REPORT NO. 208-MGA-2003-001

SAFETY COMPLIANCE SLED TESTING FOR FMVSS 208
OCCUPANT CRASH PROTECTION

Hyundai Motor Company
2003 Hyundai Santa Fe MPV
NHTSA NO. C30504

MGA RESEARCH CORPORATION
5000 WARREN ROAD
BURLINGTON, WI 53105

Test Date: March 25, 2003
Report Date: April 15, 2003

FINAL REPORT

Prepared For:
U.S. DEPARTMENT OF TRANSPORTATION
NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
OFFICE OF ENFORCEMENT
OFFICE OF VEHICLE SAFETY COMPLIANCE
MAIL CODE: NVS-221
400 SEVENTH STREET, S.W., ROOM 6115
WASHINGTON, D.C. 20590
This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

PREPARED BY: Chad Gadberry, Project Engineer
MGA Research Corporation

DATE: 4/4/03

APPROVED BY: David Winkelbauer, Facility Director
MGA Research Corporation

DATE: 4/4/03

Technicians:
Tammy Brausch
Randall Boals
James Carney
Tim Michnay
Doug Miller
Chris Novak

Secretary:
Donna M. Janovicz

FINAL REPORT ACCEPTED BY:

[Signature]
Contracting Officer's Technical Representative (COTR)
NHTSA, Office of Vehicle Safety Compliance

[Signature] 4/3/03
Date of Report Acceptance
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>208-MGA-2003-001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Title and Subtitle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Report for FMVSS 208 Compliance Sled Testing of a 2003 Hyundai Santa Fe MPV NHTSA No. C30504</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Report Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 15, 2003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Performing Organization Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chad Gadberry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MGA-DO1-208-001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. Performing Organization Name and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGA Research Corporation</td>
</tr>
<tr>
<td>5000 Warren Road</td>
</tr>
<tr>
<td>Burlington, WI 53105</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Work Unit No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Contract or Grant No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTNH22-98-D-11055</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Sponsoring Agency Name and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Department of Transportation</td>
</tr>
<tr>
<td>National Highway Traffic Safety Administration</td>
</tr>
<tr>
<td>Enforcement, Office of Vehicle Safety Compliance</td>
</tr>
<tr>
<td>400 Seventh St., S.W., Room 6116</td>
</tr>
<tr>
<td>Washington, D.C. 20590</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Type of Report and Period Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Report</td>
</tr>
<tr>
<td>March 25 - April 15, 2003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NVS-221</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Supplementary Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A compliance test (sled test) was conducted on the subject 2003 Hyundai Santa Fe MPV in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP208S-01 for the determination of FMVSS 208 compliance. Test failures identified were as follows:</td>
</tr>
<tr>
<td>NONE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Key Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliance Testing</td>
</tr>
<tr>
<td>Safety Engineering</td>
</tr>
<tr>
<td>FMVSS 208S</td>
</tr>
<tr>
<td>Sled Test</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Distribution Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copies of this report are available from: NHTSA Technical Reference Division, Room 5108, (NPO-230) 400 Seventh Street, S.W. Washington, D.C. 20590 Telephone No. (202) 366-4946</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. Security Classif. (of this report)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. Security Classif. (of this page)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>21. No. of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>161</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>22. Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Form DOT F 1700.7 (8-89)
<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>1</td>
</tr>
<tr>
<td>Test Procedure</td>
<td>2</td>
</tr>
<tr>
<td>Test Results Summary</td>
<td>3</td>
</tr>
<tr>
<td>Sled Test Summary</td>
<td>5</td>
</tr>
<tr>
<td>General Test and Vehicle Parameter Data</td>
<td>6</td>
</tr>
<tr>
<td>Post Test Data</td>
<td>9</td>
</tr>
<tr>
<td>Seat and Steering Column Positioning Data</td>
<td>10</td>
</tr>
<tr>
<td>Dummy Positioning Measurement Table</td>
<td>11</td>
</tr>
<tr>
<td>Vehicle Targeting Measurements</td>
<td>16</td>
</tr>
<tr>
<td>Vehicle Accelerometer Placement and Data Summary</td>
<td>17</td>
</tr>
<tr>
<td>Vehicle Accelerometer Location Measurements and Data Summary</td>
<td>18</td>
</tr>
<tr>
<td>Camera Positions</td>
<td>19</td>
</tr>
<tr>
<td>Camera Location Measurements</td>
<td>20</td>
</tr>
<tr>
<td>Occupant Injury Data</td>
<td>21</td>
</tr>
<tr>
<td>Seat Belt Warning System Data</td>
<td>23</td>
</tr>
<tr>
<td>Readiness Indicator</td>
<td>24</td>
</tr>
<tr>
<td>Airbag Labels Data</td>
<td>25</td>
</tr>
<tr>
<td>Rear Outboard Seating Position Seat Belt Data</td>
<td>32</td>
</tr>
<tr>
<td>Lap Belt Lockability Data</td>
<td>33</td>
</tr>
<tr>
<td>Seat Belt Comfort and Convenience Data</td>
<td>45</td>
</tr>
</tbody>
</table>

Appendix A - Photographs

Appendix B - Data Plots

Appendix C - Manufacturer Provided Test Information
Purpose

This FMVSS 208 compliance sled test is part of the Federal Motor Vehicle Safety Standard (FMVSS) 208 compliance test program conducted for the National Highway Traffic Safety Administration (NHTSA) by MGA Research Corporation (MGA) under Contract No. DTNH22-98-D-11055. The purpose of this test was to determine if the subject vehicle, a 2003 Hyundai Santa Fe MPV, NHTSA No. C30504, meets the performance requirements of FMVSS 208, "Occupant Crash Protection," in the impact simulation sled test mode.
Test Procedure

This test was conducted in accordance with NHTSA's Office of Vehicle Safety Compliance (OVSC) Laboratory Test Procedure No. TP-2088-01 dated January 15, 1998. Data was obtained relative to FMVSS 208, "Occupant Crash Protection," performance.

The test vehicle was instrumented with four (4) accelerometers to measure longitudinal axis accelerations.

The test vehicle contained two (2) Part 572 E 50th percentile adult male anthropomorphic test devices (dummies). The dummies were positioned in the front outboard seating positions according to the dummy placement procedures specified in Appendix B of the Laboratory Test Procedure. The dummies were not restrained by seat belts.

Both dummies were instrumented with head and chest accelerometers to measure longitudinal, lateral, and vertical accelerations; chest deflection potentiometers; left and right femur load cells to measure axial forces; and upper neck load cells to measure longitudinal, lateral, and vertical forces and moments.

The thirty-seven (37) data channels were digitally sampled at 10,000 samples per second and processed per Sections 11.7 through 11.9 of the Laboratory Test Procedure.

The crash event was recorded by six (6) high-speed motion picture cameras. The pre-test and post-test conditions were recorded by one (1) real-time motion picture camera.
Test Results Summary

This FMVSS 208 compliance sled test was conducted at MGA Research Corporation on March 25, 2003.

The test vehicle, a 2003 Hyundai Santa Fe MPV, NHTSA No. C30504, appeared to comply with the performance requirements of FMVSS 208 in the impact simulation sled test mode as measured by Hybrid III 50th percentile male dummies.

<table>
<thead>
<tr>
<th>FMVSS 208 Max. Allowable Injury Assessment Values</th>
<th>Driver (Serial #401)</th>
<th>Passenger (Serial #403)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC</td>
<td>1000</td>
<td>157</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>38.1 g</td>
</tr>
<tr>
<td>Chest displacement</td>
<td>3 in.</td>
<td>1.2 in.</td>
</tr>
<tr>
<td>Left Femur</td>
<td>2250 lb</td>
<td>1265 lb</td>
</tr>
<tr>
<td>Right Femur</td>
<td>2250 lb</td>
<td>1234 lb</td>
</tr>
<tr>
<td>Neck Extension</td>
<td>57 Nm</td>
<td>8.1 Nm</td>
</tr>
<tr>
<td>Neck Flexion</td>
<td>190 Nm</td>
<td>24.6 Nm</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>3300 N</td>
<td>1063 N</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>4000 N</td>
<td>60 N</td>
</tr>
<tr>
<td>Neck Shear</td>
<td>3100 N</td>
<td>517 N</td>
</tr>
</tbody>
</table>

* - Calculated from X and Z acceleration channels only.

The vehicle also appears to meet the other FMVSS 208 requirements for which it was tested. These results are shown in the data sheets that are included in this report.

The test vehicle was equipped with air bags at the driver and passenger seating positions. The dummies were not restrained by seat belts. The sled carriage was accelerated to 17.2 g with an integrated velocity change of 29.0 mph. After filtering the acceleration signal to Channel Class 60, the airbag system was triggered 21.7 milliseconds after 0.5 g acceleration.
INCLUDE DISCUSSION OF LOST CHANNELS OR OTHER TEST ISSUES.

- Passenger Head Y Acceleration channel was not valid after approximately 102 milliseconds. The Passenger HIC was therefore calculated from the X and Z acceleration channels only.
Sled Test Summary

Vehicle NHTSA No.: C30504 Test Mode: FMVSS 208 SLED TEST..
Vehicle Yr/Make/Model/Body Style: 2003/Hyundai/Santa Fe/MPV
Test Date: March 25, 2003 Time: 1:20 p.m. Temp: 70°F
Vehicle Test Weight: 4142 lbs.

DUMMY INFO.
Dummy Type
Serial Number
Restraint System
No. Data Channels

DRIVER

Part 572E
401
Frontal airbag
15

PASSENGER

Part 572E
403
Frontal airbag
15

Number of Cameras:
1 Real Time
6 High Speed

Door Opening Data:
yes Left Front
yes Right Front

FRONT SEAT(S) DATA
Seat Track Failure -
Seat Back Failure -

DRIVER

0.0 inches shift;
no.

PASSENGER

0.0 inches shift
no.

VISIBLE DUMMY CONTACT POINTS:

Head
Chest
Left Knee
Right Knee

DRIVER

airbag/roof/sunvisor
airbag
knee bolster

PASSENGER

airbag/windshield/sunvisor
airbag
glove box
glove box
General Test And Vehicle Parameter Data

Vehicle Yr/Make/Model/Body Style: 2003/Hyundai/Santa Fe/MPV
Vehicle NHTSA No.: C30504 VIN: KMB8B12B33U389801 Color: Red

Engine Data:
No. Cylinders: 4; CID: ____; Liters: 2.4; CCs: ____
Placement: Longitudinal/Inline: ____; Transverse/Lateral: X

Transmission Data:
Speeds: 5; Manual: X; Automatic: ____; Overdrive: X

Final Drive:
Rear Wheel Drive: ____; Front Wheel Drive: X; Four Wheel Drive: ____

Major Options:
A/C: X; Pwr. Strg.: X; Pwr. Brakes: X; Pwr. Windows: X
Pwr. Dr. Locks: X; Other: tilt wheel, cruise control

Date Received: 1/30/03 Odometer Reading: 101 miles
Selling Dealer: Arrow Hyundai, 10611 W. Arthur Avenue, West Allis, WI 53227

REMARKS: None
DATA FROM VEHICLE'S CERTIFICATION LABEL:
Vehicle Manufactured By: **Hyundai Motor Company**
Date of Manufacture: **10/18/02**; VIN: **KM8SB1233U389801**
GVWR: **4870 lbs**; GAWR Front: **2845 lbs**;
GAWR Rear: **2865 lbs**.

DATA FROM TIRE PLACARD:
Tire Pressure with Maximum Capacity Vehicle Load:
 FRONT: **32** psi REAR: **32** psi
Recommended Tire Size: **P225/70R16**; Load Range - **102T**
Recommended COLD Tire Pressure:
 FRONT: **32** psi REAR: **32** psi
Size of Tires on Test Vehicle: **P225/70R16**
Type of Spare Tire: **P225/70R16**; Space Saver...; Standard: **X**.

Vehicle Capacity Data:
Type of Front Seats: _X_ Bucket; _Bench_; _Split Bench_
Number of Occupants: _Front_; _Rear_; _3rd Seat_; _TOTAL_

REMARKS: None

VEHICLE CAPACITY WEIGHT (VCW) = **880 lbs**.
No. Of Occupants x 150 lbs = **750 lbs**.
Rated Cargo/Luggage Weight (RCWL) = **130 lbs**. (Difference)
WEIGHT OF TEST VEHICLE AS RECEIVED AT LABORATORY: (with maximum fluids)

Right Front = 1057 lbs.
Left Front = 1092 lbs.
TOTAL FRONT = 2149 lbs.
% Total Weight = 58.6 %

Right Rear = 782 lbs.
Left Rear = 737 lbs.
TOTAL REAR = 1519 lbs.
% Total Weight = 41.4 %

TOTAL DELIVERED WEIGHT = 3668 lbs.

