Public Roads

A JOURNAL OF HIGHWAY RESEARCH

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION BUREAU OF PUBLIC ROADS

Public Roads A JOURNAL OF HIGHWAY RESEARCH

Published Bimonthly

Harry C. Secrest, Managing Editor - Fran Faulkner, Editor

April 1970/Vol. 36, No. 1
U.S. DEPARTMENT OF TRANSPORTATION

JOHN A. VOLPE, Secretary
federal highway administration
F. C. TURNER, Administrator
bureau of public roads
R. R. BARTELSMEYER, Director

CONTENTS

Articles

Driver Judgments as Influenced by Vehicular Lighting at Intersections, by Nicholas G. Tsongos and Richard Schwab_

State Highway Department Management
Part 2.-Training and Manpower Development, by David H. Summerville

Travel by Motor Vehicles in 1968 and Related Data,
by W. Johnson Page

Research Brief

Fatal Collisions With Fixed Objects on Completed Sections of the Interstate Highway System, 1968, by Harold R. Hosea and J. N. McDonald_---

Publications

New Publications
Research and Development Reports Available from the Clearinghouse for Federal Scientific and Technical Information

Publications of the Bureau of Public Roads Available from the Superintendent of Documents Inside back cover

COVER

Route interchange of Interstate Highways 59 and 65 in Birmingham, Ala.

Public Roads, A Journal of Highway Research, is sold by the Superintendent of Documents, Government Printing Office, Washington, D.C. 20402, at $\$ 2.00$ per year (50 cents additional for foreign mailing) or 40 cents per single copy. Subscriptions are available for 1-, 2-, or 3 -year periods. Free distribution is limited to public officials actually engaged in planning or constructing highways and to instructors of highway engineering. There are no vacancies in the free list at present.
Use of funds for printing this publication has been approved by the Director of the Bureau of the Budget, March 16, 1966.
THE BUREAU OF PUBLIC ROADS FEDERAL HIGHWAY ADMINISTRATION U.S. DEPARTMENT OF TRANSPORTATION Washington, D.C. 20591
FHWA REGIONAL OFFICES
No. 1. 4 Normanskill Blvd., Delmar, N.Y. 12054. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, Vermont, and Puerto. Rico.
No. 2. 1633 Federal Building, 31 Hopkins Place, Baltimore, Md. 21201.
Delaware, District of Columbia, Maryland, Ohio, Pennsylvania, Virginia, and West Virginia.
No. 3. 1720 Peachtree Rd., N.W., Atlanta, Ga. 30309.
Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, and Tennessee.
No. 4. 18209 Dixie Highway, Homewood, III. 60430.
Illinois, Indiana, Kentucky, Michigan, and Wisconsin.
No. 56301 Rockhill Road, Kansas City, Mo. 64131
Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, and South Dakota.
No. 6. 819 Taylor St., Fort Worth, Tex. 76102. Arkansas, Louisiana, Oklahoma and Texas.
No. 7. 450 Golden Gate Ave., Box 36096, San Francisco, Calif. 94102.
Arizona, California, Hawaii, and Nevada.
No. 8. 412 Mohawk Bldg., 222 SW. Morrison St., Portland, Oreg. 97204.
Alaska, Idaho, Montana, Oregon, and Washington.
No. 9. Denver Federal Center, Bldg. 40, Denver, Colo. 80225.
Colorado, New Mexico, Utah, and Wyoming.
No. 15. 1000 N. Glebe Rd., Arlington, Va. 22201.
Eastern Federal Highway Projects
No. 19. Apartado Q, San Jose, Costa Rica. Inter-American Highway: Costa Rica, Guatemala, Nicaragua, and Panama.

Driver Judgments as Influenced by

 Vehicular Lighting at IntersectionsReported by ${ }^{1}$ NICHOLAS G. TSONGOS, Highway Research Engineer, and RICHARD SCHWAB, Electrical Engineer Traffic Systems Division

Introduction

TTHE DRIVER'S behavior at a street intersection is a complex series of judgments and decisions. As he approaches or waits at a nonsignalized intersection, the driver visually searches the other legs of the intersection for oncoming vehicles. If a vehicle is approaching, he probably estimates the distance and speed of that vehicle and the maneuver that its driver is likely to make at the intersection. He then weighs these judgments and decides whether or not it is safe to enter the intersection.

