Vehicle Safety Compliance Testing for FMVSS 208
for Occupant Crash Protection
Sled Test

General Motors Corporation
2004 Buick LeSabre
NHTSA Number: C40115
TRC Inc. Test Number: S040405

Transportation Research Center Inc.
10820 State Route 347
East Liberty, OH 43319

Test Date: April 5, 2004
Report Date: April 19, 2004

Final Report

Prepared For:
U. S. Department of Transportation
National Highway Traffic Safety Administration
Office of Enforcement
Office of Vehicle Safety Compliance (NVS-229)
400 Seventh Street, S.W., Room No. 6115
Washington, DC 20590
This Final Test Report was prepared for the U.S. Department of Transportation, National Highway Traffic Safety Administration, under Contract No. DTNH22-03-D-01002.

This publication is distributed by the U. S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings, and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Test Performed By: Ronald D. Stoner, Engineering Technician

Report Approved By:

[Signature]

Walter Dudek, Project Manager
Transportation Research Center Inc.

Final Report Accepted By:

[Signature]

Contracting Officer's Technical Representative (COTR),
NHTSA, Office of Vehicle Safety Compliance
Title and Subtitle
Final Report of FMVSS No. 208
Compliance Sled Testing of a 2004 Buick LeSabre
NHTSA No. C40115

Author(s)
Walter Dudek, Project Manager
Transportation Research Center Inc.

Performing Organization Name and Address
Transportation Research Center Inc.
10820 State Route 347
East Liberty, OH 43319

Sponsoring Agency Name and Address
U.S. Department of Transportation
National Highway Traffic Safety Administration
Office of Enforcement
Office of Vehicle Safety Compliance (NVS-220)
400 Seventh Street, S.W., Room 6115
Washington, DC 20590

Abstract
An FMVSS 208 Section 13 compliance sled test was conducted on a 2004 Buick LeSabre 4-door sedan, NHTSA No.C40115, in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP208S-01 for the determination of FMVSS 208 compliance. Possible test failures identified were as follows:

None.

Key Words
Safety Engineering
Compliance Sled Testing:
FMVSS 208, "Occupant Crash Protection"

Distribution Statement
Copies of this report are available from:
NHTSA Technical Reference Division
Room 5108
400 Seventh Street, S.W., NPO-230
Washington, DC 20590

Security Classification
Unclassified

Security Classification (of this page)
Unclassified

Number of Pages
213

Price
Reproduction of completed page authorized
<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>1</td>
</tr>
<tr>
<td>Test Procedure</td>
<td>2</td>
</tr>
<tr>
<td>Test Results Summary</td>
<td>3</td>
</tr>
<tr>
<td>Sled Test Summary</td>
<td>6</td>
</tr>
<tr>
<td>General Test and Vehicle Parameter Data for the Sled Test Vehicle</td>
<td>7</td>
</tr>
<tr>
<td>Post-Impact Data</td>
<td>11</td>
</tr>
<tr>
<td>Seat and Steering Column Positioning Data</td>
<td>12</td>
</tr>
<tr>
<td>Dummy Measurement Data for Front Seat Occupants</td>
<td>13</td>
</tr>
<tr>
<td>Vehicle Accelerometer Placement</td>
<td>18</td>
</tr>
<tr>
<td>Vehicle Data Summary and Accelerometer Locations</td>
<td>19</td>
</tr>
<tr>
<td>Vehicle Targeting Measurements</td>
<td>21</td>
</tr>
<tr>
<td>Camera Positions</td>
<td>22</td>
</tr>
<tr>
<td>Motion Picture Camera Locations</td>
<td>23</td>
</tr>
<tr>
<td>FMVSS 208 Occupant Injury Data</td>
<td>24</td>
</tr>
<tr>
<td>FMVSS 208 Certification Label and Tire Placard Information</td>
<td>26</td>
</tr>
<tr>
<td>FMVSS 208 Rear Outboard Seating Position Seat Belts</td>
<td>27</td>
</tr>
<tr>
<td>FMVSS 208 Air Bag Labels</td>
<td>28</td>
</tr>
<tr>
<td>FMVSS 208 Readiness Indicator</td>
<td>39</td>
</tr>
<tr>
<td>FMVSS 208 Passenger Air Bag Manual Cut-Off Device</td>
<td>40</td>
</tr>
<tr>
<td>FMVSS 208 Lap Belt Lockability</td>
<td>43</td>
</tr>
<tr>
<td>FMVSS 208 Seat Belt Warning System Check</td>
<td>55</td>
</tr>
<tr>
<td>FMVSS 208 Belt Contact Force</td>
<td>56</td>
</tr>
<tr>
<td>FMVSS 208 Latch Plate Access</td>
<td>62</td>
</tr>
<tr>
<td>FMVSS 208 Seat Belt Retraction</td>
<td>66</td>
</tr>
<tr>
<td>FMVSS 208 Seat Belt Guides and Hardware</td>
<td>69</td>
</tr>
<tr>
<td>Appendix A - Photographs</td>
<td>A-1</td>
</tr>
<tr>
<td>Appendix B - Data Plots</td>
<td>B-1</td>
</tr>
<tr>
<td>Appendix C - Manufacturer Provided Test Information</td>
<td>C-1</td>
</tr>
<tr>
<td>Appendix D - Miscellaneous Test Information</td>
<td>D-1</td>
</tr>
</tbody>
</table>
List of Photographs

<table>
<thead>
<tr>
<th>Figure</th>
<th>Photograph Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1.</td>
<td>Pre-Test Front View of Test Vehicle Mounted to Sled</td>
<td>A-2</td>
</tr>
<tr>
<td>A-2.</td>
<td>Pre-Test Left Side View of Test Vehicle Mounted to Sled</td>
<td>A-3</td>
</tr>
<tr>
<td>A-3.</td>
<td>Pre-Test Right Side View of Test Vehicle Mounted to Sled</td>
<td>A-4</td>
</tr>
<tr>
<td>A-4.</td>
<td>Pre-Test Windshield View</td>
<td>A-5</td>
</tr>
<tr>
<td>A-5.</td>
<td>Post-Test Windshield View</td>
<td>A-6</td>
</tr>
<tr>
<td>A-6.</td>
<td>Pre-Test Driver Dummy Position View with Door Open</td>
<td>A-7</td>
</tr>
<tr>
<td>A-7.</td>
<td>Post-Test Driver Dummy Position View with Door Open</td>
<td>A-8</td>
</tr>
<tr>
<td>A-8.</td>
<td>Pre-Test Driver Seat Track Position View</td>
<td>A-9</td>
</tr>
<tr>
<td>A-10.</td>
<td>Pre-Test Driver Dummy Position Front View</td>
<td>A-11</td>
</tr>
<tr>
<td>A-11.</td>
<td>Post-Test Driver Dummy Position Front View</td>
<td>A-12</td>
</tr>
<tr>
<td>A-12.</td>
<td>Pre-Test Passenger Dummy Position View with Door Open</td>
<td>A-13</td>
</tr>
<tr>
<td>A-13.</td>
<td>Post-Test Passenger Dummy Position View with Door Open</td>
<td>A-14</td>
</tr>
<tr>
<td>A-14.</td>
<td>Pre-Test Passenger Seat Track Position View</td>
<td>A-15</td>
</tr>
<tr>
<td>A-16.</td>
<td>Pre-Test Passenger Dummy Position Front View</td>
<td>A-17</td>
</tr>
<tr>
<td>A-17.</td>
<td>Post-Test Passenger Dummy Position Front View</td>
<td>A-18</td>
</tr>
<tr>
<td>A-19.</td>
<td>Post-Test Driver Dummy Removed from Vehicle Overall View</td>
<td>A-20</td>
</tr>
<tr>
<td>A-20.</td>
<td>Post-Test Driver Head Contact View</td>
<td>A-21</td>
</tr>
<tr>
<td>A-22.</td>
<td>Post-Test Passenger Dummy Removed from Vehicle Overall View</td>
<td>A-23</td>
</tr>
<tr>
<td>A-23.</td>
<td>Post-Test Passenger Head Contact View</td>
<td>A-24</td>
</tr>
<tr>
<td>A-25.</td>
<td>Post-Test Passenger Glove Box View</td>
<td>A-26</td>
</tr>
</tbody>
</table>
Purpose

This Federal Motor Vehicle safety Standard (FMVSS) 208 compliance sled test is part of the FMVSS compliance test program conducted for the National Highway Traffic Safety Administration (NHTSA) by the Transportation Research Center Inc. (TRC Inc.) under Contract No. DTRHH22-03-D-01002. The purpose of this test was to determine if the subject vehicle, a 2004 Buick LeSabre 4-door sedan, NHTSA No. C40115, meets the performance requirements of FMVSS 208, “Occupant Crash Protection,” in the impact simulation sled test mode.
Test Procedure

This test was conducted in accordance with NHTSA’s Office of Vehicle Safety Compliance (OVSC) Laboratory Test Procedure No. TP-208S-01, dated January 15, 1998. Data was obtained relative to FMVSS 208, “Occupant Crash Protection,” performance.

The sled test vehicle was instrumented with four (4) accelerometers to measure longitudinal accelerations. The sled was instrumented with one (1) longitudinal accelerometer, which is prefiltered with an analog filter to 200 Hz as an integral part of the sled firing circuit, and two (2) additional accelerometers: the primary accelerometer for pulse and integrated velocity determination and a backup accelerometer. In addition, the sled was instrumented with one (1) light trap to measure velocity and four (4) airbag firing timing circuits.

The sled test vehicle contained two (2) Part 572 B 50th percentile adult male anthropomorphic test devices (dummies). The dummies were positioned in the front outboard designated seating positions according to the dummy placement procedure specified in Appendix B of the Laboratory Test Procedure. The dummies were not restrained by seat belts.

Both dummies were instrumented with head and chest accelerometers to measure longitudinal, lateral, and vertical accelerations; chest deflection potentiometers; left and right femur load cells to measure axial forces; and upper neck load cells to measure longitudinal, lateral, and vertical forces and moments.

The forty-two (42) data channels were digitally sampled at 12,500 samples per second and processed per Sections 11.7 through 11.9 of the Laboratory Test Procedure.

The sled test event was recorded by one (1) real-time motion picture camera and six (6) high-speed motion picture cameras. The pre-test and post-test conditions were recorded by one (1) real-time motion picture camera.
Test Results Summary

This FMVSS 208 compliance sled test was conducted by TRC Inc. on April 15, 2004.

The test vehicle, a 2004 Buick LeSabre 4-door sedan, NHTSA No. C40115, does appear to comply with the performance requirements of FMVSS 208 in the impact simulation sled test mode as measured by Hybrid III 50th percentile male dummies.

<table>
<thead>
<tr>
<th></th>
<th>FMVSS 208 Max. Allowable Injury Assessment Values</th>
<th>Driver</th>
<th>Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC</td>
<td>1000</td>
<td>95</td>
<td>203</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>41.3</td>
<td>35.3</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>3 inches</td>
<td>1.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Left Femur</td>
<td>2250 lbs</td>
<td>1245</td>
<td>1093</td>
</tr>
<tr>
<td>Right Femur</td>
<td>2250 lbs</td>
<td>1171</td>
<td>1100</td>
</tr>
<tr>
<td>Neck Extension</td>
<td>57 Nm</td>
<td>6.7</td>
<td>37.0</td>
</tr>
<tr>
<td>Neck Flexion</td>
<td>190 Nm</td>
<td>55.1</td>
<td>43.6</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>3300 N</td>
<td>886</td>
<td>1342</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>4000 N</td>
<td>183</td>
<td>814</td>
</tr>
<tr>
<td>Neck Shear</td>
<td>3100 N</td>
<td>1066</td>
<td>1026</td>
</tr>
</tbody>
</table>

The subject vehicle, a 2004 Buick LeSabre, NHTSA No. C40115, appears to meet the other FMVSS 208 requirements for which it was tested. These results are shown in the data sheets that are included in this report.

The sled test vehicle was equipped with air bags at the driver and passenger seating positions. The dummies were not restrained by seat belts. The sled carriage was accelerated to 17.3 g with an integrated velocity change of 29.6 mph. The primary stages of the airbags were triggered at 20.2 milliseconds after 0.5 g acceleration was measured by the firing circuit. The secondary stages of the airbags were triggered at 21.1 milliseconds after 0.5 g
acceleration was measured by the firing circuit. Following subsequent digital data processing and filtering the acceleration signal to Channel Class 60, the primary stages airbag event trigger signal was 20.6 ms after the 0.5 g acceleration level was indicated and the secondary stages airbag event trigger signal was 21.6 ms after the 0.5 g acceleration level was indicated.
Data Acquisition Explanations

The complete 16-hour dummy ambient temperature trace was not recorded for this test. A partial trace was recorded and is included in Appendix D. During the final hour prior to test the dummies were within the specified temperature range.
Sled Test Summary

NHTSA number: C40115
Test type: Alternate 208
Test date: 04/05/04
Test time: 16:39
Ambient temperature at impact area: 71.5°F
Vehicle year/make/model/body style: 2004/Buick/LeSabre/4-door sedan

Dummy Info:
Driver #314
Type: Hybrid III 50th
Location: Left front
Restraint: Airbag
Number of data channels: 15
Front passenger #229
Hybrid III 50th
Right front
Airbag
15

Number of Cameras:
Real-time: 1
High-speed: 6

Door Opening Data:
Left Front: Easy
Right Front: Easy

Front Seat Data:
Seat track failure: None
Seat back failure: None

Visible Dummy Contact Points:
Head: Airbag, sun visor, side header
Chest: Airbag
Left knee: Knee bolster
Right knee: Knee bolster

Airbag, sun visor

Glove box
General Test and Vehicle Parameter Data for the Sled Test Vehicle

Test Vehicle Information:

Vehicle year/make/model/body style: 2004/Buick/LeSabre/4-door sedan

Color: White

VIN: 1G4HP52K044121812

NHTSA number: C40115

Engine data:
- Placement: Transverse
- Cylinders: 6
- Displacement: 3.8

Transmission data: _X_ 4-speed, _X_ automatic, _X_ overdrive

Final drive: _X_ fwd, _X_ rwd, _X_ 4wd

Date vehicle received: 2/9/2004

Odometer reading: 30

Dealer's name and address: Buckles Motors Inc.
871 South Main Street
Urbana, OH 43078

Major Options:

- Power steering: Yes
- Other: No
- Power brakes: Yes
- Power windows: Yes
- Air conditioning: Yes
- Power door locks: Yes

Remarks: Power seat on driver's side only.
General Test and Vehicle Parameter Data for the Sled Test Vehicle, Cont'd.

Data from Vehicle's Certification Label:
Vehicle manufactured by: General Motors Corporation
Date of manufacture: 09/03
VIN: 1G4HP52K044121812
GVWR: 4694 lbs
GAWR: Front: 2522 lbs
Rear: 2172 lbs

Data from Vehicle's Tire Placard:
Tire pressure with maximum capacity vehicle load:
Front: 44 psi
Rear: 44 psi
Recommended tire size: P215/70R15
Load range: N/A
Recommended cold tire pressure:
Front: 33 psi
Rear: 33 psi
Size of tires on vehicle: P215/70R15
Spare tire: T:25/70R16
Vehicle capacity data:
Type of front seats: Split bench
Number of occupants:
Front 3
Rear 3
Total 6

Remarks:
General Test and Vehicle Parameter Data for the Sled Test Vehicle, Cont’d.

Weight of test vehicle as received (with maximum fluids):

<table>
<thead>
<tr>
<th></th>
<th>Right front</th>
<th>Right rear</th>
<th>Left front</th>
<th>Left rear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1118.8 lbs</td>
<td>682.3 lbs</td>
<td>1092.4 lbs</td>
<td>684.5 lbs</td>
<td></td>
</tr>
<tr>
<td>Total front weight</td>
<td>2211.2 lbs</td>
<td>(61.8% of total vehicle weight)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total rear weight</td>
<td>1366.8 lbs</td>
<td>(38.2% of total vehicle weight)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total delivered weight</td>
<td>3578.0 lbs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculation of test vehicle’s target test weight:

\[
\text{RCLW} = \text{Rated Cargo and Luggage Weight} \\
\text{UDW} = \text{Unloaded Delivered Weight (3578.0 lbs)} \\
\text{VCW} = \text{Vehicle Capacity Weight (1076 lbs)} \\
\text{DSC} = \text{Designated Seating Capacity (6)} \\
\text{RCLW} = \text{VCW} - (\text{DSC} \times 150 \text{ lbs}) = 1076 - (6 \times 150) = 176.0 \text{ lbs} \\
\text{Target test weight} = \text{UDW} + \text{RCLW} + (\text{Number of Hybrid III dummies x 167 lbs per dummy}) \\
\text{Target test weight} = 3578.0 + 176.0 + 334.0 = 4088 \text{ lbs} \\
\]

Weight of test vehicle with two dummies and 179.8 lbs of cargo weight:

<table>
<thead>
<tr>
<th></th>
<th>Right front</th>
<th>Right rear</th>
<th>Left front</th>
<th>Left rear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1202.6 lbs</td>
<td>854.3 lbs</td>
<td>1180.6 lbs</td>
<td>854.3 lbs</td>
<td></td>
</tr>
<tr>
<td>Total front weight</td>
<td>2383.2 lbs</td>
<td>(58.2% of total vehicle weight)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total rear weight</td>
<td>1708.6 lbs</td>
<td>(41.8% of total vehicle weight)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total test weight</td>
<td>4091.8 lbs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

- Weight of ballast secured in vehicle cargo area: 0.0 lbs
- Components removed to meet target test weight: None
General Test and Vehicle Parameter Data for the Sled Test Vehicle, Cont'd.

Test Vehicle Attitude:
- As delivered door sill angle: 0.6° Nose Down
- As tested door sill angle: 0.3° Nose Down
- Fully loaded door sill angle: 0.1° Nose Down
- Vehicle Wheelbase: 112.2 inches

Fuel System Data:
- Fuel system capacity from owner's manual: 18.0 gallons
- Useable capacity figure furnished by COTR: 17.5 gallons

Remarks: The roll angle measurements were within 1 inch of each other.
The left and right side measurements were 26.7 inches and 26.7 inches respectively.
Post-Impact Data

Test number: S040405
NHTSA number: C40115
Test date: 04/05/04
Test time: 16:39
Test type: Alternate 208
Impact angle: 0°
Ambient temperature at impact area: 71.5° F
Temperature in occupant compartment: 71.5° F

Sled carriage velocity:
- Integrated velocity from the integration of the entire sled acceleration: 29.6 mph
- Measured velocity from the light trap device attached to the sled (backup): 29.2 mph
- Specified integrated velocity range: 28 to 30 mph

Sled carriage acceleration:
- Acceleration: 17.3 g
- Specified acceleration range: 16.0 g - 18.2 g

Sled carriage acceleration duration:
- Time from T-0(-0.5 g) to 0.0 g: 126.2 ms
- Specified acceleration duration: 120 - 130 ms

The sled acceleration curve was within the specified corridor.
Seat and Steering Column Positioning Data

Vehicle: 2004/Buick/LeSabre/4-door sedan
NHTSA No.: C40115

Nominal Design Riding Position:

Driver Seat: Seat Back Angle = 17.7° Manual Seat back angle was measured on the seat back frame near the side airbag

Passenger Seat: Seat Back Angle = 18.4° Manual Seat back angle was measured on the seat back frame near the side airbag

Seat Fore and Aft Positions:

Driver Seat: Set to the middle of the available fore/aft travel

Passenger: Set to the middle of the distance between full forward and full rearward positions (21st of 40 detents)

Steering Column Adjustments:

Set to 3rd notch down from top notch. Steering wheel angle was measured at 18.8° across steering wheel rim
Dummy Measurement Data for Front Seat Occupants

<table>
<thead>
<tr>
<th>Designation</th>
<th>Type of Measurement</th>
<th>Driver (Serial #314)</th>
<th>Passenger (Serial #229)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA</td>
<td>Windshield angle</td>
<td>27.0°</td>
<td>N/A</td>
</tr>
<tr>
<td>SWA</td>
<td>Steering wheel angle</td>
<td>18.8°</td>
<td>N/A</td>
</tr>
<tr>
<td>SCA</td>
<td>Steering column angle</td>
<td>71.2°</td>
<td>N/A</td>
</tr>
<tr>
<td>SA</td>
<td>Seat back angle</td>
<td>17.7°</td>
<td>18.4°</td>
</tr>
<tr>
<td>HZ</td>
<td>Head to roof</td>
<td>8.5 in</td>
<td>7.7 in</td>
</tr>
<tr>
<td>HH</td>
<td>Head to header</td>
<td>15.9 in</td>
<td>15.9 in</td>
</tr>
<tr>
<td>HW</td>
<td>Head to windshield</td>
<td>26.6 in</td>
<td>26.0 in</td>
</tr>
<tr>
<td>HR</td>
<td>Head to side header</td>
<td>8.5 in</td>
<td>9.3 in</td>
</tr>
<tr>
<td>NR</td>
<td>Nose to rim</td>
<td>15.7 in</td>
<td>N/A</td>
</tr>
<tr>
<td>NA</td>
<td>Nose to rim angle</td>
<td>9.0°</td>
<td>N/A</td>
</tr>
<tr>
<td>CD</td>
<td>Chest to dash</td>
<td>20.5 in</td>
<td>21.3 in</td>
</tr>
<tr>
<td>CS</td>
<td>Steering wheel to chest</td>
<td>13.2 in</td>
<td>N/A</td>
</tr>
<tr>
<td>RA</td>
<td>Rim to abdomen</td>
<td>8.7 in</td>
<td>N/A</td>
</tr>
<tr>
<td>KDL</td>
<td>Left knee to dash</td>
<td>6.4 in</td>
<td>5.7 in</td>
</tr>
<tr>
<td>KDR</td>
<td>Right knee to dash</td>
<td>6.5 in</td>
<td>6.1 in</td>
</tr>
<tr>
<td>KDA</td>
<td>Outboard knee to dash angle</td>
<td>33.8°</td>
<td>38.0°</td>
</tr>
<tr>
<td>PA</td>
<td>Pelvis angle</td>
<td>24.0°</td>
<td>23.5°</td>
</tr>
<tr>
<td>TA</td>
<td>Tibia angle</td>
<td>43.0°</td>
<td>39.6°</td>
</tr>
<tr>
<td>KK</td>
<td>Knee to knee</td>
<td>12.6 in</td>
<td>10.6 in</td>
</tr>
<tr>
<td>ST<sup>1</sup></td>
<td>Striker to head</td>
<td>19.9 in</td>
<td>20.9 in</td>
</tr>
<tr>
<td>SK<sup>1</sup></td>
<td>Striker to head angle</td>
<td>-82.3°</td>
<td>-86.1°</td>
</tr>
<tr>
<td>SH<sup>1</sup></td>
<td>Striker to knee</td>
<td>22.2 in</td>
<td>22.4 in</td>
</tr>
<tr>
<td>SHY</td>
<td>Striker to H-point</td>
<td>9.3 in</td>
<td>8.9 in</td>
</tr>
<tr>
<td>HIS</td>
<td>Head to side window</td>
<td>13.8 in</td>
<td>13.0 in</td>
</tr>
<tr>
<td>HD</td>
<td>H-point to door</td>
<td>8.0 in</td>
<td>6.8 in</td>
</tr>
<tr>
<td>AD</td>
<td>Arm to door</td>
<td>5.6 in</td>
<td>5.0 in</td>
</tr>
</tbody>
</table>

The seat back angle (SA°) is measured relative to vertical.
All other angles are measured relative to horizontal.

