the test dummies according to dummy position placement instructions in Appendix B and include the positioning check sheets.

14. Fasten the seat belt latch.

15. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest.

16. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (§10.8) Using a force measuring gage with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy's chest exerted by the belt webbing.

X Contact Force (lb): 0.5

X 0.0 to 0.7 pounds – Pass

Greater than 0.7 pounds – Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature:

Date: 1/28/04
DATA SHEET 10
BELT CONTACT FORCE (§7.4.3)

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 205 Compliance
Test Technician: Wayne Dahike

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

<table>
<thead>
<tr>
<th>DESIGNATED SEATING POSITION: Left Third Row Passenger</th>
</tr>
</thead>
</table>

1. Does the vehicle incorporate a webbing tension-relieving device?
 - No, continue with this check sheet

2. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (§8.1.3)
 - N/A, no lumbar adjustment

3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (§16.2.10.2)
 - N/A, no additional support adjustment

4. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (§16.2.10.2)
 - N/A, no independent fore-aft seat cushion adjustment

5. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (§16.2.10.3.1)
 - N/A, no independent seat cushion height adjustment

6. Put the seat in its full rearward position. (§16.2.10.3.1)
 - N/A, the seat does not have a fore-aft adjustment

7. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (§16.2.10.3.1)
 - N/A, no seat height adjustment

8. Draw a horizontal reference line on the side of the seat cushion.

9. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the midpoint), and R for full rearward.

10. Using only the controls that change the seat in the fore-aft direction, place the seat in the full rearward position and then place the seat in the middle fore-aft position for this test. (§8.1.2)
11. If seat adjustments other than fore-aft are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal. (§16.2.10.3.2.1)
 X N/A, no adjustments
 Reference line angle as tested: N/A

12. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (§4.5.4.1(b) and §6.1.3)
 X N/A, no seat back angle adjustment
 Manufacturer's design seat back angle:
 Tested seat back angle:

13. Position the test dummies according to dummy position placement instructions in Appendix B and include the positioning check sheets.

14. Fasten the seat belt latch.

15. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest.

16. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (§10.8) Using a force measuring gage with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy's chest exerted by the belt webbing.
 X Contact Force (lb): 0.54
 X 0.0 to 0.7 pounds – Pass
 X Greater than 0.7 pounds – Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature:

Date: 1/28/04
DATA SHEET 10
BELT CONTACT FORCE (S7.4.3)

Test Vehicle: 2004 Dodge Durango
NHTSA No.: C40303
Test Program: FMVSS 208 Compliance
Test Date: 1/28/04
Test Technician: Wayne Dahlke

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

| DESIGNATED SEATING POSITION: | Right Third Row Passenger |

1. Does the vehicle incorporate a webbing tension-relieving device?
 - [X] Yes, this form is complete
 - [X] No, continue with this check sheet

2. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 - [X] N/A, no lumbar adjustment

3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - [X] N/A, no additional support adjustment

4. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - [X] N/A, no independent fore-aft seat cushion adjustment

5. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 - [X] N/A, no independent seat cushion height adjustment

6. Put the seat in its full rearward position. (S16.2.10.3.1)
 - [X] N/A, the seat does not have a fore-aft adjustment

7. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S16.2.10.3.1)
 - [X] N/A, no seat height adjustment

8. Draw a horizontal reference line on the side of the seat cushion.
 - [X] N/A, the seat does not have a fore-aft adjustment

9. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position.
 For power seats, mark only the full rearward, middle, and full forward positions.
 Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the mid-point), and R for full rearward.
 - [X] N/A, the seat does not have a fore-aft adjustment

10. Using only the controls that change the seat in the fore-aft direction, place the seat in the full rearward position and then place the seat in the middle fore-aft position for this test. (S8.1.2)
Mid position
If there is no mid position, put the seat in the closest adjustment position to the rear of the midpoint. Describe the location of the seat. Not adjustable

11. If seat adjustments other than fore-aft are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal. (S16.2.10.3.2.1)

X N/A, no adjustments
Reference line angle as tested: N/A

12. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.5.4.1 (b) and S8.1.3)

X N/A, no seat back angle adjustment
Manufacturer's design seat back angle:

Tested seat back angle:

13. Position the test dummies according to dummy position placement instructions in Appendix B and include the positioning check sheets.

X 14. Fasten the seat belt latch.

X 15. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest.

X 16. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (S10.8) Using a force measuring gage with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy's chest exerted by the belt webbing.

X Contact Force (lb): 0.54

X 0.0 to 0.7 pounds – Pass

Greater than 0.7 pounds – Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature:

Date: 1/28/04
DATA SHEET 14
LATCH PLATE ACCESS (S7.4.4)

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
Test Technician: Wayne Dahlke
NHTSA No.: C40393
Test Date: 1/28/04

Test all front outboard seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Left Front Driver

1. Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S1.3)
 X
 □ N/A, no lumbar adjustment

2. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 X
 □ N/A, no additional support adjustment

3. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 X
 □ N/A, no independent fore-and-aft seat cushion adjustment

4. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S16.2.10.3.1)
 X
 □ N/A, no independent seat cushion height adjustment

5. Put the seat in its full rearward position. (S16.2.10.3.1)
 X
 □ N/A, the seat does not have a fore-and-aft adjustment

6. If the seat height is adjustable, put it in the full down position. (S16.2.10.3.1)
 X
 □ N/A, no seat height adjustment

7. Draw a horizontal reference line on the side of the seat cushion.
 X
 X

8. Using only the controls that change the seat in the fore-and-aft direction, mark the fore-and-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the mid-point), and R for full rearward.
 □ N/A, the seat does not have a fore-and-aft adjustment.

9. Using only the controls that change the seat in the fore-and-aft direction, place the seat in the full rearward position and then place the seat in the forward most fore-and-aft position for this test. (S10.7)
 X

10. If seat adjustments, other than fore-and-aft, are present and the horizontal reference line is no longer horizontal, use these adjustments to maintain the reference line as closely as possible to the horizontal.
 □ N/A, no adjustments
11. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (94.5.4.1 (b) and 88.1.3)

☐ N/A, no seat back angle adjustment

Manufacturer's design seat back angle: 12

Tested seat back angle: 12

12. Position the test dummy using the procedures in Appendix A. (Some modifications to the positioning procedure may need to be made because the seat is in its forward most position. Note on the Appendix A positioning check sheet any deviations necessary to position the Part 572, Subpart E dummy.) Include the positioning check sheet with this form.

13. Position the adjustable seat belt anchorage in the manufacturer's nominal design position for a 50th percentile adult male occupant.

14. Attach the inboard reach string to the base of the head following the instructions on Figure 3.

15. Attach the outboard reach string to the torso sheath following the instructions on Figure 3.

16. Place the latch plate in the stowed position.

17. Extend inboard reach string in front of the dummy and then backward and outboard to the latch plate to generate an arc of the reach envelope of the test dummy's arms. Is the latch plate within the reach envelope?

☐ Yes - Pass

☐ No

18. Extend outboard reach string in front of the dummy and then backward and outboard to the latch plate to generate an arc of the reach envelope of the test dummy's arms. Is the latch plate within the reach envelope?

☐ Yes - Pass

☐ No

19. Is the latch plate within the inboard (Item 17) or outboard (Item 18) reach envelope?

☐ Yes - Pass

☐ No - Fail

20. Using the clearance test block, specified in Figure 4, is there sufficient clearance between the vehicle seat and the side of vehicle interior to allow the test block to move unhindered to the latch plate or buckle?

☐ Yes - Pass

☐ No - Fail
Figure 3. Location of Anchoring Points for Latchplate Reach Limiting Chains or Strings to Test for Latchplate Accessibility Using Subpart B Test Device
REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 1/28/04
DATA SHEET 11
LATCH PLATE ACCESS (57.4.4)

Test Vehicle: 2004 Dodge Durango NHTSA No.: C40303
Test Program: FMVSS 208 Compliance Test Date: 1/28/04
Test Technician: Wayne Dahlke

Test all front outboard seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Right Front Passenger

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (§16.3.1)</td>
</tr>
<tr>
<td>X</td>
<td>N/A, no lumbar adjustment</td>
</tr>
<tr>
<td>2.</td>
<td>Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (§16.2.10.2)</td>
</tr>
<tr>
<td>X</td>
<td>N/A, no additional support adjustment</td>
</tr>
<tr>
<td>3.</td>
<td>If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (§16.2.10.3.1)</td>
</tr>
<tr>
<td>X</td>
<td>N/A, no independent fore-aft seat cushion adjustment</td>
</tr>
<tr>
<td>4.</td>
<td>If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (§16.2.10.3.1)</td>
</tr>
<tr>
<td>X</td>
<td>N/A, no independent seat cushion height adjustment</td>
</tr>
<tr>
<td>5.</td>
<td>Put the seat in its full rearward position. (§16.2.10.3.1)</td>
</tr>
<tr>
<td>X</td>
<td>N/A, the seat does not have a fore-aft adjustment</td>
</tr>
<tr>
<td>6.</td>
<td>If the seat height is adjustable, put it in the full down position. (§16.2.10.3.1)</td>
</tr>
<tr>
<td>X</td>
<td>N/A, no seat height adjustment</td>
</tr>
<tr>
<td>7.</td>
<td>Draw a horizontal reference line on the side of the seat cushion</td>
</tr>
<tr>
<td>8.</td>
<td>Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the mid-point), and R for full rearward.</td>
</tr>
<tr>
<td>X</td>
<td>N/A, the seat does not have a fore-aft adjustment</td>
</tr>
<tr>
<td>9.</td>
<td>Using only the controls that change the seat in the fore-aft direction, place the seat in the full rearward position and then place the seat in the forward most fore-aft position for this test. (§16.2.7)</td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>If seat adjustments, other than fore-aft, are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal.</td>
</tr>
<tr>
<td>X</td>
<td>N/A, no adjustments</td>
</tr>
</tbody>
</table>
Reference line angle as tested: Zero

The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (54.5.4.1(b) and 58.1.3)

☐ N/A, no seat back angle adjustment
Manufacturer's design seat back angle: 12

Tested seat back angle: 12

12. Position the test dummy using the procedures in Appendix A. (Some modifications to the positioning procedure may need to be made because the seat is in its forward most position. Note on the Appendix A positioning check sheet any deviations necessary to position the Part 572, Subpart E dummy.) Include the positioning check sheet with this form.

13. Position the adjustable seat belt anchorages in the manufacturer's nominal design position for a 50th percentile adult male occupant.

14. Attach the inboard reach string to the base of the head following the instructions on Figure 3.

15. Attach the outboard reach string to the torso sheath following the instructions on Figure 3.

16. Place the latch plate in the stowed position.

17. Extend inboard reach string in front of the dummy and then backward and outboard to the latch plate to generate an arc of the reach envelope of the test dummy's arms. Is the latch plate within the reach envelope?

☐ Yes – Pass
☐ No

18. Extend outboard reach string in front of the dummy and then backward and outboard to the latch plate to generate an arc of the reach envelope of the test dummy's arms. Is the latch plate within the reach envelope?

☐ Yes – Pass
☐ No

19. Is the latch plate within the inboard (item 17) or outboard (item 18) reach envelope?

☐ Yes – Pass
☐ No – Fail

20. Using the clearance test block, specified in Figure 4, is there sufficient clearance between the vehicle seat and the side of vehicle interior to allow the test block to move unhindered to the latch plate or buckle?

☐ Yes – Pass
☐ No – Fail
Figure 3. Location of Anchoring Points for Latchplate Reach Limiting Chains or Strings to Test for Latchplate Accessibility Using Subpart B Test Device.
REMARKS:

I certify that I have read and performed each Instruction.

Signature: [Signature]

Date: 1/28/04
DATA SHEET 12
SEAT BELT RETRACTION (S7.4.5)

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
Test Technician: Wayne Dahlke
NHTSA No.: C40303
Test Date: 1/28/04

Test all front outboard seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

<table>
<thead>
<tr>
<th>DESIGNATED SEATING POSITION:</th>
<th>Left Front Driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>GVWR:</td>
<td>2994 kg</td>
</tr>
</tbody>
</table>

1. Is the vehicle a passenger car or walk-in van-type vehicle?
 - [X] Yes, this form is complete
 - [X] No

2. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S6.1.3)
 - [X] N/A, no lumbar adjustment

3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - [X] N/A, no additional support adjustment

4. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 - [X] N/A, no independent fore-aft seat cushion adjustment

5. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S16.2.10.3.1)
 - [X] N/A, no independent seat cushion height adjustment

6. Put the seat in its full rearward position.
 - [X] N/A, the seat does not have a fore-aft adjustment

7. If the seat height is adjustable, put it in the full down position. (S8.1.2)
 - [X] N/A, no seat adjustment

8. Draw a horizontal line on the side of the seat cushion.
 - [X] N/A, the seat does not have a fore-aft adjustment

9. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the mid-point), and R for full rearward.
 - [X] N/A, the seat does not have a fore-aft adjustment

10. Using only the controls that change the seat in the fore-aft direction, place the seat in the middle fore-aft position. (S8.1.2)

 - [X] N/A, the seat does not have a fore-aft adjustment

 If there is no mid position, put the seat in the closest adjustment position to the rear of the midpoint. Describe the location of the seat.
11. If seat adjustments, other than fore-aft, are present and the reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal. *(S16.2.10.3.2)*

N/A – no seat adjustment

Reference angle as tested: Zero

12. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. *(S8.1.3)*

N/A – no seat back angle adjustment

Manufacturer's design seat back angle: 12

Tested seat back angle: 12

13. If adjustable, set the head restraint at the full up and full forward position. *(S8.1.3)* Any adjustment of the head restraint shall be used to position it full forward. For example, if it rotates, rotate it such that the head restraint extends as far forward as possible.

N/A – no head restraint adjustment

14. Place any adjustable seat belt anchorages at the vehicle manufacturer's nominal design position for a 50th percentile adult male occupant *(S8.1.3)*

N/A – no adjustable upper seat belt anchorage

Manufacturer's specified anchorage position: 3 of 5

Tested anchorage position: 3 of 5

15. Is the driver seat a bucket seat?

Yes, go to 15.1 and skip 15.2.

No, go to 15.2 and skip 15.1

15.1 Bucket seats - Locate and mark a vertical Plane B through the longitudinal centerline of the seat. The longitudinal centerline of a bucket seat cushion is determined at the widest part of the seat cushion. Measure perpendicular to the longitudinal centerline of the vehicle.

Record the width of the seat: 520 mm

Record the distance from the edge of the seat to Plane B: 260 mm

15.2 Bench seats (including split bench seats):

- Driver seat: Locate and mark a vertical Plane B through the center of the steering wheel parallel to the vehicle longitudinal centerline.

- Passenger seat: Locate and mark a vertical longitudinal Plane B on the seat that is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel.

Distance from the vehicle centerline to the center of the steering wheel:

Distance from the vehicle centerline to Plane B:

16. Stow outboard armrests that are capable of being stowed. *(S7.4.5)*

17. Remove the arms of a Subpart E dummy and place it in the seat such that the mid sagittal plane is coincident with Plane B and the upper torso rests against the seat back. *(S10.4.1.1 & S10.4.1.2)*

18. Rest the thighs on the seat cushion
19. Position the H-point of the dummy within 0.5 inch of the vertical dimension and 0.5 inch of the horizontal dimension of a point 0.25 inch below the H-point determined by using the equipment and procedures specified in SAE J826 (APR 1980). (S10.4.2.1) Then measure the pelvic angle with respect to the horizontal using the pelvic angle gage. Adjust the dummy position until these three measurements are within the specifications. (S10.4.2.1 and S10.4.2.2)

X Horizontal inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)
X Vertical inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)
X Pelvic angle (20° to 25°)
X Vertical inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)
X Pelvic angle (20° to 25°) (S10.4.2.2)

20. Set the distance between the outboard knee clevis flange surfaces at 10.8 inches.
X Measured distance (10.6 inches) (S10.5): 10.5

21. To the extent practicable keep the thighs and the legs in a vertical plane (S10.5) and rest the thighs on the seat cushion while resting the feet on the floorpan or toe board.

22. Fasten the seat belt around the dummy.

23. Remove all slack from the lap belt portion. (S10.9)

24. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this four times. (S10.9)

25. Apply a 2 to 4 pound tension load to the lap belt. (S10.9)
X Pound load applied: 3

26. Is the belt system equipped with a tension relieving device?

☐ Yes, continue
X No, go to 27

26.1 Introduce the maximum amount of slack into the upper torso belt that is recommended by the vehicle manufacturer in the vehicle owner's manual. (S10.9). Go to 25.

27. Check the statement that applies to this test vehicle:

27.1 Check the statement that applies to this test vehicle:
The torso and lap belt webbing of the seat belt system automatically retracts to a stowed position when the adjacent vehicle door is in an open position and the seat belt latch plate is released.

☐ Pass

27.2 The torso and lap belt webbing of the seat belt system automatically retracts when the seat belt latch plate is released.
X Pass

27.3 Neither A or B apply

☐ Fail

28. With the webbing and hardware in the stowed position are the webbing and hardware prevented from being pinched when the door is closed?
X Yes – Pass

☐ No – Fail
29. If this test vehicle has an open body (without doors) and has a belt system with a tension-relieving device, does the belt system fully retract when the tension-relieving device is deactivated?

X N/A
- Yes - Pass
- No - Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 1/28/04
DATA SHEET 12
SEAT BELT RETRACTION (§7.4.5)

Test Vehicle: 2004 Dodge Durango NHTSA No.: C40383
Test Program: FMVSS 208 Compliance Test Date: 1/28/04
Test Technician: Wayne Dahike

Test all front outboard seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

<table>
<thead>
<tr>
<th>DESIGNATED SEATING POSITION:</th>
<th>Right Front Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>GVWR:</td>
<td>2994 kg</td>
</tr>
</tbody>
</table>

1. Is the vehicle a passenger car or walk-in van-type vehicle?
 - No

2. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (§8.1.3)
 - N/A, no lumber adjustment

3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (§16.2.10.2)
 - N/A, no additional support adjustment

4. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (§16.2.10.3.1)
 - N/A, no independent fore-aft seat cushion adjustment

5. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (§16.2.10.3.1)
 - N/A, no independent seat cushion height adjustment

6. Put the seat in its full rearward position.
 - N/A, the seat does not have a fore-aft adjustment

7. If the seat height is adjustable, put it in the full down position. (§8.1.2)
 - N/A, no seat adjustment

8. Draw a horizontal line on the side of the seat cushion.

9. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, mid, and full forward positions. Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the mid-point), and R for full rearward.
 - N/A, the seat does not have a fore-aft adjustment

10. Using only the controls that change the seat in the fore-aft direction, place the seat in the middle fore-aft position. (§8.1.2)
 - If there is no mid position, put the seat in the closest adjustment position to the rear of the midpoint. Describe the location of the seat.
11. If seat adjustments, other than fore-aft, are present and the reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal. (S16.2.10.3.2)

N/A – no seat adjustment

Reference angle as tested: Zero

12. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S8.1.3)

N/A – no seat back angle adjustment

Manufacturer's design seat back angle: 12

Tested seat back angle: 12

13. If adjustable, set the head restraint at the full up and full forward position. (S8.1.3) Any adjustment of the head restraint shall be used to position it full forward. For example, if it rotates, rotate it such that the head restraint extends as far forward as possible.

