Vehicle Safety Compliance Testing for FMVSS 208
for Occupant Crash Protection
Sled Test

General Motors of Canada LTD
2004 Pontiac Grand Prix

NHTSA Number: C40114
TRC Inc. Test Number: S040504

Transportation Research Center Inc.
10820 State Route 347
East Liberty, OH 43319

Test Date: May 4, 2004
Report Date: May 17, 2004

Final Report

Prepared For:
U. S. Department of Transportation
National Highway Traffic Safety Administration
Office of Enforcement
Office of Vehicle Safety Compliance (NVS-220)
400 Seventh Street, S.W., Room No. 6115
Washington, DC 20590
This Final Test Report was prepared for the U.S. Department of Transportation, National Highway Traffic Safety Administration, under Contract No. DTNH22-03-D-01002.

This publication is distributed by the U. S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings, and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Test Performed By: Ronald D. Stoner, Engineering Technician

Report Approved By:

[Signature]
Date 5/17/04

Walter Dudek, Project Manager
Transportation Research Center Inc.

Final Report Accepted By:

[Signature]
Date 8/17/04

Contracting Officer's Technical Representative (COTR),
NHTSA, Office of Vehicle Safety Compliance
An FMVSS 208 Section 13 compliance sled test was conducted on a 2004 Pontiac Grand Prix 4-door Sedan, NHTSA No. C4014, in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP208S-01 for the determination of FMVSS 208 compliance. Possible test failures identified were as follows:

None.

Key Words
Safety Engineering
Compliance Sled Testing:
FMVSS 208, "Occupant Crash Protection"

Distribution Statement
Copies of this report are available from:
NHTSA Technical Reference Division
Room 5108
400 Seventh Street, S.W., NPO-230
Washington, DC 20590

Security Classification:
Unclassified

Reproduction of completed page authorized
Table of Contents

Description Page
Purpose ... 1
Test Procedure .. 2
Test Results Summary .. 3
Sled Test Summary ... 6
General Test and Vehicle Parameter Data for the Sled Test Vehicle 7
Post-Impact Data ... 11
Seat and Steering Column Positioning Data ... 12
Dummy Measurement Data for Front Seat Occupants 13
Vehicle Accelerometer Placement ... 18
Vehicle Data Summary and Accelerometer Locations 19
Vehicle Targeting Measurements ... 21
Camera Positions .. 22
Motion Picture Camera Locations .. 23
FMVSS 208 Occupant Injury Data ... 24
FMVSS 208 Certification Label and Tire Placard Information 26
FMVSS 208 Rear Outboard Seating Position Seat Belts 27
FMVSS 208 Air Bag Labels ... 28
FMVSS 208 Readiness Indicator ... 39
FMVSS 208 Passenger Air Bag Manual Cut-Off Device 40
FMVSS 208 Lap Belt Lockability ... 43
FMVSS 208 Seat Belt Warning System Check ... 55
FMVSS 208 Belt Contact Force ... 57
FMVSS 208 Latch Plate Access ... 63
FMVSS 208 Seat Belt Retraction ... 67
FMVSS 208 Seat Belt Guides and Hardware ... 70
Appendix A - Photographs ... A-1
Appendix B - Data Plots ... B-1
Appendix C - Manufacturer Provided Test Information C-1
Appendix D - Miscellaneous Test Information .. D-1
<table>
<thead>
<tr>
<th>Figure</th>
<th>Photograph Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1.</td>
<td>Pre-Test Front View of Test Vehicle Mounted to Sled</td>
<td>A-2</td>
</tr>
<tr>
<td>A-2.</td>
<td>Pre-Test Left Side View of Test Vehicle Mounted to Sled</td>
<td>A-3</td>
</tr>
<tr>
<td>A-3.</td>
<td>Pre-Test Right Side View of Test Vehicle Mounted to Sled</td>
<td>A-4</td>
</tr>
<tr>
<td>A-4.</td>
<td>Pre-Test Windshield View</td>
<td>A-5</td>
</tr>
<tr>
<td>A-5.</td>
<td>Post-Test Windshield View</td>
<td>A-6</td>
</tr>
<tr>
<td>A-6.</td>
<td>Pre-Test Driver Dummy Position View with Door Open</td>
<td>A-7</td>
</tr>
<tr>
<td>A-7.</td>
<td>Post-Test Driver Dummy Position View with Door Open</td>
<td>A-8</td>
</tr>
<tr>
<td>A-8.</td>
<td>Pre-Test Driver Seat Track Position View</td>
<td>A-9</td>
</tr>
<tr>
<td>A-10.</td>
<td>Pre-Test Driver Dummy Position Front View</td>
<td>A-11</td>
</tr>
<tr>
<td>A-11.</td>
<td>Post-Test Driver Dummy Position Front View</td>
<td>A-12</td>
</tr>
<tr>
<td>A-12.</td>
<td>Pre-Test Passenger Dummy Position View with Door Open</td>
<td>A-13</td>
</tr>
<tr>
<td>A-13.</td>
<td>Post-Test Passenger Dummy Position View with Door Open</td>
<td>A-14</td>
</tr>
<tr>
<td>A-14.</td>
<td>Pre-Test Passenger Seat Track Position View</td>
<td>A-15</td>
</tr>
<tr>
<td>A-16.</td>
<td>Pre-Test Passenger Dummy Position Front View</td>
<td>A-17</td>
</tr>
<tr>
<td>A-17.</td>
<td>Post-Test Passenger Dummy Position Front View</td>
<td>A-18</td>
</tr>
<tr>
<td>A-19.</td>
<td>Post-Test Driver Dummy Removed from Vehicle Overall View</td>
<td>A-20</td>
</tr>
<tr>
<td>A-20.</td>
<td>Post-Test Driver Head Contact - View 1</td>
<td>A-21</td>
</tr>
<tr>
<td>A-21.</td>
<td>Post-Test Driver Head Contact - View 2</td>
<td>A-22</td>
</tr>
<tr>
<td>A-22.</td>
<td>Post-Test Passenger Airbag View</td>
<td>A-23</td>
</tr>
<tr>
<td>A-23.</td>
<td>Post-Test Passenger Dummy Removed from Vehicle Overall View</td>
<td>A-24</td>
</tr>
<tr>
<td>A-24.</td>
<td>Post-Test Passenger Head Contact - View 1</td>
<td>A-25</td>
</tr>
<tr>
<td>A-25.</td>
<td>Post-Test Passenger Head Contact - View 2</td>
<td>A-26</td>
</tr>
<tr>
<td>A-27.</td>
<td>Post-Test Passenger Glove Box View</td>
<td>A-28</td>
</tr>
<tr>
<td>A-28.</td>
<td>Pre-Test Steering Column Linkage in Engine Compartment View</td>
<td>A-29</td>
</tr>
<tr>
<td>Figure</td>
<td>Photograph Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>A-29.</td>
<td>Post-Test Steering Column Linkage in Engine Compartment View</td>
<td>A-30</td>
</tr>
<tr>
<td>A-30.</td>
<td>Pre-Test Vehicle Certification Label View</td>
<td>A-31</td>
</tr>
</tbody>
</table>
Purpose

This Federal Motor Vehicle safety Standard (FMVSS) 208 compliance sled test is part of the FMVSS compliance test program conducted for the National Highway Traffic Safety Administration (NHTSA) by the Transportation Research Center Inc. (TRC Inc.) under Contract No. DTNH22-03-D-01002. The purpose of this test was to determine if the subject vehicle, a 2004 Pontiac Grand Prix 4-door Sedan, NHTSA No.C40114, meets the performance requirements of FMVSS 208, "Occupant Crash Protection," in the impact simulation sled test mode.
Test Procedure

This test was conducted in accordance with NHTSA’s Office of Vehicle Safety Compliance (OVSC) Laboratory Test Procedure No. TP-2085-01, dated January 15, 1998. Data was obtained relative to FMVSS 208, “Occupant Crash Protection,” performance.

The sled test vehicle was instrumented with four (4) accelerometers to measure longitudinal accelerations. The sled was instrumented with one (1) longitudinal accelerometer, which is prefiltered with an analog filter to 200 Hz as an integral part of the sled firing circuit, and two (2) additional accelerometers: the primary accelerometer for pulse and integrated velocity determination and a backup accelerometer. In addition, the sled was instrumented with one (1) light trap to measure velocity and four (4) airbag firing timing circuits.

The sled test vehicle contained two (2) Part 572 E 50th percentile adult male anthropomorphic test devices (dummies). The dummies were positioned in the front outboard designated seating positions according to the dummy placement procedure specified in Appendix B of the Laboratory Test Procedure. The dummies were not restrained by seat belts.

Both dummies were instrumented with head and chest accelerometers to measure longitudinal, lateral, and vertical accelerations; chest deflection potentiometers; left and right femur load cells to measure axial forces; and upper neck load cells to measure longitudinal, lateral, and vertical forces and moments.

The forty-two (42) data channels were digitally sampled at 12,500 samples per second and processed per Sections 11.7 through 11.9 of the Laboratory Test Procedure.

The sled test event was recorded by one (1) real-time motion picture camera and six (6) high-speed motion picture cameras. The pre-test and post-test conditions were recorded by one (1) real-time motion picture camera.
Test Results Summary

This FMVSS 208 compliance sled test was conducted by TRC Inc. on May 4, 2004.

The test vehicle, a 2004 Pontiac Grand Prix 4-door Sedan, NHTSA No. C40114, does appear to comply with the performance requirements of FMVSS 208 in the impact simulation sled test mode as measured by Hybrid III 50th percentile male dummies.

<table>
<thead>
<tr>
<th></th>
<th>FMVSS 208 Max. Allowable Injury Assessment Values</th>
<th>Driver</th>
<th>Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC</td>
<td>1000</td>
<td>171</td>
<td>328</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>37</td>
<td>38</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>3 inches</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Left Femur</td>
<td>2250 lbs</td>
<td>1564</td>
<td>1335</td>
</tr>
<tr>
<td>Right Femur</td>
<td>2250 lbs</td>
<td>1528</td>
<td>1249</td>
</tr>
<tr>
<td>Neck Extension</td>
<td>57 Nm</td>
<td>42</td>
<td>47</td>
</tr>
<tr>
<td>Neck Flexion</td>
<td>190 Nm</td>
<td>20</td>
<td>42</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>3300 N</td>
<td>729</td>
<td>636</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>4000 N</td>
<td>1218</td>
<td>2823</td>
</tr>
<tr>
<td>Neck Shear</td>
<td>3100 N</td>
<td>942</td>
<td>2243</td>
</tr>
</tbody>
</table>

The subject vehicle, a 2004 Pontiac Grand Prix, NHTSA No. C40114, appears to meet the other FMVSS 208 requirements for which it was tested. These results are shown in the data sheets that are included in this report.

The sled test vehicle was equipped with air bags at the driver and passenger seating positions. The dummies were not restrained by seat belts. The sled carriage was accelerated to 17.5 g with an integrated velocity change of 29.7 mph. The primary stages of the airbags were triggered at 20.2 milliseconds after 0.5 g acceleration was measured by the firing circuit. The secondary stages of the airbags were triggered at 21.1 milliseconds after 0.5 g
acceleration was measured by the firing circuit. Following subsequent digital data processing and filtering the acceleration signal to Channel Class 60, the primary stages airbag event trigger signal was 20.6 ms after the 0.5 g acceleration level was indicated and the secondary stages airbag event trigger signal was 21.6 ms after the 0.5 g acceleration level was indicated.
Data Acquisition Explanations

There were no anomalies to report for this test.
Sled Test Summary

NHTSA number: C40114
Test type: Alternate 208
Test date: 05/04/04
Test time: 13:31
Ambient temperature at impact area: 70.6°F

Vehicle year/make/model/body style: 2004/Pontiac/Grand Prix/4-door Sedan

<table>
<thead>
<tr>
<th>Dummy Info:</th>
<th>Driver #230</th>
<th>Front Passenger #229</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Hybrid III 50th</td>
<td>Hybrid III 50th</td>
</tr>
<tr>
<td>Location:</td>
<td>Left Front</td>
<td>Right Front</td>
</tr>
<tr>
<td>Restraint:</td>
<td>Airbag</td>
<td>Airbag</td>
</tr>
<tr>
<td>Number of data channels:</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

| Number of Cameras: | 1 | 6 |

| Door Opening Data: | Left Front: Easy | Right Front: Easy |

| Front Seat Data: | Seat track failure: None | None |
| | Seat back failure: None | None |

Visible Dummy Contact Points:	Head: Airbag, sun visor, windshield	Airbag, sun visor, windshield
	Chest: Airbag	Airbag
	Left knee: Knee bolster	Glove box
	Right knee: Knee bolster	Glove box
General Test and Vehicle Parameter Data for the Sled Test Vehicle

Test Vehicle Information:

Vehicle year/make/model/body style: 2004/Pontiac/Grand Prix/4-door Sedan
Color: Sedona Beige Metallic
VIN: 2G2WP522041222991
NHTSA number: C40114

Engine data:
 Placement: Transverse
 Cylinders: 6
 Displacement: 3.8

Transmission data:
 4-speed, manual, X automatic, overdrive

Final drive:
 X fwd, rwd, 4wd

Date vehicle received: 2/9/2004
Odometer reading: 54

Dealer's name and address:
 Buckles Motors Inc.
 St. Rt. 68
 Urbana, Ohio 43078

Major Options:
 Power steering: Yes
 Power brakes: Yes
 Power windows: Yes
 Air conditioning: Yes
 Power door locks: Yes

Other: None

Remarks:
General Test and Vehicle Parameter Data for the Sled Test Vehicle, Cont'd.

Data from Vehicle's Certification Label:

Vehicle manufactured by: General Motors of Canada LTD
Date of manufacture: 10/03
VIN: 2G2WP522041222991
GVWR: 4426 lbs
GAWR: Front: 2427 lbs
Rear: 1999 lbs

Data from Vehicle's Tire Placard:

Tire pressure with maximum capacity vehicle load:
 Front: 30 psi
 Rear: 30 psi
Recommended tire size: P225/60R16

Recommended cold tire pressure:
 Front: 30 psi
 Rear: 30 psi
Size of tires on vehicle: P225/60R16
Spare tire: T125/70D16 96M
Vehicle capacity data:
 Type of front seats: Bucket
 Number of occupants:
 Front: 2
 Rear: 3
 Total: 5

Remarks:
Weight of test vehicle as received (with maximum fluids):

<table>
<thead>
<tr>
<th></th>
<th>Right front</th>
<th></th>
<th>Right rear</th>
<th></th>
<th>Left front</th>
<th></th>
<th>Left rear</th>
<th></th>
<th>Total front weight</th>
<th></th>
<th>Total rear weight</th>
<th></th>
<th>Total delivered weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1104.5 lbs</td>
<td></td>
<td>637.1 lbs</td>
<td></td>
<td>1063.7 lbs</td>
<td></td>
<td>633.8 lbs</td>
<td></td>
<td>2168.2 lbs</td>
<td>(63.0% of total vehicle weight)</td>
<td>1270.9 lbs</td>
<td>(37.0% of total vehicle weight)</td>
<td>3439.1 lbs</td>
</tr>
</tbody>
</table>

Calculation of test vehicle's target test weight:

VCW = Vehicle Capacity Weight (917 lbs)
RCLW = Rated Cargo and Luggage Weight = VCW - (DSC x 150 lbs) = 167 lbs
UDW = Unloaded Delivered Weight (3439.1 lbs)
DSC = Designated Seating Capacity (5)

Target test weight = UDW + RCLW + (Number of Hybrid III dummies x 167 lbs per dummy)

Target test weight = 3439.1 + 167.0 + 334.0 = 3940.1 lbs

Weight of test vehicle with two dummies and 167.7 lbs of cargo weight:

<table>
<thead>
<tr>
<th></th>
<th>Right front</th>
<th></th>
<th>Right rear</th>
<th></th>
<th>Left front</th>
<th></th>
<th>Left rear</th>
<th></th>
<th>Total front weight</th>
<th></th>
<th>Total rear weight</th>
<th></th>
<th>Total test weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1185.0 lbs</td>
<td></td>
<td>811.3 lbs</td>
<td></td>
<td>1138.7 lbs</td>
<td></td>
<td>805.8 lbs</td>
<td></td>
<td>2323.7 lbs</td>
<td>(59% of total vehicle weight)</td>
<td>1617.1 lbs</td>
<td>(41% of total vehicle weight)</td>
<td>3940.8 lbs</td>
</tr>
</tbody>
</table>

Remarks:

Weight of ballast secured in vehicle cargo area: None.
Components removed to meet target test weight: None
General Test and Vehicle Parameter Data for the Sled Test Vehicle, Cont'd.

Test Vehicle Attitude:
As delivered door sill angle: 1.1° Nose down
As tested door sill angle: 0.9° Nose down
Fully loaded door sill angle: 0.7° Nose down
Vehicle Wheelbase: 110.5 inches

Fuel System Data:
Fuel system capacity from owner's manual: 17.0 gallons
Useable capacity figure furnished by COTR: 17.0 gallons

Remarks: The roll angle measurements were within 1 inch of each other.
The left and right side measurements were 34.4 inches and 34.3 inches respectively.
Post-Impact Data

Test number: S040504
NHTSA number: C40114
Test date: 05/04/04
Test time: 13:31
Test type: Alternate 208
Impact angle: 0°
Ambient temperature at impact area: 70.5° F
Temperature in occupant compartment: 70.6° F

Sled carriage velocity:
Integrated velocity from the integration of the entire sled acceleration: 29.7 mph
Measured velocity from the light trap device attached to the sled (backup): 29.2 mph
Specified integrated velocity range: 28 to 30 mph

Sled carriage acceleration:
Acceleration: 17.5 g
Specified acceleration range: 16.0 g - 18.2 g

Sled carriage acceleration duration:
Time from T-0(-0.5 g) to 0.0 g: 124.8 ms
Specified acceleration duration: 120 - 130 ms

The sled acceleration curve was within the specified corridor.
Seat and Steering Column Positioning Data

Vehicle: 2004/Pontiac/Grand Prix/4-door Sedan NHTSA No.: C40114

Nominal Design Riding Position:

Driver Seat: Seat Back Angle = 23.6° Seat back angle was measured on the upper 1/3 of the seat back frame.

Passenger Seat: Seat Back Angle = 25.7° Seat back angle was measured on the upper 1/3 of the seat back frame.

Seat Fore and Aft Positions:

Driver Seat: Mid seat position. Set to 120 mm forward of the full rear position.

Passenger: Mid seat position. Set to 140 mm forward of the full rear position.

Steering Column Adjustments:

Set to 6th of 10 adjustment detents. Full up is position #1.
Dummy Measurement Data for Front Seat Occupants

<table>
<thead>
<tr>
<th>Designation</th>
<th>Type of Measurement</th>
<th>Driver (Serial #230)</th>
<th>Passenger (Serial #229)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA</td>
<td>Windshield angle</td>
<td>25.2°</td>
<td>N/A</td>
</tr>
<tr>
<td>SWA</td>
<td>Steering wheel angle</td>
<td>23.0°</td>
<td>N/A</td>
</tr>
<tr>
<td>SCA</td>
<td>Steering column angle</td>
<td>67.0°</td>
<td>N/A</td>
</tr>
<tr>
<td>SA</td>
<td>Seat back angle</td>
<td>23.6°</td>
<td>25.7°</td>
</tr>
<tr>
<td>HZ</td>
<td>Head to roof</td>
<td>6.9 in</td>
<td>6.7 in</td>
</tr>
<tr>
<td>HH</td>
<td>Head to header</td>
<td>13.2 in</td>
<td>13.1 in</td>
</tr>
<tr>
<td>HW</td>
<td>Head to windshield</td>
<td>22.8 in</td>
<td>23.4 in</td>
</tr>
<tr>
<td>HR</td>
<td>Head to side header</td>
<td>6.9 in</td>
<td>6.9 in</td>
</tr>
<tr>
<td>NR</td>
<td>Nose to rim</td>
<td>16.1 in</td>
<td>N/A</td>
</tr>
<tr>
<td>NA</td>
<td>Nose to rim angle</td>
<td>10.0°</td>
<td>N/A</td>
</tr>
<tr>
<td>CD</td>
<td>Chest to dash</td>
<td>21.9 in</td>
<td>21.2 in</td>
</tr>
<tr>
<td>CS</td>
<td>Steering wheel to chest</td>
<td>13.0 in</td>
<td>N/A</td>
</tr>
<tr>
<td>RA</td>
<td>Rim to abdomen</td>
<td>8.2 in</td>
<td>N/A</td>
</tr>
<tr>
<td>KDL</td>
<td>Left knee to dash</td>
<td>7.0 in</td>
<td>6.4 in</td>
</tr>
<tr>
<td>KDR</td>
<td>Right knee to dash</td>
<td>7.2 in</td>
<td>6.4 in</td>
</tr>
<tr>
<td>KDA</td>
<td>Outboard knee to dash angle</td>
<td>29.9°</td>
<td>25.1°</td>
</tr>
<tr>
<td>PA</td>
<td>Pelvis angle</td>
<td>23.6°</td>
<td>23.1°</td>
</tr>
<tr>
<td>TA</td>
<td>Tibia angle</td>
<td>43.5°</td>
<td>42.8°</td>
</tr>
<tr>
<td>KK</td>
<td>Knee to knee</td>
<td>12.2 in</td>
<td>10.6 in</td>
</tr>
<tr>
<td>ST(^1)</td>
<td>Striker to head</td>
<td>21.3 in</td>
<td>21.9 in</td>
</tr>
<tr>
<td></td>
<td>Striker to head angle</td>
<td>-82.7°</td>
<td>-83.7°</td>
</tr>
<tr>
<td>SK(^1)</td>
<td>Striker to knee</td>
<td>21.4 in</td>
<td>22.5 in</td>
</tr>
<tr>
<td></td>
<td>Striker to knee angle</td>
<td>-1.2°</td>
<td>0.3°</td>
</tr>
<tr>
<td>SH(^1)</td>
<td>Striker to H-point</td>
<td>8.2 in</td>
<td>8.5 in</td>
</tr>
<tr>
<td></td>
<td>Striker to H-point angle</td>
<td>38.0°</td>
<td>29.5°</td>
</tr>
<tr>
<td>SHY</td>
<td>Striker to H-point (Y dir.)</td>
<td>9.8 in</td>
<td>9.8 in</td>
</tr>
<tr>
<td>HS</td>
<td>Head to side window</td>
<td>13.3 in</td>
<td>13.3 in</td>
</tr>
<tr>
<td>HD</td>
<td>H-point to door</td>
<td>8.0 in</td>
<td>7.4 in</td>
</tr>
<tr>
<td>AD</td>
<td>Arm to door</td>
<td>4.8 in</td>
<td>4.8 in</td>
</tr>
</tbody>
</table>

The seat back angle (SA°) is measured relative to vertical. All other angles are measured relative to horizontal.\(^1\) A negative angle indicates the measurement point was located below the striker.
Descriptions of Dummy Measurements

When a level is to be used, it is to ensure that the line containing the two points described is either parallel or perpendicular to the ground. If a measurement to be made is less than 10 inches ignore the directions to use a level and approximate a level measurement. Also, when a measurement is to be taken to or from the center of a bolt on the dummy, take the measurement from the center of the bolt hole if the bolt is recessed.

