REPORT NO. 208-MGA-2003-003

SAFETY COMPLIANCE SLED TESTING FOR FMVSS 208
OCCUPANT CRASH PROTECTION

Honda of America Mfg., Inc.
2003 Honda Accord 4 Door
NHTSA NO. C35302

MGA RESEARCH CORPORATION
5000 WARREN ROAD
BURLINGTON, WI 53105

Test Date: April 24, 2003
Report Date: May 7, 2003

FINAL REPORT

Prepared For:
U.S. DEPARTMENT OF TRANSPORTATION
NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
OFFICE OF ENFORCEMENT
OFFICE OF VEHICLE SAFETY COMPLIANCE
MAIL CODE: NVS-221
400 SEVENTH STREET, S.W., ROOM 6115
WASHINGTON, D.C. 20590
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>208-MGA-2003-003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Title and Subtitle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Report for FMVSS 208 Compliance Sled Testing of a 2003 Honda Accord 4 Door NHTSA No. C35302</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Report Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 7, 2003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Performing Organization Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chad Gadberry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MGA-DOT-208-003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. Performing Organization Name and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGA Research Corporation</td>
</tr>
<tr>
<td>5000 Warren Road</td>
</tr>
<tr>
<td>Burlington, WI 53105</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Work Unit No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Contract or Grant No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTNH22-98-D-11055</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Sponsoring Agency Name and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Department of Transportation</td>
</tr>
<tr>
<td>Enforcement, Office of Vehicle Safety Compliance</td>
</tr>
<tr>
<td>400 Seventh St., S.W., Room 6116</td>
</tr>
<tr>
<td>Washington, D.C. 20590</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Type of Report and Period Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Report</td>
</tr>
<tr>
<td>April 24 - May 7, 2003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NVS-221</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Supplementary Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abstract</th>
</tr>
</thead>
</table>
| A compliance test (sled test) was conducted on the subject 2003 Honda Accord 4 Door in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP208S-01 for the determination of FMVSS 208 compliance. Test failures identified were as follows:

NONE |

<table>
<thead>
<tr>
<th>17. Key Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliance Testing</td>
</tr>
<tr>
<td>Safety Engineering</td>
</tr>
<tr>
<td>FMVSS 208S</td>
</tr>
<tr>
<td>Sled Test</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Distribution Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copies of this report are available from: NHTSA Technical Reference Division, Room 6108, (NPD-230) 400 Seventh Street, S.W., Washington, D.C. 20590 Telephone No. (202) 366-4946</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(of this report)</td>
<td>(of this page)</td>
</tr>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>21. No. of Pages</th>
<th>22. Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>158</td>
<td></td>
</tr>
</tbody>
</table>

Form DCT F 1700.7 (8-69)
<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>1</td>
</tr>
<tr>
<td>Test Procedure</td>
<td>2</td>
</tr>
<tr>
<td>Test Results Summary</td>
<td>3</td>
</tr>
<tr>
<td>Sled Test Summary</td>
<td>5</td>
</tr>
<tr>
<td>General Test and Vehicle Parameter Data</td>
<td>6</td>
</tr>
<tr>
<td>Post Test Data</td>
<td>9</td>
</tr>
<tr>
<td>Seat and Steering Column Positioning Data</td>
<td>10</td>
</tr>
<tr>
<td>Dummy Positioning Measurement Table</td>
<td>11</td>
</tr>
<tr>
<td>Vehicle Targeting Measurements</td>
<td>16</td>
</tr>
<tr>
<td>Vehicle Accelerometer Placement and Data Summary</td>
<td>17</td>
</tr>
<tr>
<td>Vehicle Accelerometer Location Measurements and Data Summary</td>
<td>18</td>
</tr>
<tr>
<td>Camera Positions</td>
<td>19</td>
</tr>
<tr>
<td>Camera Location Measurements</td>
<td>20</td>
</tr>
<tr>
<td>Occupant Injury Data</td>
<td>21</td>
</tr>
<tr>
<td>Seat Belt Warning System Data</td>
<td>23</td>
</tr>
<tr>
<td>Readiness Indicator</td>
<td>24</td>
</tr>
<tr>
<td>Airbag Labels Data</td>
<td>25</td>
</tr>
<tr>
<td>Rear Outboard Seating Position Seat Belt Data</td>
<td>32</td>
</tr>
<tr>
<td>Lap Belt Lockability Data</td>
<td>33</td>
</tr>
<tr>
<td>Seat Belt Comfort and Convenience Data</td>
<td>45</td>
</tr>
<tr>
<td>Appendix A - Photographs</td>
<td></td>
</tr>
<tr>
<td>Appendix B - Data Plots</td>
<td></td>
</tr>
<tr>
<td>Appendix C - Manufacturer Provided Test Information</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

This FMVSS 208 compliance sled test is part of the Federal Motor Vehicle Safety Standard (FMVSS) 208 compliance test program conducted for the National Highway Traffic Safety Administration (NHTSA) by MGA Research Corporation (MGA) under Contract No. DTRH22-98-D-11055. The purpose of this test was to determine if the subject vehicle, a 2003 Honda Accord 4 Door, NHTSA No. C35302, meets the performance requirements of FMVSS 208, "Occupant Crash Protection," in the impact simulation sled test mode.
Test Procedure

This test was conducted in accordance with NHTSA's Office of Vehicle Safety Compliance (OVSC) Laboratory Test Procedure No. TP-208S-01 dated January 15, 1998. Data was obtained relative to FMVSS 208, "Occupant Crash Protection," performance.

The test vehicle was instrumented with four (4) accelerometers to measure longitudinal axis accelerations.

The test vehicle contained two (2) Part 572 E 50th percentile adult male anthropomorphic test devices (dummies). The dummies were positioned in the front outboard seating positions according to the dummy placement procedures specified in Appendix B of the Laboratory Test Procedure. The dummies were not restrained by seat belts.

Both dummies were instrumented with head and chest accelerometers to measure longitudinal, lateral, and vertical accelerations; chest deflection potentiometers; left and right femur load cells to measure axial forces; and upper neck load cells to measure longitudinal, lateral, and vertical forces and moments.

The thirty-eight (38) data channels were digitally sampled at 10,000 samples per second and processed per Sections 11.7 through 11.9 of the Laboratory Test Procedure.

The crash event was recorded by six (6) high-speed motion picture cameras. The pre-test and post-test conditions were recorded by one (1) real-time motion picture camera.
Test Results Summary

This FMVSS 208 compliance sled test was conducted at MGA Research Corporation on April 24, 2003.

The test vehicle, a 2003 Honda Accord 4 Door, NHTSA No. C35302, appeared to comply with the performance requirements of FMVSS 208 in the impact simulation sled test mode as measured by Hybrid III 50th percentile male dummies.

<table>
<thead>
<tr>
<th>FMVSS 208 Max. Allowable Injury Assessment Values</th>
<th>Driver (Serial #403)</th>
<th>Passenger (Serial #401)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC</td>
<td>1000</td>
<td>125*</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>39.3 g</td>
</tr>
<tr>
<td>Chest displacement</td>
<td>3 in.</td>
<td>2.0 in.</td>
</tr>
<tr>
<td>Left Femur</td>
<td>2250 lb</td>
<td>1130 lb</td>
</tr>
<tr>
<td>Right Femur</td>
<td>2250 lb</td>
<td>1144 lb</td>
</tr>
<tr>
<td>Neck Extension</td>
<td>57 Nm</td>
<td>18.7 Nm</td>
</tr>
<tr>
<td>Neck Flexion</td>
<td>190 Nm</td>
<td>49.4 Nm</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>3300 N</td>
<td>900 N</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>4000 N</td>
<td>89 N</td>
</tr>
<tr>
<td>Neck Shear</td>
<td>3100 N</td>
<td>599 N</td>
</tr>
</tbody>
</table>

* Calculated from Head X and Z accelerations only.

The vehicle also appears to meet the other FMVSS 208 requirements for which it was tested. These results are shown in the data sheets that are included in this report.

The test vehicle was equipped with air bags at the driver and passenger seating positions. The dummies were not restrained by seat belts. The sled carriage was accelerated to 17.1g with an integrated velocity change of 29.0 mph. After filtering the acceleration signal to Channel Class 60, the first and second stages of the airbags were triggered 20.1 and 25.2 milliseconds after 0.5 g acceleration, respectively.
INCLUDE DISCUSSION OF LOST CHANNELS OR OTHER TEST ISSUES.

- No valid data was collected on the Driver Head Y Acceleration channel after approximately 137 msec. HIC was calculated using the Head X and Z accelerations only.
- No valid data was collected on the Left Rear Crossmember X Acceleration channel after approximately 45 msec.
- No valid data was collected on the Right Rear Crossmember X Acceleration channel after approximately 71 msec.
Vehicle NHTSA No.: C35302 Test Mode: FMVSS 208 SLED TEST
Vehicle Yr./Make/Model/Body Style: 2003/Honda/Accord/4 Door
Test Date: April 24, 2003 Time: 12:00 p.m. Temp: 70°F
Vehicle Test Weight: 3557 lbs.

<table>
<thead>
<tr>
<th>DUMMY INFO</th>
<th>DRIVER</th>
<th>PASSenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dummy Type</td>
<td>Part 572E</td>
<td>Part 572E</td>
</tr>
<tr>
<td>Serial Number</td>
<td>403</td>
<td>401</td>
</tr>
<tr>
<td>Restraint System</td>
<td>Frontal airbag</td>
<td>Frontal airbag</td>
</tr>
<tr>
<td>No. Data Channels</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Number of Cameras:
- **1** Real Time
- **6** High Speed

Door Opening Data:
- yes Left Front
- yes Right Front

<table>
<thead>
<tr>
<th>FRONT SEAT(S) DATA</th>
<th>DRIVER</th>
<th>PASSenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seat Track Failure -</td>
<td>0.0 inches shift;</td>
<td>0.0 inches shift</td>
</tr>
<tr>
<td>Seat Back Failure -</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VISIBLE DUMMY CONTACT POINTS:</th>
<th>DRIVER</th>
<th>PASSenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>Airbag/door</td>
<td>Airbag/door</td>
</tr>
<tr>
<td>Chest</td>
<td>Airbag</td>
<td>Airbag</td>
</tr>
<tr>
<td>Left Knee</td>
<td>Knee bolster</td>
<td>Glove box</td>
</tr>
<tr>
<td>Right Knee</td>
<td>Knee bolster</td>
<td>Glove box</td>
</tr>
</tbody>
</table>
General Test And Vehicle Parameter Data

Vehicle Yr/Make/Model/Body Style: 2003/Honda/Accord/4 Door
Vehicle NHTSA No.: C35302 VIN: 1HGCM55343A049185 Color: Silver

Engine Data:
No. Cylinders: 4; CID: ___; Liters: 2.4; CCs: ___
Placement: Longitudinal/Inline: ___; Transverse/Lateral: X

Transmission Data:
Speeds: 5; Manual: X; Automatic: ___; Overdrive: X

Final Drive:
Rear Wheel Drive: ___; Front Wheel Drive: X; Four Wheel Drive: ___

Major Options:
A/C: X; Pwr. Strg.: X; Pwr. Brakes: X; Pwr. Windows: X
Pwr. Dr. Locks: X; Other: Tilt/telescoping wheel, cruise control, rear defogger

Date Received: 2/7/03; Odometer Reading: 53,550 miles
Selling Dealer: Wilde Honda Cars, 1710 Hwy. 164, Waukesha, WI 53186

REMARKS: None
General Test And Vehicle Parameter Data (Cont.)

DATA FROM VEHICLE'S CERTIFICATION LABEL:
Vehicle Manufactured By: Honda of America Mfg., Inc.
Date of Manufacture: 1/03
VIN: 1HGCM55343A049135
GVWR: 4080 lbs;
GAWR Front: 2195 lbs.
GAWR Rear: 1960 lbs.

DATA FROM TIRE PLACARD:
Tire Pressure with Maximum Capacity Vehicle Load:
 FRONT: 30 psi
 REAR: 29 psi
Recommended Tire Size: P205/65R15 92H
Recommended Cold Tire Pressure:
 FRONT: 30 psi
 REAR: 29 psi
Size of Tires on Test Vehicle: P205/65R15 92H
Type of Spare Tire: T135/90D15;
 Space Saver: X;
 Standard:

Vehicle Capacity Data:

Type of Front Seats: X Bucket; _ Bench; _ Split Bench
Number of Occupants: 2 Front;
 3 Rear;
 3rd Seat;
 5 TOTAL

REMARKS: None

VEHICLE CAPACITY WEIGHT (VCW) =
 850 lbs.
 No. Of Occupants x 150 lbs =
 750 lbs.
 Rated Cargo/Luggage Weight (RCWL) =
 100 lbs. (Difference)
WEIGHT OF TEST VEHICLE AS RECEIVED AT LABORATORY: (with maximum fluids)

Right Front = 964 lbs. Right Rear = 601 lbs.
Left Front = 925 lbs. Left Rear = 623 lbs.
TOTAL FRONT = 1879 lbs. TOTAL REAR = 1224 lbs.
% Total Weight = 60.6% % Total Weight = 39.4%

TOTAL DELIVERED WEIGHT = 3103 lbs.