¹ A negative angle indicates the measurement point was located below the striker.
Dummy Measurement Locations for Front Seat Occupants

VERTICAL LONGITUDINAL PLANE

VERTICAL TRANSVERSE PLANE
Descriptions of Dummy Measurements

When a level is to be used, it is to ensure that the line containing the two points described is either parallel or perpendicular to the ground. If a measurement to be made is less than 10 inches ignore the directions to use a level and approximate a level measurement. Also, when a measurement is to be taken to or from the center of a bolt on the dummy, take the measurement from the center of the bolt hole if the bolt is recessed.

The following measurements are to be made within a vertical longitudinal plane.

* HH Head to Header, taken from the point where the dummy’s nose meets his forehead (between his eyes) to the furthest point forward on the header.

* HW Head to Windshield, taken from the point where the dummy’s nose meets his forehead (between his eyes) to a point on the windshield. Use a level.

* HZ Head to Roof, taken from the point where the dummy’s nose meets his forehead (between his eyes) to the point on the roof directly above it. Use a level.

* CS Steering Wheel to Chest, taken from the center of the steering wheel hub to the dummy’s chest. Use a level.

* CD Chest to Dash, place a tape measure on the tip of the dummy’s chin and rotate five inches of it downward toward the dummy to the point of contact on the transverse center of the dummy’s chest. Then measure from this point to the closest point on the dashboard either between the upper part of the steering wheel between the hub and the rim, or measure to the dashboard placing the tape measure above the rim, whichever is a shorter measurement. See diagram.

* RA Steering Wheel Rim to Abdomen, taken from the bottommost point of the steering wheel rim horizontally rearward to the dummy. Use a level.

* NR Nose to Rim, taken from the tip of the dummy’s nose to the closest point on the top of the steering wheel rim. Also indicate the angle this line makes with respect to the horizontal (NA).

* Measurement used in Data Tape Reference Guide
Descriptions of Dummy Measurements, Cont'd.

KDL
KDR Left and Right Knees to Dashboard, taken from the center of the knee pivot bolt's outer surface to the closest point forward acquired by swinging the tape measure in continually larger arcs until it contacts the dashboard. Also reference the angle of this measurement with respect to the horizontal for the outboard knee (KDA). See diagram.

SH,
SK,
ST Striker to Hip, Knee, and Head, these measurements are to be taken in the X-Z plane measured from the forward most center point on the striker to the center of the H-point, outer knee bolt, and head target. When taking this measurement a firm device that can be rigidly connected to the striker should be used. Use a level. The angles of these measurements with respect to the horizontal should also be recorded. The measurement in the Y (transverse) direction from the striker to the H-point should also be taken (SHY). See diagram.

The following measurements are to be made within a vertical transverse plane.

HS Head to Side Window, taken from the point where the dummy's nose meets his forehead (between his eyes) to the outside of the side window. In order to make this measurement, roll the window down to the exact height which allows a level measurement. Use a level. See diagram.

AD Arm to Door, taken from the outer surface of the elbow pivot bolt on a Hybrid II dummy to the first point it hits on the door. In the case of a Hybrid III dummy, measure from the bolt on the outer biceps. When a SID is used make the measurement from the center of the bottom of the arm segment where it meets the dummy's torso.

HD H-point to Door, taken from the H-point on the dummy to the closest point on the door. Use a level.

HR Head to Side Header, measure the shortest distance from the point where the dummy's nose meets his forehead (between his eyes) to the side edge of the header just above the window frame, directly adjacent to the dummy.

* Measurement used in Data Tape Reference Guide
1 Only outboard measurement is referenced in Data Tape Reference Guide
Descriptions of Dummy Measurements, Cont'd.

SHY Striker to H-point, taken from a rod rigidly connected to the forward most center point on the striker to the H-point. Use a level. See diagram.

KK Knee to Knee, for Hybrid II dummies measure the distance between knee pivot bolt head outer surfaces. For Hybrid III dummies measure the distance between the outboard knee clevis flange surfaces. (This measurement may not be exactly transverse.)

Angles

SA Seat Back Angle, find this angle using the instructions provided by the manufacturer. If the manufacturer doesn't provide clear instructions contact the COTR.

PA Pelvis or Femur Angle, taken by inserting the pelvic angle gauge into the H-point gauging hole on the SID or the Hybrid III dummies and taking this angle with respect to the horizontal. Measure the angle of the line connecting the H-point hole and the outer knee pivot bolt hole on a Hybrid II dummy with respect to the horizontal, to find the femur angle.

SWA Steering Wheel Angle, find this by placing a straight edge against the steering wheel rim along the longitudinal plane. Then measure the acute angle of the straight edge with respect to the horizontal.

SCA Steering Column Angle, measured with respect to the horizontal by placing an inclinometer on the center of the underside of the steering column.

NA Measure the angle made when taking the measurement NR with respect to the horizontal.

KDA Knee to Dash Angle, the angle that the measurement KD is taken at with respect to the horizontal. Only get this angle for the outboard knee. See diagram.

WA Windshield Angle, place an inclinometer along the transverse center of the windshield exterior (measurement is made with respect to horizontal).

TA Tibia Angle, use a straight edge to connect the dummy's knee and ankle bolts. Then place an inclinometer on the straight edge and measure the angle with respect to the horizontal.

* Measurement used in Data Tape Reference Guide
Vehicle Accelerometer Placement

Side View

Bottom View

(X) + Longitudinal

(Y) + Lateral
<table>
<thead>
<tr>
<th>TEST NUMBER: S049405</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>POSITIVE DIRECTION</th>
<th>NEGATIVE DIRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. LOCATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 SLED ACCELERATION</td>
<td>165.6 in</td>
<td>-1.0 in</td>
<td>NA</td>
<td>0.5 g @ 185.4 ms</td>
<td>17.3 g @ 56.2 ms</td>
</tr>
<tr>
<td>PRIMARY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 SLED ACCELERATION</td>
<td>165.6 in</td>
<td>-1.0 in</td>
<td>NA</td>
<td>0.6 g @ 185.4 ms</td>
<td>17.5 g @ 56.6 ms</td>
</tr>
<tr>
<td>BACKUP REDUNDANT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 SLED VELOCITY</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.1 mph @ 9.7 ms</td>
<td>29.2 mph @ 126.3 ms</td>
</tr>
<tr>
<td>MEASURED INTEGRATED²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 LEFT REAR SEAT</td>
<td>65.2 in</td>
<td>-16.7 in</td>
<td>NA</td>
<td>1.4 g @ 130.1 ms</td>
<td>18.1 g @ 58.5 ms</td>
</tr>
<tr>
<td>CROSSMEMBER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LONGITUDINAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 RIGHT REAR SEAT</td>
<td>65.0 in</td>
<td>13.8 in</td>
<td>NA</td>
<td>1.3 g @ 130.1 ms</td>
<td>18.0 g @ 59.0 ms</td>
</tr>
<tr>
<td>CROSSMEMBER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LONGITUDINAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 TOP ENGINE</td>
<td>167.3 in</td>
<td>0.4 in</td>
<td>NA</td>
<td>6.6 g @ 139.0 ms</td>
<td>22.2 g @ 57.4 ms</td>
</tr>
<tr>
<td>LONGITUDINAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 REAR AXLE</td>
<td>35.4 in</td>
<td>0.0 in</td>
<td>NA</td>
<td>1.5 g @ 130.4 ms</td>
<td>18.9 g @ 60.6 ms</td>
</tr>
<tr>
<td>LONGITUDINAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEST NUMBER: 5040405</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>POSITIVE DIRECTION</td>
<td>NEGATIVE DIRECTION</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>No. LOCATION</td>
<td>DRIVER PRIMARY AIRBAG EVENT</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0 volt @ 20.6 ms</td>
</tr>
<tr>
<td></td>
<td>DRIVER SECONDARY AIRBAG EVENT</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0 volt @ 21.6 ms</td>
</tr>
<tr>
<td></td>
<td>PASSENGER PRIMARY AIRBAG EVENT</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0 volt @ 20.6 ms</td>
</tr>
<tr>
<td></td>
<td>PASSENGER SECONDARY AIRBAG EVENT</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0 volt @ 21.6 ms</td>
</tr>
</tbody>
</table>

REFERENCE: X: + FORWARD FROM VEHICLE REAR SURFACE
Y: + RIGHTWARD FROM SLED CARRIAGE CENTERLINE

1 Sign convention per SAEJ211 March 1995.
2 No positive data in time frame of interest.
Vehicle Targeting Measurements

REFERENCE PHOTO TARGETS

LEFT SIDE VIEW
Camera Positions

Top View

Camera Frame Rates:
#1 = 24 fps
All Others = 1,000 fps

Left Side View
Motion Picture Camera Locations

Vehicle year/make/model/body style: 2004/Buick/LeSabre/4-door sedan

<table>
<thead>
<tr>
<th>Camera Number</th>
<th>View</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Camera Angle</th>
<th>Film Plane to Head Target</th>
<th>Camera Lens</th>
<th>Film Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pre- and Post-Test panning and documentary</td>
<td>94.7 in</td>
<td>304.3 in</td>
<td>41.6 in</td>
<td>0°</td>
<td>286.8 in</td>
<td>6.7 mm</td>
<td>30 frames/s</td>
</tr>
<tr>
<td>2</td>
<td>Left side view wide</td>
<td>69.2 in</td>
<td>71.3 in</td>
<td>51.7 in</td>
<td>-9.9°</td>
<td>56.5 in</td>
<td>13 mm</td>
<td>1000 frames/s</td>
</tr>
<tr>
<td>3</td>
<td>Left side view over shoulder</td>
<td>97.4 in</td>
<td>50.2 in</td>
<td>57.8 in</td>
<td>-15.4°</td>
<td>36.8 in</td>
<td>8 mm</td>
<td>1170 frames/s</td>
</tr>
<tr>
<td>4</td>
<td>Right side view wide</td>
<td>69.0 in</td>
<td>73.5 in</td>
<td>51.0 in</td>
<td>-9.4°</td>
<td>57.5 in</td>
<td>13 mm</td>
<td>1000 frames/s</td>
</tr>
<tr>
<td>5</td>
<td>Right side view over shoulder</td>
<td>99.0 in</td>
<td>49.5 in</td>
<td>57.7 in</td>
<td>-12.5°</td>
<td>36.4 in</td>
<td>8 mm</td>
<td>1067 frames/s</td>
</tr>
<tr>
<td>6</td>
<td>Front view - driver</td>
<td>28.0 in</td>
<td>15.1 in</td>
<td>50.8 in</td>
<td>-5.6°</td>
<td>56.1 in</td>
<td>8 mm</td>
<td>760 frames/s</td>
</tr>
<tr>
<td>7</td>
<td>Front view - passenger</td>
<td>37.3 in</td>
<td>16.7 in</td>
<td>50.9 in</td>
<td>-2.3°</td>
<td>55.9 in</td>
<td>8 mm</td>
<td>947 frames/s</td>
</tr>
</tbody>
</table>

1. X: Film plane to front of sled
 Y: Film plane to sled centerline
 Z: Film plane to top of sled.

2. Angle: Film plane of camera downward from horizontal plane

3. Camera speed was below 1000 frames/s target speed.
FMVSS 208 Occupant Injury Data

Vehicle: 2004/Buick/LeSabre/4-door sedan NHTSA No.: C40115 Date:04/05/04

<table>
<thead>
<tr>
<th>Maximum Acceleration Values: (g)</th>
<th>Driver Dummy #314</th>
<th>Passenger Dummy #229</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head Channel X</td>
<td>-27.8</td>
<td>-35.9</td>
</tr>
<tr>
<td>Head Channel Y</td>
<td>5.3</td>
<td>-19.3</td>
</tr>
<tr>
<td>Head Channel Z</td>
<td>19.1</td>
<td>29.2</td>
</tr>
<tr>
<td>HEAD RESULTANT</td>
<td>33.7</td>
<td>40.7</td>
</tr>
<tr>
<td>Chest Channel X</td>
<td>-40.7</td>
<td>-33.0</td>
</tr>
<tr>
<td>Chest Channel Y</td>
<td>-2.1</td>
<td>-1.6</td>
</tr>
<tr>
<td>Chest Channel Z</td>
<td>11.2</td>
<td>19.0</td>
</tr>
<tr>
<td>CHEST RESULTANT</td>
<td>42.1</td>
<td>36.4</td>
</tr>
</tbody>
</table>

Head Injury Criteria (HIC) Values:

<table>
<thead>
<tr>
<th>HIC</th>
<th>95</th>
<th>203</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_1 = (ms)$</td>
<td>76.40</td>
<td>101.84</td>
</tr>
<tr>
<td>$t_2 = (ms)$</td>
<td>112.40</td>
<td>137.84</td>
</tr>
</tbody>
</table>

The maximum HIC time interval from t_1 to t_2 is 36 milliseconds.

Chest Injury Criteria (Clip) Values:

<table>
<thead>
<tr>
<th>CLIP (g)</th>
<th>41.3</th>
<th>35.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_1 = (ms)$</td>
<td>97.96</td>
<td>95.68</td>
</tr>
<tr>
<td>$t_2 = (ms)$</td>
<td>100.96</td>
<td>98.68</td>
</tr>
<tr>
<td>Chest Deflection (in)</td>
<td>1.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>
FMVSS 208 Occupant Injury Data, Cont'd.

Vehicle: 2004/Buick/LeSabre/4-door sedan
NHTSA No.: C40115
Date: 04/05/04

<table>
<thead>
<tr>
<th>Max. Compressive Femur Forces:</th>
<th>Driver Dummy #314</th>
<th>Passenger Dummy #229</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Side (lbs)</td>
<td>1245</td>
<td>1093</td>
</tr>
<tr>
<td>Right Side (lbs)</td>
<td>1171</td>
<td>1100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neck Injury Criteria:</th>
<th>Driver Dummy #314</th>
<th>Passenger Dummy #229</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Flexion Bending Moment (N-m)</td>
<td>55.1</td>
<td>43.6</td>
</tr>
<tr>
<td>Peak Extension Bending Moment (N-m)</td>
<td>6.7</td>
<td>37.0</td>
</tr>
<tr>
<td>Peak Axial Tension (N)</td>
<td>886</td>
<td>1342</td>
</tr>
<tr>
<td>Peak Axial Compression (N)</td>
<td>183</td>
<td>814</td>
</tr>
<tr>
<td>Peak Positive X-axis Shear (N)</td>
<td>1066</td>
<td>1026</td>
</tr>
<tr>
<td>Peak Negative X-axis Shear (N)</td>
<td>110</td>
<td>230</td>
</tr>
</tbody>
</table>
DATA SHEET 3
Certification Label and Tire Placard Information

NHTSA No. C40115 Test Date: 03/06/04
Laboratory: TRC Inc. Test Technician(s): Michael S. Postle, Steve Bell

1. Certification Label
 Manufacturer: General Motors Corporation
 Date of Manufacture: 09/03
 VIN: 1G4HP52K044121812
 Vehicle certified as: X Passenger car ___MPV ___Truck ___Bus
 Front axle GVWR: 4694 lbs
 Rear axle GVWR: 2522 lbs
 Total GVWR: 2172 lbs

2. Tire Placard
 ___N/A – vehicle is not a passenger car and does not have a tire placard.
 ___This is not a passenger car (see the item 1 above), but all or part of this information is still
 contained on a vehicle label and is reported here.

 Vehicle Capacity Weight 1076 lbs
 Designated seating capacity front 3
 Designated seating capacity rear 3
 Total Designated seating capacity 6
 Recommended cold tire inflation pressure front: 33 psi
 Recommended cold tire inflation pressure rear: 33 psi
 Recommended tire size: P215/70R15
DATA SHEET 4
REAR OUTBOARD SEATING POSITION SEAT BELTS

NHTSA No. C40115 Test Date: 03/05/04

Laboratory: TRC Inc. Test Technician(s): Ronald Stoner

Do all rear outboard seating positions have type 2 seat belts? Yes X; No

If NO, describe the seat belt installed, the seat location, and any other information about the seat that would explain why a type 2 seat belt was not installed.

REMARKS:
DATA SHEET 5
AIR BAG LABELS (54.5.1)

NHTSA No. C40115 Test Date: 03/04/04

Laboratory: TRC Inc. Test Technician(s): Michael S. Postle, Steve Bell

1. Air Bag Maintenance Label and Owner’s Manual Instructions: (54.5.1(a))
 1.1 Does the manufacturer recommend periodic maintenance or replacement of the air bag?
 ____ Yes (Go to 1.2); X No (Go to 2)
 1.2 Does the vehicle have a label specifying air bag maintenance or replacement?
 ____ Yes-Pass; ____ No-FAIL
 1.3 Does the label contain one of the following?
 ____ Yes-Pass; ____ No-FAIL
 Check applicable schedule
 ____ Schedule on label specifies month and year (Record date__________)
 ____ Schedule on label specifies vehicle mileage (Record mileage__________)
 ____ Schedule on label specifies interval measured from date on certification label
 (Record Interval__________)
 1.4 Is the label permanently affixed within the passenger compartment such that it cannot be
 removed without destroying or defacing the label or the survivor?
 ____ Yes-Pass; ____ No-FAIL
 1.5 Is the label lettered in English?
 ____ Yes-Pass; ____ No-FAIL
 1.6 Is the label in block capitals and numerals?
 ____ Yes-Pass; ____ No-FAIL
 1.7 Are the letters and numerals at least 3/32 inches high?
 ____ height of letters and numerals
 ____ Yes-Pass; ____ No-FAIL
 1.8 Does the owner’s manual set forth the recommended schedule for maintenance or replacement?
 ____ Yes-Pass; ____ No-FAIL

2. Does the owner’s manual (54.5.1(f))
 2.1 Include a description of the vehicle’s air bag system in an easily understandable format?
 X Yes-Pass; ____ No-FAIL
 2.2 Include a statement that the vehicle is equipped with an air bag and a lap/shoulder belt at the
 front outboard seating positions?
 ____ Yes-Pass; ____ No-FAIL
 2.3 Include a statement that the air bag is a supplemental restraint at the front outboard seating
 positions?
 X Yes-Pass; ____ No-FAIL
 2.4 Emphasize that all occupants, including the driver, should always wear their seat belts whether or
 not an air bag is also provided at their seating positions to minimize the risk of severe injury or
 death in the event of a crash?
 X Yes-Pass; ____ No-FAIL
 2.5 Provide any necessary precautions regarding the proper positioning of occupants, including
 children, at seating positions equipped with air bags to ensure maximum safety protection for
 those occupants?
 X Yes-Pass; ____ No-FAIL
 2.6 Explain that no objects should be placed over or near the air bag on the steering wheel or on the
 instrument panel, because any such objects could cause harm if the vehicle is in a crash severe
 enough to cause the air bag to inflate?
 X Yes-Pass; ____ No-FAIL
 2.7 Is the vehicle certified to meet the requirements of S14.5, S15, S17, S19, S21, S23, and S25?(Obtain the answer to this question from the COTR.) (54.5.1(f)(2))
 ____ Yes (go to 2.7.1); ____ No (go to 3)
 2.7.1 Explain the proper functioning of the advanced air bag system? (54.5.1(f)(2))
 X Yes-Pass; ____ No-FAIL
2.7.2 Provide a summary of the actions that may affect the proper functioning of the system? (S4.5.1(f)(2))
 X Yes-Pass: __ No-FAIL

2.7.3 Present and explain the main components of the advanced passenger air bag system? (S4.5.1(f)(2)(i))
 X Yes-Pass: __ No-FAIL

2.7.4 Explain how the components function together as part of the advanced passenger air bag system? (S4.5.1 (f)(2)(ii))
 X Yes-Pass: __ No-FAIL

2.7.5 Contain the basic requirements for proper operation, including an explanation of the actions that may affect the proper functioning of the system? (S4.5.1(f)(2)(iii))
 X Yes-Pass: __ No-FAIL

2.7.6 Is the vehicle certified to the requirements of S19.2, S21.2 or S23.2 (automatic suppression)?
 Yes, continue with 2.7.6
 X No, go to 2.7.7

2.7.6.1 Contain a complete description of the passenger air bag suppression system installed in the vehicle, including a discussion of any suppression zone? (S4.5.1(f)(2)(iv))
 X Yes-Pass: __ No-FAIL

2.7.6.2 Discuss the telltale light, specifying its location in the vehicle and explaining when the light is illuminated?
 X Yes-Pass: __ No-FAIL

2.7.7 Explain the interaction of the advanced passenger air bag system with other vehicle components, such as seat belts, seats or other components? (S4.5.1(f)(2)(v))
 X Yes-Pass: __ No-FAIL

2.7.8 Summarize the expected outcomes when child restraint systems, children and small teenagers or adults are both properly and improperly positioned in the passenger seat, including cautionary advice against improper placement of child restraint systems? (S4.5.1(f)(2)(vi))
 X Yes-Pass: __ No-FAIL

2.7.9 Provide information on how to contact the vehicle manufacturer concerning modifications for persons with disabilities that may affect the advanced air bag system? (S4.5.1(f)(2)(vii))
 X Yes-Pass: __ No-FAIL

3. Sun Visor Air Bag Warning Label (S4.5.1 (b)) Check only one of the following:
 X The vehicle is not certified to meet the requirements of S19, S21, and S23. (Obtain the answer to this question from the COTR.) (S4.5.1(b)(1)) Go to 3.1 and skip 3.2 and 3.3
 The vehicle is certified to meet the requirements of S19, S21, and S23 before 9/1/03. (Obtain the answer to this question from the COTR.) (S4.5.1(b)(2)) Go to 3.2 and skip 3.1 and 3.3
 X The vehicle is certified to meet the requirements of S19, S21, and S23 on 9/1/03 or later. (Obtain the answer to this question from the COTR.) (S4.5.1(b)(3)) Go to 3.3 and skip 3.1 and 3.2

3.1 Vehicles not certified to meet the requirements of S19, S21, and S23.
 3.1.1 Is the label permanently affixed (including permanent marking on the visor material or molding into the visor material) to either side of the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing it? (S4.5.1(b)(1))
 Driver side X Yes-Pass __ No-FAIL
 Passenger side X Yes-Pass __ No-FAIL

3.1.2 Does the label conform in content to the label shown in either Figure 6a or 6b (Figure 6b is for vehicles with passenger air bag on-off switches), as appropriate, at each front outboard seating position? (S4.5.1(b)(1)(i)) (Vehicles without back seats may omit the statement: "The BACK SEAT IS THE SAFEST place for children." (S4.5.1(b)(1)(iv))
 Driver side X Yes-Pass __ No-FAIL
 Passenger side X Yes-Pass __ No-FAIL

3.1.3 Is the label heading area yellow with the word "WARNING" and the alert symbol in black? (S4.5.1 (b)(1)(i))
 Driver side X Yes-Pass __ No-FAIL
 Passenger side X Yes-Pass __ No-FAIL
3.1.4 Is the message area white with black text? (S4.5.1 (b)(1)(ii))
- Driver side: X Yes-Pass ___ No-FAIL
- Passenger side: X Yes-Pass ___ No-FAIL

3.1.5 Is the message area at least 30 cm²? (S4.5.1 (b)(1)(ii))
- Driver side: Length ______ Width ______
- Passenger side: Length ______ Width ______
- Actual message area: ______ cm²
- Driver side: X Yes-Pass ___ No-FAIL
- Passenger side: X Yes-Pass ___ No-FAIL