N/A – no head restraint adjustment

14. Place any adjustable seat belt anchorages at the vehicle manufacturer's nominal design position for a 50th percentile adult male occupant (S8.1.3)

N/A – no adjustable upper seat belt anchorage

Manufacturer's specified anchorage position: 3 of 5

Tested anchorage position: 3 of 5

15. Is the driver seat a bucket seat?

Yes, go to 15.1 and skip 15.2.

No, go to 15.2 and skip 15.1

15.1 Bucket seats - Locate and mark a vertical Plane B through the longitudinal centerline of the seat. The longitudinal centerline of a bucket seat cushion is determined at the widest part of the seat cushion. Measure perpendicular to the longitudinal centerline of the vehicle.

Record the width of the seat: 520 mm

Record the distance from the edge of the seat to Plane B: 260 mm

15.2 Bench seats (including split bench seats):

Driver seat: Locate and mark a vertical Plane B through the center of the steering wheel parallel to the vehicle longitudinal centerline.

Passenger seat: Locate and mark a vertical longitudinal Plane B on the seat that is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel.

Distance from the vehicle centerline to the center of the steering wheel:

Distance from the vehicle centerline to Plane B:

16. Stow outboard armrests that are capable of being stowed. (S7.4.5)

17. Remove the arms of a Subpart E dummy and place it in the seat such that the midsagittal plane is coincident with Plane B and the upper torso rests against the seat back. (S10.4.1.1 & S10.4.1.2)

18. Rest the thighs on the seat cushion
Position the H-point of the dummy within 0.5 inch of the vertical dimension and 0.5 inch of the horizontal dimension of a point 0.25 inch below the H-point determined by using the equipment and procedures specified in SAE J828 (APR 1980). (S10.4.2.1) Then measure the pelvic angle with respect to the horizontal using the pelvic angle gage. Adjust the dummy position until these three measurements are within the specifications. (S10.4.2.1 and S10.4.2.2)

Horizontal inches from the point 0.25 below the determined H-point (0.5 inch max.)
(S10.4.2.1)

Vertical inches from the point 0.25 below the determined H-point (0.5 inch max.)
(S10.4.2.1)

Pelvic angle (20° to 25°)
(S10.4.2.2.1)

Pelvic angle (20° to 25°)
(S10.4.2.2)

Set the distance between the outboard knee clavic flange surfaces at 10.6 inches.

X Measured distance (10.6 inches) (S10.5): 10.5

To the extent practicable keep the thighs and the legs in a vertical plane (S10.5) and rest the thighs on the seat cushion while resting the feet on the floorpan or toe board.

X Fasten the seat belt around the dummy.

X Remove all slack from the lap belt portion. (S10.9)

Pull the upper torso webbing out of the retractor and allow it to retract; repeat this four times. (S10.9)

X Apply a 2 to 4 pound tension load to the lap belt. (S10.9)

Pound load applied: 3

Is the belt system equipped with a tension relieving device?

- [] Yes, continue
- [] No, go to 27

X Introduce the maximum amount of slack into the upper torso belt that is recommended by the vehicle manufacturer in the vehicle owner's manual. (S10.9). Go to 25.

Check the statement that applies to this test vehicle:

- [] Pass

X The torso and lap belt webbing of the seat belt system automatically retracts to a stowed position when the adjacent vehicle door is in an open position and the seat belt latch plate is released.

X The torso and lap belt webbing of the seat belt system automatically retracts when the seat belt latch plate is released.

X Neither A or B apply

X Fall

X With the webbing and hardware in the stowed position are the webbing and hardware prevented from being pinched when the door is closed?

- [] Yes – Pass
- [] No – Fail
If this test vehicle has an open body (without doors) and has a belt system with a tension-relieving device, does the belt system fully retract when the tension-relieving device is deactivated?

- [X] N/A
- [] Yes – Pass
- [] No – Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 1/28/04
DATA SHEET 13
SEAT BELT GUIDES AND HARDWARE (S7.4.6)

Test Vehicle: 2004 Dodge Durango NHTSA No.: C40303
Test Program: FMVSS 208 Compliance Test Date: 1/28/04
Test Technician: Wayne Dahlike

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

<table>
<thead>
<tr>
<th>DESIGNATED SEATING POSITION:</th>
<th>Left Front Driver</th>
</tr>
</thead>
</table>

1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 2

2. Is the seat removable? (S7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 3

3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 4

4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
 - Yes, go to 5
 - No, this form is complete

5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
 - Yes – Pass
 - No – Fail

 Identify the part(s) on top or above the seat.

 - Seat belt latch plate
 - Buckle
 - Seat belt webbing

6. Are the remaining two seat belt parts accessible under normal conditions?
 - Yes – Pass
 - No – Fail

7. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (S7.4.6.2)
8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

10. Is the inboard receptacle end of the seat belt assembly, installed in the front outward designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
 - Yes – Pass
 - No – Fail
 - N/A – Rear seat

REMARKS:
I certify that I have read and performed each instruction.

Signature: ____________________________
Date: 1/28/04
DATA SHEET 13

SEAT BELT GUIDES AND HARDWARE (S7.4.6)

Test Vehicle: 2004 Dodge Durango
NHTSA No.: C40303
Test Program: FMVSS 208 Compliance
Test Date: 1/28/04
Test Technician: Wayne Dahike

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DErIGNATED SEATING POSITION: Right Front Passenger

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1(b))</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Yes, this form is complete</td>
</tr>
<tr>
<td>X</td>
<td>No, go to 2</td>
</tr>
</tbody>
</table>

2.	Is the seat removable? (S7.4.6.1(b))
X	X
	Yes, this form is complete
X	No, go to 3

3.	Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
X	X
	Yes, this form is complete
X	No, go to 4

4.	Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
X	X
	Yes, go to 6
X	No, this form is complete

5.	Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
	Yes – Pass
X	No – Fail

Identify the part(s) on top or above the seat.

- Seat belt latch plate
- Buckle
- Seat belt webbing

6.	Are the remaining two seat belt parts accessible under normal conditions?
	Yes – Pass
X	No – Fail

7.	The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (S7.4.6.2)
X	X
	Yes – Pass
X	No – Fail
8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.8.2)
 - Yes – Pass
 - No – Fail

9. The buckle and latch plate do not pass through the guides or conduits provided and fail behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.8.2)
 - Yes – Pass
 - No – Fail

10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.8.2)
 - Yes – Pass
 - No – Fail
 - N/A – Rear seat

REMARKS:

I certify that I have read and performed each instruction.

Signature: ____________________________

Date: 1/28/04
DATA SHEET 13
SEAT BELT GUIDES AND HARDWARE (S7.4.6)

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
Test Technician: Wayne Dahke

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Left Rear Passenger

1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 2

2. Is the seat removable? (S7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 3

3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 4

4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
 - Yes, go to 5
 - No, this form is complete

5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
 - Yes - Pass
 - No - Fail
 - Identify the part(s) on top or above the seat:
 - Seat belt latch plate
 - Buckle
 - Seat belt webbing

6. Are the remaining two seat belt parts accessible under normal conditions?
 - Yes - Pass
 - No - Fail

7. The buckle and latch plate do not pass through the guides or conduits provided and fail behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (S7.4.6.2)
 - Yes - Pass
 - No - Fail

83
8. The buckles and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.8.2)
 [] Yes – Pass
 [] No – Fail

9. The buckles and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.8.2)
 [] Yes – Pass
 [] No – Fail

10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.8.2)
 [] Yes – Pass
 [] No – Fail
 [] N/A – Rear seat

REMARKS:

I certify that I have read and performed each instruction.

Signature:

Date: 1/28/04
DATA SHEET 13
SEAT BELT GUIDES AND HARDWARE (S7.4.6)

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
Test Technician: Wayne Dahlke

NHTSA No.: C40303
Test Date: 1/26/04

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Center Rear Passenger

1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 2

2. Is the seat removable? (S7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 3

3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 4

4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
 - Yes, go to 5
 - No, this form is complete

5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
 - Yes — Pass
 - No — Fail
 Identify the part(s) on top or above the seat.
 - Seat belt latch plate
 - Buckle
 - Seat belt webbing

6. Are the remaining two seat belt parts accessible under normal conditions?
 - Yes — Pass
 - No — Fail

7. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (S7.4.6.2)
 - Yes — Pass
 - No — Fail
8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
 - Yes – Pass
 - No – Fail
 - N/A – Rear seat

REMARKS:
I certify that I have read and performed each instruction.

Signature: [Signature]
Date: 1/28/04
DATA SHEET 13

SEAT BELT GUIDES AND HARDWARE (S7.4.6)

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
Test Technician: Wayne Dahike

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Right Rear Passenger

1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1(b))
 - [X] Yes, this form is complete
 - [] No, go to 2

2. Is the seat removable? (S7.4.6.1(b))
 - [] Yes, this form is complete
 - [] No, go to 3

3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.8.1(b))
 - [] Yes, this form is complete
 - [] No, go to 4

4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
 - [] Yes, go to 5
 - [] No, this form is complete

5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
 - [] Yes - Pass
 - [] No - Fail

 Identify the part(s) on top or above the seat.
 - [] Seat belt latch plate
 - [] Buckle
 - [] Seat belt webbing

6. Are the remaining two seat belt parts accessible under normal conditions?
 - [] Yes - Pass
 - [] No - Fail

7. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unatched. (S7.4.6.2)
8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
 - Yes – Pass
 - No – Fail
 - N/A – Rear seat

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]
Date: 1/25/04
DATA SHEET 13
SEAT BELT GUIDES AND HARDWARE (S7.4.6)

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
Test Technician: Wayne Dahike

NHTSA No.: C40303
Test Date: 1/28/04

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

<table>
<thead>
<tr>
<th>DESIGNATED SEATING POSITION:</th>
<th>Left Third Row Passenger</th>
</tr>
</thead>
</table>

1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1(b))
 - [x] Yes, this form is complete
 - [] No, go to 2

2. Is the seat removable? (S7.4.6.1(b))
 - [x] Yes, this form is complete
 - [] No, go to 3

3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
 - [x] Yes, this form is complete
 - [] No, go to 4

4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
 - [] Yes, go to 5
 - [] No, this form is complete

5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
 - [] Yes – Pass
 - [] No – Fail
 - Identify the part(s) on top or above the seat.
 - [] Seat belt latch plate
 - [] Buckle
 - [] Seat belt webbing

6. Are the remaining two seat belt parts accessible under normal conditions?
 - [] Yes – Pass
 - [] No – Fail

7. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (S7.4.6.2)
 - [] Yes – Pass
 - [] No – Fail
8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
 [] Yes – Pass
 [] No – Fail

9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)
 [] Yes – Pass
 [] No – Fail

10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
 [] Yes – Pass
 [] No – Fail
 [] N/A – Rear seat

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 1/28/04
DATA SHEET 13
SEAT BELT GUIDES AND HARDWARE (§7.4.6)

Test Vehicle: 2004 Dodge Durango NHTSA No.: C40303
Test Program: FMVSS 208 Compliance Test Date: 1/28/04
Test Technician: Wayne Dehike

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Right Third Row Passenger

1. Is the seat cushion movable so that the seat back serves a function other than seating? (§7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 2

2. Is the seat removable? (§7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 3

3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (§7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 4

4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (§7.4.6.1(a))
 - Yes, go to 5
 - No, this form is complete

5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (§7.4.6.1(a))
 - Yes - Pass
 - No - Fall
 - Identify the part(s) on top or above the seat.
 - Seat belt latch plate
 - Buckle
 - Seat belt webbing

6. Are the remaining two seat belt parts accessible under normal conditions?
 - Yes - Pass
 - No - Fall

7. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (§7.4.6.2)
 - Yes - Pass
 - No - Fall
8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.8.2)
 - Yes – Pass
 - No – Fail

9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.8.2)
 - Yes – Pass
 - No – Fail

10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.8.2)
 - Yes – Pass
 - No – Fail
 - N/A – Rear seat

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 1/28/04
DATA SHEET 14

MARKING OF REFERENCE POINTS FOR VARIOUS TEST POSITIONS AND POINTS

<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2004 Dodge Durango</th>
<th>NHTSA No.:</th>
<th>C49303</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program:</td>
<td>FMVSS 208 Compliance</td>
<td>Test Date:</td>
<td>4/1/04</td>
</tr>
<tr>
<td>Test Technician:</td>
<td>Erac Peschman</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Driver Designated Seating Position:
 - [X] 1.1 Position the seat's adjustable lumbar supports so that the lumbar supports are in the lowest, retracted or deflated adjustment positions. (S16.2.10.1)
 - [] N/A - No lumbar adjustment
 - [X] 1.2 Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position (S16.2.10.2)
 - [X] N/A - No additional support adjustment
 - [X] 1.3 Mark a point (seat cushion reference point) on the side of the seat cushion that is between 150 mm and 250 mm from the front edge of the seat cushion.
 - [X] 1.4 Draw a line (seat cushion reference line) through the seat cushion reference point.
 - [X] 1.5 Using only those controls that primarily move the seat in the fore-aft direction, move the seat cushion reference point to the rearmost position.
 - [X] 1.6 If the seat cushion adjusts fore-aft, independent of the seat belt, use only those controls that primarily move the seat cushion in the fore-aft direction to move the seat cushion reference point to the rearmost position (S16.2.10.3)
 - [X] N/A - No independent fore-aft seat cushion adjustment
 - [X] 1.7 Using any part of any control, other than the parts just used for fore-aft positioning, determine the range of angles of the seat cushion reference line and set the seat cushion reference line at the mid-angle.

 - Maximum Angle: (Fwd Up) 3.6 Degrees
 - Minimum Angle: (Fwd Down) 7.7 Degrees
 - Mid-angle: (Fwd Down) 2.0 Degrees
 - [X] 1.8 If the seat and/or seat cushion height is adjustable, use any part of any control other than those which primarily move the seat or seat cushion fore-aft, to put the seat cushion reference point in its lowest position with the seat cushion reference line angle at the mid-angle found in 1.7.
 - [] N/A - No seat height adjustment
 - [X] 1.9 Using only those controls that primarily move the seat in the fore-aft direction, verify the seat is in the rearmost position.
 - [X] 1.10 Using only those controls that primarily move the seat in the fore-aft direction, mark for future reference the fore-aft seat positions. Mark each position so that there is a visual indication when the seat is at a particular position. For manual seats, move the seat forward one detent at a time and mark each detent. For power seats, mark only the rearmost, middle, and foremost positions. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the closest adjustment position to the rear of the mid-point), and R for rearmost.
 - [X] 1.11 Use only those controls that primarily move the seat in the fore-aft direction to place the seat in the rearmost position.
1.12 Using any controls, other than the controls that primarily move the seat and/or seat cushion in the fore-aft direction, find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line at the mid-angle determined in 1.7.

1.13 Using only the controls that primarily move the seat and/or seat cushion in the fore-aft direction, place the seat in the mid-fore-aft position.

1.14 Using any controls, other than the controls that primarily move the seat in the fore-aft direction, find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line at the mid-angle determined in 1.7.

1.15 Using only the controls that change the seat in the fore-aft direction, place the seat in the foremost position.

1.16 Using any controls, other than the controls that primarily move the seat in the fore-aft direction, find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line at the mid-angle determined in 1.7.

1.17 Visually mark for future reference the seat back angle, if adjustable, at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer.

☐ N/A – No seat back angle adjustment

Manufacturer's design seat back angle: 12

1.18 Is the seat a bucket seat?

☐ Yes, go to 1.18.1 and skip 1.18.2

☐ No, go to 1.18.2 and skip 1.18.1

1.18.1 Bucket seats:

Locate and mark for future reference the longitudinal centerline of the seat cushion. The longitudinal centerline of a bucket seat cushion is determined at the widest part of the seat cushion. Measure perpendicular to the longitudinal centerline of the vehicle. (S16.3.1.10)

Record the width of the seat cushion: 520 mm

One half the width of the seat cushion is: 260 mm

Record the distance from the edge of the seat cushion to the seat mark: 200 mm

1.18.2 Bench seats:

☐ Locate and mark for future reference the longitudinal line on the seat cushion that marks the longitudinal vertical plane through the centerline of the steering wheel.

2. Passenger Designated Seating Position

2.1 Is the seat adjustable independent of the driver seating position?

☐ Yes, go to 2.2

☐ No, go to 2.18

2.2 Position the seat's adjustable lumbar supports so that the lumbar supports are in the lowest, retracted or deflated adjustment positions (S16.2.10.1, S20.1.9.1, S22.1.7.1)

☐ N/A – No lumbar adjustment

2.3 Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2, S20.1.9.2, S22.1.7.2)
X N/A – No additional support adjustment

2.4 Mark a point (seat cushion reference point) on the side of the seat cushion that is between 150 mm and 250 mm from the front edge of the seat cushion.

2.5 Draw a line (seat cushion reference line) through the seat cushion reference point.

2.8 Using only the controls that primarily move the seat in the fore-aft direction, move the seat cushion reference point to the rearmost position.

2.7 If the seat cushion adjusts fore-aft, independent of the seat back, use only the controls that primarily move the seat cushion in the fore-aft direction to move the seat cushion reference point to the rearmost position (S16.2.10.3, S20.1.8.3, S22.1.7.3)

X N/A – No independent fore-aft seat cushion adjustment.

2.8 Using any part of the control, other than the parts just used for fore-aft positioning, determine the range of angles of the seat cushion reference line and set the seat cushion reference line at the mid-angle.

Maximum Angle: Zero Degrees

Minimum Angle: Zero Degrees

Mid-angle: Zero Degrees

2.9 If the seat and/or seat cushion height is adjustable, use any part of any control other than those which primarily move the seat or seat cushion fore-aft, to put the seat cushion reference point in its lowest position with the seat cushion reference line angle at the mid-range angle.

X N/A – No seat height adjustment

2.10 Using only the controls that primarily move the seat and/or seat cushion in the fore-aft direction, verify the seat is in the rearmost position.

2.11 Using only the controls that primarily move the seat in the fore-aft direction, mark for future reference the fore-aft seat positions. Mark each position so that there is a visual indication when the seat is at a particular position. For manual seats, move the seat forward one dent and mark each dent. For power seats, mark only the rearmost, middle, and foremost positions. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the closest adjustment position to the rear of the mid-point), and R for rearmost.

2.12 Using only the controls that primarily move the seat in the fore-aft direction, place the seat in the rearmost position.

2.13 Using any controls, other than the controls that primarily move the seat in the fore-aft direction, find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line at the mid-angle determined in 2.8.

X N/A – No seat height adjustment Go to 2.18

2.14 Using only the controls that primarily move the seat in the fore-aft direction, place the seat in the mid-fore-aft position.

2.15 Using any controls, other than the controls that primarily move the seat in the fore-aft direction, find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line at the mid-angle determined in 2.8.