WEIGHT OF FULLY LOADED TEST VEHICLE WITH TWO DUMMIES (344 LB) AND 100 POUNDS OF CARGO WEIGHT:

Right Front = 1036 lbs. Right Rear = 748 lbs.
Left Front = 1006 lbs. Left Rear = 767 lbs.
TOTAL FRONT = 2046 lbs. TOTAL REAR = 1515 lbs.
% Total Weight = 57.4% % Total Weight = 42.6%

TOTAL WEIGHT = 3557 lbs.

TEST VEHICLE ATTITUDE: (all measurements in degrees)

AS DELIVERED DOOR SILL ANGLE: 0.3° nose down
AS TESTED DOOR SILL ANGLE: 0.2° nose down
FULLY LOADED DOOR SILL ANGLE: 0.0°

FUEL SYSTEM DATA:

Fuel System Capacity From Owner's Manual = 17.09 gallons
Usable Capacity Figure Furnished by COTR = 17.1 gallons

REMARKS: None
Post-Impact Data

Test number: HT03042401
NHTSA number: C35302
Test date: April 24, 2003
Test time: 12:00 p.m.
Test type: FMVSS 208 Compliance Sled Test
Impact angle: 0°
Ambient Temperature at Impact Area: 70°F
Temperature in Occupant Compartment: 70°F

Impact Velocity:
Integrated velocity from the integration of the entire sled acceleration: 29.0 mph
Specified integrated velocity range: 28 to 30 mph

Sled Carriage Acceleration:
Acceleration: 17.1 g
Specified Acceleration Range: 16.0 - 18.2 g

Sled Carriage Acceleration Duration:
Time from T-0 (-0.5 g) to 0.0 g: 124.4 msec
Specified Acceleration Duration: 120.0 to 130.0 msec

The sled acceleration corridor was achieved.
Seat and Steering Column Positioning Data

Vehicle Yr/Make/Model/Body Style: 2003/Honda/Accord/4 Door
Vehicle NHTSA No.: C35302 Test Date: April 24, 2003

NOMINAL DESIGN RIDING POSITION:

Driver Seat: Seat Back Angle = 11.4°
Passenger Seat: Seat Back Angle = 11.8°

* - Measured at headrest post. Measurement reflects angle of seatback when set at 4th position rearward of fully upright.

SEAT FORE AND AFT POSITIONS:

Driver Seat: The seat track had a total position movement of 25 notches and was positioned 12 notches rearward from the foremost position with the forward most locking position as zero.

Passenger Seat: The seat track had a total position movement of 25 notches and was positioned 12 notches rearward from the foremost position with the forward most locking position as zero.

STEERING COLUMN ADJUSTMENTS:

The steering column was placed in the mid position of its telescoping adjustment (22.5 mm of 45 mm total) and angular adjustment (67.6° from range of 64.3° to 70.8°).
<table>
<thead>
<tr>
<th></th>
<th>DRIVER (Serial #403)</th>
<th>PASSENGER (Serial #401)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA°</td>
<td>26.4°</td>
<td></td>
</tr>
<tr>
<td>SWA°</td>
<td>67.6°</td>
<td></td>
</tr>
<tr>
<td>SCA°</td>
<td>23.1°</td>
<td></td>
</tr>
<tr>
<td>SA°*</td>
<td>11.4°</td>
<td>11.8°</td>
</tr>
<tr>
<td>HZ</td>
<td>7.2</td>
<td>6.7</td>
</tr>
<tr>
<td>HH</td>
<td>13.0</td>
<td>12.8</td>
</tr>
<tr>
<td>HW</td>
<td>24.5</td>
<td>23.9</td>
</tr>
<tr>
<td>HR</td>
<td>8.0</td>
<td>8.1</td>
</tr>
<tr>
<td>NR</td>
<td>15.0 Angle (NA°) 10.9°</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>20.2</td>
<td>20.9</td>
</tr>
<tr>
<td>CS</td>
<td>12.3</td>
<td></td>
</tr>
<tr>
<td>RA</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>KDL</td>
<td>8.1 Angle (KDA°) 0.0°</td>
<td>7.1</td>
</tr>
<tr>
<td>KDR</td>
<td>8.2</td>
<td>8.3 Angle (KDA°) 0.0°</td>
</tr>
<tr>
<td>PA°</td>
<td>23.2°</td>
<td>23.7°</td>
</tr>
<tr>
<td>TA°</td>
<td>39.4°</td>
<td>38.2°</td>
</tr>
<tr>
<td>KK</td>
<td>13.4</td>
<td>10.6</td>
</tr>
<tr>
<td>ST</td>
<td>21.5 Angle 9.3°</td>
<td>20.7 Angle 8.9°</td>
</tr>
<tr>
<td>SK</td>
<td>23.4 Angle 91.4°</td>
<td>24.7 Angle 93.5°</td>
</tr>
<tr>
<td>SH</td>
<td>9.8 Angle 122.3°</td>
<td>10.1 Angle 120.2°</td>
</tr>
<tr>
<td>SHY</td>
<td>10.1</td>
<td>10.9</td>
</tr>
<tr>
<td>HS</td>
<td>12.2</td>
<td>12.6</td>
</tr>
<tr>
<td>HD</td>
<td>5.7</td>
<td>5.6</td>
</tr>
<tr>
<td>AD</td>
<td>4.4</td>
<td>5.4</td>
</tr>
</tbody>
</table>

* - Measured at headrest post
DUMMY MEASUREMENT FOR FRONT SEAT PASSENGERS

- **CD** - Chest to Dash
- **CS** - Steering Wheel to Chest
- **HH** - Head to Header
- **HW** - Head to Windshield
- **HZ** - Head to Roof
- **KDA** - Knee to Dash Angle
- **KDL** - Left Knee to Dash
- **KDR** - Right Knee to Dash
- **NA** - Nose to Rim Angle
- **NR** - Nose to Rim
- **PA** - Pelvic Angle
- **RA** - Rim to Abdomen
- **SA** - Seat Back Angle
- **SCA** - Steering Column Angle
- **SH** - Striker to H-Point
- **SK** - Striker to Knee
- **ST** - Striker to Head
- **SWA** - Steering Wheel Angle
- **TA** - Tibial Angle
- **WA** - Windshield Angle

Locations:
- **AD** - Arm to Door
- **HD** - H-Point to Door
- **HR** - Head to Side Header
- **HS** - Head to Side Window
- **KK** - Knee to Knee
- **SHY** - Striker to H-Point (Y Direction)

Lines:
- Seat Back Angle Line

Planes:
- Vertical Transverse Plane
- Vertical Longitudinal Plane

Pass
Driver
Description of Dummy Measurements

When a level is to be used, it is to ensure that the line containing the two points described is either parallel or perpendicular to the ground. If a measurement to be made is less than 10 inches ignore the directions to use a level and approximate a level measurement. Also, when a measurement is to be taken to or from the center of a bolt on the dummy, take the measurement from the center of the bolt hole if the bolt is recessed.

The following measurements are to be made within a vertical longitudinal plane.

* HH Head to Header, taken from the point where the dummy's nose meets his forehead (between his eyes) to the furthest point forward on the header.

* HW Head to Windshield, taken from the point where the dummy's nose meets his forehead (between his eyes) to a point on the windshield. Use a level.

HZ Head to Roof, taken from the point where the dummy's nose meets his forehead (between his eyes) to the point on the roof directly above it. Use a level.

* CS Steering Wheel to Chest, taken from the center of the steering wheel hub to the dummy's chest. Use a level.

* CD Chest to Dash, place a tape measure on the tip of the dummy's chin and rotate five inches of it downward toward the dummy to the point of contact on the transverse center of the dummy's chest. Then measure from this point to the closest point on the dashboard either between the upper part of the steering wheel between the hub and the rim, or measure to the dashboard placing the tape measure above the rim, whichever is a shorter measurement. See photograph.

RA Steering Wheel Rim to Abdomen, taken from the bottommost point of the steering wheel rim horizontally rearward to the dummy. Use a level.

NR Nose to Rim, taken from the tip of the dummy's nose to the closest point on the top of the steering wheel rim. Also indicate the angle this line makes with respect to the horizontal (NA).

*1 KDL, KDR Left and Right Knees to Dashboard, taken from the center of the knee pivot bolt's outer surface to the closest point forward acquired by swinging the tape measure in continually larger arcs until it contacts the dashboard. Also reference the angle of this measurement with respect to the horizontal for the outboard knee (KDA). See photograph.

* Measurement used in Data Tape Reference Guide

*1 Only outboard measurement is referenced in Data Tape Reference Guide
Description of Dummy Measurements (Cont.)

SH, SK, ST Striker to Hip, Knee, and Head, these measurements are to be taken in the X-Z plane measured from the forward most center point on the striker to the center of the H-point, outer knee bolt, and head target. When taking this measurement a firm device that can be rigidly connected to the striker should be used. Use a level. The angles of these measurements with respect to the horizontal should also be recorded. The measurement in the Y (transverse) direction from the striker to the H-point should also be taken (SHY). See photograph.

The following measurements are to be made within a vertical transverse plane.

HS Head to Side Window, taken from the point where the dummy's nose meets his forehead (between his eyes) to the outside of the side window. In order to make this measurement, roll the window down to the exact height which allows a level measurement. Use a level. See photograph.

* AD Arm to Door, taken from the outer surface of the elbow pivot bolt on a Hybrid II dummy to the first point it hits on the door. In the case of a Hybrid III dummy, measure from the bolt on the outer biceps. When a SID is used make the measurement from the center of the bottom of the arm segment where it meets the dummy's torso.

* HD H-point to Door, taken from the H-point on the dummy to the closest point on the door. Use a level.

* HR Head to Side Header, measure the shortest distance from the point where the dummy's nose meets his forehead (between his eyes) to the side edge of the header just above the window frame, directly adjacent to the dummy.

SHY Striker to H-point, taken from a rod rigidly connected to the forward most center point on the striker to the H-point. Use a level. See photograph.

KK Knee to Knee, for Hybrid II dummies measure the distance between knee pivot bolt head outer surfaces. For Hybrid III dummies measure the distance between the outboard knee clevis flange surfaces. (This measurement may not be exactly transverse)

* Measurement used in Data Tape Reference Guide
<table>
<thead>
<tr>
<th>Angle</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>Seat Back Angle, find this angle using the instructions provided by the manufacturer. If the manufacturer doesn't provide clear instructions contact the COTR.</td>
</tr>
<tr>
<td>PA</td>
<td>Pelvic or Femur Angle, taken by inserting the pelvic angle gauge into the H-point gauging hole on the SID or the Hybrid III dummies and taking this angle with respect to the horizontal. Measure the angle of the line connecting the H-point hole and the outer knee pivot bolt hole on a Hybrid II dummy with respect to the horizontal, to find the femur angle.</td>
</tr>
<tr>
<td>SWA</td>
<td>Steering Wheel Angle, find this by placing a straight edge against the steering wheel rim along the longitudinal plane. Then measure the acute angle of the straight edge with respect to the horizontal.</td>
</tr>
<tr>
<td>SCA</td>
<td>Steering Column Angle, measured with respect to the horizontal by placing an inclinometer on the center of the underside of the steering column.</td>
</tr>
<tr>
<td>NA</td>
<td>Measure the angle made when taking the measurement NR with respect to the horizontal.</td>
</tr>
<tr>
<td>KDA</td>
<td>Knee to Dash Angle, the angle that the measurement KD is taken at with respect to the horizontal. Only get this angle for the outboard knee. See photograph.</td>
</tr>
<tr>
<td>WA</td>
<td>Windshield Angle, place an inclinometer along the transverse center of the windshield exterior (measurement is made with respect to horizontal).</td>
</tr>
<tr>
<td>TA</td>
<td>Tibial Angle, use a straight edge to connect the dummy's knee and ankle bolts. Then place an inclinometer on the straight edge and measure the angle with respect to the horizontal.</td>
</tr>
</tbody>
</table>
REFERENCE PHOTO TARGETS

LEFT SIDE VIEW
Vehicle Accelerometer Placement and Data Summary

Vehicle Year/Make/Model/Body Style: 2003/Honda/Accord/4 Door
Vehicle NHTSA No.: C35302 Test Date: April 24, 2003

TOP VIEW

ENGINE

CENTERLINE

Y

Z

X

REAR SEAT CUSHION
ASSY. FRONT ATTACHMENT
BRACKET SUPPORT

ENGINE

Z

X

Y

1

2

3

4

1

2

3

4

REAR AXLE

LEFT SIDE VIEW
Vehicle Accelerometer Location Measurements and Data Summary

Vehicle Year/Make/Model/Body Style: 2003/Honda/Accord/4 Door

Vehicle NHTSA No.: C35302 **Test Date:** April 24, 2003

<table>
<thead>
<tr>
<th>No.</th>
<th>Location</th>
<th>X (in)</th>
<th>Y (in)</th>
<th>Positive Direction</th>
<th>Negative Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Value</td>
<td>Time (msec)</td>
</tr>
<tr>
<td></td>
<td>Sled Primary Longitudinal</td>
<td>67.0</td>
<td>0</td>
<td>17.1 g</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Sled Redundant Longitudinal</td>
<td>67.0</td>
<td>4.0</td>
<td>17.4 g</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Sled Velocity Measured</td>
<td>67.0</td>
<td>0</td>
<td>29.0 mph</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Measured Integrated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Rear Axle Longitudinal</td>
<td>36.0</td>
<td>0</td>
<td>17.8 g</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>Top Engine Longitudinal</td>
<td>157.0</td>
<td>0</td>
<td>19.8 g</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>Right Rear Seat Member</td>
<td>73.0</td>
<td>12.5</td>
<td>18.8 g</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Longitudinal*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Left Rear Seat Member</td>
<td>73.0</td>
<td>12.5</td>
<td>33.6 g</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Longitudinal**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* - No valid data collected after approximately 71 msec.
** - No valid data collected after approximately 45 msec.
Camera Positions

