Public Roads

A JOURNAL OF HIGHWAY RESEARCH DOT LIBRARY

JUL. 281971

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION

Public Roads A JOURNAL OF HIGHWAY RESEARCH

Published Bimonthly
Harry C. Secrest, Managing Editor - Fran Faulkner, Editor

February 1971/Vol. 36, No. 6
U.S. DEPARTMENT OF TRANSPORTATION JOHN A. VOLPE, Secretary

FEDERAL HIGHWAY ADMINISTRATION F. C. TURNER, Administrator

CONTENTS

Articles

Designing Fail-Safe Structures for Highway Safety, by F. J. Tamanini 121
Fatal Accidents on Completed Sections of the Interstate Highway System, 1968-69,
by Harold R. Hosea 133
Travel by Motor Vehicles in 1969,
by II. Johnson Page 136
Department
Digest of Recent Research and
Development Results. 139
Publications
Highway Research and Development Reports Available From National Technical Information Service 138
Federal Highway Administration publications_ Inside
back

What would you like to read about in PUBLIC ROADS?

See page 135

COVER

Mt. Hood forms the background for this view of the North Fork Iron CreekWarm Springs Junction section of Oregon's recently completed Mt. Hood Highway, ORE 35 (Photo courtesy of Oregon State Highway Division).

FEDERAL HIGHWAY ADIMINISTRATION U.S. DEPARTMENT OF TRANSPORTATION Washington, D.C. 20591

FHWA REGIONAL OFFICES
No. 1. 4 Normanskill Blvd., Delmar, N.Y. 12054. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, Vermont, and Puerto. Rico.
No. 2. 1633 Federal Building, 31 Hopkins Place, Baltimore, Md. 21201.
Delaware, District of Columbia, Maryland, Ohio, Pennsylvania, Virginia, and West Virginia.
No. 3. 1720 Peachtree Rd., N.W., Atlanta, Ga. 30309.

Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, and Tennessee.
No. 4. 18209 Dixie Highway, Homewood, III. 60430.

Illinois, Indiana, Kentucky, Michigan, and Wisconsin.
No. 56301 Rockhill Road, Kansas City, Mo. 64131
Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, and South Dakota.
No. 6. 819 Taylor St., Fort Worth, Tex. 76102. Arkansas, Louisiana, Oklahoma and Texas.
No. 7. 450 Golden Gate Ave., Box 36096, San Francisco, Calif. 94102.
Arizona, California, Hawaii, and Nevada.
No. 8. 412 Mohawk Bldg., 222 SW. Morrison St., Portland, Oreg. 97204.
Alaska, Idaho, Montana, Oregon, and Washington.
No. 9. Denver Federal Center, Bldg. 40, Denver, Colo. 80225.
Colorado, New Mexico, Utah, and Wyoming.
No. 15. 1000 N. Glebe Rd., Arlington, Va. 22201.

Eastern Federal Highway Projects
No. 19. Apartado Q, San Jose, Costa Rica.
Inter-American Highway: Costa Rica, Guatemala, Nicaragua, and Panama.

Public Roads, A Journal of Highway Research, is sold by the Superintendent of Documents, Government Printing Office, Washington, D.C. 20402, at $\$ 2.00$ per year (50 cents additional for foreign mailing) or 40 cents per single copy. Subscriptions are available for 1-, 2-, or 3 -year periods. Free distribution is limited to public officials actually engaged in planning or constructing highways and to instructors of highway engineering. There are no vacancies in the free list at present.
Use of funds for printing this publication has been approved by the Director of the Bureau of the Budget, March 16, 1966.

A cardboard-concrete barrier design-a "safe" vehicle impact.

Designing Fail-Safe Structures for Highway Safety

BY THE OFFICE OF RESEARCH

Reported by ${ }^{1}$ F. J. TAMANINI,
Chief, Structures and Applied Mechanics Division

Ithe last decade highway planners and design engineers have become increasingly concerned with the responsibility of providing the highway user with safer highways. During the 10 -year period, the number of registered vehicles on the highways increased approximately 45 percent-from 74 million to more than 107 million.

Well-engineered geometric designs and modarn construction materials and techniques have prevented an untold number of accidents. Statistics indicate that the accident rate on the sompleted sections of the Interstate Highway System is only 2.99 per 100 million vehicleniles, compared to the national average accilent rate of 5.62 per 100 million vehicle-miles m all other primary and secondary roads (1). ${ }^{2}$ Without modern features to enhance safety on he Interstate Highway System, the national iverage accident rate undoubtedly would have jeen higher.

[^0]
Abstract

Highway research has met, and is continuing to meet, the challenge to help stem the enormous accident toll of the Nation's highway system. In addition to numerous innovations on the roadway itself, revisions to the roadside are virtually eliminating lethal targets at which errant vehicles often are directed. Not only are roadside appurtenances being planned-out of probable collision zones, but safe failures are being designed-in for those that cannot be relocated feasibly. These fail-safe structures, which have nearly eliminated fatalities and drastically reduced injury and property damage at locations where they have replaced rigid structures, are being implemented each month by State highway departments.

Fail-safe structures must be designed for both strength to perform the tasks for which they were built, and weakness to yield under impact. The author reviews some of the designs that incorporate these seemingly incompatible characteristics, and discusses some of the problems encountered in fail-safe structure design.

The effectiveness of new highway construction notwithstanding, the recorded vehicleaccident statistics are unbelievable. On a nationwide basis, these figures, briefly, are as follows:

- Approximately 13 million vehicle accidents annually, or about 35,000 each day.
- More than 56,000 fatalities per year, or about 155 each day. The fatality statistic is increasing at the rate of approximately 2,500 per year.
- Nearly $3,500,000$ persons injured annually, or about 10,000 each day. These survivors require about 8 million man-days of hospital care per year to recover.
- About $\$ 14$ billion of annual economic loss, representing about 12 cents per gallon of gasoline consumed by motor vehicles today.

The engineer has accepted with determination and effectiveness the enormous challenge to reduce drastically this toll of the highway transportation system. Industry, universities,
private citizens, States, and the Federal Government, all have initiated research programs to enhance accident survivability. Programs also have been launched to develop and produce safer vehicles and to educate drivers to make them more knowledgeable, safer operators.

The highway structural research effort to develop highway structures and appurtenances responsive to the need for safety can be placed in the following four basic categories:

Type I-Structural systems to eliminate rigid supports along the edges of highways.

Type II-Impact attenuation, or energy absorption systems, placed around fixed objects on the roadside or in front of them.

Type III—Fail-safe, frangible structural systems for shoulder-mounted signs, lighting standards, and other highway appurtenances that prevent serious injury in collisions but do not create hazards to other vehicles.

Type IV-Vehicle entrapment or arresting devices and redirectional longitudinal-vehicle barriers.

The researcher's ingenuity and technological freedom, as in the past, are contributing significantly to a more effective and safer highway environment. New highway structures are being designed to virtually eliminate roadside hazards through the use of modern materials and modern construction techniques, longer spans, high geometric standards, and optimum design principles. These are gradually eliminating targets for roadside vehicle collisions. Moreover, something is being done about the present environment, as it is; shortrange, quick-payoff programs are producing numerous, higly effective designs-impactattenuation and redirectional barriers, and frangible roadside structures, to name a few. Some items have proved so effective during development that many States are implementing research results even before research endeavors are completed.

Design Considerations

For the variety of structures required in the highway system-sign supports, guardrail and bridge-rail systems, luminaire supports, protective barriers, bridges, bridge piers, ete.-the designer must not only provide a structure that will withstand normal environmental loadings-dead, live, and wind-but one that will be economical to build as well. In addition to the normal requirements of his discipline, the designer is now called on to integrate safety provisions in his designs. This requires considerable engineering judgment, as the many different interrelated variables are not well defined at present. However, research is providing much needed technical data to reduce the paucity of needed information.

Table 1 is an example of research contribution to highway design engineers' fund of
knowledge (2). It gives tentative, tolerable limits of deceleration for vehicle occupants in vehicle-structure impact situations in which the duration is about 200 milliseconds or less with an associated onset rate of deceleration less than 500 g 's per second.

The following design criteria with minor modifications are currently used by highway departments in many States, by industry, by private research establishments, by the Federal Highway Administration (FHWA) (3), and by university researchers:

$$
\left.\begin{array}{ll}
\begin{array}{c}
\text { Vehicle weight } \\
\text { range. }
\end{array} & 2,000-5,000 \mathrm{lbs} \text {. } \\
\begin{array}{c}
\text { Vehicle impact } \\
\text { speeds. }
\end{array} & 60 \mathrm{~m} . \mathrm{p} . \mathrm{h} \text {. } \\
\text { Impact angle }
\end{array} \quad \begin{array}{c}
\text { As much as } 25^{\circ} \text { - } \\
\text { measured from } \\
\text { the direction of } \\
\text { the roadway. }
\end{array}\right]
$$

These criteria, intended as guidelines, can provide a high probability of accidentsurvivability for restrained occupants in most vehicle collisions. At present, the indicated restraint for vehicle occupants is provided by lap or seatbelts or by lap and upper torso straps. Air bags currently under development soon will replace these restraints. Although designing safety into roadside appurtenances for the protection of unrestrained vehicle occupants is considered economically infeasible at this time, the FHWA is encouraging safety-oriented structural design, high geometric standards, and roadside-object relocation, using the preceding criteria as guidelines, to incorporate as much safety into the highway network that is possible within the confines of existing technology.

Frangible and Breakaway Structure

The preponderant design requirement f vertical sign and luminaire supports is tl provision of bending-moment resistan against loading-dead, live, and wind. She resistance is usually an insignificant facto as the structural section selected to provic the bending moment usually provides mo than enough shear resistance. By reducing, eliminating, this excess shear-resistance c pability, the engineer can provide a safet feature for vehicle collisions and still have structure that satisfies normal loading r quirements. By combining ingenuity with b design ability, the designer can design sacrificeable structure that has that forgiv ness property for the errant vehicle and i occupants when the vehicle collides with t] structure.

Frangible wood-post structures

Dimensioned wood posts are used in mar States to support roadside signs with pan areas of 80 to 90 square feet or less. Larg size signs are usually supported by met posts in urban areas and by either met posts or treated timber poles in rural ares
Smaller size wood posts, 4 by 6 inches al smaller, have highly desirable frangib properties to minimize personal injury ar vehicle damage when impacted. However, t increased fracture energy of larger posts poles for larger signs offers a greater haza when they are impacted.

Several State highway departments ha conducted research programs to study t frangibility attributes of wood sign structur and guardrail posts weakened by drill holes and external-face notches. The mo recently completed programs were those Pennsylvania (4) and California (5).

In Pennsylvania, researchers concluded th drilled holes are superior to face notches f the desired structural integrity and t fail-safe safety property. Accordingly, t Pennsylvania Department of Highways re ommends the following characteristics f drilled holes:

- Two drilled holes having their lon§ tudinal axes parallel to the sign face at inches and 18 inches above the ground lin
- For 6- by 6 -inch wood posts- $11 / 2$-in diameter holes.
- For 6 - by 8 -inch wood posts- $21 / 2$-in diameter holes.