3.1.6 Is the pictogram black with a red circle and slash on a white background? (S4.5.1(b)(2)(iii))
- Driver side: X Yes-Pass ___ No-FAIL
- Passenger side: X Yes-Pass ___ No-FAIL

3.1.7 Is the pictogram at least 30 mm in diameter? (S4.5.1 (b)(2)(iii))
- Actual diameter: ______ mm
 - Driver side: X Yes-Pass ___ No-FAIL
 - Passenger side: X Yes-Pass ___ No-FAIL

3.2 Vehicles certified to meet the requirements of S19, S21, and S23 before 9/1/03. (S4.5.1(b)(2))

3.2.1 Is the label permanently affixed (including permanent marking on the visor material or molding into the visor material) to either side of the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing the label or the sun visor? (S4.5.1(b)(2))
- Driver side: ___ Yes-Pass ___ No-FAIL
- Passenger side: ___ Yes-Pass ___ No-FAIL

3.2.2 Does the label conform in content to the label shown in Figure 8 or Figure 11 at each front outboard seating position? (S4.5.1(b)(2)) (Vehicles without back seats may omit the statement: "The BACK SEAT is the SAFEST place for children." (S4.5.1(b)(2)(iv)) Vehicles without back seats or the back seat is too small to accommodate a rear-facing child restraint may omit the statement "Never put a rear-facing child seat in the front." (S4.5.1(b)(2)(v)))
- Driver side: ___ Yes-Pass ___ No-FAIL
- Passenger side: ___ Yes-Pass ___ No-FAIL

3.2.3 Is the label heading area yellow with the word “WARNING” and the alert symbol in black? (S4.5.1 (b)(2)(ii))
- Driver side: ___ Yes-Pass ___ No-FAIL
- Passenger side: ___ Yes-Pass ___ No-FAIL

3.2.4 Is the message area white with black text? (S4.5.1(b)(2)(ii))
- Driver side: ___ Yes-Pass ___ No-FAIL
- Passenger side: ___ Yes-Pass ___ No-FAIL

3.2.5 Is the message area at least 30 cm²? (S4.5.1(b)(2)(ii))
- Driver side: Length ______ Width ______
- Passenger side: Length ______ Width ______
 - Driver actual message area: ______ cm²
- Driver side: ___ Yes-Pass ___ No-FAIL
- Passenger side: ___ Yes-Pass ___ No-FAIL

3.2.6 Is the pictogram black on a white background? (S4.5.1(b)(2)(iii))
- Driver side: ___ Yes-Pass ___ No-FAIL
- Passenger side: ___ Yes-Pass ___ No-FAIL

3.2.7 Is the pictogram at least 30 mm (1.2 in) in length? (S4.5.1(b)(2)(iii))
- Driver side: Length _____
- Passenger side: Length _____
- Driver side: ___ Yes-Pass ___ No-FAIL
- Passenger side: ___ Yes-Pass ___ No-FAIL

3.3 Vehicles certified to meet the requirements of S19, S21, and S23 on 9/1/03 and later. (S4.5.1(b)(3))
3.3.1 Is the label permanently affixed (including permanent marking on the visor material or molding into the visor material) to either side of the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing the label or the sun visor? (S4.5.1 (b)(3))

Driver side ___ Yes-Pass ___ No-FAIL
Passenger side ___ Yes-Pass ___ No-FAIL

3.3.2 Does the label conform to content to the label shown in Figure 11 at each front outboard seating position? (S4.5.1(b)(2)) (Vehicles without back seats may omit the statement: "The BACK SEAT is the SAFEST place for children." (S4.5.1(b)(3)(iv)) Vehicles without back seats or the back seat is too small to accommodate a rear-facing child restraint may omit the statement "Never put a rear-facing child seat in the front." (S4.5.1(b)(3)(v)))

Driver side ___ Yes-Pass ___ No-FAIL
Passenger side ___ Yes-Pass ___ No-FAIL

3.3.3 Is the label reading area yellow with the word “WARNING” and the alert symbol in black? (S4.5.1 (b)(3)(i))

Driver side ___ Yes-Pass ___ No-FAIL
Passenger side ___ Yes-Pass ___ No-FAIL

3.3.4 Is the message area white with black text? (S4.5.1(b)(3)(ii))

Driver side ___ Yes-Pass ___ No-FAIL
Passenger side ___ Yes-Pass ___ No-FAIL

3.3.5 Is the message area at least 30 cm²? (S4.5.1(b)(3)(iii))

Driver side: Length _______ Width _______
Passenger side: Length _______ Width _______
Driver actual message area: _______ cm²
Passenger actual message area: _______ cm²

Driver side ___ Yes-Pass ___ No-FAIL
Passenger side ___ Yes-Pass ___ No-FAIL

3.3.6 Is the pictogram black on a white background? (S4.5.1(b)(3)(iv))

Driver side ___ Yes-Pass ___ No-FAIL
Passenger side ___ Yes-Pass ___ No-FAIL

3.3.7 Is the pictogram at least 30 mm in length? (S4.5.1(b)(3)(v))

Driver side: Length _______
Passenger side: Length _______
Driver side ___ Yes-Pass ___ No-FAIL
Passenger side ___ Yes-Pass ___ No-FAIL

3.4 Is the same side of the sun visor that contains the air bag warning label free of other information with the exception of the air bag maintenance label and/or the rollover-warning label? (S4.5.1 (b)(5)(i))

Driver side ___ X Yes-Pass ___ No-FAIL
Passenger side ___ X Yes-Pass ___ No-FAIL

3.5 Is the sun visor free of other information about air bags or the need to wear seat belts with the exception of the air bag alert label and/or the rollover-warning label? (S4.5.1(b)(5)(ii))

Driver side ___ X Yes-Pass ___ No-FAIL
Passenger side ___ X Yes-Pass ___ No-FAIL

3.6 Does the driver side visor contain a rollover-warning label on the same side of the visor as the air bag warning label?

___ Yes (go to 3.6.1); ___ No (go to 4., skipping 3.6.1 through 3.6.3)

3.6.1 Are both the rollover-warning label and the air bag warning label surrounded by a continuous solid-lined border?

___ Yes (go to 3.6.2 and skip 3.6.3); ___ No (go to 3.6.3 and skip 3.6.2.)

3.6.2 Is the shortest distance from the border of the rollover label to the border of the air bag warning label at least 1 cm? (S75.105 (d)(1)(v)(B))

________ actual distance

___ Yes-Pass ___ No-FAIL

3.6.3 Is the shortest distance from any of the lettering or graphics on the rollover-warning label to any of the lettering or graphics of the air bag warning label at least 3 cm? (S75.105(d)(1)(M)(A))

________ actual distance

___ Yes-Pass ___ No-FAIL
4. Air Bag Alert Label (S4.5.1(c)) (A "Rollover Warning Label" or “Rollover Alert Label" may be on the same side of the driver's sun visor as the "Air Bag Alert Label." S75.105(d))

4.1 Is the Sun Visor Warning Label visible when the sun visor is in the stowed position?
 Driver side X Yes __No
 Passenger side X Yes __No

4.2 Is the air bag alert label permanently affixed (including permanent marking on the visor material or molding into the visor material) to the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing the label or the sun visor? (S4.5.1(c))
 Driver side __Yes-Pass __No-FAIL
 Passenger side __Yes-Pass __No-FAIL

4.3 Is the air bag alert label visible when the visor is in the stowed position? (S4.5.1(c))
 Driver side __Yes-Pass __No-FAIL
 Passenger side __Yes-Pass __No-FAIL

4.4 Does the label conform in content to the label shown in Figure 6c? (S4.5.1(c))
 Driver side __Yes-Pass __No-FAIL
 Passenger side __Yes-Pass __No-FAIL

4.5 Is the message area black with yellow text? (S4.5.1(c)(1))
 Driver side __Yes-Pass __No-FAIL
 Passenger side __Yes-Pass __No-FAIL

4.6 Is the message area at least 20 cm²? (S4.5.1(c)(1))
 Driver side: Length ______, Width _______
 Passenger side: Length ______, Width _______

 Actual message area ______ cm²

4.7 Is the pictogram black with a red circle and slash on a white background? (S4.5.1(c)(2))
 Driver side __Yes-Pass __No-FAIL
 Passenger side __Yes-Pass __No-FAIL

4.8 Is the pictogram at least 20 mm in diameter? (S4.5.1(c)(2))
 Driver side: diameter _______
 Passenger side: diameter _______

4.9 Is the message area yellow with black text? (S4.5.1(c)(2)(1))
 Driver side __Yes-Pass __No-FAIL
 Passenger side __Yes-Pass __No-FAIL

5. Label On the Dashboard

5.1 Is the vehicle certified to meet the requirements of S19, S21, and S23? (Obtain the answer to this question from the COTR.) (S4.5.1(e)(2))
 __Yes (go to 5.1.1 and skip 5.2)
 X No (go to 5.2, skipping 5.1.1 through 5.1.6)

5.1.1 Does the vehicle have a label on the dash or steering wheel hub? (S4.5.1(e)(2))
 __Yes-Pass __No-FAIL

5.1.2 Is the label clearly visible from all front seating positions? (S4.5.1(e)(2))
 __Yes-Pass __No-FAIL

5.1.3 Does the label conform in content to the label shown in Figure 9? (S4.5.1(e)(2)(2)) (Vehicles without back seats may omit the statement: "The back seat is the safest place for children." (S4.5.1(e)(2)(3))).
 __Yes-Pass; __No-Fail

5.1.4 Is the heading area yellow with black text? (S4.5.1(e)(2)(4))
 __Yes-Pass; __No-Fail

5.1.5 Is the message white with black text? (S4.5.1(e)(2)(5))
 __Yes-Pass; __No-Fail

5.1.6 Is the message area at least 30 cm²? (S4.5.1(e)(2)(6))
 Length ______, Width _______
 Actual message area ______ cm²
 __Yes-Pass; __No-FAIL

5.2 Does the vehicle have a label on the dash or steering wheel hub? (S4.5.1(e)(1))
 X Yes-Pass __No-FAIL
5.2.1 is the label clearly visible from all front seating positions? (S4.5.1(e)(1))
 \(\times \) Yes-Pass \(_ \) No-FAIL

5.2.2 Does the label conform in content to the label shown in Figure 7? (S4.5.1 (e)(1)(III)) (Vehicles without back seats may omit the statement: "The back seat is the safest place for children 12 and under." (S4.8.1(e)(2)(III))
 \(\times \) Yes-Pass; \(_ \) No-Fail

5.2.3 Is the heading area yellow with the word "WARNING" and the alert symbol in black? (S4.5.1 (e)(1)(i))
 \(\times \) Yes-Pass; \(_ \) No-FAIL

5.2.4 Is the message white with black text? (S4.5.1(e)(1)(ii))
 \(\times \) Yes-Pass; \(_ \) No-FAIL

5.2.5 Is the message area at least 30 cm\(^2\)? (S4.5.1(e)(1)(iii))
 Length 10.3, Width 5.1
 Actual message area 62 cm\(^2\)
 \(\times \) Yes-Pass; \(_ \) No-FAIL
Figure 6a. Sun Visor Label Visible When Visor is in Down Position.

Figure 6b. Sun Visor Label Visible When Visor is in Down Position.
Figure 6c. Sun Visor Label Visible When Visor is in Up Position.

Figure 7. Removable Label on Dash.
WARNING

Even with advanced air bags
- Children can be killed or seriously injured by the air bag
- The back seat is the safest place for children
- Always use seat belts and child restraints
- See owner's manual for more information about air bags

Figure 8. Sun Visor Label Visible when Visor is in Down Position.
This Vehicle is Equipped with Advanced Air Bags

Even with Advanced Air Bags
Children can be killed or seriously injured by the air bag.
The back seat is the safest place for children.
Always use seat belts and child restraints.
See owner's manual for more information about air bags.

Figure 9. Removable Label on Dash.
WARNING

EVEN WITH ADVANCED AIR BAGS

- Children can be killed or seriously injured by the air bag
- The back seat is the safest place for children
- Never put a rear-facing child seat in the front
- Always use seat belts and child restraints
- See owner's manual for more information about air bags

Figure 11. Sun Visor Label Visible when Visor is in Down Position.
DATA SHEET 6
FMVSS 208 READINESS INDICATOR (94.6.2)

NHTSA No. C40115 Test Date: 03/06/04

Laboratory: TRC Inc. Test Technician(s): Michael S. Postle, Steve Ball

An occupant restraint system that deploys in the event of a crash shall have a monitoring system with a readiness indicator. A totally mechanical system is exempt from this requirement. (11/8/94 legal interpretation to Lawrence F. Hanneberger on behalf of Breed)

_1. Is the system totally mechanical?
(If YES this Data Sheet is complete.)
Yes ____; No X

_2. Describe the location of the readiness indicator: Upper right corner of instrument panel

_3. Is the readiness indicator clearly visible to the driver?
 X Yes-Pass; ___ No-FAIL

_4. Is a list of the elements in the occupant restraint system, being monitored by the readiness indicator, provided on a label or in the owner's manual?
 X Yes-Pass; ___ No-FAIL

_5. Does the vehicle have an on-off switch for the passenger air bag?
 ___ Yes (go to 6) X No (this form is complete)

_6. Is the air bag readiness indicator off when the passenger air bag switch is in the off position?
 ___ Yes-Pass; ___ No-FAIL

REMARKS:
DATA SHEET 7

Passenger Air Bag Manual Cut-Off Device (S4.5.4)

NHTSA No. C40115 ____________________________ Test Date: 03/08/04

Laboratory: TRC Inc. ________________ Test Technician(s): Michael S. Postle, Steve Bell

1. Is the vehicle equipped with an on-off switch that deactivates the air bag installed at the right front outboard seating position?
 _Yes, go to 2
 XNo, this sheet is complete

2. Does the vehicle have any forward-facing rear designated seating positions? (S4.5.4(a))
 _Yes, go to 3
 _No, go to 4

3. Verification of the lack of room for a child restraint in the rear seat behind the driver's seat.
 (S4.5.4(b))
 _3.1 Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 _NA - No lumbar adjustment
 _3.2 Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 _NA - No additional support adjustment
 _3.3 If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 _NA - No independent fore-aft seat cushion adjustment
 _3.4. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S16.2.10.3.1)
 _NA - No independent seat cushion height adjustment.
 _3.5. Put the seat in its full rearward position. (S16.2.10.3.1)
 _NA - the seat does not have a fore-aft adjustment
 _3.6. If the seat height is adjustable, put it in the full down position. (S16.2.10.3.1)
 _NA - No seat height adjustment
 _3.7 Draw a horizontal reference line on the side of the seat cushion.
 _3.8. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the mid-point), and R for full rearward.
 _NA - The seat does not have a fore-aft adjustment.
 _3.9. Using only the controls that change the seat in the fore-aft direction, place the seat in the full rearward position and then place the seat in the middle fore-aft position. (S8.1.2)
 _NA - The seat does not have fore-aft adjustment.
 __Mid position
 __If there is no mid position, put the seat in the closest adjustment position to the rear of the midpoint. Describe the location of the seat: ________________________________
 _3.10. If seat adjustments, other than fore-aft, are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal.
 _NA - No adjustments
 __Angle of reference line as tested

40 8040405
3.11. The seat back angle, if adjustable, is set at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.5.4.1(b) and S3.1.3)
 - N/A – No seat back angle adjustment
 - Manufacturer’s design seat back angle __________
 - Tested seat back angle __________

3.12 Is the driver seat a bucket seat?
 - Yes, go to 3.12.1 and skip 3.12.2
 - No, go to 3.12.2 and skip 3.12.1.

3.12.1 Bucket seats:
3.12.1.1 Locate and mark a vertical Plane B through the longitudinal centerline of the seat. The longitudinal centerline of a bucket seat cushion is determined at the widest part of the seat cushion. Measure perpendicular to the longitudinal centerline of the vehicle.
 - Record the distance from the edge of the seat to Plane B.

3.12.1.2 Locate the longitudinal horizontal line in plane B that is tangent to the highest point of the rear seat cushion behind the driver’s seat. Measure along this line from the front of the seat back of the rear seat to the rear of the seat back of the driver’s seat.
 - mm distance
 - less than 720 mm – Pass
 - more than 720 mm – FAIL
 - Go to 4

3.12.2 Bench seats (including split bench seats):
3.12.2.1 Locate and mark a vertical Plane B through the center of the steering wheel parallel to the vehicle longitudinal centerline.
3.12.2.2 Locate the longitudinal horizontal line in plane B that is tangent to the highest point of the rear seat cushion. Measure along this line from the front of the seat back of the rear seat to the rear of the seat back of the front seat.
 - mm distance
 - less than 720 mm – Pass
 - more than 720 mm – FAIL
 - Go to 4

4. Does the device turn the air bag on and-off using the vehicle’s ignition key? (S4.5.4.2)
 - Yes – Pass
 - No – FAIL

5. Is the on-off device separate from the ignition switch? (S4.5.4.2)
 - Yes – Pass
 - No – FAIL

6. Is there a telltale light that comes on when the passenger air bag is turned off? (S4.5.4.2)
 - Yes – Pass
 - No – FAIL

7. Telltale light (S4.5.4.3)
7.1 Is the light yellow? (S4.5.4.3(a))
 - Yes – Pass
 - No – FAIL

7.2 Are the words “PASSENGER AIR BAG OFF” (S4.5.4.3(b))
7.2.1 on the telltale?
 - Yes – Pass, go to 7.3
 - No – go to 7.2.2

7.2.2 within 25 mm of the telltale? ________ mm from the edge of the telltale light.
 - Yes – Pass
 - No – FAIL

7.3 Does the telltale remain illuminated while the air bag is turned off? (S4.5.4.3(c)) (Leave the air bag off for 5 minutes.)
 - Yes – Pass
 - No – FAIL.
_7.4 Is the telltale illuminated while the air bag is turned on? (S4.5.4.3(d))
 _Yes – FAIL
 _No – Pass

_7.5 Is the telltale combined with the air bag readiness indicator? (S4.5.3(e))
 _Yes – FAIL
 _No – Pass

_8. Owner's manual

_8.1 Does the owner's manual contain complete instructions on the operation of the on-off switch? (S4.5.4.4(a))
 _Yes – Pass
 _No – FAIL

_8.2 Does the owner's manual contain a statement that the on-off switch should only be used when a member of one of the following risk groups is occupying the right front passenger seating position? (S4.5.4.4(b))
 "Infants:
 - there is no back seat
 - the rear seat is too small to accommodate a child restraint
 "Children aged 1 to 12:
 - there is no back seat
 - space is not always available in the rear seat
 "Medical condition:
 - there is a medical condition that must be monitored constantly
 - medical risk causes special risk for passenger
 - greater risk for harm than with the air bag on"
 _Yes – Pass
 _No – FAIL

_8.3 Does the owner's manual contain a warning about the safety consequences of using the on-off switch at other times?
 _Yes – Pass
 _No – FAIL
DATA SHEET 8

LAP BELT LOCKABILITY
Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver's seat (S7.1.1.5(a)), and that has seat belt retractors that are not solely automatic locking retractors. (S7.1.1.5(c))

NHTSA No. C40115 ___________________________ Test Date: 08/08/04 ___________________________

Laboratory: TRC Inc. ___________________________ Test Technician(s): Michael S. Postle, Steve Bell ___________________________

DESIGNATED SEATING POSITION: Front passenger ___________________________

_N/A — No retractor is at this position
_N/A — The retractor is an automatic locking retractor ONLY
d 1. Record test fore-aft seat position. Middle of geometric range of travel (S7.1.1.5 (c)(1))
 (Any position is acceptable.)
 X 2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5 (a))
 X Yes-Pass; __ No-FAIL
 X 3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.5 (a))
 X Yes-Pass; __ No-FAIL
 X 4. Buckle the seat belt. (S7.1.1.5(c)(1))
 X 5. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))
 X 6. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))
 X 7. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?
 X Yes; __ No — (If yes, go to 7.1. If no, go to 8.)
 X 7.1 Does the vehicle owner's manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))
 X Yes-Pass; __ No-FAIL
 X 8. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner's manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2) & S7.1.1.5(c)(1))
 X 9. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))
 Measured distance between A and B .327 inches
 X 10. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(c)(3))
 X 11. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))
 Measured force application angle _10 degrees________________ (spec. 5 - 15 degrees)
12. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))
 Measured distance between A and B: __________ Inches

13. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))
 Recorded onset rate: __________ lb/sec (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5))
 Measured distance between A and B: __________ Inches (S7.1.1.5(c)(6))

14. Subtract the measurement in 13 from the measurement in 12. Is the difference 2 inches or less? (S7.1.1.5(c)(7))
 13-12= __________ inches; __Yes-Pass.; __No-FAIL.

15. Subtract the measurement in 9 from the measurement in 13. Is the difference 3 inches or more? (S7.1.1.5(c)(8))
 9-13= __________ inches; __Yes-Pass.; __No-FAIL.

REMARKS:
Figure 5. - Webbing Tension Pull Device
DATA SHEET 8
LAP BELT LOCKABILITY
Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver's seat (S7.1.1.5(a)), and that has seat belt retractors that are not solely automatic locking retractors. (S7.1.1.5(c))

NHTSA No. C40115 ___________________________ Test Date: 03/08/04

Labaratory: TRD Inc. __________________________ Test Technician(s): Michael S. Postle, Steve Bell

DESIGNATED SEATING POSITION: Left rear passenger ________________________________

_N/A – No retractor is at this position
_N/A – The retractor is an automatic locking retractor ONLY

1. Record test fore-aft seat position. Fixed position ___________________________ (S7.1.1.5 (c)(1))
 (Any position is acceptable.)

2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5 (a))
 _X Yes-Pass; __No-FAIL

3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inventing, twisting or deforming of the belt webbing. (S7.1.1.5 (a))
 _X Yes-Pass; __No-FAIL

4. Buckle the seat belt. (S7.1.1.5(c)(1))

5. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))

6. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

7. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?
 _Yes; X No (If yes, go to 7.1. If no, go to 8.)

7.1 Does the vehicle owner's manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))
 _Yes-Pass; __No-FAIL

8. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner's manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(2) & S7.1.1.5(1))

9. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))
 Measured distance between A and B: 56.8 inches

10. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(c)(3))

11. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(4))
 Measured force application angle: 10 degrees (spec. 5 - 15 degrees)
X 12. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))
 Measured distance between A and B _32.7________ inches

X 13. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))
 Record onset rate _25________ lb/sec (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5))
 Measured distance between A and B _33.1________ inches (S7.1.1.5(c)(6))

X 14. Subtract the measurement in 13 from the measurement in 12. Is the difference 2 inches or less? (S7.1.1.5(c)(7)) 13-12= _0.4________ inches;
 X Yes-Pass; __ No-FAIL

X 15. Subtract the measurement in 9 from the measurement in 13. Is the difference 3 inches or more? (S7.1.1.5(c)(8)) 9-13= _23.8________ inches;
 X Yes-Pass; __ No-FAIL

REMARKS:
Insert Webbing to Rest Against This Surface

1/4 Inch Diameter (Steel)

Direction of Pull

Dimension A - Width of Webbing Plus 1/2 Inch
Dimension B - 1/2 of Dimension A

Figure 5. - Webbing Tension Pull Device
DATA SHEET 8

LAP BELT LOCKABILITY
Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver's seat (S7.1.1.5(a)), and that has seat belt retractors that are not solely automatic locking retractors. (S7.1.1.5(c))

NHTSA No. C40115 Test Date: 03/08/04

Laboratory: TRC Inc. Test Technician(s): Michael S. Postle, Steve Bell

DESIGNATED SEATING POSITION: Center rear passenger

_N/A - No retractor is at this position
_N/A - The retractor is an automatic locking retractor ONLY

-1. Record test fore-aft seat position. __Fixed position________________________ (S7.1.1.5 (c)(1))
 (Any position is acceptable.)