Camera Mounting Outriggers

Sled Interface Frame

Top View

Camera Frame Rates:

#1 = 24 fps
All Others = 1,000 fps

1 REAL TIME CAMERA

Sled Centerline

Sled Interface Frame

Left Side View
<table>
<thead>
<tr>
<th>Camera No.</th>
<th>VIEW</th>
<th>Camera Positions (inches)*</th>
<th>Angle (deg)</th>
<th>Film Plane To Head Target</th>
<th>Lens (mm)</th>
<th>Speed (fps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Real-Time (Pre and Post)</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>Onboard Driver</td>
<td>70.6</td>
<td>88.6</td>
<td>38.4</td>
<td>90</td>
<td>72.4</td>
</tr>
<tr>
<td>3</td>
<td>Onboard Driver Angle</td>
<td>150.9</td>
<td>91.1</td>
<td>47.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Onboard Passenger</td>
<td>71.8</td>
<td>89.6</td>
<td>38.5</td>
<td>90</td>
<td>38.5</td>
</tr>
<tr>
<td>5</td>
<td>Onboard Passenger Angle</td>
<td>146.7</td>
<td>88.5</td>
<td>47.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Onboard Windshield Driver</td>
<td>18.3</td>
<td>14.1</td>
<td>42.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Onboard Windshield Passenger</td>
<td>18.3</td>
<td>13.9</td>
<td>42.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference*
X = Front of sled carriage
Y = Center of sled carriage
Z = Top of sled carriage
Occupant Injury Data

Vehicle Year/Make/Model/Body Style: 2003/Honda/Accord/4 Door
Vehicle NHTSA No.: C35302
Test Date: April 24, 2003

<table>
<thead>
<tr>
<th>MAXIMUM ACCELERATION VALUES: (g's)</th>
<th>DRIVER DUMMY #403</th>
<th>PASSENGER DUMMY #401</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head Channel X</td>
<td>-31.3</td>
<td>-32.4</td>
</tr>
<tr>
<td>Head Channel Y</td>
<td>3.0*</td>
<td>-9.9</td>
</tr>
<tr>
<td>Head Channel Z</td>
<td>17.4</td>
<td>17.6</td>
</tr>
<tr>
<td>HEAD RESULTANT</td>
<td>35.1*</td>
<td>33.8</td>
</tr>
<tr>
<td>Chest Channel X</td>
<td>-38.9</td>
<td>-30.4</td>
</tr>
<tr>
<td>Chest Channel Y</td>
<td>4.6</td>
<td>-5.6</td>
</tr>
<tr>
<td>Chest Channel Z</td>
<td>7.9</td>
<td>14.4</td>
</tr>
<tr>
<td>CHEST RESULTANT</td>
<td>39.8</td>
<td>31.6</td>
</tr>
</tbody>
</table>

* - No valid data collected after approximately 137 msec.

HEAD INJURY CRITERIA (HIC) VALUES:

<table>
<thead>
<tr>
<th>HIC</th>
<th>125**</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₀ = (msec)</td>
<td>104.1</td>
<td>73.6</td>
</tr>
<tr>
<td>t₂ = (msec)</td>
<td>140.1</td>
<td>109.6</td>
</tr>
</tbody>
</table>

[The maximum time interval from t₀ to t₂ is 36 milliseconds.]

** - Calculated from Head X and Z accelerations only.

CHEST INJURY CRITERIA (CLIP) VALUES: (g's)

<table>
<thead>
<tr>
<th>CLIP</th>
<th>39.3</th>
<th>30.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₀ = (msec)</td>
<td>99.6</td>
<td>89.6</td>
</tr>
<tr>
<td>t₂ = (msec)</td>
<td>102.6</td>
<td>92.8</td>
</tr>
<tr>
<td>CHEST DEFLECTION (in)</td>
<td>2.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Occupant Injury Data (Cont.)

<table>
<thead>
<tr>
<th>MAX. COMPRESSIVE FEMUR FORCES:</th>
<th>DRIVER DUMMY #403</th>
<th>PASSENGER DUMMY #401</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Side (lbs)</td>
<td>1130</td>
<td>1367</td>
</tr>
<tr>
<td>Right Side (lbs)</td>
<td>1144</td>
<td>1320</td>
</tr>
</tbody>
</table>

NECK INJURY CRITERIA:

<table>
<thead>
<tr>
<th>Metric</th>
<th>DRIVER DUMMY #403</th>
<th>PASSENGER DUMMY #401</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Flexion Bending Moment about the Occipital Condyle (N-m)</td>
<td>49.4</td>
<td>58.1</td>
</tr>
<tr>
<td>Peak Extension Bending Moment about the Occipital Condyle (N-m)</td>
<td>16.7</td>
<td>15.4</td>
</tr>
<tr>
<td>Peak Axial Tension (N)</td>
<td>900</td>
<td>503</td>
</tr>
<tr>
<td>Peak Axial Compression (N)</td>
<td>89</td>
<td>746</td>
</tr>
<tr>
<td>Peak Fore Shear (N)</td>
<td>599</td>
<td>1128</td>
</tr>
<tr>
<td>Peak Aft Shear (N)</td>
<td>239</td>
<td>189</td>
</tr>
</tbody>
</table>
Seat Belt Warning System Data

Vehicle Year/Make/Modal/Body Style: 2003/Honda/Accord/4 Door
NHTSA No.: C35302; Technician: Chad Gabley; Date: March 11, 2003

Complete the following to determine which seat belt warning system option (S7.3(a)(1) or S7.3 (a)(2)) is used. (Manufacturers may use either option.)

A. With occupant in driver's position and lap belt in stowed position and ignition switch placed in "Start/On" position:

A.1 S7.3(a)(1)
Time duration of audible warning signal = 6 seconds
(4 to 8 seconds)

Time duration of reminder light operation = >60 seconds
(no less than 50 seconds)

A.2 S7.3(a)(2)
Time duration of audible warning signal = ___ seconds
(4 to 8 seconds)(see 49 USCS @ 30124)

Time duration of reminder light operation = ___ seconds
(4 to 8 seconds)

B. With occupant in driver's position and lap belt in use and ignition switch placed in "Start/On" position:

B.1 S7.3(a)(1)
Time duration of audible warning signal = 0 seconds
(audible warning not required)

Time duration of reminder light operation = 0 seconds
(reminder light not required)

B.2 S7.3(a)(2)
Time duration of audible warning signal = ___ seconds
(audible warning not required)

Time duration of reminder light operation = ___ seconds
(4 to 8 seconds)

C. Note wording of visual warning:
Fasten seat belt ____________________________
Fasten Belt ________________________________
Symbol 101 __________ X __________
Readiness Indicator

Vehicle Year/Make/Model/Body Style: 2003/Honda/Accord/4 Door
NHTSA No.: C35302; Technician: Chad Gadberry; Date: March 11, 2003

An occupant restraint system that deploys in the event of a crash shall have a
monitoring system with a readiness indicator. A totally mechanical system is exempt
from this requirement. (11/8/94 legal interpretation)

1. Is the system totally mechanical? ()Yes (X)No
(If YES this Data Sheet is complete.)

2. Describe the location of the readiness indicator: Upper right of instrument panel

3. Is the readiness indicator clearly visible to the driver?
 (X)Yes-Pass ()No-FAIL

4. Is a list of the elements in the occupant restraint system, being monitored by the
 readiness indicator, provided?
 (X)Yes-Pass ()No-FAIL
Air Bag Labels Data

Vehicle Year/Make/Model/Body Style: 2003/Honda/Accord/4 Door
NHTSA No.: C35302 ; Technician: Chad Gadberry ; Date: March 11, 2003

1. Air bag maintenance label and owner’s manual instructions (§4.5.1(a)):

1.1. Does the manufacturer recommend periodic maintenance or replacement of the airbag?
() Yes, go to 1.2 (X) No, go to 2

1.2. Does the vehicle have a maintenance or replacement label?
() Yes-Pass () No-FAIL

1.3. Does the label contain one of the following?
() Yes-Pass () No-FAIL

() Schedule on label specifies month and year (Date: ____________)
() Schedule on label specifies vehicle mileage (Mileage: ____________)
() Schedule on label specifies interval measured from date on certification label (Date: ____________)

1.4. Is the label permanently affixed within the passenger compartment?
() Yes-Pass () No-FAIL

1.5. Is the label lettered in English?
() Yes-Pass () No-FAIL

1.6. Is the label in block capitals and numerals?
() Yes-Pass () No-FAIL

1.7. Are the letters and numerals at least 3/32 inches high?
() Yes-Pass () No-FAIL

1.8. Does the owner’s manual set forth the recommended schedule for maintenance or replacement?
() Yes-Pass () No-FAIL

2. Does the owner’s manual (§4.5.1(f)):

2.1 Include a description of the vehicle’s airbag system in an easily understandable format?
() Yes-Pass () No-FAIL

2.2 Include a statement that the vehicle is equipped with an airbag and a lap/shoulder belt at the front outboard seating positions?
() Yes-Pass () No-FAIL
2.3 Include a statement that the air bag is a supplemental restraint at the front outboard seating positions?

(X) Yes-Pass () No-FAIL

2.4 Emphasize that all occupants, including the driver, should always wear their seat belts whether or not an airbag is also provided at their seating positions to minimize the risk of severe injury or death in the event of a crash?

(X) Yes-Pass () No-FAIL

2.5 Provide any necessary precautions regarding the proper positioning of occupants, including children, at seating positions equipped with air bags to insure maximum safety protection for those occupants?

(X) Yes-Pass () No-FAIL

2.6 Explain that no objects should be placed over or near the air bag on the steering wheel or on the instrument panel, because any such objects could cause harm if the vehicle is in a crash severe enough to cause the air bag to inflate?

(X) Yes-Pass () No-FAIL

3. Does the vehicle:

3.1. Provide an automatic means to ensure that the airbag does not deploy when a child seat or child with a total mass of 30 kg or less is present on the front outboard passenger?

() Yes (X) No

3.2. Incorporate sensors, other than or in addition to weight sensors, which automatically prevent the passenger air bag from deploying in situations in which it might have an adverse effect on infants in rear-facing child seats, and unbelted or improperly belted children?

() Yes (X) No

3.3. Have a passenger air bag designed to deploy in a manner that does not create a risk of serious injury to infants in rear-facing child seats, and unbelted or improperly belted children?

() Yes (X) No

If yes to 3.1, or 3.2, or 3.3, the vehicle is not required to have a sunvisor warning label (S4.5.1(6)), an airbag alert label (S4.5.1(c)) or a label on the dash (S4.5.2(e)) and this check sheet is complete (S4.5.1). If no to 3.1, 3.2, and 3.3, go to 4.

4. Sun Visor Warning Label

4.1. Is the label permanently affixed (may be permanent marking or molding) to either side of the sunvisor at each front outboard seating position with an airbag? (S4.5.1(b)(2))

Driver Side - (X) Yes-Pass () No-FAIL

Passenger Side - () N/A (X) Yes-Pass () No-FAIL
Air Bag Labels Data (Cont.)

4.2. Does the label conform in content (vehicles without back seats may omit the statement: "The back seat is the safest place for children.") (S4.5.1(b)(2)(v)) to either label shown on the next page as appropriate at each front outboard seating position with an air bag? (S4.5.1(b)(2))

4.2.1 Dual air bags: () Not Applicable
 Driver Side - (X)Yes-Pass () No-FAIL
 Passenger Side - (X)Yes-Pass () No-FAIL

4.2.2 Vehicle with driver air bag ONLY - either 4.2.2.1 or 4.2.2.2 is applicable, not both. (S4.5.1(b)(2)(iv))

4.2.2.1 Does the label conform in content to either label shown on the following page as appropriate?
 (X) Not Applicable
 Driver Side - ()Yes-Pass () No-FAIL

4.2.2.2 Does the label conform in content to the first label shown on the following page where the label can be modified to omit the pictogram and the message text may read:

DEATH or SERIOUS INJURY can occur.
• Sit as far back as possible from the air bag.
• ALWAYS use SEAT BELTS and CHILD RESTRAINTS.
• The BACK SEAT is the SAFEST place for children.

 (X) Not Applicable
 Driver Side - ()Yes-Pass () No-FAIL
Air Bag Labels Data (Cont.)