These judgments become more complicated at night. The lighted headlamps may make it easier to detect the presence of the oncoming vehicle, but glare from them makes speed and distance estimates more difficult. When no fixed source illumination is present at the

[^0]
Abstract

The effects of headlight glare on drivers' judgments and decisions at a rightangle, nonsignalized intersection were examined in an experiment conducted in a dark rural environment on an airport runway. Twenty male drivers, in two age groups of 10 drivers each, were exposed to different degrees of glare from both conventional and polarized headlights and were asked repeatedly either to judge the last safe moment to start across the intersection ahead of an approaching test vehicle on the crossroad or to actually perform the crossing maneuver.

Statistical analyses of the results of the experiment, reported here, indicate that different lighting modes produced significant differences in drivers' reactions. Under the more glaring conditions, longer gap-acceptance times were required, and there was more variance in the data. According to the drivers' evaluations of glare discomfort, the two polarized high-beam systems studied were superior to conventional high beams, but conventional low beams were least bothersome.

intersection, details of the surrounding environment are lacking, and the oncoming headlights will aggravate the visual task, which is already difficult.

In the last quarter century, several improvements have been suggested to control headlamp beams and improve the night driving environment. One of the most promising methods for reducing headlight glare and improving night visibility is to use linear polarizers on the headlamps, positioned 45 degrees from horizontal, and a parallel analyzer or viewer through which the driver views his surroundings. As two vehicles so equipped approach each other head-on, the polarizer on the headlamps of the one vehicle is crossed with
the analyzer on the other vehicle, and no direct glare is transmitted to the driver. Most of the research on polarized headlighting has dealt with target detection and other visibilitytype situations of head-on encounters between two vehicles. Little or no attention has been given to right-angle situations at intersections where glare alone may be the most important variable affecting driver behavior. Yet as the driver moves from the rural environment into the suburban environment, the frequency of these right-angle encounters increases. In the suburban environment, gap acceptance is a critical parameter for headlamp design because speeds are lower and the sight distance requirements are less critical.

Figure 1.-Layout of experimental intersection.

In a recent study by Tsongos and Weiner $(1)^{2}$ an isolated, unlighted, suburban intersection was observed both during the day and at night. Differences in the driver's day and night gap-acceptance probability were noted, particularly near the ends of the gap-size distribution. The nighttime driver was more likely to reject a very short gap (2 to 3 seconds) than his daytime counterpart. It is at this part of the encounter that the dis-ability-glare phenomenon approaches its maximum and that even small errors in judgment can become critical.

Because almost all the vehicles observed in that study were using low beam headlamps, it was not possible to determine whether glare was indeed a factor in the rejection of short gaps. However, with at least one of the common analyzer designs suggested for a polarized headlighting system, glare would be increased

[^1]in the right-angle situation. The purpose then of the experiment reported here was to control the degree of glare exposure, using both conventional headlamps and polarized lighting with two different types of analyzer systems, and evaluate driver behavior while gapacceptance judgments were being made.

Test Procedures

The experiment was conducted on the two runways of the airport operated by the U.S. Department of Agriculture at the Beltsville Agricultural Research Center. As this airport was closed at night, environmental conditions for the experiment could be closely controlled. The environment was that of a dark rural area with no extra-vehicular light sources. The test was performed only in a clear atmosphere and on a dry road surface.

A highway intersection was simulated at a point near the intersection of the two runways,
each of which was approximately $3 / 4$ of a mile long. The running surfaces had recently been repaved with a black asphalt overlay on which two 12 -foot lanes had been outlined with 4 -inch nonreflective, white, solid edge markings and a dashed centerline. A part of one runway consisted of a 3,200-foot-long, constant-grade approach on the subject driver's right side.