2.16 Using only the controls that change the seat in the fore-aft direction, place the seat in the foremost position.
2.17 Using any controls, other than the controls that primarily move the seat in the fore-aft direction, find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line at the mid-angle determined in 2.8.

2.19 Visually mark for future reference the seat back angle, if adjustable, at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer.

☐ N/A - No seat back angle adjustment
☐ N/A - The seat back angle adjustment is controlled by the setting of the driver seat back angle.

Manufacturer's design seat back angle: 12

Actual seat back angle: 12

2.19 Is the seat a bucket seat?

☐ Yes, go to 2.19.1 and skip 2.19.2
☐ No, go to 2.19.2 and skip 2.19.1

2.19.1 Bucket seats:

☐ Locate and mark for future reference the longitudinal centerline of the seat cushion. (S20.2.1.3, S22.2.1.3) The longitudinal centerline of a bucket seat cushion is determined at the widest part of the seat cushion. Measure perpendicular to the longitudinal centerline of the vehicle. (S20.1.10)

Record the width of the seat cushion: 520 mm

One half the width of the seat cushion is: 260 mm

☐ Record the distance from the edge of the seat cushion to the longitudinal centerline of the seat cushion. (The vertical plane through this longitudinal centerline is Plane B for suppression.) 200 mm

2.19.2 Bench seats:

☐ Locate and mark for future reference the longitudinal centerline of the passenger seat cushion. The longitudinal centerline is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel. (S20.2.1.3, S22.2.1.3)

☐ Record the distance from the longitudinal centerline of the vehicle to the center of the steering wheel:

☐ Record the distance from the longitudinal centerline of the vehicle to the longitudinal centerline of the seat cushion. (The vertical plane through this longitudinal centerline is Plane B for suppression.)

3. Head Restraints

☐ N/A, vehicle contains automatic head restraints

☐ N/A, there is no head restraint adjustment

3.1 Left outboard

3.1.1 Adjust the head restraint to its lowest position. (S16.3.4.2)

3.1.2 Any adjustment of the head restraint shall be used to position it full forward. For example, if it rotates, rotate it such that the head restraint extends as far forward as possible. Mark the foremost position.

3.1.3 Measure the vertical distance from the top most point of the head restraint to the bottom most point. Locate and mark a horizontal plane through the midpoint of this distance.
Vertical height of head restraint (mm): 180
Mid-point height (mm): 90

3.2 Right outboard

3.2.1 Adjust the head restraint to its lowest position. (S16.3.4.2)

3.2.2 Any adjustment of the head restraint shall be used to position it full forward. For example, if it rotates, rotate it such that the head restraint extends as far forward as possible. Mark the foremost position.

3.2.3 Measure the vertical distance from the top most point of the head restraint to the bottom most point. Locate and mark a horizontal plane through the midpoint of this distance. Vertical height of head restraint (mm): 180
Mid-point height (mm): 90

4. Steering Wheel

4.1 Is the steering wheel adjustable up and down and/or in and out?

[X] Yes, go to 4.2

No, this form is complete

[X] 4.2 Find and mark for future reference each up and down position. Label three of the positions with the following: H for highest, M for mid-position (if there is no mid-position, label the next lowest adjustment position), and L for lowest.

[X] N/A, steering wheel is not adjustable up and down

[X] 4.3 Find and mark for future reference each in and out position. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the next rearmost adjustment position), and R for rearmost.

[X] N/A, steering wheel is not adjustable in and out

5. Driver Low Risk Deployment

[X] N/A, no low risk deployment tests scheduled

5.1 Position the steering wheel so the front wheels are in the straight-ahead position. (S26.2.1)

5.2 Position any adjustable parts of the steering controls to the mid-position as determined in item 3 above. If a mid-position adjustment is not achievable, position the controls to the next lowest detent position. (S26.2.1)

5.3 Locate the vertical plane parallel to the vehicle longitudinal centerline through the geometric center of the opening through which the driver air bag deploys into the occupant compartment. This is referred to as "Plane E." (Check determination method below.) (S26.2.5)

[X] Plane E determined using manufacturer's information supplied by the COTR. (Found in Appendix D on pages D-94 and D-95) OR

Plane E determined by test lab personnel and approved by the COTR.

(include supporting documentation in the test report)

<table>
<thead>
<tr>
<th>Ey (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

"Plane E" Measurement:

Measured:

Specified:

Verify Measured Equals Specified +/- 6mm:

[X] 5.4 Locate the horizontal plane through the highest point of the air bag module cover. This is referred to as "Plane F." (Check determination method below.) (S26.2.5)
Plane F determined using manufacturer's information supplied by the COTR.
(Found in Appendix D on pages D-94 and D-95) OR
Plane F determined by test lab personnel and approved by the COTR.
(Including supporting documentation in the test report.)

<table>
<thead>
<tr>
<th>“Plane F” Measurement:</th>
<th>Fz (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured:</td>
<td></td>
</tr>
<tr>
<td>Specified:</td>
<td></td>
</tr>
<tr>
<td>Verify Measured Equals Specified +/- 6mm:</td>
<td></td>
</tr>
</tbody>
</table>

8. Passenger Low Risk Deployment – Planes C and D

N/A, no low risk deployment tests scheduled

6.1 Locate the horizontal plane through the geometric center of the opening through which the right front air bag deploys into the occupant compartment. This is referred to as “Plane C.” (Check location method below.) (S22.4.1.3)

Plane C located using manufacturer's information supplied by the COTR.
(Found in Appendix D on pages D-94 and D-95) OR
Plane C located by test lab personnel and approved by the COTR.
(Including supporting documentation in the test report.)

<table>
<thead>
<tr>
<th>“Plane C” Measurement:</th>
<th>Cz (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured:</td>
<td></td>
</tr>
<tr>
<td>Specified:</td>
<td></td>
</tr>
<tr>
<td>Verify Measured Equals Specified +/- 6mm:</td>
<td></td>
</tr>
</tbody>
</table>

6.2 Locate the vertical plane parallel to the vehicle longitudinal centerline through the geometric center of the opening through which the right front air bag deploys into the occupant compartment. This is referred to as “Plane D.” (Check determination method below.) (S22.4.1.2)

Plane D determined using manufacturer's information supplied by the COTR.
(Found in Appendix D on pages D-94 and D-95) OR
Plane D determined by test lab personnel and approved by the COTR.
(Including supporting documentation in the test report.)

<table>
<thead>
<tr>
<th>“Plane D” Measurement:</th>
<th>Dy (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured:</td>
<td></td>
</tr>
<tr>
<td>Specified:</td>
<td></td>
</tr>
<tr>
<td>Verify Measured Equals Specified +/- 6mm:</td>
<td></td>
</tr>
</tbody>
</table>

6.3 Mark the intersection of Planes C and D on the instrument panel.

7. 5th Female Dummy
Mark a point on the chin of the dummy 40 mm below the center of the mouth. (Chin Point) (S26.2.6)

8. 8-Year-Old Dummy
Locate and mark a point on the front of the dummy’s chest jacket on the midsagittal plane which is 139 mm (5.5 in) ± 3 mm (± 0.1 in) along the surface of the skin down from the top of the skin at the neck line. Designate this point as “Point 1.” (S24.4.1.1)

“Point 1” measurement (mm): 139
9. 3-Year-Old Dummy
Locate and mark a point on the front of the dummy's chest jacket on the midsagittal plane which is 114 mm (4.5 in.) ± 3 mm (± 0.1 in) along the surface of the skin down from the top of the skin at the neck line. Designate this point as "Point 1." (S22.4.1.1)

Point 1" measurement (mm ± 3 mm): 114

REMARKS:
I certify that I have read and performed each instruction.

Signature: [Signature] Date: 4/1/04
DATA SHEET 15 SUMMARY
Suppression Test Using 12-month-old CRABI Dummy (Part 572, Subpart R)
Section B Rear Facing CRS

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHTSA No.</td>
<td>C40303</td>
</tr>
<tr>
<td>TEST DATE:</td>
<td>1-26-04</td>
</tr>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
</tr>
<tr>
<td>TECHNICIANS:</td>
<td>JL/TB</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
</tr>
<tr>
<td>DUMMY SERIAL NO.:</td>
<td>082</td>
</tr>
<tr>
<td>CHILD RESTRAINT NAME:</td>
<td>Britax</td>
</tr>
<tr>
<td>CHILD RESTRAINT MODEL:</td>
<td>Handle With Cals 191</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>5-25-2000</td>
</tr>
</tbody>
</table>

Base: On or Off X N/A - Restraint does not have a removable base

Manufacturer's design seat back angle: 12.0°
Tested seat back angle: 12.2°
Manufacturer's specified anchorage position: 2nd Down
Tested anchorage position: 2nd Down
(Four positions, Uppermost as 1)

Blanket and visor combinations were not used

<table>
<thead>
<tr>
<th>Test Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seat Belt</td>
</tr>
<tr>
<td>Belted</td>
</tr>
<tr>
<td>Rear</td>
</tr>
<tr>
<td>Facing</td>
</tr>
<tr>
<td>Unbelted</td>
</tr>
<tr>
<td>Rear</td>
</tr>
<tr>
<td>Facing</td>
</tr>
<tr>
<td>Unbelted</td>
</tr>
<tr>
<td>Forward</td>
</tr>
<tr>
<td>Facing</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Rearward position. (SN513)
DATA SHEET 15 SUMMARY

Suppression Test Using 12-month-old CRABI Dummy (Part 572, Subpart R)
Section B Rear Facing CRS

NHTSA No.: C40303
TEST DATE: 1-26-04
LABORATORY: MGA
TECHNICIANS: JL/TB
DUMMY TYPE: 12 Month Old
DUMMY SERIAL NO.: 082

CHILD RESTRAINT NAME: Event 6
CHILD RESTRAINT MODEL: First Choice 204
DATE OF MANUFACTURE: 6-20-2000

Base: On Off X N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 12.0°
Tested seat back angle: 12.0°
Manufacturer's specified anchorage position: 2nd Down
Tested anchorage position: 2nd Down
(Four positions, Uppermost as 1)

Blanket and visor combinations were not used

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Handle Down</th>
<th>Handle Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>127</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>127</td>
<td>Suppressed</td>
<td>N/A</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>130</td>
<td>Suppressed</td>
<td>N/A</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>N/A</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
<td>N/A</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward 8*</td>
<td>N/A</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>N/A</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Middle position. (SN513)

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft detent position with respect to the foremost position. (1 = Full Forward; 51 = Full Rearward; 51 total Seat Slide detents)
DATA SHEET 16 SUMMARY
Suppression Test Using 12-month-old CRABi Dummy (Part 572, Subpart R)
Section B Rear Facing CRS

NHTSA No.: C40303 TEST DATE: 1-26-04
LABORATORY: MGA TECHNICIANS: JLS/TB
DUMMY TYPE: 12 Month Old DUMMY SERIAL NO.: 082

CHILD RESTRAINT NAME: Graco
CHILD RESTRAINT MODEL: Infant 8457
DATE OF MANUFACTURE: 8-31-2000

Base: X On Off N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 12.0°
Tested seat back angle: 12.2°
Manufacturer's specified anchorage position: 2nd Down
Tested anchorage position: 2nd Down
(Four positions, Uppermost as 1)

Blanket and visor combinations were not used

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Handle Down</th>
<th>Handle Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>133</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>130</td>
<td>Suppressed</td>
<td>N/A</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>132</td>
<td>Suppressed</td>
<td>N/A</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
<td>N/A</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
<td>N/A</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>N/A</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

102
DATA SHEET 15 SUMMARY

Suppression Test Using 12-month-old GRAB! Dummy (Part 572, Subpart R)
Section B Rear Facing CRS

<table>
<thead>
<tr>
<th>NHTSA No.:</th>
<th>C40303</th>
<th>TEST DATE:</th>
<th>1-26-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>JL/TA</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>082</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RESTRAINT NAME:</th>
<th>Graco</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILD RESTRAINT MODEL:</td>
<td>Infant 8457</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>8-31-2000</td>
</tr>
</tbody>
</table>

Base: ___On ___Off ___N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 12.0°
Tested seat back angle: 12.2°
Manufacturer's specified anchorage position: 2nd Down
Tested anchorage position: 2nd Down
(Four positions, Uppermost as 1)

Blanket and visor combinations were not used

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Clinch Load (N)</th>
<th>Handle Down</th>
<th>Handle Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward 10</td>
<td>130</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>131</td>
<td>Suppressed</td>
<td>N/A</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>133</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward 10</td>
<td>N/A</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
<td>N/A</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Rearward position. (SN513)

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft detent position with respect to the foremost position. (1 = Full Forward; 51 = Full Rearward; 51 total Seat Slide detents)
DATA SHEET 15 SUMMARY

Suppression Test Using 12-month-old CRABI Dummy (Part 572, Subpart R)
Section C Forward Facing Convertible CRS

<table>
<thead>
<tr>
<th>NHTSA No.:</th>
<th>C40303</th>
<th>TEST DATE:</th>
<th>1-26-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>JL/TB:</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RESTRAINT NAME:</th>
<th>Britax</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILD RESTRAINT MODEL:</td>
<td>Roundabout 104</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>7-21-2000</td>
</tr>
</tbody>
</table>

Base: On Off X N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 12.0°
Tested seat back angle: 12.2°
Manufacturer's specified anchorage position: 2nd Down
Tested anchorage position: 2nd Down
(Four positions, Uppermost as 1)

Blanket combinations were not used

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Clinch Load (N)</th>
<th>No Blanket</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>130</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>131</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>132</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>130</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>131</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>134</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Rearward position. (SN513)
DATA SHEET 15 SUMMARY
Suppression Test Using 12-month-old CRABI Dummy (Part 572, Subpart R)
Section C Forward Facing Convertible CRS

<table>
<thead>
<tr>
<th>NHTSA No.:</th>
<th>C40303</th>
<th>TEST DATE:</th>
<th>1-26-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>JL/MB</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RESTRAINT NAME:</th>
<th>Century</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILD RESTRAINT MODEL:</td>
<td>Encore 4812</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>8-16-2000</td>
</tr>
</tbody>
</table>

Base: _On_ _Off x N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 12.0°
Tested seat back angle: 12.3°
Manufacturer's specified anchorage position: 2nd Down
Tested anchorage position: 2nd Down
(Four positions, Uppermost as 1)

Blanket combinations were not used

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>No Blanket</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>131</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>132</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>130</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Belted</td>
<td>Frontward</td>
<td>130</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>132</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Middle position. (SN513)
DATA SHEET 15 SUMMARY

Suppression Test Using 12-month-old CRABI Dummy (Part 572, Subpart R)
Section C Forward Facing Convertible CRS

<table>
<thead>
<tr>
<th>NHTSA No.:</th>
<th>C40303</th>
<th>TEST DATE:</th>
<th>1-26-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>JL/TB</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>082</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RESTRAINT NAME:</th>
<th>Eventig</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILD RESTRAINT MODEL:</td>
<td>Medallion 254</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>6-1-2930</td>
</tr>
</tbody>
</table>

Base: _On _Off _X N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 12.0°
Tested seat back angle: 12.2°
Manufacturer's specified anchorage position: 2nd Down
Tested anchorage position: 2nd Down
(Four positions, Uppermost as 1)

Blanket combinations were not used

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>No Blanket</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>134</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>132</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>131</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>131</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Forward position. (SN513)
DATA SHEET 16 SUMMARY
Suppression Test Using Newborn Infant Dummy (Part 572, Subpart K)
Section A Car Bed

<table>
<thead>
<tr>
<th>NHTSA No.:</th>
<th>C40303</th>
<th>TEST DATE:</th>
<th>1-26-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>JL/18</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>Newborn Infant</td>
<td>DUMMY SERIAL NO.:</td>
<td>003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAR BED NAME:</th>
<th>Cosco</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAR BED MODEL:</td>
<td>Dream Ride 02-719</td>
</tr>
</tbody>
</table>

Base: __On__ Off X N/A-Restraint does not have a removable base
(A car bed with a removable base shall be treated as two separate models, i.e. this form and
 test procedure will be completed with the base on and then repeated on a new form with the
 base off.

Manufacturer’s design seat back angle: 12.0°
Tested seat back angle: 12.2°
Manufacturer’s specified anchorage position: 2nd Down
Tested anchorage position: 2nd Down
(Four positions, Uppermost as 1)

Blanket and visor combinations were not used

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Lateral</th>
<th>Fore/At</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forward</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>Suppressed</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Rearward position. (SN513)

The CRS would not fit in the Forward and Middle Seat Slide positions due to interference with the center console.