The following measurements are to be made within a vertical longitudinal plane.

* **HH** Head to Header, taken from the point where the dummy's nose meets his forehead (between his eyes) to the furthest point forward on the header.

* **HW** Head to Windshield, taken from the point where the dummy’s nose meets his forehead (between his eyes) to a point on the windshield. Use a level.

* **HZ** Head to Roof, taken from the point where the dummy’s nose meets his forehead (between his eyes) to the point on the roof directly above it. Use a level.

* **CS** Steering Wheel to Chest, taken from the center of the steering wheel hub to the dummy's chest. Use a level.

* **CD** Chest to Dash, place a tape measure on the tip of the dummy's chin and rotate five inches of it downward toward the dummy to the point of contact on the transverse center of the dummy's chest. Then measure from this point to the closest point on the dashboard either between the upper part of the steering wheel between the hub and the rim, or measure to the dashboard placing the tape measure above the rim, whichever is a shorter measurement. See diagram.

* **RA** Steering Wheel Rim to Abdomen, taken from the bottommost point of the steering wheel rim horizontally rearward to the dummy. Use a level.

* **NR** Nose to Rim, taken from the tip of the dummy's nose to the closest point on the top of the steering wheel rim. Also indicate the angle this line makes with respect to the horizontal (NA).

*Measurement used in Data Tape Reference Guide
Descriptions of Dummy Measurements, Cont'd

KDL, KDR Left and Right Knees to Dashboard, taken from the center of the knee pivot bolt's outer surface to the closest point forward acquired by swinging the tape measure in continually larger arcs until it contacts the dashboard. Also reference the angle of this measurement with respect to the horizontal for the outboard knee (KDA). See diagram.

SH, SK, ST Striker to Hip, Knee, and Head, these measurements are to be taken in the X-Z plane measured from the forward most center point on the striker to the center of the H-point, outer knee bolt, and head target. When taking this measurement a firm device that can be rigidly connected to the striker should be used. Use a level. The angles of these measurements with respect to the horizontal should also be recorded. The measurement in the Y (transverse) direction from the striker to the H-point should also be taken (SHY). See diagram.

The following measurements are to be made within a vertical transverse plane.

HS Head to Side Window, taken from the point where the dummy's nose meets his forehead (between his eyes) to the outside of the side window. In order to make this measurement, roll the window down to the exact height which allows a level measurement. Use a level. See diagram.

AD Arm to Door, taken from the outer surface of the elbow pivot bolt on a Hybrid II dummy to the first point it hits on the door. In the case of a Hybrid III dummy, measure from the bolt on the outer biceps. When a SID is used make the measurement from the center of the bottom of the arm segment where it meets the dummy's torso.

HD H-point to Door, taken from the H-point on the dummy to the closest point on the door. Use a level.

HR Head to Side Header, measure the shortest distance from the point where the dummy's nose meets his forehead (between his eyes) to the side edge of the header just above the window frame, directly adjacent to the dummy.

* Measurement used in Data Tape Reference Guide
1 Only outboard measurement is referenced in Data Tape Reference Guide
Descriptions of Dummy Measurements, Cont'd.

SHY Striker to H-point, taken from a rod rigidly connected to the forward most center point on the striker to the H-point. Use a level. See diagram.

KK Knee to Knee, for Hybrid II dummies measure the distance between knee pivot bolt head outer surfaces. For Hybrid III dummies measure the distance between the outboard knee clevis flange surfaces. (This measurement may not be exactly transverse.)

Angles

SA Seat Back Angle, find this angle using the instructions provided by the manufacturer. If the manufacturer doesn't provide clear instructions contact the COTR.

PA Pelvis or Femur Angle, taken by inserting the pelvic angle gauge into the H-point gauging hole on the SID or the Hybrid III dummies and taking this angle with respect to the horizontal. Measure the angle of the line connecting the H-point hole and the outer knee pivot bolt hole on a Hybrid II dummy with respect to the horizontal, to find the femur angle.

SWA Steering Wheel Angle, find this by placing a straight edge against the steering wheel rim along the longitudinal plane. Then measure the acute angle of the straight edge with respect to the horizontal.

SCA Steering Column Angle, measured with respect to the horizontal by placing an inclinometer on the center of the underside of the steering column.

NA Measure the angle made when taking the measurement NR with respect to the horizontal.

KDA Knee to Dash Angle, the angle that the measurement KD is taken at with respect to the horizontal. Only get this angle for the outboard knee. See diagram.

WA Windshield Angle, place an inclinometer along the transverse center of the windshield exterior (measurement is made with respect to horizontal).

TA Tibia Angle, use a straight edge to connect the dummy's knee and ankle bolts. Then place an inclinometer on the straight edge and measure the angle with respect to the horizontal.

* Measurement used in Data Tape Reference Guide
Vehicle Accelerometer Placement

Side View

Bottom View

(X) + Longitudinal
(Y) + Lateral
<table>
<thead>
<tr>
<th>TEST NUMBER: S040504</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>POSITIVE DIRECTION</th>
<th>NEGATIVE DIRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. LOCATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 SLEDE ACCELERATION PRIMARY</td>
<td>165.6 in</td>
<td>-1.0 in</td>
<td>NA</td>
<td>0.7 g @ 127.7 ms</td>
<td>17.5 g @ 56.3 ms</td>
</tr>
<tr>
<td>2 SLEDE ACCELERATION BACKUP REDUNDANT</td>
<td>165.6 in</td>
<td>-1.0 in</td>
<td>NA</td>
<td>0.8 g @ 127.9 ms</td>
<td>17.7 g @ 56.6 ms</td>
</tr>
<tr>
<td>3 SLEDE VELOCITY MEASURED INTEGRATED</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.1 mph @ 9.4 ms</td>
<td>29.2 mph @ 125.7 ms</td>
</tr>
<tr>
<td>4 LEFT REAR SEAT CROSSMEMBER LONITUTDINAL</td>
<td>82.5 in</td>
<td>-14.4 in</td>
<td>NA</td>
<td>1.7 g @ 129.9 ms</td>
<td>18.1 g @ 59.9 ms</td>
</tr>
<tr>
<td>5 RIGHT REAR SEAT CROSSMEMBER LONITUTDINAL</td>
<td>82.7 in</td>
<td>13.6 in</td>
<td>NA</td>
<td>1.5 g @ 130.0 ms</td>
<td>18.0 g @ 59.4 ms</td>
</tr>
<tr>
<td>6 TOP ENGINE LONITUTDINAL</td>
<td>163.0 in</td>
<td>1.0 in</td>
<td>NA</td>
<td>5.0 g @ 135.2 ms</td>
<td>18.6 g @ 61.6 ms</td>
</tr>
<tr>
<td>7 REAR AXLE LONITUTDINAL</td>
<td>42.1 in</td>
<td>0.0 in</td>
<td>NA</td>
<td>1.4 g @ 127.8 ms</td>
<td>17.9 g @ 57.0 ms</td>
</tr>
<tr>
<td>Test Number: S040504</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. Location</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>Positive Direction¹</td>
<td>Negative Direction¹</td>
</tr>
<tr>
<td>---------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>8 DRIVER PRIMARY AIRBAG EVENT</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0 volt @ 20.5 ms</td>
<td>---</td>
</tr>
<tr>
<td>9 DRIVER SECONDARY AIRBAG EVENT</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0 volt @ 21.6 ms</td>
<td>---</td>
</tr>
<tr>
<td>10 PASSENGER PRIMARY AIRBAG EVENT</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0 volt @ 20.6 ms</td>
<td>---</td>
</tr>
<tr>
<td>11 PASSENGER SECONDARY AIRBAG EVENT</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0 volt @ 21.6 ms</td>
<td>---</td>
</tr>
</tbody>
</table>

REFERENCE:

X: + FORWARD FROM VEHICLE REAR SURFACE
Y: + RIGHTWARD FROM SLED CARRIAGE CENTERLINE
Z:

¹ Sign convention per SAEJ211 March 1995.
² No positive data in time frame of interest.
Vehicle Targeting Measurements

REFERENCE PHOTO TARGETS

LEFT SIDE VIEW
Camera Positions

Camera Mounting Outriggers

Sled Interface Frame

Top View

Camera Frame Rates:
41 = 24 fps
All Others = 1,000 fps

Real-Time Camera

Left Side View

Sled Comptine

Sled Interface Frame
Motion Picture Camera Locations

Vehicle year/make/model/body style: 2004/Pontiac/Grand Prix/4-door Sedan

NHTSA No.: C40114 **Test Number:** 8040504

<table>
<thead>
<tr>
<th>Camera Number</th>
<th>View</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Camera Angle2</th>
<th>Film Plane to Head Target</th>
<th>Camera Lens</th>
<th>Film Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pre- and Post-Test panning and documentary</td>
<td>93.0 in</td>
<td>305.6 in</td>
<td>41.7 in</td>
<td>2.0a</td>
<td>288.0 in</td>
<td>Zoom mm</td>
<td>13 mm</td>
</tr>
<tr>
<td>2</td>
<td>Left side view wide</td>
<td>70.0 in</td>
<td>73.3 in</td>
<td>51.7 in</td>
<td>9.2a</td>
<td>57.4 in</td>
<td>13 mm</td>
<td>1185 frames/s</td>
</tr>
<tr>
<td>3</td>
<td>Left side view over shoulder</td>
<td>96.7 in</td>
<td>49.1 in</td>
<td>53.8 in</td>
<td>15.3a</td>
<td>33.7 in</td>
<td>7.5 mm</td>
<td>1000 frames/s</td>
</tr>
<tr>
<td>4</td>
<td>Right side view wide</td>
<td>68.3 in</td>
<td>73.9 in</td>
<td>51.1 in</td>
<td>7.7a</td>
<td>58.3 in</td>
<td>13 mm</td>
<td>1000 frames/s</td>
</tr>
<tr>
<td>5</td>
<td>Right side view over shoulder</td>
<td>98.3 in</td>
<td>48.2 in</td>
<td>53.4 in</td>
<td>12.7a</td>
<td>34.1 in</td>
<td>8 mm</td>
<td>1040 frames/s</td>
</tr>
<tr>
<td>6</td>
<td>Front view - driver</td>
<td>28.6 in</td>
<td>16.0 in</td>
<td>51.8 in</td>
<td>1.1a</td>
<td>56.4 in</td>
<td>8 mm</td>
<td>1065 frames/s</td>
</tr>
<tr>
<td>7</td>
<td>Front view - passenger</td>
<td>28.8 in</td>
<td>16.3 in</td>
<td>51.3 in</td>
<td>3.6a</td>
<td>55.9 in</td>
<td>8 mm</td>
<td>1000 frames/s</td>
</tr>
</tbody>
</table>

1 X: Film plane to front of sled
Y: Film plane to sled centerline
Z: Film plane to top of sled

2 Angle: Film plane of camera downward from horizontal plane
FMVSS 208 Occupant Injury Data

Vehicle: 2004/Pontiac/Grand Prix/4-door Sedan NHTSA No.: C40114 Date: 05/04/04

<table>
<thead>
<tr>
<th>Maximum Acceleration Values: (g)</th>
<th>Driver Dummy #230</th>
<th>Passenger Dummy #229</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head Channel X</td>
<td>-44.6</td>
<td>-71.3</td>
</tr>
<tr>
<td>Head Channel Y</td>
<td>6.2</td>
<td>-16.8</td>
</tr>
<tr>
<td>Head Channel Z</td>
<td>-21.6</td>
<td>26.1</td>
</tr>
<tr>
<td>HEAD RESULTANT</td>
<td>44.9</td>
<td>71.6</td>
</tr>
<tr>
<td>Chest Channel X</td>
<td>-36.6</td>
<td>-35.2</td>
</tr>
<tr>
<td>Chest Channel Y</td>
<td>5.3</td>
<td>-3.4</td>
</tr>
<tr>
<td>Chest Channel Z</td>
<td>13.9</td>
<td>17.7</td>
</tr>
<tr>
<td>CHEST RESULTANT</td>
<td>37.2</td>
<td>38.7</td>
</tr>
</tbody>
</table>

Head Injury Criteria (HIC) Values:

<table>
<thead>
<tr>
<th>HIC</th>
<th>171</th>
<th>328</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1) (ms)</td>
<td>89.36</td>
<td>75.44</td>
</tr>
<tr>
<td>(t_2) (ms)</td>
<td>125.36</td>
<td>94.40</td>
</tr>
</tbody>
</table>

The maximum HIC time interval from \(t_1 \) to \(t_2 \) is 36 milliseconds.

Chest Injury Criteria (Clip) Values:

<table>
<thead>
<tr>
<th>CLIP (g)</th>
<th>36.8</th>
<th>37.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1) (ms)</td>
<td>91.72</td>
<td>98.81</td>
</tr>
<tr>
<td>(t_2) (ms)</td>
<td>94.58</td>
<td>101.77</td>
</tr>
<tr>
<td>Chest Deflection (in)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Max. Compressive Femur Forces:

<table>
<thead>
<tr>
<th></th>
<th>Driver Dummy #230</th>
<th>Passenger Dummy #229</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Side (lbs)</td>
<td>1564</td>
<td>1335</td>
</tr>
<tr>
<td>Right Side (lbs)</td>
<td>1528</td>
<td>1249</td>
</tr>
</tbody>
</table>

Neck Injury Criteria:

<table>
<thead>
<tr>
<th></th>
<th>Driver Dummy #230</th>
<th>Passenger Dummy #229</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Flexion Bending Moment (N-m)</td>
<td>20</td>
<td>42</td>
</tr>
<tr>
<td>Peak Extension Bending Moment (N-m)</td>
<td>42</td>
<td>47</td>
</tr>
<tr>
<td>Peak Axial Tension (N)</td>
<td>729</td>
<td>636</td>
</tr>
<tr>
<td>Peak Axial Compression (N)</td>
<td>1218</td>
<td>2823</td>
</tr>
<tr>
<td>Peak Positive X-axis Shear (N)</td>
<td>942</td>
<td>2243</td>
</tr>
<tr>
<td>Peak Negative X-axis Shear (N)</td>
<td>213</td>
<td>396</td>
</tr>
</tbody>
</table>
DATA SHEET 3
Certification Label and Tire Placard Information

NHTSA No. C40114 Test Date: 03/09/04

Laboratory: TRC Inc. Test Technician(s): Michael S. Postle

1. Certification Label
Manufacturer: General Motors of Canada Ltd.
Date of Manufacture: 10/03
VIN: 2G2WP522041222591
Vehicle certified as: __X Passenger car ___MPV ___Truck ___Bus
Front axle GVWR: 2427 lbs
Rear axle GVWR: 1900 lbs
Total GVWR: 4426 lbs

2. Tire Placard
___N/A – Vehicle is not a passenger car and does not have a tire placard.
___This is not a passenger car (see the item 1 above), but all or part of this information is
still contained on a vehicle label and is reported here.

Vehicle Capacity Weight 917 lbs
Designated seating capacity front 2
Designated seating capacity rear 3
Total Designated seating capacity 5
Recommended cold tire inflation pressure front 30 psi
Recommended cold tire inflation pressure rear 30 psi
Recommended tire size P225/60R16
DATA SHEET 4
REAR OUTBOARD SEATING POSITION SEAT BELTS

NIHTSA No. C40114 Test Date: 03/09/04

Laboratory: TRC inc. Test Technician(s): Michael S. Postle

Do all rear outboard seating positions have type 2 seat belts? Yes X: No

If NO, describe the seat belt installed, the seat location, and any other information about the seat that would explain why a type 2 seat belt was not installed.

REMARKS:
DATA SHEET 5
AIR BAG LABELS (S4.5.1)

NHTSA No. C40114 Test Date: 09/09/04
Laboratory: TRC Inc. Test Technician(s): Michael S. Postle

1. Air Bag Maintenance Label and Owner's Manual Instructions: (S4.5.1(a))
1.1 Does the manufacturer recommend periodic maintenance or replacement of the air bag?
 ___ Yes (Go to 1.2); X No (Go to 2)
1.2 Does the vehicle have a label specifying air bag maintenance or replacement?
 ___ Yes-Pass; ___ No-FAIL
1.3 Does the label contain one of the following?
 ___ Yes-Pass; ___ No-FAIL
 Check applicable schedule
 ___ Schedule on label specifies month and year (Record date __________)
 ___ Schedule on label specifies vehicle mileage (Record mileage ________)
 ___ Schedule on label specifies interval measured from date on certification label
 (Record INTERVAL__________)
1.4 Is the label permanently affixed within the passenger compartment such that it cannot be
 removed without destroying or defacing the label or the surround?
 ___ Yes-Pass; ___ No-FAIL
1.5 Is the label lettered in English?
 ___ Yes-Pass; ___ No-FAIL
1.6 Is the label in block capitals and numerals?
 ___ Yes-Pass; ___ No-FAIL
1.7 Are the letters and numerals at least 3/32 inches high?
 ___ Yes-Pass; ___ No-FAIL
1.8 Does the owner's manual set forth the recommended schedule for maintenance or
 replacement? ___ Yes-Pass ___ No-FAIL

2. Does the owner's manual: (S4.5.1(f))
2.1 Include a description of the vehicle's air bag system in an easily understandable format?
 X Yes-Pass; ___ No-FAIL
2.2 Include a statement that the vehicle is equipped with an air bag and a lap/shoulder belt at
 the front outboard seating positions?
 X Yes-Pass; ___ No-FAIL
2.3 Include a statement that the air bag is a supplemental restraint at the front outboard
 seating positions?
 X Yes-Pass; ___ No-FAIL
2.4 Emphasize that all occupants, including the driver, should always wear their seat belts
 whether or not an air bag is also provided at their seating positions to minimize the risk
 of severe injury or death in the event of a crash?
 X Yes-Pass; ___ No-FAIL
2.5 Provide any necessary precautions regarding the proper positioning of occupants,
 including children, at seating positions equipped with air bags to ensure maximum safety
 protection for those occupants?
 X Yes-Pass; ___ No-FAIL
2.6 Explain that no objects should be placed over or near the air bag on the steering wheel or
 on the instrument panel, because any such objects could cause harm if the vehicle is in a
 crash severe enough to cause the air bag to inflate?
 X Yes-Pass; ___ No-FAIL
2.7 Is the vehicle certified to meet the requirements of S14.5, S16, S17, S19, S21, S23, and S25? (Obtain the answer to this question from the COTR.) (S4.5.1(f)(2))
 __Yes (go to 2.7.1); __No (go to 3)

2.7.1 Explain the proper functioning of the advanced air bag system? (S4.5.1(f)(2))
 __Yes-Pass; __No-FAIL

2.7.2 Provide a summary of the actions that may affect the proper functioning of the system? (S4.5.1(f)(2))
 __Yes-Pass; __No-FAIL

2.7.3 Present and explain the main components of the advanced passenger air bag system? (S4.5.1(f)(2)(i))
 __Yes-Pass; __No-FAIL

2.7.4 Explain how the components function together as part of the advanced passenger air bag system? (S4.5.1(f)(2)(ii))
 __Yes-Pass; __No-FAIL

2.7.5 Contain the basic requirements for proper operation, including an explanation of the actions that may affect the proper functioning of the system? (S4.5.1(f)(2)(iii))
 __Yes-Pass; __No-FAIL

2.7.6 Is the vehicle certified to the requirements of S19.2, S21.2 or S23.2 (automatic suppression)?
 __Yes, continue with 2.7.6
 __No, go to 2.7.7

2.7.6.1 Contain a complete description of the passenger air bag suppression system installed in the vehicle, including a discussion of any suppression zones? (S4.5.1(f)(2)(iv))
 __Yes-Pass; __No-FAIL

2.7.6.2 Discuss the telltaile light, specifying its location in the vehicle and explaining when the light is illuminated?
 __Yes-Pass; __No-FAIL

2.7.7 Explain the interaction of the advanced passenger air bag system with other vehicle components, such as seat belts, seats or other components? (S4.5.1(f)(2)(v))
 __Yes-Pass; __No-FAIL

2.7.8 Summarize the expected outcomes when child restraint systems, children and small teenagers or adults are both properly and improperly positioned in the passenger seat, including cautionary advice against improper placement of child restraint systems? (S4.5.1(f)(2)(vi))
 __Yes-Pass; __No-FAIL

2.7.9 Provide information on how to contact the vehicle manufacturer concerning modifications for persons with disabilities that may affect the advanced air bag system? (S4.5.1(f)(2)(viii))
 __Yes-Pass; __No-FAIL

3. Sun Visor Air Bag Warning Label (S4.5.1(b)) Check only one of the following:
 __X The vehicle is not certified to meet the requirements of S19, S21, and S23. (Obtain the answer to this question from the COTR.) (S4.5.1(b)(1)) Go to 3.1 and skip 3.2 and 3.3

 __The vehicle is certified to meet the requirements of S19, S21, and S23 before 9/1/03. (Obtain the answer to this question from the COTR.) (S4.5.1(b)(2)) Go to 3.2 and skip 3.1 and 3.3

 __The vehicle is certified to meet the requirements of S19, S21, and S23 on 9/1/03 or later. (Obtain the answer to this question from the COTR.) (S4.5.1(b)(3)) Go to 3.3 and skip 3.1 and 3.2

3.1 Vehicles not certified to meet the requirements of S19, S21, and S23.
3.1.1 Is the label permanently affixed (including permanent marking on the visor material or molding into the visor material) to either side of the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing it? (S4.5.1(b)(1))
- Driver side: Yes, Pass: No-FAIL
- Passenger side: Yes, Pass: No-FAIL

3.1.2 Does the label conform in content to the label shown in Figure 6a or 6b (Figure 6b is for vehicles with passenger air bag on-off switches), as appropriate, at each front outboard seating position? (S4.5.1(b)(1)(i)) (Vehicles without back seats may omit the statement: "The BACK SEAT is the SAFEST place for children." (S4.5.1(b)(1)(iv)))
- Driver side: Yes, Pass: No-FAIL
- Passenger side: Yes, Pass: No-FAIL

3.1.3 Is the label heading area yellow with the word "WARNING" and the alert symbol in black? (S4.5.1(b)(1)(ii))
- Driver side: Yes, Pass: No-FAIL
- Passenger side: Yes, Pass: No-FAIL

3.1.4 Is the message area white with black text? (S4.5.1(b)(1)(ii))
- Driver side: Yes, Pass: No-FAIL
- Passenger side: Yes, Pass: No-FAIL

3.1.5 Is the message area at least 30 cm²? (S4.5.1(b)(1)(iii))
- Driver side: Length: 13.1, Width: 3.5
- Passenger side: Length: 13.1, Width: 3.5
- Actual message area: 45.6 cm²
- Driver side: Yes, Pass: No-FAIL
- Passenger side: Yes, Pass: No-FAIL

3.1.6 Is the pictogram black with a red circle and slash on a white background? (S4.5.1(b)(2)(iii))
- Driver side: Yes, Pass: No-FAIL
- Passenger side: Yes, Pass: No-FAIL

3.1.7 Is the pictogram at least 30 mm in diameter? (S4.5.1(b)(2)(iii))
- Actual diameter: 31 mm
- Driver side: Yes, Pass: No-FAIL
- Passenger side: Yes, Pass: No-FAIL