The subject driver was stationed in a vehicle sitting at the intersection, as shown in figure 1. A test vehicle was stationed on the 3,200 -foot, constant-grade approach at the right end of the runway. On command, the test driver turned on his vehicle's lights, accelerated to constant speed, and traveled down the lane nearest the subject, approaching the subject vehicle at a right angle. Once the test driver had passed the subject vehicle, he returned to the starting point and set up for the next run. Mobile radios provided communication between the test driver and the experimenter.

In the first of two procedures used in the experiment, the judgment series, the subject was asked to judge the last safe moment to start across the intersection ahead of the test vehicle and to signal his decision by pushing a large 6 -inch-diameter metallic button located on a stand just outside his window. In this procedure, the subject kept his vehicle stationary while reacting. In the second procedure, called the performance series, the subject actually performed the crossing maneuver. Which one of the two procedures was to be used for a given run was signaled to the subject by one of two lights located across the intersection, which was switched when the approaching test vehicle was 1,600 feet from the intersection. A red light was used to indicate a judgment run and a green light to indicate an actual crossing.

It was believed that the semidynamic procedure would allow for better control of the stimulus condition and would have less inherent variability. Accordingly, it was possible to use fewer subjects under more experimental conditions. The fully dynamic performance procedure did have a higher degree of realism, more closely paralleling the real-world driving situation, but it also involved some accident risks. For this reason, the semidynamic judgment procedure with only one car moving, was used to carry out the bulk of the experiment. Eight fully dynamic runs with both vehicles moving were interspersed with the semidynamic runs in a random pattern that kept the subject's responses realistic.
When the red light was on and the subject signaled his decision by touching the large metallic pushbutton, an electrical pulse started a transistorized timer, which continued to operate until the test vehicle, on entering the intersection, crossed a pneumatic tube connected to an air switch (fig. 1). The elapsed time between the moment of decision and the arrival of the test vehicle at the intersection was thus recorded to the nearest

Table 1.-Driver age and vision characteristics

Driver ${ }^{1}$	Age ${ }^{2}$	Vision characteristics					
		Phoria		Acuity			Stereopsis (depth)
		Vertical	Lateral	Right eye	Left eye	Both eyes	
Younger group							
$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 8 \\ 9 \\ 10 \end{array}$	$\begin{gathered} \text { Years } \\ 23 \\ 21 \\ 20 \\ 23 \\ 20 \\ 21 \\ 20 \\ 21 \\ 19 \\ 20 \end{gathered}$	$\begin{array}{r} 0.17 \\ .17 \\ .17 \\ .50 \\ .17 \\ .50 \\ .17 \\ .50 \\ .17 \\ .17 \end{array}$	$\begin{array}{r} -0.66 \\ .33 \\ .33 \\ 4.33 \\ 1.33 \\ \hdashline .66 \\ 2.33 \\ 1.33 \\ 2.33 \\ 2.33 \end{array}$	$\begin{aligned} & 20 / 20 \\ & 20,33 \\ & 20 / 20 \\ & 20.22 \\ & 200 \\ & 20,20 \\ & 20 / 20 \\ & 20 \\ & 20 / 18 \\ & 20 / 17 \\ & 20 / 22 \end{aligned}$	$\begin{aligned} & 20 / 17 \\ & 20 / 29 \\ & 20 / 18 \\ & 20 / 29 \\ & 20.18 \\ & 20 / 22 \\ & 20.18 \\ & 20018 \\ & 20 / 20 \\ & 20 / 25 \end{aligned}$	$\begin{aligned} & 20 / 18 \\ & 20 / 25 \\ & 20.18 \\ & 20 / 22 \\ & 20 \\ & 20 / 20 \\ & 20 \\ & 20.17 \\ & 20 / 18 \\ & 20 / 20 \\ & 20 / 22 \end{aligned}$	$\begin{array}{r} \text { Percent } \\ 88.5 \\ 76.5 \\ 102.4 \\ 96.0 \\ 96.0 \\ 88.5 \\ 106.5 \\ 102.4 \\ 96.0 \\ 88.5 \end{array}$
Older group							
$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$	$\begin{aligned} & 62 \\ & 60 \\ & 70 \\ & 60 \\ & 53 \\ & 51 \\ & 57 \\ & 54 \\ & 50 \\ & 54 \end{aligned}$	$\begin{array}{r} 0.50 \\ .17 \\ .17 \\ 1.00 \\ .17 \\ .17 \\ .50 \\ .17 \\ .17 \\ .50 \end{array}$	$\begin{array}{r} -1.66 \\ -1.66 \\ 7.33 \\ 5.33 \\ .33 \\ 1.33 \\ 4.33 \\ 1.33 \\ 3.33 \\ -.66 \end{array}$	$\begin{aligned} & 20 / 22 \\ & 20 / 18 \\ & 20.29 \\ & 20 / 25 \\ & 20.20 \\ & 20 / 20 \\ & 20 \\ & 20 / 22 \\ & 20 / 25 \\ & 20 / 20 \end{aligned}$	$\begin{aligned} & 20 / 20 \\ & 20 / 18 \\ & 20 / 40 \\ & 20 / 22 \\ & 20 / 18 \\ & 20,22 \\ & 20 / 20 \\ & 20 \\ & 20 / 25 \\ & 20 / 20 \\ & 20 / 17 \end{aligned}$	$\begin{aligned} & 20 / 18 \\ & 20 / 18 \\ & 20 / 29 \\ & 20 / 22 \\ & 20 / 18 \\ & 20 / 18 \\ & 20 / 18 \\ & 20 / 29 \\ & 20 / 18 \\ & 20 / 17 \end{aligned}$	$\begin{array}{r} 103.6 \\ 102.4 \\ 56.6 \\ 76.5 \\ 56.6 \\ 84.4 \\ 103.6 \\ 76.5 \\ 76.5 \\ 96.0 \end{array}$