There was no telltale light indication; the car bed was classified as an Empty Seat.
This was verified with the StarSCAN diagnostic tool.
DATA SHEET 23 SUMMARY
Low Risk Deployment Tests Using an Unbelted 3-Year-Old Dummy (Part 572, Subpart P) (S22)
Position 1 - Chest On Instrument Panel (S22.4.2)

<table>
<thead>
<tr>
<th>NHTSA No.:</th>
<th>C40303</th>
<th>TEST DATE:</th>
<th>1-29-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>WB/DW/BR</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>3-Year-Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>031</td>
</tr>
</tbody>
</table>

Manufacturer's design seat back angle: 12.0°
Tested seat back angle: 11.5°
Tested seat position: Full Aft

Height from floor pan to heal: 119 mm
Thorax cavity angle: 0.0°
Thigh angle: 22.8°
Point 1 height: 6 mm Above AB Module

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>130.0</td>
<td>130.2</td>
</tr>
</tbody>
</table>

3-Year-Old SN 031 Position 1 (Chest on instrument Panel) 1-29-04

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>570</td>
<td>17</td>
</tr>
<tr>
<td>Peak Nij (Nle)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Peak Nij (Nlf)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>22.2</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>83.4</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>18.0</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1130 N</td>
<td>426</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1380 N</td>
<td>124</td>
</tr>
<tr>
<td>Chest g</td>
<td>55 g</td>
<td>15</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>34 mm</td>
<td>10</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 100 ms after the initial deployment of the air bag. (S4.11(b))
DATA SHEET 24 SUMMARY
Low Risk Deployment Tests Using an Unbelted 3-Year-Old Dummy (Part 572, Subpart P) (S22)
Position 2 – Head On Instrument Panel (S22.4.3)

<table>
<thead>
<tr>
<th>NHTSA No.:</th>
<th>C40303</th>
<th>TEST DATE:</th>
<th>2-12-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>WD/DW/BR</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>3-Year-Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>031</td>
</tr>
</tbody>
</table>

- Manufacturer's design seat back angle: **12.0°**
- Tested seat back angle: **11.8°**
- Tested seat position: **Full Forward**

- Thorax cavity angle: **8.9°**
- Thigh angle: **2.1°**
- Point 1 height: **218 mm Below AB Module**
- Chin height: **94 mm Below AB Module**

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>130.0</td>
<td>130.3</td>
</tr>
</tbody>
</table>

3-Year-Old SN 031 Position 2 (Head on Instrument Panel) 2-12-04

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>570</td>
<td>81</td>
</tr>
<tr>
<td>Peak Nij (Nts)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>78.5</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>40.0</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>22.6</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>25.5</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1130 N</td>
<td>335</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1380 N</td>
<td>771</td>
</tr>
<tr>
<td>Chest g</td>
<td>55 g</td>
<td>10</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>34 mm</td>
<td></td>
</tr>
</tbody>
</table>

Calculated on data recorded for 100 ms after the initial deployment of the air bag. (S4.11(b))
DATA SHEET 25 SUMMARY
Low Risk Deployment Tests Using an Unbelted 6-Year-Old Dummy (Part 572, Subpart P) (S24) Position 1 – Chest On Instrument Panel (S24.4.2)

<table>
<thead>
<tr>
<th>NHTSA No.</th>
<th>C40303</th>
<th>TEST DATE:</th>
<th>2-28-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>WD/DW/BR</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>6-Year-Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>153</td>
</tr>
</tbody>
</table>

Manufacturer's design seat back angle: 12.0°
Tested seat back angle: 12.3°
Tested seat position: Full Aft

Thorax cavity angle: 6.0°
Point 1 height: 1 mm Above AB Module

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing Time (ms)</th>
<th>Recorded Firing Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>130.0</td>
<td>130.2</td>
</tr>
</tbody>
</table>

6-Year-Old SN 153 Position 1 (Chest on Instrument Panel) 2-25-04

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC 15</td>
<td>700</td>
<td>2</td>
</tr>
<tr>
<td>Peak Nij (Nle)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>40.0</td>
</tr>
<tr>
<td>Peak Nij (Nlf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>22.0</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>13.3</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>17.2</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1490 N</td>
<td>349</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1620 N</td>
<td>50</td>
</tr>
<tr>
<td>Chest g</td>
<td>80 g</td>
<td>11</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>40 mm</td>
<td>7</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 100 ms after the initial deployment of the air bag. (S4.11(b))
DATA SHEET 28 SUMMARY
Low Risk Deployment Tests Using an Unbelted 6-Year-Old
Dummy (Part 572, Subpart N) (S24)
Position 2 – Head On Instrument Panel (S24.4.3)

<table>
<thead>
<tr>
<th>NHTSA No.</th>
<th>C40303</th>
<th>TEST DATE:</th>
<th>2-26-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>WD/DW/BR</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>6-Year-Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>152</td>
</tr>
</tbody>
</table>

Manufacturer's design seat back angle: 12.0°
Tested seat back angle: 12.3°
Tested seat position: Full Forward

Thorax cavity angle: 35.1°
Thigh angle: 11.5°

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>130.0</td>
<td>130.3</td>
</tr>
</tbody>
</table>

6-Year-Old SN 152 Position 2 (Head on Instrument Panel) 2-26-04

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>43</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>54.2</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>11.3</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>25.7</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>16.5</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1490 N</td>
<td>205</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1820 N</td>
<td>549</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>8</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>40 mm</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 100 ms after the initial deployment of the air bag. (S4.11(b))
DATA SHEET 27 SUMMARY
Low Risk Deployment Tests Using an Unbelted 5th Percentile Female
Dummy (Part 572, Subpart O) (S26)
Position 1 - Chin On Module (S26.2)

<table>
<thead>
<tr>
<th>NHTSA No.:</th>
<th>C40303</th>
<th>TEST DATE:</th>
<th>1-29-04:</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>WD/DW/BR</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>5th Percentile Female</td>
<td>DUMMY SERIAL NO.:</td>
<td>517</td>
</tr>
</tbody>
</table>

Manufacturer's design seat back angle: 12.0°
Tested seat back angle: 12.0°
Tested seat position: Full Aft

Tested steering wheel angle: 25.0°
Thorax cavity angle: 30.6°
Chin Point height: 2 mm Above Module

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>130.0</td>
<td>130.2</td>
</tr>
</tbody>
</table>

5th Percentile Female SN 517 Position 1 (Chin On Module) 1-29-04

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>46</td>
</tr>
<tr>
<td>Peak NIJ (Nte)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>107.2</td>
</tr>
<tr>
<td>Peak NIJ (Ntf)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>28.0</td>
</tr>
<tr>
<td>Peak NIJ (Ncs)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>140.6</td>
</tr>
<tr>
<td>Peak NIJ (Ncf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>173.1</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>758</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>475</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>21</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>11</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>321</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>85</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 125 ms after the initiation of the final stage of air bag deployment designed to deploy in any full frontal rigid barrier crash up to 25 km/h. (S4.11(d))
Second stage fire time of 130 ms; Injuries calculated on 0 ms to 255 ms

112
DATA SHEET 28 SUMMARY

Low Risk Deployment Tests Using an Unbelted 5th Percentile Female Dummy (Part 572, Subpart O) (S26)
Position 2 - Chin On Rim (S26.3)

<table>
<thead>
<tr>
<th>NHTSA No.:</th>
<th>C40303</th>
<th>TEST DATE:</th>
<th>2-12-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>WD/DWBR</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>5th Percentile Female</td>
<td>DUMMY SERIAL NO.:</td>
<td>517</td>
</tr>
</tbody>
</table>

Manufacturer's design seat back angle: 12.0°
Tested seat back angle: 12.0°
Tested seat position: Full Aft

Tested steering wheel angle: 24.4°
Thorax cavity angle: 30.5°
Chin Point height: 4 mm Below Rim

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>130.0</td>
<td>130.2</td>
</tr>
</tbody>
</table>

5th Percentile Female SN 517 Position 2 (Chin On Rim) 2-12-04

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>10</td>
</tr>
<tr>
<td>Peak NJ (Nte)</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>14.0</td>
</tr>
<tr>
<td>Peak NJ (Ntf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>58.6</td>
</tr>
<tr>
<td>Peak NJ (Nce)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>6.6</td>
</tr>
<tr>
<td>Peak NJ (Ncf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>62.1</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>796</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>86</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>22</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>14</td>
</tr>
<tr>
<td>Left Femur</td>
<td>8805 N</td>
<td>88</td>
</tr>
<tr>
<td>Right Femur</td>
<td>8805 N</td>
<td>33</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 125 ms after the initiation of the final stage of air bag deployment designed to deploy in any full frontal rigid barrier crash up to 25 km/h. (S4.11(d))
Second stage fire time of 130 ms; Injuries calculated on 0 ms to 255 ms
DATA SHEET 30
VEHICLE WEIGHT, FUEL TANK, AND ATTITUDE DATA

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
Test Technician: Clark Subrt
NHTSA No.: 040303
Test Date: 4/1/04

<table>
<thead>
<tr>
<th>IMPACT ANGLE</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO)</td>
<td>No – Front Occupants</td>
</tr>
<tr>
<td>TEST SPEED</td>
<td>32 to 40 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY</td>
<td>5th female</td>
</tr>
<tr>
<td>PASSENGER DUMMY</td>
<td>5th female</td>
</tr>
</tbody>
</table>

1. Fill the transmission with transmission fluid to the satisfactory range.
2. Drain fuel from vehicle
3. Run the engine until fuel remaining in the fuel delivery system is used and the engine stops.
4. Record the usable fuel tank capacity supplied by the COTR
 Useable Fuel Tank Capacity supplied by COTR: 102.2 liters (27.0 gallons)
5. Record the fuel tank capacity supplied in the owner's manual.
 Useable Fuel Tank Capacity In owner's manual: 102.2 liters (27.0 gallons)
6. Using purple dyed Stoddard solvent having the physical and chemical properties of Type 1 solvent or cleaning fluid, Table 1, ASTM Standard D484-71, "Standard Specifications for Hydrocarbon Dry-cleaning Solvents," or gasoline, fill the fuel tank.
 Amount In Tank: 102.2 liters (27.0 gallons)
7. Fill the coolant system to capacity.
8. Fill the engine with motor oil to the Max. mark on the dip stick.
9. Fill the brake reservoir with brake fluid to its normal level.
10. Fill the windshield washer reservoir to capacity.
11. Inflate the tires to the tire pressure on the tire placard. If no tire placard is available, inflate the tires to the recommended pressure in the owner's manual.
 Tire placard pressure:
 Owner's manual pressure:
 Actual inflated pressure:
12. Record the vehicle weight at each wheel to determine the unloaded vehicle weight (UVW), i.e. "as delivered" weight.
 Right Front (kg): 901.0
 Left Front (kg): 583.3
 Total Front (kg): 1484.3
 Right Rear (kg): 514.8
 Left Rear (kg): 527.1
 Total Rear (kg): 1041.9
 % Total Weight: 53.2
 % Total Weight: 46.8
 UVW = TOTAL FRONT PLUS TOTAL REAR (KG): 2226.2
13. UVW Test Vehicle Attitude: (All dimensions in millimeters)
13.1 Mark a point on the vehicle above the center of each wheel.
13.2 Place the vehicle on a level surface.
13.3 Measure perpendicular to the level surface to the 4 points marked on the body and record the measurements.

RF: 855 LF: 849 RR: 925 LR: 978

14. Calculate the Rated Cargo and Luggage Weight (RCLW).

14.1 Does the vehicle have the vehicle capacity weight (VCW) on the certification label or tire placard?

☐ Yes, go to 14.3
☒ No, go to 14.2

14.2 VCW = Gross Vehicle Weight – UVW

VCW = 2988.0 kg – 2228.2 kg = 767.8 kg

14.3 VCW = 767.8 kg (1693 lbs)

14.4 Does the certification or tire placard contain the Designated Seating Capacity (DSC)?

☐ Yes, go to 14.6
☒ No, go to 14.5 and skip 14.6

14.5 DSC = Total number of seat belt assemblies = 7

14.6 DSC = __

14.7 RCLW = VCW – (68 kg x DSC) = 767.8 kg – (68 kg x 7) = 291.8 kg

14.8 Is the vehicle certified as a truck, MPV or bus (see the certification label on the door jamb)?

☐ Yes, if the calculated RCLW is greater than 136 kg, use 136 kg as the RCLW. (S8.1.1)
☒ No, use the RCLW calculated in 14.7

15. Fully Loaded Weight (100% fuel III)

15.1 Place the appropriate test dummy in both front outboard seating positions.

Driver: ☒ 5th female ☐ 50th male
Passenger: ☒ 5th female ☐ 50th male

15.2 Load the vehicle with the RCLW from 14.7 or 14.8 whichever is applicable.

15.3 Place the RCLW in the cargo area. Center the load over the longitudinal centerline of the vehicle. (S8.1.1 (d))

15.4 Record the vehicle weight at each wheel to determine the Fully Loaded Weight.

<table>
<thead>
<tr>
<th>Right Front (kg): 644.1</th>
<th>Right Rear (kg): 604.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Front (kg): 564.7</td>
<td>Left Rear (kg): 513.5</td>
</tr>
<tr>
<td>Total Front (kg): 1238.8</td>
<td>Total Rear (kg): 1118.1</td>
</tr>
<tr>
<td>% Total Weight: 50.4 %</td>
<td>% Total Weight: 49.6 %</td>
</tr>
<tr>
<td>% GVW: 47.0 %</td>
<td>% GVW: 52.1 %</td>
</tr>
<tr>
<td>Fully Loaded Weight = Total Front Plus Total Rear (kg): 2457.9</td>
<td></td>
</tr>
</tbody>
</table>

16. Fully Loaded Test Vehicle Attitude: (All dimensions in millimeters)

16.1 Place the vehicle on a level surface.
16.2 Measure perpendicular to the level surface to the 4 points marked on the body (see 13.1 above) and record the measurements:

| RF: | 849 | LF: | 848 | RR: | 897 | LR: | 894 |

17. Drain the fuel system.

18. Using purple dyed Stoddard solvent having the physical and chemical properties of Type 1 solvent or cleaning fluid, Table 1, ASTM Standard D484-71, “Standard Specifications for Hydrocarbon Dry-cleaning Solvents,” fill the fuel tank to 94 percent of usable capacity. (FILLED TO 95.2% DUE TO MISINTERPRETATION OF FUEL FILL DATA)

Fuel tank capacity x .94 = 102.2 liters (27.0 gallons) x .94 = 98.1 liters (25.38 gallons)

Amount added = 97.3 liters (25.7 gallons) 95.2%

19. Crank the engine to fill the fuel delivery system with Stoddard solvent.

20. Calculate the test weight range.

20.1 Calculated Weight = UVW (see 12 above) + RCLW (see 14 above) + 2x(dummy weight)

\[2460.2 \text{ kg} = 2226.2 \text{ kg} + 136.0 \text{ kg} + 98.0 \text{ kg}\]

20.2 Test Weight Range = Calculated Weight (± 4.5 kg, ± 9 kg.)

Max. Test Weight = Calculated Test Weight - 4.5 kg = 2455.7 kg

Min. Test Weight = Calculated Test Weight - 9 kg = 2451.2 kg

21. Remove the RCLW from the cargo area.

22. Drain transmission fluid, engine coolant, motor oil, and windshield washer fluid from the test vehicle so that Stoddard solvent leakage from the fuel system will be evident.

23. Vehicle Components Removed For Weight Reduction:
 RH rear tail light, hub covers, right rear window glass, and third row seats.

24. Secure the equipment and ballast in the load carrying area and distribute it, as nearly as possible, to obtain the proportion of axle weight indicated by the gross axle weight ratings and center it over the longitudinal centerline of the vehicle.

25. If necessary, add ballast to achieve the actual test weight.

26. Weight of Ballast: 34.0 kg in cargo area

Ballast, including test equipment, must be contained so that it will not shift during the impact event or interfere with data collection or interfere with high-speed film recordings or affect the structural integrity of the vehicle or do anything else to affect test results. Care must be taken to assure that any attachment hardware added to the vehicle is not in the vicinity of the fuel tank or lines.

27. Record the vehicle weight at each wheel to determine the actual test weight:

<table>
<thead>
<tr>
<th>Right Front (kg):</th>
<th>826.4</th>
<th>Right Rear (kg):</th>
<th>654.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Front (kg):</td>
<td>821.0</td>
<td>Left Rear (kg):</td>
<td>809.6</td>
</tr>
<tr>
<td>Total Front (kg):</td>
<td>1647.4</td>
<td>Total Rear (kg):</td>
<td>1464.3</td>
</tr>
<tr>
<td>% Total Weight:</td>
<td>50.9</td>
<td>% Total Weight:</td>
<td>49.1</td>
</tr>
<tr>
<td>% GVW:</td>
<td>47.0</td>
<td>% GVW:</td>
<td>53.1</td>
</tr>
<tr>
<td>(% GVW = Axle GVW divided by Vehicle GVW)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL FRONT PLUS TOTAL REAR (kg):</td>
<td>2487.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
28. Is the test weight between the Max. Weight and the Min. Weight (See 20.2)?
 - Yes
 - No, explain why not.

29. Test Weight Vehicle Attitude: (all dimensions in millimeters)
 29.1 Place the vehicle on a level surface
 29.2 Measure perpendicular to the level surface to the 4 points marked on the body (see 13 above) and record the measurements:
 - RF: 854, LF: 847, RR: 904, LR: 894

30. Summary of test attitude
 30.1 AS DELIVERED:
 - RF: 855, LF: 849, RR: 925, LR: 919
 AS TESTED:
 - RF: 856, LF: 849, RR: 997, LR: 894
 FULLY LOADED:
 - RF: 849, LF: 849, RR: 897, LR: 894

30.2 Is the "as tested" test attitude equal to or between the "fully loaded" and "as delivered" attitude?
 - Yes
 - No, explain why not.

REMARKS:
I certify that I have read and performed each instruction.

Signature: [Signature]
Date: 3/31/04
DATA SHEET 31

VEHICLE ACCELEROMETER LOCATION AND MEASUREMENT

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
Test Technician: Clark Subt

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMY (YES/NO):</td>
<td>No – Front Occupants Yes – Center Rear Passenger</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph 0 to 48 kmph 0 to 58 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>X 5 th female 50 th Male</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>X 5 th female X 50 th Male Ctr Rear</td>
</tr>
</tbody>
</table>

1. Find the location where the vertical plane parallel to the longitudinal centerline of the vehicle and through the center of the left front outboard seating position intersects the left rear seat cross member. Install an accelerometer at this intersection on the rear seat cross member to record x-direction accelerations. Record the location on the following chart.

2. Find the location where the vertical plane parallel to the longitudinal centerline of the vehicle and through the center of the right front outboard seating position intersects the right rear seat cross member. Install an accelerometer at this intersection on the rear seat cross member to record x-direction accelerations. Record the location on the following chart.

3. Find the location where a vertical plane through the longitudinal centerline of the vehicle and a vertical transverse plane through the center of the two wheels on opposite sides of the engine intersect at the top of the engine. Install an accelerometer at this intersection to record x-direction accelerations. Record the location on the following chart.

4. Find the location where a vertical plane through the longitudinal centerline of the vehicle and a vertical transverse plane through the center of the two wheels on opposite sides of the engine intersect the bottom of the engine. Install an accelerometer at this intersection to record x-direction accelerations. Record the location on the following chart.

5. Install an accelerometer on the right front brake caliper to record x-direction accelerations. Record the location on the following chart.

6. Find the location where a vertical plane through the longitudinal centerline of the vehicle intersects the top of the instrument panel. Install an accelerometer at this intersection to record x-direction accelerations. Record the location on the following chart.

7. Install an accelerometer on the left front brake caliper to record x-direction accelerations. Record the location on the following chart.

8. Find the location where a vertical plane through the longitudinal centerline of the vehicle intersects the floor of the trunk. Install an accelerometer on the trunk floor at this intersection to record x-direction accelerations. Record the location on the following chart.