WEIGHT OF FULLY LOADED TEST VEHICLE WITH TWO DUMMIES (344 LB) AND 130 POUNDS OF CARGO WEIGHT:

Right Front = 1137 lbs.
Left Front = 1165 lbs.
TOTAL FRONT = 2302 lbs.
% Total Weight = 55.6 %

Right Rear = 941 lbs.
Left Rear = 899 lbs.
TOTAL REAR = 1840 lbs.
% Total Weight = 44.4 %

TOTAL WEIGHT = 4142 lbs.

TEST VEHICLE ATTITUDE: (all measurements in degrees)

AS DELIVERED DOOR SILL ANGLE: 0.9° nose down
AS TESTED DOOR SILL ANGLE: 0.8° nose down
FULLY LOADED DOOR SILL ANGLE: 0.5° nose down

FUEL SYSTEM DATA:

Fuel System Capacity From Owner's Manual = 17.2 gallons
Usable Capacity Figure Furnished by COTR = 17.2 gallons

REMARKS: None
Post-Impact Data

Test number: HT03032501
NHTSA number: C30504
Test date: March 25, 2003
Test time: 1:20 p.m.
Test type: FMVSS 208 Compliance Sled Test
Impact angle: 0°
Ambient Temperature at Impact Area: 70°F
Temperature in Occupant Compartment: 70°F

Impact Velocity:
 Integrated velocity from the integration of the entire sled acceleration: 29.0 mph
 Specified integrated velocity range: 28 to 30 mph

Sled Carriage Acceleration:
 Acceleration: 17.2 g
 Specified Acceleration Range: 16.0 - 18.2 g

Sled Carriage Acceleration Duration:
 Time from T-0 (-0.5 g) to 0.0 g: 122.6 msec
 Specified Acceleration Duration: 120.0 to 130.0 msec

The sled acceleration corridor was achieved.
Seat and Steering Column Positioning Data

Vehicle Yr/Make/Model/Body Style: 2003/Hyundai/Santa Fe/MPV
Vehicle NHTSA No.: C30504 Test Date: March 25, 2003

NOMINAL DESIGN RIDING POSITION:

Driver Seat: Seat Back Angle = 12.8°
Passenger Seat: Seat Back Angle = 13.3°
* - Measured at headrest post with seat back set to 15th notch (1st as zero). (See note below)

SEAT FORE AND AFT POSITIONS:

Driver Seat: The seat track had a total position movement of 24 notches and was positioned 12 notches rearward from the foremost position with the forward most locking position as zero.

Passenger Seat: The seat track had a total position movement of 24 notches and was positioned 12 notches rearward from the foremost position with the forward most locking position as zero.

STEERING COLUMN ADJUSTMENTS:

The steering column was placed in the mid position (4th position of 7 total).

Note: The seat back was set at the 15th notch and not the 5th notch as specified by the manufacturer. The information from the manufacturer was determined to be incorrect at the time of the test.
Dummy Positioning Measurement Table

Vehicle Year/Make/Model/Body Style: 2003/Hyundai/Santa Fe/MPV

Vehicle NHTSA No.: C30504
Test Date: March 25, 2003

<table>
<thead>
<tr>
<th></th>
<th>DRIVER (Serial #401)</th>
<th>PASSENGER (Serial #403)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA°</td>
<td>31.4°</td>
<td></td>
</tr>
<tr>
<td>SWA°</td>
<td>62.4°</td>
<td></td>
</tr>
<tr>
<td>SCA°</td>
<td>28.2°</td>
<td></td>
</tr>
<tr>
<td>SA°</td>
<td>12.8°</td>
<td>13.3°</td>
</tr>
<tr>
<td>HZ</td>
<td>7.1</td>
<td>6.7</td>
</tr>
<tr>
<td>HH</td>
<td>13.7</td>
<td>13.2</td>
</tr>
<tr>
<td>HW</td>
<td>23.0</td>
<td>21.9</td>
</tr>
<tr>
<td>HR</td>
<td>8.3</td>
<td>8.0</td>
</tr>
<tr>
<td>NR</td>
<td>17.2 Angle (NA°) 17.6°</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>20.6</td>
<td>21.2</td>
</tr>
<tr>
<td>CS</td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td>RA</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>KDL</td>
<td>4.5 Angle (KDA°) 0.0°</td>
<td>6.9</td>
</tr>
<tr>
<td>KDR</td>
<td>6.1</td>
<td>7.1 Angle (KDA°) 0.0°</td>
</tr>
<tr>
<td>PA°</td>
<td>23.8°</td>
<td>24.3°</td>
</tr>
<tr>
<td>TA°</td>
<td>53.8°</td>
<td>45.0°</td>
</tr>
<tr>
<td>KK</td>
<td>12.4</td>
<td>10.6</td>
</tr>
<tr>
<td>ST</td>
<td>23.3 Angle 6.1°</td>
<td>23.3 Angle 7.2°</td>
</tr>
<tr>
<td>SK</td>
<td>23.7 Angle 87.1°</td>
<td>24.6 Angle 90.8°</td>
</tr>
<tr>
<td>SH</td>
<td>9.3 Angle 102.5°</td>
<td>8.5 Angle 106.7°</td>
</tr>
<tr>
<td>SHY</td>
<td>10.4</td>
<td>10.4</td>
</tr>
<tr>
<td>HS</td>
<td>11.8</td>
<td>11.1</td>
</tr>
<tr>
<td>HD</td>
<td>6.7</td>
<td>6.6</td>
</tr>
<tr>
<td>AD</td>
<td>4.4</td>
<td>4.6</td>
</tr>
</tbody>
</table>

* - Measured at headrest post
DUMMY MEASUREMENT FOR FRONT SEAT PASSENGERS

- CD: Chest to Dash
- CS: Steering Wheel to Chest
- HH: Head to Header
- HW: Head to Windshield
- HZ: Head to Roof
- KDA: Knee to Dash Angle
- KDL: Left Knee to Dash
- KDR: Right Knee to Dash
- NA: Nose to Rim Angle
- NR: Nose to Rim
- PA: Pelvic Angle
- RA: Rim to Abdomen
- SA: Seat Back Angle
- SCA: Steering Column Angle
- SH: Striker to H-Point
- SK: Striker to Knee
- ST: Striker to Head
- SWA: Steering Wheel Angle
- TA: Tibial Angle
- WA: Windshield Angle
- AD: Arm to Door
- HD: H-Point to Door
- HR: Head to Side Header
- HS: Head to Side Window
- KK: Knee to Knee
- SHY: Striker to H-Point (Y Direction)
Description of Dummy Measurements

When a level is to be used, it is to ensure that the line containing the two points described is either parallel or perpendicular to the ground. If a measurement to be made is less than 10 inches ignore the directions to use a level and approximate a level measurement. Also, when a measurement is to be taken to or from the center of a bolt on the dummy, take the measurement from the center of the bolt hole if the bolt is recessed.

The following measurements are to be made within a vertical longitudinal plane.

- **HH** Head to Header, taken from the point where the dummy's nose meets his forehead (between his eyes) to the furthest point forward on the header.

- **HW** Head to Windshield, taken from the point where the dummy's nose meets his forehead (between his eyes) to a point on the windshield. Use a level.

- **HZ** Head to Roof, taken from the point where the dummy's nose meets his forehead (between his eyes) to the point on the roof directly above it. Use a level.

- **CS** Steering Wheel to Chest, taken from the center of the steering wheel hub to the dummy's chest. Use a level.

- **CD** Chest to Dash, place a tape measure on the tip of the dummy's chin and rotate five inches of it downward toward the dummy to the point of contact on the transverse center of the dummy's chest. Then measure from this point to the closest point on the dashboard either between the upper part of the steering wheel between the hub and the rim, or measure to the dashboard placing the tape measure above the rim, whichever is a shorter measurement. See photograph.

- **RA** Steering Wheel Rim to Abdomen, taken from the bottommost point of the steering wheel rim horizontally rearward to the dummy. Use a level.

- **NR** Nose to Rim, taken from the tip of the dummy's nose to the closest point on the top of the steering wheel rim. Also indicate the angle this line makes with respect to the horizontal (NA).

- **KDL, KDR** Left and Right Knees to Dashboard, taken from the center of the knee pivot bolt's outer surface to the closest point forward acquired by swinging the tape measure in continually larger arcs until it contacts the dashboard. Also reference the angle of this measurement with respect to the horizontal for the outboard knee (KDA). See photograph.

* Measurement used in Data Tape Reference Guide

^ Only outboard measurement is referenced in Data Tape Reference Guide
Description of Dummy Measurements (Cont.)

SH, SK, ST Striker to Hip, Knee, and Head, these measurements are to be taken in the X-Z plane measured from the forward most center point on the striker to the center of the H-point, outer knee bolt, and head target. When taking this measurement a firm device that can be rigidly connected to the striker should be used. Use a level. The angles of these measurements with respect to the horizontal should also be recorded. The measurement in the Y (transverse) direction from the striker to the H-point should also be taken (SHY). See photograph.

The following measurements are to be made within a vertical transverse plane.

HS Head to Side Window, taken from the point where the dummy's nose meets his forehead (between his eyes) to the outside of the side window. In order to make this measurement, roll the window down to the exact height which allows a level measurement. Use a level. See photograph.

* **AD** Arm to Door, taken from the outer surface of the elbow pivot bolt on a Hybrid II dummy to the first point it hits on the door. In the case of a Hybrid III dummy, measure from the bolt on the outer biceps. When a SID is used make the measurement from the center of the bottom of the arm segment where it meets the dummy's torso.

* **HD** H-point to Door, taken from the H-point on the dummy to the closest point on the door. Use a level.

* **HR** Head to Side Header, measure the shortest distance from the point where the dummy's nose meets his forehead (between his eyes) to the side edge of the header just above the window frame, directly adjacent to the dummy.

SHY Striker to H-point, taken from a rod rigidly connected to the forward most center point on the striker to the H-point. Use a level. See photograph.

KK Knee to Knee, for Hybrid II dummies measure the distance between knee pivot bolt head outer surfaces. For Hybrid III dummies measure the distance between the outboard knee clevis flange surfaces. (This measurement may not be exactly transverse)

* Measurement used in Data Tape Reference Guido
Description of Dummy Measurements (Cont.)

Angles

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>Seat Back Angle, find this angle using the instructions provided by the manufacturer. If the manufacturer doesn't provide clear instructions contact the COTR.</td>
</tr>
<tr>
<td>PA</td>
<td>Pelvic or Femur Angle, taken by inserting the pelvic angle gauge into the H-point gauging hole on the SID or the Hybrid III dummies and taking this angle with respect to the horizontal. Measure the angle of the line connecting the H-point hole and the outer knee pivot bolt hole on a Hybrid II dummy with respect to the horizontal, to find the femur angle.</td>
</tr>
<tr>
<td>SWA</td>
<td>Steering Wheel Angle, find this by placing a straight edge against the steering wheel rim along the longitudinal plane. Then measure the acute angle of the straight edge with respect to the horizontal.</td>
</tr>
<tr>
<td>SCA</td>
<td>Steering Column Angle, measured with respect to the horizontal by placing an inclinometer on the center of the underside of the steering column.</td>
</tr>
<tr>
<td>NA</td>
<td>Measure the angle made when taking the measurement NR with respect to the horizontal.</td>
</tr>
<tr>
<td>KDA</td>
<td>Knee to Dash Angle, the angle that the measurement KD is taken at with respect to the horizontal. Only get this angle for the outboard knee. See photograph.</td>
</tr>
<tr>
<td>WA</td>
<td>Windshield Angle, place an inclinometer along the transverse center of the windshield exterior (measurement is made with respect to horizontal).</td>
</tr>
<tr>
<td>TA</td>
<td>Tibial Angle, use a straight edge to connect the dummy's knee and ankle bolts. Then place an inclinometer on the straight edge and measure the angle with respect to the horizontal.</td>
</tr>
</tbody>
</table>
Vehicle Accelerometer Location Measurements and Data Summary

Vehicle Year/Make/Model/Body Style: 2003/Hyundai/Santa Fe/NPV

Vehicle NHTSA No.: C30504 Test Date: March 25, 2003

<table>
<thead>
<tr>
<th>No.</th>
<th>Location</th>
<th>X (in)</th>
<th>Y (in)</th>
<th>Positive Direction</th>
<th>Negative Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Value</td>
<td>Time (msec)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sled Primary Longitudinal</td>
<td>67.0</td>
<td>0</td>
<td>17.2 g</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Sled Redundant Longitudinal</td>
<td>67.0</td>
<td>4.0</td>
<td>17.5 g</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Sled Velocity Measured Integrated</td>
<td>67.0</td>
<td>0</td>
<td>29.0 mph</td>
<td>123</td>
</tr>
<tr>
<td>1</td>
<td>Rear Axle Longitudinal</td>
<td>44.0</td>
<td>0</td>
<td>17.1 g</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>Top Engine Longitudinal</td>
<td>150.0</td>
<td>0</td>
<td>17.7 g</td>
<td>41</td>
</tr>
<tr>
<td>3</td>
<td>Right Rear Seat Member Longitudinal</td>
<td>65.0</td>
<td>20.0</td>
<td>18.2 g</td>
<td>62</td>
</tr>
<tr>
<td>4</td>
<td>Left Rear Seat Member Longitudinal</td>
<td>65.0</td>
<td>20.0</td>
<td>17.2 g</td>
<td>49</td>
</tr>
</tbody>
</table>
Camera Positions