${ }^{1}$ A verage driving experience: Younger group-4.5 years; older group- 35.8 years.
${ }_{2}$ A verage age: Younger group- 20.8 years; older group- 57 years.
millisecond. The gap size was measured in seconds, and this measurement was converted to distance based on the constant speed of the test vehicle. Because the test vehicle had obtained this predetermined velocity before the 1,600 -foot point, the constant speed assumption was valid.

When the signal light was green for the performance run, the subject vehicle crossed a pneumatic tube placed immediately in front of its front tires to start the timer. Otherwise, the instrumentation was the same.

To provide an additional stresser to the experimental situation, an opposing vehicle was placed across the intersection from the subject vehicle. During all the performance runs and half the judgment runs, the head-
lamps of the opposing vehicle were turned on. These headlamps were operated in the same mode - the modes will be described later-as those of both the subject and test vehicles. At the start of an experimental run the subject was required to observe the signal lamp approximately 15 feet to the left of the opposing vehicle, as shown in figure 2. At this time some of the headlamp operational modes subjected him to considerable glare, and his visual adaptation was somewhat elevated, But when the test vehicle was 1,600 feet away, and the signal lamp was turned on, he could shift his visual attention toward the test vehicle and, consequently, was no longer influenced directly by the headlamp glare from the opposing vehicle.

Figure 2.-Test vehicle with high beam approaching intersection during experiment.

DISCOMFORT GLARE EVALUATION

Driver: \qquad Age: \qquad Date: \qquad
Set No: \qquad Run No.: \qquad
No Problem
Bothersome
Very Uncomfortable
Blinding

Figure 3.-Subjective evaluation form.

The first group of drivers were primarily college students in their early twenties who had a minimum of 2 years driving experience. The second group, mainly nonengineering personnel from two local highway departments, was selected to evaluate the effect of driver's age on the experiment. All drivers in this group were more than 50 years of age.

Berg (2) has shown that older drivers are much more sensitive to glare than younger drivers. Both contrast threshold and recovery time after exposure to glare are relatively constant among individuals until they reach approximately age 40 to 45 , after which both characteristics deteriorate rapidly. It was therefore hypothesized that the older group,

Figure 4.-High intensity headlamps-(a) without analyzer, (b) with analyzer.