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]
Date: 3/29/04

118
Dimensions Corresponding To The Letters "A" Through "K" (Excluding "I") Are Recorded In The Table On The Following Page. Accelerometers Corresponding To The Numbers 1 Through 8 Are Specified On The Preceding Page.
DATA SHEET 31
VEHICLE ACCELEROMETER LOCATION AND MEASUREMENTS

<table>
<thead>
<tr>
<th>DIMENSION</th>
<th>LENGTH (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRETEST VALUES</td>
<td></td>
</tr>
<tr>
<td>A (LH Rear Seat Xmbr)</td>
<td>392</td>
</tr>
<tr>
<td>B (RH Rear Seat Xmbr)</td>
<td>392</td>
</tr>
<tr>
<td>C (Engine Top)</td>
<td>4090</td>
</tr>
<tr>
<td>D (Engine Bottom)</td>
<td>4102</td>
</tr>
<tr>
<td>E (Caliper)</td>
<td>Right Side 4261, Left Side 4265</td>
</tr>
<tr>
<td>F (Left Caliper)</td>
<td>690</td>
</tr>
<tr>
<td>G (IP)</td>
<td>3423</td>
</tr>
<tr>
<td>H (Seat)</td>
<td>2085</td>
</tr>
<tr>
<td>J (Right Caliper)</td>
<td>690</td>
</tr>
<tr>
<td>K (Trunk)</td>
<td>715</td>
</tr>
<tr>
<td>POST TEST VALUES</td>
<td></td>
</tr>
<tr>
<td>A (LH Rear Seat Xmbr)</td>
<td>392</td>
</tr>
<tr>
<td>B (RH Rear Seat Xmbr)</td>
<td>392</td>
</tr>
<tr>
<td>C (Engine Top)</td>
<td>4142</td>
</tr>
<tr>
<td>D (Engine Bottom)</td>
<td>4122</td>
</tr>
<tr>
<td>E (Caliper)</td>
<td>Right Side 4265, Left Side 4263</td>
</tr>
<tr>
<td>F (Left Caliper)</td>
<td>685</td>
</tr>
<tr>
<td>G (IP)</td>
<td>3424</td>
</tr>
<tr>
<td>H (Seat)</td>
<td>2085</td>
</tr>
<tr>
<td>J (Right Caliper)</td>
<td>687</td>
</tr>
<tr>
<td>K (Trunk)</td>
<td>718</td>
</tr>
</tbody>
</table>
DATA SHEET 32
PHOTOGRAPHIC TARGETS

Test Vehicle: 2004 Dodge Durango
NHTSA No.: C40303
Test Program: FMVSS 208 Compliance
Test Date: 4/1/04
Test Technician: Clark Subrt

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No – Front Occupants, Yes – Center Rear Passenger</td>
</tr>
</tbody>
</table>
| TEST SPEED: | X 32 to 48 kmph
0 to 48 kmph
0 to 56 kmph |
| DRIVER DUMMY: | X 5' female
50th Male |
| PASSENGER DUMMY: | X 5' female
50th Male Ch. Rear |

1. FMVSS 208 vehicle targeting requirements (See Figures 28A and 28B)
 1.1 Targets A1 and A2 are on flat rectangular panels.
 1.2 Three circular targets at least 90 mm in diameter and with black and yellow quadrants are mounted at the front on the outboard sides of A1 and A2. The center of each circular target is 100 mm from the one next to it.
 1.3 Distance between targets (mm): 100 mm
 1.4 The distance between the first circular target at the front of A1 and A2 and the last circular target at the back of A1 and A2 is at least 915 mm.
 1.5 Distance between the first and last circular targets (mm): 915 mm
 1.6 Firmly fix target A1 on the vehicle roof in the vertical longitudinal plane that is coincident with the midsagittal plane of the driver dummy.
 1.7 Two circular targets (C1 and C2) at least 90 mm in diameter and with black and yellow quadrants are mounted on the outside of the driver door. The centers of each circular target are at least 610 mm apart.
 1.8 Distance between targets (mm): 610 mm
 1.9 Place tape with squares having alternating colors on the top portion of the steering wheel.
 1.10 Chalk the bottom portion of the steering wheel.
 1.11 Is this an offset test?
 Yes, continue with this section
 No, go to 2.
 1.12 Measure the width of the vehicle.
 Vehicle width (mm):
1.13 Find the centerline of the vehicle. (% of the vehicle width)

1.14 Find the line parallel to the centerline of the vehicle and 0.1 x vehicle width from the centerline of the vehicle.

1.15 Apply 25 mm wide tape with alternating black and yellow squares parallel to and on each side of the line found in 1.14. The edge of each tape shall be 50 mm from the line found in 1.14. The tape shall extend from the bottom of the bumper to the front edge of the windshield. (Figure 28D)

2. Barrier Targeting

2.1 Fix two stationary targets D1 and D2 to the barrier as shown in the Figure 28A. One target is in the vertical longitudinal plane that is coincident with the midsagittal plane of the driver dummy. The other is in the vertical longitudinal plane that is coincident with the midsagittal plane of the passenger dummy.

2.2 Targets D1 and D2 are on a rectangular panel.

2.3 Three circular targets at least 90 mm in diameter and with black and yellow quadrants are mounted on the sides of the rectangular panel away from the longitudinal centerline of the vehicle. The center of each circular target is 100 mm from the one next to it.

Distance between circular targets on D1 (mm): 100mm

Distance between circular targets on D2 (mm): 100mm

3. FMVSS 208 Dummy Targeting Requirements

3.1 Place a circular target with black and yellow quadrants on both sides of the driver dummy head as close as possible to the center of gravity of the head in the x and z direction (relative to the measuring directions of the accelerometers).

3.2 Place a circular target with black and yellow quadrants on both sides of the passenger dummy head as close as possible to the center of gravity of the head in the x and z direction (relative to the measuring directions of the accelerometers).

3.3 Place a circular target with black and yellow quadrants on the outboard shoulder of the driver dummy. Place the target as high up on the arm as possible at the intersection of the arm and shoulder. The sleeve of the shirt on the dummy may be cut to make the target visible, but do not remove any material.

3.4 Place a circular target with black and yellow quadrants on the outboard shoulder of the passenger dummy. Place the target as high up on the arm as possible at the intersection of the arm and shoulder. The sleeve of the shirt on the dummy may be cut to make the target visible, but do not remove any material.

4. FMVSS 204 Targeting Requirements

4.1 Is an FMVSS 204 Indicant test ordered on the "COTR Vehicle Work Order."

4.2 Yes, continue with this form.

4.2.1 Rejection panel (Figure 28C)

4.2.2 The panel deviates no more than 6 mm from perfect flatness when suspended vertically.

4.2.3 The targets on the panel are circular targets at least 90 mm in diameter and with black and yellow quadrants.

4.2.4 The center of each of the 4 outer targets are placed within 1 mm of the centers of a square measuring 914 mm on each side.

4.2.5 Locate another square with 228 mm sides and with the center of this square coincident with the center of the 914 mm square.

4.2.6 The center of the 4 inner targets are placed at the midpoints of each of the 228 mm sides.
4.3 Place a circular target at least 90 mm in diameter and with black and yellow quadrants on a material (cardboard, metal, etc.) that can be taped to the top of the steering column.

4.4 Tape the target from 4.3 to the top of the steering column in a manner that does not interfere with the movement of the steering column in a crash.

REMARKS: Center Rear Passenger Dummy Target Information:

Horizontal distance from camera to dummy reference targets: 762 mm
Horizontal distance from camera to vehicle reference targets: 1074 mm
Distance between 1" reference targets: 75 mm
Reference targets were placed on inch tape for continuous reference.

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 4/1/04
REFERENCE PHOTO TARGETS

CONCRETE BARRIER

916 mm

A

B

C1

C2

610 mm

100 mm

100 mm

MONORAIL

COVERED PHOTO PIT

LEFT SIDE VIEW
RESECTION PANEL TARGETING ALIGNMENT

RESECTION CONTROL POINTS PANEL

STEERING COLUMN TARGET B

TEST RUN STEERING COLUMN CAMERA VIEW OF TYPICAL TIME ZERO VEHICLE POSITION

LEFT SIDE VIEW
PRE-RUN STEERING COLUMN HIGH SPEED CAMERA VIEW

LEFT SIDE VIEW
DATA SHEET 33
CAMERA LOCATIONS

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
NHTSA No.: C40303
Test Date: 4/1/04
Time: 12:57 pm

<table>
<thead>
<tr>
<th>CAMERA NO.</th>
<th>VIEW</th>
<th>CAMERA POSITIONS (mm)*</th>
<th>LENS (mm)</th>
<th>SPEED (fps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Real Time Left Side View</td>
<td>N/A N/A N/A</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>Left Side View (Barrier face to front seat backs)</td>
<td>-946 7960 1541</td>
<td>25</td>
<td>1031</td>
</tr>
<tr>
<td>3</td>
<td>Left Side View (Driver)</td>
<td>-1513 8754 1455</td>
<td>25</td>
<td>1010</td>
</tr>
<tr>
<td>4</td>
<td>Left Side View (B-post aimed toward center of steering wheel)</td>
<td>-4508 5089 2010</td>
<td>50</td>
<td>1111</td>
</tr>
<tr>
<td>5</td>
<td>Left Side View (Steering Column)</td>
<td>-2051 8364 1560</td>
<td>25</td>
<td>1020</td>
</tr>
<tr>
<td>6</td>
<td>Left Side View (Steering Column)</td>
<td>-2040 8364 1032</td>
<td>25</td>
<td>1000</td>
</tr>
<tr>
<td>7</td>
<td>Right Side View (Overall)</td>
<td>-2259 -7690 1540</td>
<td>13</td>
<td>1005</td>
</tr>
<tr>
<td>8</td>
<td>Right Side View (Passenger)</td>
<td>-1456 -10222 1383</td>
<td>75</td>
<td>1250</td>
</tr>
<tr>
<td>9</td>
<td>Right Side View (Angle)</td>
<td>-4612 -5562 2100</td>
<td>50</td>
<td>**</td>
</tr>
<tr>
<td>10</td>
<td>Right Side View (Front door)</td>
<td>-974 -8021 1517</td>
<td>25</td>
<td>1010</td>
</tr>
<tr>
<td>11</td>
<td>Front View Windshield</td>
<td>390 0 2940</td>
<td>13</td>
<td>1015</td>
</tr>
<tr>
<td>12</td>
<td>Front View Driver</td>
<td>70 448 2265</td>
<td>13</td>
<td>1010</td>
</tr>
<tr>
<td>13</td>
<td>Front View Passenger</td>
<td>70 -435 2261</td>
<td>13</td>
<td>1015</td>
</tr>
<tr>
<td>14</td>
<td>Overhead Barrier Impact View</td>
<td>-420 0 4340</td>
<td>8</td>
<td>1005</td>
</tr>
<tr>
<td>15</td>
<td>Pit Camera Engine View</td>
<td>-946 0 -3050</td>
<td>13</td>
<td>1010</td>
</tr>
<tr>
<td>16</td>
<td>Pit Camera Fuel Tank View</td>
<td>-2820 0 -3050</td>
<td>13</td>
<td>1005</td>
</tr>
<tr>
<td>17</td>
<td>Onboard Rear Passenger View</td>
<td>N/A N/A N/A</td>
<td>13</td>
<td>513</td>
</tr>
</tbody>
</table>

* X - film plane to barrier face
 Y - film plane to monorail centerline
 Z - film plane to ground

** No usable film
DATA SHEET 34

APPENDIX G

DUMMY POSITIONING PROCEDURES
FOR 50TH DRIVER TEST DUMMY CONFORMING TO SUBPART Q OF PART 572

Test Vehicle: 2004 Dodge Durango
NHTSA No.: 040333
Test Program: FMVSS 208 Compliance
Test Date: 4/1/04
Test Technician: Eric Peschman

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No – Front Occupant Yes – Center Rear Passenger</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph 0 to 48 kmph 0 to 56 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>X 50th female 50th Male</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>X 50th female 50th Male Ctr Rear</td>
</tr>
</tbody>
</table>

X.1. Position the seat's adjustable lumbar supports so that the lumbar supports are in the lowest, retracted or deflated adjustment position. (S16.2.10.1)
 N/A – No lumbar adjustment

X.2. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 N/A – No additional support adjustment

X.3. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 N/A – No independent fore-aft seat cushion adjustment

X.4. Use the seat markings determined during the completion of Data Sheet 14 to set the rearmost fore-aft position, mid-height position and the seat cushion mid-angle. (S16.3.2.1.1)

X.5. If the vehicle has an adjustable accelerator pedal, place it in the full forward position. (S16.3.2.2.1)
 N/A accelerator pedal not adjustable

X.6. Set the steering wheel hub at the geometric center of the full range of driving positions including any telescopng positions as determined in data sheet 14. (S16.2.9)

X.7. Fully recline the seat back. (S16.3.2.1.2)
 N/A seat back not adjustable.

X.8. Place the dummy in the seat with the legs at an angle of 120 degrees to the thighs. The calves should not be touching the seat cushion. (S16.3.2.1.2)

X.9. Position the dummy in the seat such that the midsagittal plane is coincident with the longitudinal seat cushion markings as determined in Item 1.18 of Data Sheet 14 (S16.3.2.1.3 and S16.3.2.1.4)

X.10. Hold down the dummy's thighs and push rearward on the upper torso to maximize the pelvic angle. (S16.3.2.1.5)

X.11. Set the angle between the legs and the thighs to 120 degrees. (S16.3.2.1.6)
X.12. Set the transverse distance between the centers of the front of the knees at 160 to 170 mm. (6.3 to 6.7 inches) Center the knee separation with respect to the longitudinal seat cushion marking as determined in item 1.18 of Data Sheet 14. (S16.3.2.1.6) Record Knee Separation 165 mm

X.13. Push rearward on the dummy's knees until the pelvis contacts the seat back, or the backs of the calves contact the seat cushion, whichever occurs first. (S16.3.2.1.8) Pelvis contacted seat back.

X.14. Gently rock the upper torso ± 5 degrees (approximately 51 mm (2 inches)) side to side three times. (S16.3.2.1.7)

X.15. If needed, extend the legs until the feet do not contact the floor pan. The thighs should be resting on the seat cushion. (S16.3.2.1.8)

X.16. Position the right foot until the foot is in line with a longitudinal vertical plane passing through the center of the accelerator pedal. Maintain the leg and thigh in a vertical plane. (S16.3.2.1.8)

X.17. Rotate the left leg and thigh laterally to equalize the distance between each knee and the longitudinal seat cushion marking as determined in item 1.18 of Data Sheet 14. (S16.3.2.1.8)

X.18. Attempt to return the seat to the foremost fore-aft position, mid-height, and seat cushion mid-angle. The foot may contact and depress the accelerator and/or change the angle of the foot with respect to the leg. (S16.3.2.1.8)

X. Foremost position achieved. Proceed to step 23.

X. Foremost not achieved because of foot interference. Proceed to step 20.

X. Foremost not achieved because of steering wheel contact.

X.19. If the dummy's legs contact the steering wheel, move the steering wheel up the minimum amount required to avoid contact. If the steering wheel is not adjustable separate the knees the minimum required to avoid contact. (S16.3.2.1.8)

X. N/A - there was no leg contact.

X. Steering wheel repositioned.

X. Knees separated.

X.20. If the left foot interferes with the clutch or brake pedals, rotate the left foot about the leg to provide clearance. If this is not sufficient, rotate the thigh outboard at the hip the minimum amount required for clearance. (S16.3.2.1.8)

X. N/A. No foot interference with pedals.

X. Foot adjusted to provide clearance.

X. Foot and Thigh adjusted to provide clearance.
21. Continue to move the seat. Use seat controls to line up the seat markings determined during the completion of Data Sheet 14 to set the foremost fore-aft position, mid-height position and the seat cushion mid-angle. If the dummy contacts the interior move the seat rearward until a maximum clearance of 5 mm (0.2 inches) is achieved or the seat is in the closest detent position that does not cause dummy contact. (S16.3.2.1.8)
 - Dummy contact. Clearance set at maximum of 5 mm. Measured Clearance

22. If the steering wheel was repositioned in step 19, return the steering wheel to the original position. If the steering wheel contacts the dummy before reaching the original position, position the wheel until a maximum clearance of 5 mm (0.2 inches) is achieved, or the steering wheel is in the closest detent position that does not cause dummy contact. (S16.3.2.1.8)
 - N/A Steering wheel was not repositioned.
 - Original position achieved.
 - Dummy contact. Clearance set at maximum of 5 mm. Measured Clearance

...
X25. Verify the dummy abdomen is properly installed. (S16.3.2.1.9)
 X Abdomen still seated properly into dummy
 _ Abdomen was adjusted because it was not seated properly into dummy

X26. Head Angle
 _ N/A, neither the pelvis nor the abdomen were adjusted.

X26.1 Head still level (Go to 27)

 26.2 Head level adjusted

 _ Head Level Achieved. (Check all that apply)
 _ Head leveled using the adjustable seat back
 _ Head leveled using the neck bracket.
 Head Angle ____________ degrees

 _ Head Level NOT Achieved. (Check all that apply)
 _ Head level adjusted using the adjustable seat back
 _ Head level adjusted using the neck bracket.
 Head Angle ____________ degrees

X27. If the dummy torso contacts the steering wheel while performing step 23, reposition the
 steering wheel in the following order to eliminate contact.
 _ N/A, No dummy torso contact with the steering wheel.

X27.1 Adjust telescoping mechanism.
 _ N/A No telescoping adjustment.

 _ Adjustment performed (fill in appropriate change)
 Steering wheel moved _____ detent positions in the forward direction.
 Steering wheel moved ____ mm in the forward direction.

X27.2 Adjust tilt mechanism.
 _ N/A No tilt adjustment.
 _ No adjustment performed.

 _ Adjustment performed.
 Steering wheel moved ____ detent positions Upward/Downward.
 (circle one)
 Steering wheel moved ___ degrees Upward/Downward

X27.3 Adjust Seat in the aft direction.
 _ No Adjustment performed.

 _ Seat moved aft ____ mm from original position.
 _ Seat moved aft ____ detent positions from the original position.

X28. Measure and set the pelvic angle using the pelvic angle gage TE-2504. The pelvic
 angle should be 20.0 degrees ± 2.5 degrees. If the pelvic angle cannot be set to the
 specified range because the head will not be level, adjust the pelvis as closely as
 possible to the angle range, but keep the head level.
 _ Pelvic angle set to 20.0 degrees ± 2.5 degrees.
 _ Pelvic angle of 20.0 degrees not achieved, the angular difference was minimized.
 _ Record the pelvic angle. _____ 21.0 _____ degrees
X 29. Check the dummy for contact with the interior after completing adjustments.
 X No contact.
 _ Dummy in contact with interior.
 _ Seat moved aft ___ mm from the previous position.
 _ Seat moved aft ___ detent positions from the previous position.

X 30. Check the dummy to see if additional interior clearance is obtained, allowing the seat to be moved forward.
 X N/A, Seat already at foremost position.
 _ Clearance unchanged. No adjustments required.
 _ Additional clearance available
 _ Seat moved Forward ___ mm from the previous position.
 _ Seat moved Forward ___ detent positions from the previous position.

X 31. Driver's foot positioning, right foot. Place the foot perpendicular to the leg and determine if the heel contacts the floor pan at any leg position. If the heel contacts the floor pan, proceed to step 32 otherwise, proceed to step 33.

_ 32. Perform the following steps until either all steps are completed, or the foot contacts the accelerator pedal. Step 32.6 shall be completed in all cases.

_ 32.1 With the rear of the heel contacting the floor pan, move the foot forward until pedal contact occurs or the foot is at the full forward position.

_ 32.2 If the vehicle has an adjustable accelerator pedal, move the pedals rearward until pedal contact occurs or the pedals reach the full rearward position.

_ 32.3 Extend the leg, allowing the heel to lose contact with the floor until the foot contacts the pedal. Do not raise the toe of the foot higher than the top of the accelerator pedal. If the foot does not contact the pedal, proceed to the next step. If pedal contact does occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward.

_ 32.4 Angle the foot to achieve contact between the foot and the pedal. If the foot does not contact the pedal, return the foot to the perpendicular orientation. If pedal contact does occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward.

_ 32.5 Align the centerline of the foot with the vertical-longitudinal plane passing through the center of the accelerator pedal. Place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward.

_ 32.6 Record foot position
 _ Pedal Contact achieved. Contact occurred at step ___.
 _ Heel contacts floor pan
 _ Heel set ___ mm from floor pan.