SUN VISOR LABEL VISIBLE WHEN VISOR IS IN DOWN POSITION
LABEL OUTINE, VERTICAL AND HORIZONTAL LINE BLACK
ARTWORK BLACK WITH WHITE BACKGROUND
CIRCLE AND LINE RED WITH WHITE BACKGROUND
BOTTOM TEXT BLACK WITH RED BULLETS ON WHITE BACKGROUND
TOP TEXT AND SYMBOL BLACK WITH YELLOW BACKGROUND

⚠️ WARNING ⚠️
DEATH or SERIOUS INJURY can occur

- Children 12 and under can be killed by the air bag
- The BACK SEAT is the SAFEST place for children
- NEVER put a rear-facing child seat in the front
- Sit as far back as possible from the air bag
- ALWAYS use SEAT BELTS and CHILD RESTRAINTS

Figure 6a S4.5.1(b)(2))

SUN VISOR LABEL VISIBLE WHEN VISOR IS IN DOWN POSITION
LABEL OUTINE, VERTICAL AND HORIZONTAL LINE BLACK
ARTWORK BLACK WITH WHITE BACKGROUND
CIRCLE AND LINE RED WITH WHITE BACKGROUND
BOTTOM TEXT BLACK WITH RED BULLETS ON WHITE BACKGROUND
TOP TEXT AND SYMBOL BLACK WITH YELLOW BACKGROUND

⚠️ WARNING ⚠️
DEATH or SERIOUS INJURY can occur

- Children 12 and under can be killed by the air bag
- The BACK SEAT is the SAFEST place for children
- NEVER put a rear-facing child seat in the front
- Sit as far back as possible from the air bag
- ALWAYS use SEAT BELTS and CHILD RESTRAINTS

Figure 6b (S4.5.1(b)(2))

4.3 Is the label heading area yellow with the word “warning” and the alert symbol in black? (S4.5.1(b)(2)(i))
 Driver Side - (X) Yes-Pass
 Passenger Side - () No air bag (X) Yes-Pass
 () No-Fail

4.4 Is the message white with black text? (S4.5.1(b)(2)(ii))
 Driver Side - (X) Yes-Pass
 Passenger Side - () No air bag (X) Yes-Pass
 () No-Fail
4.5 Is the message area at least 30 cm²? (S4.5.1(b)(2)(ii))
Actual message area: 31.2 cm²
 Driver Side - (X)Yes-Pass () No-FAIL
 Passenger Side - () No air bag (X)Yes-Pass () No-FAIL

4.6 Is the pictogram black with a red circle and slash on a white background? (S4.5.1(b)(2)(iii) & (S4.5.1(b)(2)(iv))
For vehicles with driver side air bag ONLY () Not Applicable
 Driver Side - (X)Yes-Pass () No-FAIL
 Passenger Side - () No air bag (X)Yes-Pass () No-FAIL

4.7 Is the pictogram at least 30 mm in diameter? (S4.5.1(b)(2)(iii))
Actual diameter: 33 mm
For vehicles with driver side air bag ONLY () Not Applicable
 Driver Side - (X)Yes-Pass () No-FAIL
 Passenger Side - () No air bag (X)Yes-Pass () No-FAIL

4.8 Is the same side of the sun visor to which the sun visor label is affixed free of other information with the exception of an air bag maintenance label? (S4.5.1(b)(3))
 Driver Side - (X)Yes-Pass () No-FAIL
 Passenger Side - () No air bag (X)Yes-Pass () No-FAIL

4.9 Is the sun visor free of other information about air bags or the need to wear seat belts with the exception of the air bag alert label or the utility vehicle label? (S4.5.1(b)(3))
 Driver Side - (X)Yes-Pass () No-FAIL
 Passenger Side - () No air bag (X)Yes-Pass () No-FAIL

5. Air Bag Alert Label

5.1 Is the Sun Visor Warning Label visible when the sun visor is in the stowed position?
 Driver Side - () Yes, go to 6 (X) No
 Passenger Side - () No air bag () Yes (X) No

5.2 Does the label conform in content to the label shown below? (S4.5.1(c)(2))
 Driver Side - (X)Yes-Pass () No-FAIL
 Passenger Side - () No air bag (X)Yes-Pass () No-FAIL

5.3 Is the message area black with yellow text? (S4.5.1(c)(2)(i))
 Driver Side - (X)Yes-Pass () No-FAIL
 Passenger Side - () No air bag (X)Yes-Pass () No-FAIL
Air Bag Labels Data (Cont.)

5.4 Is the message area at least 20 cm²? (S4.5.1(c)(2)(i))
Actual message area: 21.0 cm²
 Driver Side - (X)Yes-Pass () No-FAIL
 Passenger Side - () No air bag (X)Yes-Pass () No-FAIL

5.5 Is the pictogram black with a red circle and slash on a white background?
 (S4.5.1(c)(2)(ii))
 For vehicles with driver side air bag ONLY () Not Applicable
 (X)Yes-Pass () No-FAIL

5.6 Is the pictogram at least 20 mm in diameter? (S4.5.1(c)(2)(ii))
Actual diameter: 20 mm
 For vehicles with driver side air bag ONLY () Not Applicable
 (X)Yes-Pass () No-FAIL

SUN VISOR LABEL VISIBLE WHEN VISOR IS IN UP POSITION

CIRCLE AND LINE RED WITH WHITE BACKGROUND
TEXT YELLOW WITH BLACK BACKGROUND
ARTWORK BLACK WITH WHITE BACKGROUND

AIR BAG WARNING
FLIP VISOR OVER

Figure 6c (S4.5.1(c)(2))

6. Label On the Dash

6.1 Does the vehicle have a passenger side air bag?
 (X)Yes () No, check sheet is complete.

6.2 Does the vehicle have a label on the dash or steering wheel hub? (S4.5.1(e))
 (X)Yes-Pass () No-FAIL

6.3 Does the label conform in content (vehicles without back seats may omit the statement: “The back seat is the safest place for children 12 and under.” (S4.5.1(o)(iii)) to the label shown below. (S4.5.1(e))
 (X)Yes-Pass () No-FAIL
6.4 Is the heading area yellow with the word "warning" and the alert symbol in black? (S4.5.1(e)(i))
 (X) Yes-Pass () No-FAIL

6.5 Is the message white with black text? (S4.5.1(e)(ii))
 (X) Yes-Pass () No-FAIL

6.6 Is the message area at least 30 cm²? (S4.5.1(e)(ii))
 Actual message area: 54.6 cm²
 (X) Yes-Pass () No-FAIL

![Diagram of removable label on dash]

WARNING

Children Can Be KILLED or INJURED by Passenger Air Bag
The back seat is the safest place for children 12 and under.
Make sure all children use seat belts or child seats.

Figure 7 (S4.5.1(e))
Rear Outboard Seating Position Seat Belt Data

Vehicle Year/Make/Model/Body Style: 2003/Honda/Accord/4 Door
NHTSA No.: C35392; Technician: Chad Gadberry; Date: March 11, 2003

Do all rear outboard seating positions have type 2 seat belts?
(X)Yes ()No

If NO, describe the seat belt installed, the seat location, and any other information about the seat that would explain why a type 2 belt was not installed.
Lap Belt Lockability Data

Vehicle Year/Make/Model/Body Style: 2003/Honda/Accord/4 Door

NHTSA No.: C35302; Technician: Chad Gadberry; Date: March 11, 2003

Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Complete one of these forms for each designated seating position with forward-facing seats, other than the driver's seat, or seats that can be adjusted to forward-facing and that has seat belt retractors that are not automatic locking retractors. (S7.1.1.5(c))

Designated Seating Position (DSP): Right Front

1. Record the seating position. Fully rearward
 (S7.1.1.5(c)(1))
 (Any position is acceptable)

2. Buckle the seat belt. (S7.1.1.5(c)(1))

3. Complete any procedures recommended in the vehicle owner's manual to activate any locking feature. (S7.1.1.5(c)(1))

4. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5(a))
 (X)Yes-Pass () No-FAIL

5. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.5(a))
 (X)Yes-Pass () No-FAIL

6. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing? (X)Yes, go to 6.1 () No, go to 7.

6.1 Does the vehicle owner's manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))
 (X)Yes-Pass () No-FAIL

7. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))
8. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

9. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner's manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2))

10. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

 Measured distance between A and B is \text{72.9} \text{ inches}.

11. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(c)(3))

12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 The measured force application angle = \text{10} \text{ degrees} (spec. 5-15 degrees)

![WEBBING TENSION PULL DEVICE](image_url)

Figure 5 (S7.1.1.5(c)(4))
13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

Measured distance between A and B is 34.0 inches.

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

Record onset rate: 10 lb/sec (Spec. 10 to 50 lb/sec)

Measure distance between points A and B 34.2 inches (S7.1.1.5(c)(6))

15. Subtract the measurement in 13 from the measurement in 14. Is the difference 2 inches or less? (S7.1.1.5(c)(7))

14-13 = 0.2 inches \(\times\) Yes-Pass \(\times\) No-FAIL

16. Subtract the measurement in 14 from the measurement in 10. Is the difference 3 inches or more?

10-14 = 38.7 inches \(\times\) Yes-Pass \(\times\) No-FAIL

REMARKS: None
Lap Belt Lockability Data (Cont.)

Vehicle Year/Make/Model/Body Style: 2003/Honda/Accord/4 Door

NHTSA No.: C35302; Technician: Chad Gadberry; Date: March 11, 2003

Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Complete one of these forms for each designated seating position with forward-facing seats, other than the driver's seat, or seats that can be adjusted to forward-facing and that has seat belt retractors that are not automatic locking retractors. (S7.1.1.5(c))

Designated Seating Position (DSP): Left Rear

1. Record the seating position. Non-adjustable
 (S7.1.1.5(c)(1))
 (Any position is acceptable.)

2. Buckle the seat belt. (S7.1.1.5(c)(1))

3. Complete any procedures recommended in the vehicle owner's manual to activate any locking feature. (S7.1.1.5(c)(1))

4. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5(a))

 (X) Yes-Pass () No-FAIL

5. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deformign of the belt webbing. (S7.1.1.5(a))

 (X) Yes-Pass () No-FAIL

6. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?
 (X) Yes, go to 6.1 () No, go to 7.

 6.1 Does the vehicle owner's manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))

 (X) Yes-Pass () No-FAIL

7. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))
3. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

9. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner's manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2))

10. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

 Measured distance between A and B is \(70.7\) inches.

11. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(c)(3))

12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 The measured force application angle = \(10\) (spec. 5-15 degrees)

![WEBBING TENSION PULL DEVICE](image)

Figure 5 (S7.1.1.5(c)(4))
13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

Measured distance between A and B is 29.6 inches.

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

Record onset rate: 10 lb/sec (Spec. 10 to 50 lb/sec)

Measure distance between points A and B 30.6 inches (S7.1.1.5(c)(6))

15. Subtract the measurement in 13 from the measurement in 14. Is the difference 2 inches or less? (S7.1.1.5(c)(7))

14-13 = 1.0 inches (X) Yes-Pass () No-FAIL

16. Subtract the measurement in 14 from the measurement in 10. Is the difference 3 inches or more?

10-14 = 40.1 inches (X) Yes-Pass () No-FAIL

REMARKS: None
Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Complete one of these forms for each designated seating position with forward-facing seats, other than the driver’s seat, or seats that can be adjusted to forward-facing and that has seat belt retractors that are not automatic locking retractors. (S7.1.1.5(c))

Designated Seating Position (DSP): Center Rear

1. Record the seating position. Non-adjustable. (S7.1.1.5(c)(1))
 (Any position is acceptable.)

2. Buckle the seat belt. (S7.1.1.5(c)(1))

3. Complete any procedures recommended in the vehicle owner’s manual to activate any locking feature. (S7.1.1.5(c)(1))

4. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5(a))
 (X) Yes-Pass () No-FAIL

5. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.5(a))
 (X) Yes-Pass () No-FAIL

6. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?
 (X) Yes, go to 6.1 () No, go to 7.

6.1 Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))
 (X) Yes-Pass () No-FAIL

7. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))
8. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

9. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner's manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2))

10. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

 Measured distance between A and B is 70.7 inches.

11. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(c)(3))

12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 The measured force application angle = 10° (spec. 5-15 degrees)

![Webbing Tension Pull Device](image)

Figure 5 (S7.1.1.5(c)(4))
13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

Measured distance between A and B is 34.2 inches.

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractor are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

Record onset rate: 10 lb/sec (Spec. 10 to 50 lb/sec)

Measure distance between points A and B 35.6 inches (S7.1.1.5(c)(6))

15. Subtract the measurement in 13 from the measurement in 14. Is the difference 2 inches or less? (S7.1.1.5(c)(7))

14-13 = 1.4 inches (X) Yes-Pass () No-FAIL

16. Subtract the measurement in 14 from the measurement in 10. Is the difference 3 inches or more?

10-14 = 3.51 inches (X) Yes-Pass () No-FAIL

REMARKS: None
Lap Belt Lockability Data (Cont.)

Vehicle Year/Make/Model/Body Style: 2003/Honda/Accord/4 Door
NHTSA No.: C35302; Technician: Chad Gadberry; Date: March 11, 2003

Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Complete one of these forms for each designated seating position with forward-facing seats, other than the driver's seat, or seats that can be adjusted to forward-facing and that has seat belt retractors that are not automatic locking retractors. (S7.1.1.5(c))

Designated Seating Position (DSP): Right Rear

1. Record the seating position. Non-adjustable (S7.1.1.5(c)(1))
 (Any position is acceptable.)

2. Buckle the seat belt. (S7.1.1.5(c)(1))

3. Complete any procedures recommended in the vehicle owner's manual to activate any locking feature. (S7.1.1.5(c)(1))

4. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5(a))
 (X)Yes-Pass () No-FAIL

5. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.5(a))
 (X)Yes-Pass () No-FAIL

6. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?
 (X)Yes, go to 6.1 () No, go to 7.