TOP VIEW

Camera Frame Rates:

#1 = 24 fps
All Others = 1,000 fps

REAL TIME CAMERA

LEFT SIDE VIEW
Camera Location Measurements

<table>
<thead>
<tr>
<th>Camera No.</th>
<th>VIEW</th>
<th>Camera Positions (inches)*</th>
<th>Angle (deg)</th>
<th>Film Plane To Head Target</th>
<th>Lens (mm)</th>
<th>Speed (fps)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Real-Time (Pre and Post)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Onboard Driver</td>
<td>70.6</td>
<td>88.6</td>
<td>38.4</td>
<td>90</td>
<td>72.4</td>
</tr>
<tr>
<td>3</td>
<td>Onboard Driver: Angle</td>
<td>150.9</td>
<td>91.1</td>
<td>47.8</td>
<td>90</td>
<td>71.1</td>
</tr>
<tr>
<td>4</td>
<td>Onboard Passenger</td>
<td>71.8</td>
<td>89.6</td>
<td>38.5</td>
<td>90</td>
<td>71.1</td>
</tr>
<tr>
<td>5</td>
<td>Onboard Passenger Angle</td>
<td>146.7</td>
<td>88.5</td>
<td>47.9</td>
<td>13</td>
<td>1000</td>
</tr>
<tr>
<td>6</td>
<td>Onboard Windshield Driver</td>
<td>18.3</td>
<td>14.1</td>
<td>42.9</td>
<td>13</td>
<td>1010</td>
</tr>
<tr>
<td>7</td>
<td>Onboard Windshield Passenger</td>
<td>18.3</td>
<td>13.9</td>
<td>42.9</td>
<td>13</td>
<td>755</td>
</tr>
</tbody>
</table>

Reference:
- X = Front of sled carriage
- Y = Center of sled carriage
- Z = Top of sled carriage

There were no timing marks on the film. Film speed was determined through film analysis.
MAXIMUM ACCELERATION VALUES: (g's)

<table>
<thead>
<tr>
<th></th>
<th>DRIVER DUMMY #401</th>
<th>PASSENGER DUMMY #403</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head Channel X</td>
<td>-32.4</td>
<td>-61.7</td>
</tr>
<tr>
<td>Head Channel Y</td>
<td>11.6</td>
<td>-21.8*</td>
</tr>
<tr>
<td>Head Channel Z</td>
<td>16.5</td>
<td>-37.0</td>
</tr>
<tr>
<td>HEAD RESULTANT</td>
<td>35.4</td>
<td>67.1**</td>
</tr>
<tr>
<td>Chest Channel X</td>
<td>-38.3</td>
<td>-39.9</td>
</tr>
<tr>
<td>Chest Channel Y</td>
<td>4.4</td>
<td>-3.4</td>
</tr>
<tr>
<td>Chest Channel Z</td>
<td>7.7</td>
<td>24.6</td>
</tr>
<tr>
<td>CHEST RESULTANT</td>
<td>38.6</td>
<td>43.8</td>
</tr>
</tbody>
</table>

* - No valid data after approximately 102 milliseconds.

** - Calculated from X and Z acceleration channels only

HEAD INJURY CRITERIA (HIC) VALUES:

<table>
<thead>
<tr>
<th>HIC</th>
<th>157</th>
<th>102**</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1 (msec)</td>
<td>92.8</td>
<td>86.5</td>
</tr>
<tr>
<td>t_2 (msec)</td>
<td>128.8</td>
<td>122.5</td>
</tr>
</tbody>
</table>

[The maximum time interval from t_1 to t_2 is 36 milliseconds.]

CHEST INJURY CRITERIA (CLIP) VALUES: (g's)

<table>
<thead>
<tr>
<th>CLIP</th>
<th>38.1</th>
<th>42.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1 (msec)</td>
<td>90.4</td>
<td>98.4</td>
</tr>
<tr>
<td>t_2 (msec)</td>
<td>93.4</td>
<td>101.4</td>
</tr>
<tr>
<td>CHEST DEFLECTION (in)</td>
<td>1.2</td>
<td>0.3</td>
</tr>
</tbody>
</table>
MAX. COMPRESSIVE FEMUR FORCES:

<table>
<thead>
<tr>
<th>Side</th>
<th>Driver Dummy #401</th>
<th>Passenger Dummy #403</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Side (lbs)</td>
<td>1265</td>
<td>1491</td>
</tr>
<tr>
<td>Right Side (lbs)</td>
<td>1234</td>
<td>1106</td>
</tr>
</tbody>
</table>

NECK INJURY CRITERIA:

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Driver Dummy #401</th>
<th>Passenger Dummy #403</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Flexion Bending Moment about the Occipital Condyle (N-m)</td>
<td>24.6</td>
<td>60.7</td>
</tr>
<tr>
<td>Peak Extension Bending Moment about the Occipital Condyle (N-m)</td>
<td>8.1</td>
<td>16.6</td>
</tr>
<tr>
<td>Peak Axial Tension (N)</td>
<td>1063</td>
<td>794</td>
</tr>
<tr>
<td>Peak Axial Compression (N)</td>
<td>60</td>
<td>2152</td>
</tr>
<tr>
<td>Peak Fore Shear (N)</td>
<td>517</td>
<td>1389</td>
</tr>
<tr>
<td>Peak Aft Shear (N)</td>
<td>249</td>
<td>101</td>
</tr>
</tbody>
</table>
Seat Belt Warning System Data

Vehicle Year/Make/Model/Body Style: 2003/Hyundai/Santa Fe/MPV
NHTSA No.: C30504; Technician: Chad Gadberry; Date: February 10, 2003

Complete the following to determine which seat belt warning system option (S7.3(a)(1) or S7.3 (a)(2)) is used. (Manufacturers may use either option.)

A. With occupant in driver's position and lap belt in stowed position and ignition switch placed in "Start/On" position:

A.1 S7.3(a)(1)
Time duration of audible warning signal = 6 seconds
(4 to 8 seconds)
Time duration of reminder light operation = >60 seconds
(no less than 60 seconds)

A.2 S7.3(a)(2)
Time duration of audible warning signal = ___ seconds
(4 to 8 seconds)(see 49 USCS @ 30124)
Time duration of reminder light operation = ___ seconds
(4 to 8 seconds)

B. With occupant in driver's position and lap belt in use and ignition switch placed in "Start/On" position:

B.1 S7.3(a)(1)
Time duration of audible warning signal = 0 seconds
(audible warning not required)
Time duration of reminder light operation = 0 seconds
(reminder light not required)

B.2 S7.3(a)(2)
Time duration of audible warning signal = ___ seconds
(audible warning not required)
Time duration of reminder light operation = ___ seconds
(4 to 8 seconds)

C. Note wording of visual warning:
Fasten seat belt ________________________________
Fasten Belt: ________________________________
Symbol 101 X ________________________________

23
An occupant restraint system that deploys in the event of a crash shall have a monitoring system with a readiness indicator. A totally mechanical system is exempt from this requirement. (11/8/94 legal interpretation)

1. Is the system totally mechanical? ()Yes (X)No
 (If YES this Data Sheet is complete.)

2. Describe the location of the readiness indicator: lower left of instrument panel

3. Is the readiness indicator clearly visible to the driver? (X)Yes-Pass ()No-FAIL

4. Is a list of the elements in the occupant restraint system, being monitored by the readiness indicator, provided? (X)Yes-Pass ()No-FAIL
Air Bag Labels Data

Vehicle Year/Make/Model/Body Style: 2003/Hyundai/Santa Fe/MPV

NHTSA No.: C30504 ; Technician: Chad Gadberry ; Date: February 10, 2003

1. Air bag maintenance label and owner's manual instructions (S4.5.1(a)):

 1.1. Does the manufacturer recommend periodic maintenance or replacement of the airbag? () Yes, go to 1.2 (X) No, go to 2

 1.2. Does the vehicle have a maintenance or replacement label? () Yes-Pass () No-FAIL

 1.3. Does the label contain one of the following? () Yes-Pass () No-FAIL
 () Schedule on label specifies month and year (Date: ____________)
 () Schedule on label specifies vehicle mileage (Mileage: ____________)
 () Schedule on label specifies interval measured from date on certification label (Date: ____________)

 1.4. Is the label permanently affixed within the passenger compartment? () Yes-Pass () No-FAIL

 1.5. Is the label lettered in English? () Yes-Pass () No-FAIL

 1.6. Is the label in block capitals and numerals? () Yes-Pass () No-FAIL

 1.7. Are the letters and numerals at least 3/32 inches high? () Yes-Pass () No-FAIL

 1.8. Does the owner's manual set forth the recommended schedule for maintenance or replacement? () Yes-Pass () No-FAIL

2. Does the owner's manual (S4.5.1(f)):

 2.1. Include a description of the vehicle's airbag system in an easily understandable format? (X) Yes-Pass () No-FAIL

 2.2. Include a statement that the vehicle is equipped with an airbag and a lap/shoulder belt at the front outboard seating positions? (X) Yes-Pass () No-FAIL

25
2.3 Include a statement that the air bag is a supplemental restraint at the front outboard seating positions?
(X) Yes-Pass () No-FAIL

2.4 Emphasize that all occupants, including the driver, should always wear their seat belts whether or not an airbag is also provided at their seating positions to minimize the risk of severe injury or death in the event of a crash?
(X) Yes-Pass () No-FAIL

2.5 Provide any necessary precautions regarding the proper positioning of occupants, including children, at seating positions equipped with air bags to insure maximum safety protection for those occupants?
(X) Yes-Pass () No-FAIL

2.6 Explain that no objects should be placed over or near the air bag on the steering wheel or on the instrument panel, because any such objects could cause harm if the vehicle is in a crash severe enough to cause the air bag to inflate?
(X) Yes-Pass () No-FAIL

3. Does the vehicle:

3.1. Provide an automatic means to ensure that the airbag does not deploy when a child seat or child with a total mass of 30 kg or less is present on the front outboard passenger?
() Yes (X) No

3.2. Incorporate sensors, other than or in addition to weight sensors, which automatically prevent the passenger air bag from deploying in situations in which it might have an adverse effect on infants in rear-facing child seats, and unbelted or improperly belted children?
() Yes (X) No

3.3. Have a passenger air bag designed to deploy in a manner that does not create a risk of serious injury to infants in rear-facing child seats, and unbelted or improperly belted children?
() Yes (X) No

If yes to 3.1, 3.2, or 3.3, the vehicle is not required to have a sunshine warning label (S4.5.1(b)), an airbag alert label (S4.5.1(c)) or a label on the dash (S4.5.2(e)) and this checklist is complete (S4.5.1). If no to 3.1, 3.2, and 3.3, go to 4.

4. Sun Visor Warning Label

4.1. Is the label permanently affixed (may be permanent marking or molding) to either side of the sun visor at each front outboard seating position with an airbag?
(X) Yes-Pass () No-FAIL

Driver Side - () N/A
Passenger Side - () Yes-Pass () No-FAIL
4.2. Does the label conform in content (vehicles without back seats may omit the statement: "The back seat is the safest place for children.") (S4.5.1(b)(2)(v)) to either label shown on the next page as appropriate at each front outboard seating position with an air bag? (S4.5.1(b)(2))

4.2.1 **Dual air bags:**

<table>
<thead>
<tr>
<th></th>
<th>() Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver Side</td>
<td>(X) Yes-Pass</td>
</tr>
<tr>
<td>Passenger Side</td>
<td>(X) Yes-Pass</td>
</tr>
</tbody>
</table>

4.2.2 **Vehicle with driver air bag ONLY - either 4.2.2.1 or 4.2.2.2 is applicable, not both.** (S4.5.1(b)(2)(iv))

4.2.2.1 Does the label conform in content to either label shown on the following page as appropriate?

<table>
<thead>
<tr>
<th></th>
<th>(X) Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver Side</td>
<td>() Yes-Pass</td>
</tr>
</tbody>
</table>

4.2.2.2 Does the label conform in content to the first label shown on the following page where the label can be modified to omit the pictogram and the message text may read:

DEATH or SERIOUS INJURY can occur.
- Sit as far back as possible from the air bag.
- ALWAYS use SEAT BELTS and CHILD RESTRAINTS
- The BACK SEAT is the SAFEST place for children.