 _ Pedal Contact not achieved. Heel set ___ mm from the floor pan.
X33. Perform the following steps until either all steps are completed, or the foot contacts the accelerator pedal. Step 33.5 shall be completed in all cases.

X33.1 Extend the leg until the foot contacts the pedal. Do not raise the toe of the foot higher than the top of the accelerator pedal. If the foot does not contact the pedal, proceed to the next step. If pedal contact does occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward.

X33.2 If the vehicle has an adjustable accelerator pedal, move the pedals rearward until pedal contact occurs or the pedals reach the full rearward position. If pedal contact does occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward.

X33.3 Angle the foot to achieve contact between the foot and the pedal. If the foot does not contact the pedal, return the foot to the perpendicular orientation. If pedal contact does occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward.

X33.4 Align the centerline of the foot in the same horizontal plane as the centerline of the accelerator pedal. Place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward.
X 33.5 Record foot position
 X Pedal Contact achieved. Contact occurred at step 33.1.
 X Heel set 84 mm from floor pan.

 ___ Pedal Contact not achieved. Heel set ____ mm from the floor pan.

X 34. Driver’s foot positioning, left foot.

X 34.1 Place the foot perpendicular to the leg and determine if the heel contacts the floor pan at any leg position. If the heel contacts the floor pan proceed to step 34.2, otherwise position the leg as perpendicular to the thigh as possible with the foot parallel to the floor pan.

X 34.2 Place the foot on the toe board with the heel resting on the floor pan as close to the intersection of the floor pan and the toe board as possible. Adjust the angle of the foot if necessary to contact the toe board. If the foot will not contact the toe board, set the foot perpendicular to the leg, and set the heel on the floor pan as far forward as possible. Do not place the foot on the wheel well projection or footrest. If the pedals interfere with the placement of the foot, reposition the foot by rotating the foot about the leg, or rotate the leg outboard about the hip if necessary.
 ___ Foot rotated about the leg
 ___ Foot rotated about the leg, and the leg rotated about the hip.
 X No pedal interference

X 34.3 Record foot position.
 ___ Heel does not contact floor pan.
 ___ Foot placed on toe board.
 X Foot placed on floor pan.

X 35. Driver arm/hand positioning.

X 35.1 Place the dummy’s upper arms adjacent to the torso with the arm centerlines as close to a vertical longitudinal plane as possible. (S16.3.2.3.1)

X 35.2 Place the palms of the dummy in contact with the outer part of the steering wheel rim at its horizontal centerline with the thumbs over the steering wheel rim. (S16.3.2.3.2)

X 35.3 If it is not possible to position the thumbs inside the steering wheel rim at its horizontal centerline, then position them above and as close to the horizontal centerline of the steering wheel rim as possible. (S16.3.2.3.3)

X 35.4 Lightly tape the hands to the steering wheel rim so that if the hand of the test dummy is pushed upward by a force of not less than 9 N (2 lb) and not more than 22 N (5 lb), the tape releases the hand from the steering wheel rim. S16.3.2.3.4

X 36. Adjustable head restraints
 ___ N/A, there is no head restraint adjustment

NA 36.1 If the head restraint has an automatic adjustment, leave it where the system positions the restraint after the dummy is placed in the seat. (S16.3.4.1) Go to 37.
X 36.2 Adjust each head restraint vertically so that the horizontal plane determined in item 3 of Data Sheet 14 is aligned with the center of gravity (CG) of the dummy head. (S16.3.4.3)

X 36.3 If the above position is not attainable, move the vertical center of the head restraint to the closest detent below the center of the head CG. (S16.3.4.3)
 __ N/A midpoint position attained in previous step
 __ Headrest set at nearest detent below the head CG

X 36.4 If the head restraint has a fore and aft adjustment, place the restraint in the foremost position or until contact with the head is made, whichever occurs first. (S16.3.4.4)

X 37. Driver and passenger manual belt adjustment (for tests conducted with a belted dummy). (S16.3.5) Unbelted Test

___ 37.1 If an adjustable seat belt D-ring anchorage exists, place it in the manufacturer's design position for a 5th percentile adult female.
 This information will be supplied by the COTR.
 Manufacturer's specified position ________________________________
 Actual Position ________________________________

___ 37.2 Place the Type 2 manual belt around the test dummy and fasten the latch. (S16.3.5.2)

___ 37.3 Ensure that the dummy's head remains as level as possible. (S16.3.5.3)

___ 37.4 Remove all slack from the lap belt. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this operation four times. Apply a 9 N (2 lbf) to 18 N (4 lbf) tension load to the lap belt. If the belt system is equipped with a tension-relieving device, introduce the maximum amount of slack into the upper torso belt that is recommended by the manufacturer. If the belt system is not equipped with a tension-relieving device, allow the excess webbing in the shoulder belt to be retracted by the retractive force of the retractor. (S16.3.5.4)

REMARKS:

I certify that I have read and performed each instruction.

Signature: _____________________________ Date: 4/1/04
APPENDIX G
DUMMY POSITIONING PROCEDURES
FOR 5th% PASSENGER TEST DUMMY CONFORMING TO SUBPART O OF PART 572

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No – Front Occupants</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>X 50th female</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>X 50th female</td>
</tr>
</tbody>
</table>

(Check this item ONLY if it applies to this vehicle.)

The passenger seat adjustments are controlled by the adjustments made to the driver’s seat. Therefore, positioning of the passenger dummy is made simultaneously with the driver dummy. Adjustments made to the seat to position the driver will over ride any adjustments that would normally be made to position the passenger. (S16.2.10.3)

X 1. Position the seat’s adjustable lumbar supports so that the lumbar supports are in the lowest, retracted or deflated adjustment position. (S16.2.10.1)
 _ N/A – No lumbar adjustment

X 2. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 _ N/A – No additional support adjustment

X 3. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 _ N/A – No independent fore-aft seat cushion adjustment

X 4. Use the seat markings determined during the completion of Data Sheet 14 to set the rearmost fore-aft position, mid-height position and the seat cushion mid-angle. (S16.3.3.1.1)

X 5. Fully recline the seat back. (S16.3.3.1.2)
 _ N/A seat back not adjustable.

X 6. Place the dummy in the seat with the legs at an angle of 120 degrees to the thighs. The calves should not be touching the seat cushion. (S16.3.3.1.2)

X 7. Position the dummy in the seat such that the midsagittal plane is coincident with the longitudinal seat cushion marking that was determined in item 2.19 of Data Sheet 14 (S16.3.3.1.3 and S16.3.3.1.4)

X 8. Hold down the dummy’s thighs and push rearward on the upper torso to maximize the pelvic angle. (S16.3.3.1.5)

X 9. Set the angle between the legs and the thighs to 120 degrees. (S16.3.3.1.6)
10. Set the transverse distance between the centers of the front of the knees at 160 to 170 mm (6.3 to 6.7 inches) Center the knee separation with respect to the longitudinal seat cushion marking that was determined in item 2.19 of Data Sheet 14. (S16.3.3.1.8) Record Knee Separation 185 mm

11. Push rearward on the dummy's knees until the pelvis contacts the seat back, or the backs of the calves contact the seat cushion, whichever occurs first. (S16.3.3.1.8)
- Pelvis contacted seat back.
- Calves contacted seat cushion.

12. Gently rock the upper torso ± 5 degrees (approximately 51 mm (2 inches)) side-to-side three times. (S16.3.3.1.7)

13. If needed, extend the legs until the feet do not contact the floor pan. The thighs should be resting on the seat cushion. (S16.3.3.1.8)

14. Use seat controls to line up the seat markings determined during the completion of Data Sheet 14 to set the foremost fore-aft position, mid-height position and the seat cushion mid-angle. If the dummy contacts the interior move the seat rearward until a maximum clearance of 5 mm (0.2 inches) is achieved or the seat is in the closest detent position that does not cause dummy contact. (S16.3.3.1.8)
- Foremost, mid-height position and the seat cushion mid-angle reached
 - Dummy contact. Clearance set at maximum of 5 mm
 - Measured Clearance

- Dummy Contact. Seat set at nearest detent position.
 Seat position ___ detent positions rearward of foremost
 (Foremost is position zero)

15. If the seat back is adjustable, rotate the seat back forward while holding the thighs in place. Continue rotating the seat back forward until the transverse instrument platform of the dummy head is level ± 0.5 degrees. If head cannot be leveled using the seat back adjustment, or the seat back is not adjustable, use the lower neck bracket adjustment to level the head. If a level position cannot be achieved, adjust the head as closely as possible to the ± 0.5 degree range. (S16.3.3.1.8 and S16.3.3.1.10)
 (Check All That Apply)
 - Seat back not adjustable

 - Seat back not independent of driver side seat back

- Head Level Achieved. (Check all that apply)
 - Head leveled using the adjustable seat back
 - Head leveled using the neck bracket
 - Head Angle _____0.1______ degrees
 - Head Level NOT Achieved. (Check all that apply)
 - Head adjusted using the adjustable seat back
 - Head adjusted using the neck bracket
 - Head Angle ____________ degrees
X 16. Verify the pelvis is not interfering with the seat bight. (S16.3.3.1.9)
 X No Interference
 _Pelvis moved forward the minimum amount so that it is not caught in the seat bight.

X 17. Verify the dummy abdomen is properly installed. (S16.3.3.1.9)
 X Abdomen still seated properly into dummy
 _Abdomen was adjusted because it was not seated properly into dummy

X 18. Head Angle
 X N/A, neither the pelvis nor the abdomen were adjusted.

X 18.1 Head still level (Go to 19)

 _18.2 Head level adjusted
 _Head Level Achieved. (Check all that apply)
 _Head leveled using the adjustable seat back
 _Head leveled using the neck bracket.
 Head Angle ____________ degrees

 _Head Level NOT Achieved. (Check all that apply)
 _Head adjusted using the adjustable seat back
 _Head adjusted using the neck bracket.
 Head Angle ____________ degrees

X 19. Measure and set the pelvic angle using the pelvic angle gage TE-2504. The pelvic angle should be 20.0 degrees ± 2.5 degrees. If the pelvic angle cannot be set to the specified range because the head will not be level, adjust the pelvis as closely as possible to the angle range, but keep the head level.
 X Pelvic angle set to 20.0 degrees ± 2.5 degrees.
 _Pelvic angle of 20.0 degrees not achieved, the angular difference was minimized.
 _Record the pelvic angle. ___________ degrees

X 20. Check the dummy for contact with the interior after completing adjustments.
 X No contact.
 _Dummy in contact with interior.
 _Seat moved aft __________ mm from the previous position.
 _Seat moved aft __________ detent positions from the previous position.

X 21. Verify the transverse instrument platform of the dummy head is level +/- 0.5 degrees. Use the lower neck bracket adjustment to level the head. If a level position cannot be achieved, minimize the angle. (S16.3.3.1.9, S16.3.3.1.10, and S16.3.3.1.11)
 X Head Level Achieved
 Head Angle ___________ degrees
 _Head Level NOT Achieved.
 Head Angle ___________ degrees
X 22. Check the dummy to see if additional interior clearance is obtained, allowing the seat to be moved forward. (S16.3.3.1.12)
 _N/A Bench Seat
 _N/A Seat already at full forward position.
 X Clearance unchanged. No adjustments required.
 _Additional clearance available
 __Seat moved Forward ___ mm from the previous position.
 __Seat moved Forward ___ detent positions from the previous position.
 __Seat moved Forward, Full Forward position reached.

X 23. Passenger foot positioning. (Indicate final position achieved) (S16.3.3.2)

 _23.1 Place feet flat on the toe board; OR

 X 23.2 If the feet cannot be placed flat on the toe board, set the feet perpendicular to the lower leg, and rest the heel as far forward on the floor pan as possible; OR
 _23.3 If the heels do not touch the floor pan, set the legs to vertical and set the feet parallel to the floor pan.

X 24. Passenger arm/hand positioning. (S16.3.3.3)

 X 24.1 Place the dummy’s upper arms adjacent to the torso with the arm centerlines as close to a vertical longitudinal plane as possible. (S16.3.2.3.1)

 X 24.2 Place the palms of the dummy in contact with the outer part of the thighs (S16.3.3.3.2)

 X 24.3 Place the little fingers in contact with the seat cushion. (S16.3.3.3.3)

X 25. Adjustable head restraints
 _N/A, there is no head restraint adjustment

 _N/A 25.1 If the head restraint has an automatic adjustment, leave it where the system positions the restraint after the dummy is placed in the seat. (S16.3.4.1) Go to 26.

 X 25.2 Adjust each head restraint vertically so that the horizontal plane determined in item 3 of Data Sheet 14 is aligned with the center of gravity (CG) of the dummy head. (S16.3.4.3)

 X 25.3 If the above position is not attainable, move the vertical center of the head restraint to the closest detent below the center of the head CG. (S16.3.4.3)
 __N/A midpoint position attained in previous step
 __Headrest set at nearest detent below the head CG

 _25.4 If the head restraint has a fore and aft adjustment, place the restraint in the foremost position or until contact with the head is made, whichever occurs first. (S16.3.4.4)

X 26. Manual belt adjustment (for tests conducted with a belted dummy) S16.3.5
 _X N/A, Unbelted test
26.1 If an adjustable seat belt D-ring anchorage exists, place it in the manufacturer's design position for a 5th percentile adult female. This Information will be supplied by the COTR.
Manufacturer's specified position
Actual Position

26.2 Place the Type 2 manual belt around the test dummy and fasten the latch. (S16.3.5.2)

26.3 Ensure that the dummy's head remains as level as possible. (S16.3.5.3)

26.4 Remove all slack from the lap belt. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this operation four times. Apply a 9 N (2 lbf) to 18 N (4 lbf) tension load to the lap belt. If the belt system is equipped with a tension-relieving device, introduce the maximum amount of slack into the upper torso belt that is recommended by the manufacturer. If the belt system is not equipped with a tension-relieving device, allow the excess webbing in the shoulder belt to be retracted by the retractive force of the retractor. (S16.3.5.4)

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]
Date: 4/1/04
Dummy Positioning Procedures

For Rear Passenger Test Dummy Conforming to Subpart E of Part 572

<table>
<thead>
<tr>
<th>Impact Angle:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted Dummies (Yes/No):</td>
<td>No – Front Occupants, Yes – Center Rear Passenger</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph, 0 to 38 kmph, 0 to 56 kmph</td>
</tr>
<tr>
<td>Driver Dummy:</td>
<td>X 5'7" Female, 50th Male</td>
</tr>
<tr>
<td>Passenger Dummy:</td>
<td>X 6'2" Female, X 50th Male Ctr Rear</td>
</tr>
</tbody>
</table>

X.1. If the seat is a bench seat for which there are no independent adjustments that can be made, Go to step 7.

X.2. Position the seat's adjustable lumber supports so that the lumber support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
N/A – No lumbar adjustment

X.3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S20.1.8.2)
N/A – No additional support adjustment

X.4. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S20.1.9.3)
N/A – No independent fore-aft seat cushion adjustment

X.5. If the seat and/or seat cushion height is adjustable, put the seat in the full down height position. (S8.1.2)
N/A – No seat height adjustment

X.6. Using only the controls that move the seat in the fore-aft direction, place the seat in the rearmost position. (S8.1.2)

X.7. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.5.4.1 (b) and S8.1.3)
N/A – No seat back angle adjustment
Manufacturer’s design seat back angle
Tested seat back angle
5.5° on seat back

X.8. If adjustable, set the head restraint at the full up and full forward position. Any adjustment of the head restraint shall be used to position it full forward. For example, if it rotates, rotate it such that the head restraint extends as far forward as possible. (S8.1.3)
N/A – No head restraint adjustment

X.9. Place any adjustable seat belt anchorages at the vehicle manufacturer’s nominal design position for a 50th percentile adult male occupant (S8.1.3)
N/A – No adjustable upper seat belt anchorages
Manufacturer’s specified anchorage position
Tested anchorage position
X 10. Place the dummy in the seat such that the midsagittal plane is vertical and coincides with the vertical longitudinal plane that passes through the SgRP and is parallel to the longitudinal centerline of the vehicle and the upper torso rests against the seat back.

X 11. Rest the thighs on the seat cushion. (S10.5)

X 12. Position the H-point of the dummy within 0.5 inch of the vertical dimension and 0.5 inch of the horizontal dimension of a point 0.25 inch below the H-point determined by using the equipment and procedures specified in SAE J826 (APR 1980). (S10.4.2.1) Then measure the pelvic angle with respect to the horizontal using the pelvic angle gage. Adjust the dummy position until these three measurements are within the specifications. (S10.4.2.1 and S10.4.2.2)

25 horizontal inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)
36 vertical inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)
24.9° pelvic angle (20° to 25°)

X 13. Is the head level within ± 0.5°? (S10.1)
 __Yes, go to 14
 __No, go to 13.1

 13.1 Adjust the position of the H-point. (S10.1 and S10.4.2.1)

 13.2 Is the head level within ± 0.5°? (S10.1)
 __Yes, record the following, then go to 13. __No, go to 12.3 (Same as 12)
 __horizontal inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)
 __vertical inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)
 __pelvic angle (20° to 25°) (S10.4.2.2)

 13.3 Adjust the pelvic angle. (S10.1)

 13.4 Is the head level within ± 0.5°? (S10.1)
 __Yes, record the following, then go to 13. __No, go to 12.5
 __horizontal inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)
 __vertical inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)
 __pelvic angle (20° to 25°) (S10.4.2.2)

 13.5 Adjust the neck bracket of the dummy the minimum amount necessary from the non-adjusted "0" setting until the head is level within ± 0.5°. (S10.1)
 Record the following, then go to 13
 __horizontal inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)
 __vertical inches from the point 0.25 below the determined H-point (0.5 inch max.) (S10.4.2.1)
 __pelvic angle (20° to 25°) (S10.4.2.2)
X 14. Set the distance between the outboard knee clevis flange surfaces at 10.8 inches.
 10.8" measured distance (Seat track and center console interfere) (S10.5)

X 15. Check only one of the following that applies:
 ___ Outboard seating position
 Keeping the right thigh and leg in a vertical plane and the left thigh and leg in a vertical
 plane, place the feet flat on the floorpan and beneath the front seat as far as possible
 without front seat interference. If necessary, the distance between the knees can be
 changed in order to place the feet beneath the seat. Record new distance between the
 outboard knee clevis flange surfaces if knees have been repositioned.
 ___ measured distance (inches)

X 15 Center seating position
 Keeping the left thigh and leg in a vertical plane, place the left foot flat on the floorpan on
 the left side of the transmission tunnel (if present). Keeping the right thigh and leg in a
 vertical plane, place the right foot flat on the floorpan on the right side of the
 transmission tunnel. If necessary, the distance between the knees can be changed in
 order to place the feet flat on the floor. If possible, the knees should remain as close to
 the distance as measured in #14 above. Record new distance between the outboard
 knee clevis flange surfaces if knees have been repositioned. 425mm / 16.73" measured
 distance (inches)

X 16. Place the left upper arm in contact with the seat back and side of the torso. (S10.2.2)

X 17. Is the passenger seat belt used for this test?
 ___ Yes, continue
 ___ No, go to 18

X 17.1 Fasten the seat belt around the dummy.