3.2 Vehicles certified to meet the requirements of S18, S21, and S23 before 9/1/03. (S4.5.1(b)(2))

3.2.1 Is the label permanently affixed (including permanent marking on the visor material or molding into the visor material) to either side of the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing the label or the sun visor? (S4.5.1(b)(2)(2))
- Driver side: Yes, Pass: No-FAIL
- Passenger side: Yes, Pass: No-FAIL

3.2.2 Does the label conform in content to the label shown in Figure 8 or Figure 11 at each front outboard seating position? (S4.5.1(b)(2)(2)) (Vehicles without back seats may omit the statement: "The BACK SEAT is the SAFEST place for children." (S4.5.1(b)(2)(iv)) Vehicles without back seats or the back seat is too small to accommodate a rear-facing child restraint may omit the statement "Never put a face-on child seat in the front." (S4.5.1(b)(2)(v)))
- Driver side: Yes, Pass: No-FAIL
- Passenger side: Yes, Pass: No-FAIL

3.2.3 Is the label heading area yellow with the word "WARNING" and the alert symbol in black? (S4.5.1(b)(2)(ii))
- Driver side: Yes, Pass: No-FAIL
- Passenger side: Yes, Pass: No-FAIL

3.2.4 Is the message area white with black text? (S4.5.1(b)(2)(ii))
- Driver side: Yes, Pass: No-FAIL
- Passenger side: Yes, Pass: No-FAIL
3.2.5 Is the message area at least 30 cm²? (S4.5.1(b)(2)(ii))
Driver side: Length ________, Width ________
Passenger side: Length ________, Width ________
Driver actual message area ________ cm²
Passenger actual message area ________ cm²
Driver side __ Yes-Pass __ No-FAIL
Passenger side __ Yes-Pass __ No-FAIL

3.2.6 Is the pictogram black on a white background? (S4.5.1(b)(2)(iii))
Driver side __ Yes-Pass __ No-FAIL
Passenger side __ Yes-Pass __ No-FAIL

3.2.7 Is the pictogram at least 30 mm (1.2 in) in length? (S4.5.1(b)(2)(iii))
Driver side: Length ________
Passenger side: Length ________
Driver side __ Yes-Pass __ No-FAIL
Passenger side __ Yes-Pass __ No-FAIL

3.3 Vehicles certified to meet the requirements of S19, S21, and S23 on 9/1/03 and later.
(S4.5.1(b)(3))

3.3.1 Is the label permanently affixed (including permanent marking on the visor material or
mooring into the visor material) to either side of the sun visor at each front outward
seating position such that it cannot be removed without destroying or defacing the label
or the sun visor? (S4.5.1 (b)(3))
Driver side __ Yes-Pass __ No-FAIL
Passenger side __ Yes-Pass __ No-FAIL

3.3.2 Does the label conform in content to the label shown in Figure 11 at each front outward
seating position? (S4.5.1(b)(2)) (Vehicles without back seats may omit the statement:
"The BACK SEAT IS THE SAFEST place for children." (S4.5.1(b)(3)(iv)) Vehicles
without back seats or the back seat is too small to accommodate a rear-facing
child restraint may omit the statement "Never put a rear-facing child seat in the
front." (S4.5.1(b)(3)(v)))
Driver side __ Yes-Pass __ No-FAIL
Passenger side __ Yes-Pass __ No-FAIL

3.3.3 Is the label heading area yellow with the word "WARNING" and the alert symbol in black?
(S4.5.1 (b)(3)(i))
Driver side __ Yes-Pass __ No-FAIL
Passenger side __ Yes-Pass __ No-FAIL

3.3.4 Is the message area white with black text? (S4.5.1(b)(3)(ii))
Driver side __ Yes-Pass __ No-FAIL
Passenger side __ Yes-Pass __ No-FAIL

3.3.5 Is the message area at least 30 cm²? (S4.5.1(b)(3)(iii))
Driver side: Length ________, Width ________
Passenger side: Length ________, Width ________
Driver actual message area ________ cm²
Passenger actual message area ________ cm²
Driver side __ Yes-Pass __ No-FAIL
Passenger side __ Yes-Pass __ No-FAIL

3.3.6 Is the pictogram black on a white background? (S4.5.1(b)(3)(iii))
Driver side __ Yes-Pass __ No-FAIL
Passenger side __ Yes-Pass __ No-FAIL

3.3.7 Is the pictogram at least 30 mm in length? (S4.5.1(b)(3)(iii))
Driver side: Length ________
Driver side __ Yes-Pass __ No-FAIL
Passenger side __ Yes-Pass __ No-FAIL
3.4 Is the same side of the sun visor that contains the air bag warning label free of other information with the exception of the air bag maintenance label and/or the rollover warning label? (S4.5.1(b)(5)(i))
 Driver side X Yes-Pass _No-FAIL
 Passenger side X Yes-Pass _No-FAIL

3.5 Is the sun visor free of other information about air bags or the need to wear seat belts with the exception of the air bag alert label and/or the rollover warning label? (S4.5.1(b)(5)(ii))
 Driver side X Yes-Pass _No-FAIL
 Passenger side X Yes-Pass _No-FAIL

3.6 Does the driver side visor contain a rollover warning label on the same side of the visor as the air bag warning label?
 _Yes (go to 3.6.1); _No (go to 4., skipping 3.6.1 through 3.6.3) _

3.6.1 Are both the rollover warning label and the air bag warning label surrounded by a continuous solid-lined border?
 _Yes (go to 3.6.2 and skip 3.6.3); _No (go to 3.6.3 and skip 3.6.2.)

3.6.2 Is the shortest distance from the border of the rollover label to the border of the air bag warning label at least 1 cm? (575.105 (d)(1)(iv)(A))
 ______________actual distance
 _Yes-Pass _No-FAIL

3.6.3 Is the shortest distance from any of the lettering of graphics on the rollover warning label to any of the lettering or graphics of the air bag warning label at least 3 cm? (575.105(d)(1)(iv)(A))
 ______________actual distance
 _Yes-Pass _No-FAIL

4. Air Bag Alert Label (S4.5.1(c)) (A "Rollover Warning Label" or "Rollover Alert Label" may be on the same side of the driver's sun visor as the "Air Bag Alert Label," 575.105(d))

4.1 Is the Sun Visor Warning Label visible when the sun visor is in the stowed position?
 Driver side X Yes _No
 Passenger side X Yes _No
 If yes, for driver and passenger go to 5.

4.2 Is the air bag alert label permanently affixed (including permanent marking or the visor material or molding into the visor material) to the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing the label or the sun visor? (S4.5.1(c))
 Driver side __ Yes-Pass _No-FAIL
 Passenger side __ Yes-Pass _No-FAIL

4.3 Is the air bag alert label visible when the visor is in the stowed position? (S4.5.1(c))
 Driver side __ Yes-Pass _No-FAIL
 Passenger side __ Yes-Pass _No-FAIL

4.4 Does the label conform in content to the label shown in Figure 6c? (S4.5.1(c))
 Driver side __ Yes-Pass _No-FAIL
 Passenger side __ Yes-Pass _No-FAIL

4.5 Is the message area black with yellow text? (S4.5.1(c)(1))
 Driver side __ Yes-Pass _No-FAIL
 Passenger side __ Yes-Pass _No-FAIL

4.6 Is the message area at least 20 cm²? (S4.5.1(c)(1))
 Driver side: Length _____ Width _____
 Passenger side: Length _____ Width __________
 Actual message area __________cm²
 Driver side __ Yes-Pass _No-FAIL
 Passenger side __ Yes-Pass _No-FAIL

4.7 Is the pictogram black with a red circle and slash on a white background? (S4.5.1(c)(2))
 Driver side __ Yes-Pass _No-FAIL
 Passenger side __ Yes-Pass _No-FAIL
4.8 Is the pictogram at least 20 mm in diameter? (S4.5.1(c)(2))
 Driver side: Diameter __________
 Passenger side: Diameter __________
 Driver side: __ Yes-Pass ___ No-FAIL
 Passenger side: __ Yes-Pass ___ No-FAIL

5. Label On the Dashboard
5.1 Is the vehicle certified to meet the requirements of S19, S21, and S23? (Obtain the answer to this question from the COTRJ) (S4.5.1(e)(2))
 __ Yes (go to 5.1.1 and skip 5.2)
 X No (go to 5.2.1 skipping 5.1.1 through 5.1.6)
5.1.1 Does the vehicle have a label on the dash or steering wheel hub? (S4.5.1(e)(2))
 __ Yes-Pass ___ No-FAIL
5.1.2 Is the label clearly visible from all front seating positions? (S4.5.1(e)(2))
 __ Yes-Pass ___ No-FAIL
5.1.3 Does the label conform in content to the label shown in Figure 6? (S4.5.1(e)(2))
 (Vehicles without back seats may omit the statement: "The back seat is the safest place for children." (S4.5.1(e)(2)(III)))
 __ Yes-Pass ___ No-Fail
5.1.4 Is the heading area yellow with black text? (S4.5.1(e)(2)(I))
 __ Yes-Pass ___ No-FAIL
5.1.5 Is the message white with black text? (S4.5.1(e)(2)(II))
 __ Yes-Pass ___ No-FAIL
5.1.6 Is the message area at least 30 cm²? (S4.5.1(e)(2)(II))
 Length __________ Width __________
 Actual message area __________ cm²
 __ Yes-Pass ___ No-FAIL
5.2 Does the vehicle have a label on the dash or steering wheel hub? (S4.5.1(e)(1))
 X Yes-Pass ___ No-FAIL
5.2.1 Is the label clearly visible from all front seating positions? (S4.5.1(e)(1))
 X Yes-Pass ___ No-FAIL
5.2.2 Does the label conform in content to the label shown in Figure 7? (S4.5.1(e)(1)(III))
 (Vehicles without back seats may omit the statement: "The back seat is the safest place for children 12 and under." (S4.5.1(e)(2)(III)))
 X Yes-Pass ___ No-Fail
5.2.3 Is the heading area yellow with the word "WARNING" and the alert symbol in black? (S4.5.1(e)(1)(I))
 X Yes-Pass ___ No-FAIL
5.2.4 Is the message white with black text? (S4.5.1(e)(1)(II))
 X Yes-Pass ___ No-FAIL
5.2.5 Is the message area at least 30 cm²? (S4.5.1(e)(1)(II))
 Length __________ Width __________
 Actual message area __________ cm²
 X Yes-Pass ___ No-FAIL
Figure 6a. Sun Visor Label Visible When Visor is in Down Position.

Figure 6b. Sun Visor Label Visible When Visor is in Down Position.
Figure 6c. Sun Visor Label Visible When Visor Is in Up Position.

Figure 7. Removable Label on Dash.
Figure 8. Sun Visor Label Visible when Visor is in Down Position.
This Vehicle is Equipped with Advanced Air Bags

Even with Advanced Air Bags
Children can be killed or seriously injured by the air bag.
The back seat is the safest place for children.
Always use seat belts and child restraints.
See owner's manual for more information about air bags.

Figure 9. Removable Label on Dash.
WARNING
EVEN WITH ADVANCED AIR BAGS

- Children can be killed or seriously injured by the air bag.
- The back seat is the safest place for children.
- Never put a rear-facing child seat in the front.
- Always use seat belts and child restraints.
- See owner's manual for more information about air bags.

Figure 11. Sun Visor Label Visible when Visor is in Down Position.
DATA SHEET 6

FMVSS 208 READINESS INDICATOR (S4.5.2)

NHTSA No. C40114 Test Date: 03/09/04

Laboratory: TRC Inc. Test Technician(s): Michael S. Postle

An occupant restraint system that deploys in the event of a crash shall have a monitoring system with a readiness indicator. A totally mechanical system is exempt from this requirement. (11/8/94 legal interpretation to Lawrence F. Henneberger on behalf of Breed)

X.1. Is the system totally mechanical? Yes ☒ No X (If YES this Data Sheet is complete.)

X.2. Describe the location of the readiness indicator: Left side of the speedometer in the center of the instrument panel.

X.3. Is the readiness indicator clearly visible to the driver? ☒ Yes-Pass; ___ No-FAIL

X.4. Is a list of the elements in the occupant restraint system, being monitored by the readiness indicator, provided on a label or in the owner's manual? ☒ Yes-Pass; ___ No-FAIL

X.5. Does the vehicle have an on-off switch for the passenger air bag? ☒ Yes (go to 6) X No (this form is complete)

X.6. Is the airbag readiness indicator off when the passenger air bag switch is in the off position? ☒ Yes-Pass; ___ No-FAIL

REMARKS:

39 S040504
DATA SHEET 7
Passenger Air Bag Manual Cut-Off Device (S4.5.4)

NHTSA No. C40114 Test Date: 03/08/04
Labaratory: TRC Inc. Test Technician(s): Michael S. Postle

X1. Is the vehicle equipped with an on-off switch that deactivates the air bag installed at the right front outboard seating position?
 Yes, go to 2
 No, this sheet is complete

X2. Does the vehicle have any forward-facing rear designated seating positions? (S4.5.4(a))
 Yes, go to 3
 No, go to 4

X3. Verification of the lack of room for a child restraint in the rear seat behind the driver's seat. (S4.5.4(b))

X3.1 Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S6.1.3)
 N/A - No lumbar adjustment

X3.2 Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 N/A - No additional seat-adjustment

X3.3 If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 N/A - No independent fore-aft seat-cushion adjustment

X3.4 If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S16.2.10.3.1)
 N/A - No independent seat-cushion height adjustment

X3.5 Put the seat in its full rearward position. (S16.2.10.3.1)
 N/A - the seat does not have a fore-aft adjustment

X3.6 If the seat height is adjustable, put it in the full down position. (S16.2.10.3.1)
 N/A - No seat height adjustment

X3.7 Draw a horizontal reference line on the side of the seat cushion.

X3.8 Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one dent at a time and mark each dent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the mid-point), and R for full rearward.
 N/A - The seat does not have a fore-aft adjustment

X3.9 Using only the controls that change the seat in the fore-aft direction, place the seat in the full rearward position and then place the seat in the middle fore-aft position. (S6.1.2)
 N/A - The seat does not have fore-aft adjustment

Mid position
 If there is no mid position, put the seat in the closest adjustment position to the rear of the midpoint. Describe the location of the seat:

X3.10 If seat adjustments, other than fore-aft, are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal.
 N/A - No adjustments
 Angle of reference line as tested
3.11. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer.

(84.5.4.1(b) and 88.1.3)
- N/A - No seat back angle adjustment
- Manufacturer's design seat back angle
- Tested seat back angle

3.12. Is the driver seat a bucket seat?
- Yes, go to 3.12.1 and skip 3.12.2.
- No, go to 3.12.2 and skip 3.12.1.

3.12.1. Bucket seats:

3.12.1.1 Locate and mark a vertical Plane B through the longitudinal centerline of the seat driver's seat cushion. (S22.2.1.3) The longitudinal centerline of a bucket seat cushion is determined at the widest part of the seat cushion. Measure perpendicular to the longitudinal centerline of the vehicle.

- Record the width of the seat.

- Record the distance from the edge of the seat to Plane B.

3.12.1.2 Locate the longitudinal horizontal line in plane B that is tangent to the highest point of the rear seat cushion behind the driver's seat. Measure along this line from the front of the seat back of the rear seat to the rear of the seat back of the driver's seat.

- mm distance
 - less than 720 mm - Pass
 - more than 720 mm - FAIL

Go to 4

3.12.2. Bench seats (including split bench seats):

3.12.2.1 Locate and mark a vertical Plane B through the center of the steering wheel parallel to the vehicle longitudinal centerline.

3.12.2.2 Locate the longitudinal horizontal line in plane B that is tangent to the highest point of the rear seat cushion. Measure along this line from the front of the seat back of the rear seat to the rear of the seat back of the front seat.

- mm distance
 - less than 720 mm - Pass
 - more than 720 mm - FAIL

Go to 4

4. Does the device turn the air bag on and off using the vehicle's ignition key? (S4.5.4.2)
- Yes - Pass
- No - FAIL

5. Is the on-off device separate from the ignition switch? (S4.5.4.2)
- Yes - Pass
- No - FAIL

6. Is there a telltale light that comes on when the passenger air bag is turned off? (S4.5.4.2)
- Yes - Pass
- No - FAIL

7. Telltale light (S4.5.4.3)

7.1 Is the light yellow? S4.5.4.3(a)
- Yes - Pass
- No - FAIL

7.2 Are the words "PASSENGER AIR BAG OFF" (S4.5.4.3(d))

7.2.1 on the telltale?
- Yes - Pass, go to 7.3
- No - go to 7.2.2

7.2.2 within 25 mm of the telltale? mm from the edge of the telltale light
- Yes - Pass
- No - FAIL
7.3 Does the telltale remain illuminated while the air bag is turned off? (§4.5.4.3c) (Leave the air bag off for 5 minutes.)
 __Yes – Pass
 __No – FAIL

7.4 Is the telltale illuminated while the air bag is turned on? (§4.5.4.3d)
 __Yes – FAIL
 __No – Pass

7.5 Is the telltale combined with the air bag readiness indicator? (§4.5.3(e))
 __Yes – FAIL
 __No – Pass

8. Owner's manual

8.1 Does the owner's manual contain complete instructions on the operation of the on-off switch? (§4.5.4.4(a))
 __Yes – Pass
 __No – FAIL

8.2 Does the owner's manual contain a statement that the on-off switch should only be used when a member of one of the following risk groups is occupying the right front passenger seating position? (§4.5.4.4(b))
 Infants: there is no back seat
 the rear seat is too small to accommodate a child restraint
 there is a medical condition that must be monitored constantly
 Children aged 1 to 12: there is no back seat
 space is not always available in the rear seat
 there is a medical condition that must be monitored constantly
 Medical condition: medical risk causes special risk for passenger
 greater risk for harm than with the air bag on

 __Yes – Pass
 __No – FAIL

8.3 Does the owner's manual contain a warning about the safety consequences of using the on-off switch at other times?
 __Yes – Pass
 __No – FAIL
DATA SHEET 8
LAP BELT LOCKABILITY
Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver’s seat (S7.1.1.5(a)), and that has seat belt restraints that are not solely automatic locking restraints. (S7.1.1.5(c))

NHTSA No. C40114 Test Date: 03/09/04
Laboratory: TRC Inc. Test Technician(s): Michael G. Postle

DESIGNATED SEATING POSITION: Right front passenger

_ N/A – No retractor is at this position
_ N/A – The retractor is an automatic locking retractor ONLY

X.1. Record test fore-aft seat position. (Mid)
(S7.1.1.6(c)(1))
(Any position is acceptable.)

X.2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5(a))
X Yes; Pass; _ No-FAIL

X.3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the seat webbing. (S7.1.1.5(a))
X Yes; Pass; _ No-FAIL

X.4. Buckle the seat belt. (S7.1.1.5(c)(1))

X.5. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))

X.6. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

X.7. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?
X Yes; _ No (If yes, go to 7.1. If no, go to 8.)

X.7.1 Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))
X Yes; Pass; _ No-FAIL

X.8. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2) & S7.1.1.5(c)(1))
X Yes; Pass; _ No-FAIL

X.9. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))
Measured distance between A and B 78.5 inches

X.10. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(c)(3))

43
X.11. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))
Measured force application angle _10.0_ degrees (spec. 5 - 15 degrees)

X.12. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))
Measured distance between A and B _48.0_ inches

X.13. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractor is installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))
Record onset rate _25.0_ lb/sec (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5))
Measured distance between A and B _49.5_ inches (S7.1.1.5(c)(6))

X.14. Subtract the measurement in 13 from the measurement in 12. Is the difference 2 inches or less? (S7.1.1.5(c)(7)) 13-12= _1.5_ inches;
X Yes-Pass; ___ No-FAIL

X.15. Subtract the measurement in 9 from the measurement in 13. Is the difference 3 inches or more? (S7.1.1.5(c)(8)) 9-13= _22.0_ inches;
X Yes-Pass; ___ No-FAIL

REMARKS:
Figure 5. - Webbing Tension Pull Device

Dimension A - Width of Webbing Plus 1/2 Inch
Dimension B - 1/2 of Dimension A
DATA SHEET 8
LAP BELT LOCKABILITY
Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver's seat (S7.1.1.5(a), and that has seat belt retractors that are not solely automatic locking retractors. (S7.1.1.5(c))

NHTSA No. C40114

Test Date: 03/09/04

Laboratory: TRC Inc. Test Technician(a): Michael S. Postle

DESIGNATED SEATING POSITION: Right rear passenger

N/A – No retractor is at this position

N/A – The retractor is an automatic locking retractor ONLY

X.1. Record test fore-aft seat position. Fixed (S7.1.1.5 (a)(1))(Any position is acceptable.)

X.2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5 (a))

X.3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.6 (a))

X.4. Buckle the seat belt. (S7.1.1.5(c)(1))

X.5. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))

X.6. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

X.7. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing? (If yes, go to 7.1. If no, go to 8.)

X.7.1 Does the vehicle owner's manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))

X.8. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner's manual to activate any locking feature so that there is between points A and B is at the maximum length allowed by the seat system. (S7.1.1.5(c)(2) & S7.1.1.5(c)(1))

X.9. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

X.10. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(c)(3))

Measured distance between A and B 84.0 Inches
X.11. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 5 degrees above the horizontal. (S7.1.1.5(c)(4))
 Measured force application angle 10.0 ______________________ (spec. 5 - 15 degrees)

X.12. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))
 Measured distance between A and B 42.5 _______________ inches

X.13. Increase the load to 80 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))
 Record onset rate 25.0 _______________ lb/sec (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(6))
 Measured distance between A and B 43.2 _______________ inches (S7.1.1.5(c)(6))

X.14. Subtract the measurement in 13 from the measurement in 12. Is the difference 2 inches or less? (S7.1.1.5(c)(7)) 13-12= 0.7 _______ inches;
 X Yes-Pass; __ No-FAIL

X.15. Subtract the measurement in 8 from the measurement in 13. Is the difference 3 inches or more? (S7.1.1.5(c)(8)) 9-13= 20.8 _______ inches;
 X Yes-Pass; __ No-FAIL

REMARKS:
Figure 5. - Webbing Tension Pull Device

- Insert Webbing to Rest Against This Surface
- 1/4 Inch Diameter (Steel)
- Dimension A - Width of Webbing Plus 1/2 Inch
- Dimension B - 1/2 of Dimension A
DATA SHEET 8
LAP BELT LOCKABILITY
Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver’s seat (S7.1.1.5(a)), and that has seat belt restraints that are not solely automatic locking restraints. (S7.1.1.5(c))

NHTSA No. C40114 Test Date: 03/09/04
Laboratory: TRC Inc. Test Technician(s): Michael S. Postle

DESIGNATED SEATING POSITION: Left rear passenger

_N/A – No retractor is at this position
_N/A – The retractor is an automatic locking retractor ONLY

X.1. Record test fore-aft seat position. Fixed (S7.1.1.5 (c)(1))
 (Any position is acceptable.)

X.2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5 (a))
 X Yes-Pass; _No-FAIL

X.3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.5 (a))
 X Yes-Pass; _No-FAIL

X.4. Buckle the seat belt. (S7.1.1.5(c)(1))

X.5. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))

X.6. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

X.7. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?
 X Yes; _No (If yes, go to 7.1. If no, go to 8.)