-2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5 (a))
 __Yes-Pass; __No-FAIL

-3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inventing, twisting or deforming of the belt webbing. (S7.1.1.5 (a))
 __Yes-Pass; __No-FAIL

-4. Buckle the seat belt. (S7.1.1.5(c)(1))

-5. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))

-6. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

-7. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?
 __Yes; X No. (If yes, go to 7.1. If no, go to 8.)

-7.1 Does the vehicle owner's manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))
 __Yes-Pass; __No-FAIL

-8. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner's manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(2) & S7.1.1.5(c)(1))

-9. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))
 Measured distance between A and B: 57.3 inches

-10. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(c)(3))

-11. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))
 Measured force application angle: 10 degrees ____________ (spec. 5 - 15 degrees)
X 12. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (57.1.1.5(c)(4))
 Measured distance between A and B: _26.8_ inches

X 13. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (57.1.1.5(c)(5))
 Record onset rate: _25_ lb/sec (spec. 10 to 50 lb/sec) (57.1.1.5(c)(5))
 Measured distance between A and B: _27.2_ inches (57.1.1.5(c)(6))

X 14. Subtract the measurement in 13 from the measurement in 12. Is the difference 2 inches or less?
 (57.1.1.5(c)(7)) 13-12 = _0.8_ inches;
 _X Yes-Pass; _No-FAIL

X 15. Subtract the measurement in 9 from the measurement in 13. Is the difference 3 inches or more?
 (57.1.1.5(c)(8)) 9-13 = _30.1_ inches;
 _X Yes-Pass; _No-FAIL

REMARKS:
Figure 5. - Webbing Tension Pull Device
DATA SHEET 8

LAP BELT LOCKABILITY
Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GWR of 10,000 pounds or less. (S7.1.1.5)

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver's seat (S7.1.1.5(a), and that has seat belt retractor(s) that are not solely automatic locking retractors. (S7.1.1.5(e))

NHTSA No. C40115 Test Date: 03/08/04

Laboratory: TRC Inc. Test Technician(s): Michael S. Postle, Steve Bell

DESIGNATED SEATING POSITION: Right rear passenger

_ N/A – No retractor is at this position
_ N/A – The retractor is an automatic locking retractor ONLY

_ 1. Record test fore-aft seat position. Fixed position (S7.1.1.5 (c)(1)) (Any position is acceptable.)

_ 2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5 (a))
 _ X Yes-Pass; __ No-FAIL

_ 3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.5 (a))
 _ X Yes-Pass; __ No-FAIL

_ 4. Buckle the seat belt. (S7.1.1.5(c)(1))

_ 5. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))

_ 6. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

_ 7. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt or seat that can be adjusted to forward-facing?
 _ Yes; X No (if yes, go to 7.1. If no, go to 8.)

_ 7.1 Does the vehicle owner's manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))
 _ X Yes-Pass; __ No-FAIL

_ 8. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner's manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2) & S7.1.1.5(e)(1))

_ 9. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))
 Measured distance between A and B = 57.7 inches

_ 10. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(e)(3))

_ 11. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 6. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(e)(4))
 Measured force application angle = 10 degrees (spec. 5 - 15 degrees)
X 12. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))
 Measured distance between A and B 30.1__________ inches

X 13. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))
 Record onset rate 25__________ lb/sec (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5))
 Measured distance between A and B 30.5__________ inches (S7.1.1.5(c)(6))

X 14. Subtract the measurement in 13 from the measurement in 12. Is the difference 2 inches or less? (S7.1.1.5(c)(7)) 12-13—0.4__________ inches;
 X Yes-Pass; __No-FAIL

X 15. Subtract the measurement in 9 from the measurement in 13. Is the difference 3 inches or more? (S7.1.1.5(c)(8)) 9-13—27.2__________ inches;
 X Yes-Pass; __No-FAIL

REMARKS:
Insert Webbing to Rest Against This Surface

1/4 Inch Diameter (Steel)

Direction of Pull

Dimension A - Width of Webbing Plus 1/2 Inch
Dimension B - 1/2 of Dimension A

Figure 5. - Webbing Tension Pull Device
DATA SHEET 9

FMVSS 208 SEAT BELT WARNING SYSTEM CHECK (S7.3)

NHTSA No. C40115

Test Data: 03/05/04

Laboratory: TRC Inc. Test Technician(s): Michael S. Postle, Steve Bell

X 1. The occupant is in the driver's seat.
X 2. The seat belt is in the stowed position.
X 3. The key is in the "on" or "start" position.
X 4. The time duration of the audible signal beginning with key "on" or "start" is 5 seconds.
X 5. The occupant is in the driver's seat.
X 6. The seat belt is in the stowed position.
X 7. The key is in the "on" or "start" position.
X 8. The time duration of the warning light beginning with key "on" or "start" is 75 seconds.
X 9. The occupant is in the driver's seat.
X 10. The seat belt is in the latched position and with at least 4 inches of belt webbing extended.
X 11. The key is in the "on" or "start" position.
X 12. The time duration of the audible signal beginning with key "on" or "start" is 0 seconds.
X 13. The occupant is in the driver's seat.
X 14. The seat belt is in the latched position and with at least 4 inches of belt webbing extended.
X 15. The key is in the "on" or "start" position.
X 16. The time duration of the warning light beginning with key "on" or "start" is 5 seconds.
X 17. Complete the following table with the data from 4, 6, 12 and 16 to determine which option is used.

<table>
<thead>
<tr>
<th>Warning light</th>
<th>Warning light specification</th>
<th>Audible signal specification</th>
<th>Audible signal specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>S7.3 (a)(1)</td>
<td>Belt latched & Key on or</td>
<td>Item 16 5</td>
<td>Item 12 0</td>
</tr>
<tr>
<td></td>
<td>start</td>
<td>0 seconds*</td>
<td>0 seconds**</td>
</tr>
<tr>
<td></td>
<td>Belt stowed & Key on or</td>
<td>Item 8 75</td>
<td>Item 4 3</td>
</tr>
<tr>
<td></td>
<td>start</td>
<td>60 seconds minimum</td>
<td>4 to 8 seconds</td>
</tr>
<tr>
<td>S7.3 (a)(2)</td>
<td>Belt latched & Key on or</td>
<td>Item 16</td>
<td>Item 12</td>
</tr>
<tr>
<td></td>
<td>start</td>
<td>4 to 8 seconds</td>
<td>0 seconds**</td>
</tr>
<tr>
<td></td>
<td>Belt stowed & Key on or</td>
<td>Item 8</td>
<td>Item 4</td>
</tr>
<tr>
<td></td>
<td>start</td>
<td>4 to 8 seconds</td>
<td>4 to 8 seconds</td>
</tr>
</tbody>
</table>

* 49 USCS § 30124 does NOT allow an audible signal to operate for more than 8 seconds.
** 0 seconds means the light or audible signal are NOT permitted to operate under these conditions. See 7/12/00 interpretation to Patrick Raher of Hogan and Harston

18. The seat belt warning system meets the requirements of (manufacturers may comply with either section)
X S7.3 (a)(1)
X S7.3 (a)(2)
X FAIL - Does NOT meet the requirements of either option

19. Note wording of visual warning: (S7.3(a)(1) and S7.3(a)(2))
X Fasten Seat Belts
X Fasten Belts
X Symbol 101
X FAIL - Does not use any of the above wording or symbol
DATA SHEET 10
BELT CONTACT FORCE (S7.4.3)

NHTSA No. C40115 Test Date: 09/08/04
Laboratory: TRC inc. Test Technician(s): Michael S. Postle, Steve Bell

DESIGNATED SEATING POSITION: Left rear passenger

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

X.1. Does the vehicle incorporate a webbing tension-relieving device?
 ___Yes (this form is complete)
 ___No (continue with this check sheet)

X.3. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 X N/A - No lumbar adjustment

X.4. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 X N/A - No additional support adjustment

X.5. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 X N/A - No independent fore-aft seat cushion adjustment

X.6. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S16.2.10.3.1)
 X N/A - No independent seat cushion height adjustment

X.7. Put the seat in its full rearward position. (S16.2.10.3.1)
 X N/A - the seat does not have a fore-aft adjustment

X.8. If the seat height is adjustable, put it in the full down position. (S16.2.10.3.1)
 X N/A - No seat height adjustment

X.10. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: P for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the mid-point), and R for full rearward.
 X N/A - The seat does not have a fore-aft adjustment.

X.11. Using only the controls that change the seat in the fore-aft direction, place the seat in the full rearward position and then place the seat in the middle fore-aft position for this test. (S8.1.2)
 ___Mfd position. If there is no mid position, put the seat in the closest adjustment position to the rear of the midpoint. Describe the location of the seat:

X.12. If seat adjustments other than fore-aft are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal. (S16.2.10.3.2.1)
 X N/A - No adjustments

Reference line angle as tested ________

X.13. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.5.4.1 (b) and S8.1.3)
 X N/A - No seat back angle adjustment

Manufacturer's design seat back angle ________
Tested seat back angle ________

X.14. Position the test dummies according to dummy position placement instructions in Appendix B and include the positioning check sheets.
X.15. Fasten the seat belt latch.

X.16. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest.

X.17. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (S10.8) Using a force measuring gage with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy's chest exerted by the belt webbing.

Contact force 0.559 lb.

X.0 to 0.7 pounds - Pass

Greater than 0.7 pounds - FAIL
DATA SHEET 10
BELT CONTACT FORCE (S7.4.3)

NHTSA No. C40115 Test Date: 08/08/04

Laboratory: TRC Inc. Test Technician(s): Michael J. Posa, Steve Ball

DESIGNATED SEATING POSITION: Center rear passenger

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

X.1. Does the vehicle incorporate a webbing tension-relieving device?
 Yes (this form is complete)
 X No (continue with this check sheet)

X.3. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 X N/A - No lumbar adjustment

X.4. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S18.2.10.2)
 X N/A - No additional support adjustment

X.5. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S18.2.10.3.1)
 X N/A - No independent fore-aft seat cushion adjustment

X.6. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S18.2.10.3.1)
 X N/A - No independent seat cushion height adjustment

X.7. Put the seat in its full rearward position. (S18.2.10.3.1)
 X N/A - the seat does not have a fore-aft adjustment

X.8. If the seat height is adjustable, put it in the full down position. (S18.2.10.3.1)
 X N/A - No seat height adjustment

X.10. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the mid-point), and R for full rearward.
 X N/A - The seat does not have a fore-aft adjustment.

X.11. Using only the controls that change the seat in the fore-aft direction, place the seat in the full rearward position and then place the seat in the middle fore-aft position for this test. (S8.1.2)
 X Mid position. If there is no mid position, put the seat in the closest adjustment position to the rear of the midpoint. Describe the location of the seat ________________________

X.12. If seat adjustments other than fore-aft are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal. (S16.2.10.3.2.1)
 X N/A - No adjustments
 Reference line angle as tested ________________________

X.13. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.5.4.1 (b) and S8.1.3)
 X N/A - No seat back angle adjustment
 Manufacturer's design seat back angle ________________________
 Tested seat back angle ________________________

X.14. Position the test dummies according to dummy position placement instructions in Appendix B and include the positioning check sheets.
X 15. Fasten the seat belt latch.
X 16. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest.
X 17. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (S10.8) Using a force measuring gage with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy's chest exerted by the belt webbing.
Contact force __0.501___ lb.
X 0.0 to 0.7 pounds - Pass
__greater than 0.7 pounds - FAIL
DATA SHEET 10

BELT CONTACT FORCE (S7.4.3)

NHTSA No. C40115 Test Date: 03/08/04

Laboratory: TRC inc. Test Technician(s): Michael S. Postle, Steve Bell

DESIGNATED SEATING POSITION: Right rear passenger

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

X 1. Does the vehicle incorporate a webbing tension-relieving device?
 Yes (this form is complete)
 X No (continue with this check sheet)

X 3. Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deactuated adjustment position. (S8.1.3)
 X N/A – No lumbar adjustment

X 4. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 X N/A – No additional support adjustment

X 5. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 X N/A – No independent fore-aft seat cushion adjustment

X 6. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S16.2.10.3.1)
 X N/A – No independent seat cushion height adjustment

X 7. Put the seat in its full rearward position. (S16.2.10.3.1)
 X N/A - the seat does not have a fore-aft adjustment

X 8. If the seat height is adjustable, put it in the full down position. (S16.2.10.3.1)
 X N/A – No seat height adjustment

X 9. Draw a horizontal reference line on the side of the seat cushion.

X 10. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the mid-point), and R for full rearward.
 X N/A - The seat does not have a fore-aft adjustment.

X 11. Using only the controls that change the seat in the fore-aft direction, place the seat in the full rearward position and then place the seat in the middle fore-aft position for this test. (S8.1.2)
 Mid position. If there is no mid position, put the seat in the closest adjustment position to the rear of the mid-point. Describe the location of the seat:

X 12. If seat adjustments other than fore-aft are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal. (S16.2.10.3.2.1)
 X N/A – No adjustments
 Reference line angle as tested

X 13. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.5.4.1 (b) and S8.1.3)
 X N/A – No seat back angle adjustment
 Manufacturer's design seat back angle
 Tested seat back angle

X 14. Position the test dummies according to dummy position placement instructions in Appendix B and include the positioning check sheets.
15. Fasten the seat belt latch.

16. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest.

17. Locate the point where the centerline of the upper torso belt webbing crosses the mid-sagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (§10.8). Using a force measuring gauge with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy's chest exerted by the belt webbing.

Contact force: 0.55 lb.

X 0.0 to 0.7 pounds - Pass
X greater than 0.7 pounds - FAIL
TEST ATTACHMENT (S7.4.4)

DESIGNATED SEATING POSITION: N/A - Passenger car

Test all front outboard seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

1. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deleted adjustment position. (S16.2.10.3)
 - N/A - No lumbar adjustment
2. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - N/A - No additional support adjustment
3. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 - N/A - No independent fore-aft seat cushion adjustment
4. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S16.2.10.3.1)
 - N/A - No independent seat cushion height adjustment
5. Put the seat in its full rearward position. (S16.2.10.3.1)
 - N/A - The seat does not have a fore-aft adjustment
6. If the seat height is adjustable, put it in the full down position. (S16.2.10.3.1)
 - N/A - No seat height adjustment
7. Draw a horizontal reference line on the side of the seat cushion.
8. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as was done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the mid-point), and R for full rearward.
 - N/A - The seat does not have a fore-aft adjustment
9. Using only the controls that change the seat in the fore-aft direction, place the seat in the full rearward position and then place the seat in the forward most fore-aft position for this test. (S16.2.10.7)
10. If seat adjustments, other than fore-aft, are present and the horizontal reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal.
 - N/A - No adjustments
 - Reference line angle as tested
11. The seat back angle, if adjustable, is set at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.5.4.1 b) and S8.1.3
 - N/A - No seat back angle adjustment
 Manufacturer's design seat back angle
 Tested seat back angle
12. Position the test dummy using the procedures in Appendix A. (Some modifications to the positioning procedure may need to be made because the seat is in its forward most position. Note on the Appendix A positioning check sheet any deviations necessary to position the Part 572, Subpart E dummy.) Include the positioning check sheet with this form.
13. Position the adjustable seat belt anchorage in the manufacturer’s nominal design position for a 50th percentile adult male occupant.
14. Attach the inboard reach string to the base of the head following the instructions on Figure 3.
15. Attach the outboard reach string to the torso sheath following the instructions on Figure 3.
16. Place the latch plate in the stowed position.

17. Extend inboard reach string in front of the dummy and then backward and outboard to the latch plate to generate an arc of the reach envelope of the test dummy's arms. Is the latch plate within the reach envelope?
 ___Yes - Pass ___NO

18. Extend outboard reach string in front of the dummy and then backward and outboard to the latch plate to generate an arc of the reach envelope of the test dummy's arms. Is the latch plate within the reach envelope?
 ___Yes - Pass ___NO

19. Is the latch plate within the inboard (Item 17) or outboard (Item 18) reach envelope?
 ___Yes - Pass ___NO - FAIL

20. Using the clearance test block, specified in Figure 4, is there sufficient clearance between the vehicle seat and the side of vehicle interior to allow the test block to move unhindered to the latch plate or buckle?
 ___Yes - Pass ___NO - FAIL
Figure 3. Location of Anchoring Points for Latchplate Reach Limiting Chains or Strings to Test for Latchplate Accessibility Using Subpart B Test Device
Figure 4—USE OF CLEARANCE TEST BLOCK TO DETERMINE HAND/ARM ACCESS

(Note: corners are rounded off to reduce snagging.)
DATA SHEET 12
SEAT BELT RETRACTION (S7.4.5)

NHTSA No. C40115 Test Date: 03/08/04

Laboratory: TRC Inc. Test Technician(s): Michael S. Postle, Steve Bell

DESIGNATED SEATING POSITION: Left front passenger

GVWR:

Test all front outboard seat belts, except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

X 1. Is the vehicle a passenger car or walk-in van-type vehicle?
 X Yes, this form is complete
 No

2. Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S9.1.3)
 N/A – No lumbar adjustment

3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 N/A – No additional support adjustment

4. If the seat cushion adjusts fore and aft, independent of the seat back, set this adjustment to the full rearward position. (S16.2.10.3.1)
 N/A – No independent fore-aft seat cushion adjustment

5. If the seat cushion height adjusts independent of the seat back, set this adjustment to the full down position. (S16.2.10.3.1)
 N/A – No independent seat cushion height adjustment

6. Put the seat in its full rearward position.
 N/A – the seat does not have a fore-aft adjustment

7. If the seat height is adjustable, put it in the full down position. (S8.1.2)
 N/A – No seat height adjustment

8. Draw a horizontal line on the side of the seat cushion.

9. Using only the controls that change the seat in the fore-aft direction, mark the fore-aft seat positions. Mark the side of the seat and a reference position directly below on a part of the vehicle that does not adjust. For manual seats, move the seat forward one detent at a time and mark each detent as done for the full rearward position. For power seats, mark only the full rearward, middle, and full forward positions. Label three of the positions with the following: F for full forward, M for mid-position (if there is no mid position, label the closest adjustment position to the rear of the mid-point), and R for full rearward.
 N/A – The seat does not have a fore-aft adjustment

10. Using only the controls that change the seat in the fore-aft direction, place the seat in the middle fore-aft position. (S8.1.2)
 If there is no mid position, put the seat in the closest adjustment position to the rear of the midpoint. Describe the location of the seat:

11. If seat adjustments, other than fore-aft, are present and the reference line is no longer horizontal, use those adjustments to maintain the reference line as closely as possible to the horizontal. (S16.2.10.3.2)
 N/A – No seat adjustments

Reference angle as tested

The seat back angle, if adjustable, is set at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S9.1.3)
 N/A – No seat back angle adjustment

Manufacturer’s design seat back angle

Tested seat back angle
12. If adjustable, set the head restraint at the full up and full forward position. (8E.1.3) Any adjustment of the head restraint shall be used to position it full forward. For example, if it rotates, rotate it such that the head restraint extends as far forward as possible.

N/A – No head restraint adjustment

13. Place any adjustable seat belt anchorages at the vehicle manufacturer’s nominal design position for a 50th percentile adult male occupant (8E.1.3)

N/A – No adjustable upper seat belt anchorage

Manufacturer’s specified anchorage position.

Tested anchorage position

14. Is the driver seat a bucket seat?

Yes, go to 14.1 and skip 14.2.

No, go to 14.2 and skip 14.1.

14.1 Bucket seats:

Locate and mark a vertical Plane B through the longitudinal centerline of the seat. The longitudinal centerline of a bucket seat cushion is determined at the widest part of the seat cushion. Measure perpendicular to the longitudinal centerline of the vehicle.

Record the width of the seat.

Record the distance from the edge of the seat to Plane B.

14.2 Bench seats (including split bench seats):

Driver seat: Locate and mark a vertical Plane B through the center of the steering wheel parallel to the vehicle longitudinal centerline.

Passenger seat: Locate and mark a vertical longitudinal Plane B on the seat that is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel.

Distance from the vehicle centerline to the center of the steering wheel.

Distance from the vehicle centerline to Plane B.

15. Stow outboard armrests that are capable of being stowed. (S7.4.5)

16. Remove the arms of a Subpart E dummy and place it in the seat such that the midsagittal plane is coincident with Plane B and the upper torso rests against the seat back. (S10.4.1.1 & S10.4.1.2)

17. Rest the thighs on the seat cushion.

18. Position the H-point of the dummy within 0.5 inch of the vertical dimension and 0.5 inch of the horizontal dimension at the H-point determined by using the equipment and procedures specified in SAE J836 (APR 1980). (S10.4.2.1) Then measure the pelvic angle with respect to the horizontal using the pelvic angle gage. Adjust the dummy position until these three measurements are within the specifications. (S10.4.2.1 and S10.4.2.2)

\[
\begin{align*}
\text{horizontal inches from the point 0.25 below the determined H-point (0.5 inch max.)} & \quad (S10.4.2.1) \\
\text{vertical inches from the point 0.25 below the determined H-point (0.5 inch max.)} & \quad (S10.4.2.1) \\
\text{pelvic angle (20° to 25°)} & \quad (S10.4.2.1) \\
\text{vertical inches from the point 0.25 below the determined H-point (0.5 inch max.)} & \quad (S10.4.2.1) \\
\text{pelvic angle (20° to 25°)} & \quad (S10.4.2.2)
\end{align*}
\]

19. Set the distance between the outboard knee clevia flange surfaces at 10.6 inches.

measured distance (10.6 inches) (S10.5)

20. To the extent practicable keep the thighs and the legs in a vertical plane (S10.5) and rest the thighs on the seat cushion while resting the feet on the floorpan or toe board.

21. Fasten the seat belt around the dummy.

22. Remove all slack from the lap belt portion. (S10.9)

23. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this four times. (S10.9)

24. Apply a 2 to 4-pound tension load to the lap belt. (S10.9)

\[
\text{pound load applied}
\]

25. Is the belt system equipped with a tension relieving device?

Yes, continue

No, go to 26

25.1 Introduce the maximum amount of slack into the upper torso belt that is recommended by the vehicle manufacturer in the vehicle owner’s manual. (S10.9). Go to 25.

26. Check the statement that applies to this test vehicle:
26.1 The torso and lap belt webbing of the seat belt system automatically retracts to a stowed position when the adjacent vehicle door is in an open position and the seat belt latch plate is released. _Pass_

26.2 The torso and lap belt webbing of the seat belt system automatically retracts when the seat belt latch plate is released. _Pass_

26.3 Neither A or B apply. _FAIL_

27. With the webbing and hardware in the stowed position are the webbing and hardware prevented from being pinched when the door is closed?
 Yes - Pass _NO - FAIL_

28. If this test vehicle has an open body (without doors) and has a belt system with a tension-relieving device, does the belt system fully retract when the tension-relieving device is deactivated?
 N/A
 Yes - Pass _NO - FAIL_
DATA SHEET 13
SEAT BELT GUIDES AND HARDWARE (S7.4.6)

NHTSA No. C40115 Test Date: 03/08/04

Laboratory: TRC Inc. Test Technician(s): Michael S. Postle, Steve Bell

DESIGNATED SEATING POSITION: Center front passenger

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

X 1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1 (b))
 _ Yes; this form is complete
 _ No; got to 2

X 2. Is the seat removable? (S7.4.6.1(b))
 _ Yes; this form is complete
 _ No; got to 3

X 3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
 _ Yes; this form is complete
 _ No; got to 4

X 4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
 _ Yes; go to 5.
 _ No: this form is complete.