<table>
<thead>
<tr>
<th></th>
<th>() Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver Side</td>
<td>() Yes-Pass</td>
</tr>
</tbody>
</table>

(X) Not Applicable

Driver Side - () Yes-Pass () No-FAIL

Passenger Side - () No-FAIL
4.3 Is the label heading area yellow with the word “warning” and the alert symbol in black? (S4.5.1(b)(2)(i))

<table>
<thead>
<tr>
<th>Side</th>
<th>Yes/Pass</th>
<th>No/FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver Side</td>
<td>(X) Yes-Pass</td>
<td>() No-FAIL</td>
</tr>
<tr>
<td>Passenger Side</td>
<td>() No air bag</td>
<td>(X) Yes-Pass</td>
</tr>
</tbody>
</table>

4.4 Is the message white with black text? (S4.5.1(b)(2)(ii))

<table>
<thead>
<tr>
<th>Side</th>
<th>Yes/Pass</th>
<th>No/FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver Side</td>
<td>(X) Yes-Pass</td>
<td>() No-FAIL</td>
</tr>
<tr>
<td>Passenger Side</td>
<td>() No air bag</td>
<td>(X) Yes-Pass</td>
</tr>
</tbody>
</table>
Air Bag Labels Data (Cont.)

4.5 Is the message area at least 30 cm²? (S4.5.1(b)(2)(ii))
Actual message area: 35.1 cm²
 Driver Side - (X) Yes-Pass () No-FAIL
 Passenger Side - () No air bag (X) Yes-Pass () No-FAIL

4.6 Is the pictogram black with a red circle and slash on a white background?
(S4.5.1(b)(2)(iii) & (S4.5.1(b)(2)(iv))
For vehicles with driver side air bag ONLY () Not Applicable
 Driver Side - (X) Yes-Pass () No-FAIL
 Passenger Side - () No air bag (X) Yes-Pass () No-FAIL

4.7 Is the pictogram at least 30 mm in diameter? (S4.5.1(b)(2)(iii))
Actual diameter: 33 mm
For vehicles with driver side air bag ONLY () Not Applicable
 Driver Side - (X) Yes-Pass () No-FAIL
 Passenger Side - () No air bag (X) Yes-Pass () No-FAIL

4.8 Is the same side of the sun visor to which the sun visor label is affixed free of other information with the exception of an air bag maintenance label?
(S4.5.1(b)(3))
 Driver Side - (X) Yes-Pass () No-FAIL
 Passenger Side - () No air bag (X) Yes-Pass () No-FAIL

4.9 Is the sun visor free of other information about air bags or the need to wear seat belts with the exception of the air bag alert label or the utility vehicle label?
(S4.5.1(b)(3))
 Driver Side - (X) Yes-Pass () No-FAIL
 Passenger Side - () No air bag (X) Yes-Pass () No-FAIL

5. Air Bag Alert Label

5.1 Is the Sun Visor Warning Label visible when the sunvisor is in the stowed position?
 Driver Side - () Yes, go to 6 (X) No
 Passenger Side - () No air bag () Yes (X) No

5.2 Does the label conform in content to the label shown below? (S4.5.1(c)(2))
 Driver Side - (X) Yes-Pass () No-FAIL
 Passenger Side - () No air bag (X) Yes-Pass () No-FAIL

5.3 Is the message area black with yellow text? (S4.5.1(c)(2)(i))
 Driver Side - (X) Yes-Pass () No-FAIL
 Passenger Side - () No air bag (X) Yes-Pass () No-FAIL
5.4 Is the message area at least 20 cm²? (S4.5.1(c)(2)(i))
 Actual message area: 34.5 driver, 26.9 passenger cm²
 Driver Side - (x)Yes-Pass () No-FAIL
 Passenger Side - () No air bag (x)Yes-Pass () No-FAIL

5.5 Is the pictogram black with a red circle and slash on a white background?
 (S4.5.1(c)(2)(ii))
 For vehicles with driver side air bag ONLY () Not Applicable
 (x)Yes-Pass () No-FAIL

5.6 Is the pictogram at least 20 mm in diameter? (S4.5.1(c)(2)(ii))
 Actual diameter: 41 driver, 30 passenger mm
 For vehicles with driver side air bag ONLY () Not Applicable
 (x)Yes-Pass () No-FAIL

Figure 6c: AIR BAG WARNING FLIP VISOR OVER (S4.5.1(c)(2))

6. Label On the Dash
 6.1 Does the vehicle have a passenger side air bag?
 (x)Yes () No, check sheet is complete.

 6.2 Does the vehicle have a label on the dash or steering wheel hub? (S4.5.1(e))
 (x)Yes-Pass () No-FAIL

 6.3 Does the label conform in content (vehicles without back seats may omit the
 statement: 'The back seat is the safest place for children 12 and under.'
 (S4.5.1(e)(iii)) to the label shown below. (S4.5.1(e))
 (x)Yes-Pass () No-FAIL
6.4 Is the heading area yellow with the word "warning" and the alert symbol in black? (6.4.1(e)(i))

(X) Yes-Pass () No-FAIL

6.5 Is the message white with black text? (6.4.1(e)(ii))

(X) Yes-Pass () No-FAIL

6.6 Is the message area at least 30 cm²? (6.4.1(e)(iii))
Actual message area: 32.0 cm²

(X) Yes-Pass () No-FAIL

REMovable Label on Dash
Label outline and horizontal line black

BOTTOM TEXT BLACK WITH WHITE BACKGROUND

TOP TEXT AND SYMBOL BLACK WITH YELLOW BACKGROUND

⚠️ WARNING ⚠️

Children Can Be KILLED or INJURED by Passenger Air Bag
The back seat is the safest place for children 12 and under.
Make sure all children use seat belts or child seats.

Figure 7 (6.5.e)
Rear Outboard Seating Position Seat Belt Data

Vehicle Year/Make/Model/Body Style: 2003/Hyundai/Santa Fe/MPV
NHTSA No.: C30504; Technician: Chad Gadberry; Date: February 10, 2003

Do all rear outboard seating positions have type 2 seat belts?
(X) Yes () No

If NO, describe the seat belt installed, the seat location, and any other information about the seat that would explain why a type 2 belt was not installed.

__

__
Lap Belt Lockability Data

Vehicle Year/Make/Model/Body Style: 2003/Hyundai/Santa Fe/MPV
NHTSA No.: C30504 ; Technician: Chad Gadberry ; Date: February 10, 2003

Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Complete one of these forms for each designated seating position with forward-facing seats, other than the driver’s seat, or seats that can be adjusted to forward-facing and that has seat belt retractors that are not automatic locking retractors. (S7.1.1.5(c))

Designated Seating Position (DSP): Right Front

1. Record the seating position. Fully rearward. (S7.1.1.5(c)(1))
 (Any position is acceptable.)

2. Buckle the seat belt. (S7.1.1.5(c)(1))

3. Complete any procedures recommended in the vehicle owner’s manual to activate any locking feature. (S7.1.1.5(c)(1))

4. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5(a))
 (X)Yes-Pass () No-FAIL

5. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.5(a))
 (X)Yes-Pass () No-FAIL

6. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing? (X)Yes, go to 6.1 () No, go to 7.

6.1 Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))
 (X)Yes-Pass () No-FAIL

7. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))
3. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

9. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner's manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2))

10. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

Measured distance between A and B is _71.0_ inches.

11. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(c)(3))

12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

The measured force application angle = _10_ (spec. 5-15 degrees)

Figure 5 (S7.1.1.5(c)(4))

![Figure 5](image-url)
13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

Measured distance between A and B is 31.5 inches.

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

Record onset rate: 10 lb/sec (Spec. 10 to 50 lb/sec)

Measure distance between points A and B, 31.5 inches (S7.1.1.5(c)(6))

15. Subtract the measurement in 13 from the measurement in 14. Is the difference 2 inches or less? (S7.1.1.5(c)(7))

\[
14-13 = 0.0 \text{ inches} \quad \text{(X)Yes-Pass} \quad \text{ () No-FAIL}
\]

16. Subtract the measurement in 14 from the measurement in 10. Is the difference 3 inches or more?

\[
10-14 = 38.5 \text{ inches} \quad \text{(X)Yes-Pass} \quad \text{ () No-FAIL}
\]

REMARKS: None
Lap Belt Lockability Data (Cont.)

Vehicle Year/Make/Model/Body Style: 2003/Hyundai/Santa Fe/MPV
NHTSA No.: C30504; Technician: Chad Gadberry; Date: February 10, 2003

Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Complete one of these forms for each designated seating position with forward-facing seats, other than the driver’s seat, or seats that can be adjusted to forward-facing and that has seat belt retractors that are not automatic locking retractors. (S7.1.1.5(c))

Designated Seating Position (DSP): Left Rear

1. Record the seating position. Non-adjustable. (S7.1.1.5(c)(1))
 (Any position is acceptable.)

2. Buckle the seat belt. (S7.1.1.5(c)(1))

3. Complete any procedures recommended in the vehicle owner’s manual to activate any locking feature. (S7.1.1.5(c)(1))

4. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5(a))
 (X)Yes-Pass () No-FAIL

5. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.5(a))
 (X)Yes-Pass () No-FAIL

6. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing? (X)Yes, go to 6.1 () No, go to 7.

6.1 Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))
 (X)Yes-Pass () No-FAIL

7. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))

36
8. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

9. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner's manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2))

10. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

 Measured distance between A and B is 64.8 inches.

11. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(c)(3))

12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 The measured force application angle = 10° (spec. 5-15 degrees)

 ![WEBBING TENSION PULL DEVICE](image)

 Figure 5 (S7.1.1.5(c)(4))
13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

Measured distance between A and B is 34.5 inches.

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

Record onset rate: 10 lb/sec (Spec. 10 to 50 lb/sec)

Measure distance between points A and B 35.9 inches (S7.1.1.5(c)(6))

15. Subtract the measurement in 13 from the measurement in 14. Is the difference 2 inches or less? (S7.1.1.5(c)(7))

14-13 = 1.4 inches
(X) Yes-Pass
() No-FAIL

16. Subtract the measurement in 14 from the measurement in 10. Is the difference 3 inches or more?

10-14 = 28.9 inches
(X) Yes-Pass
() No-FAIL

REMARKS: None
Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Complete one of these forms for each designated seating position with forward-facing seats, other than the driver's seat, or seats that can be adjusted to forward-facing and that has seat belt retractors that are not automatic locking retractors. (S7.1.1.5(c))

Designated Seating Position (DSP): Center Rear

1. Record the seating position. **Non-adjustable**
 (S7.1.1.5(c)(1))
 (Any position is acceptable.)

2. Buckle the seat belt. (S7.1.1.5(c)(1))

3. Complete any procedures recommended in the vehicle owner's manual to activate any locking feature. (S7.1.1.5(c)(1))

4. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5(a))
 (X)Yes-Pass () No-FAIL

5. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.5(a))
 (X)Yes-Pass () No-FAIL

6. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?
 ()Yes, go to 6.1 (X) No, go to 7.

 6.1 Does the vehicle owner's manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))
 ()Yes-Pass () No-FAIL

7. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))
8. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

9. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner's manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2))

10. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

Measured distance between A and B is 63.9 inches.

11. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(c)(3))

12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

The measured force application angle = 10° (spec. 5-15 degrees)

Figure 5 (S7.1.1.5(c)(4))
13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

Measured distance between A and B is _31.9_ inches.

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

Record onset rate: _10_ lb/sec (Spec. 10 to 50 lb/sec)

Measure distance between points A and B _31.9_ inches (S7.1.1.5(c)(6))

15. Subtract the measurement in 13 from the measurement in 14. Is the difference 2 inches or less? (S7.1.1.5(c)(7))

14-13 = _0.0_ inches

(X)Yes-Pass () No-FAIL

16. Subtract the measurement in 14 from the measurement in 10. Is the difference 3 inches or more?

10-14 = _32.0_ inches

(X)Yes-Pass () No-FAIL

REMARKS: None
Lap Belt Lockability Data (Cont.)

Vehicle Year/Make/Model/Body Style: 2003/Hyundai/Santa Fe/MPV
NHTSA No.: C30504; Technician: Chad Gadberry; Date: February 10, 2003

Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Complete one of these forms for each designated seating position with forward-facing seats, other than the driver's seat, or seats that can be adjusted to forward-facing and that has seat belt retractors that are not automatic locking retractors. (S7.1.1.5(c))

Designated Seating Position (DSP): Right Rear

1. Record the seating position. Non-adjustable (S7.1.1.5(c)(1))
 (Any position is acceptable.)

2. Buckle the seat belt. (S7.1.1.5(c)(1))

3. Complete any procedures recommended in the vehicle owner's manual to activate any locking feature. (S7.1.1.5(c)(1))

4. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5(a))
 (X)Yes-Pass () No-FAIL

5. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the seat webbing. (S7.1.1.5(a))
 (X)Yes-Pass () No-FAIL

6. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?
 (X)Yes, go to 6.1 () No, go to 7.