Figure 1.-Fail-safe response of a wood sign support.

In California, researchers tested and evaluated full-size vehicle impacts with dressed dimensioned wood posts and timber poles, with and without drilled holes. Based on the results of this evaluation, the California Division of Highways promulgated the following design requirements:

- Two drilled holes having their longitudinal axes parallel to the sign face at 6 inches and 18 inches above the ground line.
- For 6 - by 8 -inch dimensioned wood posts- $2 \frac{1}{2}$-inch diameter holes.
- For timber poles, the hole diameter should conform to those listed in the following tabulation:

Pole diameter

Less than 7 inches
7 inches to less than
8 inches \qquad 2 inches.
8 inches to less than 9 inches \qquad $2 \frac{1}{2}$ inches.
9 inches to less than $10 \frac{1}{2}$ inches \qquad 3 inches.
$10 \frac{1}{2}$ inches to less than
12 inches................. $31 / 2$ inches.

Drilled holes reduce the bending-moment capacity of structural members about 1 percent and the shear capacity about 45 percent. It is the latter property that influences the damage-limiting capability of the cantilevered support when impacted. The full-size vehicle crash tests in California corroborated this damage-limiting improvement. Figure 1, excerpted from the California report (5), shows the impact of an 11-inch-pole sign support by a lightweight vehicle, and lists data associated with the impact. Using these basic data, the change of momentum and the average vehicle deceleration can be readily computed for comparison with the design criteria:
(a) Change of momentum,

$$
\begin{equation*}
M=\frac{W}{g} \Delta V \tag{1}
\end{equation*}
$$

Where,

W is the weight of the vehicle, lbs.
g is the acceleration of gravity, $\mathrm{ft} . / \mathrm{sec}^{2}{ }^{2}$ ΔV is the change in vehicle velocity, ft ./sec.

Substituting the known data in equation (1),

$$
\begin{aligned}
& M=\frac{2,000}{32.2} \text { (12) } \frac{88}{60} \\
& M=1,090 \text { lb.-sec. }
\end{aligned}
$$

(b) Average vehicle deceleration, from the impulse-momentum principle,

$$
\begin{align*}
& I=M \\
& I=W G_{a} \Delta t=M \tag{2}
\end{align*}
$$

Where,
$I=$ impulse, lb.-sec.
$\Delta t=$ duration of impact, seconds
$G_{a}=$ average vehicle deceleration, g's
Substituting the known data in equation (2),

$$
\begin{aligned}
2,000 G_{a}(0.15) & =1,090 \\
G_{a} & =3.6 \mathrm{~g}^{\prime} \mathrm{s}
\end{aligned}
$$

The values computed for the change of momentum and average vehicle deceleration do not exceed the proposed maximum design criteria of $1,100 \mathrm{lb}$.-sec. and 12 g 's respectively. They are therefore considered acceptable. Had not the shear resistance of the pole been drastically reduced by the drilled holes, a greater proportion of the kinetic energy would have been needed to shear the member. This would have caused a greater change of velocity and a corresponding increase in change of momentum and average vehicle deceleration, producing an unsafe, high-injury situation.

Wood post or pole highway structures thus are made safer by designing for the specified

8 WF 20 POST AND SIGN

Figure 2.-Typical breakaway sign structure.

Figure 3.-Post-bending stages.
normal-use loads, and then reducing the unneeded shear capacity by drilled holes, as specified in the foregiong table.

Breakaway metal post sign structures

Fourteen State highway departments in cooperation with FHWA sponsored a 3 -year program to study safety criteria for metal sign support structures, extending work initiated by the Texas Highway Department at the Texas Transportation Institute (6). A variety of sign-support structures were studied, tested,
and evaluated in the program to determine their effectiveness in minimizing personal injury and property damage when impacted by out-of-control vehicles. The stress-raising benefits of notches or slots in timber supports for small signs were studied, and only minor damages to the impacting vehicles were recorded. Several A-frame concepts, including one fabricated from rail-grade, rolled-hat sections and one of tubular aluminum construction with cast aluminum joints, were studied. Although all the structures satisfactorily lim-
ited injury and damage, the greatest contribution of this research endeavor was the breakaway roadside sign-support structure (6).

A typical 8 - by 16 -foot sign supported by two breakaway 8 WF20 supports is shown in figure 2, together with a schematic indicating the computer idealization of the structure for study. The stages of development of the structure's operation under vehicle impact are shown in figure 3. On impact, the column first bends a very limited amount until the lateral friction resistance of the four preloaded bolts in the slip base is overcome, at which point the bolts are dislodged from their slots and the restrained base becomes a free end, moving upward while undergoing energy transfer. As the tendency of the upward-swinging post to peel itself from the sign board proper increases, a damage-limiting plastic hinge is activated, preventing further destruction to the sign-post connections. Activation of the mechanical fuse at the plastic hinge to accommodate the bending moment in the free leg imposed by the impacting vehicle is shown in figure 4. This action is precipitated as the friction force of the two lower preloaded bolts is overcome. The bolts slip through the slots, preventing structural damage, while the plastic hinge, in opposing the resulting bending moment of the leg, is formed in the opposite flange. From the example of a typical collision with a breakaway structure, shown in figure 5 , it is apparent that only minimal damage to the vehicle front end occurs, with no personal injury to occupants, as the sign support performs its intended mission-to fail under the impact of the vehicle. This result is opposed to the tragic toll of complete vehicle destruction and five fatalities for the typical collision witl a rigid structure shown in figure 6.

In the breakaway example shown in figure 5 a 3,620 -pound vehicle impacted the 8WF2 signpost at a speed of 42.5 miles per hour The change of vehicle velocity and duration of impact were observed to be 1.2 miles pe hour and 22 milliseconds, respectively. Thi change of momentum and the average vehicl deceleration can be computed as follows:
(a) Change of momentum is computer by using equation (1):

$$
\begin{aligned}
& M=\frac{W}{g} \Delta V=\frac{3,620}{32.2} 1.2\left(\frac{88}{60}\right) \\
& M=200 \mathrm{lb} .-\mathrm{sec} .
\end{aligned}
$$

(b) Average vehicle deceleration is or tained from the impulse-momentum principl equation (2):

$$
\begin{aligned}
& W G_{a} \times \Delta t=M \\
& 3,620 \quad G_{a} \times 0.022=200 \\
& G_{a}=2.5 \mathrm{~g} \text { 's }
\end{aligned}
$$

Both of these computed values are less thi the proposed maximum design criteria pr viously presented.
With regard to the accident shown figure 6 , it was estimated that the vehic weighing approximately 4,500 pounds, inclu ing occupants, impacted the rigid signpo

Figure 4.-Activated plastic hinge of a breakaway sign support.

Figure 5.-Built-in safe failure shown by collision with breakaway sign support.

Figure 6.-Collision with a rigid sign post-a fatal accident.
at approximately 55 miles per hour (determined from the front-end vehicle crush of 3.7 feet). From the energy transfer expression,

$$
\begin{equation*}
K E=\frac{1}{2} \frac{W}{g} V^{2} \tag{3}
\end{equation*}
$$

\qquad
Where,
$K E=$ kinetic energy, ft.-lbs.
$W=$ weight of the impacting vehicle, lbs. $g=32.2 \mathrm{ft} . / \mathrm{sec}$.
$V=$ vehicle velocity, $\mathrm{ft} . / \mathrm{sec}$.
$K E=\frac{1}{2}\left(\frac{4,500}{32.2}\right)\left[55\left(\frac{88}{60}\right)\right]^{2}$
$K E=453,000 \mathrm{ft} .-\mathrm{lbs}$.

From the expression,
Work performed $=F_{a} \times d_{-\ldots---------(4)}^{(4)}$
Where,
$F_{a}=$ average vehicle impact force, lbs. and
$d=$ vehicle deformation, ft .
the average vehicle impact force and the average vehicle deceleration, G_{a} can be calculated:

$$
\begin{aligned}
& F_{a} \times d=K E \\
& F_{a} \times 3.7=453,000 \\
& F_{a}=123,000 \mathrm{lbs} . \\
& G_{a}=\frac{F_{a}}{W} \\
& G_{a}=\frac{123,000}{4,500} \\
& G_{a}=27 \mathrm{~g} \text { 's }
\end{aligned}
$$

From equation I, the change of momentum can be computed:

$$
\begin{aligned}
& M=\frac{W}{g} \Delta V=\frac{4,500}{32.2}(55) \frac{88}{60} \\
& M=11,300 \mathrm{lb} .-\mathrm{sec} .
\end{aligned}
$$

Medical researchers working in the vehicle crash environment have established a change of velocity of 11 miles per hour as the approximate threshold at which vehicle occupants are likely to incur serious injury by collisions with the vehicle interior. In the second example above, the failure mechanism in the breakaway signpost structure would have made the difference between life and death by reducing the average vehicle deceleration, change of momentum, and change of velocity well below the prescribed maximum safe limits for injury.

Through the development of a comprehensive computer routine resulting from a myriad of mathematical modeling and optimization studies, including laboratory and full-size structural testing, a simplified guide for the design engineer was published (6). By use of this design guide (see Recommendations for Design of Breakaway Supports at the end of this article), the engineer can design into his windresistant structure a failure mechanism that will become operative only when it is impacted by a vehicle. After completing the design of the sign structure to withstand the wind loading, he simply integrates a slip base connection and an upper plastic hinge fuse detail into the post design with the appropriate bolt sizes and preload torques indicated in the Guide. For known signboard sizes and wind loads, standard
detail sheets can be produced to effect considerable economy.

According to Hosea (7), on completed sections of the Interstate Highway System, about 8 percent of the ran-off-the-road, fatal vehicle collisions with roadside obstacles involved sign structures. If this figure is applied to all the roads in the Nation, it can be estimated that perhaps as many as 500 fatal accidents could involve roadside signs annually.
Only one fatality to date has been attributed to a vehicle collision with a breakaway sign. In the several hundred known collisions with breakaway signs, only an insignificant number of minor personal injuries have been reported. In fact, because of the damage-limiting, builtin, fail-safe feature, less than 40 percent of the collisions have been reported by drivers.
Actual highway-user cost benefits attributable to the mandatory FHWA policy to use breakaway, or frangible, sign structures on Federal-aid highways can never be accurately determined. However, it is conceded to be a significantly high figure, worthy of the implementation effort.

Breakaway overhead sign bridge structure

To extend the breakaway sign support concept to overhead sign bridges, 22 State highway departments, in cooperation with the FHWA, are sponsoring a research program at the Texas Transportation Institute in which a full-size, 140 -foot-long sign bridge structure with four supports, has been designed, constructed, and instrumented to obtain vehiclestructure interaction data under controlled crash conditions. An experimental breakaway
support for this overhead sign bridge structure is shown in figure 7. A close-up of the slip-base detail is shown in figure 8. Posts, 20 feet high, each weighing 1,500 pounds, have functioned very successfully in crash tests under a range of impact velocities and different approach angles. Table 2 presents the vehicle-structure interaction data recorded in two of the tests.