X 5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
 _ Yes – Pass
 _ No – FAIL

Identify the part(s) on top or above the seat.
 X seat belt latch plate; X buckle; X seat belt webbing

X 6. Are the remaining two seat belt parts accessible under normal conditions?
 _ Yes – Pass
 _ No – FAIL

X 7. The buckle and latch plate do not pass through the guides or conduits provided and fail behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unatched. (S7.4.6.2)
 _ Yes – Pass
 _ No – FAIL

X 8. The buckle and latch plate do not pass through the guides or conduits provided and fail behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
 _ Yes – Pass
 _ No – FAIL

X 9. The buckle and latch plate do not pass through the guides or conduits provided and fail behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)
 _ Yes – Pass
 _ No – FAIL

10. Is the inboard receptacle end of the seat belt assembly installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
 _ Yes – Pass
 _ No – FAIL
DATA SHEET 13

SEAT BELT GUIDES AND HARDWARE (S7.4.6)

NHTSA No. C40115 Test Date: 03/06/04

Laboratory: TRC Inc. Test Technician(s): Michael S. Postna, Steve Bell

DESIGNATED SEATING POSITION: Left rear passenger

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

X.1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1(b))
 _Yes; this form is complete
 _X No; go to 2

X.2. Is the seat removable? (S7.4.6.1(b))
 _Yes; this form is complete
 _X No; go to 3

X.3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
 _Yes; this form is complete
 _X No; go to 4

X.4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
 _X Yes; go to 5.
 _No: this form is complete.

X.5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
 _X Yes – Pass
 _NO – FAIL

 Identify the part(s) on top or above the seat.
 _X seat belt latch plate; _X buckle; _X seat belt webbing

X.6. Are the remaining two seat belt parts accessible under normal conditions?
 _X Yes – Pass
 _NO – FAIL

X.7. The buckle and latch plate do not pass through the guides or conduits provided and fail behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (S7.4.6.2)
 _X Yes – Pass __NO – FAIL

X.8. The buckle and latch plate do not pass through the guides or conduits provided and fail behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
 _X Yes – Pass __NO – FAIL

X.9. The buckle and latch plate do not pass through the guides or conduits provided and fail behind the seat when the seat is moved backward into position. (S7.4.6.2)
 _X Yes – Pass __NO – FAIL

X.10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
 _X Yes – Pass __NO – FAIL
DATA SHEET 13

SEAT BELT GUIDES AND HARDWARE (S7.4.6)

NHTSA No.: C40115 Test Date: 03/08/04

Laboratory: TRC Inc. Test Technician(s): Michael S. Postle, Steve Bell

DESIGNATED SEATING POSITION: Center rear passenger

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

X 1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1(b))
 _Yes; this form is complete
 X No; got to 2

X 2. Is the seat removable? (S7.4.6.1(b))
 _Yes; this form is complete
 X No; got to 3

X 3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
 _Yes; this form is complete
 X No; got to 4

X 4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
 _Yes; go to 5.
 _No: this form is complete.

X 5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
 _X Yes – Pass
 _NO – FAIL

 Identify the part(s) on top or above the seat.
 X seat belt latch plate; X buckle; X seat belt webbing

X 6. Are the remaining two seat belt parts accessible under normal conditions?
 _X Yes – Pass
 _NO – FAIL

X 7. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (S7.4.6.2)
 _X Yes – Pass _NO – FAIL

X 8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
 _X Yes – Pass _NO – FAIL

X 9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)
 _X Yes – Pass _NO – FAIL

_10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
 _Yes – Pass _NO – FAIL
DATA SHEET 13

SEAT BELT GUIDES AND HARDWARE (S7.4.6)

NHTSA No. C40115
Test Date: 03/08/04
Laboratory: TRC Inc.
Test Technician(s): Michael S. Postle, Steve Bell

DESIGNATED SEATING POSITION: Right rear passenger

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

X.1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1(b))
___ Yes; this form is complete
___ No; go to 2

X.2. Is the seat removable? (S7.4.6.1(b))
___ Yes; this form is complete
___ No; go to 3

X.3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
___ Yes; this form is complete
___ No; go to 4

X.4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
___ Yes: go to 5.
___ No: this form is complete.

X.5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
___ Yes - Pass
___ NO - FAIL
Identify the part(s) on top or above the seat.
Seat belt latch plate: X buckle: X seat belt webbing

X.6. Are the remaining two seat belt parts accessible under normal conditions?
___ Yes - Pass
___ NO - FAIL

X.7. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unleatched. (S7.4.6.2)
___ Yes - Pass ___ NO - FAIL

X.8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
___ Yes - Pass ___ NO - FAIL

X.9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)
___ Yes - Pass ___ NO - FAIL

X.10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
___ Yes - Pass ___ NO - FAIL
Appendix A

Photographs
Figure A-1. Pre-Test Front View of Test Vehicle Mounted to Sled
Figure A-2. Pre-Test Left Side View of Test Vehicle Mounted to Slab
Figure A-7. Post-Test Driver Dummy Position View with Door Open
Figure A-8. Pre-Test Driver Seat Track Position View
Figure A-9. Post-Test Driver Seat Track Position View
Figure A-11. Post-Test Driver Dummy Position Front View
Figure A-12. Pre-Test Passenger Dummy Position View with Door Open
Figure A-13. Post-Test Passenger Dummy Position View with Door Open
Figure A-15. Post-Test Passenger Seat Truck Position View
Figure A-16. Pre-Test Passenger Dummy Position Front View
Figure A-21. Post-Test Passenger Airbag View
Figure A-22. Post-Test Passenger Dummy Removed from Vehicle Overall View
TIRE-LOADING INFORMATION

<table>
<thead>
<tr>
<th>OCCUPANTS</th>
<th>VEHICLE CAP. WT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRT.</td>
<td>CTR.</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>KG</td>
<td>LBS</td>
</tr>
<tr>
<td>488</td>
<td>1076</td>
</tr>
</tbody>
</table>

MAX. LOADING @ GVWR SAME AS VEHICLE CAPACITY WEIGHT.

MODEL: HP69 HAL

<table>
<thead>
<tr>
<th>TIRE SIZE</th>
<th>SPEED RTG</th>
<th>COLD TIRE PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRT</td>
<td>P215/70R15</td>
<td>S</td>
</tr>
<tr>
<td>RR</td>
<td>P215/70R15</td>
<td>S</td>
</tr>
<tr>
<td>SPA</td>
<td>T125/70R16</td>
<td>M</td>
</tr>
</tbody>
</table>

IF TIRES ARE HOT, ADD 28KPA(4PSI).

SEE OWNER’S MANUAL FOR MORE INFORMATION.
Appendix B

Data Plots
CHANNEL: DABETI FILTER: CH. CLASS 1000 PEAK DATA: 1.00 V @ 20.64 MS; 0.00 V @ -20.00 MS
C40115 / 2001 BUICK LESABRE
DRIVER SECONDARY AIRBAG EVENT
FMVSS 206 SLED TEST

TRC NUMBER: S040105F
TEST NUMBER: S040105

CHANNEL: DABET2
FILTER: CH. CLASS 1500
PEAK DATA: 1.00 V B 21.00 MS; 0.00 V B -20.00 MS
CARBIS / 2004 BUICK LESABRE
REAR AXLE X-AXIS ACCELERATION
FMVSS 208 SLED TEST

CHANNEL: RAXC
FILTER: CK. CLASS 60
PEAK DATA: 1.53 G @ 130.40 MS; -18.88 G @ 60.56 MS

TRC NUMBER: S040405F
TEST NUMBER: S040405
C40115 / 2034 BUICK LESABRE
TOP ENGINE X-AXIS ACCELERATION
FMCSS 208 SLED TEST
TEST NUMBER: S040405

TRC NUMBER: S040405F

ACCELERATION (G x 10)

TIME (MS)

CHANNEL: TEMC FILTER: CH. CLASS 00

PEAK DATA: 6.57 G @ 138.86 MS; -22.22 G @ 57.36 MS
C48115 / 2004 BUICK LESABRE
DRIVER NECK MOMENT ABOUT Y AXIS OCCIPITAL CONDYLE
FMVSS 208 SLED TEST
TEST NUMBER: S040405

TORQUE (N.m) vs. TIME (ms)

CHANNEL: NEKOM1 FILTER: CH. CLASS G80
PEAK DATA: 55.89 N.m @ 196.24 MS; -6.74 N.m @ 240.80 MS
C40115 / 2004 BUICK LESABRE
DRIVER RIGHT FEMUR FORCE
FMVSS 208 SLED TEST
TEST NUMBER: S040485

TRACE IDENTIFIER: S040485F

FORCE (LBF x 10^1)

-128 -105 -82 -59 -36 -13 10

TIME (MS)

-20 10 40 70 100 130 160 190 220 250 280 310

CHANNEL: RFMZF1 FILTER: CH. CLASS 600
PEAK DATA: 91.66 LBF @ 190.08 MS; -1171.16 LBF @ 99.56 MS
C10115 / 2004 BUICK LESABRE
RIGHT FRONT PASSENGER HEAD Y-AXIS ACCELERATION
FMVSS 208 SLED TEST

TRC NUMBER: S040405F
TEST NUMBER: S040405

ACCELERATION (G x 10^{-1})

CHANNEL: HE0YG2 FILTER: CH. CLASS 1000
PEAK DATA: 1.75 C @ 75.52 MS; -19.29 C @ 132.00 MS
C10115 / 2004 BUICK LESABRE
RIGHT FRONT PASSENGER NECK Y-AXIS SHEAR FORCE
FMVSS 208 SLED TEST
TEST NUMBER: S040405

TRC NUMBER: S040405F

FORCE (N)

TIME (MS)

CHANNEL: NEKF2 FILTER: CH. CLASS 1000
PEAK DATA: 345.85 N @ 110.32 MS; -19.40 N @ 300.72 MS
C40115 / 2004 BUICK LESABRE
RIGHT FRONT PASSENGER NECK Z-AXIS AXIAL FORCE
FMVSS 208 SLED TEST
TEST NUMBER: S840105

FORCE (N X 10³)

B-44

-99
-89
-11
-50
-28
-67
-86
-145

TIME (NS)

-20 20 48 70 100 130 160 190 220 250 280 310

CHANNEL: NEXZF2 FILTER: CH. CLASS 1000

PEAK DATA: 1341.98 N @ 97.36 MS; -814.48 N @ 134.88 MS
C10115 / 2004 BUICK LESABRE
RIGHT FRONT PASSENGER NECK MOMENT ABOUT X AXIS
FMVSS 208 SLED TEST

TEST NUMBER: S040405

TRC NUMBER: S040405F

CHANNEL: NEKXM2 FILTER: CH. CLASS 600
PEAK DATA: 23.37 N-m @ 139.28 MS; -16.32 N-m @ 89.36 MS
C40115 / 2004 BUICK LESABRE
RIGHT FRONT PASSENGER NECK MOMENT ABOUT Z AXIS

TEST NUMBER: S4R40405

TRC NUMBER: S040405F
FMVSS 208 SLED TEST

TORQUE (N.M X 10^-1)

TIME (MS)

CHANNEL: NEKZM2 FILTER: CH. CLASS 600

PEAK DATA: 24.00 N.M @ 136.40 MS; -6.91 N.M @ 213.68 MS
C40115 / 2004 BUICK LESABRE
RIGHT FRONT PASSENGER NECK MOMENT ABOUT Y AXIS OCCHIPITAL CONDYLE

TRC NUMBER: 5040105F
FHYSS 208 SLED TEST
TEST NUMBER: S040405

B-48
TORQUE (N-M)

-40 -30 -20 -10 0 10 20 30 40

-26 -22 -18 -14 -10 -6 -2 2 6

TIME (MS)

-20 10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310

CHANNEL: NEMH2 FILTER: CH. CLASS 600
PEAK DATA: 43.57 N-M @ 97.76 MS, -35.93 N-M @ 146.16 MS
Appendix C:

Manufacturer's Vehicle Information
1. Please provide the following restraint system information
 1.1 Describe the difference between the MY 2004 air bag restraint system and the 2003 system.
 1.2 Describe what other restraint system changes have been made.
 1.3 Describe other vehicle changes that may affect FMVSS 208 performance.
 1.4 Describe any features that may affect occupant protection performance with respect to children and out of position occupants.
 1.5 State whether the vehicle is equipped with a FMVSS 208 air bag on-off switch for the passenger frontal air bag.

GM RESPONSE

1.1 The right front outboard passenger air bag restraint system for the 2004 Buick LeSabre is carryover from the 2003 model year Buick LeSabre.

The driver air bag inflator was changed for the 2004 model year Buick LeSabre. The 2003 Buick LeSabre driver air bag module was manufactured by Delphi and had a dual level hybrid OEA inflator that was supplied by Autoliv. The driver air bag module for the 2004 Buick LeSabre is manufactured by Delphi and has a dual level hybrid inflator that is supplied by Autoliv ADPS. The Autoliv ADPS inflator has similar performance characteristic to the OEA Autoliv inflator. The second stage peak high level output for the 2004 Autoliv ADPS inflator is 179 kPa, the 2nd stage peak high level output for the 2003 OEA Autoliv Inflator is 155 kPa. All other characteristics of the 2004 Delphi driver air bag module are the same or very similar in design to the 2003 Delphi driver air bag module. Therefore, the air bag module cover, cushion size, shape and vents are the same.

1.2 No other changes were made to the 2004 Buick LeSabre's restraint system that would affect FMVSS 208 occupant performance. The safety belts, seats, instrument panel, knee bolster, steering wheel and column are carryover from the 2003 Buick LeSabre.

1.3 No changes were made to the 2004 Buick LeSabre vehicle structure that would affect FMVSS 208 dynamic crash performance. The vehicle sheet metal, chassis, and air bag sensing system are carryover from the 2003 Buick LeSabre.
1.4 There are no significant differences in the restraint system features between the 2003 model year and 2004 model year Buick LeSabre which will affect occupant protection performance with respect to children and out of position occupants.

1.5 The 2004 Buick LeSabre is not equipped with an air bag off switch for the passenger frontal air bag system.

2. Advanced air bag vehicles – State whether the vehicle model is certified to the advanced air bag requirements of section S14 of FMVSS 208.

GM RESPONSE

2. The 2004 Buick LeSabre is not certified to the advanced air bag requirements of section S14 of FMVSS 208.

3. Non-advanced air bag vehicles certified unbelted in a 40 km/h or 48 km/h barrier crash test – State the sections (S5.1.2(a)(1), S5.1.2(a)(2)) of FMVSS 208 to which the vehicle model is certified.

A copy of the certification test reports for belted and unbelted crash tests (frontal and angular).

GM RESPONSE

The 2004 Buick LeSabre is not certified by the unbelted 40 km/h or 48 km/h barrier crash test of sections S5.1.2(a)(1) or S5.1.2(a)(2) of FMVSS 208.

4. Non-advanced air bag vehicles certified unbelted in a sled test – State whether the vehicle model is certified to section S13 of FMVSS 208.

4.1 A copy of the certification sled test.

4.2 A copy of the certification test reports for belted crash tests (frontal and angular).

4.3 Describe how to disconnect the air bags from the vehicle sensors and connect them to the triggering mechanism used in the sled test.

4.4 For air bags with dual stage or multi-stage inflators, describe the inflator stage or combination of inflator stages or time delay between successive inflator stages used in the sled test.

4.5 For air bags with dual stage or multi-stage inflators, provide a copy of the tests and analyses that were used to determine the inflator stage or combination of inflator stages or time delay between successive inflator stages that would occur in a crash of similar severity.
GM RESPONSE
The 2004 MY Buick LeSabre is certified to section S13 of FMVSS 208.

4.1 The following test was conducted for the 2004 Buick LeSabre and was used as the bases for certifying the driver to the unbelted occupant requirements of section S13 of FMVSS 208. The relevant test information is contained in Attachment A.

N18070, unbelted Driver, 49 km/h, 125ms Frontal Impact Simulation

Compliance information for the right front outboard passenger was provided to the OVSC in the GM response, USG3731, for the 2003 Buick LeSabre.

4.2 The following tests were conducted and used as the bases for certifying the left front outboard driver occupant to the belted 30 mph, frontal and angular barrier requirements of FMVSS 208.

- C14110 - 35 mph Moving Vehicle to Fixed Barrier @ 0 Degrees
- C12137 - 30 mph Moving Vehicle to Fixed Barrier @ 30-deg L.t. angle
- C14344 - 30 mph Moving Vehicle to Fixed Barrier @ 30-Deg. Rt. angle

Compliance information for the right front outboard passenger was provided to the OVSC in the GM response, USG 3731, for the 2003 Buick LeSabre.

Note: The data sheet contained in Attachment A for test number N18070 has "Unverified" written across the page. This indicates that the automatic data base system used by General Motors Safety Lab for full scale barrier tests and sled tests did not generate a final report. The data base system is currently only capable of generating final reports for full scale barrier tests. However, all sled test data is reviewed and verified by the test engineer.

4.3 The sled test used to meet the requirements of S13 were performed on a sled buck, in which the air bags were never connected to vehicle sensors. Air bags for full-scale tests can be electronically disconnected from the vehicle harness and a separate electrical harness can be attached directly to the air bags, specifically for test deployment.

The air bag system should be disabled prior to performing the following actions. Disablement can be accomplished by disconnecting the battery negative cable from the battery. Wait approximately one hour following disconnection to ensure stored energy is dissipated.
On the driver's side, remove the air bag module from the steering wheel by inserting a flat head screwdriver into each of the slots located behind the steering wheel shroud. Press the screwdriver point towards the center of the steering wheel to disengage each spring latch on the air bag module. Slowly lift the air bag module from the steering column and disconnect the two yellow air bag connectors from the back of the air bag module. Spare connectors are used to connect the module to the sled triggering system. However, the leads could be cut-off from the top of the steering column and then wired into the triggering mechanism. Reinstall the air bag module, ensuring that it is properly aligned with the snap features, allowing the leads, or connector, to hang on the outside of the shroud.

On the passenger side, remove the hush panel to access the yellow air bag wire located below the glove box at the outboard lower corner of the instrument panel cross-car beam. Disconnect the yellow air bag connector and attach to the sled triggering mechanism.

For GM's sled testing, the air bags are powered and activated remotely. This remote air bag control system is electronically wired to the air bag through a junction box. To deploy the air bags, the air bag control system provides the power through the interconnection of electronic wiring.

4.4 For GM's sled testing, the air bag control system is programmed to activate as follows:

The FMVSS 208 requirement states that the air bag "is to be activated at 20 +/- 2 ms from the time the 0.5 g is measured on the dynamic test platform." GM's sled facility generates a time reference signal when the sled reaches 3.0 g. GM conducts parameter sled tests to determine the reference signal's time difference between 0.5 and 3.0 g, and the average difference is then determined. Using this information, the remote air bag control system at GM's sled facility is programmed to trigger the first stage deployment 20 ms minus the average time delay after the 3.0 g reference level is reached. The second stage inflator is triggered at 1 ms after the first stage, resulting in a high-level deployment output.

4.5 The occupant compartment deceleration specified in S13 of FMVSS 208 does not contain enough information to evaluate when the vehicle sensing system for the 2004 Buick LeSabre would deploy the air bags. GM used sensing system behavior in barrier tests of similar velocity change to estimate the second stage deploy time delay after the first stage deployment. The following 0-degree frontal rigid barrier tests were conducted:
NHTSA IR: NV9-221Cc
CA-208-051016-K
2004 Buick LeSabre

C12409 30mph first stage deploy time 14 ms
second stage deploy time 15 ms

The 30 mph 0-degree test is severe enough to produce an immediate detection of the need for high level output. The second stage deploy time delay after the first stage deployment for this test is 1 ms. This time delay was used for the unbelted sled test.

The sensing system for the 2004 Buick LeSabre is calibrated such that the all deploy threshold speed is 24 mph.

C11888 24 mph (all deploy high threshold) first stage deploy time 18 ms
second stage deploy time 19 ms

5. Other information

5.1 Describe the seat adjustment controls (manual and power) available for this model, including any adjustment controls on seats rearward of the front outboard designated seating positions, and the seat movements associated with each individual control.

5.2 Describe the headrest adjustments available for this model.

5.3 State for each safety belt system in the subject vehicles whether or not it is equipped with a tension-relieving device. Provide a copy of the information furnished in accordance with S7.4.2 if the tension-relieving device is used.

5.4 State for each crash test (frontal, angular, and offset) whether the moveable windows and vents were opened or closed.

5.5 Submit dummy placement measurements, including diagrams or photographs that show exactly where each measurement was taken. For the subject vehicles certified to the advanced air bag requirements, provide measurements for both the 50th percentile male and the 5th percentile female. Enclosed is a diagram of none of OVSC’s dummy measurements. Where possible, use each dimension shown in the diagram to provide the individual dummy placement measurements.

5.5 State whether the subject vehicles have a footrest for the driver.

5.7 Provide the seat positioning, steering column positioning, and fuel tank data on the enclosed form. If more than one front seating configuration, steering column or fuel tank configuration are available on this vehicle, provide separate information for each. For certification tests using the 5th percentile female, provide the seat fore-aft position, seat height, and seat back angle used in the certification test.
5.8 Provide the seating reference point (SgRP) for the driver designated seating position and every other designated seating position required to comply with the lockable seat belt requirement in §7.1.1.5.

5.9 If there are adjustable seat belt anchorages at front and/or rear designated seating positions, provide the manufacturer's nominal design position for a 50th percentile adult male occupant and, if certified to the advanced air bag requirements, the position for the 5th percentile female.

5.10 For all tests that are performed to certify the subject vehicles to injury assessment performance requirements of FMVSS 208, provide a summary of the injury results. In addition, for crash tests provide the measured test speed.

5.11 When vehicle components must be removed to obtain the proper test weight for crash tests, list the components you recommend for removal, and in the priority order you recommend for removal.

5.12 If the subject vehicles use a pressure vessel to inflate the air bag, provide a copy of the test report or engineering analysis to demonstrate that it meets all the requirements of §9.1.

5.13 If the subject vehicles use an explosive device to inflate the air bag, provide a copy of the test report or engineering analysis to demonstrate that it meets all the requirements of §9.2.

GM RESPONSE

5.1 Driver Seat standard adjustment equipment is a power adjuster that moves fore/aft, up/down, and tilts within a designated travel box, a manual recliner and a manual fore/aft lumbar mechanism.

Driver Seat optional adjustment equipment is a power adjuster that moves fore/aft, up/down, and tilts within a designated travel box, a power recliner and a power fore/aft and up/down lumbar mechanism.

Passenger Seat standard adjustment equipment is a manual fore/aft adjuster and a manual recliner mechanism.

Passenger Seat optional adjustment equipment is a power adjuster that moves fore/aft, up/down, and tilts within a designated travel box, and a manual recliner mechanism.

Passenger Seat optional adjustment equipment is a power adjuster that moves fore/aft, up/down, and tilts within a designated travel box, a power recliner and a manual fore/aft lumbar mechanism.