6.1 Does the vehicle owner's manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))
 (X)Yes-Pass () No-FAIL

7. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))
8. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

9. Adjust the lap belt or lap bolt portion of the seat belt assembly according to any procedures recommended in the vehicle owner's manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2))

10. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

Measured distance between A and B is 64.8 inches.

11. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing. (S7.1.1.5(c)(3))

12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

The measured force application angle = 10 (spec. 5-15 degrees)

Figure 5 (S7.1.1.5(c)(4))
13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

 Measured distance between A and B is 31.0 inches.

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractor is installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

 Record onset rate: 10 lb/sec (Spec. 10 to 50 lb/sec)

 Measure distance between points A and B 31.5 inches (S7.1.1.5(c)(6))

15. Subtract the measurement in 13 from the measurement in 14. Is the difference 2 inches or less? (S7.1.1.5(c)(7))

 14-13 = 0.5 inches

 (X) Yes-Pass () No-FAIL

16. Subtract the measurement in 14 from the measurement in 10. Is the difference 3 inches or more?

 10-14 = 33.3 inches

 (X) Yes-Pass () No-FAIL

REMARKS: None
1. **BELT CONTACT FORCE (S7.4.3)**

Test Vehicle NHTSA No.: C30504
Vehicle Model Year/Make/Model/Body Style: 2003/Hyundai/Santa Fe/MPV
Designated Seating Position Tested: Left Front
Date of Comfort/Convenience Check: February 10, 2003
Technician Performing Check: Chad Gadberry
GVWR: 4870 lb

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

1.1 Does the vehicle incorporate a webbing tension-relieving device?
 () Yes - go to latch plate access
 (X) No - continue with this check sheet

1.2 Adjustable seats are in adjustment position midway between the forward most and rearmost positions. If an adjustment position does not exist midway between the forward most and rearmost positions, the next closest adjustment position to the rear of the midpoint is used. (S8.1.2)
 (X) Check
 () N/A

1.3 If separately adjustable in a vertical direction, the seats are at the lowest position.
 (X) Check
 () N/A

1.4 Place adjustable seat backs in the manufacturer's nominal design riding position in the manner specified by the manufacturer.
 (X) Check
 () N/A

1.5 Place any adjustable anchorages at the manufacturer's nominal design position for a 50th percentile adult male (50M) occupant. This information will be furnished by the COTR.
 (X) Check
 () N/A

1.6 Place each adjustable head restraint in its highest adjustment position.
 (X) Check
 () N/A
1.7 Adjustable lumbar supports are positioned so that the lumbar support is in its lowest adjustment position. (S8.1.3)
 (X) Check
 () N/A

1.8 Position the test dummies according to dummy position placement instructions in Appendix B.
 (X) Check

1.9 Fasten the seat belt latch. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point, pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (S10.8) Measure the contact force exerted by the belt webbing on the dummy's chest. Contact the COTR if the contact force exceeds 0.7 pounds.
 Contact Force 0.6 lb. (X) 0.0 to 0.7 pounds - Pass
 () greater than 0.7 pounds - FAIL*

* If the seat belts are voluntarily installed by the manufacturer they do not have to comply.
1. BELT CONTACT FORCE (S7.4.3)

Test Vehicle NHTSA No.: C30504
Vehicle Model Year/Make/Model/Body Stylo: 2003/Hyundai/Santa Fe/MPV
Designated Seating Position Tested: Right Front
Date of Comfort/Convenience Check: February 10, 2003
Technician Performing Check: Chad Gadberry
GVWR: 4870 lb

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

1.1 Does the vehicle incorporate a webbing tension-relieving device?
 () Yes - go to latchplate access
 (X) No - continue with this check sheet

1.2 Adjustable seats are in adjustment position midway between the forward most and rearmost positions. If an adjustment position does not exist midway between the forward most and rearmost positions, the next closest adjustment position to the rear of the midpoint is used. (S8.1.2)
 (X) Check
 () N/A

1.3 If separately adjustable in a vertical direction, the seats are at the lowest position.
 () Check
 (X) N/A

1.4 Place adjustable seat backs in the manufacturer's nominal design riding position in the manner specified by the manufacturer.
 (X) Check
 () N/A

1.5 Place any adjustable anchorages at the manufacturer's nominal design position for a 50th percentile adult male (50M) occupant. This information will be furnished by the COTR.
 (X) Check
 () N/A

1.6 Place each adjustable head restraint in its highest adjustment position.
 (X) Check
 () N/A
1.7 Adjustable lumbar supports are positioned so that the lumbar support is in its lowest adjustment position. (S8.1.3)

() Check
(X) N/A

1.8 Position the test dummies according to dummy position placement instructions in Appendix B.

(X) Check

1.9 Fasten the seat belt latch. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point, pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. Measure the contact force exerted by the belt webbing on the dummy's chest. Contact the COTR if the contact force exceeds 0.7 pounds.

Contact Force 0.6 lb. (X) 0.0 to 0.7 pounds - Pass

() greater than 0.7 pounds - FAIL*

* If the seat belts are voluntarily installed by the manufacturer they do not have to comply.
1. **BELT CONTACT FORCE (S7.4.3)**

 Test Vehicle NHTSA No.: C30504
 Vehicle Model Year/Make/Model/Body Style: 2003/Hyundai/Santa Fe/MPV.
 Designated Seating Position Tested: Left Rear
 Date of Comfort/Convenience Check: February 10, 2003
 Technician Performing Check: Chad Gadberry
 GVWR: 4870 lb.

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

1.1 Does the vehicle incorporate a webbing tension-relieving device?
 () Yes - go to latchplate access
 (X) No - continue with this check sheet

1.2 Adjustable seats are in adjustment position midway between the forward most and rearmost positions. If an adjustment position does not exist midway between the forward most and rearmost positions, the next closest adjustment position to the rear of the midpoint is used. (§8.1.2)
 () Check
 (X) N/A

1.3 If separately adjustable in a vertical direction, the seats are at the lowest position.
 () Check
 (X) N/A

1.4 Place adjustable seat backs in the manufacturer’s nominal design riding position in the manner specified by the manufacturer.
 (X) Check
 () N/A

1.5 Place any adjustable anchorages at the manufacturer’s nominal design position for a 50th percentile adult male (50M) occupant. This information will be furnished by the COTR.
 () Check
 (X) N/A

1.6 Place each adjustable head restraint in its highest adjustment position.
 (X) Check
 () N/A
1.7 Adjustable lumbar supports are positioned so that the lumbar support is in its lowest adjustment position. (S8.1.3)
 () Check
 (X) N/A

1.8 Position the test dummies according to dummy position placement instructions in Appendix B.
 (X) Check

1.9 Fasten the seat belt latch. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point, pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (S10.8) Measure the contact force exerted by the belt webbing on the dummy's chest. Contact the COTR if the contact force exceeds 0.7 pounds.
 Contact Force 0.6 lb. (X) 0.0 to 0.7 pounds - Pass
 () greater than 0.7 pounds - FAIL*

* If the seat belts are voluntarily installed by the manufacturer they do not have to comply.
1. **BELT CONTACT FORCE (S7.4.3)**

 Test Vehicle NHTSA No.: C30504
 Vehicle Model Year/Make/Model/Body Style: 2003/Hyundai/Santa Fe/MPV
 Designated Seating Position Tested: Right Rear
 Date of Comfort/Convenience Check: February 10, 2003
 Technician Performing Check: Chad Gadberry
 GVWR: 4870 lb

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

1.1 **Does the vehicle incorporate a webbing tension-relieving device?**
 - () Yes - go to latchplate access
 - (X) No - continue with this check sheet

1.2 **Adjustable seats are in adjustment position midway between the forward most and rearmost positions.** If an adjustment position does not exist midway between the forward most and rearmost positions, the next closest adjustment position to the rear of the midpoint is used. (S8.1.2)
 - () Check
 - (X) N/A

1.3 **If separately adjustable in a vertical direction, the seats are at the lowest position.**
 - () Check
 - (X) N/A

1.4 **Place adjustable seat backs in the manufacturer's nominal design riding position in the manner specified by the manufacturer.**
 - (X) Check
 - () N/A

1.5 **Place any adjustable anchorages at the manufacturer's nominal design position for a 50th percentile adult male (50M) occupant.** This information will be furnished by the COTR.
 - () Check
 - (X) N/A

1.6 **Place each adjustable head restraint in its highest adjustment position.**
 - (X) Check
 - () N/A
1.7 Adjustable lumbar supports are positioned so that the lumbar support is in its lowest adjustment position. (S8.1.3)
 () Check
 (X) N/A

1.8 Position the test dummies according to dummy position placement instructions in Appendix B.
 (X) Check

1.9 Fasten the seat belt latch. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point, pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (S10.8) Measure the contact force exerted by the belt webbing on the dummy's chest. Contact the COTR if the contact force exceeds 0.7 pounds.
 Contact Force 0.6 lb.
 (X) 0.0 to 0.7 pounds - Pass
 () greater than 0.7 pounds - FAIL*

* If the seat belts are voluntarily installed by the manufacturer they do not have to comply.
2. LATCHPLATE ACCESS (§7.4.4)

Test Vehicle NHTSA No.: C30504
Vehicle Model Year/Make/Model/Body Style: 2003/Hyundai/Santa Fe/MPV
Designated Seating Position Tested: Left Front
Date of Comfort/Convenience Check: February 10, 2003
Technician Performing Check: Chad Gadberry
GVWR: 4870 lb

Test all front outboard seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

2.1 Position the seat in its forward most adjustment position.
 (X) Check

2.2 Position the test dummy using the procedures in Appendix B. (Some modifications to the positioning procedure may need to be made because the seat is in its forward most position.)
 (X) Check

2.3 Position the adjustable seat belt anchorage in the manufacturer's nominal design position for a 50th percentile adult male occupant.
 (X) Check

2.4 Attach the inboard and outboard reach string following the instructions on Figure 1C.
 (X) Check

2.5 Place the latch plate in the stowed position.
 (X) Check

2.6 Extend each line backward and outboard to generate arcs of the reach envelope of the test dummy's arms. Is the latch plate within the reach envelope?
 (X) Yes-Pass () No-FAIL

2.7 Using the clearance test block, specified in Figure 2C, is there sufficient clearance between the vehicle seat and the side of vehicle interior to allow the test block to move unhindered to the latch plate or buckle?
 (X) Yes-Pass () No-FAIL
2. **LATCHPLATE ACCESS (S7.4.4)**

Test Vehicle NHTSA No.:C30504
Vehicle Model Year/Make/Model/Body Style: 2003/Hyundai/Santa Fe/MPV
Designated Seating Position Tested: Right Front
Date of Comfort/Convenience Check: February 10, 2003
Technician Performing Check: Chad Gadberry
GVWR: 4870 lb

Test all front outboard seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

2.1 Position the seat in its forward most adjustment position.
 (X) Check

2.2 Position the test dummy using the procedures in Appendix B. (Some modifications to the positioning procedure may need to be made because the seat is in its forward most position.)
 (X) Check

2.3 Position the adjustable seat belt anchorage in the manufacturer's nominal design position for a 50th percentile adult male occupant.
 (X) Check

2.4 Attach the inboard and outboard reach string following the instructions on Figure 1C.
 (X) Check

2.5 Place the latch plate in the stowed position.
 (X) Check

2.6 Extend each line backward and outboard to generate arcs of the reach envelop of the test dummy's arms. Is the latch plate within the reach envelope?
 (X) Yes-Pass () No-FAIL

2.7 Using the clearance test block, specified in Figure 2C, is there sufficient clearance between the vehicle seat and the side of vehicle interior to allow the test block to move unhindered to the latch plate or buckle?
 (X) Yes-Pass () No-FAIL
3. RETRACTION (S7.4.5)

Test Vehicle NHTSA No.: C30504
Vehicle Model Year/Make/Model/Body Style: 2003/Hyundai/Santa Fe/MPV
Designated Seating Position Tested: Left Front
Date of Comfort/Convenience Check: February 10, 2003
Technician Performing Check: Chad Gadberry
GVWR: 4870 lb

Test all front outboard seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

3.1 Is the vehicle a passenger car or walk-in van-type vehicle?
 () Yes If yes, go to seat belt guides and hardware.
 (X) No

3.2 Adjustable seats are in the adjustment position midway between the forward most and rearmost positions. If an adjustment position does not exist midway between the forward most and rearmost positions, the next closest adjustment position to the rear of the midpoint is used. (S8.1.2)
 (X) Check

3.3 If separately adjustable in a vertical direction, the seats are at the lowest position.
 (X) Check

3.4 Place adjustable seat backs in the manufacturer's nominal design riding position in the manner specified by the manufacturer.
 (X) Check

3.5 Place any adjustable anchorages at the manufacturer's nominal design position for a 50th percentile adult male (50M) occupant. This information will be furnished by the COTR.
 (X) Check

3.6 Place each adjustable head restraint in its highest adjustment position.
 (X) Check

3.7 Adjustable lumbar supports are positioned so that the lumbar support is in its lowest adjustment position (S8.1.3)
 (X) Check
3.8 Use anthropomorphic test dummies whose arms have been removed and position the dummies in the front outboard designated seating positions according to instructions in Appendix B.