With the completion of this program, a recommended design guide that includes the parameters for safety provisions in breakaway overbead sign bridge structures will be published.

The mathematical model and computer routine for breakaway sign support structures have been modified by Martinez, Hirsh, and Baskurt (8) to evaluate the crash-dynamic behavior of a variety of aluminum sign post structures mounted on frangible bases with different fracture energies. In addition to structural input data, the revised routine included input data on vehicles as heavy as 5,000 pounds and on vehicle impact velocities as high as 45 miles per hour. Output information included data on vehicle-velocity change, collision duration, average deceleration, and post-impact structure disposition. These data are presented in tables and charts (8) so that, by their use, the designer can readily assess the structural response of his proposed design to varied impact conditions

Slip-Base Luminaire Supports

In many locations, the illumination of high-speed primary and secondary highway routes is considered a necessity for safe, night-time driving. However, the very means

Figure 7.-Experimental breakaway support for overhead-
sign bridge.

Figure 8.-Slip base of breakaway support for overhead-sign bridge.

Table 2.-Results of vehicle-impact tests on overhead sign bridge support

Conditions		Test 1	Test 2
Vehicle weight	11).	3, 520	3,600
Vehicle impact speed	m.p.h.	20.9	24.9
Change of speeddo-	7.3	5.1
Maximum vehicle deceleration	ft.	1. 1	1. 0
Duration of impact...........	ms	$180^{2.3}$	$9{ }^{2.9}$

Figure 9.-Frangible aluminum insert at base of luminaire pole.

Figure 10.-Slip base of safe luminaire support.
of providing this safety has become a roadside hazard. In consonance with improved geometric highway design principles, luminaire structures, as well as roadside signs, are being removed from the 30 -foot-wide zone on the side of the roadway wherever relocation of these objects is practical. Studies of single-vehicle, ran-off-the-road accidents indicate that approximately $80-90$ percent of the vehicles strike objects that are located within this 30 -foot zone. In addition, Federal regulations specify that on all Federal-aid highway systems, luminaire supports must be of the frangible or breakaway type to provide safer impacts when vehicle collisions do occur. The change of moment under impact is required to be less than 1,100 pound-seconds.

Hosea (7) states that about 5 percent of the single-vehicle, off-the-road, fatal accidents on the completed sections of the Interstate System involved luminaire poles. Because of the lower geometric design standards on other roads, this figure can be adjusted to about 8 percent for all roads in the Nation, which represents approximately 500 fatalities per year.

The challenge to reduce the high accident toll of luminaire supports has been accepted by industry, State agencies, and the FHWA, the cooperative efforts of which are producing successful results. Industry has conducted numerous laboratory and full-size crash tests to establish the acceptability of a variety of design combinations of sizes, metals, and metal alloys to meet the specified criteria. Many States are experimenting with highlevel lighting structures that are 3 to 5 times higher than the standard 30 - to 40 -foot high roadside luminaire supports. These are not frangible or breakaway, are usually located at complex interchanges, and are installed at a safe distance from the travelled roadway, obviating all probable vehicular collisions.

To convert the hundreds of thousands of metal luminaire supports not meeting the Federal standards, a simple insert shown in figure 9, was developed at the Texas Transportation Institute under a cooperative research project sponsored by the Texas Highway Department and the FHWA. It is 6 inches or 9 inches high depending on the design and is made of an aluminum alloy that has a low base fracture energy.

A slot-bolted, slip-base for luminaire support was also developed and tested under this research at the Texas Transportation Institute. The details of this structure are shown in figure 10 , and a slip-base luminaire installation is shown in figure 11. The high strength bolts in the design are pretensioned and provide friction-shear resistance. The base connection is primarily a bending-resistant joint. When the structure is impacted by a vehicle, the lowbase fracture energy, about 750 foot-pounds, is easily overcome, and a safe failure ensues. For such structures, the impacting vehicle passes underneath the upward-rotating luminaire support and receives only minor vehicle damage.

Industry has produced a notched-bolt base connection, which under limited tests, has proved to be effective in providing soft hits
for vehicles. More tests are believed required to determine the life expectancy of these critical devices. Research data on the fatigue characteristics and stress corrosion susceptibility should eventually indicate the true value of this simple system for low base fracture energy.

In research at Texas A\&M University, sponsored by a National Cooperative Highway Research Program, the state of the art of luminaire supports was studied. The results of this endeavor are given in the project report (9). The predicted response charts from that report, shown in figures 12 and 13 , are excellent aids for use by designers to evaluate and select proposed luminaire support designs having different parameter values. From these charts, designers can easily obtain the response of the structure under consideration and the postcrash assessment effects, provided that the base fracture energy is known. Each chart depicts three zones of the post-crash event: (1) The secondary vehicle front-end collision with the post; (2) the secondary impact of the severed post with the roof of the vehicle; and (3) the possible impact of the post with the trunk of the vehicle or with the ground to the rear of the vehicle. The zone of possible minor injuries is also identified. As emphasized in the charts, designs have the lowest possible base fracture energy for vehicle impact in the structure are safest, as low base fracture energies are less sensitive to vehicle impact velocity and result in very low changes of vehicle velocity and low deceleration forces in all impacts (10, 11).
Martinez, Hirsch, and Jumper (12) have extended these charts to assist the design engineer who is considering mounting heights higher than 40 feet for luminaire supports. Their results for aluminum structures having slip-base energy levels of 750 ft .-lbs. and 3, 000 ft.-1bs., shown in tables 3 and 4, further emphasize the conclusions of the basic study (9) that low base fracture energies designed into luminaire supports increase the probability of accident survival because safe changes of vehicle velocity and lower vehicle deceleration are experienced throughout the probable rarge of impact velocities.

Energy Absorption Crash Barriers

Industrial and academic research organizations and a number of State highway departments, all cooperating with the FHWA, have underway research, development, test, and evaluation programs for impact attenuation devices. These devices, or systems, are basically pillows, or cushions, placed in front of and alongside roadside hazards such as bridge piers and bridge parapet ends at exit ramps in elevated gore areas. By programed absorption, elasto-plastic absorption, or ultimate collapse, these safety structures act as energy transfer agents for errant, fast-moving vehicles.
In 1967 the FHWA began a short-term, quick-payoff research and development project called the 4 S Program-Structural Systems in Support of Safety (3). The scope of

Figure 11.-Slip-base luminaire installation.

Table 3.-Results of collisions with $50-\mathrm{ft}$. support structures on bases having an energ level of $750 \mathrm{ft} .-1 \mathrm{~b}$.
[By computer simulation]

Vehicle weight	Vehicle impact velocity	Change in vehicle velocity	Average vehicle deceleration	$\begin{gathered} \text { Contact } \\ \text { time } \end{gathered}$	Comments
pounds	m.p.h.	m.p.h.	g.	sec.	
2, 000	15	1. 70	1. 18	0. 065	Base of support hits in front of vehicle and secondary collision follows.
$\begin{aligned} & 2,000 \\ & 2,000 \end{aligned}$	$\begin{aligned} & 30 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { 1. } 20 \\ & \text { 1. } 30 \end{aligned}$	$\begin{aligned} & 1.08 \\ & 1.60 \end{aligned}$	$\begin{aligned} & 0.049 \\ & 0.036 \end{aligned}$	Luminaire hits ground. Do.
3,500	15	0. 72	0.36	0.091	Base hits ground in front of vehicle and secondary collision follows.
$\begin{aligned} & 3,500 \\ & 3,500 \end{aligned}$	$\begin{aligned} & 30 \\ & 45 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.70 \end{aligned}$	$\begin{aligned} & 0.083 \\ & 0.032 \end{aligned}$	Top of post hits ground. Luminaire hits ground.
5,000	15	0. 45	0. 46	0.045	Base of support hits in front of vehicle and secondary collision follows.
$\begin{aligned} & 5,000 \\ & 5,000 \end{aligned}$	$\begin{aligned} & 30 \\ & 45 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.54 \end{aligned}$	$\begin{gathered} 0.038 \\ 0.029 \end{gathered}$	Top of post hits ground. Luminaire hits ground.

Table 4.-Results of collisions with $50-\mathrm{ft}$. support structures on bases having an energ level of $3,000 \mathrm{ft} .-1 \mathrm{~b}$.
[By computer simulation]

Vehicle weight	Vehicle impact velocity	Change in vehicle velocity	Average vehicle deceleration	$\begin{gathered} \text { Contact } \\ \text { time } \end{gathered}$	Comments
pounds	m.p.h.	m.p.h.	g.	sec.	
2,000	15	6. 10	3. 80	0. 072	Base of support hits in front of vehicle and secondary collision follows.
$\begin{aligned} & 2,000 \\ & 2,000 \end{aligned}$	$\begin{aligned} & 30 \\ & 45 \end{aligned}$	$\begin{aligned} & 3.40 \\ & 2.60 \end{aligned}$	$\begin{aligned} & 3.40 \\ & 3.30 \end{aligned}$	$\begin{aligned} & 0.046 \\ & 0.036 \end{aligned}$	Top of post hits ground. Luminaire hits ground.
3,500	15	4. 56	1.96	0. 106	Base of support hits in front of vehicle and sec-
3,500 3,500	30 45	2. 40	1. 2.24	$\begin{aligned} & 0.088 \\ & 0.037 \end{aligned}$	Luminaire hits ground. Top of post hits ground.
5,000	15	2. 30	1. 50	0.071	Base of support hits in front of vehicle and secondary collision follows.
$\begin{aligned} & 5,000 \\ & 5,000 \end{aligned}$	$\begin{aligned} & 30 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { 1. } 40 \\ & 1.02 \end{aligned}$	$\begin{aligned} & \text { 1. } 25 \\ & \text { 1. } 23 \end{aligned}$	$\begin{aligned} & 0.050 \\ & 0.038 \end{aligned}$	Top of post hits ground. Luminaire hits ground.

2500-LB. VEHICLE 3500-L8. VEHICLE 4500-L8. VEHICLE
Figure 12.-Predicted response-collisions with 40-foot steel support.

Figure 13.-Predicted response-collisions with 40-foot aluminum support.
his research endeavor dealt with the four rpes of research effort listed near the front f this article. Pursuing development of nergy absorption systems of the type II ategory, researchers in this program inestigated energy-transfer capabilities for uch indigenous materials as disposable metal everage containers, empty oil drums, short rood posts, chicken wire fencing, plastic illows, and vermiculite-type concrete. In ddition, industry produced more complicated nd intellectually more appealing type II tructural devices such as the TORSHOK

Reusable Highway Barrier, the HI-Dro Cushion Cell Barrier, and the Fitch Inertial Barrier (13, 14, 15, 16). These three barriers and one of the expendable variety that uses oil drums as the collapsible fail-safe mechanism are being installed at accident-susceptible highway locations.