 6.1 Does the vehicle owner's manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))
 (X)Yes-Pass () No-FAIL

7. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))
Lap Belt Lockability Data (Cont.)

8. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

9. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2))

10. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

Measured distance between A and B is 70.7 inches.

11. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(c)(3))

12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

The measured force application angle = 10° (spec. 5-15 degrees)

![WEBBING TENSION PULL DEVICE](image)

Figure 5 (S7.1.1.5(c)(4))
13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

Measured distance between A and B is 33.3 inches.

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

Record onset rate: 10 lb/sec (Spec. 10 to 50 lb/sec)

Measure distance between points A and B 34.1 inches (S7.1.1.5(c)(6))

15. Subtract the measurement in 13 from the measurement in 14. Is the difference 2 inches or less? (S7.1.1.5(c)(7))

14-13 = 0.8 inches (X) Yes-Pass () No-FAIL

16. Subtract the measurement in 14 from the measurement in 10. Is the difference 3 inches or more?

10-14 = 36.6 inches (X) Yes-Pass () No-FAIL

REMARKS: None
1. **BELT CONTACT FORCE (S7.4.3)**

 Test Vehicle NHTSA No.: C35302
 Vehicle Model Year/Make/Model/Body Style: 2003/Honda/Accord/4 Door
 Designated Seating Position Tested: Left Rear
 Date of Comfort/Convenience Check: March 11, 2003
 Technician Performing Check: Chad Gadberry
 GVWR: 4080 lb

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

1.1 Does the vehicle incorporate a webbing tension-relieving device?
 () Yes - go to latchplate access
 (X) No - continue with this check sheet

1.2 Adjustable seats are in adjustment position midway between the forward most and rearmost positions. If an adjustment position does not exist midway between the forward most and rearmost positions, the next closest adjustment position to the rear of the midpoint is used. (S8.1.2)
 () Check
 (X) N/A

1.3 If separately adjustable in a vertical direction, the seats are at the lowest position.
 () Check
 (X) N/A

1.4 Place adjustable seat backs in the manufacturer's nominal design riding position in the manner specified by the manufacturer.
 () Check
 (X) N/A

1.5 Place any adjustable anchorages at the manufacturer's nominal design position for a 50th percentile adult male (50M) occupant. This information will be furnished by the COTR.
 () Check
 (X) N/A

1.6 Place each adjustable head restraint in its highest adjustment position.
 (X) Check
 () N/A
1.7 Adjustable lumbar supports are positioned so that the lumbar support is in its lowest adjustment position. (S8.1.3)
 () Check
 (X) N/A

1.8 Position the test dummies according to dummy position placement instructions in Appendix B.
 (X) Check

1.9 Fasten the seat belt latch. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point, pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (S10.8) Measure the contact force exerted by the belt webbing on the dummy's chest. Contact the COTR if the contact force exceeds 0.7 pounds.
 Contact Force 0.6 lb.
 (X) 0.0 to 0.7 pounds - Pass
 () greater than 0.7 pounds - FAIL*

* If the seat belts are voluntarily installed by the manufacturer they do not have to comply.
1. **BELT CONTACT FORCE (S7.4.3)**

Test Vehicle NHTSA No.: C35302
Vehicle Model Year/Make/Model/Body Style: 2003/Honda/Accord/4 Door
Designated Seating Position Tested: Center Rear
Date of Comfort/Convenience Check: March 11, 2003
Technician Performing Check: Chad Gadberry
GVWR: 4080 lb

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

1.1 Does the vehicle incorporate a webbing tension-relieving device?
 - () Yes - go to latchplate access
 - (X) No - continue with this check sheet

1.2 Adjustable seats are in adjustment position midway between the forward most and rearmost positions. If an adjustment position does not exist midway between the forward most and rearmost positions, the next closest adjustment position to the rear of the midpoint is used. (S8.1.2)
 - () Check
 - (X) N/A

1.3 If separately adjustable in a vertical direction, the seats are at the lowest position.
 - () Check
 - (X) N/A

1.4 Place adjustable seat backs in the manufacturer's nominal design riding position in the manner specified by the manufacturer.
 - () Check
 - (X) N/A

1.5 Place any adjustable anchorages at the manufacturer's nominal design position for a 50th percentile adult male (50M) occupant. This information will be furnished by the COTR.
 - () Check
 - (X) N/A

1.6 Place each adjustable head restraint in its highest adjustment position.
 - () Check
 - (X) N/A
1.7 Adjustable lumbar supports are positioned so that the lumbar support is in its lowest adjustment position. (S8.1.3)
 () Check
 (X) N/A

1.8 Position the test dummies according to dummy position placement instructions in Appendix B.
 (X) Check

1.9 Fasten the seat belt latch. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point, pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (S10.8) Measure the contact force exerted by the belt webbing on the dummy's chest. Contact the COTR if the contact force exceeds 0.7 pounds.

 Contact Force 0.5 lb.
 (X) 0.0 to 0.7 pounds - Pass
 () greater than 0.7 pounds - FAIL*

* If the seat belts are voluntarily installed by the manufacturer they do not have to comply.
1. **BELT CONTACT FORCE (S7.4.3)**

Test Vehicle NHTSA No.:C35302
Vehicle Model Year/Make/Model/Body Style: 2003/Honda/Accord/4 Door
Designated Seating Position Tested: **Right Rear**
Date of Comfort/Convenience Check: **March 11, 2003**
Technician Performing Check: **Chad Gadberry**
GVWR: **4080 lb**

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

1.1 **Does the vehicle incorporate a webbing tension-relieving device?**
 - () Yes - go to latchplate access
 - (X) No - continue with this check sheet

1.2 **Adjustable seats are in adjustment position midway between the forward most and rearmost positions. If an adjustment position does not exist midway between the forward most and rearmost positions, the next closest adjustment position to the rear of the midpoint is used. (S8.1.2)**
 - () Check
 - (X) N/A

1.3 **If separately adjustable in a vertical direction, the seats are at the lowest position.**
 - () Check
 - (X) N/A

1.4 **Place adjustable seat backs in the manufacturer's nominal design riding position in the manner specified by the manufacturer.**
 - () Check
 - (X) N/A

1.5 **Place any adjustable anchorages at the manufacturer's nominal design position for a 50th percentile adult male (50M) occupant. This information will be furnished by the COTR.**
 - () Check
 - (X) N/A

1.6 **Place each adjustable head restraint in its highest adjustment position.**
 - (X) Check
 - () N/A
1.7 Adjustable lumbar supports are positioned so that the lumbar support is in its lowest adjustment position. (§8.1.3)
 () Check
 (X) N/A

1.8 Position the test dummies according to dummy position placement instructions in Appendix B.
 (X) Check

1.9 Fasten the seat belt latch. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point, pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (§10.8) Measure the contact force exerted by the belt webbing on the dummy's chest. Contact the COTR if the contact force exceeds 0.7 pounds.

Contact Force 0.6 lb.
 (X) 0.0 to 0.7 pounds - Pass
 () greater than 0.7 pounds - FAIL*

* If the seat belts are voluntarily installed by the manufacturer they do not have to comply.
2. **LATCHPLATE ACCESS (S7.4.4)**

Test Vehicle NHTSA No.: C35302
Vehicle Model Year/Make/Model/Body Style: 2003/Honda/Accord/4 Door
Designated Seating Position Tested: **Not applicable - passenger car**
Date of Comfort/Convenience Check: ______________________
Technician Performing Check: ______________________
GVWR: __________

Test all front outboard seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

2.1 Position the seat in its forward most adjustment position.
 () Check

2.2 Position the test dummy using the procedures in Appendix B. (Some modifications to the positioning procedure may need to be made because the seat is in its forward most position.)
 () Check

2.3 Position the adjustable seat belt anchorage in the manufacturer's nominal design position for a 50th percentile adult male occupant.
 () Check

2.4 Attach the inboard and outboard reach string following the instructions on Figure 1C.
 () Check

2.5 Place the latch plate in the stowed position.
 () Check

2.6 Extend each line backward and outboard to generate arcs of the reach envelop of the test dummy's arms. Is the latch plate within the reach envelope?
 () Yes-Pass () No-FAIL

2.7 Using the clearance test block, specified in Figure 2C, is there sufficient clearance between the vehicle seat and the side of vehicle interior to allow the test block to move unhindered to the latch plate or buckle?
 () Yes-Pass () No-FAIL
3. RETRACTION (S7.4.5)

Test Vehicle NHTSA No.: C35302
Vehicle Model Year/Make/Model/Body Style: 2003/Honda/Accord/4 Door
Designated Seating Position Tested: Not applicable - passenger car
Date of Comfort/Convenience Check: ________________________
Technician Performing Check: _____________________________
GVWR: __________

Test all front outboard seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

3.1 Is the vehicle a passenger car or walk-in van-type vehicle?
 () Yes If yes, go to seat belt guides and hardware.
 () No

3.2 Adjustable seats are in the adjustment position midway between the forward most and rearmost positions. If an adjustment position does not exist midway between the forward most and rearmost positions, the next closest adjustment position to the rear of the midpoint is used. (S8.1.2)
 () Check

3.3 If separately adjustable in a vertical direction, the seats are at the lowest position.
 () Check

3.4 Place adjustable seat backs in the manufacturer's nominal design riding position in the manner specified by the manufacturer.
 () Check

3.5 Place any adjustable anchorages at the manufacturer's nominal design position for a 50th percentile adult male (50M) occupant. This information will be furnished by the COTR.
 () Check

3.6 Place each adjustable head restraint in its highest adjustment position.
 () Check

3.7 Adjustable lumbar supports are positioned so that the lumbar support is in its lowest adjustment position. (S8.1.3)
 () Check
3.8 Use anthropomorphic test dummies whose arms have been removed and position the dummies in the front outboard designated seating positions according to instructions in Appendix B.

() Check

3.9 Restrain the dummies using the belt systems for the position being tested.

() Check

3.10 Stow outboard armrests which are capable of being stowed.

() Check

3.11 Check the statement that applies to this test vehicle:

(A) The torso and lap belt webbing of the seat belt system automatically retracts to a stowed position when the adjacent vehicle door is in an open position and the seat belt latch plate is released.

() Pass

(B) The torso and lap belt webbing of the seat belt system automatically retracts when the seat belt latch plate is released.

() Pass

(C) Neither A or B apply.

() FAIL

3.12 With the webbing and hardware in the stowed position are the webbing and hardware prevented from being pinched when the door is closed?

() Yes - Pass
() No - FAIL

3.13 If this test vehicle has an open body (without doors) and has a seat belt system with a tension-relieving device, does the belt system fully retract when the tension-relieving device is deactivated?

() N/A
() Yes - Pass
() No - FAIL
4. **SEAT BELT GUIDES AND HARDWARE (S7.4.6)**

Test Vehicle NHTSA No.: C35302

Vehicle Model Year/Make/Model/Body Style: 2003/Honda/Accord/4 Door

Designated Seating Position Tested: Left Rear

Date of Comfort/Convenience Check: March 11, 2003.

Technician Performing Check: Chad Gadbrey

GVWR: 4080 lb.

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

The requirements for accessibility **DO NOT APPLY** to:

A. Seats whose seat cushions are movable so that the seat back serves a function other than seating (S7.4.6.1(b))

B. Seats which are removable.

C. Seats which are movable so that the space formerly occupied by the seat can be used for a secondary function.

If the seats in this vehicle are different than the criteria above determine the following:

4.1 **Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back?**

 (X) Yes - Go to 4.2.

 () No - this form is complete

4.2 **Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)?**

 (X) Yes - Pass

 () No - FAIL

4.3 **Are the remaining two seat belt parts accessible under normal conditions?**

 (X) Yes - Pass

 () No - FAIL
4.4 The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the following events occur in order:

(A) The belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (X) Check

(B) The seat is moved to any position to which it is designed to be adjusted. (X) Check

(C) The seat back, if foldable, is folded forward as far as possible and then moved backward into position. (X) Check

(X) Yes - Pass

() No - FAIL

4.5 Is the inboard receptacle end of the seat belt assembly, installed in the outboard designated seating position, accessible with the center arm rest in any position to which it can be adjusted (without moving the armrest)?

(X) Yes - Pass

() No - FAIL
4. SEAT BELT GUIDES AND HARDWARE (S7.4.6)

Test Vehicle NHTSA No.: C35362
Vehicle Model Year/Make/Model/Body Style: 2003/Honda/Accord/4 Door
Designated Seating Position Tested: Center Rear
Date of Comfort/Convenience Check: March 11, 2003
Technician Performing Check: Chad Gadberry
GVWR: 4080 lb

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

The requirements for accessibility DO NOT APPLY to:

A. Seats whose seat cushions are movable so that the seat back serves a function other than seating (S7.4.6.1(b))

B. Seats which are removable.

C. Seats which are movable so that the space formerly occupied by the seat can be used for a secondary function.

If the seats in this vehicle are different than the criteria above determine the following:

4.1 Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back?

(X) Yes - Go to 4.2.
() No - this form is complete

4.2 Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)?