X.7.1 Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to de-activate the locking feature to remove the child restraint system. (S7.1.1.5(b))
 X Yes-Pass; _No-FAIL

X.8. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2) & S7.1.1.5(c)(1))

X.9. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))
 Measured distance between A and B __63.8 ______ inches

X.10. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(c)(3))
X.11. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 6. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

Measured force application angle: 10.0 degrees (spec. 5 - 15 degrees)

X.12. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

Measured distance between A and B: 42.5 inches

X.13. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractor are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(8))

Record onset rate: 25.0 lb/sec (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5))

Measured distance between A and B: 43.6 inches (S7.1.1.5(c)(8))

X.14. Subtract the measurement in 13 from the measurement in 12. Is the difference 2 inches or less? (S7.1.1.5(c)(7))

Yes-Pass; X No-FAIL

X.15. Subtract the measurement in 9 from the measurement in 13. Is the difference 3 inches or more? (S7.1.1.5(c)(8))

Yes-Pass; X No-FAIL

REMARKS:
Figure 5. - Webbing Tension Pull Device
DATA SHEET 8

LAP BELT LOCKABILITY

Passenger cars, trucks, buses, and multipurpose passenger vehicles with GVWR of 10,000 pounds or less. (S7.1.1.5)

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver's seat (S7.1.1.5(a)), and that has seat belt retractors that are not solely automatic locking retractors. (S7.1.1.5(c))

NHTSA No. C40114

Laboratory: TRC Inc. Test Technician(s): Michael G. Postle

DESIGNATED SEATING POSITION: Center rear passenger

X N/A – No retractor is at this position

X N/A – The retractor is an automatic locking retractor ONLY

X.1. Record test fore-aft seat position. Fixed

(S7.1.1.5 (c)(1))

(Any position is acceptable.)

X.2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5 (a))

X Yes-Pass; _No-FAIL_

X.3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.5 (a))

X Yes-Pass; _No-FAIL_

X.4. Buckle the seat belt. (S7.1.1.5(c)(1))

X.5. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))

X.6. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

X.7. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?

X Yes; _No_ (If yes, go to 7.1. If no, go to 8.)

X.7.1. Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))

X Yes-Pass; _No-FAIL_

X.8. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2) & S7.1.1.5(c)(1))

X.9. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

Measured distance between A and B _88,5_ inches

X.10. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(c)(3))
11. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 Measured force application angle 10.0° (spec. 5 - 15 degrees)

12. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

 Measured distance between A and B 39.5 inches

13. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

 Record onset rate 25.0 lb/sec (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(6))

 Measured distance between A and B 49.2 inches (S7.1.1.5(c)(8))

14. Subtract the measurement in 13 from the measurement in 12. Is the difference 2 inches or less? (S7.1.1.5(c)(7)) 13-12=0.7 inches;

 X Yes-Pass; ___ No-FAIL

15. Subtract the measurement in 9 from the measurement in 13. Is the difference 3 inches or more? (S7.1.1.5(c)(9)) 9-13=28.3 inches;

 X Yes-Pass; ___ No-FAIL

REMARKS:
Figure 5. - Webbing Tension Pull Device

Dimension A - Width of Webbing Plus 1/2 inch
Dimension B - 1/2 of Dimension A
DATA SHEET 9

FMVSS 208 SEAT BELT WARNING SYSTEM CHECK (S7.3)

NHTSA No.: C40114 Test Date: 03/05/04

Laboratory: TRC Inc. Test Technician(s): Michael S. Postle

X.1. The occupant is in the driver's seat.
X.2. The seat belt is in the stowed position.
X.3. The key is in the "on" or "start" position.
X.4. The time duration of the audible signal beginning with key "on" or "start" is 6 seconds.
X.5. The occupant is in the driver's seat.
X.6. The seat belt is in the stowed position.
X.7. The key is in the "on" or "start" position.
X.8. The time duration of the warning light beginning with key "on" or "start" is 76 seconds.
X.9. The occupant is in the driver's seat.
X.10. The seat belt is in the latched position and with at least 4 inches of belt webbing extended.
X.11. The key is in the "on" or "start" position.
X.12. The time duration of the audible signal beginning with key "on" or "start" is 0 seconds.
X.13. The occupant is in the driver's seat.
X.14. The seat belt is in the latched position and with at least 4 inches of belt webbing extended.
X.15. The key is in the "on" or "start" position.
X.16. The time duration of the warning light beginning with key "on" or "start" is 0 seconds.
X.17. Complete the following table with the data from 4, 8, 12 and 16 to determine which option is used.

<table>
<thead>
<tr>
<th>S7.9 (a)(1)</th>
<th>Belt latched</th>
<th>Item 16</th>
<th>0 seconds*</th>
<th>Item 12</th>
<th>0 seconds**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key on or start</td>
<td></td>
<td>Item 16</td>
<td>0 seconds*</td>
<td>Item 12</td>
<td>0 seconds**</td>
</tr>
<tr>
<td>Belt stowed</td>
<td>Item 8</td>
<td>76</td>
<td>60 seconds minimum</td>
<td>Item 4</td>
<td>6</td>
</tr>
<tr>
<td>Key on or start</td>
<td></td>
<td>Item 4</td>
<td>6</td>
<td>4 to 8 seconds</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S7.3 (a)(2)</th>
<th>Belt latched</th>
<th>Item 16</th>
<th>4 to 8 seconds</th>
<th>Item 12</th>
<th>0 seconds**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key on or start</td>
<td></td>
<td>Item 16</td>
<td>4 to 8 seconds</td>
<td>Item 12</td>
<td>0 seconds**</td>
</tr>
<tr>
<td>Belt stowed</td>
<td>Item 8</td>
<td>76</td>
<td>4 to 8 seconds</td>
<td>Item 4</td>
<td>6</td>
</tr>
<tr>
<td>Key on or start</td>
<td></td>
<td>Item 4</td>
<td>6</td>
<td>4 to 8 seconds</td>
<td></td>
</tr>
</tbody>
</table>

* 49 USCS 30124 does NOT allow an audible signal to operate for more than 8 seconds.
** 0 seconds means the light or audible signal are NOT permitted to operate under these conditions. See 7/12/00 interpretation to Patrick Reher of Hogan and Hartson.
18. The seat belt warning system meets the requirements of (manufacturers may comply with either section)
 - S7.3(a)(1)
 - S7.3(a)(2)
 - FAIL - Does NOT meet the requirements of either option

19. Note wording of visual warning: (S7.3(a)(1) and S7.3(a)(2))
 - Fasten Seat Belts
 - Fasten Belts
 - Symbol 101
 - FAIL - Does not use any of the above wording or symbol
DATA SHEET 10
BELT CONTACT FORCE (S7.4.3)

NHTSA No. C40114 Test Date: 03/08/04
Laboratory: TRC Inc. Test Technician(s): Michael S. Postle

DESIGNATED SEATING POSITION: Right rear passenger

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

X.1. Does the vehicle incorporate a webbing tension-relieving device?
 Yes (this form is complete)
 X. No (continue with this check sheet)

X.3. Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflected adjustment position. (S8.1.3)
 X. N/A - No lumbar adjustment

X.4. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 X. N/A - No additional support adjustment

X.5. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 X. N/A - No independent fore-aft seat cushion adjustment

X.6. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S16.2.10.3.1)
 X. N/A - No independent seat cushion height adjustment.

X.7. Put the seat in its full rearward position. (S16.2.10.3.1)
 X. N/A - the seat does not have a fore-aft adjustment

X.8. If the seat height is adjustable, put it in the full down position. (S16.2.10.3.1)
 X. N/A - No seat height adjustment

X.10. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat to the adjustment at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, midline, and full forward positions. Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the mid-point), and R for full rearward.
 X. N/A - The seat does not have a fore-aft adjustment.

X.11. Using only the controls that change the seat in the fore-aft direction, place the seat in the full rearward position and then place the seat in the middle fore-aft position for this test. (S8.1.2)
 _Mid position. If there is no mid position, put the seat in the closest adjustment position to the rear of the midpoint. Describe the location of the seat: ______________________________
 X. N/A - The seat does not have a fore-aft adjustment.

X.12. If seat adjustments other than fore-aft are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal. (S16.2.10.3.2.1)
 X. N/A - No adjustments
Reference line angle as tested: __________

57
S040504
13. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (§4.5.4.1 (b) and §8.1.3)
 X N/A – No seat back angle adjustment
 Manufacturer's design seat back angle
 Tested seat back angle

14. Position the test dummies according to dummy position placement instructions in Appendix B and include the positioning check sheets.

15. Fasten the seat belt latch.

16. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest.

17. Locate the point where the centerline of the upper torso belt webbing crosses the mid-sagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (§10.8) Using a force measuring gage with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy's chest exerted by the belt webbing.
 Contact force: 0.33 lb.
 X 0.0 to 0.7 pounds - Pass
 greater than 0.7 pounds - FAIL
DATA SHEET 10

BELT CONTACT FORCE (S7.4.3)

NHTSA No. C40114

Test Date: 03/09/04

Laboratory: TRC Inc.,
Test Technician(s): Michael S. Postle

DESIGNATED SEATING POSITION: Left rear passenger

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

X.1. Does the vehicle incorporate a webbing tension-relieving device?
 Yes (this form is complete)
 X. No (continue with this check sheet)

X.3. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S6.1.3)
 X. N/A - No lumbar adjustment

X.4. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 X. N/A - No additional support adjustment

X.5. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 X. N/A - No independent fore-aft seat cushion adjustment

X.6. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S16.2.10.3.1)
 X. N/A - No independent seat cushion height adjustment.

X.7. Put the seat in its full rearward position. (S16.2.10.3.1)
 X. N/A - the seat does not have a fore-aft adjustment

X.8. If the seat height is adjustable, put it in the full down position. (S16.2.10.3.1)
 X. N/A - No seat height adjustment

X.10. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the mid-point), and R for full rearward.
 X. N/A - The seat does not have a fore-aft adjustment.

X.11. Using only the controls that change the seat in the fore-aft direction, place the seat in the full rearward position and then place the seat in the middle fore-aft position for this test. (S6.1.2)
 Mid position. If there is no mid position, put the seat in the closest adjustment position to the rear of the midpoint. Describe the location of the seat: _____________________________
 X. N/A - The seat does not have a fore-aft adjustment.

X.12. If seat adjustments other than fore-aft are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal. (S16.2.10.3.2.1)
 X. N/A - No adjustments
 Reference line angle as tested ___________
13. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (§4.5.4.1(b) and §8.1.3)

X N/A — No seat back angle adjustment
Manufacturer's design seat back angle

Tested seat back angle

14. Position the test dummies according to dummy position placement instructions in Appendix B and include the positioning check sheets.

15. Fasten the seat belt latch.

16. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest.

17. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (§10.8) Using a force measuring gage with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy's chest exerted by the belt webbing.

Contact force

X 0.38 lb.
0.0 to 0.7 pounds - Pass
greater than 0.7 pounds - FAIL
DATA SHEET 10
BELT CONTACT FORCE (S7.4.3)

NHTSA No. C40114 Test Date: 08/09/04
Laboratory: TRC Inc. Test Technician(s): Michael S. Postle

DESIGNATED SEATING POSITION: Center rear passenger

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

X.1. Does the vehicle incorporate a webbing tension-relieving device?
 Yes (this form is complete)
 X. No (continue with this check sheet)

X.3. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 X. N/A - No lumbar adjustment

X.4. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 X. N/A - No additional support adjustment

X.5. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 X. N/A - No independent fore-aft seat cushion adjustment

X.6. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S16.2.10.3.1)
 X. N/A - No independent seat cushion height adjustment.

X.7. Put the seat in its full rearward position. (S16.2.10.3.1)
 X. N/A - the seat does not have a fore-aft adjustment

X.8. If the seat height is adjustable, put it in the full down position. (S16.2.10.3.1)
 X. N/A - No seat height adjustment

X.10. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the mid-point), and R for full rearward.
 X. N/A - The seat does not have a fore-aft adjustment.

X.11. Using only the controls that change the seat in the fore-aft direction, place the seat in the full rearward position and then place the seat in the middle fore-aft position for this test. (S8.1.2)
 X. N/A - The seat does not have a fore-aft adjustment.

X.12. If seat adjustments other than fore-aft are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal. (S16.2.10.3.2.1)
 X. N/A - No adjustments
 Reference line angle as tested
X.13. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.5.4.1 (b) and S8.1.3)
 X N/A – No seat back angle adjustment
 Manufacturer's design seat back angle
 Tested seat back angle

X.14. Position the test dummies according to dummy position placement instructions in Appendix B and include the positioning check sheets.

X.15. Fasten the seat belt latch.

X.16. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest.

X.17. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (S10.6) Using a force measuring gage with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy's chest exerted by the belt webbing.

Contact force: 0.41 lb.
- X 0.0 to 0.7 pounds - Pass
- greater than 0.7 pounds - FAIL
DATA SHEET 11
LATCHPLATE ACCESS (S7.4.4)

NHTSA No. C40114

Test Date: 03/08/04

Laboratory: TRC Inc. Test Technician(s): Michael S. Postle

DESIGNATED SEATING POSITION: Not applicable, passenger car

Test all front outboard seat belts other than those in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

1. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or delected adjustment position. (8.1.3)
 N/A - No lumbar adjustment

2. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 N/A - No additional support adjustment

3. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 N/A - No independent fore-aft seat cushion adjustment

4. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S16.2.10.3.1)
 N/A - No independent seat cushion height adjustment

5. Put the seat in its full rearward position. (S16.2.10.3.1)
 N/A - The seat does not have a fore-aft adjustment

6. If the seat height is adjustable, put it in the full down position. (S16.2.10.3.1)
 N/A - No seat height adjustment

7. Draw a horizontal reference line on the side of the seat cushion

8. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label these three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the mid-point), and R for full rearward.
 N/A - The seat does not have a fore-aft adjustment

9. Using only the controls that change the seat in the fore-aft direction, place the seat in the full rearward position and then place the seat in the forwardmost fore-aft position for this test. (S10.7)

10. If seat adjustments, other than fore-aft, are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal.
 N/A - No adjustments
 Reference line angle as tested
11. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.6.4.1 (b) and S8.1.3)

 N/A – No seat back angle adjustment
 Manufacturer's design seat back angle ____________________
 Tested seat back angle ____________________

12. Position the test dummy using the procedures in Appendix A. (Some modifications to the positioning procedure may need to be made because the seat is in its forward-most position. Note on the Appendix A positioning check sheet any deviations necessary to position the Part 572, Subpart E dummy.) Include the positioning check sheet with this form.

13. Position the adjustable seat belt anchorage in the manufacturer's nominal design position for a 50th percentile adult male occupant.

14. Attach the inboard reach string to the base of the head following the instructions on Figure 3.

15. Attach the outboard reach string to the torso sheath following the instructions on Figure 3.

16. Place the latch plate in the stowed position.

17. Extend inboard reach string in front of the dummy and then backward and outboard to the latch plate to generate an arc of the reach envelope of the test dummy's arms. Is the latch plate within the reach envelope?
 ______ Yes - Pass ______ NO

18. Extend outboard reach string in front of the dummy and then backward and outboard to the latch plate to generate an arc of the reach envelope of the test dummy's arms. Is the latch plate within the reach envelope?
 ______ Yes - Pass ______ NO

19. Is the latch plate within the inboard (Item 17) or outboard (Item 18) reach envelope?
 ______ Yes - Pass ______ NO - FAIL

20. Using the clearance test block, specified in Figure 4, is there sufficient clearance between the vehicle seat and the side of vehicle interior to allow the test block to move unhindered to the latch plate or buckle?
 ______ Yes - Pass ______ NO - FAIL
Figure 3. Location of Anchoring Points for Latchplate Reach Limiting Chains or Strings to Dust for Latchplate Accessibility Using Subpart E Test Device
Figure 4—USE OF CLEARANCE TEST BLOCK TO DETERMINE HAND/ARM ACCESS

(Note corners are rounded off to reduce snagging.)
DATA SHEET 12
SEAT BELT RETRACTION (S7.4.5)

NHTSA No. C40114 Test Date: 03/09/04

Laboratory: TRC Inc. Test Technician(s): Michael S. Postle

DESIGNATED SEATING POSITION: Driver

GVWR: 4420 lbs

Test all front outboard seat belts, except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

X 1. Is the vehicle a passenger car or walk-in van-type vehicle?
 X Yes, this form is complete
 ___ No

 2. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S6.1.3)
 ___ N/A - No lumbar adjustment

 3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 ___ N/A - No additional support adjustment

 4. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position.) (S16.2.10.3.1)
 ___ N/A - No independent fore-aft seat cushion adjustment

 5. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S16.2.10.3.1)
 ___ N/A - No independent seat cushion height adjustment.

 6. Put the seat in its full rearward position.
 ___ N/A - the seat does not have a fore-aft adjustment

 7. If the seat height is adjustable, put it in the full down position. (S6.1.2)
 ___ N/A - No seat height adjustment

 8. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the nearest adjustment position to the rear of the mid-point), and R for full rearward.
 ___ N/A - The seat does not have a fore-aft adjustment.

 9. Using only the controls that change the seat in the fore-aft direction, place the seat in the middle fore-aft position. (S6.1.2)
 If there is no mid position, put the seat in the closest adjustment position to the rear of the midpoint. Describe the location of the seat:

 10. If seat adjustments, other than fore-aft, are present and the reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal. (S16.2.10.2.2)
 ___ N/A - No seat adjustments
 Reference angle as tested

67 8040504
11. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S8.1.3)
 - N/A – No seat back angle adjustment
 Manufacturer's design seat back angle
 Tested seat back angle

12. If adjustable, set the head restraint at the full up and full forward position. (S8.1.3) Any adjustment of the head restraint shall be used to position it full forward. For example, if it rotates, rotate it such that the head restraint extends as far forward as possible.
 - N/A – No head restraint adjustment

13. Place any adjustable seat belt anchorages at the vehicle manufacturer's nominal design position for a 50th percentile adult male occupant (S8.1.3)
 - N/A – No adjustable upper seat belt anchorage
 Manufacturer's specified anchorage position
 Tested anchorage position

14. Is the driver seat a bucket seat?
 - Yes, go to 14.1 and skip 14.2
 - No, go to 14.2 and skip 14.1.

14.1 Bucket seats:
 Locate and mark a vertical Plane B through the longitudinal centerline of the seat. The longitudinal centerline of a bucket seat cushion is determined at the widest part of the seat cushion. Measure perpendicular to the longitudinal centerline of the vehicle.
 - Record the width of the seat.
 - Record the distance from the edge of the seat to Plane B.

14.2 Bench seats (including split bench seats):
 - Driver seat: Locate and mark a vertical Plane B through the center of the steering wheel parallel to the vehicle longitudinal centerline.
 - Passenger seat: Locate and mark a vertical longitudinal Plane B on the seat that is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel.
 Distance from the vehicle centerline to the center of the steering wheel
 Distance from the vehicle centerline to Plane B

15. Stow outboard armsrests that are capable of being stowed. (S7.4.5)

16. Remove the arms of a Subpart E dummy and place it in the seat such that the midsagittal plane is coincident with Plane B and the upper torso rests against the seat back. (S10.4.1.1 & S10.4.1.2)

17. Rest the thighs on the seat cushion.

18. Position the H-point of the dummy within 0.5 inch of the vertical dimension and 0.5 inch of the horizontal dimension of a point 0.25 inch below the H-point determined by using the equipment and procedures specified in SAE J826 (APR 1980). (S10.4.2.1) Then measure the pelvic angle with respect to the horizontal using the pelvic angle gage. Adjust the dummy position until these three measurements are within the specifications. (S10.4.2.1 and S10.4.2.2)
 - horizontal inches from the point 0.25 below the determined H-point (0.5 inch max.)
 (S10.4.2.1)
 - vertical inches from the point 0.25 below the determined H-point (0.5 inch max.)
 (S10.4.2.1)
 - pelvic angle (20° to 25°)
 - vertical inches from the point 0.25 below the determined H-point (0.5 inch max.)
 (S10.4.2.1)
 - pelvic angle (20° to 25°) (S10.4.2.2)

19. Set the distance between the outboard knee clevis flange surfaces at 10.6 inches.
 - measured distance (10.6 inches) (S10.5)

20. To the extent practicable keep the thighs and the legs in a vertical plane (S10.5) and rest the thighs on the seat cushion while resting the test on the floorpan or toe board.

21. Fasten the seat belt around the dummy.
22. Remove all slack from the lap belt portion. (S10.8)

23. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this four times. (S10.9)

24. Apply a 2 to 4 pound tension load to the lap belt. (S10.9)
 Round load applied

25. Is the belt system equipped with a tension relieving device?
 Yes, continue
 No, go to 26

25.1 Introduce the maximum amount of slack into the upper torso belt that is recommended by the vehicle manufacturer in the vehicle owner’s manual. (S10.9). Go to 25.

26. Check the statement that applies to this test vehicle:
 26.1 The torso and lap belt webbing of the seat belt system automatically retracts to a stowed position when the adjacent vehicle door is in an open position and the seat belt latch plate is released. Pass
 26.2 The torso and lap belt webbing of the seat belt system automatically retracts when the seat belt latch plate is released. Pass
 26.3 Neither A or B apply. FAIL

27. With the webbing and hardware in the stowed position are the webbing and hardware prevented from being pinched when the door is closed?
 Yes - Pass NO - FAIL

28. If this test vehicle has an open body (without doors) and has a belt system with a tension-relieving device, does the belt system fully retract when the tension-relieving device is deactivated?
 N/A
 Yes - Pass NO - FAIL
DATA SHEET 13
SEAT BELT GUIDES AND HARDWARE (S7.4.6)

NHTSA No. C40114

Test Date: 09/09/04

Laboratory: TRC Inc. Test Technician(s): Michael S. Postle

DESIGNATED SEATING POSITION: Right rear passenger

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

X1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1(b))
 __Yes; this form is complete
 X No; got to 2

X2. Is the seat removable? (S7.4.6.1(b))
 __Yes; this form is complete
 X No; got to 3

X3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
 __Yes; this form is complete
 X No; got to 4

X4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
 X Yes; go to 5.
 __No; this form is complete.

X5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
 X Yes - Pass
 ___ NO - FAIL

Identify the part(s) on top or above the seat.
X seat belt latch plate; X buckle; X seat belt webbing

X6. Are the remaining two seat belt parts accessible under normal conditions?
 X Yes - Pass
 ___ NO - FAIL

X7. The buckle and latch plate do not pass through the guides or conduits provided and fail behind the seat when the belt is completely retracted or, if the belt is non-retractable, the belt is unatched. (S7.4.6.2)
 X Yes - Pass ___ NO - FAIL

X8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
 X Yes - Pass ___ NO - FAIL

X9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)
 X Yes - Pass ___ NO - FAIL

X10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
 X Yes - Pass ___ NO - FAIL
DATA SHEET 12
SEAT BELT GUIDES AND HARDWARE (S7.4.6)

NHTSA No. C40114
Test Date: 03/03/04

Laboratory: TRC inc.
Test Technician(s): Michael S. Postle

DESIGNATED SEATING POSITION: Left front passenger

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

X.1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1(b))
 Yes; this form is complete
 X No; go to 2

X.2. Is the seat removable? (S7.4.6.1(b))
 Yes; this form is complete
 X No; go to 3

X.3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
 Yes; this form is complete
 X No; go to 4

X.4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
 Yes; go to 5.
 X No; this form is complete.