The different stages-before, during, and after-of a 70 -mile-per-hour vehicle impact with an oil-drum installation at one of these typical locations are shown in figures 14-17. The collision shown in figure 15 was recorded, while the accident was in progress, by the
photo-recording instrumentation of an accident data-acquisitioning project of the FHWA. Accidents of this type are occurring at all four types of barriers, and, in all reported incidents, the succes of these relatively low-cost survival kits has been phenomenal.

The design of an effective bulk-type crish cushion, such as the barrel barriers, incorporates very simple principles of structural behavior. The more complex barrier systems of the reusable variety, previously mentioned, can be designed or analyzed with slightly more sophisticated treatment.

Quantifying the energy absorption capabilities of metal beverage containers and oil drums, Hirsch and Ivey (1%) determined that dynamic values are 50 percent greater than the static values. Therefore, for general design purposes,

$$
\begin{equation*}
e_{d}=1.5 e_{s-\ldots} \tag{6}
\end{equation*}
$$

Where,
$e_{s}=$ static energy, ft.-lbs.
$e_{d}=$ dynamic energy, ft.-lbs., provided by the mechanism.

The kinetic energy of a moving rehicle about to impact an object in its path, such as a solid bridge pier (fig. 18), or a highway cushion barrier, can be computed from the following basic expression:

$$
K E=\frac{1}{2} \frac{W}{g} V^{2} \ldots \ldots
$$

Where,
$W=$ weight of vehicle, lbs
$g=$ acceleration of gravity, ft./sec. ${ }^{2}$
$V=$ vehicle speed, ft./sec.

Energy transfer takes place upon impact of the vehicle with in object. In an impact with a rigid, immovable object, energy is absorbed by deformation of the vehicle. In an impact with a collapsible, cushion barrier, both barrier collapse and the vehicle deformation account for energy absorption. In either impact, the following expression must be satisfied in the transfer:

$$
\begin{equation*}
F_{a} \times d=K E \tag{8}
\end{equation*}
$$

Where,
$F_{a}=$ average vehicle crushing force,
lbs.
$d=$ structural deformation, ft $K E=$ kinctic energy, ft.-lbs.

Tehicle deceleration can be obtained from the expression:

$$
\begin{equation*}
G_{a}=\frac{F_{a}}{W} \tag{9}
\end{equation*}
$$

Where,
$G_{a}=$ average vehicle deceleration, g's,

Barrel barrier design example

The example presented here demonstrates a simplified approach to bandling energy absorption problems associated with deformable protective highway barriers.

A cushion-type barrel barrier is to be designed for an elevated gore where a triangular area 10 by : 34 feet is available for the instatlattion. The barrier is to attemuate, at a safe acceptable deceleration level (see Design Considerations $)$, both $2,000-1 \mathrm{~b}$. and $4,500-\mathrm{lb}$. vehicles impacting at $60 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. Oil drums with static crush strengths of $9,000 \mathrm{lbs}$. each are to be used, as is a barrel crush efficiency factor, $C_{r}=0.7 \mathrm{j}$.

The vehicle kinetic energy is calculated to be:

2,000-1b. vehicle-KE=$\frac{1}{2} \frac{W^{\top}}{g} T^{2}$

$$
=\frac{1}{2} \frac{2,000}{32.2} 88^{2}
$$

$K E=240,000 \mathrm{ft} .-1 \mathrm{~b}$.
$4,500-1 \mathrm{~b}$. vehicle--K $E=540,000 \mathrm{ft} .-1 \mathrm{lb}$.

The barrier design for the $2,000-\mathrm{lb}$. vehicle is as follows

Number of barrels required,

$$
N=\frac{K E}{e_{i}}=\frac{240,000}{9,000 \times 1.5}
$$

$$
\mathrm{N}=17.8 \text { barrels, or } 18 \text { barrels }
$$

Minimum barrier penetration,

$$
L_{s}=\frac{V^{r_{2}}}{2 g G_{a}}=\frac{(88)^{2}}{2(32.2) 12}=10 \mathrm{fect}
$$

Total barrier length,

$$
L=\frac{L_{\mathrm{s}}}{C_{r}}=\frac{10}{0.75}=13.3 \mathrm{fect}
$$

C-sing 2 -foot diameter barrels, the number of rows required,

$$
N_{r}=\frac{L}{2}=\frac{13.3}{2}=6.7, \text { or } 7
$$

The average number of barrels in each row,

$$
\begin{aligned}
& N_{b}=\frac{N}{N_{r}}=\frac{18}{7} \\
& N_{b}=2.56
\end{aligned}
$$

Figure 14.-Barrel barrier installation at elevated gore.

Figure 15.-Early morning 70-m.p.h. collision with barrel barrier.

Figure 16.-Vehicle damage caused by 70-m.p.h. barrier collision.

Figure 17.-Barrel barrier after 70-m.p.h. collision.

Figure 18.-Fatal collision with unprotected median bridge pier.

gure 19.-Example of barrel-barrier design to accommodate 2,000- and 4,500-pound vehicles.

The barrier thus delineated will be used also to serve as the nose for the heavier, $4,500 \mathrm{l} \mathrm{lb}$. vehicle.

For the 4,500 -pound vehicle, the number of barrels required is determined to be,

$$
N=\frac{K E}{e_{d}}=\frac{540,000}{9,000 \times 1.5}=40 \text { barrels }
$$

Using the basic barrier requirements determined necessary to safely attenuate the lighter vehicle, develop an arrangement to also serve as the impact nose for the final barrier. To accommodate the heavier vehicle, add enough barrels to provide the necessary energy absorption capacity as follows (refer to fig. 19)

Area $_{1}=240 \quad$ kip-ft. $=$ energ, to stop a $2,000-1 \mathrm{~b}$. vehicle.

Area $_{1}+$ Area $_{2}=540 \mathrm{kip}$-ft. $=$ energy to stop a $4,500-\mathrm{lb}$. vehicle.

Calculation for penetration by the $2,000-\mathrm{lb}$. vehicle:

$$
\begin{aligned}
\text { Area }_{1}= & 240 \text { kip-ft. } \\
= & 9 \times 1.5+2 \times 9(6-1.5) \\
& =3 \times 9(X \\
= & 13.5+81+27 \mathrm{X}_{1}-162=240 \\
& 27 \mathrm{X}_{1}=307.5
\end{aligned}
$$

$\mathrm{X}_{1}=11.4$ feet from impact with barrier
Calculation for penetration by the $4,500-\mathrm{lb}$. vehicle:

$$
\begin{gathered}
\text { Area }_{1}+\text { Area }_{2}=540 \text { kip-ft. } \\
240+3 \times 9(15-11.4)
\end{gathered}
$$

$$
+4 \times 9\left(\mathrm{X}_{2}-15\right)=540
$$

$$
240+97.2+36 \mathrm{X}_{2}-540=540
$$

$36 X_{2}=742.8$
$X_{2}=20.6$ feet from impact with barrier
The deceleration levels for each vehicular impact provided by the proposed barrier arrangement are readily calculated to determine compliance

$$
G_{a}=\frac{V^{2}}{2 g L_{s}}
$$

2,000-1b vehicle, $G_{a}=\frac{88^{2}}{2(32.2) 11.4}$

$$
G_{a}=10.5 \mathrm{~g} \mathrm{~g}^{\prime} \mathrm{s}
$$

$4,500-\mathrm{lb}$ vehicle, $G_{a}=\frac{88^{2}}{2(32.2) 20.6}$

$$
G_{a}=5.8 \mathrm{~g}^{\prime} \mathrm{s}
$$

Details of construction and installation are not included in this example For an in-depth treatment of the state of the art, refer to the literature (17, 18).

ACKNOWLEDGMENT

The author expresses his appreciation to the numerous researchers and their organizations, some of whom are mentioned herein, for their cooperation in making available technical data and photographs.
(1) Fatal and Injury Accident Rates on Federal-A id and other Highway Systems, 1968, [... Department of Tramiportation, Federal Highway Administration, Bureall of Public Roads.
(2) Highway Barrier Analysis and Test Program, Summary Report for Period July 1960-July 1961, Cornell Aeronantical Laboratory Report No. VJ-1472-Y-3, July 1969.
(3) Structural Systems in Support of Highway Safcly, by F. J. Tamanini, and John G. Viner, ASCE Preprint 930, July 1969.
(4) Dynamic Field Test of Wood Post Sign Posts, by Foster C. Sankey, Pennsylvania Department of Highways, Research Report 68-36, October 1968.
(5) Dynamic Tests of Wood Post and Timber Pole Sign Supports.-Series XV, by Eric F. Nordlin, Wallace H. Ames, and Robert N. Field, California Division of Highways, Report No. MI\&R 636398, December 1967.
(6) Breakaway Roadside Sign Support Structures, vol. 1, Texas Transportation

Institute, BPR Contract CPR-11-3.5.50, July 1967.
(7) Fatal Accidents on Completed Sections of the Interstate Highway System, 1968, by Harold R. Hosea, P UBLIC ROADS, vol. 35, No. 10, October 1969, p. 217.
(8) The Effect of Vehicle Collision with Aluminum Roadside Sign Structures Mounted on Frangible Bases, by J. E. Martinez, T. J. Hirsch, Y. Bashurt, and J. J. Jumper, Texas Transportation Institute, Technical Memo 505-7, January 1970.
(9) Development of Design Criteria for Safer Luminaire Supports, NCHRP Report, 77 High Research Board, National Academy of Sciences, 1969.
(10) A Review of the Work on the Design of Street Lighting Columns, by A. W. Christie, BRL Report 300, RRL May 1962.
(11) High Speed Impact Test on a 40 ft . Lighting Column Fitted with a Break-away Joint, by H. J. Hignet, RRL Report LR67, Crowthorne, 1967, p. 24.
(12) Impact Response of Fifly-foot Lumi naire Support Structures, by J. E. Martinez T. J. Hirsch, and J. J. Jumper, Texas Trans portation Institute, Technical Memo 50.5-13 December 1969.
(13) Energy Absorbing Roadside Crasi Barriers, by F. J. Tamanini, and John G Viner, Civil Engineering, January 1970.
(14) Guardrails, Barriers, and Sign Supports Highway Research Record Number 174, 1967
(15) Guardrails, Median Barriers, Sig. and Light Supports, Highway Research Recor Number 222, 1968.
(16) Development of Safer Roadside Struc tures and Protective Systems, Highway Researe Record Number 259, 1969.
(17) Vehicle Impact Attenuation by Modulo Crash Cushion, by T. J. Hirsch, and Don I Ivey, Texas Highway Department, HP Research Study No. 2-8-68-146, June 196!
(18) The Modular Crash Cushion-Researe Findings and Field Experience, by T.
Hirsch, Dón L. Ivey, and Monroe C. Whit HRB Special Report 107, 1970.

Recommendations for Design of Breakaway Supports

(Excerpted from Texas Transportation Institute Report (6)).

Post Sizes

A standard structural section weighing less than $45 \mathrm{lb} . / \mathrm{ft}$. selected 10 resist the maximum wind load moment.