(X) Yes - Pass
() No - FAIL

4.3 Are the remaining two seat belt parts accessible under normal conditions?

(X) Yes - Pass
() No - FAIL
4.4 The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the following events occur in order:

(A) The belt is completely retracted or, if the belt is nonretractable, the belt is unlatched.
(X) Check

(B) The seat is moved to any position to which it is designed to be adjusted.
(X) Check

(C) The seat back, if foldable, is folded forward as far as possible and then moved backward into position.
(X) Check

(X)Yes - Pass
() No - FAIL

4.5 Is the inboard receptacle end of the seat belt assembly, installed in the outboard designated seating position, accessible with the center arm rest in any position to which it can be adjusted (without moving the armrest)?

(X) Yes - Pass
() No - FAIL
4. SEAT BELT GUIDES AND HARDWARE (S7.4.6)

Test Vehicle NHTSA No.: C35302

Vehicle Model Year/Make/Model/Body Style: 2003/Honda/Accord/4 Door

Designated Seating Position Tested: Right Rear.

Date of Comfort/Convenience Check: March 11, 2003.

Technician Performing Check: Chad Cadberry

GVWR: 4080 lb.

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

The requirements for accessibility DO NOT APPLY to:

A. Seats whose seat cushions are movable so that the seat back serves a function other than seating (S7.4.6.1(b))

B. Seats which are removable.

C. Seats which are movable so that the space formerly occupied by the seat can be used for a secondary function.

If the seats in this vehicle are different than the criteria above determine the following:

4.1 Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back?

(X) Yes - Go to 4.2.

(_) No - this form is complete

4.2 Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)?

(X) Yes - Pass

(_) No - FAIL

4.3 Are the remaining two seat belt parts accessible under normal conditions?

(X) Yes - Pass

(_) No - FAIL
4.4 The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the following events occur in order:

- (A) The belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (X) Check

- (B) The seat is moved to any position to which it is designed to be adjusted. (X) Check

- (C) The seat back, if foldable, is folded forward as far as possible and then moved backward into position. (X) Check

 (X) Yes - Pass
 () No - FAIL

4.5 Is the inboard receptacle end of the seat belt assembly, installed in the outboard designated seating position, accessible with the center arm rest in any position to which it can be adjusted (without moving the armrest)?

 (X) Yes - Pass
 () No - FAIL
LOCATION OF ANCHORING POINTS FOR LATCHPLATE REACH LIMITING CHAINS OR STRINGS TO TEST FOR LATCHPLATE ACCESSIBILITY

PART 572E DUMMY

50TH PERCENTILE DUMMY SEATED IN FOREMOST SEAT ADJUSTMENT POSITION

CENTERLINE

ATTACH THE INBOARD REACH STRING (19.125" LONG) AT THE BASE OF THE HEAD ON CENTERLINE

30"

18"

ATTACH THE OUTBOARD REACH STRING (28" LONG) AT THIS POINT ON THE TORSO SHEATH

USING FLEXIBLE TAPE, MEASURE 8" FROM BACK CENTERLINE 11.5" FROM FRONT CENTERLINE TO FIND ANCHOR POINT BELOW ARM PIT ON TORSO SHEATH

SEAT PLANE IS 90 DEGREES TO THE TORSO LINE

REAR VIEW
USE OF CLEARANCE TEST BLOCK TO DETERMINE HAND/ARM ACCESS

CLEARANCE TEST BLOCK

0.5" R. TYP.

2.5"

4"

8"

NOTE: CORNERS ARE ROUND OFF TO REDUCE SNAGGING.

TYPICAL ARM REST

FRONT VIEW OF VEHICLE
APPENDIX A
PHOTOGRAPHS
<table>
<thead>
<tr>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo No. A-1 - Pre-Test Frontal View</td>
<td>A-1</td>
</tr>
<tr>
<td>Photo No. A-2 - Pre-Test Left Side View</td>
<td>A-2</td>
</tr>
<tr>
<td>Photo No. A-3 - Pre-Test Right Side View</td>
<td>A-3</td>
</tr>
<tr>
<td>Photo No. A-4 - Pre-Test Windshield View</td>
<td>A-4</td>
</tr>
<tr>
<td>Photo No. A-5 - Post-Test Windshield View</td>
<td>A-5</td>
</tr>
<tr>
<td>Photo No. A-6 - Pre-Test Driver Dummy Position View (Door Open)</td>
<td>A-6</td>
</tr>
<tr>
<td>Photo No. A-7 - Post-Test Driver Dummy Position View (Door Open)</td>
<td>A-7</td>
</tr>
<tr>
<td>Photo No. A-8 - Pre-Test Driver Dummy Position View</td>
<td>A-8</td>
</tr>
<tr>
<td>Photo No. A-9 - Post-Test Driver Dummy Position View</td>
<td>A-9</td>
</tr>
<tr>
<td>Photo No. A-10 - Pre-Test Passenger Dummy Position View (Door Open)</td>
<td>A-10</td>
</tr>
<tr>
<td>Photo No. A-11 - Post-Test Passenger Dummy Position View (Door Open)</td>
<td>A-11</td>
</tr>
<tr>
<td>Photo No. A-12 - Pre-Test Passenger Dummy Position View</td>
<td>A-12</td>
</tr>
<tr>
<td>Photo No. A-13 - Post-Test Passenger Dummy Position View</td>
<td>A-13</td>
</tr>
<tr>
<td>Photo No. A-14 - Post-Test Driver Airbag View</td>
<td>A-14</td>
</tr>
<tr>
<td>Photo No. A-15 - Post-Test Driver Dummy Head Contact View (visor)</td>
<td>A-15</td>
</tr>
<tr>
<td>Photo No. A-16 - Post-Test Passenger Dummy Airbag View</td>
<td>A-16</td>
</tr>
<tr>
<td>Photo No. A-17 - Post-Test Passenger Dummy Head Contact View (visor)</td>
<td>A-17</td>
</tr>
<tr>
<td>Photo No. A-18 - Pre-Test Driver Knee Bolster View</td>
<td>A-18</td>
</tr>
<tr>
<td>Photo No. A-19 - Post-Test Driver Knee Bolster View</td>
<td>A-19</td>
</tr>
<tr>
<td>Photo No. A-20 - Pre-Test Passenger Knee Bolster View</td>
<td>A-20</td>
</tr>
<tr>
<td>Photo No. A-21 - Post-Test Passenger Knee Bolster View</td>
<td>A-21</td>
</tr>
<tr>
<td>Photo No. A-22 - Pre-Test Driver Seat Position View</td>
<td>A-22</td>
</tr>
<tr>
<td>Photo No. A-23 - Post-Test Driver Seat Position View</td>
<td>A-23</td>
</tr>
<tr>
<td>Photo No. A-24 - Pre-Test Passenger Seat Position View</td>
<td>A-24</td>
</tr>
<tr>
<td>Photo No. A-25 - Post-Test Passenger Seat Position View</td>
<td>A-25</td>
</tr>
<tr>
<td>Photo No. A-26 - Vehicle Certification Label</td>
<td>A-26</td>
</tr>
<tr>
<td>Photo No. A-27 - FMVSS 110 Label</td>
<td>A-27</td>
</tr>
</tbody>
</table>
APPENDIX B
DATA PLOTS
<table>
<thead>
<tr>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure B-1 - Sled X Acceleration vs. Time</td>
<td>B-1</td>
</tr>
<tr>
<td>Figure B-2 - Sled X Velocity vs. Time</td>
<td>B-2</td>
</tr>
<tr>
<td>Figure B-3 - Sled X Displacement vs. Time</td>
<td>B-3</td>
</tr>
<tr>
<td>Figure B-4 - First Stage Airbag Voltage vs. Time</td>
<td>B-4</td>
</tr>
<tr>
<td>Figure B-5 - Second Stage Airbag Voltage vs. Time</td>
<td>B-5</td>
</tr>
<tr>
<td>Figure B-6 - Left Rear Seat Crossmember X Acceleration vs. Time</td>
<td>B-6</td>
</tr>
<tr>
<td>Figure B-7 - Right Rear Seat Crossmember X Acceleration vs. Time</td>
<td>B-7</td>
</tr>
<tr>
<td>Figure B-8 - Top of Engine X Acceleration vs. Time</td>
<td>B-8</td>
</tr>
<tr>
<td>Figure B-9 - Rear Axle X Acceleration vs. Time</td>
<td>B-9</td>
</tr>
<tr>
<td>Figure B-10 - Driver Head X Acceleration vs. Time</td>
<td>B-10</td>
</tr>
<tr>
<td>Figure B-11 - Driver Head Y Acceleration vs. Time</td>
<td>B-11</td>
</tr>
<tr>
<td>Figure B-12 - Driver Head Z Acceleration vs. Time</td>
<td>B-12</td>
</tr>
<tr>
<td>Figure B-13 - Driver Head Resultant Acceleration vs. Time</td>
<td>B-13</td>
</tr>
<tr>
<td>Figure B-14 - Driver Neck Force X vs. Time</td>
<td>B-14</td>
</tr>
<tr>
<td>Figure B-15 - Driver Neck Force Y vs. Time</td>
<td>B-15</td>
</tr>
<tr>
<td>Figure B-16 - Driver Neck Force Z vs. Time</td>
<td>B-16</td>
</tr>
<tr>
<td>Figure B-17 - Driver Neck Moment X vs. Time</td>
<td>B-17</td>
</tr>
<tr>
<td>Figure B-18 - Driver Neck Moment Y vs. Time</td>
<td>B-18</td>
</tr>
<tr>
<td>Figure B-19 - Driver Neck Moment Z vs. Time</td>
<td>B-19</td>
</tr>
<tr>
<td>Figure B-20 - Driver Occipital Condyle Moment Y vs. Time</td>
<td>B-20</td>
</tr>
<tr>
<td>Figure B-21 - Driver Chest X Acceleration vs. Time</td>
<td>B-21</td>
</tr>
<tr>
<td>Figure B-22 - Driver Chest Y Acceleration vs. Time</td>
<td>B-22</td>
</tr>
<tr>
<td>Figure B-23 - Driver Chest Z Acceleration vs. Time</td>
<td>B-23</td>
</tr>
<tr>
<td>Figure B-24 - Driver Chest Resultant Acceleration vs. Time</td>
<td>B-24</td>
</tr>
<tr>
<td>Figure B-25 - Driver Chest Compression vs. Time</td>
<td>B-25</td>
</tr>
<tr>
<td>Figure B-26 - Driver Left Femur Force vs. Time</td>
<td>B-26</td>
</tr>
<tr>
<td>Figure B-27 - Driver Right Femur Force vs. Time</td>
<td>B-27</td>
</tr>
<tr>
<td>Figure B-28 - Passenger Head X Acceleration vs. Time</td>
<td>B-28</td>
</tr>
<tr>
<td>Figure B-29 - Passenger Head Y Acceleration vs. Time</td>
<td>B-29</td>
</tr>
<tr>
<td>Figure B-30 - Passenger Head Z Acceleration vs. Time</td>
<td>B-30</td>
</tr>
<tr>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Figure B-31 - Passenger Head Resultant Acceleration vs. Time</td>
<td>B-31</td>
</tr>
<tr>
<td>Figure B-32 - Passenger Neck Force X vs. Time</td>
<td>B-32</td>
</tr>
<tr>
<td>Figure B-33 - Passenger Neck Force Y vs. Time</td>
<td>B-33</td>
</tr>
<tr>
<td>Figure B-34 - Passenger Neck Force Z vs. Time</td>
<td>B-34</td>
</tr>
<tr>
<td>Figure B-35 - Passenger Neck Moment X vs. Time</td>
<td>B-35</td>
</tr>
<tr>
<td>Figure B-36 - Passenger Neck Moment Y vs. Time</td>
<td>B-36</td>
</tr>
<tr>
<td>Figure B-37 - Passenger Neck Moment Z vs. Time</td>
<td>B-37</td>
</tr>
<tr>
<td>Figure B-38 - Passenger Occipital Condyle Moment Y vs. Time</td>
<td>B-38</td>
</tr>
<tr>
<td>Figure B-39 - Passenger Chest X Acceleration vs. Time</td>
<td>B-39</td>
</tr>
<tr>
<td>Figure B-40 - Passenger Chest Y Acceleration vs. Time</td>
<td>B-40</td>
</tr>
<tr>
<td>Figure B-41 - Passenger Chest Z Acceleration vs. Time</td>
<td>B-41</td>
</tr>
<tr>
<td>Figure B-42 - Passenger Chest Resultant Acceleration vs. Time</td>
<td>B-42</td>
</tr>
<tr>
<td>Figure B-43 - Passenger Chest Compression vs. Time</td>
<td>B-43</td>
</tr>
<tr>
<td>Figure B-44 - Passenger Left Femur Force vs. Time</td>
<td>B-44</td>
</tr>
<tr>
<td>Figure B-45 - Passenger Right Femur Force vs. Time</td>
<td>B-45</td>
</tr>
</tbody>
</table>
Test Desc: FMVSS 208 SLED
Component: 2003 HONDA ACCORD 4 DOOR (C35302)
TestNumber: H03085
Test Date: 04/24/03

Chn Name: SLED X ACCELERATION
CfC: 60
File Name: H03085AF.A01
Sensor S/N: 764077

MGA Research Corp
Accelerator Sled Facility
5000 Warren Road.
Burlington, WI 53105
Ph #: 262-763-2705
Fax #: 262-763-0934