X.5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
 X Yes - Pass
 ____ NO - FAIL
Identify the part(s) on top or above the seat.
X seat belt latch plate; X buckle; X seat belt webbing

X.6. Are the remaining two seat belt parts accessible under normal conditions?
 X Yes - Pass
 ____ NO - FAIL

X.7. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (S7.4.6.2)
 X Yes - Pass
 ____ NO - FAIL

X.8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
 X Yes - Pass
 ____ NO - FAIL

X.9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)
 X Yes - Pass
 ____ NO - FAIL

X.10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
 X Yes - Pass
 ____ NO - FAIL
DATA SHEET 13
SEAT BELT GUIDES AND HARDWARE (S7.4.6)

NHTSA No. C40114

Test Date: 09/09/04

Laboratory: TRC inc.

Test Technician(s): Michael S. Postle

DESIGNATED SEATING POSITION: Center rear passenger

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

X1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1(b))
 _Yes; this form is complete
 XNo; go to 2

X2. Is the seat removable? (S7.4.6.1(b))
 _Yes; this form is complete
 XNo; go to 3

X3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
 _Yes; this form is complete
 XNo; go to 4

X4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
 _Yes; go to 5.
 _No; this form is complete.

X5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
 _Yes - Pass
 _NO - FAIL

 Identify the part(s) on top or above the seat.
 X seat belt latch plate; X buckle; _ seat belt webbing

X6. Are the remaining two seat belt parts accessible under normal conditions?
 _Yes - Pass
 _NO - FAIL

X7. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (S7.4.6.2)
 _Yes - Pass
 _NO - FAIL

X8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
 _Yes - Pass
 _NO - FAIL

X9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)
 _Yes - Pass
 _NO - FAIL

X10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
 _Yes - Pass
 _NO - FAIL
Appendix A

Photographs
Figure A-1 Pre-Test Front View of Test Vehicle Mounted to Sled
Figure A-7 Post-Test Driver Dummy Position View with Door Open
Figure A-9 Post-Test Driver Seal Track Position View
Figure A-10 Pre-Test Driver Dummy Position Front View
Figure A-11 Post-Test Driver Dummy Position Front View
Figure A-13 Post-Test Passenger Dummy Position View with Door Open
Figure A-14 Pre-Test Passenger Seat Track Position View
Figure A-15 Post-Test Passenger Seat Track Position View
Figure A-18 Post-Test Driver Airbag View
Figure A-19 Post-Test Driver Dummy Removed from Vehicle Overall View
Figure A-21 Post-Test Driver Head Contact - View 2
Figure A-23 Post-Test Passenger Dummy Removed from Vehicle Overall View
Figure A-28 Pre-Test Steering Column Linkage in Engine Compartment View
Appendix D

Data Plots
C40114 / 2004 PONTIAC GRAND PRIX
PASSenger SECONDARY AIRBAG EVENT
FMVSS 208 SLED TEST

CHANNEL: PABET2 FILTER: CH. CLASS 1000
PEAK DATA: 1.00 V @ 21.21 MS; 0.00 V @ -28.00 MS

TRC NUMBER: S040504Z
TEST NUMBER: S040504

VOLTAGE [V @ A] VS TIME [NS]
0 16 33 50 66 83 99
-20 10 40 70 100 130 160 190 220 250 280 310
C40114 / 2004 PONTIAC GRAND PRIX
SLED ACCELERATION - BACKUP

TRC NUMBER: S040504F
FMVSS 208 SLED TEST
TEST NUMBER: S040504

ACCELERATION (G x 10^-1)

CHANNEL: SLDXGR FILTER: CH. CLASS 60
PEAK DATA: 0.76 G @ 127.92 MS; -17.72 G @ 56.64 MS
C43414 / 2004 Pontiac Grand Prix
MEASURED VELOCITY TRAP
FMVSS 208 Sled Test

TRC NUMBER: S0430504
TEST NUMBER: S0430504

VELOCITY (MPH x 10^-1)

CHANNEL: SLOXY
FILTER: CH. CLASS SB
PEAK DATA: 0.05 MPH @ 9.36 MS, -29.25 MPH @ 125.68 MS
C48114 / 2004 PONTIAC GRAND PRIX
SLED VELOCITY (INTEGRATED)

TRC NUMBER: S048504F

FMYSS 208 SLED TEST

TEST NUMBER: S048504

VELOCITY (MPH X 10^-1)

TIME (MS)

CHANNEL: SLOXVI
FILTER: CH. CLASS 1B0

PEAK DATA: 0.00 MPH @ -20.00 MS; -29.71 MPH @ 141.92 MS
C48114 / 2001 PONTIAC GRAND PRIX
DRIVER SECONDARY AIRBAG EVENT
FMVSS 208 SLED TEST

CHANNEL: DABET2 FILTER: CH. CLASS 1000
PEAK DATA: 1.00 V @ 21.60 MS, 0.00 V @ -20.00 MS
C40114 / 2004 PONTIAC GRAND PRIX
REAR AXLE X-AXIS ACCELERATION

TRC NUMBER: S040594F
FMVSS 208 SLED TEST
TEST NUMBER: S040594

ACCELERATION (G x 10^-1)

TIME (MS)

CHANNEL: RAYG
FILTER: CH. CLASS 6B
PEAK DATA: 1.43 G @ 127.84 MS, -17.85 G @ 57.04 MS
C40114 / 2004 PONTIAC GRAND PRIX
LEFT REAR SEAT CROSSMEMBER X-AXIS ACCELERATION

TRC NUMBER: S040504F
FMVSS 208 BLEED TEST
TEST NUMBER: S040504

ACCELERATION (G x 10^-1)

CHANNEL: LSXXC
FILTER: CH. CLASS 68
PEAK DATA: 1.66 G @ 129.92 MS, -18.09 G @ 59.92 MS
C40114 / 2004 PONTIAC GRAND PRIX
DRIVER NECK Y-AXIS SHEAR FORCE
FMYSS 20B SLED TEST

TEST NUMBER: S040504

FORCE (N)

B-25

-112

-87

-62

-37

-12

13

38

TIME (MS)

-20 10 40 70 100 130 160 190 220 250 280 310

CHANNEL: NEKYF1 FILTER: CH. CLASS 1000

PEAK DATA: 34.67 N @ 224.72 MS; -104.24 N @ 147.04 MS

TEST NUMBER: S040504
C48114 / 2004 PONTIAC GRAND PRIX
DRIVER NECK MOMENT ABOUT Y AXIS

TRC NUMBER: S040504F
FMVSS 208 SLED TEST
TEST NUMBER: S040504

TORQUE (N.M x (θ-1))

TIME (MS)

CHANNEL: NKCYN1 FILTER: CH. CLASS 600
PEAK DATA: 17.85 N.M @ 246.00 MS; -30.72 N.M @ 123.12 MS
C40114 / 2004 PONTIAC GRAND PRIX
DRIVER NECK MOMENT ABOUT Z AXIS

CHANNEL: NEKZ11 FILTER: CH. CLASS 600
PEAK DATA: 3.75 N-M @ 97.36 MS; -3.58 N-M @ 139.52 MS
C48114 / 2004 PONTIAC GRAND PRIX
DRIVER CHEST DEFLECTION
FMVSS 208 SLED TEST

TEST NUMBER: S040504

CHANNEL: CSTX01
FILTER: CH. CLASS 600
PEAK DATA: 0.00 in @ 12.56 ms, -1.02 in @ 96.88 ms
C40114 / 2004 PONTIAC GRAND PRIX
DRIVER RIGHT FEMUR FORCE
FMVSS 208 SLED TEST

TRC NUMBER: S040504F
TEST NUMBER: S040504

FORCE (LBF X 10^1)

CHANNEL: RFH2F1
FILTER: CH. CLASS 600

TIME (INs)
PEAK DATA: 82.24 LBF @ 278.64 MS, -1528.08 LBF @ 78.40 MS
C40114 / 2004 PONTIAC GRAND PRIX
RIGHT FRONT PASSENGER HEAD Z-AXIS ACCELERATION

TRAJ: 5040504F
FMVSS 208 SLED TEST
TEST NUMBER: 5040504

ACCELERATION (G x 10^-1)

-190
-110
-30
50
130
210
290

TIME (MS)

-20
10
40
70
100
130
160
190
220
250
280
310

CHANNEL: HEDZC2
FILTER: CH. CLASS 1000

PEAK DATA: 26.12 G @ 93.04 MS; -17.92 G @ 117.12 MS
C40114 / 2004 PONTIAC GRAND PRIX
RIGHT FRONT PASSENGER NECK Z-AXIS AXIAL FORCE
FMYSS 208 SLEC TEST

TEST NUMBER: 5040504

FORCE (N) (10 x)
-308
-245
-182
-119
-56
7
70

TIME (MS)
-20
10
40
70
100
130
160
190
220
250
280
310

CHANNEL: NEKZF2
FILTER: CH. CLASS 1000
PEAK DATA: 636.48 N @ 95.00 MS, -2922.96 N @ 92.98 MS
C48114 / 2001 PONTIAC GRAND PRIX
RIGHT FRONT PASSENGER NECK MOMENT ABOUT X AXIS

TRC NUMBER: S040504F
FMVSS 208 SLED TEST.
TEST NUMBER: S040504

CHANNEL: NEKXM2 FILTER: CH. CLASS 600
PEAK DATA: 4.29 N·m @ 115.84 MS; -18.46 N·m @ 86.08 MS
C40114 / 2004 PONTIAC GRAND PRIX
RIGHT FRONT PASSENGER NECK MOMENT ABOUT Y AXIS

TRC NUMBER: S041504F
FMVSS 208 SLED TEST
TEST NUMBER: S041504

TORQUE (N-M)
-29
-20
-12
-9
-6
-3
0
3
6
9
12
15
18
21
24
27
30

TIME (MS)
-20
10
40
70
100
130
160
190
220
250
280
310

CHANNEL: NEKYM2 FILTER: CH. CLASS 600
PEAK DATA: 79.73 N-M @ 100.80 MS, -25.97 N-M @ 114.88 MS
C40114 / 2004 PONTIAC GRAND PRIX
RIGHT FRONT PASSENGER NECK MOMENT ABOUT Z AXIS
TRC NUMBER: 5040504F
FMVSS 208 SLED TEST
TEST NUMBER: 5010504

TORQUE (N·M x 10^-1)

-79 -49 -18 11 41 71 101

TIME (MS)

-20 10 40 70 100 130 160 190 220 250 280 310

CHANNEL: NEKZH2 FILTER: CH. CLASS 600
PEAK DATA: 9.61 N·M @ 115.20 MS, -7.27 N·M @ 92.40 MS
C40114 / 2004 PONTIAC GRAND PRIX
RIGHT FRONT PASSENGER NECK MOMENT ABOUT Y AXIS OCCIPITAL CONDYLE

TEST NUMBER: 5040504

TRC NUMBER: 5040504F
FMYSS 200 SLED TEST

TORQUE (N·M)

TIME (MS)

CHANNEL: NEKOM2 FILTER: CH. CLASS 600

PEAK DATA: 41.94 N·M @ 100.24 MS; -47.47 N·M @ 114.96 MS
C40114 / 2004 PONTIAC GRAND PRIX
RIGHT FRONT PASSENGER CHEST X-AXIS ACCELERATION

TEST NUMBER: S040504

ACCELERATION (G x 10^-1)

-384
-317
-250
-183
-116
-49

TIME (MS)
-20 10 40 70 100 130 160 190 220 250 280 310

CHANNEL: CSTMCG2 FILTER: CH. CLASS 180
PEAK DATA: 1.72 G @ 194.16 MS; -35.16 G @ 99.68 MS
2004 PONTIAC GRAND PRIX
RIGHT FRONT PASSENGER CHEST Y-AXIS ACCELERATION

TRC NUMBER: 5840504F
FMYSS 200 SLED TEST
TEST NUMBER: 5840504

ACCELERATION (g x 10^-2)

CHANNEL: CSTY2
FILTER: CH. CLASS 180
PEAK DATA: 1.45 g @ 113.92 MS, -3.37 g @ 99.68 MS
C10114 / 2004 PONTIAC GRAND PRIX
RIGHT FRONT PASSENGER CHEST Z-AXIS ACCELERATION.
FMVSS 208 SLED TEST

TRC NUMBER: S040504F
TEST NUMBER: 5040504

ACCELERATION (G x 10^-3)

-95
-90
-85
-80
-75
-70
-65
-60
-55
-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

TIME (MS)

-20
-10
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310

CHANNEL: CSTZ02
FILTER: CH. CLASS 180
PEAK DATA: 17.75 G @ 180.48 MS; -9.88 G @ 70.24 MS.
C40114 / 2004 PONTIAC GRAND PRIX
RIGHT FRONT PASSENGER CHEST DEFLECTION
FMVSS 208 SLED TEST

TRC NUMBER: 5048504F
TEST NUMBER: 5048504

DISPLACEMENT [IN X 10^-3]

B-53

CHANNEL: CSTXD2 FILTER: CH. CLASS 600
PEAK DATA: 0.02 IN @ 64.48 MS; -0.31 IN @ 93.76 MS
Appendix C

Manufacturer's Vehicle Information
Please provide the following restraint system information

1.1 Describe the difference between the MY 2004 air bag restraint system and the 2003 system.

1.2 Describe what other restraint system changes have been made.

1.3 Describe other vehicle changes that may affect FMVSS 208 performance.

1.4 Describe any features that may affect occupant protection performance with respect to children and out of position occupants.

1.5 State whether the vehicle is equipped with a FMVSS 208 air bag on-off switch for the passenger frontal air bag.

GM RESPONSE

1.1 The frontal impact occupant protection features provided in the 2003 Pontiac Grand Prix included "new generation" reduced force air bags equipped with inflation induced injury countermeasures designed to reduce the risk of injury to the out of position occupant. In 2004, the Pontiac Grand Prix frontal air bag system was changed in order to provide two different levels of inflation output to an occupant, depending on crash severity. This "dual stage" frontal air bag system also required the addition of an electronic forward sensor to the upper radiator tie bar support on the front of the vehicle. This sensor allows the air bag sensing system to discriminate between a low speed crash event and a high speed crash event and to appropriately deploy the low level or high level of the dual stage air bags.

1.2 The front seatbelts, seats, and knee bolsters on the 2004 Pontiac Grand Prix are not the same but are similar in performance to the 2003 parts. The main difference is seatbelt buckle pretensioners for the front outboard seating positions. The pretensioners will deploy when a deploy signal is sent to the front air bag modules.

1.3 The 2004 Pontiac Grand Prix vehicle structure is mostly carryover from the 2003 model year, and no other vehicle changes were made that would affect FMVSS 208 performance.
The 2004 dual stage air bag system is intended to reduce the exposure of all occupants to inflation levels that may be higher than necessary for restraint in low speed deployment events. In addition to providing a low level inflation output in a majority of field relevant crash events, other inflation induced injury countermeasures are also provided in the 2004 dual stage air bag systems. These countermeasures are carryover from the model year 2003 frontal air bag systems, and serve to reduce the risk of injury to out of position occupants. Those include a driver side air bag module which is recessed below the plane of the steering wheel rim, has a cover with an optimized tear seam pattern, and contains a cushion with four tethers and optimized venting. These features minimize the punch out and membrane forces that could induce injury to an out of position occupant who may be obstructing the air bag module when it deploys. The passenger air bag module contains a cushion with optimized venting and a "bias flap." The bias flap will re-direct the deploying air bag cushion away from an occupant's neck and chest should they be out of position against the instrument panel during a deployment. The centerline of the passenger air bag module is located outboard of the right front passenger occupant centerline. This design feature helps to reduce the proximity of an out-of-position occupant to the direct deployment path of the air bag, should they be against the instrument panel during a deployment.

The 2004 Pontiac Grand Prix is not equipped with an air bag off switch for the passenger frontal air bag.

2. Advanced air bag vehicles – State whether the vehicle model is certified to the advanced air bag requirements of section S14 of FMVSS 208.

GM RESPONSE

The 2004 Grand Prix is not certified to the advanced air bag requirements of S14 of FMVSS 208.
3. Non-advanced air bag vehicles certified unbelted in a 40 km/h or 48 km/h barrier crash test – State the sections (S5.1.2(a)(1), S5.1.2(a)(2)) of FMVSS 208 to which the vehicle model is certified.
A copy of the certification test reports for belted and unbelted crash tests (frontal and angular).

GM RESPONSE

The 2004 Pontiac Grand Prix is not certified by the unbelted 40km/h or 48 km/h barrier crash test of sections S5.1.2(a)(1) or S5.1.2(a)(2). The vehicle is certified by the unbelted sled test of section S13 of FMVSS 208.

4. Non-advanced air bag vehicles certified unbelted in a sled test – State whether the vehicle model is certified to section S13 of FMVSS 208.
4.1 A copy of the certification sled test.
4.2 A copy of the certification test reports for belted crash tests (frontal and angular).
4.3 Describe how to disconnect the air bags from the vehicle sensors and connect them to the triggering mechanism used in the sled test.
4.4 For air bags with dual stage or multi-stage inflators, describe the inflator stage or combination of inflator stages or time delay between successive inflator stages used in the sled test.
4.5 For air bags with dual stage or multi-stage inflators, provide a copy of the tests and analyses that were used to determine the inflator stage or combination of inflator stages or time delay between successive inflator stages that would occur in a crash of similar severity.

GM RESPONSE

The 2004 Grand Prix is certified to section 13 of FMVSS 208.
4.1 Engineering analysis of development tests conducted on this vehicle design were used to determine the unbelted certification of this vehicle. Therefore, “certification test reports” are not available. However, a summary of the test data from the relevant testing used for engineering analysis is included in Appendix A.
- S17121 – Driver, 49 km/h, 125ms Frontal Impact Simulation
- S17122 – Driver, 49 km/h, Frontal Barrier Simulation
- S17156 – Passenger, 49 km/h, Frontal Barrier Simulation
- S17157 – Passenger, 49 km/h, Frontal Barrier Simulation

Note: The data sheets contained in Appendix A for the above sled tests has “Unverified” written across the page. This indicates that the automatic data base system used by General Motors Safety Lab for full scale barrier tests and sled tests did not generate a final report. The data base system is currently only capable of generating final reports for full scale barrier tests. However, all test data are reviewed and verified by the test engineer.

4.2 Appendix B contains the following certification test reports for frontal and angular belted crash tests.
- C13885 – Moving Vehicle to Fixed Barrier @ 0 Degrees
- C14064 – Moving Vehicle to Fixed Barrier @ 330 Degrees
- C14063 - Moving Vehicle to Fixed Barrier @ 30 Degrees

4.3 For full scale vehicle tests, the driver air bag can be electronically disconnected from the vehicle sensors by disconnecting the yellow 4-way connector located at the left hand side BEC (Body Electrical Control) unit. The BEC unit is accessed by removing the fuse block covers on both sides of the instrument panel. Appendix C includes sections from the Grand Prix Service Manual showing the proper disabling of the SIR System. [Note: This is only a section of the Service Manual and is not intended to include all steps and precautions used in providing full service of the SIR System]

After disabling the SIR system, a separate electronic harness can be attached directly to the driver and passenger air bags, connecting them to the triggering mechanism used specifically for the sled test deployment. For GM’s sled testing, the air bags are usually powered and activated by a remote system whether a full vehicle or sled buck is used. This remote air bag control system is electronically wired to the air bag through a junction box. To deploy the air bags, the air bag control system provides the power through the interconnect wiring.
NHTSA IR: NVS-221GA
OA-208-031016-J
2004 GRAND PRIX

To access the driver air bag connection, remove the driver air bag from the steering wheel by releasing the four snap-in module to steering wheel attachments (access the attachments with a flat head screw driver through four small holes in the back of the plastic steering wheel shroud). When the driver air bag has been removed, release the connector position assurance (CPA) from the two connectors at the back of the inflator and disconnect the two steering column uploads. Connect separate electronically harnesses from the triggering mechanism (or junction box) to the back of the inflator. NOTE: Low-level output is deployed by triggering only the "first stage" side of the inflator with the grey connector. High-level output is deployed by triggering both the "first stage" grey and the "second stage" purple connectors. Before re-attaching the module to the steering wheel, cut out a small portion of the plastic at the top of the steering wheel shroud to route the wires through so they won't be pinched between the wheel and the module. Snap the driver airbag module back into the steering wheel.

A separate electrical harness will also need to be provided between the passenger air bag module 4-way connector and the sled test triggering mechanism. To access the passenger module 4-way connector, the following components will need to be removed in the following order: left side and right side A-pillar trim, the defroster grill along the base of the windshield, both of the fuse block covers on either side of the IP (instrument panel), the driver side steering column filler panel (the knee bolster cleasout), the cluster trim plate, and the instrument panel to pad. After removal of the top pad, the yellow 4-way passenger module connector will be visible. It connects to the IP wiring harness near the top, forward side of the magnesium cross car beam. Release the connector position assurance (CPA) from the yellow connector and disconnect it from the instrument panel wiring harnesses. Connect a separate electrical harness from the passenger module side of the 4-way connector, down behind the glove box and out the bottom of the instrument panel to the triggering mechanism (or junction box).

4.4

For GM's sled testing, the air bag control system is programmed to activate as follows:

The FMVSS 208 requirement states that the air bag "is to be activated at 20 +/- 2 ms from the time the 0.5 g is measured on the dynamic test platform." GM's sled facility generates a time reference signal when the sled reaches 3.0 g. GM conducts several parameter sled tests to determine the reference signal's time difference between 0.5 and 3.0 g, and the average difference is then determined. Using this information, the remote air bag
control system at GM's sled facility is programmed to trigger the first stage deployment 20 ms minus the average time delay after the 3.0 g reference level is reached. The second stage inflator is triggered at 1 ms after the first stage, resulting in a high-level deployment output.

4.5 The occupant compartment deceleration specified in S13 of FMVSS 208 does not contain enough information to evaluate when the vehicle sensing system for the 2004 Pontiac Grand Prix would deploy the air bags. GM used sensing system behavior in barrier tests of similar velocity change to estimate the second stage deploy time delay after the first stage deployment. The following 0-degree frontal rigid barrier tests were conducted:

C13996 30mph
first stage deploy time 19 ms
second stage deploy time 20 ms

The 30 mph 0-degree test is severe enough to produce an immediate detection of the need for high level output. The second stage deploy time delay after the first stage deployment for this test is 1 ms. This time delay was used for the unbelted sled test.

The sensing system for the 2004 Pontiac Grand Prix is calibrated such that the all deploy threshold speed is 22 mph.

C13930 22mph (all deploy high threshold) first stage deploy time 25 ms second stage deploy time 30 ms

5. Other Information
5.1 Describe the seat adjustment controls (manual and power) available for this model, including any adjustment controls on seats rearward of the front outboard designated seating positions, and the seat movements associated with each individual control.

5.2 Describe the headrest adjustments available for this model.

5.3 State for each safety belt system in the subject vehicles whether or not it is equipped with a tension-relieving device. Provide a copy of the information furnished in accordance with S7.4.2 if the tension-relieving device is used.