Rear Seat has no adjustment features.
5.2 The front outboard seats have adjustable head restraints that can be manually adjusted up or down. The rear seat head restraints are not adjustable.

5.3 The 2004 Buick LeSabre safety belt system does not utilize a tension reducing device at any seating position.

5.4 The front outboard windows were open during the 0-degree frontal and 30-degree angular barrier tests.

5.5 Attachment C contains the dummy positioning measurements.

5.6 The 2004 Buick LeSabre has a foot rest for the driver seating position.

5.7 The requested vehicle test information is contained in Attachment D.

5.8 The following table contains the SyRPs for the driver seat in addition to the SyRPes for all seats required to meet the lockable seatbelt requirement specified in section S7.1.1.5 of FMVSS 208. The following dimensions are in millimeters:

<table>
<thead>
<tr>
<th>Front Row</th>
<th>Driver</th>
<th>Center</th>
<th>Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>L=3174.0</td>
<td>L=3060.0</td>
<td>W=0</td>
<td>L=3174.0</td>
</tr>
<tr>
<td>W=-374.0</td>
<td>W=0</td>
<td>H=753.0</td>
<td>W=374.0</td>
</tr>
<tr>
<td>H=680.0</td>
<td>H=753.0</td>
<td></td>
<td>H=580.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rear Row</th>
<th>Left</th>
<th>Center</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>L=4017.0</td>
<td>L=3985.0</td>
<td>W=0</td>
<td>L=4017.0</td>
</tr>
<tr>
<td>W=-374.0</td>
<td>W=0</td>
<td>H=725.0</td>
<td>W=374.0</td>
</tr>
<tr>
<td>H=690.0</td>
<td>H=725.0</td>
<td></td>
<td>H=690.0</td>
</tr>
</tbody>
</table>

Fiducial point is the center of the outboard forward seat anchorage hole for the driver (or passenger seat, -Y dr. +Y pass. direction.) X = 2788 mm, Y = +/-628 mm, Z = 437 mm

5.9 The front outboard seating positions of the 2004 Buick LeSabre have All Belts To Seats (ABTS), the upper anchorage is attached to the seat back and is not adjustable. There are no adjustable anchorages for the rear seats.

5.10 Attachment E contains the requested barrier and sled information.

5.11 GM does not typically prioritize which components are to be removed from a test vehicle to accommodate test weight. However, components that have been removed during our testing include the rear deck lid, rear bumper and fascia, trunk trim, spare tire, and tail lamps. In addition, interior trim components behind the 'S' pillar, including rear seats, carpeting and trim panels could be removed if necessary.
5.12 Both the driver and passenger air bag modules in the 2004 Buick LeSabre contain "hybrid" inflators. These inflators use a small amount of contained pyrotechnic material that is ignited in order to heat stored gas within the inflator. General Motors does not typically keep inflator classification and certification information on file. Attachment F contains the supplier letters that reference the requested compliance information. If necessary, the specific information requested in question 5.12 can be obtained from the inflator manufacturer.

5.13 The airbag restraints installed in this vehicle do not use an explosive device to inflate the air bag. See Attachment F.
Attachment C

2004 Buick LeSabre

Dummy Position Measurements

4 Pages (including this cover)
<table>
<thead>
<tr>
<th></th>
<th>Driver</th>
<th>Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA °</td>
<td>1 mm</td>
<td>NA</td>
</tr>
<tr>
<td>SWA °</td>
<td>18 mm</td>
<td>NA</td>
</tr>
<tr>
<td>SCA °</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>SA °</td>
<td>18.5 mm</td>
<td>NA</td>
</tr>
<tr>
<td>HZ</td>
<td>208 mm</td>
<td>NA</td>
</tr>
<tr>
<td>HH</td>
<td>350 mm</td>
<td>361 mm</td>
</tr>
<tr>
<td>HW</td>
<td>640 mm</td>
<td>660 mm</td>
</tr>
<tr>
<td>HR</td>
<td>256 mm, inside edge of seat</td>
<td>NA</td>
</tr>
<tr>
<td>NR</td>
<td>380 mm</td>
<td>NA</td>
</tr>
<tr>
<td>CD</td>
<td>520 mm</td>
<td>455 mm</td>
</tr>
<tr>
<td>CS</td>
<td>320 mm</td>
<td>NA</td>
</tr>
<tr>
<td>RA</td>
<td>208 mm</td>
<td>NA</td>
</tr>
<tr>
<td>KDL</td>
<td>177 mm</td>
<td>148 mm</td>
</tr>
<tr>
<td>KDR</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>PA °</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>TA °</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>KK</td>
<td>260 mm, center to center</td>
<td>275 mm, center to center</td>
</tr>
<tr>
<td>ST</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>SK</td>
<td>635</td>
<td>642</td>
</tr>
<tr>
<td>SH</td>
<td>840</td>
<td>650</td>
</tr>
<tr>
<td>SHY</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>HS</td>
<td>310</td>
<td>300</td>
</tr>
<tr>
<td>HD</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>AD</td>
<td>147</td>
<td>180</td>
</tr>
</tbody>
</table>

N/A = Not available
Appendix A (continue)

SEAT BELT POSITIONING DATA

DUMMY'S CENTERLINE

SHOULDER BELT PORTION

PBU

PBL

MALE BLADE

BUCKLE ASSEMBLY

1/8" THICK ALUMINUM PLATE

EMERGENCY LOCKING RETRACTOR

OUTBOARD ANCHORAGE

INBOARD ANCHORAGE

FLOORPAN

FRONT VIEW OF DUMMY
NHTSA IR: NVS-221CCa
OA-208-031016-K
2004 Buick LaSabre

Attachment D

2004 Buick LaSabre

Vehicle Test Information

4 Pages (Including this cover)
2004 Buick LeSabre
TEST VEHICLE INFORMATION

Vehicle Model Year and Make: 2004 Buick
Vehicle Model and Body Style: LeSabre Sedan

FRONT SEAT ASSEMBLY

1. Nominal Design Riding Position:
For adjustable driver and passenger seat backs.
Please describe how to position the inclinometer to measure the seat back angle. Include description of
the location of the adjustment latch detent if applicable. Indicate, if applicable, how the detents are
numbered (is the first detent "0" or "1")?

Seat back angle for Driver’s seat = 18 (°)

Measurement Instructions:
See passenger seat instructions.

Seat back angle for Passenger’s seat = 18 (°)

Measurement Instructions:
Unzip outboard edge of seat back, place inclinometer on seatback frame through hole in cardboard near
side airbag. Measurement instructions identical for driver side.

Seat Fore & Aft Positions:

Provide instructions for positioning the driver and front outboard passenger seat(s) in the center of fore
and aft travel. For example, provide information to locate the detent in which the seat track is locked.

Positioning of the driver’s seat:
See passenger seat instructions below.
2003 Buick LeSabre
TEST VEHICLE INFORMATION

Positioning of the passenger's seat (If applicable):

This information applies for both driver and passenger seats for all seat trim options. Manual and power seat adjusters are available for driver and passenger seats.

Manual adjuster - Place the seat in full forward position and mark with a paint pen on the seat adjuster. Mark the same location when the seat is positioned in the full rearward location. Measure the distance between the two paint marks and place the seat in the mid point.

Power adjuster – Lower seat to full down (the lowest vertical adjustment position). Adjust lumbar comfort features (if fitted) to the minimum level. The seat bottom cushion tilt should be adjusted with the front of the seat at the full-down position. Measure total available seat fore/aft travel as detailed above and mark mid position.

Seating Reference Points:
Fiducial Point: x = 2766, y = 628, z = 437
Front Power Seats: x = 3070, y = +/-374 (+= passenger), z = 671
Front Manual Seats: x = 3067, y = +/-374 (+= passenger), z = 687
Rear Seat: x = 4017, y = +/-374, z = 650

Sign convention: x: Rearward (+), Forward (-)
y: Passenger side (+), Driver side (-)
z: Upward (+), Downward (-)

3. FUEL TANK CAPACITY DATA

A "Useable Capacity" of standard equipment fuel tank = 66.3 L / 17.5 gal
B "Useable Capacity" of optional equipment fuel tank = N/A (gallons)
C "Useable Capacity" of vehicle(s) used for certification to requirements of FMVSS 301 = 66.3 L /17.5 gal

Operating Instructions:
Establish the unusable capacity (0.2 gallon/0.7 liters) first and add 95% of the usable capacity.

Amount of Stoddard solvent added to vehicle(s) used for certification test(s) = 66.3 L / 17.5 gallons

Is vehicle equipped with electric fuel pump? Yes [X] No []

If yes, explain the vehicle operating conditions under which the fuel pump will pump fuel. Fuel pump will prime when ignition key is turned to "run" position and vehicle not started. Pump will run when engine is running.
4. Steering Column Adjustments

Steering wheel and column adjustments are made so the steering wheel hub is at the geometric center of the locus it describes when it is moved through its full range of driving positions.

If the tested vehicle has any of these adjustments, does your company use any specific procedures to determine the geometric center?

Operating Instructions:

3rd notch down from top notch. Do not include over-travel at top. Will result in 19° steering wheel angle when measured on straight edge lying across steering wheel rim.
NHTSA IR: NVS-221CCa
OA-208-031016-K
2004 Buick LeSabre

Attachment E

2004 Buick LeSabre

Summary of Sled & Barrier Tests

2 Pages (including this cover)
2004 Buick LeSabre
FMVSS 208 Dummy Injury Summary

Unbelted Driver, Sled Tests:

<table>
<thead>
<tr>
<th>Evaluation Condition</th>
<th>Test No.</th>
<th>Head Injury Criterion (HIC) 36ms</th>
<th>Head</th>
<th>Neck</th>
<th>Chest</th>
<th>Leg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moment</td>
<td>Moment</td>
<td>Force - Tension</td>
<td>Force - Comp.</td>
</tr>
<tr>
<td>MVSS 208 Limit</td>
<td></td>
<td></td>
<td>1000</td>
<td>190 N-m</td>
<td>57 N-mm</td>
<td>3800 N</td>
</tr>
<tr>
<td>39 kmp/h, 125ms, 0°</td>
<td></td>
<td></td>
<td>.270</td>
<td>45</td>
<td>4.9</td>
<td>504</td>
</tr>
</tbody>
</table>

| Pubalized sled, unbelted - driver | | | N1B070 | | | | | | | | | |

Belted Driver, Barrier Tests:

<table>
<thead>
<tr>
<th>Evaluation Condition</th>
<th>Test No.</th>
<th>Test Speed</th>
<th>Head Injury Criterion (HIC) 36ms</th>
<th>Head</th>
<th>Chest</th>
<th>Leg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anod.</td>
<td>Comp.</td>
</tr>
<tr>
<td>MVSS 208 Limit</td>
<td></td>
<td></td>
<td>km/hr</td>
<td>1000</td>
<td>60 g</td>
<td>75 mm</td>
</tr>
<tr>
<td>49 kph, 0° Frontal barrier, belted - driver</td>
<td>C14110</td>
<td>56.2 kph</td>
<td>590</td>
<td>50</td>
<td>29.4</td>
<td>4274</td>
</tr>
<tr>
<td>49 kph, 30° Rt. Frt. Barrier Belted - driver</td>
<td>C12344</td>
<td>49.3 kph</td>
<td>190</td>
<td>41</td>
<td>30.4</td>
<td>4762</td>
</tr>
<tr>
<td>49 kph, 30° Rt. Frt. Barrier unbelted - driver</td>
<td>C12137</td>
<td>49.6 kph</td>
<td>220</td>
<td>35</td>
<td>38</td>
<td>5782</td>
</tr>
</tbody>
</table>
Head Restraints

Adjust your head restraint so that the top of the restraint is closest to the top of your head. This position reduces the chance of a neck injury in a crash.

Safety Belts

Safety Belts: They Are for Everyone

This part of the manual tells you how to use safety belts properly. It also tells you some things you should not do with safety belts.

⚠️ CAUTION:

Don’t let anyone ride where he or she can’t wear a safety belt properly. If you are in a crash and you’re not wearing a safety belt, your injuries can be much worse. You can hit things inside the vehicle or be ejected from it. You can be seriously injured or killed. In the same crash, you might not be, if you are buckled up. Always fasten your safety belt, and check that your passengers’ belts are fastened properly too.

⚠️ CAUTION:

It is extremely dangerous to ride in a cargo area, inside or outside of a vehicle. In a collision, people riding in these areas are more likely to be seriously injured or killed. Do not allow people to ride in any area of your vehicle that is not equipped with seats and safety belts. Be sure everyone in your vehicle is in a seat and using a safety belt properly.

Your vehicle has a light that comes on as a reminder to buckle up. See Safety Belt Reminder Light on page 3-36.

In most states and in all Canadian provinces, the law says to wear safety belts. Here’s why: They work.

You never know if you’ll be in a crash. If you do have a crash, you don’t know if it will be a bad one.

A few crashes are mild, and some crashes can be so serious that even buckled up, a person wouldn’t survive. But most crashes are in between. In many of them, people who buckle up can survive and sometimes walk away. Without belts they could have been badly hurt or killed.

After more than 30 years of safety belts in vehicles, the facts are clear. In most crashes buckling up does matter... a lot!
Why Safety Belts Work

When you ride in or on anything, you go as fast as it goes.

Put someone on it.

Take the simplest vehicle. Suppose it's just a seat on wheels.

Get it up to speed. Then stop the vehicle. The rider doesn't stop.

The person keeps going until stopped by something. In a real vehicle, it could be the windshield...
Questions and Answers About Safety Belts

Q: Won't I be trapped in the vehicle after an accident if I'm wearing a safety belt?
A: You could be — whether you're wearing a safety belt or not. But you can unbuckle a safety belt, even if you're upside down. And your chance of being conscious during and after an accident, so you can unbuckle and get out, is much greater if you are belted.

Q: If my vehicle has air bags, why should I have to wear safety belts?
A: Air bags are in many vehicles today and will be in most of them in the future. But they are supplemental systems only; so they work with safety belts — not instead of them. Every air bag system ever offered for sale has required the use of safety belts. Even if you're in a vehicle that has air bags, you still have to buckle up to get the most protection. That's true not only in frontal collisions, but especially in side and other collisions.

Q: If I'm a good driver, and I never drive far from home, why should I wear safety belts?
A: You may be an excellent driver, but if you're in an accident — even one that isn't your fault — you and your passengers can be hurt. Being a good driver doesn't protect you from things beyond your control, such as bad drivers.

Most accidents occur within 25 miles (40 km) of home. And the greatest number of serious injuries and deaths occur at speeds of less than 40 mph (65 km/h).

Safety belts are for everyone.

How to Wear Safety Belts Properly

This part is only for people of adult size.

Be aware that there are special things to know about safety belts and children. And there are different rules for smaller children and babies. If a child will be riding in your vehicle, see Older Children on page 1-22 or Infants and Young Children on page 1-29. Follow those rules for everyone's protection.

First, you'll want to know which restraint systems your vehicle has.

We'll start with the driver position.
Driver Position

This part describes the driver's restraint system.

Lap-Shoulder Belt

The driver has a lap-shoulder belt. Here's how to wear it properly.

1. Close and lock the door.
2. Adjust the seat so you can sit up straight. To see how, see "Seats" in the index.

3. Pick up the latch plate and pull the belt across you. Don't let it get twisted.
 The lap-shoulder belt may lock if you pull the belt across you very quickly. If this happens, let the belt go back slightly to unlock it. Then pull the belt across you more slowly.

4. Push the latch plate into the buckle until it clicks.
 Pull up on the latch plate to make sure it is secure. If the belt isn't long enough, see Safety Belt Extender on page 1-26.
 Make sure the release button on the buckle is positioned so you would be able to unbuckle the safety belt quickly if you ever had to.

The lap part of the belt should be worn low and snug on the hips, just touching the thighs. In a crash, the appliance force to the strong pelvic bones. And you'd be less likely to slide under the lap belt. If you slid under it, the belt would apply force at your abdomen. This could cause serious or even fatal injuries. The shoulder belt should go over the shoulder and across the chest. These parts of the body are best able to take belt restraining forces.

The safety belt locks if there's a sudden stop or crash, or if you pull the belt very quickly out of the retractor.
Q: What's wrong with this?

A: The shoulder belt is too loose. It won't give nearly as much protection this way.

⚠️ CAUTION:
You can be seriously hurt if your shoulder belt is too loose. In a crash, you would move forward too much, which could increase injury. The shoulder belt should fit against your body.

Q: What's wrong with this?

A: The belt is buckled in the wrong place.

⚠️ CAUTION:
You can be seriously injured if your belt is buckled in the wrong place like this. In a crash, the belt would go up over your abdomen. The belt forces would be there, not at the pelvic bones. This could cause serious internal injuries. Always buckle your belt into the buckle nearest you.
Q: What's wrong with this?

A: The shoulder belt is worn under the arm. It should be worn over the shoulder at all times.

⚠️ CAUTION: ⚠️

You can be seriously injured if you wear the shoulder belt under your arm. In a crash, your body would move too far forward, which would increase the chance of head and neck injury. Also, the belt would apply too much force to the ribs, which aren't as strong as shoulder bones. You could also severely injure internal organs like your liver or spleen.

Q: What's wrong with this?

A: The belt is twisted across the body.

⚠️ CAUTION: ⚠️

You can be seriously injured by a twisted belt. In a crash, you wouldn't have the full width of the belt to spread impact forces. If a belt is twisted, make it straight so it can work properly, or ask your dealer to fix it.
To unlatch the belt, just push the button on the buckle. The belt should go back out of the way.
Before you close the door, be sure the belt is out of the way. If you slam the door on it, you can damage both the belt and your vehicle.

Safety Belt Use During Pregnancy

Safety belts work for everyone, including pregnant women. Like all occupants, they are more likely to be seriously injured if they don't wear safety belts.

A pregnant woman should wear a lap-shoulder belt, and the lap portion should be worn as low as possible, below the rounding, throughout the pregnancy.

The best way to protect the fetus is to protect the mother. When a safety belt is worn properly, it's more likely that the fetus won't be hurt in a crash. For pregnant women, as for anyone, the key to making safety belts effective is wearing them properly.

Right Front Passenger Position

To learn how to wear the right front passenger's safety belt properly, see Driver Position on page 1-12.
The right front passenger's safety belt works the same way as the driver's safety belt — except for one thing. If you ever pull the lap portion of the belt out all the way, you will engage the child restraint locking feature. If this happens, just let the belt go back all the way and start again.

If your vehicle has a center passenger position, be sure to use the correct buckle when buckling your lap-shoulder belt. If you find that the latch plate will not go fully into the buckle, see if you are using the buckle for the center passenger position.

Center Front Passenger Position

Lap Belt

If your vehicle has a front bench seat, someone can sit in the center position.
When you sit in the center front seating position, you have a lap safety belt, which has no retractor. To make the belt longer, lift the latch plate and pull it along the belt.

To make the belt shorter, pull it free and as shown until the belt is snug.

Buckle, position and release it the same way as the lap part of a lap-shoulder belt. If the belt isn't long enough, see Safety Belt Extender on page 1-26.

Make sure the release button on the buckle is positioned so you would be able to unbuckle the safety belt quickly if you ever had to.

Rear Seat Passengers

It's very important for rear seat passengers to buckle up! Accident statistics show that unbelted people in the rear seat are hurt more often in crashes than those who are wearing safety belts.

Rear passengers who aren't safety belted can be thrown out of the vehicle in a crash. And they can strike others in the vehicle who are wearing safety belts.

Lap-Shoulder Belt

All rear seating positions have lap-shoulder belts. Here's how to wear one properly.

1. Pick up the latch plate and pull the belt across you. Don't let it get twisted.

 The shoulder belt may lock if you pull the belt across you very quickly. If this happens, let the belt go back slightly to unlock it. Then pull the belt across you more slowly.

2. Push the latch plate into the buckle until it clicks.
If the belt is not long enough, see Safety Belt Extender on page 1-26.

Make sure the release button on the buckle is positioned so you would be able to unbuckle the safety belt quickly if you ever had to.

3. To make the lap part tight, pull down on the buckle end of the belt as you pull up on the shoulder part.

⚠️ CAUTION:

You can be seriously hurt if your shoulder belt is too loose. In a crash, you would move forward too much, which could increase injury. The shoulder belt should fit against your body.

The lap part of the belt should be worn low and snug on the hips, just touching the thighs. In a crash, this applies force to the strong pelvic bones. And you'd be less likely to slide under the lap belt if you slid under it, the belt would apply force at your abdomen. This could cause serious or even fatal injuries. The shoulder belt should go over the shoulder and across the chest. These parts of the body are best able to take belt restraining forces.

The safety belt looks if there's a sudden stop or a crash, or if you pull the belt very quickly out of the retractor.

To unlatch the belt, just push the button on the buckle.
Rear Safety Belt Comfort Guides for Children and Small Adults

Rear shoulder belt comfort guides provide added safety belt comfort for older children who have outgrown booster seats and for small adults. When installed on a shoulder belt, the comfort guide better positions the belt away from the neck and head.

There is one guide for each outboard passenger position in the rear seat. To provide added safety belt comfort for children who have outgrown child restraints and booster seats and for smaller adults, the comfort guides may be installed on the shoulder belts. Here's how to install a comfort guide and use the safety belt:

1. Remove the guide from its storage pocket on the side of the seatback.

2. Slide the guide under and past the belt. The elastic cord must be under the belt. Then, place the guide over the belt, and insert the two edges of the belt into the slots of the guide.

3. Be sure that the belt is not twisted and it lies flat. The elastic cord must be under the belt and the guide on top.
4. Buckle, position and release the safety belt as described in Rear Seat Passengers on page 1-21. Make sure that the shoulder belt crosses the shoulder.

To remove and store the comfort guides, squeeze the belt edges together so that you can then pull out of the guides. Slide the guide into its storage pocket on the side of the seatback.

Safety Belt Extender

If the vehicle's safety belt will fasten around you, you should use it.

But if a safety belt isn't long enough to fasten, your dealer will order you an extender. It's free. When you go in to order it, take the heaviest coat you will wear, so the extender will be long enough for you. The extender will be just for you, and just for the seat in your vehicle that you choose. Don't let someone else use it, and use it only for the seat it's made to fit. To wear it, just attach it to the regular safety belt.

Child Restraints

Older Children

Q: What is the proper way to wear safety belts?
A: If possible, an older child should wear a lap-shoulder belt and get the additional restraint a shoulder belt can provide. The shoulder belt should not cross the face or neck. The lap belt should fit snugly below the hips, just touching the top of the thighs. It should never be worn over the abdomen, which could cause severe or even fatal internal injuries in a crash.

Accident statistics show that children are safer if they are restrained in the rear seat.

In a crash, children who are not buckled up can strike other people who are buckled up, or can be thrown out of the vehicle. Older children need to use safety belts properly.

Older children who have outgrown booster seats should wear the vehicle's safety belts.
Q: What if a child is wearing a lap-shoulder belt, but the child is so small that the shoulder belt is very close to the child's face or neck?

A: If the child is sitting in a seat next to a window, move the child toward the center of the vehicle. If the child is sitting in the center rear seat passenger position, move the child toward the safety belt buckle. In either case, be sure that the shoulder belt still is on the child's shoulder, so that in a crash the child's upper body would have the restraint that belts provide.

If the child is so small that the shoulder belt is still very close to the child's face or neck, you might want to place the child in a seat that has a lap belt, if your vehicle has one.

⚠️ CAUTION:

Never do this.

Here two children are wearing the same belt. The belt can't properly spread the impact forces. In a crash, the two children can be crushed together and seriously injured. A belt must be used by only one person at a time.