Base Plate and Base Connection

The base plate should be designed for the maximum wind loads and not weigh more than the maximum values shown in the table below. The base bolts should be designed to resist the maximum wind load assuming no pretension. The initial bolt forces in the table below are recommended;

Bolt					
Post Size (lo./jt.)	$\begin{aligned} & \text { Diam. } \\ & \text { (in.) } \end{aligned}$	Bolt Force (lb.)	$\begin{gathered} \text { (lb. in.) }{ }_{\text {Torgue }} \end{gathered}$	$\underset{(l b . f t .)}{25, ~ g a l v .)}$	Base Plate Wt. (ll.)
0-8	1/2	920-1380	200-300	16.7-25.0	8.0
9-20	$5 / 8$	1740-2660	460-680	$37.5-56.5$	12.0
21-30	$3 / 4$	2400-3600	750-1060	67.5-88.3	21.0
$30+$	$7 / 8$	2400-3600	850-1280	70.8-106.8	21.0
$30+$	1	$2400-3600$	450-1470	77.1-118.2	21.0
Fuse Connection					

maximum wind load moment at the fuse. If slotted plates are used t. initial bolt force can be determined by

$$
\mathrm{N}^{\prime}=\frac{\mathrm{M}}{\operatorname{mnf}(\mathrm{~s}) \mathrm{r},}, \quad \begin{array}{r}
\mathrm{f}(\mathrm{~s})_{\max }=0.26 \\
\mathrm{f}(\mathrm{~s})_{\operatorname{avz}}=0.21 \\
\mathrm{f}(\mathrm{~s})_{\min }=0.17
\end{array}
$$

ASTM turn-of-nut tightening methods are satisfactory if backgroun to-post connections are adequately designed. For torque wren tightening, the bolt force may be calculated using

$$
\mathrm{N}^{\prime}=\mathrm{K}_{\mathrm{T} \tau} \text {, where } \tau=\text { bolt torque in lb.-in. }
$$

```
Bolt Diameter (ASTM A395
    galvanized) (inches)
        1/2-13UNC
        5/8-11UNC
        4. }
```



```
Background-to-Post Connection
    The maximum connection force anticipated is 10,000 lb}\mathrm{ .
```

Rotational Stiffness of Sign Background
A minimum stiffness of 100 ft .-lb./degree ($5,730 \mathrm{ft} .-\mathrm{lb} . /$ radian

THE OFFICE OF
 ZAFFIC OPERATIONS

Fatal Accidents on Completed Sections of the Interstate Highway System, 1968-69

Reported by HAROLD R. HOSEA
Accident Record Analyst Traffic Performance and Analysis Division

Introduction

EPORTS of 5,881 fatal accidents that occurred in 1968 and 1969 on sections of Interstate Highway System complying ly with Interstate design standards have in analyzed from police investigation orts obtained from the States. A detailed ort on 2,754 accidents that occurred in 38 appeared in the October 1969 issue of JBLIC ROADS. ${ }^{1}$ In that article the more portant characteristics of the accidentsricles, drivers, and environmental factorsre described, and 12 detailed statistical les presenting supporting data were inded. Tables presenting the same type of ormation on 3,127 accidents that occurred 1969 and reprints of the original article available on request.
Che purpose of this report is to provide a nmary of the experience of the 2 years nbined and to note significant changes .t occurred between the two periods. As st of the changes from 1968 were rela-

[^1]tively minor, details on the 1969 experience are not given here.

Number and Characteristics of the Accidents

A distribution of the 5,881 accidents by accident type, fatalities, injuries, and property damage, is presented in table 1. The totals represent approximately 90 percent of all the fatal accidents that occurred on the Interstate Highway System during the 2-year period.

Two-thirds of all the fatal accidents reported involved only one vehicle in motion, and nearly four-fifths of these crashes-about half the total-resulted from vehicles that ran off the road. A more detailed analysis of these accidents is given in the last paragraph of this report. Between 1968 and 1969, variations in the distribution of accidents by type, as well as changes in the numbers of fatalities and injuries per accident, were insignificant.

The increase of about 3 percent in the average dollar amounts of property damage per accident can probably be attributed principally to generally rising costs. The total economic loss in terms of fatalities,
injuries, and property damage resulting from these accidents is estimated at $\$ 140$ million in 1968, and $\$ 164$ million in 1969, for a total of $\$ 304$ million for the 2 -year period. The formula devised by the National Safety Council was used for this purpose. ${ }^{2}$

Day and Time of Occurrence ${ }^{3}$

Slightly more than 20 percent of the accidents occurred on Saturday; the lowest percentage was recorded for Tuesday and Wednesday-11 percent for each dar; and almost 53 percent occurred on weekends, Friday through Sunday.
The highest percentage of accidents for any hour of the day occurred between 2 and $3 \mathrm{a} . \mathrm{m}$. , and more than a fourth happened between midnight and $5 \mathrm{a} . \mathrm{m}$.

Over half of all the accidents occurred at night with relatively small variations for the several types of crashes, except that almost three-fourths of the pedestrian accidents and

[^2]Table 1.-Fatal accidents on completed sections of the Interstate Highway System, 1968-69-accident types, fatalities, injuries, all property damage

1 Primarily vehicles that struck other objects on the road or nonmotor vehicles, and accidents in which occupants fell from vehicles.
head-on collisions caused by wrong-way drivers happened at night. Here again, there Were no significant differences between the 2 years in day and time of occurrence.

Vehicles

To assess the importance of different types of vehicles in these accidents, it was necessary to assign the primary responsibility for each accident to an individual vehicle (responsibility does not necessarily imply violations by the drivers involved). Although an element of judgment was involved, significant errors appeared minimal. In two-thirds of the accidents, only one moving vehicle was involved. (See table 1.) Eleven percent of the accidents were head-on collisions resulting from wrong-way drivers or out-of-control velhicles from opposing lanes-accidents in Which there is little or no question of responsibility. Rear-end collisions are usually, but not always, the responsibility of the striking whicle. In these accidents, as well as in hroadside collixions and sideswipes, responsibility was assessed on the basis of the details of investigation reports, including the narratives, diagrams, notations of violations, and related data.
Estimates of annual vehicle-miles operated on the Interstate Highway System indicated that passenger vehicles accounted for approximately 80 percent of the travel, and property-carrying vehicles for the remainder. The percentage distribution of these two broad groups of vehicles with respect to primary responsibility of their drivers in all fatal accidents differed very little, with passenger vehicles slightly over-represented. There were, however, significant differences when the different types of accidents and individual types of vehicles were considered. These variations are apparent from the data shown in table 2.

Table 2.-Fatal accidents on completed sections of the Interstate Highway System 1968-69-accident and vehicle types, and travel distribution.

Type of accident	Total accidents	Passenger vehicle	Property-carrying vehicles			
			Total	Tractortrailer combinations	Panels and pickups	Single- unit trucks
Vehicle miles ${ }^{1}$.-.................... - percent.-	100.0	79.7	20.3	10.2	6. 8	3.3
All accidents: Number. \qquad Percent Single vehicle: Number. Percent Ran off road: Number. Percent Collision with parked vehicle: Number Percent Multiple vehicle: Number. Percent. Rear-end collisions: Number. Percent \qquad \qquad Head-on collisions: Number Percent \qquad \qquad Broadsides: Number Percent. Sideswides: Number. Percent-	5,881 100.0	4,767 81.1	1,114 18.9	529 9.0	394 6.7	191.
	3,898 100.0	3,243 83.2	${ }^{655} 16.8$	$\stackrel{286}{7.3}$	250 6.4	119
				7.3	6.4	3.1
	3,078 100.0	2,647 86.0	431 14.0	197	$\begin{array}{r} 181 \\ 5.9 \end{array}$	$\stackrel{53}{1.7}$
	213 100.0	147 69.0	66 31.0	33 $15,5$	19 8.9	14 6.6
	1,983 100.0	1,524 76	459	243.	144	72
	100.0	76.9	23.1	12.2	7.3	3.6
	888	605	283	176	62	45
	100.0	68.1	31.9	19.8	7.0	5.1
	691	607	84	22	53	9
	100.0	87.8	12.2	3.2	7.7	1.3
	154 100.0	123 79.9	31 20.1	15 9.7	10 6.5	6 3.9
	250	189	61	30	19	12
	100.0	75.6	24.4	12.0	7.6	4.8

${ }^{1}$ Estimated by the Federal Highway Administration.

Table 3.-Characteristics of single-vehicle, off-the-road fatal accidents on comple sections of the Interstate Highway System, 1968-69

For example, passenger vehicles were is olved in nearly 86 percent of the singlevicle, off-the-road accidents, whereas prop-ey-carrying vehicles were responsible for oy 17 percent of these crashes. Propertycrying vehicles, however, were substant ly over-represented in collisions with p ked vehicles, in rear-end collisions, and it sideswipes. These relationships are parthlarly significant with respect to tractorthler combinations and single-unit trucks. Livers of tractor-trailers were primarily reonsible for 20 percent of the rear-end sisions although such vehicles make up)y about 10 percent of the traffic on the "xem. However, they were involved in i) y 6.4 percent of the single-vehicle, ran-the-road crashes.
(i) 'he pattern for light-trucks-panels and) sups generally of $3 / 4$-ton capacity or lessuforms more nearly to that for passenger 4 , icles. This is apparent in table 2, which Ir cates that the involvement of these ricles in the several types of accidents is sistent with their relative importance in 1 total traffic on the system. This might be sected as these light vehicles closely e mble passenger cars and presumably are terl :ated less frequently by the professional it ers commonly employed for driving -evy commercial vehicles.

Vehicle Drivers

and sex of drivers

Lore than four-fifths of the drivers priily responsible for the accidents were

Table 4.-Fixed objects struck first in single-vehicle, off-the-road fatal accidents on completed sections of the Interstate Highway System, 1968-69

First object struck	Number	Percent
Total, all objects.	2, 518	100.0
Guardrail ${ }^{1}$	778	30.9
Bridge or overpasy	460	18.3
Sign...............	202	8. 0
	201	8.0
Curb	146	5. 8
Divider ${ }^{2}$	138	5. 5
Pole ${ }^{3}$--.--	130	5. 2
Ditch or drain	137	5. 4
Culvert	88	3. 5
Fence ${ }^{4}$	51	2. 0
Tree	4889	1. 9

${ }^{1}$ Includes cable type.
${ }^{2}$ Includes rail, concrete, and chainlink.
${ }^{3}$ Principally light poles.
${ }^{4}$ Principally right-of-way fences.
males. A third of the drivers were 25 years of age or under as compared with an estimated 25 percent of all licensed drivers in this age group. Drivers under age 17 were involved in 1.5 percent of the fatal accidents and accounted for about 100 fatalities over the 2-year period.

Substantial differences were found, however, when the different types of accidents were considered. Nearly 40 percent of the drivers involved in ran-off-the-road accidents were 25 years old or younger. Drivers 65 years old or older were responsible for about 5 percent of the total accidents, but they caused nearly three times that proportion of the fatal headon collisions that resulted from driving the wrong way on divided highways. The data in
this category showed but minor differences between the 2 years.