Maximum: 17.1 G
Time: 59.7 msec

Minimum: -1.1 G
Time: 127.4 msec

Value at T0: 0.3 G

Plotted By: C. Gadberry

SLED X ACCELERATION (G)

Time (msec)
Test Desc: FMVSS 208 SLED
Component: 2003 HONDA ACCORD 4 DOOR (C35362)
Test Number: H03085
Test Date: 04/24/03

Chn Name: SLED X VELOCITY
CFC: 180
File Name: H03085AI.V01
Sensor S/N: 764077

Maximum: 29.0 MPH
Time: 124.5 msec

Minimum: 0.0 MPH
Time: 0.0 msec

Value at T0: 0.0 MPH

MGA Research Corp
Accelerator Sled Facility
5000 Warren Road,
Burlington, WI 53105
Ph #: 262-783-2705
Fax #: 262-763-0934

Plotted By: E. Gadberry
On: 04.24.2003 09:14:19
Test Desc: FMVSS 208 SLED
Component: 2003 HONDA ACCORD 4 DOOR (C35302)
Test Number: HO3085
Test Date: 04/24/03

Channel Name: FIRST STAGE AIRBAG VOLTAGE
CFC: 1006
File Name: HO308507.051
Sensor S/N: N/A

Maximum: 22.0 V
Time: 20.5 msec

Minimum: -0.1 V
Time: 18.8 msec

Value at TO: -0.0 V

Plotted By: C. Gadberry
On: 04.24.2003 09:15:21
Test Desc: FMVSS 208 SLED
Component: 2003 HONDA ACCORD 4 DOOR (C35302)
Test Number: H03065
Test Date: 04/24/03

Chn Name: SECOND STAGE AIRBAG VOLTAGE
CFC: 1000
File Name: H03065OT.052
Sensor S/N: N/A

MGA Research Corp
Accelerator Sled Facility
5000 Warren Road,
Burlington, WI 53105
Ph #: 262-783-2705
Fax #: 262-763-0934

Maximum: 20.2 V
Time: 25.4 msec
Minimum: -0.1 V
Time: 10.9 msec

Value at TO: 0.0 V

Plotted By: C. Gadberry
Test Desc: FMVSS 208 SLED
Component: 2003 HONDA ACCORD 4 DOOR (C35302)
Test Number: H03088
Test Date: 04/24/03

Chn Name: LEFT REAR CROSSMEMBER X
CFO: 60
File Name: H03085AF.A44
Sensor S/N: 125-F02

MGA Research Corp
Accelerator Sled Facility
5000 Warren Road,
Burlington, WI 53105
Ph #: 262-763-2705
Fax #: 262-763-0934

Maximum: 33.8 G
Time: 40.5 msec
Minimum: 0.4 G
Time: 0.0 msec
Value at T0: 0.4 G

No Valid Data after Approximately 45 msec.

Plotted By: C. Gadberry
On: 04.24.2003 09:14:15
Test Desc: FMVSS 208 SLED
Component: 2003 HONDA ACCORD 4 DOOR (C35302)
Test Number: H03065
Test Date: 04/24/03

Chn Name: DRIVER NECK FX
CFC: 1000
File Name: H03065F7.F12
Sensor S/N: N376FX

MGA Research Corp
Accelerator Sled Facility
5000 Warren Road,
Burlington, WI 53105
Ph #: 262-753-2705
Fax #: 262-763-0934

Maximum: 598.9 N
Time: 99.7 msec
Minimum: 239.1 N
Time: 144.2 msec
Value at TO: 6.2 N

Plotted By: C. Gadberry
On: 04.24.2003 09:14:52
Test Desc: FMVSS 208 SLED
Component: 2003 HONDA ACCORD 4 DOOR (C35302)
Test Number: H03085
Test Date: 04/24/03

Chn Name: PASSENGER HEAD X
CFC: 1000
File Name: H03085AT.A24
Sensor S/N: C10727

MGA Research Corp
Accelerator Sled Facility
5000 Warren Road,
Burlington, WI 53105
Ph #: 262-763-2705
Fax #: 262-763-0934

Maximum: 2.5 G
Time: 31.2 msec

Minimum: -32.4 G
Time: 173.6 msec

Value at T0: 0.1 G

Plotted By: C. Gadberry
Test Desc: FMVSS 208 SLED
Component: 2003 HONDA ACCORD 4 DOOR (C35302)
Chn Name: PASSENGER HEAD Z
CFO: 1000
Test Number: H03085
File Name: H03085AT.A26
Sensor S/N: AGH78

MGA Research Corp
Accelerator Sled Facility
5000 Warren Road.
Burlington, WI 53105
Ph #: 262-763-2705
Fax #: 262-763-0934

Maximum: 17.6 G
Time: 67.5 msec
Minimum: -6.8 G
Time: 62.5 msec
Value at T0: -0.1 G

Plotted By: C. Gadberry
Test Desc: FMVSS 208 SLED
Component: 2003 HONDA ACCORD 4 DOOR (C35302)
TestNumber: H03085
Test Date: 04/24/03

Chn Name: PASSENGER NECK FY
CFC: 1000
File Name: H03085FT.F32
Sensor S/N: N1561FY

MGA Research Corp
Accelerator Sled Facility
5000 Warren Road,
Burlington, WI 53105
Ph #: 262-783-2705
Fax #: 262-783-0934

Maximum: 312.1 N
Time: 109.9 msec

Minimum: -48.1 N
Time: 163.3 msec

Value at T0: 1.7 N

Plotted By: C. Gadberry
On: 04.24.2003 09:15:00
Test Desc: FMVSS 206 SLED
Component: 2003 HONDA ACCORD 4 DOOR (C35302)
Test Number: H03085
Test Date: 04/24/03

Chn Name: PASSENGER NECK MX
CFC: 600
FileName: H03085MF.M35
Sensor S/N: N1551MX

MGA Research Corp
Accelerator Sled Facility
5000 Warren Road
Burlington, WI 53105
Ph #: 262-763-2705
Fax #: 262-763-0934

Maximum: 10.6 Nm
Time: 181.6 msec
Minimum: -14.9 Nm
Time: 92.2 msec
Value at T0: -0.1 Nm

Plotted By: C. Gadberry
On: 04.24.2003 09:15:11
Test Desc: FMVSS 208 SLED
Component: 2003 HONDA ACCORD 4 DOOR (C35302)
Test Number: H03085
Test Date: 04/24/03

Chan Name: PASSENGER NECK MY
CFC: 600
File Name: H03085MF.M36
Sensor S/N: N1561 MY

MGA Research Corp
Accelerator Sled Facility
5000 Warren Road,
Burlington, WI 53105
Ph #: 262-763-2705
Fax #: 262-763-0924

Maximum: 75.5 Nm
Time: 84.4 msec

Minimum: -17.1 Nm
Time: 145.0 msec

Value at T0: -0.3 Nm

Plotted By: C. Gadberry
Test Desc: FMVSS 208 SLED
Component: 2003 HONDA ACCORD 4 DOOR (C35302)
Test Number: H03085
Test Date: 04/24/03

Chn Name: PASSENGER OCCIPITAL CONDYLE MOMENT
CFC: 600
File Name: H03085MO.M36
Sensor S/N: N1561MY

Maximum: 58.1 Nm
Time: 83.9 msec

Minimum: -15.4 Nm
Time: 144.9 msec

Value at T0: -0.3 Nm

Plotted By: C. Gadberry
On: 04.24.2003 09:18:19
Test Desc: FMVSS 208 SLED
Component: 2003 HONDA ACCORD 4 DOOR (C35302)
TestNumber: H03085
Test Date: 04/24/03
Cn Name: PASSENGER CHEST Z
File Name: H03085AF.A29
Sensor S/N: A972

MGA Research Corp
Accelerator Sled Facility
5000 Warren Road,
Burlington, WI 53105
Ph #: 262-763-2705
Fax #: 262-763-0934

Maximum: 14.4 G
Time: 86.9 msec
Minimum: -8.4 G
Time: 63.6 msec
Value at T0: -0.1 G

Plotted By: C. Gadberry
Test Desc: FMVSS 208 SLED
Component: 2003 HONDA ACCORD 4 DOOR (C35002)
Test Number: H03085b
Test Date: 04/24/03

Chn Name: PASSENGER CHEST DISP.
CFC: 600
FileName: H03085Df.039
Sensor S/N: N481DX

MGA Research Corp
Accelerator Sled Facility
5000 Warren Road,
Burlington, WI 53105
Ph #: 262-763-2705
Fax #: 262-763-0934

Maximum: 0.1 IN
Time: 37.4 msec

Minimum: -0.5 IN
Time: 90.1 msec

Value at T0: 0.0 IN

Plotted By: C. Gadberry
Test Desc: FMVSS 208 SLED
Component: 2003 HONDA ACCORD 4 DOOR (G35302)
TestNumber: H03085
Test Date: 04/24/03

Chn Name: PASSENGER LEFT FEMUR
CFC: 600
File Name: H03085FF.F41
Sensor S/N: 946

MGA Research Corp
Accelerator Sed Facility
5000 Warren Road,
Burlington, WI 53105
Ph #: 262-763-2705
Fax #: 262-763-0934

Maximum: 81.5 LB
Time: 249.5 msec
Minimum: -1367.3 LB
Time: 65.4 msec
Value at T0: -0.5 LB

Plotted By: C. Gadberry
APPENDIX C
MANUFACTURER'S VEHICLE INFORMATION
INFORMATION FOR 2003M FMVSS NO. 208 TEST
ON HONDA VEHICLES

TEST VEHICLE: HONDA ACCORD SEDAN (L4 model)

TABLE OF CONTENTS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. RESPONSES TO QUESTIONS</td>
<td>PAGE</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>NO. 1 - 2</td>
<td>1</td>
</tr>
<tr>
<td>NO. 3 - 8</td>
<td>2</td>
</tr>
<tr>
<td>NO. 9 - 15</td>
<td>3</td>
</tr>
<tr>
<td>NO. 16 - 17</td>
<td>4</td>
</tr>
<tr>
<td>OTHER INFORMATION</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2. COMPLIANCE REPORTS OF FMVSS NO. 208 TESTS</td>
<td>ATTACHMENT 1</td>
</tr>
<tr>
<td>3. TEST VEHICLE INFORMATION FOR 8L6D</td>
<td>ATTACHMENT 2</td>
</tr>
<tr>
<td>4. DUMMY MEASUREMENTS FOR FRONT SEAT PASSENGER</td>
<td>ATTACHMENT 3</td>
</tr>
<tr>
<td>5. TEST VEHICLE INFORMATION</td>
<td>ATTACHMENT 4</td>
</tr>
<tr>
<td>6. FMVSS NO. 208 TEST RESULTS</td>
<td>ATTACHMENT 5</td>
</tr>
<tr>
<td>7. COMPLIANCE REPORTS OF FMVSS NO. 208 INFLATORS</td>
<td>ATTACHMENT 6</td>
</tr>
</tbody>
</table>

C-1
TEST VEHICLE INFORMATION / SPECIFICATIONS FMVSS NO. 208

MODEL YEAR: 2003
MODEL NAME: ACCORD SEDAN (L4 model)

1. Many options are available for certification to FMVSS 208. Please identify the sections of FMVSS 208 to which the subject vehicles are certified. Provide a copy of the certification test reports for all the applicable impact tests and sled tests with respect to these sections. If the subject vehicles are certified to the low risk deployment requirements of 514, provide a copy of the certification tests. In addition, provide the test reports and any analysis used to determine the air bag inflator stages to trigger for the low risk deployment tests.

Response: Certified to meet the requirements of sections 511.1(c) (AM50 fastened belt barrier test) and 513 (AM50 unfastened belt sled test).

Refer to Attachment 1 for certification test reports.

If the subject vehicles are certified to any of the air bag suppression sections of 514, provide a representative test report for each type of suppression test. (i.e. rear facing child restraint suppression test (12-month-old dummy), 3-year-old dummy or human suppression test conducted with and without using a child restraint, 8-year-old dummy or human suppression test conducted with and without using a child restraint.) Also provide a test report for reactivation of the air bag system using a 5th percentile female.

Response: Not applicable.

2. Provide the following: (1) describe the difference between the MY 2003 air bag system and the MY 2002 air bag system, (2) explain what other restraint changes have been made, (3) explain what other vehicle changes have been made that may affect FMVSS 208 performance, and (4) describe any features that may affect occupant protection performance with respect to children and out of position occupants.

Response: (1) (2) (3) 2003 MY ACCORD SEDAN had full model change. Therefore, vehicle body, airbags, seatbelts, and all other items have been completely changed.

(4) N.A.
3. If the subject vehicles were certified with unrestrained dummies to meet the requirements of S13, describe how to disconnect the air bags from the vehicle sensors and connect them to the triggering mechanism used in the sled test. Describe the method used in certification to determine when to trigger the air bag and the system used to trigger the air bag.

Response: Refer to Attachment 2.

For air bags with dual stage or multistage inflators describe when the stages are triggered and provide data to show that this is similar to what would occur in a crash of similar severity.

Response: The dual stage air bag is equipped on both driver and assistant slides.