⚠️ CAUTION:

Never do this.

Here a child is sitting in a seat that has a lap-shoulder belt, but the shoulder part is behind the child. If the child wears the belt in this way, in a crash the child might slide under the belt. The belt's force would then be applied right on the child's abdomen. That could cause serious or fatal injuries.

Wherever the child sits, the lap portion of the belt should be worn low and snug on the hips, just touching the child's thighs. This applies belt force to the child's pelvic bones in a crash.

Infants and Young Children

Everyone in a vehicle needs protection! This includes infants and all other children. Neither the distance traveled nor the age and size of the traveler changes the need, for everyone, to use safety restraints. In fact, the law in every state in the United States and in every Canadian province says children up to some age must be restrained while in a vehicle.
Every time infants and young children ride in vehicles, they should have the protection provided by appropriate restraints. Young children should not use the vehicle's adult safety belts alone, unless there is no other choice. Instead, they need to use a child restraint.

⚠️ CAUTION:

People should never hold a baby in their arms while riding in a vehicle. A baby doesn't weigh much — until a crash. During a crash, a baby will become so heavy it is not possible to hold it. For example, in a crash at only 25 mph (40 km/h), a 12-lb. (5.5 kg) baby will suddenly become a 240-lb. (110 kg) force on a person's arms. A baby should be secured in an appropriate restraint.

⚠️ CAUTION: (Continued)

older children, but not for young children and infants. Neither the vehicle's safety belt system nor its air bag system is designed for them. Young children and infants need the protection that a child restraint system can provide.

Q: What are the different types of add-on child restraints?

A: Add-on child restraints, which are purchased by the vehicle's owner, are available in four basic types. Selection of a particular restraint should take into consideration not only the child's weight, height and age but also whether or not the restraint will be compatible with the motor vehicle in which it will be used.

For most basic types of child restraints, there are many different models available. When purchasing a child restraint, be sure it is designed to be used in a motor vehicle. If it is, the restraint will have a label saying that it meets federal motor vehicle safety standards.
The restraint manufacturer's instructions that come with the restraint state the weight and height limitations for a particular child restraint. In addition, there are many kinds of restraints available for children with special needs.

⚠️ CAUTION:

Newborn infants need complete support, including support for the head and neck. This is necessary because a newborn infant's neck is weak and its head weighs so much compared with the rest of its body. In a crash, an infant in a rear-facing seat settles into the restraint, so the crash forces can be distributed across the strongest part of an infant's body, the back and shoulders. Infants always should be secured in appropriate infant restraints.

⚠️ CAUTION:

The body structure of a young child is quite unlike that of an adult or older child, for whom the safety belts are designed. A young child's hip bones are still so small that the vehicle's regular safety belt may not remain low on the hip bones, as it should. Instead, it may settle up around the child's abdomen. In a crash, the belt would apply force on a body area that's unprotected by any bony structure. This alone could cause serious or fatal injuries. Young children always should be secured in appropriate child restraints.

Child Restraint Systems

An infant car bed (A), a special bed made for use in a motor vehicle, is an infant restraint system designed to restrain or position a child on a continuous flat surface. Make sure that the infant's head rests toward the center of the vehicle.

A rear-facing infant seat (B) provides restraint with the seating surface against the back of the infant. The harness system holds the infant in place and, in a crash, acts to keep the infant positioned in the restraint.
A forward-facing child seat (C-E) provides restraint for the child's body with the harness and also sometimes with surfaces such as T-shaped or shelf-like shields.

A booster seat (F-G) is a child restraint designed to improve the fit of the vehicle's safety belt system. Some booster seats have a shoulder belt positioner, and some high-back booster seats have a five-point harness. A booster seat can also help a child to see out the window.

Q: How do child restraints work?

A: A child restraint system is any device designed for use in a motor vehicle to restrain, seat, or position children. A built-in child restraint system is a permanent part of the motor vehicle. An add-on child restraint system is a portable one, which is purchased by the vehicle's owner.

For many years, add-on child restraints have used the adult belt system in the vehicle. To help reduce the chance of injury, the child also has to be secured within the restraint. The vehicle's belt system secures the add-on child restraint in the vehicle, and the add-on child restraint's harness system holds the child in place within the restraint.

One system, the three-point harness, has straps that come down over each of the infant's shoulders and buckle together at the crotch. The five-point harness system has two shoulder straps, two hip straps and a crotch strap. A shield may take the place of hip straps. A T-shaped shield has shoulder straps that are attached to a flat pad which rests low against the child's body. A shelf- or armrest-type shield has straps that are attached to a wide, shelf-like shield that swings up or to the side.

When choosing a child restraint, be sure the child restraint is designed to be used in a vehicle. If it is, it will have a label saying that it meets federal motor vehicle safety standards.

Then follow the instructions for the restraint. You may find these instructions on the restraint itself or in a booklet, or both. These restraints use the belt system in your vehicle, but the child also has to be secured within the restraint to help reduce the chance of personal injury. When securing an add-on child restraint, refer to the instructions that come with the restraint which may be on the restraint itself or in a booklet, or both, and to this manual. The child restraint instructions are important, so if they are not available, obtain a replacement copy from the manufacturer.
Where to Put the Restraint

Accident statistics show that children are safer if they are restrained in the rear rather than the front seat. We, therefore, recommend that child restraints be secured in a rear seat, including an infant riding in a rear-facing infant seat, a child riding in a forward-facing child seat and an older child riding in a booster seat. Never put a rear-facing child restraint in the front passenger seat. Here is why:

⚠️ CAUTION:

A child in a rear-facing child restraint can be seriously injured or killed if the right front passenger’s air bag inflates. This is because the back of the rear-facing child restraint would be very close to the inflating air bag. Always secure a rear-facing child restraint in a rear seat.

If you secure a forward-facing child restraint in the right front seat, always move the front passenger seat as far back as it will go. It is better to secure the child restraint in a rear seat.

⚠️ CAUTION:

A child in a child restraint in the center front seat can be badly injured or killed by the right front passenger’s air bag if it inflates. Never secure a child restraint in the center front seat. It is always better to secure a child restraint in the rear seat.

If you secure a forward-facing child restraint in the right front passenger seat, always move the front passenger seat as far back as it will go. It is better to secure the child restraint in a rear seat.

Wherever you install it, be sure to secure the child restraint properly.

Keep in mind that an unsecured child restraint can move around in a collision or sudden stop and injure people in the vehicle. Be sure to properly secure any child restraint in your vehicle – even when no child is in it.

Top Strap

Some child restraints have a top strap, or “top tether.” It can help restrain the child restraint during a collision. For it to work, a top strap must be properly anchored to the vehicle. Some top strap-equipped child restraints are designed for use with or without the top strap being anchored. Others require the top strap always to be anchored. Be sure to read and follow the instructions for your child restraint. If yours requires that the top strap be anchored, don’t use the restraint unless it is anchored properly.

If the child restraint does not have a top strap, one can be obtained, in kit form, for many child restraints. Ask the child restraint manufacturer whether or not a kit is available.

In Canada, the law requires that forward-facing child restraints have a top strap, and that the strap be anchored. In the United States, some child restraints also have a top strap. If your child restraint has a top strap, it should be anchored.
Anchor the top strap to an anchor point specified in Top Strap Anchor Location on page 1-38. Be sure to use an anchor point located on the same side of the vehicle as the seating position where the child restraint will be placed.

⚠️ CAUTION:

Each top tether bracket is designed to anchor only one child restraint. Attaching more than one child restraint to a single bracket could cause the anchor to come loose or even break during a crash. A child or others could be injured if this happens. To help prevent injury to people and damage to your vehicle, attach only one child restraint per bracket.

Once you have the top strap anchored, you'll be ready to secure the child restraint itself. Tighten the top strap when and as the child restraint manufacturer's instructions say.

Top Strap Anchor Location

Your vehicle has top strap anchors already installed for the rear seating positions. You'll find them behind the rear seat on the filler panel.

Do not use a child restraint with a top strap on the right front passenger's position because there is no place to anchor the top strap.

In order to get to a bracket, you'll have to open the trim cover.

Lower Anchorages and Top Tethers for Children (LATCH System)

Your vehicle has the LATCH system. You will find anchors (A) for all three rear seating positions.

This system, designed to make installation of child restraints easier, does not use the vehicle's safety belts. Instead, it uses vehicle anchors (A, B) and child restraint attachments to secure the restraints. Some restraints also use another vehicle anchor to secure a top tether strap (C).
To assist you in locating the lower anchors for the child restraint system, each seating position with the LATCH system has a label on the seatback at each lower anchor position.

The labels are located near the base of all three rear seating positions.

In order to use the LATCH system in your vehicle, you need a child restraint designed for that system.

⚠️ CAUTION:

If a LATCH-type child restraint isn't attached to its anchorage points, the restraint won't be able to protect the child correctly. In a crash, the child could be seriously injured or killed. Make sure that a LATCH-type child restraint is properly installed using the anchorage points, or use the vehicle's safety belts to secure the restraint. See "Securing a Child Restraint Designed for the LATCH System" or "Securing a Child Restraint In a Rear Seat Position" in the index for information on how to secure a child restraint in your vehicle.

Securing a Child Restraint Designed for the LATCH System

1. Find the anchors for the seating position you want to use, where the bottom of the seatback meets the back of the seat cushion.
2. Put the child restraint on the seat.
3. Attach the anchor points on the child restraint to the anchors in the vehicle. The child restraint instructions will show you how.
4. If the child restraint is forward-facing, attach the top strap to the top strap anchor. See Top Strap on page 1-37. Tighten the top strap according to the child restraint instructions.
5. Push and pull the child restraint in different directions to be sure it is secure.

To remove the child restraint, simply unhook the top strap from the top tether anchor and then disconnect the anchor points.
Securing a Child Restraint in a Rear Seat Position

If your child restraint is equipped with the LATCH system, see Lower Anchorage and Tethers for Children (LATCH System) on page 1-39. See Top Strap on page 1-37 if the child restraint has one.

⚠️ CAUTION:

A child in a child restraint in the center front seat can be badly injured or killed by the right front passenger's air bag if it inflates. Never secure a child restraint in the center front seat. It is always better to secure a child restraint in the rear seat.

CAUTION: (Continued)

If your child restraint does not have the LATCH system, you'll be using the lap-shoulder belt to secure the restraint in this position. Be sure to follow the instructions that came with the child restraint. Secure the child in the child restraint when and as the instructions say.

1. Put the restraint on the seat.
2. Pick up the latch plate, and run the lap and shoulder portions of the vehicle's safety belt through or around the restraint. The child restraint instructions will show you how.

3. Buckle the belt. Make sure the release button is positioned so you would be able to unbuckle the safety belt quickly if you ever had to.

Tilt the latch plate to adjust the belt if needed.
Securing a Child Restraint In the Right Front Seat Position

If your vehicle is equipped with the LATCH system, see Lower Anchorage and Top Tethers for Children (LATCH System) on page 1-31. See Top Strap on page 1-37 if the child restraint has one.

4. To tighten the belt, pull up on the shoulder belt while you push down on the child restraint. If you’re using a forward-facing child restraint, you may find it helpful to use your knee to push down on the child restraint as you tighten the belt.

5. Push and pull the child restraint in different directions to be sure it is secure.

To remove the child restraint, just unbuckle the vehicle’s safety belt and let it go back all the way. The safety belt will move freely again and be ready to work for an adult or larger child passenger.

Your vehicle has a right front passenger air bag. Never put a rear facing child restraint in this seat. Here is why:

⚠️ CAUTION:

A child in a rear-facing child restraint can be seriously injured or killed if the right front passenger’s air bag inflates. This is because the back of the rear-facing child restraint would be very close to the inflating air bag. Always secure a rear-facing child restraint in a rear seat.

A rear seat is a safer place to secure a forward-facing child restraint. If you need to secure a forward-facing child restraint in the right front seat, you will be using the lap-shoulder belt to secure the child restraint in this position. Be sure to follow the instructions that came with the child restraint. Secure the child in the child restraint when and as the instructions say.

1. Because your vehicle has a right front passenger air bag, always move the seat as far back as it will go before securing a forward-facing child restraint. See Power Seats on page 1-2 or Manual Seats on page 1-2.

2. Put the restraint on the seat.

3. Pick up the latch plate, and run the lap and shoulder portions of the vehicle’s safety belt through or around the restraint. The child restraint instructions will show you how.

4. Buckle the belt. Make sure the release button is positioned so you would be able to unbuckle the safety belt quickly if you ever had to.
5. Pull the rest of the lap belt all the way out of the retractor to set the lock.

6. To tighten the belt, feed the lap belt back into the retractor while you push down on the child restraint. You may find it helpful to use your knee to push down on the child restraint as you tighten the belt.

7. Push and pull the child restraint in different directions to be sure it is secure.

To remove the child restraint, just unbuckle the vehicle's safety belt and let it go back all the way. The safety belt will move freely again and be ready to work for an adult or larger child passenger.

Air Bag Systems

This part explains the frontal and side impact air bag systems.

Your vehicle has a frontal air bag for the driver and a frontal air bag for the right front passenger. Your vehicle may also have a side impact air bag for the driver and another side impact air bag for the right front passenger.

If your vehicle has a side impact air bag for the driver and/or right front passenger, the words AIR BAG will appear on the air bag covering on the side of the seatback closest to the door.

Frontal air bags are designed to help reduce the risk of injury from the force of an inflicting frontal air bag. But these air bags must inflate very quickly to do their job and comply with federal regulations.
Here are the most important things to know about the air bag systems:

⚠️ CAUTION:

You can be severely injured or killed in a crash if you aren’t wearing your safety belt – even if you have air bags. Wearing your safety belt during a crash helps reduce your chance of hitting things inside the vehicle or being ejected from it. Air bags are designed to work with safety belts but don’t replace them.

Frontal air bags for the driver and right front passenger are designed to deploy only in moderate to severe frontal crashes and rear frontal crashes. They aren’t designed to inflate at all in rollover, rear or low-speed frontal crashes, or in many side crashes. And, for some unrestrained occupants, frontal air bags may provide less protection in frontal crashes than more forceful air bags have provided in the past.

The side impact air bags for the driver and right front passenger are designed to inflate.

⚠️ CAUTION: (Continued)

only in moderate to severe crashes where something hits the side of your vehicle. They aren’t designed to inflate in frontal, in rollover or in rear crashes.

Everyone in your vehicle should wear a safety belt properly – whether or not there’s an air bag for that person.

⚠️ CAUTION:

Both frontal and side impact air bags inflate with great force, faster than the blink of an eye. If you’re too close to an inflating air bag, as you would be if you were leaning forward, it could seriously injure you. Safety belts help keep you in position for air bag inflation before and during a crash. Always wear your safety belt, even with frontal air bags. The driver should sit as far back as possible while still maintaining control of the vehicle. Front occupants should not lean on or sleep against the door.

⚠️ CAUTION:

Anyone who is up against, or very close to, any air bag when it inflates can be seriously injured or killed. Air bags plus lap-shoulder belts offer the best protection for adults, but not for young children and infants. Neither the vehicle’s safety belt system nor the air bag system is designed for them. Young children and infants need the protection that a child restraint system can provide. Always secure children properly in your vehicle. To read how, see the part of this manual called “Older Children” or “Infants and Young Children.”

AIR BAG

There is an air bag readiness light on the instrument panel, which shows AIR BAG.

The system checks the air bag electrical system for malfunctions. The light tells you if there is an electrical problem. See Air Bag Readiness Light on page 3-36.
Where Are the Air Bags?

The driver's frontal air bag is in the middle of the steering wheel.

The right front passenger's frontal air bag is in the instrument panel on the passenger's side.

If your vehicle has one, the driver's side impact air bag is in the side of the driver's seatback closest to the door.

⚠️ CAUTION:

If something is between an occupant and an air bag, the bag might not inflate properly or it might force the object into that person causing severe injury or even death. The path of an inflating air bag must be kept clear. Don't put anything between an occupant and an air bag, and don't attach or put anything on the steering wheel hub or on or near any other air bag covering. Don't let seat covers block the inflation path of a side impact air bag.

When Should an Air Bag Inflate?

The driver's and right front passenger's frontal air bags are designed to inflate in moderate to severe frontal or near-frontal crashes. But they are designed to inflate only if the impact speed is above the system's designed "threshold level."
in addition, your vehicle has “dual stage” frontal air bags, which adjust the amount of restraint according to crash severity. For moderate frontal impacts, these air bags inflate at a level less than full deployment. For more severe frontal impacts, full deployment occurs. If the front of your vehicle goes straight into a wall that does not move or deform, the threshold level for the reduced deployment is about 10 to 16 mph (16 to 26 km/h), and the threshold level for a full deployment is about 18 to 24 mph (29 to 38.5 km/h). The threshold level can vary, however, with specific vehicle design, so that it can be somewhat above or below this range.

If your vehicle strikes something that will move or deform, such as a parked car, the threshold level will be higher. The driver’s and right front passenger’s frontal air bags are not designed to inflate in rollovers, rear impacts, or in many side impacts because inflation would not help the occupant.

Your vehicle may or may not have a side impact air bag. See Air Bag Systems on page 1-47. Side impact air bags are designed to inflate in moderate to severe side crashes. A side impact air bag will inflate if the crash severity is above the system’s designated “threshold level.” The threshold level can vary with specific vehicle design. Side impact air bags are not designed to inflate in frontal or near-frontal impacts, rollovers or rear impacts, because inflation would not help the occupant. A side impact air bag will only deploy on the side of the vehicle that is struck.

In any particular crash, no one can say whether an air bag should have inflated simply because of the damage to a vehicle or because of what the repair costs were. For frontal air bags, inflation is determined by the angle of the impact and how quickly the vehicle slows down in frontal and near-frontal impacts. For side impact air bags, inflation is determined by the location and severity of the impact.

What Makes an Air Bag Inflatable?

In an impact of sufficient severity, the air bag sensing system detects that the vehicle is in a crash. For both frontal and side impact air bags, the sensing system triggers a release of gas from the inflator, which inflates the air bag. The inflator, the air bag and related hardware are all part of the air bag module. Frontal air bag modules are located inside the steering wheel and instrument panel. For vehicles with side impact air bags, the air bag modules are located in the seatback closest to the driver’s and/or right front passenger’s door.

How Does an Air Bag Restrain?

In moderate to severe frontal or near frontal collisions, even belted occupants can contact the steering wheel or the instrument panel. In moderate to severe side collisions, even belted occupants can contact the inside of the vehicle. The air bag supplements the protection provided by safety belts. Air bags distribute the force of the impact more evenly over the occupant’s upper body, stopping the occupant more gradually. But the frontal air bags would not help you in many types of collisions, including rollovers, rear impacts, and many side impacts, primarily because an occupant’s motion is not toward the air bag. Side impact air bags would not help you in many types of collisions, including frontal or near frontal collisions, rollovers, and rear impacts, primarily because an occupant’s motion is not toward those air bags. Air bags should never be regarded as anything more than a supplement to safety belts, and then only in moderate to severe frontal or near frontal collisions for the driver’s and right front passenger’s frontal air bags, and only in moderate to severe side collisions for vehicles with a driver’s and right front passenger’s side impact air bag.
What Will You See After an Air Bag Inflates?

After the air bag inflates, it quickly deflates, so quickly that some people may not even realize the air bag inflated. Some components of the air bag module will be hot for a short time. These components include the steering wheel hub for the driver’s frontal air bag and the instrument panel for the right front passenger’s frontal air bag. For vehicles with side impact air bags, the side of the seatback closest to the driver’s and/or right front passenger’s door will be hot. The parts of the bag that come into contact with you may be warm, but not too hot to touch. There will be some smoke and dust coming from the vents in the deflated air bags. Air bag inflation doesn’t prevent the driver from seeing or being able to steer the vehicle, nor does it stop people from leaving the vehicle.

⚠️ CAUTION:

When an air bag inflates, there is dust in the air. This dust could cause breathing problems for people with a history of asthma or other breathing trouble. To avoid this, everyone in the vehicle should get out as soon as it is safe to do so. If you have breathing problems but can’t get out of the vehicle after an air bag inflates, then get fresh air by opening a window or a door. If you experience breathing problems following an air bag deployment, you should seek medical attention.

Your vehicle has a feature that will automatically unlock the doors and turn off the interior lamps on when the air bags inflate (if battery power is available). You can lock the doors again and turn the interior lamps back on by using the door lock and interior lamp controls.

In many crashes severe enough to inflate an air bag, windshield are broken by vehicle deformation. Additional windshield breakage may also occur from the right front passenger air bag.

- Air bags are designed to inflate only once. After an air bag inflates, you’ll need some new parts for your air bag system. If you don’t get them, the air bag system won’t be there to help protect you in another crash. A new system will include air bag modules and possibly other parts. The service manual for your vehicle covers the need to replace other parts.

- Your vehicle is equipped with an electronic frontal sensor, which helps the sensing system distinguish between a moderate frontal impact and a more severe frontal impact. Your vehicle is also equipped with a crash sensing and diagnostic module, which records information about the frontal air bag system. The module records information about the readiness of the system, when the system commands air bag inflation and driver’s safety belt usage at deployment. The module also records speed, engine rpm, brake and throttle data.

- Let only qualified technicians work on your air bag systems. Improper service can mean that an air bag system won’t work properly. See your dealer for service.

Notice: If you damage the covering for the driver’s or the right front passenger’s air bag, or the air bag covering on the driver’s and right front passenger’s seatback, the bag may not work properly. You may have to replace the air bag module in the steering wheel, both the air bag module and the instrument panel for the right front passenger’s air bag, or both the air bag module and seatback for the driver’s and right front passenger’s side impact air bag. Do not open or break the air bag coverings.
Servicing Your Air Bag-Equipped Vehicle

Air bags affect how your vehicle should be serviced. There are parts of the air bag systems in several places around your vehicle. Your dealer and the service manual have information about servicing your vehicle and the air bag systems. To purchase a service manual, see 'Service Publications Ordering Information on page 7-11.'

⚠️ CAUTION:

For up to 10 seconds after the ignition key is turned off and the battery is disconnected, an air bag can still inflate during improper service. You can be injured if you are close to an air bag when it inflates. Avoid yellow connectors. They are probably part of the air bag system. Be sure to follow proper service procedures, and make sure the person performing work for you is qualified to do so.

The air bag systems do not need regular maintenance.

Recovering Restraint System Parts After a Crash

⚠️ CAUTION:

A crash can damage the restraint systems in your vehicle. A damaged restraint system may not properly protect the person using it, resulting in serious injury or even death in a crash. To help make sure your restraint systems are working properly after a crash, have them inspected and any necessary replacements made as soon as possible.

If you've had a crash, do you need new belts or LATCH system parts?

After a very minor collision, nothing may be necessary. But if the belts were stretched, as they would be if worn during a more severe crash, then you need new parts.

If the LATCH system was being used during a more severe crash, you may need new LATCH system parts.

If belts are cut or damaged, replace them. Collision damage also may mean you will need to have LATCH system, safety belt or seat parts repaired or replaced. New parts and repairs may be necessary even if the belt or LATCH system wasn't being used at the time of the collision.

If your seat adjuster won't work after a crash, the special part of the safety belt that goes through the seat to the adjuster may need to be replaced.