Condition of drivers

A fifth of the drivers in ran-off-the-road accidents and a fourth of the drivers who collided with parked vehicles were reported by investigators as being asleep.

Nearly a third of all the drivers whose condition as to sobriety was reported by investigators were listed as having been drinking. This factor, however, was not included in a fourth of the reports. Of the 293 drivers responsible for head-on collisions caused by wrongway driving, reports on the sobricty of 198 were available. Of these, 146 , or 74 percent, were reported as having been drinking and 66 , or 33 percent, were described as obviously intoxicated.

Single-Vehicle, Off-the-Road Accidents

Fifty-two percent of the accidents studied involved vehicles that ran off the road (table 1). More than four-fifths of these subsequently struck a fixed object (table 3), Overturns occurred in nearly 53 percent of the ran-off-the-road crashes and two-thirds of them involved a fixed object.

Most frequently, guardrails were the first fixed object struck, bridge or overpass elements ranked second (see table 4). About two-fifths of the vehicles struck two or more fixed objects before stopping. When first impacts were guardrails, bridge or overpass elements were the second objects most frequently struck.

What would you like to read about in PUBLIC ROADS?

Dr. G. W. Cleven, the Federal Highway Administration's Associate Administrator for Research and Development, would like to know what you, the reader, would like to read about in PUBLIC ROADS.

Dr. Cleven feels that reader interest is essential in planning a more effective publication. Perhaps you need how-to-do-it information, or would like to learn what others are doing. Perhaps you would like to read brief accounts of the latest research results, like those on page 139 of this issue.

Whatever your preference, write and tell us about it. And if you like the journal in its present form, we would appreciate hearing about that too.

Please direct your comments to the Managing Editor, PUBLIC ROADS Magazine, Federal Highway Administration, U.S. Department of Transportation, Washington, D.C. 20591.

Travel by Motor Vehicles in 1969

BY THE OFFICE OF HIGHWAY PLANNING

Reported by W. JOHNSON PA Highway Research Engit Program Management Divi:y

VOTOR vehicle travel in the United States in 1969 totaled 1 trillion, 71 billion vehiclemiles. This is equivalent to an average daily traffic (ADT) of 770 vehicles on each mile of the 3.7 million miles of roads and streets in the Nation. To travel the 1.071 trillion vehiclemiles, 87 million passenger cars, 2 million motorcycles, 364 thousand buses and 18 million trucks had to travel an average of 9,969 miles and they had to consume 88 billion gallons of gasoline and diesel fuel at a rate of 821 gallons iper vehicle. Total travel for 1970, based on information for the first 6 months of the year, is estimated at 1 trillion, 125 billion, a 5 percent increase over 1969.

National travel by motor vehicle type and related data have been reported in this jour-
nal for many years. But because travel estimates were not available by State and highway system-except in certain benchmark years like 1957, 1962, and 1965-the information was for national totals only, categolized for main rural roads, local rural roads, and urban streets. For two of the benchmark years, 1962 and 1965, the available travel estimates by State and highway system were reported respectively in vol. 33, No. 7, April 1965, and vol. 34, No. 12, February 1968. The information was published again for 1967 in vol. 35, No. 8, June 1969, when tabular information on mileage, travel, and accidents in the States-called table TA-1-began to become available annually, and for 1968 in vol. 36, No. 1, April 1970.

Definitions

The term vehicle-miles and other tech terms used in this article are defined in following statements:

Vehicle-miles.-The term vehicle-miles fers to the amount of travel by one moto hicle traveling 1 mile and includes trave all highways and streets in the United St

Trailer combinations.--A trailer comt tion is a truck or truck tractor pulling or more trailers and/or a semitrailer.

Vehicles registered.-Vehicles registerec fers to the total number of vehicles regis 1 in a State in a calendar year or in a registr: year if the registration year does not from the calendar year by more than 1 mi

Table 1.-Estimated motor-vehicle travel in the United States and related data for calendar year $1969{ }^{1}$ [From table VM-1, Highway Statistics, 1969]

Vehicle type	Motor-vehicle travel					Number of vehicles registered	Averagetravelpervehicle	Motor-fuel consumption		$\begin{gathered} \text { Aver } \\ \text { trav } \\ \text { pel } \\ \text { gall } \\ \text { of } \\ \text { consul } \end{gathered}$
	Main rural roads	Local rural roads	$\begin{aligned} & \text { All } \\ & \text { nural } \\ & \text { roads } \end{aligned}$	Urban streets	Total			Total	Average per vehicle	
Personal passenger vehicles:	Million vehiclemiles	Million vehiclemiles	Million vehiclemiles	$\begin{gathered} \text { Million } \\ \text { rehicle- } \\ \text { miles } \end{gathered}$	Million vehiclemiles	Thousand	Miles	Million gallons	Gallons	Mill
Passenger cars ${ }^{2}$ - ${ }^{\text {a }}$					849, 633	86, 861	9, 782	62, 325	718	13.
Motorcycles ${ }^{2}$ all All personal passenger vehicles	295, 194		392,843	466,015	9,225 858,858	2,295 89,156	4,020 9,633	62, 1238	54 700	75. 13.
Buses:	295, 194	97,649	32,843	400,010	858,858	89,156	9,033	62,448	70	
Commercial	935	193	1,128	1,879	3,007	90.3	33, 300	657	7,276	4.
School_-...-	-769	880	1,649	381	2,030	274. 0	7, 409	290	1,058	7.
All passenger vehicles.	296, 794	98, ${ }^{1,073}$	1,777 395	2,260 468,275	5,037 863,895	89, 520	13.826 9,650	947 63,395	2,600 708	
Cargo vehicles:										
Single-unit trucks.-	74, 142	28,172	102,314	64,927	167, 241	16,942	9, 871	16, 528	976	
Trailer combinations	26,514	1,580	28,094	11,345	39, 439	929	42,453	8, 199	8,826	4.
All trucks...........	100, 656	29, 752	130, 408	76, 272	206, 680	17,871	11,565	24, 727	1,384	8.
All motor vehicles	397, 554	128, 474	526, 028	544, 547	1, 070,575	107, 391	9,969	88, 122	821	

[^3]

Motor-fuel consumption.-Motor-fuel consumption is the total consumption of motor fuel by highway vehicles for the year. The total amounts are obtained from State records and adjusted to remove fuel consumed for farm and other nonhighway uses.

Motor-fuel-consumption rate.-Motor-fuelconsumption rate is the average rate of motorfuel usage in miles per gallon (m.p.g.).
Annual mites per vehicle.-Annual miles per vehicle is an average figure obtained by dividing the total travel in annual vehicle-miles by the total number of vehicles registered.

Gallons per vehicle.-Gallons per vehicle is a figure obtained by dividing the fuel consumed by the vehicles registered.
Interstate System traveled way.-The traveled way of the Interstate Highway System consists of completed sections plus those roads and streets now carring traffic that will be served by the Interstate System when it is completed.

Travel

The travel and related data for 1969 are shown in table 1 by road srstem and vehicle trpe. Travel estimates by State and highway system, which are the estimates prepared by the State highway departments, are shown in table 2.

In 1969, 37.1 percent of the travel was on main rural roads, which comprise 17 percent of the Nation's total of 3.7 million miles of roads and streets. Urban street travel was 50.9 pereent of the total travel and 14 percent of the total mileage. Local rural roads, approximately 69 percent of the total mileage, carried 12.0 percent of the travel.

The Interstate System traveled way accounted for about 1 percent of the total mileage and carried 18.4 percent of the travel. The Federal-aid primary system, including Interstate, represented about 7 percent of the mileage and carried 48.5 percent of the travel. All Federal-aid systems combined, which includes 24 percent of the mileage, carried 66 percent of all travel.

Ten States reported 1969 travel in excess of 30 billion annual vehicle-miles-more than half of all the Nation's travel. California, far exceeding any other State, had 111.7 billion vehicle-miles; Texas, 66.1 billion; New York, 64.7 billion; Ohio, 55.8 billion; Pennsylvania, 55.1 billion; Illinois, 53.9 billion; Michigan, 50.9 billion; New Jersey, 39.1 billion; Florida, 37.6 billion; and Indiana, 30.6 billion. When the travel in seven additional States, which reported travel exceeding 20 billion vehicle-miles, is added to that of these 10 States, approximately 70 percent of the Nation's travel is accounted for.

Passenger cars constituted 81 percent oh vehicles registered in 1969 and accountec 79 percent of all travel; motorcycles, 2 per of all vehicles and less than 1 percent o_{a} travel; trucks and truck combinations, 17 cent of all vehieles and 19 percent of all trit similiar figures for buses were less tha percent.

In vehicle performance, annual miles vehicle rose from 9,847 in 1968 to 9,969 in 199, Gallons of fuel consumed per vehicle contired the sharp rising trend that began in 19 from 804 in 1968 to 821 in 1969. Miles t eled per gallon of fuel consumed, which bia dropping in 1967 after several years of rels stability, dropped again from 12.25 in 19 12.15 in 1969.

The decreases in miles traveled per g: are attributed primarily to passenger car they represent most of the travel. Furthel? creases in miles per gallon are expecter more and more cars having pollution cor devices are introduced into the automil population, and as stricter pollution cor requirements are implemented. The use of π lead gasolines and the lower compression gines required by these fuels will reduce en n efficiency and thereby reduce miles per gan If the American mini cars take a signifin part of the market, the higher miles per gio for these cars may moderate the downtr trend. It is too early to determine, howest what effect these vehicles will have.

Highway Research and Development Reports Available from the National Technical Information Service

The following highway research and development reports are available from the National Technical Information Scrvice (formerly the Clearinghouse for Federal Scientific and Technical Information), Sills Building, 5285 Port Royal Road, Springfield, Va. 22151. Paper copies are priced at $\$ 3$ each and microfiche copies at 95 cents cach. To order, send the stock number of each report desired and a check or money order to the National Technical Information Service. Prepayment is required.

Other highway research and development reports available from the National Technical Information Service will be announced in future issues.

Stock No.
P13 194263
PB 194279
1B 194330

PB 194332
PB 194333
P13 194334

PB 194392
PB 194393
P13 194397 Statistical Specification for Pug Mill Mix Materials.
P13 144475 Computer Programs for Bridge Deck Analysis.
Traffic Systems Reviews and Alstracts, July issue, 1970.

Stock No.
PB 194659
PB 194690
PB 194704
PB 194706
PB 194707
PB 194709
PB 194718
PB 194719
PB 194720

PB 194721
PB 194722
PB 194817

Passage of Anadromous Fish Through Highway Drainage Structures.
Highway Investment and Regional Economic Effects.
The Properties and Recognition of Deleterious Charts.
Traffic Systems Reviews and Abstracts, August issue, 1970.
Traffic Systems Reviews and Abstracts, September issue, 1970.
Evaluation of a Flexible Pavement in Illinois.
Pavement Deflection Measurement-Dy-namic-A Feastbility Study.
Materials Development and Utilization. Determination of Statistical Parameters for Highway Construction-Continuation II.