5.4 State for each crash test (frontal, angular, and offset) whether the moveable windows and vents were opened or closed.

5.5 Submit dummy placement measurements, including diagrams or photographs that show exactly where each measurement was taken. For the subject vehicles certified to the advanced air bag requirements,
provide measurements for both the 50th percentile male and the 5th percentile female. Enclosed is a diagram of some of OVSC's dummy measurements. Where possible, use each dimension shown in the diagram to provide the individual dummy placement measurements. State whether the subject vehicles have a footrest for the driver.

5.7 Provide the seat positioning, steering column positioning, and fuel tank data on the enclosed form. If more than one front seating configuration, steering column or fuel tank configuration are available on this vehicle, provide separate information for each. For certification tests using the 5th percentile female, provide the seat fore-aft position, seat height, and seat back angle used in the certification test.

5.8 Provide the seating reference point (Srp) for the driver designated seating position and every other designated seating position required to comply with the lockable seat belt requirement in 87.1.1.5.

5.9 If there are adjustable seat belt anchorages at front and/or rear designated seating positions, provide the manufacturer's nominal design position for a 50th percentile adult male occupant and, if certified to the advanced air bag requirements, the position for the 5th percentile female.

5.10 For all tests that are performed to certify the subject vehicles to injury assessment performance requirements of FMVSS 208, provide a summary of the injury results. In addition, for crash tests provide the measured test speed.

5.11 When vehicle components must be removed to obtain the proper test weight for crash tests, list the components you recommend for removal, and in the priority order you recommend for removal.

5.12 If the subject vehicles use a pressure vessel to inflate the air bag, provide a copy of the test reports or engineering analysis to demonstrate that it meets all the requirements of 99.1.

5.13 If the subject vehicles use an explosive device to inflate the air bag, provide a copy of the test report or engineering analysis to demonstrate that it meets all the requirements of 99.2.

GM RESPONSE

5.1 Driver Seat standard adjustment equipment is a manual fore/aft adjuster and a manual recliner.

Driver Seat optional adjustment equipment is a power adjuster that moves fore/aft, up/down, and tilt within a designated travel box; a manual recliner and a power fore/aft and up/down lumbar mechanism.
Passenger Seat standard adjustment equipment is a manual fore/aft adjuster and a manual recliner mechanism.

Passenger Seat optional adjustment equipment is a power adjuster that moves fore/aft, up/down, and tilts within a designated travel box, and a manual recliner mechanism. Seat can also fold-flat (not a seating position when folded flat).

Rear Seat standard has no adjustment features

Rear Seat optional has a 60/40 split folding seat back and a fixed cushion.

The headrests for the front outboard seats can be adjusted up and down.

The 2004 Pontiac Grand Prix safety belts are not equipped with tension relieving devices.

The 0-degree frontal barrier tests were conducted with the front outboard windows in the down position. The 30-degree left angle barrier tests were conducted with the left front outboard window in the up position and the right front outboard window in the down position. The 30-degree right angle barrier tests were conducted with the right front outboard window in the up position and the left front outboard window in the down position.

Dummy positioning measurements are contained in Attachment D.

The 2004 Pontiac Grand Prix has a footrest for the driver. All tests were conducted with the driver dummy's left foot on the footrest.

Attachment E includes all vehicle test information required on the NHTSA form.

The following dimensions are in millimeters.

<table>
<thead>
<tr>
<th>Front Row</th>
<th>Driver</th>
<th>Center</th>
<th>Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>L = 3175.0</td>
<td>L = NA</td>
<td>L = 3175.0</td>
<td></td>
</tr>
<tr>
<td>W = -365.0</td>
<td>W = NA</td>
<td>W = 365.0</td>
<td></td>
</tr>
<tr>
<td>H = 689.0</td>
<td>H = NA</td>
<td>H = 689.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rear Row</th>
<th>Left</th>
<th>Center</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>L = 3983.0</td>
<td>L = 3983.0</td>
<td>L = 3983.0</td>
<td></td>
</tr>
<tr>
<td>W = -353.0</td>
<td>W = 0</td>
<td>W = 353.0</td>
<td></td>
</tr>
<tr>
<td>H = 691.0</td>
<td>H = 996.0</td>
<td>H = 691.0</td>
<td></td>
</tr>
</tbody>
</table>

Fiducial Point (at #2 bar, 2 way gage slot) \(x = 2624.9, y = -655, z = 451.67 \) mm
5.9 The front outboard seats are equipped with an adjustable anchorage. The adjustable anchorage has a five-position height adjuster. The nominal design position for the 50th percentile occupant is the mid position.

5.10 Attachment F provides the requested barrier and sled test information.

5.11 No parts were removed for testing. However, components that can be removed for testing include the rear bumper, the jack and jack tools, and the spare tire. In addition, interior trim components behind the "B" pillar, including rear seats, carpeting and trim panels could be removed if necessary.

5.12 Both the driver and passenger air bag modules in the 2004 Pontiac Grand Prix contain "hybrid" inflators. General Motors does not typically keep inflator classification and certification information on file. Attachment G contains the supplier letters that reference the requested compliance information. If necessary, the specific information requested in question 5.12 can be obtained from the inflator manufacturer.

5.13 The air bag restraints installed in this vehicle do not use an explosive device to inflate the air bag.
Attachment C

2004 Pontiac Grand Prix

Disconnecting the Frontal Air bag

7 Pages (including this cover)
SIR Disabling and Enabling Zones

Important

Refer to SIR Service Precautions before disabling the SIR system.

The SIR system has been divided into Disabling and Enabling Zones. When performing service on or near SIR components or SIR wiring, it may be necessary to disable the SIR components in that zone. It may be necessary to disable more than one zone depending on the location of other SIR components and the area being serviced, refer to SIR Zone Identification Views. Refer to the illustration below, to identify the specific zone or zones in which service will be performed. After identifying the zone or zones, proceed to the disabling and enabling procedures for that particular zone or zones.
<table>
<thead>
<tr>
<th>Zone</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inflatable Restraints Front Ends Sensor: Refer to SIR Disabling and Enabling Zone 1</td>
</tr>
<tr>
<td>2</td>
<td>Driver/Left Inflatable Restraint Roof Rail Module and Side Impact Sensor (SIS). Refer to SIR Disabling and Enabling Zone 2</td>
</tr>
<tr>
<td>3</td>
<td>Inflatable Restraint Steering Wheel Module and Coil. Refer to SIR Disabling and Enabling Zone 3</td>
</tr>
<tr>
<td>4</td>
<td>Not Used</td>
</tr>
<tr>
<td>5</td>
<td>Inflatable Restraint Instrument Panel (IP) Module. Refer to SIR Disabling and Enabling Zone 5</td>
</tr>
<tr>
<td>6</td>
<td>Passenger/Right Inflatable Restraint Roof Rail Module and Side Impact Sensor (SIS). Refer to SIR Disabling and Enabling Zone 6</td>
</tr>
<tr>
<td>7</td>
<td>Driver Seat with Seat Belt Pretensioner. Refer to SIR Disabling and Enabling Zone 7</td>
</tr>
<tr>
<td>8</td>
<td>Not Used</td>
</tr>
<tr>
<td></td>
<td>Passenger Seat with Seat Belt Pretensioner and Inflatable Restraint Sensing and Diagnostic Module (SDM). SIR Disabling and</td>
</tr>
</tbody>
</table>
SIR Disabling and Enabling Zone 3

Disabling Procedure

Important

Refer to SIR Service Precautions.

1. Turn the steering wheel so that the vehicle's wheels are pointing straight ahead.
2. Turn the ignition switch to the OFF position.
3. Remove the key from the ignition switch.
4. Open the hood and locate the underhood fuse center on right/passenger shock tower.
Important

With the SIR Fuse removed and the ignition ON, the AIR BAG indicator illuminates. This is normal operation, and does not indicate an SIR system malfunction.

5. Lift the cover for the underhood fuse center.
6. Locate and remove the SIR fuse from the underhood fuse center.

7. Remove the left/driver sound insulator from the instrument panel (I/P) (2). Refer to Clowout/Insulator Panel Replacement - Left in Instrument Panel, Cages and Console.
8. Remove the connector position assurance (CPA) from the steering wheel module coil yellow connector (1).
9. Disconnect the steering wheel module coil yellow connector (1) from the vehicle harness yellow connector (3).

Enabling Procedure

1. Remove the key from the ignition switch.
SIR Disabling and Enabling Zone 5

Disabling Procedure

Important

Refer to SIR Service Precautions.

1. Turn the steering wheel so that the vehicle's wheels are pointing straight ahead.
2. Turn the ignition switch to the OFF position.
3. Remove the key from the ignition switch.
4. Open the hood and locate the underhood fuse center on right/passenger shock tower.
Important

With the SIR Fuse removed and the ignition ON, the AIR BAG indicator illuminates. This is normal operation, and does not indicate an SIR system malfunction.

5. Lift the cover for the underhood fuse center.
6. Locate and remove the SIR fuse from the underhood fuse center.

7. Remove the right/passenger sound insulator from the instrument panel (IP) (3). Refer to Closeout/Insulator Panel Replacement - Right in Instrument Panel, Gages and Console.
8. Remove the connector position assurance (CPA) from the IP module yellow connector (1).
9. Disconnect the IP module yellow connector (1) from the vehicle harness yellow connector (2).

Disabling Procedure

1. Remove the key from the ignition switch.
NHTSA IR: NVS-221CCa
OA-208-031016-J
2004 GRAND PRIX

Attachment D

2004 Pontiac Grand Prix

Dummy Position Measurements

4 Pages (including this cover)
DATA SHEET 31

DUMMY POSITIONING MEASUREMENTS

<table>
<thead>
<tr>
<th>DRIVER (Serial No.)</th>
<th>PASSENGER (Serial No.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA°</td>
<td>63.5</td>
</tr>
<tr>
<td>SWA°</td>
<td>68</td>
</tr>
<tr>
<td>SCA°</td>
<td>22</td>
</tr>
<tr>
<td>SA°</td>
<td>23.4</td>
</tr>
<tr>
<td>HZ</td>
<td>180</td>
</tr>
<tr>
<td>HH</td>
<td>350</td>
</tr>
<tr>
<td>HW</td>
<td>590</td>
</tr>
<tr>
<td>HR</td>
<td>195</td>
</tr>
<tr>
<td>NR</td>
<td>ANGLE</td>
</tr>
<tr>
<td>CD</td>
<td>518</td>
</tr>
<tr>
<td>CS</td>
<td>265</td>
</tr>
<tr>
<td>RA</td>
<td>175</td>
</tr>
<tr>
<td>KDL</td>
<td>162</td>
</tr>
<tr>
<td>KDR</td>
<td>120</td>
</tr>
<tr>
<td>PA°</td>
<td>24.5</td>
</tr>
<tr>
<td>TA°</td>
<td></td>
</tr>
<tr>
<td>KK</td>
<td>240</td>
</tr>
<tr>
<td>ST</td>
<td>665 ANGLE</td>
</tr>
<tr>
<td>SK°</td>
<td>560 ANGLE</td>
</tr>
<tr>
<td>SH°</td>
<td>120 ANGLE</td>
</tr>
<tr>
<td>SHY</td>
<td>275</td>
</tr>
<tr>
<td>HS°</td>
<td>300</td>
</tr>
<tr>
<td>HD°</td>
<td>160</td>
</tr>
<tr>
<td>AD°</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>720 ANGLE</td>
</tr>
<tr>
<td></td>
<td>590 ANGLE</td>
</tr>
<tr>
<td></td>
<td>110 ANGLE</td>
</tr>
</tbody>
</table>

C-19

02/26/04 THU 15:01
2004 Pontiac Grand Prix NCAP Test, July 31, 2003

DUMMY MEASUREMENT FOR FRONT SEAT PASSENGERS

AD - Arm to Door
HD - H-Point to Door
HR - Head to Side Header
HS - Head to Side Window
KK - Knee to Knee
SHY - Striker to H-Point (Y Direction)

CD - Chest to Dash
CS - Steering Wheel to Chest
HH - Head to Header
HW - Head to Windshield
HZ - Head to Floor
KDA - Knee to Dash Angle
KDL - Left Knee to Dash
KDR - Right Knee to Dash
NA - Nose to Rim Angle
NR - Nose to Rim
PA - Pelvic Angle
PA - Rim to Abdomen
SA - Seat Back Angle
SCA - Steering Column Angle
SH - Striker to H-Point
SK - Striker to Knee
ST - Striker to Head
SWA - Steering Wheel Angle
TA - Tibial Angle
WA - Windshield Angle

Seat Back Angle Line

STRIKER

VERTICAL TRANSVERSE PLANE

VERTICAL LONGITUDINAL PLANES

C-20

02/28/04 THU 16:01 [TX/KK NO 9120]
2004 Pontiac Grand Prix NCAP Test, July 31, 2003

15. DATA SHEETS...Continued

SEAT BELT POSITIONING DATA

DUMMY'S CENTERLINE

SHOULDER BELT PORTION

TBI

PBU

P6L

MALE BLADE

BUCKLE ASSEMBLY

1/8" THICK ALUMINUM PLATE

EMERGENCY LOCKING RETRACTOR

OUTBOARD ANCHORAGE

INBOARD ANCHORAGE

FLOOR PAN

FRONT VIEW OF DUMMY
NHTSA IR: NVS-221CCa
OA-208-031016-J
2004 GRAND PRIX

7 Pages (including this cover)

Attachment E

2004 Pontiac Grand Prix

Vehicle Test Information

4 Pages (including this cover)
2004 Pontiac Grand Prix FMVSS 208

TEST VEHICLE INFORMATION

Vehicle Model Year and Make: 2004 Pontiac
Vehicle Model and Body Style: Grand Prix

L. NOMINAL DESIGN RIDING POSITION:
For adjustable driver and passenger seat backs, describe how to position the inclinometer to measure the seat back angle. Include a description of the location of the adjustment latch detent if applicable, how the detents are numbered (is the first detent "0" or "1")? Indicate if the seat back angle is measured with the dummy in the seat.

Seat Back angle for driver's seat = 23.4 degrees
Measurement Instructions:
Cut through outboard seat back material. Place inclinometer on upper 1/3 of seat back frame.

Seat back angle for the left front outboard passenger seat = 25.5 degrees
Measurement Instructions:
Cut through outboard seat back material. Place inclinometer on upper 1/3 of seat back frame.
TEST VEHICLE INFORMATION

2. NOMINAL DESIGN RIDING POSITION:
Provide instructions for positioning the driver and front outboard passenger seat(s) in the center; fore and aft travel. For example, provide information to locate the detent in which the seat track is to be located.

Position of driver seat:
- Manual adjuster – put seat in full rear, move forward 120 mm to mid seat position.
- Power adjuster – put seat cushion full down and full rear, move forward 120 mm to the mid seat travel position.

Position of passenger seat:
- Manual adjuster – put the seat in full rear, move forward 140 mm to mid seat travel position.

3. FUEL TANK CAPACITY DATA

A. "Usable Capacity" of standard equipment fuel tank = 17.0 gallons.
B. "Usable Capacity" of optional equipment fuel tank = N/A gallons.
C. Capacity used when certification testing to requirements of FMVSS 301, Fuel tank = 16.57 gallons.

Operational Instructions:
None

VEHICLE FUEL TANK ASSEMBLY

1.2 Amount of Stoddard solvent added to vehicle for certification test = 16.15 gallons.

1.3 Is vehicle equipped with electric fuel pump? X YES NO
If YES, does pump normally operate when vehicle's electric system is activated?
 X YES NO
2. STEERING COLUMN ADJUSTMENTS

Steering wheel and column adjustments are made so that the steering wheel hub is at the geometric center of the locus it describes when it is moved through its full range of driving positions.

If the tested vehicle has any of these adjustments, does your company use any specific procedures to determine the geometric center?

Operational Instructions:
The steering column has 10 tilt positions. Start at full tilt up position #1 (not over travel position) and count down 4 notches to the 5th position down. Then, since the mid is between the 5th and 6th position, go down to the 6th position. Double check the wheel position by placing a straight edge across the wheel from 12 o'clock to 6 o'clock and put an inclinometer on the straight edge and it should measure 22 +/- 1 degree from vertical.

STEERING COLUMN ASSEMBLY

LEFT SIDE VIEW
Attachment F

2004 Pontiac Grand Prix

Barrier and Sled Tests results

3 Pages (including this cover)
2004 Pontiac Grand Prix

Summary of Sled Tests

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MVSS 208 Limit</td>
<td></td>
<td></td>
<td>1000</td>
<td>190 N-m</td>
<td>57 N-m</td>
<td>3300 N</td>
<td>4000 N</td>
<td>3100 N</td>
<td>60 g</td>
<td>75 mm</td>
<td>10,000 N</td>
<td>10,000 N</td>
</tr>
<tr>
<td>49 kph/125ms, 0°</td>
<td>817121</td>
<td>20/121</td>
<td></td>
</tr>
<tr>
<td>FrONTAL SLED, unbelted - driver</td>
<td></td>
</tr>
<tr>
<td>49 kph/125ms, 0°</td>
<td>817122</td>
<td>20/121</td>
<td></td>
</tr>
<tr>
<td>FrONTAL SLED, unbelted - driver</td>
<td></td>
</tr>
<tr>
<td>49 kph/125ms, 0°</td>
<td>817156</td>
<td>20/121</td>
<td></td>
</tr>
<tr>
<td>FrONTAL SLED, unbelted - passenger</td>
<td></td>
</tr>
<tr>
<td>49 kph/125ms, 0°</td>
<td>817157</td>
<td>20/121</td>
<td></td>
</tr>
<tr>
<td>FrONTAL SLED, unbelted - passenger</td>
<td></td>
</tr>
</tbody>
</table>
Summary of Barrier Tests

<table>
<thead>
<tr>
<th>Evaluation Condition</th>
<th>Test No.</th>
<th>Head Injury Criterion (HIC)</th>
<th>Head Accel.</th>
<th>Head Comp.</th>
<th>Femur Load - Left</th>
<th>Femur Load - Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVSS 208 Limit</td>
<td>1000</td>
<td>60 g</td>
<td>35 mm</td>
<td>10,000 N</td>
<td>10,000 N</td>
<td></td>
</tr>
<tr>
<td>Moving Vehicle to Fixed Barrier @ 0 degrees - driver</td>
<td>C13865</td>
<td>480</td>
<td>42</td>
<td>36.6</td>
<td>4898</td>
<td>4898</td>
</tr>
<tr>
<td>Moving Vehicle to Fixed Barrier @ 90 degrees - driver</td>
<td>C14064</td>
<td>190</td>
<td>33</td>
<td>29.6</td>
<td>1996</td>
<td>1996</td>
</tr>
<tr>
<td>Moving Vehicle to Fixed Barrier @ 30 degrees - driver</td>
<td>C14063</td>
<td>290</td>
<td>42</td>
<td>30.9</td>
<td>3094</td>
<td>3094</td>
</tr>
<tr>
<td>Moving Vehicle to Fixed Barrier @ 0 degrees - passenger</td>
<td>C13863</td>
<td>430</td>
<td>48</td>
<td>31.4</td>
<td>4883</td>
<td>4883</td>
</tr>
<tr>
<td>Moving Vehicle to Fixed Barrier @ 90 degrees - passenger</td>
<td>C14064</td>
<td>220</td>
<td>23</td>
<td>21.4</td>
<td>420</td>
<td>420</td>
</tr>
<tr>
<td>Moving Vehicle to Fixed Barrier @ 30 degrees - passenger</td>
<td>C14063</td>
<td>200</td>
<td>33</td>
<td>20.4</td>
<td>400</td>
<td>5118</td>
</tr>
</tbody>
</table>
Safety Belts

Safety Belts: They Are for Everyone

This part of the manual tells you how to use safety belts properly. It also tells you some things you should not do with safety belts.

⚠️ CAUTION:

Don't let anyone ride where he or she can't wear a safety belt properly. If you are in a crash and you're not wearing a safety belt, your injuries can be much worse. You can hit things inside the vehicle or be ejected from it. You can be seriously injured or killed. In the same crash, you might not be, if you are buckled up. Always fasten your safety belt, and check that your passengers' belts are fastened properly too.

⚠️ CAUTION:

It is extremely dangerous to ride in a cargo area, inside or outside of a vehicle. In a collision, people riding in these areas are more likely to be seriously injured or killed. Do not allow people to ride in any area of your vehicle that is not equipped with seats and safety belts. Be sure everyone in your vehicle is in a seat and using a safety belt properly.

Your vehicle has a light that comes on as a reminder to buckle up. See Safety Belt Reminder Light on page 3-35.

Why Safety Belts Work

When you ride in or on anything, you go as fast as it goes.

Take the simplest vehicle. Suppose it's just a seat on wheels.

in most states and in all Canadian provinces, the law says to wear safety belts. Here's why: They work.

You never know if you'll be in a crash. If you do have a crash, you don't know if it will be a bad one.

A few crashes are mild, and some crashes can be so serious that even buckled up, a person wouldn't survive. But most crashes are in between. In many of them, people who buckle up can survive and sometimes walk away. Without belts they could have been badly hurt or killed.

After more than 30 years of safety belts in vehicles, the facts are clear. In most crashes, buckling up does matter... a lot!
Put someone on it.

Get it up to speed. Then stop the vehicle. The rider doesn't stop.

The person keeps going until stopped by something. In a real vehicle, it could be the windshield...

or the instrument panel...
Questions and Answers About Safety Belts

Q: Won't I be trapped in the vehicle after an accident if I'm wearing a safety belt?
A: You could be—whether you're wearing a safety belt or not. But you can unbuckle a safety belt, even if you're upside down. And your chance of being conscious during and after an accident, so you can unbuckle and get out, is much greater if you are belted.

Q: If my vehicle has air bags, why should I have to wear safety belts?
A: Air bags are in many vehicles today and will be in most of them in the future. But they are supplemental systems only; so they work with safety belts—not instead of them. Every air bag system ever offered for sale has required the use of safety belts. Even if you're in a vehicle that has air bags, you still have to buckle up to get the most protection. That's true not only in frontal collisions, but especially in side and other collisions.

How to Wear Safety Belts Properly

This part is only for people of adult size.

Be aware that there are special things to know about safety belts and children. And there are different rules for smaller children and babies. If a child will be riding in your vehicle, see Older Children on page 1-29 or Infants and Young Children on page 1-32. Follow those rules for everyone's protection.

First, you'll want to know which restraint systems your vehicle has.

We'll start with the driver position.

Driver Position

This part describes the driver's restraint system.

Lap-Shoulder Belt

The driver has a lap-shoulder belt. Here is how to wear it properly:

1. Close and lock the door.
2. Adjust the seat so you can sit up straight. To see how, see "Seats" in the Index.
3. Pick up the latch plate and pull the belt across you. Do not let it get twisted.

The shoulder belt may lock if you pull the belt across you very quickly. If this happens, let the belt go back slightly to unlock it. Then pull the belt across you more slowly.

4. Push the latch plate into the buckle until it clicks.

Pull up on the latch plate to make sure it is secure. If the belt is not long enough, see Safety Belt Extender on page 1-26.