(X) Check

3.9 Restrain the dummies using the belt systems for the position being tested.

(X) Check

3.10 Stow outboard armrests which are capable of being stowed.

(X) Check

3.11 Check the statement that applies to this test vehicle:

(A) The torso and lap belt webbing of the seat belt system automatically retracts to a stowed position when the adjacent vehicle door is in an open position and the seat belt latch plate is released.

(X) Pass

(B) The torso and lap belt webbing of the seat belt system automatically retracts when the seat belt latch plate is released.

(X) Pass

(C) Neither A or B apply.

() FAIL

3.12 With the webbing and hardware in the stowed position are the webbing and hardware prevented from being pinched when the door is closed?

(X) Yes - Pass

() No - FAIL

3.13 If this test vehicle has an open body (without doors) and has a seat belt system with a tension-relieving device, does the belt system fully retract when the tension-relieving device is deactivated?

(X) N/A

() Yes - Pass

() No - FAIL
3. RETRACTION (S7.4.5)

Test Vehicle NHTSA No.: C30504
Vehicle Model Year/Make/Model/Body Style: 2003/Hyundai/Santa Fe/MPV
Designated Seating Position Tested: Right Front
Date of Comfort/Convenience Check: February 10, 2003
Technician Performing Check: Chad Gadberry
GVWR: 4870 lb

Test all front outboard seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

3.1 Is the vehicle a passenger car or walk-in van-type vehicle?
 () Yes
 (X) No
 If yes, go to seat belt guides and hardware.

3.2 Adjustable seats are in the adjustment position midway between the forward most and rearmost positions. If no adjustment position does not exist midway between the forward most and rearmost positions, the next closest adjustment position to the rear of the midpoint is used. (S8.1.2)
 (X) Check

3.3 If separately adjustable in a vertical direction, the seats are at the lowest position.
 (X) Check

3.4 Place adjustable seat backs in the manufacturer’s nominal design riding position in the manner specified by the manufacturer.
 (X) Check

3.5 Place any adjustable anchorages at the manufacturer’s nominal design position for a 50th percentile adult male (50M) occupant. This information will be furnished by the COTR.
 (X) Check

3.6 Place each adjustable head restraint in its highest adjustment position.
 (X) Check

3.7 Adjustable lumbar supports are positioned so that the lumbar support is in its lowest adjustment position. (S8.1.3)
 (X) Check
3.8 Use anthropomorphic test dummies whose arms have been removed and position the dummies in the front outboard designated seating positions according to instructions in Appendix B.

 (X) Check

3.9 Restrain the dummies using the belt systems for the position being tested.

 (X) Check

3.10 Stow outboard armrests which are capable of being stowed.

 (X) Check

3.11 Check the statement that applies to this test vehicle:

 (A) The torso and lap belt webbing of the seat belt system automatically retracts to a stowed position when the adjacent vehicle door is in an open position and the seat belt latch plate is released.

 (X) Pass

 (B) The torso and lap belt webbing of the seat belt system automatically retracts when the seat belt latch plate is released.

 (X) Pass

 (C) Neither A or B apply.

 () FAIL

3.12 With the webbing and hardware in the stowed position are the webbing and hardware prevented from being pinched when the door is closed?

 (X) Yes - Pass

 () No - FAIL

3.13 If this test vehicle has an open body (without doors) and has a seat belt system with a tension-relieving device, does the belt system fully retract when the tension-relieving device is deactivated?

 (X) N/A

 () Yes - Pass

 () No - FAIL
4. **SEAT BELT GUIDES AND HARDWARE (S7.4.6)**

Test Vehicle NHTSA No.: C30504

Vehicle Model Year/Make/Model/Body Style: 2003/Hyundai/Santa Fe/MPV

Designated Seating Position Tested: Left Front

Date of Comfort/Convenience Check: February 10, 2003

Technician Performing Check: Chad Gadberry

GVWR: 4870 lb

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

The requirements for accessibility DO NOT APPLY to:

A. Seats whose seat cushions are movable so that the seat back serves a function other than seating (S7.4.6.1(b))

B. Seats which are removable.

C. Seats which are movable so that the space formerly occupied by the seat can be used for a secondary function.

If the seats in this vehicle are different than the criteria above determine the following:

4.1 Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back?

 () Yes - Go to 4.2.

 (X) No - this form is complete

4.2 Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)?

 () Yes - Pass

 () No - FAIL

4.3 Are the remaining two seat belt parts accessible under normal conditions?

 () Yes - Pass

 () No - FAIL
4.4 The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the following events occur in order:

(A) The belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. () Check

(B) The seat is moved to any position to which it is designed to be adjusted. () Check

(C) The seat back, if foldable, is folded forward as far as possible and then moved backward into position. () Check

() Yes - Pass
() No - FAIL

4.5 Is the inboard receptacle end of the seat belt assembly, installed in the outboard designated seating position, accessible with the center arm rest in any position to which it can be adjusted (without moving the armrest)?

() Yes - Pass
() No - FAIL
4. **SEAT BELT GUIDES AND HARDWARE (S7.4.6)**

 Test Vehicle NHTSA No.: C30504
 Vehicle Model Year/Make/Model/Body Style: 2003/Hyundai/Santa Fe/MPV
 Designated Seating Position Tested: Right Front
 Date of Comfort/Convenience Check: February 10, 2003
 Technician Performing Check: Chad Gadberry
 GVWR: 4870 lb.

 Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

 The requirements for accessibility **DO NOT APPLY** to:

 A. Seats whose seat cushions are movable so that the seat back serves a function other than seating (S7.4.6.1(b))

 B. Seats which are removable.

 C. Seats which are movable so that the space formerly occupied by the seat can be used for a secondary function.

 If the seats in this vehicle are different than the criteria above determine the following:

 4.1 Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back?

 () Yes - Go to 4.2.
 (X) No - this form is complete

 4.2 Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when seat hardware is intentionally pushed behind the seat by a vehicle occupant)?

 () Yes - Pass
 () No - FAIL

 4.3 Are the remaining two seat belt parts accessible under normal conditions?

 () Yes - Pass
 () No - FAIL
4.4 The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the following events occur in order:

(A) The belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. () Check

(B) The seat is moved to any position to which it is designed to be adjusted. () Check

(C) The seat back, if foldable, is folded forward as far as possible and then moved backward into position.
 () Check
 () Yes - Pass
 () No - FAIL

4.5 Is the inboard receptacle end of the seat belt assembly, installed in the outboard designated seating position, accessible with the center arm rest in any position to which it can be adjusted (without moving the armrest)?
 () Yes - Pass
 () No - FAIL
4. **SEAT BELT GUIDES AND HARDWARE (S7.4.6)**

Test Vehicle NHTSA No.: C30504

Vehicle Model Year/Make/Model/Body Style: 2003/Hyundai/Santa Fe/MPV

Designated Seating Position Tested: **Left Rear - Does not apply (Requirement A)**

Date of Comfort/Convenience Check: February 10, 2003

Technician Performing Check: Chad Gadberry

GVWR: 4870 lb

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

The requirements for accessibility **DO NOT APPLY** to:

A. Seats whose seat cushions are movable so that the seat back serves a function other than seating (S7.4.6.1(b))

B. Seats which are removable.

C. Seats which are movable so that the space formerly occupied by the seat can be used for a secondary function.

If the seats in this vehicle are different than the criteria above determine the following:

4.1 Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back?

 () Yes - Go to 4.2.

 () No - this form is complete

4.2 Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)?

 () Yes - Pass

 () No - FAIL

4.3 Are the remaining two seat belt parts accessible under normal conditions?

 () Yes - Pass

 () No - FAIL
4.4 The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the following events occur in order:

(A) The belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. () Check

(B) The seat is moved to any position to which it is designed to be adjusted. () Check

(C) The seat back, if foldable, is folded forward as far as possible and then moved backward into position. () Check

() Yes - Pass
() No - FAIL

4.5 Is the inboard receptacle end of the seat belt assembly, installed in the outboard designated seating position, accessible with the center arm rest in any position to which it can be adjusted (without moving the armrest)?

() Yes - Pass
() No - FAIL
4. SEAT BELT GUIDES AND HARDWARE (§7.4.6)

Test Vehicle NHTSA No.: C30504
Vehicle Model Year/Make/Model/Body Style: 2003/Hyundai/Santa Fe/MPV
Designated Seating Position Tested: Center Rear - Does not apply (Requirement A)
Date of Comfort/Convenience Check: February 10, 2003
Technician Performing Check: Chad Gadberry
GVWR: 4870 lb

Test seat belts except those in walk-in van-type vehicles and those at front cutboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

The requirements for accessibility DO NOT APPLY to:

A. Seats whose seat cushions are movable so that the seat back serves a function other than seating (§7.4.6.1(b))
B. Seats which are removable.
C. Seats which are movable so that the space formerly occupied by the seat can be used for a secondary function.

If the seats in this vehicle are different than the criteria above determine the following:

4.1 Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back?
 () Yes - Go to 4.2.
 () No - this form is complete

4.2 Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)?
 () Yes - Pass
 () No - FAIL

4.3 Are the remaining two seat belt parts accessible under normal conditions?
 () Yes - Pass
 () No - FAIL
4.4 The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the following events occur in order:

(A) The belt is completely retracted or, if the belt is nonretractable, the belt is unlatched.
 () Check

(B) The seat is moved to any position to which it is designed to be adjusted.
 () Check

(C) The seat back, if foldable, is folded forward as far as possible and then moved backward into position.
 () Check

 () Yes - Pass
 () No - FAIL

4.5 Is the inboard receptacle end of the seat belt assembly, installed in the outboard designated seating position, accessible with the center arm rest in any position to which it can be adjusted (without moving the armrest)?

 () Yes - Pass
 () No - FAIL
Seat Belt Comfort and Convenience Data (Cont.)

4. SEAT BELT GUIDES AND HARDWARE (S7.4.6)

Test Vehicle NHTSA No.: C30504
Vehicle Model Year/Make/Model/Body Style: 2003/Hyundai/Santa Fe/MPV
Designated Seating Position Tested: Right Rear - Does not apply (Requirement A)
Date of Comfort/Convenience Check: February 10, 2003
Technician Performing Check: Chad Gadberry
GVWR: 4670 lb

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

The requirements for accessibility DO NOT APPLY to:

A. Seats whose seat cushions are movable so that the seat back serves a function other than seating (S7.4.6.1(b))
B. Seats which are removable.
C. Seats which are movable so that the space formerly occupied by the seat can be used for a secondary function.

If the seats in this vehicle are different than the criteria above determine the following:

4.1 Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back?

() Yes - Go to 4.2.
() No - this form is complete

4.2 Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)?

() Yes - Pass
() No - FAIL

4.3 Are the remaining two seat belt parts accessible under normal conditions?

() Yes - Pass
() No - FAIL
4.4 The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the following events occur in order:

(A) The belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. () Check

(B) The seat is moved to any position to which it is designed to be adjusted. () Check

(C) The seat back, if foldable, is folded forward as far as possible and then moved backward into position. () Check

() Yes - Pass
() No - FAIL

4.5 Is the inboard receptacle end of the seat belt assembly, installed in the outboard designated seating position, accessible with the center arm rest in any position to which it can be adjusted (without moving the armrest)?

() Yes - Pass
() No - FAIL
LOCATION OF ANCHORING POINTS FOR LATCHPLATE REACH LIMITING CHAINS OR STRINGS TO TEST FOR LATCHPLATE ACCESSIBILITY

PART 572E DUMMY

50TH PERCENTILE DUMMY SEATED IN FOREMOST SEAT ADJUSTMENT POSITION

ATTACH THE INBOARD REACH STRING (19.125" LONG) AT THE BASE OF THE HEAD ON CENTERLINE

ATTACH THE OUTBOARD REACH STRING (29" LONG) AT THIS POINT ON THE TORSO SHEATH

A - USING FLEXIBLE TAPE, MEASURE 8" FROM BACK CENTERLINE 11.5" FROM FRONT CENTERLINE TO FIND ANCHOR POINT BELOW ARM PIT ON TORSO SHEATH

SEAT PLANE IS 90 DEGREES TO THE TORSO LINE

REAR VIEW
USE OF CLEARANCE TEST BLOCK TO DETERMINE HAND/ARM ACCESS

CLEARANCE TEST BLOCK

2.5"

0.5" R.
TYP.

4"

8"

NOTE: CORNERS ARE ROUN
OFF TO REDUCE SNAGGING.