Pavement Marking Paints: Two Studies (Replaces PB 186485).
Gap-Graded Versus Continuously-Graded Shrinkage Compensating Concrete.
Hydraulic Investigation of Soil Erosion and Sedimentation in Highway Median and Side Ditches.

Stock No.
PB 194884
In-Service Experience on Installatio Texas Modular Crash Cushions.
PB 194885 Evaluation of Several Types of Curinq 1 Protective Materials for Concrete.
PB 194890 Field Investigation of a continuous compi Prestressed I-Beam Highway Blg: Located in Jefferson County, Ill.
PB 194891 Traffic Systems Reviews and Abs c Cumulative Indexes.
PB 194892
PB 194893

PB 194894
PB 194896
PB 194897
PB 194899
PB 194908

PB 194909

PB 193910
PB 194911

PB 194933

IGEST OF RECENT RESEARCH AND DEVELOPMENT RESULTS

eported by the Implementation Division, Office of Development

The items reported here have been condensed from highway research and velopment reports, predominately of Federally aided studies. Not necesrily endorsed or approved by the Federal Highway Administration, the ems have been selected both for their relevancy to highway problems and r their potential for early and effective application.
Each item is followed by source or reference information. Reports with an NTIS" reference number are available in microfiche (microfilm) at 95 ints each or in paper facsimile at $\$ 3$ each from the National Technical formation Service (NTIS), 5285 Port Royal Road, Springfield, Va. 22151.

LECTRONIC MOVING LOAD SCALES

A portable electronic scale platform about 2 inches thick by 54 by) inches has been developed and shows promise for weighing moving hicles. The field data recorded in analog form on magnetic tape can converted to digital form, yielding speed and length of vehicle, time day, number of axles, axle spacing, wheel weights, and vehicle classi:ation. Indications are that gross weights of many of the vehicles may ; obtained within 10 percent of the static vehicle weight, provided propriate adjustment factors are applied to the recorded data. Further search is underway to evaluate more definitely the relationship tween dynamic weighing and static weighing

A Portable Electronic Scale for Weighing Vehicles in Motion, 1968, Texas High y Department, Report No. 54-1F. NTIS No. PB-180364.

IRTHWORK CROSS SECTIONS BY PHOTOGRAMMETRY

Earthwork cross-section data for cut volumes obtained photogramletrically has been found to be sufficiently accurate for highway design id for pay quantities. Percent differences in volume between carefully ctained ground cross sections and photogrammetrically determined ilumes ranged from 1 percent up to 11 percent, depending on whether ie topography was rolling to rough or flat, respectively.

Jetermination of Accuracies in Earthwork Quantities From Photogrammetrically ade Survey, May 1968, Texas Highway Department, Report No. 38. NTIS No. - 179585 .

:ID-RESISTANCE INDEX FOR SEAL COAT SCREENINGS

t simple and satisfactory test method has been devised for determinij in the laboratory the original coefficent of friction of seal coat screenijs applied to asphalt concrete pavements. The method measures the igularity and surface roughness of screenings and shows good correlain with actual service performance which is dependent on resistance treduction in the friction factor as a result of wear and polish by traffic. t screening samples experienced a rapid decrease in their initial coefficint of friction and thereafter attained an equilibrium figure for a sstained period of service equivalence. Information is for an interim roort.
"kid Resistance of Screenings of Seal Coats, January 1968, California Division cHighways, Report No. B-3-1. NTIS No. PB-178085.

liVEMENT SERVICEABILITY INDEXES

Comparative tests of the CHLOE Profilometer and the California Profigraph show that both instrument systems gave satisfactory results i the obtaining of longitudinal profile data for a serviceability index. Th sections of pavement were involved, including both asphaltic and F 'tland cement concrete, varying from excellent to poor condition.

Both systems were modified electronically to facilitate accumulation of data for evaluation by statistical methods.

A Comparison of the Chloe Profilometer and the California Profilograph, November 1967, California Division of Highways, Report No. D-4-17, NTIS No. PB-178086.

STABILIZED SOIL BASE COURSES

Under the particular circumstances encountered on one study, a savings of about \$1 per square yard was indicated from use of chemical soil stabilization in lieu of crushed aggregate base course. Pavement performance and the results of evaluation tests indicate that for the plastic soil encountered, 6 inches of stabilized select soil subbase was equivalent to 8 inches of crushed aggregate. Satisfactory stabilization was obtained with the following chemical additives: (1) Five percent lime, (2) 5 percent of a proprietary material produced by the Product Development Co., or (3) $2 \frac{1}{2}$ percent lime plus $2^{\frac{1}{2}}$ percent cement.

Chemical Soil Subbase Stabilization, March 1968, West Virginia Department of Highways, Report No. 17.

EROSION CONTROL FOR HIGHWAY DRAINAGE

A recent study of erosion control criteria for highway drainage channels provides the designer with a comprehensive design method to protect channels from excessive erosion both prior to and after establishment of a vegetative lining. Statistically derived equations and graphs express channel capacity for a variety of liner materials and test soils in relation to velocity, hydraulic radius, and slope. Comprehensive design examples are included.

Erosion Control Criteria for Drainage Channels (Structures), February 1968, Mississippi State Highway Department, Report No.13. NTIS PB-178478

HIGH STRENGTH BOLTS FOR SHEAR CONNECTORS

An interim report of a study of composite bridge stringers reveals that tests using high strength bolts as shear connectors has demonstrated their suitability for this purpose. Since they can be installed in predriiled holes, they permit a smooth beam surface before erection where desirable for safety and transportation purposes. The study has also produced a design method for composite beams with haunches which eliminates overly conservative allowances on loads to shear connectors

Composite Beam Tests Using High-Strength Bolts as Shear Connectors, January 1968, Missouri State Highway Commission, Report No. 63-2. NTIS No. PB180196.

ORTHOTROPIC DECK PLATE BRIDGE-COMPUTER ANALYSIS

A report covering the analytical phase of a research study of an existing orthotropic deck plate bridge presents methods for studying different parts of such structures. Several important features of the structural action of orthotropic deck bridges are highlighted. The report appendix contains a description of the computer program used in the design and analysis of the bridge. A final report will be submitted on the field testing.
Field Testing of an Orthotropic Steel Deck Plate Bridge, March 1968, California Division of Highways, Report No. D-4-15. NTIS PB-178398.

ACCURATE METHODS OF BOX GIRDER DESIGN

More accurate methods of box girder bridge design are presented in a report covering the analytical phase of a bridge design research study.

General computer programs have been developed for three methods of elastic analysis: (1) Folded plate, (2) finite segment, and (3) finite element. Analysis by these methods has been reduced to a simple matter of preparing basic input data on data processing cards. Appropriate comparison of results from the three methods was satisfactory

Analysis of Continuous Box Girder Bridges, November 1967, California Division of Highways, Report No. D-4-31. NTIS No. PB-178355.

STEEL PLATE PIPE SEAM STRENGTHS

Experimental laboratory tests performed on structural steel plate pipe specimens indicate no significant differences in ultimate seam strength between (1) Specimens coated with asphalt and those with hot-dip galvanized coating, and (2) specimens with bolt torque levels of 50 ft .lbs. and 20 ft .lbs

Seam Strength of Asphalt Coated Structural Plate Pipe, 1968, California Division of Highways, Report No. D-4-70.

RAISED TRAFFIC LANE MARKERS ARE SUPERIOR

A field test was recently completed on various pavement marking materials. Evaluation included relative long-term costs and traffic safety along with numerous other considerations. The site was on new concrete pavement in a snow-free area. The study concluded that in areas free from snowplow operations, raised markers were superior to standard paint in terms of durability, driver preference, and night visibility under wet conditions. This confirms results previously obtained in California.

Semi-Permanent Traffic Striping Research Study, 1968, Washington Department of Highways, Report No. HR-178. NTIS No. PB-180704.

FASTER TEST PROCEDURE

A modified procedure for the sand equivalent test has been found satisfactory and results in considerable savings in testing time. Success of the procedure has resulted in recommendations to ASTM that it include alternate methods, moist or oven dried, in the test procedure. Key to the test time savings is use of moist materials. Also recommended in connection with the modified procedure was use of prescribed temperature limits.

Sand Equivalent Test Investigation of Procedural Modifications, 1968, California Division of Highways, Report No. F-4-14. NTIS No. PB-177887.

IMPROVED CEMENT UNIFORMITY

In a test study of cement treated base mixing it was found that cement was more uniformly distributed in the mixed base course material when mixing was accomplished with an automatically controlled, continuously fed mixing plant rather than in a batch type pugmill. Specifications for cement control limits, based on the titration test, are proposed in accordance with a statistical analysis of variance which takes account of sampling and testing errors as well as process variance.

Control of Cement Treated Base, 1968, California Division of Highways, Report No. F-1-14. NTIS No. PB-198202.

CHLORIDES AS STABILIZING AGENTS

A test road study was recently completed on several experimental sections of base and subbase courses of granular material treated with sodium and calcium chlorides as stabilizing agents. The study indicated that the two chlorides are of little or no benefit as stabilizing agents for aggregate base course materials. The chlorides began to migrate out of the granular layers a few months after construction.

Investigation 607, Nobles County Base, 1967, Minnesota Department of Highways, Report No. 303. NTIS No. PB-177744.

RAPID TEST METHOD FOR HYDROMETER ANALYSIS OF SOS

Evaluation of a rapid hydrometer analysis technique for the quant ${ }_{3}$. tive determination of the distribution of particle sizes in soils indica:s good correlation with results from the standard method of test. The rad test method, with a time savings of $11 / 2$ days, will aid greater productn efficiency for the contractor, and facilitate economies in field and las. ratory testing operations.
Correlation of Rapid Hydrometer Analysis for Select Material to Existing Proced ${ }_{3}$, 1968, Louisiana Department of Highways, Report No. 67-18. NTIS No. 179590.

GREATER SERVICE LIFE FOR GUARDRAIL POSTS

Longitudinal saw cuts or kerfs made in the sides of square-savd guardrail posts prior to creosote treatment will substantially redie problems of inservice decay caused by weather checking that pe?. trates the creosote treatment layer. The saw pattern yielding the greatit benefit used the deepest single cut along the midline of one face.
Guardrail Post Experiments on Methods of Reducing Post Checking, October 193, Oregon State Highway Division, Item No. 16. NTIS PB-183076.

CONCRETE ANCHORAGE DEVICES

Tests of concrete anchorage devices show that pullout strength of .) Epoxied-in-place bolts, (2) grouted-in-place threaded bolts, and i) commercial friction-type anchors, depends on loading rate. Howev. the strength of cast-in-place bolts was entirely independent of e loading rate. The report on tests impartially evaluates various comm cial concrete anchorage devices, and provides technical data on capacy and slipping. The report has been distributed to State highway depe:: ments.

Evaluation of Concrete Anchorage Bolts, June 1968, California Division of H ways, Report No. D-4-42. NTIS No. PB-183668.