5. To make the lap part tight, pull down on the buckle end of the belt as you pull up on the shoulder belt.

Shoulder Belt Height Adjuster

Before you begin to drive, move the shoulder belt adjuster to the height that is right for you.

To move it down, pull the release button out and move the height adjuster to the desired position. You can move the adjuster up just by pushing up on the shoulder belt guide. After you move the adjuster to where you want it, try to move it down without pulling the release button to make sure it has locked into position.

Adjust the height so that the shoulder portion of the belt is centered on your shoulder. The belt should be away from your face and neck, but not falling off your shoulder.

The lap part of the belt should be worn low and snug on the hips, just touching the thighs. In a crash, this applies force to the strong pelvic bones. And you would be less likely to slide under the lap belt. If you slid under it, the belt would apply force at your abdomen. This could cause serious or even fatal injuries. The shoulder belt should go over the shoulder and across the chest. These parts of the body are best able to take belt restraining forces.

The safety belt locks if there is a sudden stop or crash, or if you pull the belt very quickly out of the retractor.
Q: What's wrong with this?

A: The shoulder belt is too loose. It will not give nearly as much protection this way.

⚠️ CAUTION:

You can be seriously hurt if your shoulder belt is too loose. In a crash, you would move forward too much, which could increase injury. The shoulder belt should fit against your body.

Q: What's wrong with this?

A: The belt is buckled in the wrong place.

⚠️ CAUTION:

You can be seriously injured if your belt is buckled in the wrong place like this. In a crash, the belt would go up over your abdomen. The belt forces would be there, not at the pelvic bones. This could cause serious internal injuries. Always buckle your belt into the buckle nearest you.
Q: What's wrong with this?

A: The shoulder belt is worn under the arm. It should be worn over the shoulder at all times.

⚠️ CAUTION:
You can be seriously injured if you wear the shoulder belt under your arm. In a crash, your body would move too far forward, which would increase the chance of head and neck injury. Also, the belt would apply too much force to the ribs, which aren't as strong as shoulder bones. You could also severely injure internal organs like your liver or spleen.

Q: What's wrong with this?

A: The belt is twisted across the body.

⚠️ CAUTION:
You can be seriously injured by a twisted belt. In a crash, you wouldn't have the full width of the belt to spread impact forces. If a belt is twisted, make it straight so it can work properly, or ask your dealer to fix it.
Safety Belt Use During Pregnancy

Safety belts work for everyone, including pregnant women. Like all occupants, they are more likely to be seriously injured if they don't wear safety belts.

To unlatch the belt, just push the button on the buckle. The belt should go back out of the way.

Before you close the door, be sure the belt is out of the way. If you slam the door on it, you can damage both the belt and your vehicle.

A pregnant woman should wear a lap-shoulder belt, and the lap portion should be worn as low as possible, below the rounding, throughout the pregnancy.

The best way to protect the fetus is to protect the mother. When a safety belt is worn properly, it's more likely that the fetus won't be hurt in a crash. For pregnant women, as for anyone, the key to making safety belts effective is wearing them properly.

Right Front Passenger Position

To learn how to wear the right front passenger's safety belt properly, see Driver Position on page 1-15.

The right front passenger's safety belt works the same way as the driver's safety belt—except for one thing. If you ever pull the shoulder portion of the belt out all the way, you will engage the child restraint locking feature. If this happens, just let the belt go back all the way and start again.

Rear Seat Passengers

It's very important for rear seat passengers to buckle up! Accident statistics show that unbelted people in the rear seat are hurt more often in crashes than those who are wearing safety belts.

Rear passengers who aren't safety belted can be thrown out of the vehicle in a crash. And they can strike others in the vehicle who are wearing safety belts.

Rear Seat Passenger Positions
Lap-Shoulder Belt

All rear seat positions have lap-shoulder belts. Here's how to wear one properly.

1. Pick up the latch plate and pull the belt across you. Don't let it get twisted.

 The shoulder belt may lock if you pull the belt across you very quickly. If this happens, let the belt go back slightly to unlock it. Then pull the belt across you more slowly.

2. Push the latch plate into the buckle until it clicks. Pull up on the latch plate to make sure it is secure. When the shoulder belt is pulled out all the way, it will lock. If it does, let it go back all the way and start again. If the belt is not long enough, see Safety Belt Extender on page 1-26.

 Make sure the release button on the buckle is positioned so you would be able to unbuckle the safety belt quickly if you ever had to.

3. To make the lap part tight, pull down on the buckle end of the belt as you pull up on the shoulder part.

⚠️ CAUTION:

You can be seriously hurt if your shoulder belt is too loose. In a crash, you would move forward too much, which could increase injury. The shoulder belt should fit against your body.

The lap part of the belt should be worn low and snug on the hips, just touching the thighs. In a crash this applies force to the strong pelvic bones. And you'd be less likely to slide under the lap belt. If you slid under it, the belt would apply force at your abdomen. This could cause serious or even fatal injuries. The shoulder belt should go over the shoulder and across the chest. These parts of the body are best able to take belt restraining forces.

The safety belt locks if there's a sudden stop or a crash, or if you pull the belt very quickly out of the retractor.

To unlatch the belt, just push the button on the buckle.
Rear Safety Belt Comfort Guides for Children and Small Adults

Rear shoulder belt comfort guides will provide added safety belt comfort for older children who have outgrown booster seats and for small adults. When installed on a shoulder belt, the comfort guide better positions the belt away from the neck and head.

There is one guide for each outside passenger position in the rear seat. To provide added safety belt comfort for children who have outgrown child restraints and booster seats and for smaller adults, the comfort guides may be installed on the shoulder belts. Here's how to install a comfort guide and use the safety belt:

1. Pull the elastic cord out from between the edge of the seatback and the interior body to remove the guide from its storage clip.

2. Slide the guide under and past the belt. The elastic cord must be under the belt. Then, place the guide over the belt, and insert the two edges of the belt into the slots of the guide.

3. Be sure that the belt is not twisted and it lies flat. The elastic cord must be under the belt and the guide on top.
4. Buckle, position and release the safety belt as described in Rear Seat Passengers on page 1-23. Make sure that the shoulder belt crosses the shoulder.

To remove and store the comfort guides, squeeze the belt edges together so that you can take them out of the guides. Pull the guide upward to expose its storage clip, and then slide the guide onto the clip. Turn the guide and clip inward and in between the seatback and the interior body, leaving only the loop of the elastic cord exposed.

Safety Belt Pretensioners

Your vehicle has safety belt pretensioners. You'll find them on the buckle ends of the safety belts for the driver and right front passenger. They help the safety belts reduce a person's forward movement in a moderate to severe crash in which the front of the vehicle hits something.

Pretensioners work only once; if they activate in a crash, you'll need to get new ones, and probably other new parts for your safety belt system. See Replacing Restraint System Parts After a Crash on page 1-57.

Safety Belt Extender

If the vehicle's safety belt will fasten around you, you should use it.

But if a safety belt isn't long enough to fasten, your dealer will order you an extender. It's free. When you go in to order it, take the heaviest coat you will wear, so the extender will be long enough for you. The extender will be just for you, and just for the seat in your vehicle that you choose. Don't let someone else use it, and use it only for the seat it is made to fit. To wear it, just attach it to the regular safety belt.

Child Restraints

Older Children

Q: What is the proper way to wear safety belts?

A: If possible, an older child should wear a lap-shoulder belt and get the additional restraint a shoulder belt can provide. The shoulder belt should not cross the face or neck. The lap belt should fit snugly below the hips, just touching the top of the thighs. It should never be worn over the abdomen, which could cause severe or even fatal internal injuries in a crash.

Accident statistics show that children are safer if they are restrained in the rear seat.

In a crash, children who are not buckled up can strike other people who are buckled up, or can be thrown out of the vehicle. Older children need to use safety belts properly.
CAUTION:

Never do this.

Here two children are wearing the same belt. The belt can't properly spread the impact forces. In a crash, the two children can be crushed together and seriously injured. A belt must be used by only one person at a time.

Q: What if a child is wearing a lap-shoulder belt, but the child is so small that the shoulder belt is very close to the child's face or neck?

A: Move the child toward the center of the vehicle, but be sure that the shoulder belt sits on the child's shoulder, so that in a crash the child's upper body would have the restraint that belts provide. If the child is sitting in a rear seat outside position, see Rear Safety Belt Comfort Guides for Children and Small Adults on page 1-26.

CAUTION:

Never do this.

Here a child is sitting in a seat that has a lap-shoulder belt, but the shoulder part is behind the child. If the child were the belt in this way, in a crash the child might slide under the belt. The belt's force would then be applied right on the child's abdomen. That could cause serious or fatal injuries.

The lap portion of the belt should be worn low and snug on the hips, just touching the child's thighs. This applies belt force to the child's pelvic bones in a crash.
Infants and Young Children

Everyone in a vehicle needs protection! This includes infants and all other children. Neither the distance traveled nor the age and size of the traveler changes the need, for everyone, to use safety restraints. In fact, the law in every state in the United States and in every Canadian province says children up to some age must be restrained while in a vehicle.

Every time infants and young children ride in vehicles, they should have the protection provided by appropriate restraints. Young children should not use the vehicle's adult safety belts alone, unless there is no other choice. Instead, they need to use a child restraint.

⚠️ CAUTION:

People should never hold a baby in their arms while riding in a vehicle. A baby doesn't weigh much — until a crash. During a crash a baby will become so heavy it is not possible to hold it.

CAUTION: (Continued)

CAUTION: (Continued)

For example, in a crash at only 25 mph (40 km/h), a 12-lb. (5.5 kg) baby will suddenly become a 240-lb. (110 kg) force on a person's arms. A baby should be secured in an appropriate restraint.

⚠️ CAUTION:

Children who are up against, or very close to, any air bag when it inflates can be seriously injured or killed. Air bags plus lap-shoulder belts offer outstanding protection for adults and older children, but not for young children and infants. Neither the vehicle's safety belt system nor its air bag system is designed for them. Young children and infants need the protection that a child restraint system can provide.
Q: What are the different types of add-on child restraints?

A: Add-on child restraints, which are purchased by the vehicle’s owner, are available in four basic types. Selection of a particular restraint should take into consideration not only the child’s weight, height and age but also whether or not the restraint will be compatible with the motor vehicle in which it will be used.

For most basic types of child restraints, there are many different models available. When purchasing a child restraint, be sure it is designed to be used in a motor vehicle. If it is, the restraint will have a label saying that it meets federal motor vehicle safety standards.

The restraint manufacturer’s instructions that come with the restraint state the weight and height limitations for a particular child restraint. In addition, there are many kinds of restraints available for children with special needs.

⚠️ CAUTION:

Newborn infants need complete support, including support for the head and neck. This is necessary because a newborn infant’s neck is weak and the head weighs so much compared with the rest of its body. In a crash, an infant in a rear-facing seat settles into the restraint, so the crash forces can be distributed across the strongest part of an infant’s body, the back and shoulders. Infants always should be secured in appropriate infant restraints.

Child Restraint Systems

The body structure of a young child is quite unlike that of an adult or older child, for whom the safety belts are designed. A young child's hip bones are still so small that the vehicle's regular safety belt may not remain low on the hip bones, as it should. Instead, it may settle up around the child's abdomen. In a crash, the belt would apply force on a body area that's unprotected by any bony structure. This alone could cause serious or fatal injuries. Young children always should be secured in appropriate child restraints.

An infant car bed (A), a special bed made for use in a motor vehicle, is an infant restraint system designed to restrain or position a child on a continuous flat surface. Make sure that the infant's head rests toward the center of the vehicle.
A rear-facing infant seat (D) provides restraint with the seating surface against the back of the infant. The harness system holds the infant in place and, in a crash, acts to keep the infant positioned in the restraint.

A forward-facing child seat (C-E) provides restraint for the child's body with the harness and also sometimes with surfaces such as T-shaped or shelf-like shields.

A booster seat (F-G) is a child restraint designed to improve the fit of the vehicle's safety belt system. Some booster seats have a shoulder belt positioner, and some high-back booster seats have a five-point harness. A booster seat can also help a child to see out the window.

Q: How do child restraints work?

A: A child restraint system is any device designed for use in a motor vehicle to restrain, seat, or position children. A built-in child restraint system is a permanent part of the motor vehicle. An add-on child restraint system is a portable one, which is purchased by the vehicle's owner.

For many years, add-on child restraints have used the adult belt system in the vehicle. To help reduce the chance of injury, the child also has to be secured within the restraint. The vehicle's belt system secures the add-on child restraint in the vehicle, and the add-on child restraint's harness system holds the child in place within the restraint.

One system, the three-point harness, has straps that come down over each of the infant's shoulders and buckle together at the crotch. The five-point harness system has two shoulder straps, two hip straps and a crotch strap. A shield may take the place of hip straps. A T-shaped shield has shoulder straps that are attached to a flat pad which rests low against the child's body. A shelf- or armrest-type shield has straps that are attached to a wide, shelf-like shield that swings up or to the side.
When choosing a child restraint, be sure the child restraint is designed to be used in a vehicle. If it is, it will have a label saying that it meets federal motor vehicle safety standards.

Then follow the instructions for the restraint. You may find these instructions on the restraint itself or in a booklet, or both. These restraints use the belt system or the LATCH system in your vehicle, but the child also has to be secured within the restraint to help reduce the chance of personal injury. When securing an add-on child restraint, refer to the instructions that come with the restraint which may be on the restraint itself or in a booklet, or both, and to this manual. The child restraint instructions are important, so if they are not available, obtain a replacement copy from the manufacturer.

Where to Put the Restraint

Accident statistics show that children are safer if they are restrained in the rear rather than the front seat. We, therefore, recommend that child restraints be secured in a rear seat, including an infant riding in a rear-facing infant seat, a child riding in a forward-facing child seat and an older child riding in a booster seat. Never put a rear-facing child restraint in the front passenger seat. Here's why:

CAUTION:

A child in a rear-facing child restraint can be seriously injured or killed if the right front passenger's air bag inflates. This is because the back of the rear-facing child restraint would be very close to the inflating air bag. Always secure a rear-facing child restraint in a rear seat.

If you secure a forward-facing child restraint in the right front seat, always move the front passenger seat as far back as it will go. It is better to secure the child restraint in a rear seat.

Wherever you install it, be sure to secure the child restraint properly.

Keep in mind that an unsecured child restraint can move around in a collision or sudden stop and injure people in the vehicle. Be sure to properly secure any child restraint in your vehicle — even when no child is in it.

Top Strap

Some child restraints have a top strap, or "top tether." It can help restrain the child restraint during a collision. For it to work, a top strap must be properly anchored to the vehicle. Some top strap-equipped child restraints are designed for use with or without the top strap being anchored. Others require the top strap always to be anchored. Be sure to read and follow the instructions for your child restraint. If yours requires that the top strap be anchored, don't use the restraint unless it is anchored properly.

If the child restraint does not have a top strap, one can be obtained, in kit form, for many child restraints. Ask the child restraint manufacturer whether or not a kit is available.

In Canada, the law requires that forward-facing child restraints have a top strap, and that the strap be anchored. In the United States, some child restraints also have a top strap. If your child restraint has a top strap, it should be anchored.
Anchor the top strap to an anchor point specified in Top Strap Anchor Location on page 1-40. Be sure to use an anchor point located on the same side of the vehicle as the seating position where the child restraint will be placed.

⚠️ CAUTION:

Each top tether bracket is designed to anchor only one child restraint. Attaching more than one child restraint to a single bracket could cause the anchor to come loose or even break during a crash. A child or others could be injured if this happens. To help prevent injury to people and damage to your vehicle, attach only one child restraint per bracket.

Once you have the top strap anchored, you'll be ready to secure the child restraint itself. Tighten the top strap when and as the child restraint manufacturer's instructions say.

Top Strap Anchor Location

The vehicle has top strap anchors already installed for the rear seating positions.

They are located on the filler panel above the rear seats. Open the covers to access the anchors.

Do not use a child restraint with a top strap in the right front passenger's position because there is no place to anchor the strap.

If the child restraint is equipped with the LATCH system, see "Lower Anchorages and Top Tethers for Children (LATCH System)" following.

Lower Anchorages and Top Tethers for Children (LATCH System)

The vehicle has the LATCH system. The anchors (A) for the LATCH system are located in all three seating positions.

This system, designed to make installation of child restraints easier, does not use the vehicle's safety belts. Instead, it uses vehicle anchors (A,B) and child restraint attachments to secure the restraints. Some restraints also use another vehicle anchor to secure a top tether strap (C).
In order to use the LATCH system in the vehicle, you need a child restraint designed for that system.

Securing a Child Restraint Designed for the LATCH System

1. Find the LATCH anchorages for the seating position you want to use, where the bottom of the seatback meets the back of the seat cushion. See Lower Anchorages and Top Tethers for Children (LATCH System) on page 1-41.

2. Put the child restraint on the seat.

3. Attach and tighten the LATCH attachments on the child restraint to the LATCH anchorages in the vehicle. The child restraint instructions will show you how.

4. If the child restraint is forward-facing, attach and tighten the top tether to the top tether anchororage. The child restraint instructions will show you how. Also see Top Strap on page 1-39.

5. Push and pull the child restraint in different directions to be sure it is secure.

To remove the child restraint, simply unhook the top tether from the top tether anchorager and then disconnect the LATCH attachments from the LATCH anchorages.

Securing a Child Restraint in a Rear Seat Position

If your child restraint is equipped with the LATCH system, see Lower Anchorages and Top Tethers for Children (LATCH System) on page 1-41. See Top Strap on page 1-39 if the child restraint has one.

If your child restraint does not have the LATCH system, you'll be using the lap-shoulder belt to secure the child restraint in this position. Be sure to follow the instructions that came with the child restraint. Secure the child in the child restraint when and as the instructions say.

1. Put the restraint on the seat.

2. Pick up the latch petals, and run the lap and shoulder portions of the vehicle's safety belt through or around the restraint. The child restraint instructions will show you how.
3. Buckle the belt. Make sure the release button is positioned so you would be able to unbuckle the safety belt quickly if you ever had to.

4. Pull the rest of the shoulder belt all the way out of the retractor to set the lock.

To remove the child restraint, just unbuckle the vehicle's safety belt and let it go back all the way. The safety belt will move freely again and be ready to work for an adult or larger child passenger.

Securing a Child Restraint in the Right Front Seat Position

If your child restraint is equipped with the LATCH system, see Lower Anchorages and Top Tethers for Children (LATCH System) on page 1-41. See Top Strap on page 1-39 if your child restraint has one.

5. To tighten the belt, feed the shoulder belt back into the retractor while you push down on the child restraint. If you're using a forward-facing child restraint, you may find it helpful to use your knee to push down on the child restraint as you tighten the belt.

6. Push and pull the child restraint in different directions to be sure it is secure.
Your vehicle has a right front passenger air bag. Never put a rear-facing child restraint in this seat. Here is why:

⚠️ CAUTION:

A child in a rear-facing child restraint can be seriously injured or killed if the right front passenger's air bag inflates. This is because the back of the rear-facing child restraint would be very close to the inflating air bag. Always secure a rear-facing child restraint in a rear seat.

A rear seat is a safer place to secure a forward-facing child restraint.

You will be using the lap-shoulder belt to secure the child restraint in this position. Be sure to follow the instructions that came with the child restraint. Secure the child in the child restraint when and as the instructions say.

1. Because your vehicle has a right front passenger's air bag, always move the seat as far back as it will go before securing a forward-facing child restraint. See Manual Seats on page 1-2.

2. Put the restraint on the seat.

3. Pick up the latch plate and run the lap and shoulder portions of the vehicle's safety belt through or around the restraint. The child restraint instructions will show you how.

4. Buckle the belt. Make sure the release button is positioned so you would be able to unbuckle the safety belt quickly if you ever had to.

5. Pull the rest of the shoulder belt all the way out of the retractor to set the lock.

6. To tighten the belt, feed the shoulder belt back into the retractor while you push down on the child restraint. You may find it helpful to use your knee to push down on the child restraint as you tighten the belt.

7. Push and pull the child restraint in different directions to be sure it is secure.

To remove the child restraint, just unbuckle the vehicle's safety belt and let it go back all the way. The safety belt will move freely again and be ready to work for an adult or larger child passenger.
Air Bag Systems

This part explains the air bag systems.

Your vehicle has air bags — one air bag for the driver and another air bag for the right front passenger. Your vehicle may also have roof-mounted side impact air bags; one for the driver and the passenger directly behind the driver and one for the right front passenger and the person seated directly behind that passenger.

Air bags are designed to help reduce the risk of injury from the force of an inflating air bag. But these air bags must inflate very quickly to do their job and comply with federal regulations.

Here are the most important things to know about the air bag system:

⚠️ CAUTION:

You can be severely injured or killed in a crash if you are not wearing your safety belt — even if you have air bags. Wearing your safety belt during a crash helps reduce your chance of

CAUTION: (Continued)

hitting things inside the vehicle or being ejected from it. Air bags are "supplemental restraints" to the safety belts. All air bags are designed to work with safety belts but do not replace them.

Frontal air bags for the driver and right front passenger are designed to work only in moderate to severe crashes where the front of your vehicle hits something. They are not designed to inflate in rollover, rear or low-speed frontal crashes, or in many side crashes.

And, for some unrestrained occupants, frontal air bags may provide less protection in frontal crashes than more forceful air bags have provided in the past. The roof-mounted side impact air bags are designed to inflate only in moderate to severe crashes where something hits the side of your vehicle. They are not designed to inflate in frontal, in rollover or in rear crashes. Everyone in your vehicle should wear a safety belt properly — whether or not there is an air bag for that person.

⚠️ CAUTION:

Both frontal and side impact air bags inflate with great force, faster than the blink of an eye. If you’re too close to an inflating air bag, as you would be if you were leaning forward, it could seriously injure you. Safety belts help keep you in position for air bag inflation before and during a crash. Always wear your safety belt even with frontal air bags. The driver should sit as far back as possible while still maintaining control of the vehicle. Occupants should not lean on or sleep against the door.

⚠️ CAUTION:

Anyone who is up against, or very close to, any air bag when it inflates can be seriously injured or killed. Air bags plus lap-shoulder belts offer the best protection for adults, but not for young children and infants. Neither the vehicle’s safety belt system nor its air bag system is designed for them. Young children and infants need the protection that a child restraint system can provide. Always secure children properly in your vehicle. To read how, see the part of this manual called “Older Children” or “Infants and Young Children.”
There is an air bag readiness light on the instrument panel which shows the air bag symbol.

The system checks the air bag electrical system for malfunctions. The light tells you if there is an electrical problem. See Air Bag Readiness Light on page 3-35 for more information.

The driver's air bag is in the middle of the steering wheel.

The right front passenger's air bag is in the instrument panel on the passenger's side.

The side impact air bag for the driver and the person seated directly behind the driver is in the ceiling above the side windows.
When Should an Air Bag Inflate?

The driver's and right front passengers frontal air bags are designed to deploy only in moderate to severe frontal or near-frontal crashes. But they are designed to inflate only if the impact speed is above the system's designed "threshold level." In addition, your vehicle has "dual stage" frontal air bags, which adjust the amount of restraint according to crash severity. For moderate frontal impacts, these air bags inflate at a level less than full deployment. For more severe frontal impacts, full deployment occurs. If the front of your vehicle goes straight into a wall that doesn't move or deform, the threshold level for the reduced deployment is about 12 to 16 mph (19 to 26 km/h), and the threshold level for a full deployment is about 18 to 24 mph (29 to 38.5 km/h). The threshold level can vary, however, with specific vehicle design, so that it can be somewhat above or below this range.