TYPICAL ARM REST

FRONT VIEW OF VEHICLE
APPENDIX A
PHOTOGRAPHS
<table>
<thead>
<tr>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo No. A-1 - Pre-Test: Frontal View</td>
<td>A-1</td>
</tr>
<tr>
<td>Photo No. A-2 - Pre-Test: Left Side View</td>
<td>A-2</td>
</tr>
<tr>
<td>Photo No. A-3 - Pre-Test: Right Side View</td>
<td>A-3</td>
</tr>
<tr>
<td>Photo No. A-4 - Pre-Test: Windshield View</td>
<td>A-4</td>
</tr>
<tr>
<td>Photo No. A-5 - Post-Test: Windshield View</td>
<td>A-5</td>
</tr>
<tr>
<td>Photo No. A-6 - Pre-Test: Driver Dummy Position View (Door Open)</td>
<td>A-6</td>
</tr>
<tr>
<td>Photo No. A-7 - Post-Test: Driver Dummy Position View (Door Open)</td>
<td>A-7</td>
</tr>
<tr>
<td>Photo No. A-8 - Pre-Test: Driver Dummy Position View</td>
<td>A-8</td>
</tr>
<tr>
<td>Photo No. A-9 - Post-Test: Driver Dummy Position View</td>
<td>A-9</td>
</tr>
<tr>
<td>Photo No. A-10 - Pre-Test: Passenger Dummy Position View (Door Open)</td>
<td>A-10</td>
</tr>
<tr>
<td>Photo No. A-11 - Post-Test: Passenger Dummy Position View (Door Open)</td>
<td>A-11</td>
</tr>
<tr>
<td>Photo No. A-12 - Pre-Test: Passenger Dummy Position View</td>
<td>A-12</td>
</tr>
<tr>
<td>Photo No. A-14 - Post-Test: Driver Dummy Airbag View</td>
<td>A-14</td>
</tr>
<tr>
<td>Photo No. A-15 - Post-Test: Driver Head Contact View</td>
<td>A-15</td>
</tr>
<tr>
<td>(visor, windshield header, and roof)</td>
<td></td>
</tr>
<tr>
<td>Photo No. A-16 - Post-Test: Passenger Dummy Airbag View</td>
<td>A-16</td>
</tr>
<tr>
<td>Photo No. A-17 - Post-Test: Passenger Dummy Head Contact View (visor)</td>
<td>A-17</td>
</tr>
<tr>
<td>Photo No. A-18 - Post-Test: Passenger Dummy Head Contact View (windshield)</td>
<td>A-18</td>
</tr>
<tr>
<td>Photo No. A-19 - Pre-Test: Driver Knee Bolster View</td>
<td>A-19</td>
</tr>
<tr>
<td>Photo No. A-20 - Post-Test: Driver Knee Bolster View</td>
<td>A-20</td>
</tr>
<tr>
<td>Photo No. A-21 - Pre-Test: Passenger Knee Bolster View</td>
<td>A-21</td>
</tr>
<tr>
<td>Photo No. A-22 - Post-Test: Passenger Knee Bolster View</td>
<td>A-22</td>
</tr>
<tr>
<td>Photo No. A-23 - Pre-Test: Driver Seat Position View</td>
<td>A-23</td>
</tr>
<tr>
<td>Photo No. A-24 - Post-Test: Driver Seat Position View</td>
<td>A-24</td>
</tr>
<tr>
<td>Photo No. A-25 - Pre-Test: Passenger Seat Position View</td>
<td>A-25</td>
</tr>
<tr>
<td>Photo No. A-26 - Post-Test: Passenger Seat Position View</td>
<td>A-26</td>
</tr>
<tr>
<td>Photo No. A-27 - Vehicle Certification Label</td>
<td>A-27</td>
</tr>
<tr>
<td>Photo No. A-28 - FMVSS 110 Label</td>
<td>A-28</td>
</tr>
</tbody>
</table>
Post-Test Driver Dummy Position View (Door Open)
Post-Test Driver Dummy Head Contact View (visor, windshield header, and roof)
Post-Test Passenger Dummy Airbag View
<table>
<thead>
<tr>
<th>Tire Size</th>
<th>Up to 2 Persons</th>
<th>Up to Max. Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>P225/70 R16</td>
<td>207(30) 207(30)</td>
<td>221(32) 221(32)</td>
</tr>
</tbody>
</table>

TIRE PRESSURE - COLD, KPA (PSI)

Vehicle Capacity Weight: 4000 lbs (1814 kg)

Furde en HT de la capacité de véhicule: 4000 lbs (1814 kg)

Seating Capacity Total: 5 Front & Rear

Capacité de transport total: 5 Avant & Arrière

3rd Row:

P225/70 R16 | 207(30) 207(30) | 221(32) 221(32) |
<table>
<thead>
<tr>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure B-1 - Sled X Acceleration vs. Time</td>
<td>B-1</td>
</tr>
<tr>
<td>Figure B-2 - Sled X Velocity vs. Time</td>
<td>B-2</td>
</tr>
<tr>
<td>Figure B-3 - Sled X Displacement vs. Time</td>
<td>B-3</td>
</tr>
<tr>
<td>Figure B-4 - 1 Motor Sled Displacement vs. Time</td>
<td>B-4</td>
</tr>
<tr>
<td>Figure B-5 - Airbag Voltage vs. Time</td>
<td>B-5</td>
</tr>
<tr>
<td>Figure B-6 - Left Rear Crossmember X Acceleration vs. Time</td>
<td>B-6</td>
</tr>
<tr>
<td>Figure B-7 - Right Rear Crossmember X Acceleration vs. Time</td>
<td>B-7</td>
</tr>
<tr>
<td>Figure B-8 - Top of Engine X Acceleration vs. Time</td>
<td>B-8</td>
</tr>
<tr>
<td>Figure B-9 - Rear Axle X Acceleration vs. Time</td>
<td>B-9</td>
</tr>
<tr>
<td>Figure B-10 - Driver Head X Acceleration vs. Time</td>
<td>B-10</td>
</tr>
<tr>
<td>Figure B-11 - Driver Head Y Acceleration vs. Time</td>
<td>B-11</td>
</tr>
<tr>
<td>Figure B-12 - Driver Head Z Acceleration vs. Time</td>
<td>B-12</td>
</tr>
<tr>
<td>Figure B-13 - Driver Head Resultant Acceleration vs. Time</td>
<td>B-13</td>
</tr>
<tr>
<td>Figure B-14 - Driver Neck Force X vs. Time</td>
<td>B-14</td>
</tr>
<tr>
<td>Figure B-15 - Driver Neck Force Y vs. Time</td>
<td>B-15</td>
</tr>
<tr>
<td>Figure B-16 - Driver Neck Force Z vs. Time</td>
<td>B-16</td>
</tr>
<tr>
<td>Figure B-17 - Driver Neck Moment X vs. Time</td>
<td>B-17</td>
</tr>
<tr>
<td>Figure B-18 - Driver Neck Moment Y vs. Time</td>
<td>B-18</td>
</tr>
<tr>
<td>Figure B-19 - Driver Neck Moment Z vs. Time</td>
<td>B-19</td>
</tr>
<tr>
<td>Figure B-20 - Driver Occipital Condyle Moment Y vs. Time</td>
<td>B-20</td>
</tr>
<tr>
<td>Figure B-21 - Driver Chest X Acceleration vs. Time</td>
<td>B-21</td>
</tr>
<tr>
<td>Figure B-22 - Driver Chest Y Acceleration vs. Time</td>
<td>B-22</td>
</tr>
<tr>
<td>Figure B-23 - Driver Chest Z Acceleration vs. Time</td>
<td>B-23</td>
</tr>
<tr>
<td>Figure B-24 - Driver Chest Resultant Acceleration vs. Time</td>
<td>B-24</td>
</tr>
<tr>
<td>Figure B-25 - Driver Chest Displacement vs. Time</td>
<td>B-25</td>
</tr>
<tr>
<td>Figure B-26 - Driver Left Femur Force vs. Time</td>
<td>B-26</td>
</tr>
<tr>
<td>Figure B-27 - Driver Right Femur Force vs. Time</td>
<td>B-27</td>
</tr>
<tr>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Figure B-28 - Passenger Head X Acceleration vs. Time</td>
<td>B-28</td>
</tr>
<tr>
<td>Figure B-29 - Passenger Head Y Acceleration vs. Time</td>
<td>B-29</td>
</tr>
<tr>
<td>Figure B-30 - Passenger Head Z Acceleration vs. Time</td>
<td>B-30</td>
</tr>
<tr>
<td>Figure B-31 - Passenger Head Retsultant Acceleration vs. Time</td>
<td>B-31</td>
</tr>
<tr>
<td>Figure B-32 - Passenger Neck Force X vs. Time</td>
<td>B-32</td>
</tr>
<tr>
<td>Figure B-33 - Passenger Neck Force Y vs. Time</td>
<td>B-33</td>
</tr>
<tr>
<td>Figure B-34 - Passenger Neck Force Z vs. Time</td>
<td>B-34</td>
</tr>
<tr>
<td>Figure B-35 - Passenger Neck Moment X vs. Time</td>
<td>B-35</td>
</tr>
<tr>
<td>Figure B-36 - Passenger Neck Moment Y vs. Time</td>
<td>B-36</td>
</tr>
<tr>
<td>Figure B-37 - Passenger Neck Moment Z vs. Time</td>
<td>B-37</td>
</tr>
<tr>
<td>Figure B-38 - Passenger Occipital Condyle Moment Y vs. Time</td>
<td>B-38</td>
</tr>
<tr>
<td>Figure B-39 - Passenger Chest X Acceleration vs. Time</td>
<td>B-39</td>
</tr>
<tr>
<td>Figure B-40 - Passenger Chest Y Acceleration vs. Time</td>
<td>B-40</td>
</tr>
<tr>
<td>Figure B-41 - Passenger Chest Z Acceleration vs. Time</td>
<td>B-41</td>
</tr>
<tr>
<td>Figure B-42 - Passenger Chest Resultant Acceleration vs. Time</td>
<td>B-42</td>
</tr>
<tr>
<td>Figure B-43 - Passenger Chest Displacement vs. Time</td>
<td>B-43</td>
</tr>
<tr>
<td>Figure B-44 - Passenger Left Femur Force vs. Time</td>
<td>B-44</td>
</tr>
<tr>
<td>Figure B-45 - Passenger Right Femur Force vs. Time</td>
<td>B-45</td>
</tr>
</tbody>
</table>
Test Desc: FMVSS 203 SLED
Component: 2003 HYUNDAI SANTA FE MPV (G30504)
Test Number: H03061
Test Date: 03/25/03

Channel Name: SLED X ACCELERATION
CFC: 60
File Name: H03061AF.A01
Sensor SA: 764677

MGA Research Corp
Accelerator Sled Facility
5000 Warren Road,
Burlington, WI 53105
Ph: 262-763-2735
Fax: 262-763-0934

Maximum: 17.2 G
Time: 62.4 msec

Minimum: -1.5 G
Time: 125.9 msec

Value at T0: 0.5 G

Prepared By: C. Gadberry
On: 03.26.2003 17:15:11
Test Desc: FMVSS 208 SLED
Component: 2003 HYUNDAI SANTA FE MPV (C30594)
Test Number: H03061
Test Date: 03/25/03
Chn Name: REAR AXLE X
CFC: 60
File Name: H03061AF.A43
Sensor S/N: G03-N12

Maximum: 17.1 G
Time: 55.2 msec
Minimum: -1.3 G
Time: 126.6 msec
Value at T0: 0.3 G

Plotted By: C. Gadberry
03.25.2003 17:15:25
Test Desc: FMVSS 208 SLED
Component: 2003 HYUNDAI SANTA FE MPV (C30594)
Test Number: H03061
Test Date: 03/25/03

Chr Name: DRIVER HEAD Y
File Name: H03061AT.A05
Sensor S/N: AGH70

MGA Research Corp
Accelerator Sled Facility
5000 Warren Road,
Burlington, WI 53105
Ph #: 262-763-2705
Fax #: 262-763-3934

Max: 11.6 G
Time: 119.6 msec

Min: -1.7 G
Time: 58.1 msec

Value at TO: 0.1 G

Plotted By: C. Gadberry
On: 03/26/2003 17:15:33
Test Desc: FMVSS 208 SLED
Component: 2003 HYUNDAI SANTA FE MPV (C30504)
Test Number: H03061
Test Date: 03/25/03
Can Name: DRIVER HEAD RESULTANT
Spec: 1000
File Name: H03061AV.A03
Sensor SN: AGH78

MGA Research Corp
Accelerator Sled Facility
5003 Warren Road
Burlington, WI 53105
Ph #: 262-763-2705
Fax #: 262-763-0934

Maximum: 35.4 G
Time: 115.0 msec

Minimum: 0.0 G
Time: 0.3 msec

Value at TD: 3.1 G
HIC VAL: 173.6
T1: 84.6 msec
T2: 134.9 msec
HIC36 VAL: 157.1
T1: 92.8 msec
T2: 128.9 msec
HIC15 VAL: 96.9
T1: 106.5 msec
T2: 121.5 msec