X 17.2 Remove all slack from the lap belt portion. (S10.9)

X 17.3 Pull the upper torso webbing out of the retractor and allow it to retract; repeat this four
 times. (S10.9)

X 17.4 Apply a 2 to 4 pound tension load to the lap belt. (S10.9)
 2 pound load applied

X 17.5 Is the belt system equipped with a tension relieving device?
 ___ Yes, continue
 ___ No, go to 18

X 17.6 Introduce the maximum amount of slack into the upper torso belt that is recommended by
 the vehicle manufacturer in the vehicle owner's manual. (S10.9). Go to 17.

X 18. Place the right upper arm in contact with the seat back and side of the torso. (S10.2.2)

X 19. Place the left hand palm in contact with the outside of the left thigh and the little finger in
 contact with the seat cushion. (S10.3.2)

X 20. Place the right hand palm in contact with the outside of the right thigh and the little finger
 in contact with the seat cushion. (S10.3.2)
I certify that I have read and performed each instruction.

Signature: [Signature] Date: 4/1/04
DATA SHEET 35
DUMMY MEASUREMENTS

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
Test Technician: Eric Paschman
NHTSA No.: C40303
Test Date: 1/28/04

DUMMY MEASUREMENTS FOR FRONT SEAT OCCUPANTS

AD Arm to Door
HD H-Point to Door
HR Head to Slide Header
HS Head to Side Window
KK Knee to Knee
Shy Striker to H-Point (Y Axis)

CD Chest to Dash
CS Chest to Steering Wheel Hub
HH Head to Header
HW Head to Windshield
HZ Head to Roof
KDA Knee to Dash Angle
KDL Left Knee to Dash
KDR Right Knee to Dash
NA Nose to Rim Angle
NR Nose to Rim
PA Pelvis Angle
RA Rim to Abdomen
SA Seat Back Angle
SCA Steering Column Angle
SH Striker to H-Point
SK Striker to Knee
ST Striker to Head
SWA Steering Wheel Angle
TA Tibial Angle
WA Windshield Angle
DATA SHEET 35
DUMMY MEASUREMENTS

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
Test Technician: Eric Peschman
NHTSA No.: C40303
Test Date: 4/1/04

TEST DUMMY POSITION MEASUREMENTS

<table>
<thead>
<tr>
<th>Code</th>
<th>Measurement Description</th>
<th>Driver SN 505</th>
<th>Passenger SN 511</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Length (mm)</td>
<td>Length (mm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Angle (°)</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>WA</td>
<td>Windshield Angle</td>
<td></td>
<td>39.7</td>
</tr>
<tr>
<td>SWA</td>
<td>Steering Wheel Angle</td>
<td></td>
<td>65.7</td>
</tr>
<tr>
<td>SCA</td>
<td>Steering Column Angle</td>
<td></td>
<td>24.4</td>
</tr>
<tr>
<td>SA</td>
<td>Seat Back Angle</td>
<td></td>
<td>4.9</td>
</tr>
<tr>
<td>HZ</td>
<td>Head to Roof (Z)</td>
<td>209</td>
<td>274</td>
</tr>
<tr>
<td>HH</td>
<td>Head to Header</td>
<td>386</td>
<td>432</td>
</tr>
<tr>
<td>HW</td>
<td>Head to Windshield</td>
<td>892</td>
<td>787</td>
</tr>
<tr>
<td>HR</td>
<td>Head to Side Header (Y)</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>Nose to Rim</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>Chest to Dash</td>
<td>434</td>
<td>446</td>
</tr>
<tr>
<td>CS</td>
<td>Chest to Steering Hub</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>RA</td>
<td>Rim to Abdomen</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>KDL</td>
<td>Left Knee to Dash</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>KDR</td>
<td>Right Knee to Dash</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>Pelvic Angle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA</td>
<td>Tibia Angle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KK</td>
<td>Knee to Knee (Y)</td>
<td>288</td>
<td></td>
</tr>
<tr>
<td>SK</td>
<td>Striker to Knee</td>
<td>679</td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>Striker to Head</td>
<td>652</td>
<td></td>
</tr>
<tr>
<td>SH</td>
<td>Striker to H-Point</td>
<td>353</td>
<td></td>
</tr>
<tr>
<td>SHY</td>
<td>Striker to H-Point (Y)</td>
<td>295</td>
<td></td>
</tr>
<tr>
<td>HS</td>
<td>Head to Side Window</td>
<td>358</td>
<td></td>
</tr>
<tr>
<td>HD</td>
<td>H-Point to Door (Y)</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>Arm to Door (Y)</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Ankle to Ankle</td>
<td>260</td>
<td></td>
</tr>
</tbody>
</table>

147
TEST DUMMY POSITION MEASUREMENTS (S/N 491)

<table>
<thead>
<tr>
<th>Measurement Description</th>
<th>Units</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head to string plane</td>
<td>mm</td>
<td>578</td>
</tr>
<tr>
<td>Chest to string plane</td>
<td>mm</td>
<td>539</td>
</tr>
<tr>
<td>Right Knee to string plane</td>
<td>mm</td>
<td>165</td>
</tr>
<tr>
<td>Left Knee to string plane</td>
<td>mm</td>
<td>158</td>
</tr>
<tr>
<td>Rear Console to string plane</td>
<td>mm</td>
<td>142</td>
</tr>
<tr>
<td>Knee to Knee</td>
<td>mm</td>
<td>425</td>
</tr>
<tr>
<td>Right Tibia Angle</td>
<td>degrees</td>
<td>67.9</td>
</tr>
<tr>
<td>Left Tibia Angle</td>
<td>degrees</td>
<td>71.1</td>
</tr>
<tr>
<td>Pelvic Angle</td>
<td>degrees</td>
<td>24.9</td>
</tr>
</tbody>
</table>

Dummy measurements were taken to a plane defined by a string placed between the upper seat belt anchorage points.
SEAT BELT POSITIONING DATA

FRONT VIEW OF DUMMY

SEAT BELT POSITIONING MEASUREMENTS

<table>
<thead>
<tr>
<th>Measurement Description</th>
<th>Units</th>
<th>Driver</th>
<th>Passenger</th>
<th>Rear Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBU - Top surface of reference to belt upper edge</td>
<td>mm</td>
<td>N/A</td>
<td>N/A</td>
<td>379</td>
</tr>
<tr>
<td>PSL - To surface of reference to belt lower edge</td>
<td>mm</td>
<td>N/A</td>
<td>N/A</td>
<td>290</td>
</tr>
</tbody>
</table>
DATA SHEET 38
CRASH TEST

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
Test Technician: Eric Peschman

NHTSA No.: C403003
Test Date: 1/28/04

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No — Front Occupants</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>X 5'10" female</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>X 5'10" female</td>
</tr>
</tbody>
</table>

1. Vehicle underbody painted
2. The speed measuring devices are in place and functioning.
3. The speed measuring devices are 1.0 m from the barrier (spec. 1.5m) and 30 cm from the barrier (spec. is 30 cm)
4. Convertible top is in the closed position.
5. N/A, not a convertible
6. Instrumentation and wires are placed so the motion of the dummies during impact is not affected.
7. Tires inflated to pressure on tire placard or if it does not have a tire placard because it is not a passenger car, then inflated to the tire pressure specified in the owner information.

231 kpa front left tire
231 kpa front right tire
231 kpa rear left tire
231 kpa rear right tire
231 kpa specified on tire placard or in owner information
231 kpa specified on tire placard or in owner information
231 kpa specified on tire placard or in owner information
231 kpa specified on tire placard or in owner information

8. Time zero contacts on barrier in place.
9. Pre test zero and shunt calibration adjustments performed and recorded
10. Dummy temperature meets requirements of section 12.2 of the test procedure.
11. Vehicle hood closed and latched
12. Transmission placed in neutral
13. Parking brake off
14. Ignition in the ON position
15. Doors closed and latched but not locked
16. Post test zero and shunt calibration checks performed and recorded
17. Actual test speed 39.8 kmph
18. Vehicle rebound from the barrier 58.1 cm
19. Describe whether the doors open after the test and what method is used to open the doors.

X Left Front Door: Door remained closed and latched; Door opened without tools
X Right Front Door: Door remained closed and latched; Door opened without tools
X Left Rear Door: Door remained closed and latched; Door opened without tools
19. Describe the contact points of the dummy with the interior of the vehicle.

- Driver Dummy: Head to Air Bag and Headliner/Visor; Chest and Abdomen to Air Bag; Knees to Knee Bolster
- Passenger Dummy: Head to Air Bag and Sunvisor; Chest and Abdomen to Air Bag; Knees to Glove Box
- Center Rear Passenger Dummy: Back of Head to Headrest; Left Knee to Center Console

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature] Date: 4/1/04
DATA SHEET NO. 38
ACCIDENT INVESTIGATION DIVISION DATA

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
Test Technician: Eric Peschman

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No – Front Occupant: Yes – Center Rear Passenger</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 km/h</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>X 5th female</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>X 5th female</td>
</tr>
</tbody>
</table>

Vehicle Year/Make/Model/Body Style: 2004 DODGE DURANGO MPV

VIN:	1D4HD48N04F255505
Wheelbase:	3035 mm
Build Date:	10/03
Vehicle Size Category:	6
Test Weight:	2461.7 kg
Front Overhang:	1098 mm
Overall Width:	1891 mm
Overall Length Center:	4913 mm

Accelerometer Data

| Location: | As per measurements on Data Sheet 31 |
| Linearity: | >0.85% |

Integration Algorithm:	Trapezoidal
Vehicle Impact Speed:	39.8 km/h
Time of Separation:	90.2 ms
Velocity Change:	44.8 km/h
CRUSH PROFILE

Collision Deformation Classification: 12FDEW6
Midpoint of Damage: Vehicle Longitudinal Centerline
Damage Region Length (mm): 1976
Impact Mode: Frontal Barrier

<table>
<thead>
<tr>
<th>No.</th>
<th>Measurement Description</th>
<th>Units</th>
<th>Pre-Test</th>
<th>Post-Test</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Crush zone 1 at left side</td>
<td>mm</td>
<td>4913</td>
<td>4755</td>
<td>158</td>
</tr>
<tr>
<td>C2</td>
<td>Crush zone 2 at left side</td>
<td>mm</td>
<td>5026</td>
<td>4834</td>
<td>192</td>
</tr>
<tr>
<td>C3</td>
<td>Crush zone 3 at left side</td>
<td>mm</td>
<td>5065</td>
<td>4845</td>
<td>220</td>
</tr>
<tr>
<td>C4</td>
<td>Crush zone 4 at right side</td>
<td>mm</td>
<td>5066</td>
<td>4818</td>
<td>248</td>
</tr>
<tr>
<td>C5</td>
<td>Crush zone 5 at right side</td>
<td>mm</td>
<td>5025</td>
<td>4790</td>
<td>235</td>
</tr>
<tr>
<td>C6</td>
<td>Crush zone 6 at right side</td>
<td>mm</td>
<td>4911</td>
<td>4736</td>
<td>173</td>
</tr>
<tr>
<td>L</td>
<td>Width</td>
<td>mm</td>
<td>1876</td>
<td>1872</td>
<td>4</td>
</tr>
<tr>
<td>N/A</td>
<td>Crush at vehicle centerline</td>
<td>mm</td>
<td>5079</td>
<td>4850</td>
<td>229</td>
</tr>
</tbody>
</table>

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 4/1/04
DATA SHEET 39

WINDSHIELD MOUNTING (FMVSS 212)

Test Vehicle: 2004 Dodge Durango NHTSA No.: C40303
Test Program: FMVSS 208 Compliance Test Date: 4/1/04
Test Technician: Clark Subrt

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No – Front Occupants Yes – Center Rear Passenger</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph 0 to 48 kmph 0 to 56 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>X 5th female 50th Male</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>X 5th female X 50th Male Ctr Rear</td>
</tr>
</tbody>
</table>

1. Pre-Crash

1.1 Describe from visual inspection how the windshield is mounted and describe any trim material.

Retained with glue
Rubber trim

2. Post Crash

2.1 Can a single thickness of copier type paper (as small a piece as necessary) slide between the windshield and the vehicle body?

X No – Pass. Skip to the table of measurements, complete it by repeating the pre-crash measurements in the post crash column, and calculate the retention percentage, which will be 100%.

Yes, go to 2.2

2.2 Visibly mark the beginning and end of the portions of the periphery where the paper slides between the windshield and the vehicle body.

2.3 Measure and record post-crash A, B, C, D, E, and F such that the measurements do not include any of the parts of the windshield where the paper slides between the windshield and the vehicle body.

2.4 Calculate and record the percent retention for the right and left side of the windshield.

2.5 Is total right side percent retention less than 75%?

Yes, Fail
No, Pass

2.6 Is total left side percent retention less than 75%?

Yes, Fail
No, Pass
<table>
<thead>
<tr>
<th>Dimension</th>
<th>Pre-Crash (mm)</th>
<th>Post-Crash (mm)</th>
<th>Percent Retention (Post-Test + Pre-Crash)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>632</td>
<td>632</td>
<td>100%</td>
</tr>
<tr>
<td>B</td>
<td>871</td>
<td>871</td>
<td>100%</td>
</tr>
<tr>
<td>C</td>
<td>792</td>
<td>792</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>2295</td>
<td>2295</td>
<td>100%</td>
</tr>
<tr>
<td>D</td>
<td>832</td>
<td>632</td>
<td>100%</td>
</tr>
<tr>
<td>E</td>
<td>871</td>
<td>871</td>
<td>100%</td>
</tr>
<tr>
<td>F</td>
<td>792</td>
<td>792</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>2295</td>
<td>2295</td>
<td>100%</td>
</tr>
</tbody>
</table>

Indicate area of mounting failure. NONE

FRONT VIEW OF WINDSHIELD
INDICATE WIDTH OF MOLDING

REMARKS:
I certify that I have read and performed each instruction.

Signature: [Signature]
Date: 4/1/04
DATA SHEET 40
WINDSHIELD ZONE INTRUSION (FMVSS 219)

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
Test Technician: Clark Subrt
NHTSA No.: C40303
Test Date: 4/1/04

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No – Front Occupants Yes – Center Rear Passenger</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph 0 to 48 kmph 0 to 56 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>X 5th female 50th Male</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>X 5th female 50th Male Ctr Rear</td>
</tr>
</tbody>
</table>

1. Place a 185 mm diameter rigid sphere, with a mass of 6.8 kg on the instrument panel so that it is simultaneously touching the instrument panel and the windshield. (571.219 S6.1(a))

2. Roll the sphere from one side of the windshield to the other while marking on the windshield where the sphere contacts the windshield. (571.219 S6.1(b))

3. From the outermost contactable points on the windshield draw a horizontal line to the edges of the windshield. (571.219 S6.1(b))

4. Draw a line on the inner surface of the windshield that is 13 mm below the line determined in Items 2 and 3

5. After the crash test, record any points where a part of the exterior of the vehicle has marked, penetrated, or broken the windshield.

Provide all dimensions necessary to reproduce the protected area.

FRONT VIEW OF WINDSHIELD
WINDSHIELD DIMENSIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>mm</td>
<td>1264</td>
</tr>
<tr>
<td>B</td>
<td>mm</td>
<td>513</td>
</tr>
<tr>
<td>C</td>
<td>mm</td>
<td>1584</td>
</tr>
<tr>
<td>D</td>
<td>mm</td>
<td>871</td>
</tr>
<tr>
<td>E</td>
<td>mm</td>
<td>570</td>
</tr>
<tr>
<td>F</td>
<td>mm</td>
<td>591</td>
</tr>
</tbody>
</table>

AREA OF PROTECTED ZONE FAILURES:

B. Provide coordinates of the area that the protected zone was penetrated more than 0.25 inches by a vehicle component other than one which is normally in contact with the windshield.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

C. Provide coordinates of the area beneath the protected zone template that the inner surface of the windshield was penetrated by a vehicle component.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]
Date: 4/1/04
DATA SHEET 41
FUEL SYSTEM INTEGRITY (FMVSS 301)

Test Vehicle: 2004 Dodge Durango NHTSA No.: C49303
Test Program: FMVSS 208 Compliance Test Date: 4/1/04
Test Technician: Eric Peschman

| TYPE OF IMPACT: | 25 mph Unbelted Flat Frontal |

Stoddard Solvent Spillage Measurements

A. From impact until vehicle motion ceases: 0.0 grams
(Maximum Allowable = 28 grams)

B. For the 5 minute period after motion ceases: 0.0 grams
(Maximum Allowable = 142 grams)

C. For the following 25 minutes:
(Maximum Allowable = 28 grams/minute)

D. Spillage: NONE

REMARKS: NO SPILLAGE
DATA SHEET NO. 41
FMVSS 301 STATIC ROLLOVER DATA

Test Vehicle: 2004 Dodge Durango
Test Program: FMVSS 208 Compliance
NHTSA No.: C40303
Test Date: 4/1/04

1. The specified fixture rollover rate for each 90° of rotation is 60 to 180 seconds.
2. The position hold time at each position is 300 seconds (minimum).
3. Details of Stoddard Solvent spillage locations: None