If your vehicle strikes something that will move or deform, such as a parked car, the threshold level will be higher. The driver's and right front passenger's frontal air bags are not designed to inflate in rollovers, rear impacts, or in many side impacts because inflation would not help the occupant.

The side impact air bags are designed to inflate in moderate to severe side crashes. A side impact air bag will inflate if the crash severity is above the system's designed "threshold level." The threshold level can vary with specific vehicle design. Side impact air bags are not designed to inflate in frontal or near-frontal impacts, rollovers or rear impacts, because inflation would not help the occupant. A side impact air bag will only deploy on the side of the vehicle that is struck.

In any particular crash, no one can say whether an air bag should have inflated simply because of the damage to a vehicle or because of what the repair costs were. For frontal air bags, inflation is determined by the angle of the impact and how quickly the vehicle slows down in frontal or near-frontal impacts. For side impact air bags, inflation is determined by the location and severity of the impact.

What Makes an Air Bag Inflate?

In an impact of sufficient severity, the air bag sensing system detects that the vehicle is in a crash. For both frontal and side impact air bags, the sensing system triggers a release of gas from the inflator, which inflates the air bag. The inflator, air bag, and related hardware are all part of the air bag modules inside the steering wheel and in the instrument panel in front of the right front passenger and in the ceiling of the vehicle, near the side windows.
How Does an Air Bag Restrain?

In moderate to severe frontal or near frontal collisions, even belted occupants can contact the steering wheel or the instrument panel. In moderate to severe side collisions, even belted occupants can contact the inside of the vehicle. The air bag supplements the protection provided by safety belts. Air bags distribute the force of the impact more evenly over the occupant's upper body, stopping the occupant more gradually. But the frontal air bags would not help you in many types of collisions, including rollovers, rear impacts, and many side impacts, primarily because an occupant's motion is not toward the air bag. Side impact air bags would not help you in many types of collisions, including frontal or near frontal collisions, rollovers, and rear impacts, primarily because an occupant's motion is not toward those air bags. Air bags should never be regarded as anything more than a supplement to safety belts, and then only in moderate to severe frontal or near-frontal collisions for the driver's and right front passenger's frontal air bags, and only in moderate to severe side collisions for the side impact air bags.

What Will You See After an Air Bag Inflates?

After an air bag inflates, it quickly deflates, so quickly that some people may not even realize the air bag inflated. Some components of the air bag module - the steering wheel hub for the driver's air bag, the instrument panel for the right front passenger's air bags or the ceiling of your vehicle near the side windows - will be hot for a short time. The parts of the bag that come into contact with you may be warm, but not too hot to touch. There will be some smoke and dust coming from the vents in the deflated air bags. Air bag inflation doesn't prevent the driver from seeing or being able to steer the vehicle, nor does it stop people from leaving the vehicle.

⚠️ CAUTION:

When an air bag inflates, there is dust in the air. This dust could cause breathing problems for people with a history of asthma or other breathing trouble. To avoid this, everyone in the vehicle should get out as soon as it is safe to do so. If you have breathing problems but can't get out of the vehicle after an air bag inflates, then get fresh air by opening a window or a door. If you experience breathing problems following an air bag deployment, you should seek medical attention.

In many crashes severe enough to inflate an air bag, windshields are broken by vehicle deformation. Additional windshield breakage may also occur from the right front passenger air bag.

- Air bags are designed to inflate only once. After an air bag inflates, you'll need some new parts for your air bag system. If you don't get them, the air bag system won't be there to help protect you in another crash. A new system will include air bag modules and possibly other parts. The service manual for your vehicle covers the need to replace other parts.
- Your vehicle is equipped with a crash sensing and diagnostic module, which records information about the air bag system. The module records information about the readiness of the system, when the system commands air bag inflation and driver's safety belt usage at deployment.
- Let only qualified technicians work on your air bag system. Improper service can mean that your air bag system won't work properly. See your dealer for service.

Notice: If you damage the covering for the driver's or the right front passenger's air bag, or the side impact air bag covering on the ceiling near the side windows, the bag may not work properly. You may have to replace the air bag module in the steering wheel, both the air bag module and the instrument panel for the right front passenger's air bag, or side impact air bag module and ceiling covering for the roof-mounted side impact air bag. Do not open or break the air bag coverings.
Servicing Your Air Bag-Equipped Vehicle

Air bags affect how your vehicle should be serviced. There are parts of the air bag system in several places around your vehicle. You don't want the system to inflate while someone is working on your vehicle. Your dealer and the service manual have information about servicing your vehicle and the air bag system. To purchase a service manual, see Service Publications Ordering Information on page 7-11.

⚠️ CAUTION: ⚠️

For up to 10 seconds after the ignition key is turned off and the battery is disconnected, an air bag can still inflate during improper service. You can be injured if you are close to an air bag when it inflates. Avoid yellow connectors. They are probably part of the air bag system. Be sure to follow proper service procedures, and make sure the person performing work for you is qualified to do so.

The air bag system does not need regular maintenance.

Releasing Restrainer System Parts After a Crash

⚠️ CAUTION: ⚠️

A crash can damage the restraint systems in your vehicle. A damaged restraint system may not properly protect the person using it, resulting in serious injury or even death in a crash. To help make sure your restraint systems are working properly after a crash, have them inspected and any necessary replacements made as soon as possible.

Restraint System Check

Checking Your Restraint Systems

Now and then, make sure the safety belt reminder light and all your belts, buckles, latch plates, retractors, and anchorages are working properly. Look for any other loose or damaged safety belt system parts. If you see anything that might keep a safety belt system from doing its job, have it repaired.

Torn or frayed safety belts may not protect you in a crash. They can rip apart under impact forces. If a belt is torn or frayed, get a new one right away.

Also look for any opened or broken air bag covers, and have them repaired or replaced. (The air bag system does not need regular maintenance.)

If you've had a crash, do you need new belts or LATCH system parts?

After a very minor collision, nothing may be necessary. But if the belts were stretched, as they would be if worn during a more severe crash, then you need new parts.

If the LATCH system was being used during a more severe crash, you may need new LATCH system parts.

If belts are cut or damaged, replace them. Collision damage also may mean you will need to have LATCH system, safety belt or seat parts repaired or replaced. New parts and repairs may be necessary even if the belt or LATCH system wasn't being used at the time of the collision.

If an air bag inflates, you'll need to replace air bag system parts. See the part on the air bag system earlier in this section.

If the frontal air bags inflate, you'll also need to replace the driver's and right front passenger's safety belt buckle assembly. Be sure to do so. Then the new buckle assembly will be there to help protect you in a collision.
Appendix D

Miscellaneous Test Information
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>EVENT</td>
<td>EVENT</td>
<td>EVENT</td>
<td></td>
<td>10.24</td>
<td>V</td>
<td>+ 04/19/2004</td>
<td>OK</td>
<td>SLED</td>
</tr>
<tr>
<td>3001</td>
<td>C15351</td>
<td>SLDXG</td>
<td>SLED G LONG.</td>
<td>Rear</td>
<td>189.58523 g</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>SLED</td>
<td>Endevco</td>
</tr>
<tr>
<td>3002</td>
<td>C15519</td>
<td>SLDXGR</td>
<td>SLED G LONG</td>
<td>Rear</td>
<td>200.05091 g</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>SLED</td>
<td>Endevco</td>
</tr>
<tr>
<td>3003</td>
<td>SLDXV</td>
<td>SLDXG</td>
<td>SLED VELOCITY</td>
<td></td>
<td>164.73351 km/h</td>
<td>- 07/31/2003</td>
<td>OK</td>
<td>SLED</td>
<td>Endevco</td>
</tr>
<tr>
<td>3004</td>
<td>SLDXGT</td>
<td>SLDXG</td>
<td>SLED TRIGGER/SLDXGT</td>
<td>Rear</td>
<td>189.76668 g</td>
<td>- 07/15/2003</td>
<td>OK</td>
<td>-1</td>
<td>Endevco</td>
</tr>
<tr>
<td>3005</td>
<td>AD41H9</td>
<td>HEDXG1</td>
<td>Head Accel X</td>
<td>Rwd</td>
<td>400.70593 g</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>230n</td>
<td>Endevco</td>
</tr>
<tr>
<td>3006</td>
<td>AD4177</td>
<td>HEDYG1</td>
<td>Head Accel Y</td>
<td>Left</td>
<td>398.61264 g</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>230n</td>
<td>Endevco</td>
</tr>
<tr>
<td>3007</td>
<td>AD41R8</td>
<td>HEDZG1</td>
<td>Head Accel Z</td>
<td>Up</td>
<td>398.92477 g</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>230n</td>
<td>Endevco</td>
</tr>
<tr>
<td>3008</td>
<td>1716-0235-FX</td>
<td>NEKXF1</td>
<td>Neck Force X</td>
<td>Hd</td>
<td>8893.5209 N</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>230n</td>
<td>Denton</td>
</tr>
<tr>
<td>3009</td>
<td>1716-0235-FY</td>
<td>NEKYF1</td>
<td>Neck Force Y</td>
<td>Hd</td>
<td>8890.2239 N</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>230n</td>
<td>Denton</td>
</tr>
<tr>
<td>3012</td>
<td>1716-0235-FZ</td>
<td>NEKZF1</td>
<td>Neck Force Z</td>
<td>Hd</td>
<td>13341.671 N</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>230n</td>
<td>Denton</td>
</tr>
<tr>
<td>3013</td>
<td>1716-0235-MX</td>
<td>NEKXM1</td>
<td>Neck Moment X</td>
<td>Rt Bar</td>
<td>282.88566 N/m</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>230n</td>
<td>Denton</td>
</tr>
<tr>
<td>3014</td>
<td>1716-0235-MY</td>
<td>NEKYM1</td>
<td>Neck Moment Y</td>
<td>Chn</td>
<td>283.00437 N/m</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>230n</td>
<td>Denton</td>
</tr>
<tr>
<td>3015</td>
<td>1716-0235-MZ</td>
<td>NEKZM1</td>
<td>Neck Moment Z</td>
<td>Chn</td>
<td>282.84026 N/m</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>230n</td>
<td>Endevco</td>
</tr>
<tr>
<td>3016</td>
<td>ACTR4</td>
<td>CSTXG1</td>
<td>Chest Accel X</td>
<td>Fwd</td>
<td>400.04688 g</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>230n</td>
<td>Endevco</td>
</tr>
<tr>
<td>3017</td>
<td>ACT14</td>
<td>CSTYG1</td>
<td>Chest Accel Y</td>
<td>Left</td>
<td>399.13157 g</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>230n</td>
<td>Endevco</td>
</tr>
<tr>
<td>3018</td>
<td>ACTW0</td>
<td>CSTZG1</td>
<td>Chest Accel Z</td>
<td>Down</td>
<td>399.23583 g</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>230n</td>
<td>Endevco</td>
</tr>
<tr>
<td>3019</td>
<td>R5427-1</td>
<td>CSTXD1</td>
<td>Chest Deflection X</td>
<td>Stran</td>
<td>99.77881 mm</td>
<td>+ 03/16/2004</td>
<td>OK</td>
<td>230n</td>
<td>Servo</td>
</tr>
<tr>
<td>3020</td>
<td>2430-984</td>
<td>LFMZP1</td>
<td>Left Femur Force Z60</td>
<td>Knee</td>
<td>13354.199 N</td>
<td>+ 03/15/2004</td>
<td>OK</td>
<td>230n</td>
<td>GSE</td>
</tr>
<tr>
<td>3021</td>
<td>2430-985</td>
<td>RFTZP1</td>
<td>Right Femur Force Z S151</td>
<td>Knee</td>
<td>13345.845 N</td>
<td>+ 03/15/2004</td>
<td>OK</td>
<td>230n</td>
<td>GSE</td>
</tr>
<tr>
<td>3022</td>
<td>GB86</td>
<td>HEDXG2</td>
<td>Head Accel X</td>
<td>Rwd</td>
<td>599.01599 g</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>229n</td>
<td>Endevco</td>
</tr>
<tr>
<td>3023</td>
<td>GB77</td>
<td>HEDYG2</td>
<td>Head Accel Y</td>
<td>Lift</td>
<td>399.04914 g</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>229n</td>
<td>Endevco</td>
</tr>
<tr>
<td>3024</td>
<td>A54F</td>
<td>HEDZG2</td>
<td>Head Accel Z</td>
<td>Up</td>
<td>399.03559 g</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>229n</td>
<td>Endevco</td>
</tr>
<tr>
<td>3025</td>
<td>1716A-1222-FX</td>
<td>NEKXF2</td>
<td>Neck Force X</td>
<td>Hd</td>
<td>8901.8939 N</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>229n</td>
<td>Denton</td>
</tr>
<tr>
<td>3026</td>
<td>1716A-1222-FY</td>
<td>NEKYF2</td>
<td>Neck Force Y</td>
<td>Hd</td>
<td>8909.2923 N</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>229n</td>
<td>Denton</td>
</tr>
<tr>
<td>3027</td>
<td>1716A-1222-FZ</td>
<td>NEKF2</td>
<td>Neck Force Z</td>
<td>Hd</td>
<td>13342.680 N</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>229n</td>
<td>Denton</td>
</tr>
<tr>
<td>3028</td>
<td>1716A-1222-MX</td>
<td>NEKXM2</td>
<td>Neck Moment X</td>
<td>Rt Bar</td>
<td>282.86519 N/m</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>229n</td>
<td>Denton</td>
</tr>
<tr>
<td>3029</td>
<td>1716A-1222-MY</td>
<td>NEKYM2</td>
<td>Neck Moment Y</td>
<td>Chn</td>
<td>283.04588 N/m</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>229n</td>
<td>Denton</td>
</tr>
<tr>
<td>3030</td>
<td>1716A-1222-MZ</td>
<td>NEKZM2</td>
<td>Neck Moment Z</td>
<td>Chn</td>
<td>282.70168 N/m</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>229n</td>
<td>Denton</td>
</tr>
<tr>
<td>3031</td>
<td>C14135</td>
<td>CSTXG2</td>
<td>Chest Accel X</td>
<td>Fwd</td>
<td>401.55917 g</td>
<td>+ 03/15/2004</td>
<td>OK</td>
<td>229n</td>
<td>Endevco</td>
</tr>
<tr>
<td>3032</td>
<td>A35D</td>
<td>CSTYG2</td>
<td>Chest Accel Y</td>
<td>Lift</td>
<td>399.67526 g</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>229n</td>
<td>Endevco</td>
</tr>
<tr>
<td>3033</td>
<td>AHS58</td>
<td>CSTZG2</td>
<td>Chest Accel Z</td>
<td>Down</td>
<td>399.66902 g</td>
<td>+ 03/15/2004</td>
<td>OK</td>
<td>229n</td>
<td>Endevco</td>
</tr>
<tr>
<td>Channel Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3034</td>
<td>14C8D1-2847-229</td>
<td>CSTXD2</td>
<td>Chest Deflection X</td>
<td>String</td>
<td>99.901464</td>
<td>mm</td>
<td>+ 03/16/2004</td>
<td>OK</td>
<td>229n</td>
</tr>
<tr>
<td>3035</td>
<td>2430-901</td>
<td>LFMTFZ</td>
<td>Left Femur Force Z 603</td>
<td>Knee</td>
<td>15342.506</td>
<td>N</td>
<td>+ 03/15/2004</td>
<td>OK</td>
<td>229n</td>
</tr>
<tr>
<td>3036</td>
<td>2430-902</td>
<td>RPMZF2</td>
<td>Right Femur Force Z 744</td>
<td>Knee</td>
<td>13355.941</td>
<td>N</td>
<td>+ 03/15/2004</td>
<td>OK</td>
<td>229n</td>
</tr>
<tr>
<td>3037</td>
<td>P33833</td>
<td>LSXKX</td>
<td>REAR SEAT X-MEMBER AT FWD</td>
<td>FWD</td>
<td>199.75966</td>
<td>g</td>
<td>+ 03/31/2004</td>
<td>OK</td>
<td>-1</td>
</tr>
<tr>
<td>3038</td>
<td>P33562</td>
<td>RSXKX</td>
<td>REAR SEAT X-MEMBER AT FWD</td>
<td>FWD</td>
<td>200.12977</td>
<td>g</td>
<td>+ 03/31/2004</td>
<td>OK</td>
<td>-1</td>
</tr>
<tr>
<td>3039</td>
<td>P34003</td>
<td>TEXM</td>
<td>TOP OF ENGINE BLOCK FWD</td>
<td>FWD</td>
<td>200.25187</td>
<td>g</td>
<td>+ 03/31/2004</td>
<td>OK</td>
<td>-1</td>
</tr>
<tr>
<td>3040</td>
<td>P33526</td>
<td>RAXG</td>
<td>REAR AXLE RR</td>
<td>199.56462</td>
<td>g</td>
<td>- 03/31/2004</td>
<td>OK</td>
<td>-1</td>
<td>Endevco</td>
</tr>
</tbody>
</table>
Digital and System Channel Report

<table>
<thead>
<tr>
<th>Name of Test</th>
<th>040504-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>K3600</td>
</tr>
<tr>
<td>Name of DAU</td>
<td></td>
</tr>
<tr>
<td>DAU3</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>Data File</td>
<td>DAT33500</td>
</tr>
<tr>
<td>Module Type</td>
<td>KM3650 Sequencer</td>
</tr>
<tr>
<td>Cannelled</td>
<td>Yes</td>
</tr>
<tr>
<td>Channel</td>
<td>3500</td>
</tr>
<tr>
<td>Short Name</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>dig0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bit position</th>
<th>bit</th>
<th>short</th>
<th>long</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSB = bit 15</td>
<td>0</td>
<td>Backup Switch</td>
<td></td>
</tr>
<tr>
<td>bit 14</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 13</td>
<td>1</td>
<td>Switch</td>
<td></td>
</tr>
<tr>
<td>bit 12</td>
<td>1</td>
<td>Driver Airbag Event - Primary</td>
<td></td>
</tr>
<tr>
<td>bit 11</td>
<td>1</td>
<td>Driver Airbag Event - Secondary</td>
<td></td>
</tr>
<tr>
<td>bit 10</td>
<td>1</td>
<td>Pass. Airbag Event - Primary</td>
<td></td>
</tr>
<tr>
<td>bit 09</td>
<td>1</td>
<td>Pass. Airbag Event - Secondary</td>
<td></td>
</tr>
<tr>
<td>bit 08</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 07</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 06</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 05</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 03</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 02</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 01</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSB = bit 00</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel</td>
<td>Location</td>
<td>Model</td>
<td>Name</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>HEDXG</td>
<td>Head Accel X</td>
<td>7231C</td>
<td>GB86</td>
</tr>
<tr>
<td>HEDYG</td>
<td>Head Accel Y</td>
<td>7231C</td>
<td>GB77</td>
</tr>
<tr>
<td>HEDZG</td>
<td>Head Accel Z</td>
<td>7231C</td>
<td>A34F</td>
</tr>
<tr>
<td>NEKXF</td>
<td>Neck Force X</td>
<td>1716A</td>
<td>1716A-1222-FX</td>
</tr>
<tr>
<td>NEKXF</td>
<td>Neck Force Y</td>
<td>1716A</td>
<td>1716A-1222-FY</td>
</tr>
<tr>
<td>NEKZF</td>
<td>Neck Force Z</td>
<td>1716A</td>
<td>1716A-1222-PZ</td>
</tr>
<tr>
<td>NEKXM</td>
<td>Neck Moment X</td>
<td>1716A</td>
<td>1716A-1222-MK</td>
</tr>
<tr>
<td>NEKYM</td>
<td>Neck Moment Y</td>
<td>1716A</td>
<td>1716A-1222-MY</td>
</tr>
<tr>
<td>NEKZM</td>
<td>Neck Moment Z</td>
<td>1716A</td>
<td>1716A-1222-MZ</td>
</tr>
<tr>
<td>CSTXG</td>
<td>Chest Accel X</td>
<td>7231C</td>
<td>C14135</td>
</tr>
<tr>
<td>CSTYG</td>
<td>Chest Accel Y</td>
<td>7231C</td>
<td>A33D</td>
</tr>
<tr>
<td>CSTZG</td>
<td>Chest Accel Z</td>
<td>7231C</td>
<td>A5538</td>
</tr>
<tr>
<td>CSTXO</td>
<td>Chest Deflection X</td>
<td>14CB1-2847</td>
<td>14CB1-2847-229</td>
</tr>
<tr>
<td>LPMZF</td>
<td>Left Femur Force Z 603</td>
<td>2430</td>
<td>2430-901</td>
</tr>
<tr>
<td>RPMZF</td>
<td>Right Femur Force Z 744</td>
<td>2430</td>
<td>2430-902</td>
</tr>
<tr>
<td>Chrnam</td>
<td>Location</td>
<td>Model</td>
<td>Name</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td>HEDXG</td>
<td>Head Accel X</td>
<td>7231C</td>
<td>AD4H9</td>
</tr>
<tr>
<td>HEDYG</td>
<td>Head Accel Y</td>
<td>7231C</td>
<td>AD4J7</td>
</tr>
<tr>
<td>HEDZG</td>
<td>Head Accel Z</td>
<td>7231C</td>
<td>AD4J8</td>
</tr>
<tr>
<td>NEKXF</td>
<td>Neck Force X</td>
<td>1716</td>
<td>1716-0235-FX</td>
</tr>
<tr>
<td>NEKYP</td>
<td>Neck Force Y</td>
<td>1716</td>
<td>1716-0235-FY</td>
</tr>
<tr>
<td>NEKZF</td>
<td>Neck Force Z</td>
<td>1716</td>
<td>1716-0235-FZ</td>
</tr>
<tr>
<td>NEKXM</td>
<td>Neck Moment X</td>
<td>1716</td>
<td>1716-0235-MX</td>
</tr>
<tr>
<td>NEKYM</td>
<td>Neck Moment Y</td>
<td>1716</td>
<td>1716-0235-MY</td>
</tr>
<tr>
<td>NEKZM</td>
<td>Neck Moment Z</td>
<td>1716</td>
<td>1716-0235-MZ</td>
</tr>
<tr>
<td>CSTXG</td>
<td>Chest Accel X</td>
<td>7231C</td>
<td>ACTR4</td>
</tr>
<tr>
<td>CSTYG</td>
<td>Chest Accel Y</td>
<td>7231C</td>
<td>ACTT4</td>
</tr>
<tr>
<td>CSTZG</td>
<td>Chest Accel Z</td>
<td>7231C</td>
<td>ACTW0</td>
</tr>
<tr>
<td>CSTXD</td>
<td>Chest Deflection X</td>
<td>14CB1-2847</td>
<td>85427-1</td>
</tr>
<tr>
<td>LFMZF</td>
<td>Left Femur Force Z 60</td>
<td>2430</td>
<td>2430-984</td>
</tr>
<tr>
<td>RPMZF</td>
<td>Right Femur Force Z S1511</td>
<td>2430</td>
<td>2430-985</td>
</tr>
</tbody>
</table>