Plotted By: C. Gadberry
On: 03.26.2003 17:15:41
Test Desc: FMVSS 208 SLED
Component: 2003 HYUNDAI SANTA FE MPV (C30504)
Test Number: H03061
Test Date: 03/25/03

Chn Name: DRIVER CHEST Y
CFC: 180
File Name: H03061AF,A22
Sensor SN: C10770

MGA Research Corp
Accelerator Slab Facility
5000 Warren Road,
Burlington, WI 53105
Ph #: 262-763-2706
Fax #: 262-763-1944

Maximum: 4.4 G
Time: 103.1 msec
Minimum: -1.7 G
Time: 119.9 msec

Value at T0: -0.0 G

Plotted By: C. Guberry
On: 03/26/2003 17:16:19
Test Desc: FMVSS 208 SLED
Component: 2003 HYUNDAI SANTA FE MPV (C80504)
Test Number: H03061
Test Date: 03/25/03
Chn Name: DRIVER LEFT FEMUR
CFC: 600
File Name: H03061FF.F08
Sensor SN: 946

Maximum: 13.9 LB
Time: 171.7 msec
Minimum: -1,265.4 LB
Time: 73.4 msec
Value at T= 0: -3.0 LB

MGA Research Corp
Accelerator Test Facility
5000 Warner Rd.
Burlington, WI 53105
P: #262-793-2705
Fax: #262-793-0934

Plotted By: C. Gaidoerry
On: 03.26.2003 17:15:52
Test Desc: FMVSS 208 SLED
Component: 2003 HYUNDAI SANTA FE MPY (C30504)
Test Number: H03061
Test Date: 03/25/03

Model Name: PASSENGER HEAD Y
CRC: 1066
File Name: H03061AT.A25
Sensor S/N: AH5D9

Maximum: 2.4 G
Time: 66.8 msec

Minimum: -21.8 G
Time: 101.0 msec

Value at T3: 0.1 G

No valid data after approximately 102 msec.

Plotted By: C. Garber
On: 03/25/2003 17:15:38

MGA Research Corp
Accelerator Test Facility
5060 Warren Road
Burlington, WI 53105
Ph: 262-763-2765
Fax: 262-763-3634
Test Desc: FMVSS 208 SLED

Component: 2003 HYUNDAI SANTA FE MPV (C39504)

Test Number: H03061

Test Date: 03/25/03

Chn Name: PASSENGER CHEST DISPLACEMENT

C-F: 600

File Name: H03061DF.D39

Sensor S/N: D403DX

Maximum: 0.1 IN
Time: 46.8 msec

Minimum: -0.3 IN
Time: 98.4 msec

Value at T0: -0.0 IN

MGA Research Corp
Accelerator Sled Facility
5000 Warren Road,
Burlington, WI 53105
Ph #: 262-763-2705
Fax #: 262-763-0534

Plotted By: C. Gabberry
On: 03.26.2003 17:15:50
TEST VEHICLE INFORMATION

Vehicle Model Year and Make: 2002 MY / Hyundai Motor Company
Vehicle Model and Body Style: SANTA FE / Hatch Back

1. NOMINAL DESIGN RIDING POSITION
 For adjustable driver and passenger seat backs, describe how to position the inclinometer to measure the seat back angle. Include description of the location of the adjustment latch detent if applicable.
 Seat back angle for driver's seat = 25.9°.
 Measurement Instructions: Seat back angle is measured along rear edge of metal seat back frame from the vertical line as shown in attached drawing. Position can also be located with back adjusted to the 6th latch position from the initial lock position.
 * Power Seat: *
 Seat back angle for passenger's seat = 25.9°.
 Measurement Instructions:

2. SEAT FORE AND AFT POSITIONS
 Provide instructions for positioning the driver and front outboard passenger seat(s) in the center of fore and aft travel. For example, provide information to locate the detent in which the seat track is to be locked.
 Position of the driver's seat:
 Adjustable driver's seat position is the 12th lock position from the fore 1st lock position
 Position of the passenger's seat (if applicable):

3. ADJUSTABLE UPPER ANCHORAGE POSITION (Note application -)
 Adjustable upper anchorage position is 2nd lock position from the top 1st lock position
4. STEERING COLUMN ADJUSTMENTS –

Steering wheel and column adjustments are made so that the steering wheel hub is at the geometric center of the locus it describes when it is moved through its full range of driving positions.

If the tested vehicle has any of these adjustments, does your company use any specific procedures to determine the geometric center. Operational Instructions:
Steering wheel can be located at midpoint. The angles for full range of driving position between position 1 and position 3 divided by two makes midpoint position 2 angles. Steering wheel angle 62° and steering column angle is 28° from the horizontal line.

5. FUEL TANK CAPACITY DATA –

5.1 A. "Usable Capacity" of standard equipment fuel tank = 17.2 gallons.
B. "Usable Capacity" of optional equipment fuel tank = _NA_ gallons.
C. Capacity used when certification testing to requirements of FMVSS 301 = 16.0 gallons.
Operational Instructions:
Operate vehicle engine to "Run Dry" condition.
Add 93% of the Stoddard solvent of usable capacity.
To vehicle fuel tank.

5.2 Amount of Stoddard solvent added to vehicle for certification test = 16.0 gallons.

5.3 Is vehicle equipped with electric fuel pump? _YES_ _NO_

If YES, does pump normally operate when vehicle's electrical system is activated? _YES_ _NO_

6. SEATING REFERENCE POINT (SRP) –
Provide drawing which shows the driver's SRP location.
Refer to drawing "DRIVER SRP".

7. FUEL TANK LOCATION –
Provide drawing which shows the undercarriage view of the vehicle.
Refer to drawing "FUEL TANK LOCATION."
Attachment 1: 03MY SN FMVSS 208 Compliance Test Information

<table>
<thead>
<tr>
<th>No.</th>
<th>Question</th>
<th>Subjact Option</th>
<th>Answer</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Provide copies of test reports.</td>
<td></td>
<td>30 mph frontal & oblique Test</td>
<td>SLED test report</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 30 mph L/H Oblique : LSAM-03MY (00-6/1A) : See Attachment 2-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 30 mph R/H Oblique R/H : LSAM-03MY (00-6/3A) : See Attachment 2-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Frontal : LSAM-03MY (00-6/31) : See Attachment 2-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- SLED : LSAM-03MY (00-6/1F) : See Attachment 2-9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(d) What are the differences between 200ZMY and dually A/Bay Systems?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BAG VENT HOLE DIMETER</td>
<td>(\pm 1 \text{ mm})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VENT SENSOR</td>
<td>(\pm 4 \text{ mm})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PRE-TENSIONER</td>
<td>(\pm 4 \text{ mm})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) Explain what other restraint change

<table>
<thead>
<tr>
<th>No.</th>
<th>Change</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CALIBRATE</td>
<td>Weak stem end wire length</td>
</tr>
<tr>
<td>2</td>
<td>LATCH</td>
<td>Height adjuster ball change</td>
</tr>
<tr>
<td>3</td>
<td>CALIBRATE</td>
<td>PT TTF shortened by 2-3 ns</td>
</tr>
<tr>
<td>4</td>
<td>LABEL (3)</td>
<td>Pad material changed</td>
</tr>
<tr>
<td>5</td>
<td>CALIBRATE</td>
<td>Door rear size changed</td>
</tr>
<tr>
<td>6</td>
<td>CALIBRATE</td>
<td>Vertical axis changed: (\pm 0.3 \text{ mm})</td>
</tr>
<tr>
<td>7</td>
<td>CALIBRATE</td>
<td>Vertical axis changed: (\pm 0.3 \text{ mm})</td>
</tr>
</tbody>
</table>

(3) Explain changes that affect FMVSS 208 OR

1. BAG VENT HOLE CHANG (\(\pm 0.5 \text{ mm} \))
2. S/BELT LOAD LIMITTER CHANG (N: 0.08 \(\pm 0.05 \) N)
3. PT TTF (2-3 ms)

(4) Describe features that may affect perform with respect to children

None.

3. If not S/N: Describe how to disconnect air bags from vehicle sensors and connect to test sensors

(1) See attachments 8

- Bag disconnect & triggering mechanism in sled test.

(2) Dual & Multi stage = N/A

4. For vehicle certified to AAB requirements:

Not certified to AAB.
<table>
<thead>
<tr>
<th>NO:</th>
<th>Preliminary NHTSA Questionnaire Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>State if equipped with tension-relieving devices not equipped with TRP</td>
</tr>
<tr>
<td>2</td>
<td>State whether winds or vents open</td>
</tr>
<tr>
<td></td>
<td>Front and rear LH/RH window open for all tests</td>
</tr>
<tr>
<td>3</td>
<td>Submit dummy measurements, etc.</td>
</tr>
<tr>
<td></td>
<td>(1) See attachments 2-3 through 2-4</td>
</tr>
<tr>
<td></td>
<td>At 26.28-31 page reference</td>
</tr>
<tr>
<td>4</td>
<td>For vehicles certified to AAB</td>
</tr>
<tr>
<td></td>
<td>Not certified to AAB.</td>
</tr>
<tr>
<td>5</td>
<td>For vehicles certified to AAB Suppression</td>
</tr>
<tr>
<td></td>
<td>Not certified to AAB.</td>
</tr>
<tr>
<td>6</td>
<td>Fuel tank for driver</td>
</tr>
<tr>
<td></td>
<td>Drivers side fuel tank installed.</td>
</tr>
<tr>
<td>7</td>
<td>Provide seat positioning, steering column position</td>
</tr>
<tr>
<td></td>
<td>- See attachment 1-1: NHTSA form</td>
</tr>
<tr>
<td></td>
<td>- See attachment 5-1: S/Back angle</td>
</tr>
<tr>
<td></td>
<td>- See attachment 5-2: Seat Track Position</td>
</tr>
<tr>
<td></td>
<td>- See attachment 5-3: Seat TRA pint</td>
</tr>
<tr>
<td></td>
<td>- See attachment 4-9: Fuel Tank Location</td>
</tr>
<tr>
<td>8</td>
<td>For vehicles certified to low risk deployment sections of AAB</td>
</tr>
<tr>
<td></td>
<td>Not certified to AAB</td>
</tr>
<tr>
<td>9</td>
<td>If equipped with adjustable anchorages</td>
</tr>
<tr>
<td></td>
<td>See attachment 1-4: 3/Belt Upper Anchorage Position</td>
</tr>
<tr>
<td>10</td>
<td>Summary of other test results</td>
</tr>
<tr>
<td></td>
<td>1) NCAP: DRIVER ()/PASSENGER () -- L.S. KARCO, '90-91</td>
</tr>
<tr>
<td></td>
<td>2) NCAP: DRIVER ()/PASSENGER () -- U.S. KARCO, '01-02</td>
</tr>
<tr>
<td></td>
<td>3) OFCAR: 2003 -- U.S. KARCO, PG.27-52</td>
</tr>
<tr>
<td>11</td>
<td>Part removal recommendation, what priority</td>
</tr>
<tr>
<td></td>
<td>Recommended removal</td>
</tr>
<tr>
<td></td>
<td>- Priority order if necessary:</td>
</tr>
<tr>
<td></td>
<td>1) Jack & Jack Stand</td>
</tr>
<tr>
<td></td>
<td>2) RR combination lamp ASSY</td>
</tr>
<tr>
<td></td>
<td>3) Spare tire (Temporary tire)</td>
</tr>
<tr>
<td>12</td>
<td>If use pressure vessel to inflate air bag</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
</tr>
</tbody>
</table>
If vehicle was explosive device... see attachment B: DOT No. EX-524310.
Air bag ECU and wires are on the center floor. So there needs to disassemble the console. First remove the knob of transmission handle to pull out the console. (2 screws at the front side of the knob). Then unscrew the center console mounting screws in the left and right side of it while moving the seat. (6 screws). Then the console can be removed by hand. The air bag ECU and wires (covered yellow tube: connected from the ECU to the air bags can be seen. Cut the wires. (See picture 2) Connect the DAB and PAB wires to the air bag triggering system. (See wire color code: [Diagram])
Jime color code:
PAB (+) = YELLOW
PAB (-) = PINK
DAB (-) = GRAY
DAB (+) = WHITE

Caution: Do not use all colors wire with solid black line.
(Question 3-2)

answer) We used KYOWA (Japan) air bag ignition system to trigger air bags. It consists of signal input feature (receiving time zero signal), time delaying feature (to trigger the air bags at expected time), and current output feature (to trigger the air bags). The time zero signal comes from the defined acceleration level of the sled pulses. The time of time zero signal can be selected at 0.5 G's and the signal initializes both the data acquisition system and the air bag trigger system simultaneously. So if the delaying time set at 20 ms than the output current triggers the air bags 20 ms after the time zero. We set the current by 4 ampere and the current duration by 100 millisecond.