<table>
<thead>
<tr>
<th>Test Phase</th>
<th>Rotation Time (sec.)</th>
<th>Hold Time (sec.)</th>
<th>Spillage (grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0° to 90°</td>
<td>170</td>
<td>300</td>
<td>0.0</td>
</tr>
<tr>
<td>90° to 180°</td>
<td>151</td>
<td>300</td>
<td>0.0</td>
</tr>
<tr>
<td>180° to 270°</td>
<td>140</td>
<td>300</td>
<td>0.0</td>
</tr>
<tr>
<td>270° to 360°</td>
<td>164</td>
<td>300</td>
<td>0.0</td>
</tr>
</tbody>
</table>
APPENDIX A
CRASH TEST DATA
<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Driver Head X Acceleration vs. Time</td>
<td>A-1</td>
</tr>
<tr>
<td>2</td>
<td>Driver Head Y Acceleration vs. Time</td>
<td>A-1</td>
</tr>
<tr>
<td>3</td>
<td>Driver Head Z Acceleration vs. Time</td>
<td>A-1</td>
</tr>
<tr>
<td>4</td>
<td>Driver Head Resultant Acceleration vs. Time</td>
<td>A-1</td>
</tr>
<tr>
<td>5</td>
<td>Driver Head X Velocity vs. Time</td>
<td>A-2</td>
</tr>
<tr>
<td>6</td>
<td>Driver Head Y Velocity vs. Time</td>
<td>A-2</td>
</tr>
<tr>
<td>7</td>
<td>Driver Head Z Velocity vs. Time</td>
<td>A-2</td>
</tr>
<tr>
<td>8</td>
<td>Driver Neck Force X vs. Time</td>
<td>A-3</td>
</tr>
<tr>
<td>9</td>
<td>Driver Neck Force Y vs. Time</td>
<td>A-3</td>
</tr>
<tr>
<td>10</td>
<td>Driver Neck Force Z vs. Time</td>
<td>A-3</td>
</tr>
<tr>
<td>11</td>
<td>Driver Neck Force Resultant vs. Time</td>
<td>A-3</td>
</tr>
<tr>
<td>12</td>
<td>Driver Neck Moment X vs. Time</td>
<td>A-4</td>
</tr>
<tr>
<td>13</td>
<td>Driver Neck Moment Y vs. Time</td>
<td>A-4</td>
</tr>
<tr>
<td>14</td>
<td>Driver Neck Moment Z vs. Time</td>
<td>A-4</td>
</tr>
<tr>
<td>15</td>
<td>Driver Neck Moment Resultant vs. Time</td>
<td>A-4</td>
</tr>
<tr>
<td>16</td>
<td>Driver Chest X Acceleration vs. Time</td>
<td>A-5</td>
</tr>
<tr>
<td>17</td>
<td>Driver Chest Y Acceleration vs. Time</td>
<td>A-5</td>
</tr>
<tr>
<td>18</td>
<td>Driver Chest Z Acceleration vs. Time</td>
<td>A-5</td>
</tr>
<tr>
<td>19</td>
<td>Driver Chest Resultant Acceleration vs. Time</td>
<td>A-5</td>
</tr>
<tr>
<td>20</td>
<td>Driver Chest X Velocity vs. Time</td>
<td>A-6</td>
</tr>
<tr>
<td>21</td>
<td>Driver Chest Y Velocity vs. Time</td>
<td>A-6</td>
</tr>
<tr>
<td>22</td>
<td>Driver Chest Z Velocity vs. Time</td>
<td>A-6</td>
</tr>
<tr>
<td>23</td>
<td>Driver Chest Displacement vs. Time</td>
<td>A-6</td>
</tr>
<tr>
<td>24</td>
<td>Driver Left Femur Force vs. Time</td>
<td>A-7</td>
</tr>
<tr>
<td>25</td>
<td>Driver Right Femur Force vs. Time</td>
<td>A-7</td>
</tr>
<tr>
<td>26</td>
<td>Driver Left Upper Tibia Moment X vs. Time</td>
<td>A-8</td>
</tr>
<tr>
<td>27</td>
<td>Driver Left Upper Tibia Moment Y vs. Time</td>
<td>A-8</td>
</tr>
<tr>
<td>28</td>
<td>Driver Left Upper Tibia Force X vs. Time</td>
<td>A-8</td>
</tr>
<tr>
<td>29</td>
<td>Driver Left Upper Tibia Force Z vs. Time</td>
<td>A-8</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>30</td>
<td>Driver Left Lower Tibia Moment X vs. Time</td>
<td>A-9</td>
</tr>
<tr>
<td>31</td>
<td>Driver Left Lower Tibia Moment Y vs. Time</td>
<td>A-9</td>
</tr>
<tr>
<td>32</td>
<td>Driver Left Lower Tibia Force X vs. Time</td>
<td>A-10</td>
</tr>
<tr>
<td>33</td>
<td>Driver Left Lower Tibia Force Y vs. Time</td>
<td>A-10</td>
</tr>
<tr>
<td>34</td>
<td>Driver Left Lower Tibia Force Z vs. Time</td>
<td>A-10</td>
</tr>
<tr>
<td>35</td>
<td>Driver Right Upper Tibia Moment X vs. Time</td>
<td>A-11</td>
</tr>
<tr>
<td>36</td>
<td>Driver Right Upper Tibia Moment Y vs. Time</td>
<td>A-11</td>
</tr>
<tr>
<td>37</td>
<td>Driver Right Upper Tibia Force X vs. Time</td>
<td>A-11</td>
</tr>
<tr>
<td>38</td>
<td>Driver Right Upper Tibia Force Y vs. Time</td>
<td>A-11</td>
</tr>
<tr>
<td>39</td>
<td>Driver Right Lower Tibia Moment X vs. Time</td>
<td>A-12</td>
</tr>
<tr>
<td>40</td>
<td>Driver Right Lower Tibia Moment Y vs. Time</td>
<td>A-12</td>
</tr>
<tr>
<td>41</td>
<td>Driver Right Lower Tibia Force X vs. Time</td>
<td>A-13</td>
</tr>
<tr>
<td>42</td>
<td>Driver Right Lower Tibia Force Y vs. Time</td>
<td>A-13</td>
</tr>
<tr>
<td>43</td>
<td>Driver Right Lower Tibia Force Z vs. Time</td>
<td>A-13</td>
</tr>
<tr>
<td>44</td>
<td>Driver Left Tibia Mid-Shaft X Acceleration vs. Time</td>
<td>A-14</td>
</tr>
<tr>
<td>45</td>
<td>Driver Left Tibia Mid-Shaft Y Acceleration vs. Time</td>
<td>A-14</td>
</tr>
<tr>
<td>46</td>
<td>Driver Right Tibia Mid-Shaft X Acceleration vs. Time</td>
<td>A-14</td>
</tr>
<tr>
<td>47</td>
<td>Driver Right Tibia Mid-Shaft Y Acceleration vs. Time</td>
<td>A-14</td>
</tr>
<tr>
<td>48</td>
<td>Driver Right Mid-Foot X Acceleration vs. Time</td>
<td>A-15</td>
</tr>
<tr>
<td>49</td>
<td>Driver Right Mid-Foot Y Acceleration vs. Time</td>
<td>A-15</td>
</tr>
<tr>
<td>50</td>
<td>Driver Right Mid-Foot Z Acceleration vs. Time</td>
<td>A-15</td>
</tr>
<tr>
<td>51</td>
<td>Driver Right Mid-Foot Resultant Acceleration vs. Time</td>
<td>A-15</td>
</tr>
<tr>
<td>52</td>
<td>Driver Left Mid-Foot X Acceleration vs. Time</td>
<td>A-16</td>
</tr>
<tr>
<td>53</td>
<td>Driver Left Mid-Foot Y Acceleration vs. Time</td>
<td>A-16</td>
</tr>
<tr>
<td>54</td>
<td>Driver Left Mid-Foot Z Acceleration vs. Time</td>
<td>A-16</td>
</tr>
<tr>
<td>55</td>
<td>Driver Left Mid-Foot Resultant Acceleration vs. Time</td>
<td>A-16</td>
</tr>
<tr>
<td>56</td>
<td>Driver Left Dorsi/Plantar Flexion Degree vs. Time</td>
<td>A-17</td>
</tr>
<tr>
<td>57</td>
<td>Driver Left Inversion/Eversion Degree vs. Time</td>
<td>A-17</td>
</tr>
<tr>
<td>58</td>
<td>Driver Left Internal/External Degree vs. Time</td>
<td>A-17</td>
</tr>
<tr>
<td>59</td>
<td>Driver Right Dors/Plantar Flexion Degree vs. Time</td>
<td>A-18</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>60</td>
<td>Driver Right Inversion/Eversion Degree vs. Time</td>
<td>A-18</td>
</tr>
<tr>
<td>61</td>
<td>Driver Right Internal/External Degree vs. Time</td>
<td>A-18</td>
</tr>
<tr>
<td>62</td>
<td>Passenger Head X Acceleration vs. Time</td>
<td>A-19</td>
</tr>
<tr>
<td>63</td>
<td>Passenger Head Y Acceleration vs. Time</td>
<td>A-19</td>
</tr>
<tr>
<td>64</td>
<td>Passenger Head Z Acceleration vs. Time</td>
<td>A-19</td>
</tr>
<tr>
<td>65</td>
<td>Passenger Head Resultant Acceleration vs. Time</td>
<td>A-19</td>
</tr>
<tr>
<td>66</td>
<td>Passenger Head X Velocity vs. Time</td>
<td>A-20</td>
</tr>
<tr>
<td>67</td>
<td>Passenger Head Y Velocity vs. Time</td>
<td>A-20</td>
</tr>
<tr>
<td>68</td>
<td>Passenger Head Z Velocity vs. Time</td>
<td>A-20</td>
</tr>
<tr>
<td>69</td>
<td>Passenger Neck Force X vs. Time</td>
<td>A-21</td>
</tr>
<tr>
<td>70</td>
<td>Passenger Neck Force Y vs. Time</td>
<td>A-21</td>
</tr>
<tr>
<td>71</td>
<td>Passenger Neck Force Z vs. Time</td>
<td>A-21</td>
</tr>
<tr>
<td>72</td>
<td>Passenger Neck Force Resultant vs. Time</td>
<td>A-21</td>
</tr>
<tr>
<td>73</td>
<td>Passenger Neck Moment X vs. Time</td>
<td>A-22</td>
</tr>
<tr>
<td>74</td>
<td>Passenger Neck Moment Y vs. Time</td>
<td>A-22</td>
</tr>
<tr>
<td>75</td>
<td>Passenger Neck Moment Z vs. Time</td>
<td>A-22</td>
</tr>
<tr>
<td>76</td>
<td>Passenger Neck Moment Resultant vs. Time</td>
<td>A-22</td>
</tr>
<tr>
<td>77</td>
<td>Passenger Chest X Acceleration vs. Time</td>
<td>A-23</td>
</tr>
<tr>
<td>78</td>
<td>Passenger Chest Y Acceleration vs. Time</td>
<td>A-23</td>
</tr>
<tr>
<td>79</td>
<td>Passenger Chest Z Acceleration vs. Time</td>
<td>A-23</td>
</tr>
<tr>
<td>80</td>
<td>Passenger Chest Resultant Acceleration vs. Time</td>
<td>A-23</td>
</tr>
<tr>
<td>81</td>
<td>Passenger Chest X Velocity vs. Time</td>
<td>A-24</td>
</tr>
<tr>
<td>82</td>
<td>Passenger Chest Y Velocity vs. Time</td>
<td>A-24</td>
</tr>
<tr>
<td>83</td>
<td>Passenger Chest Z Velocity vs. Time</td>
<td>A-24</td>
</tr>
<tr>
<td>84</td>
<td>Passenger Chest Displacement vs. Time</td>
<td>A-24</td>
</tr>
<tr>
<td>85</td>
<td>Passenger Left Femur Force vs. Time</td>
<td>A-25</td>
</tr>
<tr>
<td>86</td>
<td>Passenger Right Femur Force vs. Time</td>
<td>A-25</td>
</tr>
<tr>
<td>87</td>
<td>CRP Head X Acceleration vs. Time</td>
<td>A-26</td>
</tr>
<tr>
<td>88</td>
<td>CRP Head Y Acceleration vs. Time</td>
<td>A-26</td>
</tr>
<tr>
<td>89</td>
<td>CRP Head Z Acceleration vs. Time</td>
<td>A-26</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>90</td>
<td>CRP Head Resultant Acceleration vs. Time</td>
<td>A-26</td>
</tr>
<tr>
<td>91</td>
<td>CRP Head X Velocity vs. Time</td>
<td>A-27</td>
</tr>
<tr>
<td>92</td>
<td>CRP Head Y Velocity vs. Time</td>
<td>A-27</td>
</tr>
<tr>
<td>93</td>
<td>CRP Head Z Velocity vs. Time</td>
<td>A-27</td>
</tr>
<tr>
<td>94</td>
<td>CRP Neck Force X vs. Time</td>
<td>A-28</td>
</tr>
<tr>
<td>95</td>
<td>CRP Neck Force Y vs. Time</td>
<td>A-28</td>
</tr>
<tr>
<td>96</td>
<td>CRP Neck Force Z vs. Time</td>
<td>A-28</td>
</tr>
<tr>
<td>97</td>
<td>CRP Neck Force Resultant vs. Time</td>
<td>A-28</td>
</tr>
<tr>
<td>98</td>
<td>CRP Neck Moment X vs. Time</td>
<td>A-29</td>
</tr>
<tr>
<td>99</td>
<td>CRP Neck Moment Y vs. Time</td>
<td>A-29</td>
</tr>
<tr>
<td>100</td>
<td>CRP Neck Moment Z vs. Time</td>
<td>A-29</td>
</tr>
<tr>
<td>101</td>
<td>CRP Neck Moment Resultant vs. Time</td>
<td>A-29</td>
</tr>
<tr>
<td>102</td>
<td>CRP Chest X Acceleration vs. Time</td>
<td>A-30</td>
</tr>
<tr>
<td>103</td>
<td>CRP Chest Y Acceleration vs. Time</td>
<td>A-30</td>
</tr>
<tr>
<td>104</td>
<td>CRP Chest Z Acceleration vs. Time</td>
<td>A-30</td>
</tr>
<tr>
<td>105</td>
<td>CRP Chest Resultant Acceleration vs. Time</td>
<td>A-30</td>
</tr>
<tr>
<td>106</td>
<td>CRP Chest X Velocity vs. Time</td>
<td>A-31</td>
</tr>
<tr>
<td>107</td>
<td>CRP Chest Y Velocity vs. Time</td>
<td>A-31</td>
</tr>
<tr>
<td>108</td>
<td>CRP Chest Z Velocity vs. Time</td>
<td>A-31</td>
</tr>
<tr>
<td>109</td>
<td>CRP Chest Displacement vs. Time</td>
<td>A-31</td>
</tr>
<tr>
<td>110</td>
<td>CRP Right Femur Force vs. Time</td>
<td>A-32</td>
</tr>
<tr>
<td>111</td>
<td>CRP Left Femur Force vs. Time</td>
<td>A-32</td>
</tr>
<tr>
<td>112</td>
<td>CRP Shoulder Belt Force vs. Time</td>
<td>A-33</td>
</tr>
<tr>
<td>113</td>
<td>CRP Lap Belt Force vs. Time</td>
<td>A-33</td>
</tr>
<tr>
<td>114</td>
<td>CRP Belt Spoolout vs. Time</td>
<td>A-33</td>
</tr>
<tr>
<td>115</td>
<td>Driver Nij (N_{TF}) vs. Time</td>
<td>A-34</td>
</tr>
<tr>
<td>116</td>
<td>Driver Nij (N_{TE}) vs. Time</td>
<td>A-34</td>
</tr>
<tr>
<td>117</td>
<td>Driver Nij (N_{CE}) vs. Time</td>
<td>A-34</td>
</tr>
<tr>
<td>118</td>
<td>Driver Nij (N_{CE}) vs. Time</td>
<td>A-34</td>
</tr>
<tr>
<td>119</td>
<td>Passenger Nij (N_{TF}) vs. Time</td>
<td>A-35</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>120</td>
<td>Passenger Nij (N_{TE}) vs. Time</td>
<td>A-35</td>
</tr>
<tr>
<td>121</td>
<td>Passenger Nij (N_{CF}) vs. Time</td>
<td>A-35</td>
</tr>
<tr>
<td>122</td>
<td>Passenger Nij (N_{CE}) vs. Time</td>
<td>A-35</td>
</tr>
<tr>
<td>123</td>
<td>Center Nij (N_{TP}) vs. Time</td>
<td>A-36</td>
</tr>
<tr>
<td>124</td>
<td>Center Nij (N_{TE}) vs. Time</td>
<td>A-36</td>
</tr>
<tr>
<td>125</td>
<td>Center Nij (N_{CF}) vs. Time</td>
<td>A-36</td>
</tr>
<tr>
<td>126</td>
<td>Center Nij (N_{CE}) vs. Time</td>
<td>A-36</td>
</tr>
<tr>
<td>127</td>
<td>Driver Occipital Condyle Moment vs. Time</td>
<td>A-37</td>
</tr>
<tr>
<td>128</td>
<td>Passenger Occipital Condyle Moment vs. Time</td>
<td>A-37</td>
</tr>
<tr>
<td>129</td>
<td>Center Occipital Condyle Moment vs. Time</td>
<td>A-37</td>
</tr>
<tr>
<td>130</td>
<td>Left Rear Seat Crossmember X Acceleration vs. Time</td>
<td>A-38</td>
</tr>
<tr>
<td>131</td>
<td>Left Rear Seat Crossmember X Velocity vs. Time</td>
<td>A-38</td>
</tr>
<tr>
<td>132</td>
<td>Right Rear Seat Crossmember X Acceleration vs. Time</td>
<td>A-38</td>
</tr>
<tr>
<td>133</td>
<td>Right Rear Seat Crossmember X Velocity vs. Time</td>
<td>A-38</td>
</tr>
<tr>
<td>134</td>
<td>Top of Engine X Acceleration vs. Time</td>
<td>A-39</td>
</tr>
<tr>
<td>135</td>
<td>Top of Engine X Velocity vs. Time</td>
<td>A-39</td>
</tr>
<tr>
<td>136</td>
<td>Bottom of Engine X Acceleration vs. Time</td>
<td>A-39</td>
</tr>
<tr>
<td>137</td>
<td>Bottom of Engine X Velocity vs. Time</td>
<td>A-39</td>
</tr>
<tr>
<td>138</td>
<td>Left Brake Caliper X Acceleration vs. Time</td>
<td>A-40</td>
</tr>
<tr>
<td>139</td>
<td>Left Brake Caliper X Velocity vs. Time</td>
<td>A-40</td>
</tr>
<tr>
<td>140</td>
<td>Right Brake Caliper X Acceleration vs. Time</td>
<td>A-40</td>
</tr>
<tr>
<td>141</td>
<td>Right Brake Caliper X Velocity vs. Time</td>
<td>A-40</td>
</tr>
<tr>
<td>142</td>
<td>Instrument Panel X Acceleration vs. Time</td>
<td>A-41</td>
</tr>
<tr>
<td>143</td>
<td>Instrument Panel X Velocity vs. Time</td>
<td>A-41</td>
</tr>
<tr>
<td>144</td>
<td>Trunk Z Acceleration vs. Time</td>
<td>A-41</td>
</tr>
<tr>
<td>145</td>
<td>Trunk Z Velocity vs. Time</td>
<td>A-41</td>
</tr>
<tr>
<td>146</td>
<td>MHD Left Rate vs. Time</td>
<td>A-42</td>
</tr>
<tr>
<td>147</td>
<td>MHD Right Rate vs. Time</td>
<td>A-42</td>
</tr>
<tr>
<td>148</td>
<td>Barrier Force – Upper Left vs. Time</td>
<td>A-43</td>
</tr>
<tr>
<td>149</td>
<td>Barrier Force – Upper Center vs. Time</td>
<td>A-43</td>
</tr>
</tbody>
</table>
Figure No. 150. Barrier Force – Upper Right vs. Time A-43
Figure No. 151. Barrier Force – Lower Left vs. Time A-44
Figure No. 152. Barrier Force – Lower Center vs. Time A-44
Figure No. 153. Barrier Force – Lower Right vs. Time A-44
Figure No. 154. Barrier Force – Sum Left vs. Time A-45
Figure No. 155. Barrier Force – Sum Center vs. Time A-45
Figure No. 156. Barrier Force – Sum Right vs. Time A-45
Figure No. 157. Barrier Force – Sum All vs. Time A-45
Figure No. 158. Barrier Force – Sum All vs. Average Seat X-member Displacement A-46