If an air bag inflates, you'll need to replace air bag system parts. See the part about the air bag system earlier in this manual.
Standard Equipment
- **Safety & Security***
 - Air Bags - Driver/Right Front Passenger, Dual Stage
 - Rear Child Seat Latch System
 - RR Door Child Security Lock
 - Theft Deterrent-Passkey III
 - Door Locks-Power/Delay/Auto
 - Trunk - Power, Valet Lockout
 - Lamps - Daytime Running
 - Emerg Trunk Release Handle
 - Battery Run Down Protection *** Interior***
 - Air Conditioning
 - Seat - Power Driver With Manual Lumbar
 - Radio - AM/FM, CD, RDS, With Steering Wheel Controls
 - Speakers-Dual Extended Range

- **Power Outlet**
- **Power Outlet**
- **Front Seat Storage**
- **Windows - Power with Lockout and Front Express Down**
- **Defogger-Electric RR Window**
- **Console-OHW/Reading Lights*** Exterior***
- **Mirrors-Pwr Adj, Manual Fold**
- **Remote Keyless Entry**
- **Wipers - 2-Speed with Delay**
- **Lights-Delayed Entry & Exit**
- **Lights - Twilight Sentinel**
- **TIRES-P215/70R15 ALL SEAS BW**
- **Trunk Space - 18 CUBIC FEET*** Mechanical***
- **Suspension-Auto Level Control**
- **Brakes-4 Wheel Disc Antilock**
- **Fuel Tank - Approx 18 Gallon**

Fuel Economy Information
- **City MPG**: 20
- **Highway MPG**: 29

Actual mileage will vary with options, driving conditions, driving vehicle and vehicle condition. Figures reported to EPA indicate that the majority of vehicles with these specifications will achieve between 17 and 30 mpg in the city and between 24 and 34 mpg on the highway.

2004 Lesabre
- 3.0 Liter V6 Engine
- Fuel Injection, Automatic
- 4 Spd Electronically Controlled Trans
- Catalyst, Feedback Fuel System

Estimated Annual Fuel Cost: $846

Total Vehicle & Options: $25,745.00
Destination Charge: $725.00
Total Vehicle Price: $26,470.00
Appendix D

Miscellaneous Test Information
Channel Report

Name of Test: 04/05-1
System: K3600
Name of DAU:
DAU:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>EVENT</td>
<td>EVENT</td>
<td>EVENT</td>
<td></td>
<td>10.24</td>
<td>V</td>
<td>+ 11/08/2003</td>
<td>OK</td>
<td>SLED</td>
</tr>
<tr>
<td>3001</td>
<td>C15515</td>
<td>SLXG</td>
<td>SLED G LONG</td>
<td>Rear</td>
<td>159.58523</td>
<td>g</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>SLED</td>
</tr>
<tr>
<td>3002</td>
<td>C15519</td>
<td>SLXGHR</td>
<td>SLED G LONG</td>
<td>Rear</td>
<td>200.85001</td>
<td>g</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>SLED</td>
</tr>
<tr>
<td>3003</td>
<td>SLXV</td>
<td>SLXV</td>
<td>SLED VELOCITY</td>
<td>Rear</td>
<td>164.73351</td>
<td>km/h</td>
<td>- 07/31/2003</td>
<td>OK</td>
<td>SLED</td>
</tr>
<tr>
<td>3004</td>
<td>SLXGT</td>
<td>SLXGT</td>
<td>SLED TRIGGER/SLDXTG</td>
<td>Rear</td>
<td>189.76668</td>
<td>g</td>
<td>- 07/15/2003</td>
<td>OK</td>
<td>-1</td>
</tr>
<tr>
<td>3005</td>
<td>APD3</td>
<td>HEDXG1</td>
<td>Head Accel X</td>
<td>Rswd</td>
<td>400.74513</td>
<td>g</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>314n</td>
</tr>
<tr>
<td>3006</td>
<td>AGHP</td>
<td>HEDYG1</td>
<td>Head Accel Y</td>
<td>Left</td>
<td>400.51345</td>
<td>g</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>314n</td>
</tr>
<tr>
<td>3007</td>
<td>APD60</td>
<td>HEDZG1</td>
<td>Head Accel Y</td>
<td>Up</td>
<td>399.51932</td>
<td>g</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>314a</td>
</tr>
<tr>
<td>3008</td>
<td>1716A-1221-FX</td>
<td>NEKXFI</td>
<td>Neck Force X</td>
<td>Hrd</td>
<td>889.9769</td>
<td>N</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>314a</td>
</tr>
<tr>
<td>3009</td>
<td>1716A-1221-FY</td>
<td>NEKTYF1</td>
<td>Neck Force Y</td>
<td>Hrd</td>
<td>889.2041</td>
<td>N</td>
<td>+ 03/15/2004</td>
<td>OK</td>
<td>314a</td>
</tr>
<tr>
<td>3012</td>
<td>1716A-1221-FZ</td>
<td>NEKZFI</td>
<td>Neck Force Z</td>
<td>Hrd</td>
<td>1344.2680</td>
<td>N</td>
<td>+ 03/15/2004</td>
<td>OK</td>
<td>314a</td>
</tr>
<tr>
<td>3013</td>
<td>1716A-1221-MX</td>
<td>NEKXM1</td>
<td>Neck Moment X</td>
<td>Rtn</td>
<td>283.08084</td>
<td>Nm</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>314a</td>
</tr>
<tr>
<td>3014</td>
<td>1716A-1221-MY</td>
<td>NEKYM1</td>
<td>Neck Moment Y</td>
<td>Chn</td>
<td>282.99444</td>
<td>Nm</td>
<td>+ 03/15/2004</td>
<td>OK</td>
<td>314a</td>
</tr>
<tr>
<td>3015</td>
<td>1716A-1221-MZ</td>
<td>NEKZM1</td>
<td>Neck Moment Z</td>
<td>Fwrd</td>
<td>400.88947</td>
<td>g</td>
<td>+ 03/15/2004</td>
<td>OK</td>
<td>314a</td>
</tr>
<tr>
<td>3016</td>
<td>C13010</td>
<td>CSTXG1</td>
<td>Chest Accel X</td>
<td>Left</td>
<td>402.12687</td>
<td>g</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>314a</td>
</tr>
<tr>
<td>3017</td>
<td>C14563</td>
<td>CSTYG1</td>
<td>Chest Accel Y</td>
<td>Down</td>
<td>400.49436</td>
<td>g</td>
<td>+ 03/15/2004</td>
<td>OK</td>
<td>314a</td>
</tr>
<tr>
<td>3018</td>
<td>AD343</td>
<td>CSTZG1</td>
<td>Chest Accel Z</td>
<td>Strm</td>
<td>101.14479</td>
<td>mm</td>
<td>+ 03/16/2004</td>
<td>OK</td>
<td>314a</td>
</tr>
<tr>
<td>3019</td>
<td>14CB1-2847-041</td>
<td>CSTXD1</td>
<td>Chest Deflection X</td>
<td>Knee</td>
<td>1344.0207</td>
<td>N</td>
<td>+ 03/15/2004</td>
<td>OK</td>
<td>314a</td>
</tr>
<tr>
<td>3020</td>
<td>2430-962</td>
<td>LFM2F1</td>
<td>Left Femur Force Z 91</td>
<td>Rswd</td>
<td>399.01959</td>
<td>g</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>229n</td>
</tr>
<tr>
<td>3021</td>
<td>2430-982</td>
<td>RFM2F1</td>
<td>Right Femur Force Z 98</td>
<td>Rswd</td>
<td>399.01959</td>
<td>g</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>229n</td>
</tr>
<tr>
<td>3022</td>
<td>GB86</td>
<td>HEDXG2</td>
<td>Head Accel X</td>
<td>Lft</td>
<td>399.04914</td>
<td>g</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>229n</td>
</tr>
<tr>
<td>3023</td>
<td>GB77</td>
<td>HEDYG2</td>
<td>Head Accel Y</td>
<td>Up</td>
<td>399.03399</td>
<td>g</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>229n</td>
</tr>
<tr>
<td>3024</td>
<td>A54F</td>
<td>HEDZG2</td>
<td>Head Accel Z</td>
<td>Hrd</td>
<td>8901.8939</td>
<td>N</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>229n</td>
</tr>
<tr>
<td>3025</td>
<td>1716A-1222-FX</td>
<td>NEKXF2</td>
<td>Neck Force X</td>
<td>Hrd</td>
<td>8900.2923</td>
<td>N</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>229n</td>
</tr>
<tr>
<td>3026</td>
<td>1716A-1222-FY</td>
<td>NEKYY2</td>
<td>Neck Force Y</td>
<td>Hrd</td>
<td>1344.2680</td>
<td>N</td>
<td>+ 03/15/2004</td>
<td>OK</td>
<td>229n</td>
</tr>
<tr>
<td>3027</td>
<td>1716A-1222-FZ</td>
<td>NEKZF2</td>
<td>Neck Force Z</td>
<td>Hrd</td>
<td>282.08519</td>
<td>Nm</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>229n</td>
</tr>
<tr>
<td>3028</td>
<td>1716A-1222-MX</td>
<td>NEKXM2</td>
<td>Neck Moment X</td>
<td>Chn</td>
<td>283.04588</td>
<td>Nm</td>
<td>+ 03/15/2004</td>
<td>OK</td>
<td>229n</td>
</tr>
<tr>
<td>3029</td>
<td>1716A-1222-MY</td>
<td>NEKYM2</td>
<td>Neck Moment Y</td>
<td>Chn</td>
<td>282.70168</td>
<td>Nm</td>
<td>+ 03/15/2004</td>
<td>OK</td>
<td>229n</td>
</tr>
<tr>
<td>3030</td>
<td>1716A-1222-MZ</td>
<td>NEKZM2</td>
<td>Neck Moment Z</td>
<td>Fwrd</td>
<td>401.55917</td>
<td>g</td>
<td>+ 03/15/2004</td>
<td>OK</td>
<td>229n</td>
</tr>
<tr>
<td>3031</td>
<td>C14135</td>
<td>CSTXG2</td>
<td>Chest Accel X</td>
<td>Left</td>
<td>399.67526</td>
<td>g</td>
<td>- 03/15/2004</td>
<td>OK</td>
<td>229n</td>
</tr>
<tr>
<td>3032</td>
<td>A35D</td>
<td>CSTYG2</td>
<td>Chest Accel Y</td>
<td>Down</td>
<td>399.66902</td>
<td>g</td>
<td>+ 03/15/2004</td>
<td>OK</td>
<td>229n</td>
</tr>
<tr>
<td>Channel</td>
<td>Code</td>
<td>Description</td>
<td>Sensor</td>
<td>Value</td>
<td>Std Dev</td>
<td>Min</td>
<td>Max</td>
<td>Date</td>
<td>Status</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--------------------------------------</td>
<td>--------</td>
<td>----------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>3034</td>
<td>14CB1-2847-229</td>
<td>CSTXD2 Chest Deflection X</td>
<td>STD</td>
<td>99.901464</td>
<td>min</td>
<td>03/15/2004</td>
<td>OK</td>
<td>229a</td>
<td>14CB1-2847</td>
</tr>
<tr>
<td>3035</td>
<td>2430-901</td>
<td>LFMDZS2 Left Femur Force Z, 603</td>
<td>STD</td>
<td>13342.506</td>
<td>N</td>
<td>03/15/2004</td>
<td>OK</td>
<td>229a</td>
<td>GSE 2430</td>
</tr>
<tr>
<td>3036</td>
<td>2430-902</td>
<td>RFMDZS2 Right Femur Force Z, 744</td>
<td>STD</td>
<td>13355.941</td>
<td>N</td>
<td>03/15/2004</td>
<td>OK</td>
<td>229a</td>
<td>GSE 2430</td>
</tr>
<tr>
<td>3037</td>
<td>P34003</td>
<td>LSXXG REAR SEAT X-MEMBER AT</td>
<td>FWD</td>
<td>200.25187</td>
<td>g</td>
<td>03/31/2004</td>
<td>OK</td>
<td>-1</td>
<td>Endevco 7264C-2K-2-180</td>
</tr>
<tr>
<td>3038</td>
<td>P33759</td>
<td>RSXXG REAR SEAT X-MEMBER AT</td>
<td>FWD</td>
<td>199.72109</td>
<td>g</td>
<td>03/31/2004</td>
<td>OK</td>
<td>-1</td>
<td>Endevco 7264C-2K-2-180</td>
</tr>
<tr>
<td>3039</td>
<td>P33526</td>
<td>TKG TOP OF ENGINE BLOCK</td>
<td>FWD</td>
<td>199.56462</td>
<td>g</td>
<td>03/31/2004</td>
<td>OK</td>
<td>-1</td>
<td>Endevco 7264C-2K-2-180</td>
</tr>
<tr>
<td>3040</td>
<td>P33562</td>
<td>RXG REAR AXLE</td>
<td>RR</td>
<td>200.12977</td>
<td>g</td>
<td>03/31/2004</td>
<td>OK</td>
<td>-1</td>
<td>Endevco 7264C-2K-2-180</td>
</tr>
<tr>
<td>Bit Position</td>
<td>Bit</td>
<td>Short Name</td>
<td>Type</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----</td>
<td>------------</td>
<td>-------------------</td>
<td>--------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSB = bit 15</td>
<td>0</td>
<td>Switch</td>
<td></td>
<td>Backup Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 14</td>
<td>0</td>
<td>DABET1</td>
<td>Driver Airbag Event - Primary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 13</td>
<td>1</td>
<td>DABET2</td>
<td>Driver Airbag Event - Secondary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 12</td>
<td>1</td>
<td>PABET1</td>
<td>Pass. Airbag Event - Primary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 11</td>
<td>1</td>
<td>PABET2</td>
<td>Pass. Airbag Event - Secondary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSB = bit 00</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel</td>
<td>Location</td>
<td>Type</td>
<td>Description</td>
<td>NHTSA - 314n HYBRID III 50TH, CAL DUE 9-15-04 (DKS 3-15-04)</td>
<td>211</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>----------</td>
<td>-------------</td>
<td>---</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEDXG</td>
<td>Head Accel X</td>
<td>HYBRID III 50TH</td>
<td>Name</td>
<td>Manufacturer</td>
<td>Sens./mV/V</td>
<td>Fullscale</td>
<td>Caldate</td>
<td>Pos Output</td>
<td>Flip</td>
</tr>
<tr>
<td>HEDYG</td>
<td>Head Accel Y</td>
<td>HYBRID III 50TH</td>
<td>Name</td>
<td>Endevco</td>
<td>0.02012</td>
<td>750</td>
<td>3/15/2004</td>
<td>Rwd</td>
<td>1</td>
</tr>
<tr>
<td>HEDZG</td>
<td>Head Accel Y</td>
<td>HYBRID III 50TH</td>
<td>Name</td>
<td>Endevco</td>
<td>0.01908</td>
<td>750</td>
<td>3/15/2004</td>
<td>Left</td>
<td>1</td>
</tr>
<tr>
<td>NEKXF</td>
<td>Neck Force X</td>
<td>HYBRID III 50TH</td>
<td>Name</td>
<td>Endevco</td>
<td>0.02012</td>
<td>750</td>
<td>3/15/2004</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>NEKYG</td>
<td>Neck Force Y</td>
<td>HYBRID III 50TH</td>
<td>Name</td>
<td>Endevco</td>
<td>0.02012</td>
<td>750</td>
<td>3/15/2004</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>NEKXZ</td>
<td>Neck Force Z</td>
<td>HYBRID III 50TH</td>
<td>Name</td>
<td>Endevco</td>
<td>0.02012</td>
<td>750</td>
<td>3/15/2004</td>
<td>Up</td>
<td>1</td>
</tr>
<tr>
<td>NEKXM</td>
<td>Neck Moment X</td>
<td>HYBRID III 50TH</td>
<td>Name</td>
<td>Denton</td>
<td>0.00001949</td>
<td>8896.4</td>
<td>3/15/2004</td>
<td>Bld Rd,Cat Rr</td>
<td>1</td>
</tr>
<tr>
<td>NEKYM</td>
<td>Neck Moment Y</td>
<td>HYBRID III 50TH</td>
<td>Name</td>
<td>Denton</td>
<td>0.00001949</td>
<td>8896.4</td>
<td>3/15/2004</td>
<td>Bld Rd,Cat Rr</td>
<td>1</td>
</tr>
<tr>
<td>NEKZM</td>
<td>Neck Moment Z</td>
<td>HYBRID III 50TH</td>
<td>Name</td>
<td>Denton</td>
<td>0.00001949</td>
<td>8896.4</td>
<td>3/15/2004</td>
<td>Bld Rd,Cat Rr</td>
<td>1</td>
</tr>
<tr>
<td>CSTXG</td>
<td>Chest Accel X</td>
<td>HYBRID III 50TH</td>
<td>Name</td>
<td>Endevco</td>
<td>0.02936</td>
<td>750</td>
<td>3/15/2004</td>
<td>Rl Fnt to Rl Shfl</td>
<td>1</td>
</tr>
<tr>
<td>CSTYG</td>
<td>Chest Accel Y</td>
<td>HYBRID III 50TH</td>
<td>Name</td>
<td>Endevco</td>
<td>0.02936</td>
<td>750</td>
<td>3/15/2004</td>
<td>Rl Fnt to Rl Shfl</td>
<td>1</td>
</tr>
<tr>
<td>CSTZG</td>
<td>Chest Accel Z</td>
<td>HYBRID III 50TH</td>
<td>Name</td>
<td>Endevco</td>
<td>0.02936</td>
<td>750</td>
<td>3/15/2004</td>
<td>Rl Fnt to Rl Shfl</td>
<td>1</td>
</tr>
<tr>
<td>CSTXZ</td>
<td>Chest Deflection X</td>
<td>HYBRID III 50TH</td>
<td>Name</td>
<td>Endevco</td>
<td>0.02936</td>
<td>750</td>
<td>3/15/2004</td>
<td>Rl Fnt to Rl Shfl</td>
<td>1</td>
</tr>
<tr>
<td>LFMZF</td>
<td>Left Femur Force Z 91</td>
<td>HYBRID III 50TH</td>
<td>Name</td>
<td>GSE</td>
<td>0.0000694</td>
<td>13344.7</td>
<td>3/15/2004</td>
<td>Knee Fd,Pel Rr</td>
<td>0</td>
</tr>
<tr>
<td>RFMZF</td>
<td>Right Femur Force Z 98</td>
<td>HYBRID III 50TH</td>
<td>Name</td>
<td>GSE</td>
<td>0.0000694</td>
<td>13344.7</td>
<td>3/15/2004</td>
<td>Knee Fd,Pel Rr</td>
<td>0</td>
</tr>
</tbody>
</table>

Monday, April 05, 2004 314n Page 1 of 1
<table>
<thead>
<tr>
<th>Channel</th>
<th>Location</th>
<th>Model</th>
<th>Name</th>
<th>Manufacturer</th>
<th>Sens./mV/V</th>
<th>Fullscale</th>
<th>Caldate</th>
<th>Pos Output</th>
<th>Flip</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEDXG</td>
<td>Head Accel X</td>
<td>7231C</td>
<td>GB86</td>
<td>Endeveco</td>
<td>0.01959</td>
<td>g</td>
<td>750</td>
<td>3/15/2004</td>
<td>Rwd</td>
</tr>
<tr>
<td>HEDYG</td>
<td>Head Accel Y</td>
<td>7231C</td>
<td>GB77</td>
<td>Endeveco</td>
<td>0.01915</td>
<td>g</td>
<td>750</td>
<td>3/15/2004</td>
<td>Lft</td>
</tr>
<tr>
<td>HEDZG</td>
<td>Head Accel Z</td>
<td>7231C</td>
<td>A34F</td>
<td>Endeveco</td>
<td>0.01974</td>
<td>g</td>
<td>750</td>
<td>3/15/2004</td>
<td>Up</td>
</tr>
<tr>
<td>NEKXF</td>
<td>Neck Force X</td>
<td>1716A</td>
<td>1716A-1222-FX</td>
<td>Denton</td>
<td>0.0001953</td>
<td>N</td>
<td>8896.4</td>
<td>3/15/2004</td>
<td>Hld Rd,Cst Rr</td>
</tr>
<tr>
<td>NEKYF</td>
<td>Neck Force Y</td>
<td>1716A</td>
<td>1716A-1222-FY</td>
<td>Denton</td>
<td>0.0001901</td>
<td>N</td>
<td>8896.4</td>
<td>3/15/2004</td>
<td>Hld Lf,Cst Rr</td>
</tr>
<tr>
<td>NEKZF</td>
<td>Neck Force Z</td>
<td>1716A</td>
<td>1716A-1222-FZ</td>
<td>Denton</td>
<td>0.0006998</td>
<td>N</td>
<td>13344.6</td>
<td>3/15/2004</td>
<td>Hld Up,Cat Dn</td>
</tr>
<tr>
<td>NEKXM</td>
<td>Neck Moment X</td>
<td>1716A</td>
<td>1716A-1222-MX</td>
<td>Denton</td>
<td>0.0006842</td>
<td>N</td>
<td>282.5</td>
<td>3/15/2004</td>
<td>Rl Ear to Rl Shld</td>
</tr>
<tr>
<td>NEKYM</td>
<td>Neck Moment Y</td>
<td>1716A</td>
<td>1716A-1222-MY</td>
<td>Denton</td>
<td>0.0059308</td>
<td>N</td>
<td>282.5</td>
<td>3/15/2004</td>
<td>Chin to Strom</td>
</tr>
<tr>
<td>NEKZM</td>
<td>Neck Moment Z</td>
<td>1716A</td>
<td>1716A-1222-MZ</td>
<td>Denton</td>
<td>0.0085028</td>
<td>N</td>
<td>282.5</td>
<td>3/15/2004</td>
<td>Chin to Lf Shld</td>
</tr>
<tr>
<td>CSTXG</td>
<td>Chest Accel X</td>
<td>7231C</td>
<td>C14135</td>
<td>Endeveco</td>
<td>0.02742</td>
<td>g</td>
<td>750</td>
<td>3/15/2004</td>
<td>Fwr</td>
</tr>
<tr>
<td>CSTYG</td>
<td>Chest Accel Y</td>
<td>7231C</td>
<td>A35D</td>
<td>Endeveco</td>
<td>0.01912</td>
<td>g</td>
<td>750</td>
<td>3/15/2004</td>
<td>Lft</td>
</tr>
<tr>
<td>CSTZG</td>
<td>Chest Accel Z</td>
<td>7231C</td>
<td>A15G8</td>
<td>Endeveco</td>
<td>0.01941</td>
<td>g</td>
<td>750</td>
<td>3/15/2004</td>
<td>Down</td>
</tr>
<tr>
<td>CSTXD</td>
<td>Chest Deflection X</td>
<td>14CB1-2847</td>
<td>14CB1-2847-229</td>
<td>Servo</td>
<td>1.1389</td>
<td>m</td>
<td>100</td>
<td>3/16/2004</td>
<td>Stream Away Frm 9pm</td>
</tr>
<tr>
<td>LPMZF</td>
<td>Left Femur Force Z</td>
<td>2430</td>
<td>2430-90l</td>
<td>GSE</td>
<td>0.0000708</td>
<td>N</td>
<td>13344.7</td>
<td>3/15/2004</td>
<td>Knee Ed,Pel Rr</td>
</tr>
<tr>
<td>RFMZF</td>
<td>Right Femur Force Z</td>
<td>2430</td>
<td>2430-902</td>
<td>GSE</td>
<td>0.000697</td>
<td>N</td>
<td>13344.7</td>
<td>3/15/2004</td>
<td>Knee Ed,Pel Rr</td>
</tr>
</tbody>
</table>