Each air bag has two inflators referred to as primary and secondary inflators which are judged to be exploded by SRS unit. In any speed, the primary inflator explodes, followed by the secondary inflator. In such vehicle deceleration as full lap 30 mph crashes, secondary inflator explodes 5 ms after primary inflator explodes. The explosion of the airbag is verified by checking the SRS unit history and the high-speed films of the tests.

4. For the subject vehicles certified to the advanced air bag requirements, describe how to disconnect the air bags to trigger the appropriate inflator stages for the low risk deployment tests.

Response: Not applicable.

5. State for each safety belt system in the subject vehicles whether or not it is equipped with a tension-relieving device. Provide a copy of the information furnished in accordance with 57.4.2 if the tension-relieving device is used.

Response: The safety belt system for this vehicle is not equipped with a tension-relieving device.

6. State for each crash test (frontal, angular, and offset) that the subject vehicles are certified as meeting whether the movable windows and vents were opened or closed.

Response: All the barrier tests were performed with the window closed.

7. Submit dummy placement measurements, including diagrams or photographs that show exactly where each measurement was taken. For the subject vehicles certified to the advanced air bag requirements provide measurements for both the 50th percentile male and the 5th percentile female.

Response: Refer to Attachment 3 for dummy placement measurements.

8. For the subject vehicles certified to the advanced air bag requirements, provide the width of the vehicle as defined in S19.2.4, the location at which the maximum dimension was measured, and other information and measurements used to position the vehicle for the certification offset crash test at 40 percent overlap.

Response: Not applicable.
9. For the subject vehicle certified to the advanced air bag suppression requirements, describe the test to determine air bag activation and deactivation. State whether humans or dummies were used for the suppression tests. If humans were used, provide the method to deactivate the air bag during suppression tests, identify any parts or equipment necessary for deactivation, and provide the method to assure that the same result would be obtained if the air bag were not deactivated.

 Response: Not applicable.

10. State whether the subject vehicle has a footrest for the driver.

 Response: This vehicle has a footrest for the driver.

11. Provide the seat positioning, steering column positioning, and fuel tank data on the enclosed form. If more than one front seating configuration, steering column or fuel tank configuration are available on this vehicle, provide separate information for each. For certification tests using the 5th percentile female, provide the seat fore-aft position, seat height, and seat back angle used in the certification test. In addition, provide the seating reference point for each seat for the lockable seat belt requirement in 57.1.1.5.

 Response: Refer to Attachment 4.

12. For the subject vehicles certified to the low risk deployment sections of the advanced air bag requirements, provide the location of the "geometric center of the opening through which the air bag deploys into the occupant compartment."

 Response: Not applicable.

13. If the subject vehicle is equipped with adjustable seat belt anchorages, provide the manufacturer's nominal design position for a 60th percentile adult male occupant and, if certified to the advanced air bag requirements, the position for the 5th percentile female.

 Response: Highest position.

14. For all tests that are performed to certify the subject vehicles to injury assessment performance requirements, provide a summary of the injury results. In addition, for crash tests, provide the measured test speed.

 Response: Refer to Attachment 5.

15. When vehicle components must be removed to obtain the proper test weight for crash tests, what components do you recommend for removal, and in what priority order do you recommend removal?

 Response: To obtain the proper test weight, components recommended to remove are as follows:

 Any of the following may be removed to adjust the weight.

 Removable Components:
 - Spare tire / jack & tool kit
 - Tail lights / rear bumper / rear bumper beam
 - All kinds of trim, garnishes
 - Things in the trunk.
16. If the subject vehicles use a pressure vessel to inflate the air bag, provide a copy of the test reports or engineering analysis to demonstrate that it meets all the requirements of S9.1.

Response: Not applicable.

17. If the subject vehicles use an explosive device to inflate the air bag, provide a copy of the test report or engineering analysis to demonstrate that it meets all the requirements of S9.2.

Response: Refer to Attachment 8.

<Other Information>
HOW TO DISCONNECT THE AIR BAG

1. Remove the battery terminal in the engine room.

 Driver's side
 1. Remove the lid on the lower side of the steering wheel. (Fig. 1)
 2. Remove the yellow coupler from the holder. (Fig. 2)
 3. Disconnect the coupler.
 4. Catch the widest part of the coupler and pull out. (Fig. 3)

 ![Figure 1](image1)
 ![Figure 2](image2)
 ![Figure 3](image3)

 Passenger's side
 1. Open the glove box. (Fig. 4)
 2. Remove the stoppers of glove box. (Fig. 5)
 3. Disconnect the coupler.
 4. Catch the widest part of the coupler and pull out. (Fig. 6)

 ![Figure 4](image4)
 ![Figure 5](image5)
 ![Figure 6](image6)

2. Connect to firing system
 Cut the SRS cable (both driver and passenger side) and make extension cables. (Fig. 7)

 ![Figure 7](image7)
HOW TO CONNECT THE DUAL INFLATOR

Connectors of the driver's & the passenger's aides are the same.
DUMMY POSITIONING IN VEHICLE
FRONT SEAT MEASUREMENT TABLE

2003 HONDA ACCORD SEDAN

<table>
<thead>
<tr>
<th></th>
<th>DRIVER</th>
<th>PASSENGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/A°</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>SW/A°</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>SCA°</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>SA°</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>HZ</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>HH</td>
<td>369</td>
<td>345</td>
</tr>
<tr>
<td>HW</td>
<td>610</td>
<td>525</td>
</tr>
<tr>
<td>HR</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>NR / NA</td>
<td>275 / 8°</td>
<td>N.A.</td>
</tr>
<tr>
<td>CO</td>
<td>520</td>
<td>550</td>
</tr>
<tr>
<td>CS</td>
<td>320</td>
<td>N.A.</td>
</tr>
<tr>
<td>RA</td>
<td>219</td>
<td>N.A.</td>
</tr>
<tr>
<td>KDL</td>
<td>210 / KDA 30°</td>
<td>170</td>
</tr>
<tr>
<td>KDR</td>
<td>198</td>
<td>215 / KDA 16°</td>
</tr>
<tr>
<td>PA°</td>
<td>21.5°</td>
<td>21.0°</td>
</tr>
<tr>
<td>TA°</td>
<td>34.0°</td>
<td>34.0°</td>
</tr>
<tr>
<td>KK</td>
<td>330</td>
<td>269</td>
</tr>
<tr>
<td>ST</td>
<td>515 / 78°</td>
<td>520 / 78°</td>
</tr>
<tr>
<td>SK</td>
<td>582 / 5°</td>
<td>615 / 4°</td>
</tr>
<tr>
<td>SH</td>
<td>253 / 35°</td>
<td>262 / 30°</td>
</tr>
<tr>
<td>SHY</td>
<td>245</td>
<td>240</td>
</tr>
<tr>
<td>HS</td>
<td>300</td>
<td>330</td>
</tr>
<tr>
<td>HD</td>
<td>159</td>
<td>150</td>
</tr>
<tr>
<td>AD</td>
<td>169</td>
<td>35</td>
</tr>
</tbody>
</table>

Unit: mm
HONDA'S RECOMMENDED DUMMY POSITIONING INFORMATION

Vehicle Make & Model: 2003 HONDA ACCORD SEDAN

(1) DUMMY POSITIONING DATA

SIDE VIEW

TIP OF THE SEAT BACK LEVER

OUTSIDE PLANE OF SIDE SILL (SURFACE OF FRAME)

PLAN VIEW

<table>
<thead>
<tr>
<th>No.</th>
<th>ITEMS</th>
<th>DRIVER (mm)</th>
<th>PASS. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>HEAD TO STEERING WHEEL (DR) OR INSTRUMENT PANEL (PA)</td>
<td>550</td>
<td>640</td>
</tr>
<tr>
<td>(2)</td>
<td>HEEL TO SEAT BRACKET COVER</td>
<td>L 510</td>
<td>R 500</td>
</tr>
<tr>
<td>(3)</td>
<td>KNEE TO SIDE SILL (VERTICAL)</td>
<td>L 290</td>
<td>R 292</td>
</tr>
<tr>
<td>(4)</td>
<td>KNEE TO KNEE</td>
<td>330</td>
<td>289</td>
</tr>
<tr>
<td>(5)</td>
<td>ANKLE TO ANKLE</td>
<td>340</td>
<td>200</td>
</tr>
<tr>
<td>(8)</td>
<td>REAR OF HIP POINT TO TIP OF THE SEAT BACK LEVER (3DMDATA)</td>
<td>38 (23°)</td>
<td>28 (30°)</td>
</tr>
<tr>
<td>(7)</td>
<td>HEIGHT OF HIP POINT TO SIDE SILL (3DMDATA)</td>
<td>181 (181°)</td>
<td>189 (200°)</td>
</tr>
<tr>
<td>(8)</td>
<td>HEIGHT OF HEAD TO SIDE SILL</td>
<td>895</td>
<td>840</td>
</tr>
<tr>
<td>(9)</td>
<td>PELVIC ANGLE (deg.)</td>
<td>21.5</td>
<td>21.0</td>
</tr>
</tbody>
</table>

*: Average of 3 measurements in accordance with SAE J226.
Pre-Test

SEAT BELT POSITIONING DATA

![Diagram of dummy with seat belt](image)

FRONT VIEW OF DRIVER DUMMY
(Sample belt configuration)

<table>
<thead>
<tr>
<th></th>
<th>DRIVER DUMMY</th>
<th>PASSENGER DUMMY</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBU - Top surface of aluminum plate to belt upper edge.</td>
<td>320.0</td>
<td>325.0</td>
</tr>
<tr>
<td>PBL - Top surface of aluminum plate to belt lower edge.</td>
<td>240.0</td>
<td>240.0</td>
</tr>
<tr>
<td>LAP BELT TENSION</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>SHOULDER BELT TENSION</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>NG-Edge of neck to edge of belt</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

Unit : mm

C-12
TEST VEHICLE INFORMATION – AM 50

Vehicle Model Year and Make: 2003 HONDA ACCORD SEDAN L4 model

1. NOMINAL DESIGN RIDING POSITION –
 For adjustable driver and passenger seat backs, describe how to position the inclinometer to measure the seat back angle. Include description of the location of the adjustment lock detent if applicable.

1.1 Manual Adjustment Seat
 Measurement instructions for Seat Back Position of the Driver's Seat:
 4 detents rearward from the first locking detent.
 See Attachment 4-3.

 Measurement instructions for Seat Back Position of the Passenger's Seat:
 Same as the driver's seat.

1.2 Electric Power Adjustment Seat
 Seat Back Angle of the Driver's Seat = ____ degrees
 Measurement instructions:
 8 degrees rearward from the forwardmost position.
 See Attachment 4-3.

 Seat Back Angle of the Passenger's Seat = ____ degrees
 Measurement instructions:
 Not applicable.

2. SEAT FORE AND AFT POSITIONS –
 Provide instructions for positioning the driver and front outboard passenger seat(s) in the center of fore and aft travel. For example, provide information to locate the detent in which the seat track is to be locked.

2.1 Manual Adjustment Seat
 Position of the Driver's Seat:
 12 detents rearward from the first locking detent.

 Position of the Passenger's Seat (if applicable):
 Same as the driver's seat.

2.2 Electric Power Adjustment Seat
 Position of the Driver's Seat:
 120mm rearward from the forwardmost position.

 Position of the Passenger's Seat (if applicable):
 Not applicable.
3. FUEL TANK CAPACITY DATA:
 3.1 A. "Usable Capacity" of standard equipment fuel tank: _______ gallons.
 B. "Usable Capacity" of optional equipment fuel tank: _______ gallons.
 C. Capacity used when certification testing is the requirements of FMVSS 301: _______ gallons.

 Operational instructions:
 Not Applicable.

3.2 Amount of Standard solvent added to vehicle for certification test: _______ gallons.

3.3 Is the vehicle equipped with electric fuel pump? YES: ____ NO: ____

 If YES, does the pump normally operate when the vehicle's electrical system is activated?
 YES: ____ NO: ____

 After the ignition key is turned from LOCK (0) to ON (1) position, the pump will be turned on for two seconds, and then the pressure is maintained.

4. STEERING COLUMN ADJUSTMENTS:

 Steering wheel and column adjustments are made so that the steering wheel hub is at the geometric center of the loci. It describes when it is moved through its full range of driving positions.

 If the tested vehicle has any of these adjustments, does your company use any specific procedures to determine the geometric center?

 Operational instructions:
 A = 15 mm (3: highest and outermost position)
 B = 10 mm (3: highest and outermost position)
 C = 31 mm (2: geometric center position)
 D = 20 mm (2: geometric center position)

5. HEAD RESTRAINT ADJUSTMENTS:

 Head Restraint Position - AM 50
 Highest position.

 Head Restraint Position - AF 5
 Not Applicable.
4. See table below for distance between A and B.

3. Adjust the seat back as shown in the drawing.

2. Adjust the seat height to the lowest position. (Driver side only)

1. See Attachment 4-1 for seat slide adjustments.

A : Outer belt for sun visor bracket

B : Outer hole for head restraint

<table>
<thead>
<tr>
<th></th>
<th>Power Adjustment</th>
<th>Manual Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver's Seat</td>
<td>645 mm</td>
<td>645 mm</td>
</tr>
<tr>
<td>Passenger's Seat</td>
<td>—</td>
<td>635 mm</td>
</tr>
</tbody>
</table>