JOHNSONGRASS ERADICATION

With its vigorous proliferation in some areas, this cropland pes s so tall and luxuriant as often to present a genuine safety hazard. Ar 3 year study of various herbicides applications has shown two of the 3 , dalapon and DSMA, to be the most effective. DSMA is less expense and more selective. Details for a systematic control program are gi'n in the report.
Control and Eradication of Johnsongrass, 1968, Missouri State Highway Comrssion, Report No. 61-1. NTIS No. PB-183007.

SOIL STABILIZATION

Rate of change in length of stabilized soil specimens during laboraty freeze-and-thaw cycles is a good criterion of durability, accordingo tests used to evaluate the durability and strength of certain Nch Dakota soils stabilized with lime, flyash, cement, and asphalt. Amou:s and best suited types of stabilizers for specific soils in the State cane estimated at the preliminary design stage.

Soil Stabilization Study, 1968, North Dakota State Highway Department, Re r No. (14)-64.

LIME STABILIZATION IN NEBRASKA

Hydrated lime was found to be a suitable material to (1) Impr'e plastic subgrade soils, and (2) use as an admixture to upgrade infeir base course materials. These conclusions were based on 10 years)f observations of construction of an experimental project in Nebras3. Details were published earlier in HRB Bulletin 231.

Investigation of the Effect of the Addition of Hydrated Lime to Plastic Subg te Soil and the Effect of the Addition of Hydrated Lime and a Pozzolanic Materiito a Local Coarse Sand for Base Course, 1968, Nebraska Department of Ros, Report No. 63-10A.

PUBLICATIONS of the Federal Highhway Administration

A list of articles in past issues of Public Roads and title sheets ior volumes 24-35 are available upon request from the Federal Highway Administration, U.S. Department of Transportation, Washington, D.C. 20591.
The following publications are sold by the Superintendent of)ocuments, Government Printing Office, Washington, D.C. 20402. irders should be sent direct to the Superintendent of Documents. 'repayment is required.
lccidents on Main Rural Highways-Related to Speed, Driver, and Vehicle (1964). 35 cents.
Lggregate Gradation for Highways: Simplification, Standardization, and Uniform Application, and A New Graphical Evaluation Chart (1962). 25 cents.
merica's Lifelines-Federal Aid for Highways (1969). 35 cents. nalysis and Modeling of Relationships between Accidents and the Geometric and Traffic Characteristics of the Interstate System (1969). \$1.00.
Book About Space (1968). 75 cents.
ridge Inspector's Training Manual (1970). \$2.50.
'he Bridge to Your Success (1969). 45 cents.
kalibrating \& Testing a Gravity Model for Any Size Urban Area (1968). \$1.00.
apacity Analysis Techniques for Design of Signalized Intersections (Reprint of August and October 1967 issues of PUBLIC ROADS, a Journal of Highway Research). 45 cents.
onstruction Safety Requirements, Federal Highway Projects (1967). 50 cents.
orrugated Metal Pipe (1970). 35 cents.
reating, Organizing, \& Reporting Highway Needs Studies (Highway Planning Technical Report No. 1) (1963). 15 cents. atal and Injury Accident Rates on Federal-Aid and Other Highway Systems, 1968. 45 cents.
ederal-Aid Highway Map (42x65 inches) (1970). \$1.50.
ederal Laws, Regulations, and Other Material Relating to Highways (1970). \$2.50.
ederal Role in Highway Safety, House Document No. 93,86 th Cong., 1st sess. (1959). 60 cents.
he Freeway in the City (1968). $\$ 3.00$.
reeways to Urban Development, A new concept for joint development (1966). 15 cents.
uidelines for Trip Generation Analysis (1967). 65 cents. andbook on Highway Safety Design and Operating Practices (1968). 40 cents.

Supplement No. 1 (Nov. 1968). 35 cents.
Supplement No. 2 (Nov. 1969). 40 cents.
ighway Beautification Program. Senate Document No. 6, 90th Cong., 1st sess. (1967). 25 cents.
ighway Condemnation Law and Litigation in the United States (1968) :

Vol. 1-A Survey and Critique. 70 cents.
Vol. 2-State by State Statistical Summary of Reported Highway Condemnation Cases from 1946 through 1961. \$1.75.
ighway Cost Allocation Study: Supplementary Report, House Document No. 124, 89th Cong., 1st sess. (1965). \$1.00.
ighway Finance 1921-62 (a statistical review by the Office of Planning, Highway Statistics Division) (1964). 15 cents. ighway Planning Map Manual (1963). \$1.00.
ighway Research and Development Studies Using Federal-Aid Research and Planning Funds (1969). \$1.50. ighway Statistics (published annually since 1945) :
$1966, \$ 1.25 ; 1967, \$ 1.75 ; 1968, \$ 1.75$.
(Other years out of print.) ighway Statistics, Summary to 1965 (1967). \$1.25. ighway Transportation Criteria in Zoning Law and Police Power and Planning Controls for Arterial Streets (1960). 35 cents.

Highways and Human Values (Annual Report for Bureau of Public Roads) (1966). 75 cents.
Supplement (1966). 25 cents.
Highways to Beauty (1966). 20 cents.
Highways and Economic and Social Changes (1964). \$1.25.
Hydraulic Engineering Circulars :
No. 5-Hydraulic Charts for the Selection of Highway Culverts (1965). 55 cents.
No. 10 -Capacity Charts for the Hydraulic Design of Highway Culverts (1965). 65 cents.
No. 11-Use of Riprap for Bank Protection (1967). 40 cents.
No. 12-Drainage of Highway Pavements (1969). $\$ 1.00$.
Hydraulic Design Series :
No. 1-Hydraulics of Bridge Waterways, $2 d$ ed. (1970). \$1.25.
No. 2-Peak Rates of Runoff From Small Watersheds (1961). 30 cents.

No. 3-Design Charts for Open-Channel Flow (1961). $\$ 1.50$.
No. 4-Design of Roadside Drainage Channels (1965). 65 cents.
Identification of Rock Types (1960). 20 cents.
Increasing the Traffic-Carrying Capability of Urban Arterial Streets: The Wisconsin Avenue Study (1962). Out of print(Request from Federal Highway Administration).
The 1965 Interstate System Cost Estimate, House Document No. 42, 89 th Cong., 1 st sess. (1965). 20 cents.
Interstate System Route and Log Finder List (1963). 10 cents. Joint Development and Multiple Use (1970). \$1.50.
Labor Compliance Manual for Direct Federal and Federal-Aid Construction, 3d ed. (1970). \$3.75.
Landslide Investigations (1961). 30 cents.
Manual for Highway Severance Damage Studies (1961). \$1.00.
Manual on Uniform Traffic Control Devices for Streets and Highways (1961). $\$ 2.00$.
Part V only of above-Traffic Controls for Highway Construction and Maintenance Operations (1962). 25 cents.
Maximum Desirable Dimensions and Weights of Vehicles Operated on the Federal-Aid Systems, House Document No. 354, 88th Cong. 2 d sess. (1964). 45 cents.
Maximum Safe Speed for Motor Vehicles (1969). \$1.00.
Modal Split-Documentation of Nine Methods for Estimating Transit Usage (1966). 70 cents.
Motor Carrier Safety Regulations (1968). 45 cents.
National Driver Register. A State Driver Records Exchange Service (1967). 25 cents.
National Highway Needs Report, H. Comm. Print 90-22 90th Cong. $2 d$ sess. (1968). 25 cents. Supplement 10 cents.
The National System of Interstate and Defense Highways (1969). 15 cents.
Overtaking and Passing on Two-Lane Rural Highways-a Literature Review (1967). 20 cents.
Presplitting. A Controlled Blasting Technique for Rock Cuts (1966). 30 cents.

Proposed Program for Scenic Roads \& Parkways (prepared for the President's Council on Recreation and Natural Beauty), 1966. \$2.75.

Quality Assurance in Highway Construction. (Reprinted from pUBLIC ROADS, a journal of highway research, vol. 35, Nos. 6-11, 1969). 50 cents.
Reinforced Concrete Bridge Members-Ultimate Design (1969). 45 cents.
Reinforced Concrete Pipe Culverts-Criteria for Structural Design and Installation (1963). 30 cents.
Road-User and Personal Property Taxes on Selected Motor Vehicles (1970). 65 cents.

United States
 Government Printing Office
 PUBLIC DOCUMENTS DEPARTMENT
 WASHINGTON, D.C. 20402

OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE TO AVOI
PAYMENT OF POSTAGE, $\$ 300$ U.S. GOVERNMENT PRINTING OFFICE POSTAGE AND FEES PAID

If you do not desire to continue to receive this publication, please check here tear off this label and return it to the above address. Your name will then be removed promptly from the appropriate mailing list.

Publications of the Federal Highway Administration-Continued

Role of Economic Studies in Urban Transportation Planning (1965). 65 cents

The Role of Third Structure Taxes in the Highway User Tax Family (1968). \$2.25.
Second Annual Highway Beauty Awards Competition (1969). 50 cents.
Specifications for Aerial Surveys and Mapping by Photogrammetrical Methods for Highways (1968). \$1.25
Standard Alphabets for Highway Signs (1966). 30 cents
Standard Land Use Coding Manual (1965). 50 cents.
Standard Plans for Highway Bridges :
Vol. I-Concrete Superstructures (1968). \$1.25.
Vol. II-Structural Steel Superstructures (1968). \$1.00
Vol. III-Timber Bridges (1969). 75 cents.

Vol. IV-Typical Continuous Bridges (1969). \$1.50.
Vol. V-Typical Pedestrian Bridges (1962). \$1.75.
Standard Specifications for Construction of Roads and Bridge on Federal Highway Projects (1969). $\$ 3.50$.
Standard Traffic Control Signs Chart (as defined in the Manu: on Uniform Traffic Control Devices for Streets and Highways $22 \times 34,20$ cents- 100 for $\$ 15.00 .11 \times 17,10$ cents- 100 fc $\$ 5.00$.
Study of Airspace Utilization (1968). 75 cents.
Traffic Safety Services, Directory of National Organizatior (1963). 15 cents.

Transition Curves for Highways (1940). \$2.50.
Ultrasonic Testing Inspection for Butt Welds in Highway at Railway Bridges (1968). 40 cents.

[^0]: ${ }^{1}$ Presented at the National Structural Engineering Meeting of the American Society of Civil Engineers, and be 19th Annual Arizona Roads and Streets Conference, tpril 1970.
 ${ }^{2}$ Italic numbers in parentheses identify the references isted on p. 132.

[^1]: Tatal Accidents on Completed Sections of the Interstate iway System, P UBLIC ROADS, vol. 35, No. 10, October

[^2]: ${ }^{2}$ How to do a Cost-Beneft Analysis of Motor Vehicle Accident Countermeasures, by J. L. Recht, National Safety Council, September 1966, p. 20.
 ${ }^{3}$ In this and following paragraphs of the report, the data referred to are those for the entire 2 -year period

[^3]: ${ }_{2} 1$ For the 50 States and District of Columbia.
 2 Separate estimates of passenger car and motorcycle travel are not available by highway category.