The test vehicle was driven at a constant speed for each experimental run. To avoid having to use distance cues, four test vehicle speeds- $20,30,45$, and $60 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.-were used for judgment runs, and two test vehicle speeds- 20 and $45 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. for the performance runs. The order of the runs was completely random. To minimize the effects of repetitive learning and of fatigue on the results, no subject knew the type of test to be run until he received his order to react. A total of 40 experimental runs was made by each subject.

Upon completion of each experimental run, the subject was asked to complete a subjective evaluation of his discomfort caused by the glare to which he was just exposed. A sample of the evaluation form is shown in figure 3 .

Experimental Drivers

Two groups of 10 licensed male drivers were recruited to participate in the experiment. Except for two drivers, one from each group who required 2 nights, each driver completed all 40 of his experimental runs in 1 night.

Figure 5.-Test vehicle.
although having more driving experience, would do relatively poorly as a group in visually judging and reacting to the types of situations in these tests.

On the day that he was scheduled to participate, each subject arrived at the test site after dark and was taken immediately to a trailer parked about a half mile from the intersection where he received a standardized vision test. The results of the 20 vision tests are shown in table 1. Any subject who normally used eyeglasses when driving used them in all the test phases. Before the subject left the trailer, some biographical information was obtained from him, and he was given a set of written instructions on his participation in the tests. He was taken to the intersection only after the equipment was set up and operating. Each subject was given two practice runs, one performance and one judgment, before the actual experiment began.

Vehicular Lighting Modes

Each of the three vehicles used in the experiment was equipped with the following four types of lighting systems or modes: Conventional low beam, conventional high beam, polarized high beam with visor, and polarized high beam with glasses. Only one system was employed at a time, and all vehicles displayed the same mode during each run.

Polarized light looks like ordinary light when it is received by the naked eye, but when it is viewed through a suitable analyzer, it behaves differently. As early as 1920, F. Short and L. W. Chubb pointed out that a polarized-type headlighting system was possible (3). Their approach would provide a light-lock system with adequate illumination for objects on the road between approaching vehicles to be visible, but from which neither driver would receive glare directly from the headlamps of the other vehicle. Viewed through a crossed polarizer, the approaching vehicle's headlamps would be perceived as very dim spots of light about as noticeable as parking lamps (fig. 4b). In a recent series of studies by Roger H. Hemion, et al. (4, 5, 6), polarized lighting systems were investigated and shown to provide more effective illumination for the highway vehiclemeeting situation than conventional systems.
Because it was the purpose of the experiment reported here to study gap-acceptance behavior under different degrees of glare, a polarized system and two types of analyzers were used to control glare. One of the analyzers, a form of visor, was attached to the normal sun visor to give the subject good glare protection as he looked straight ahead at the signal light and opposing vehicle; of course when he looked at the test vehicle, the subject's vision was exposed to a glaring intensity similar to that of the conventional high beam. The other analyzer, in the form of a pair of eyeglasses, was worn by the subject and moved with his head. The degree of protection afforded by the second type of analyzer reduced the glare from the test vehicle to nearly that of a conventional low beam for this right-angle situation.

Each vehicle used in the experiment was equipped with the standard 12 -volt, 5.75 -inchdiameter, type 4001 and 4002 , sealed beam headlamp system. The low-beam and highbeam filaments respectively required 50 and 37.5 watts for operation. The headlamps were conventionally mounted on a horizontal line to
conform to Motor Vehicle Safety Standard No. 108. Two additional 5.75 -inch-diameter, type 4001 headlamps, rated at 100 watts, were mounted just inside the other lamps and, for the polarized system, replaced the lower-wattage 4001 unit. A photograph of the test vehicle taken shortly after completion of the study is

Figure 6.-Mean gap-acceptance distance for each lighting mode and age group, 20 and 45 m.p.h.

Figure 7.-Distribution of gap acceptance for each lighting mode, performance tests.

Table 2.-Summary of analyses of variance, lighting mode combinations

Test	Source of variation ${ }^{1}$					
	L \& H	L \& G	L \& V	H \& G	H \& V	G \& V
Judgment: F ratio.	3. 02	1. 58	4. 44	0. 176	0. 190	0. 670
Significant at 5 percent level (2.97) Performance:	yes	no	yes	no	no	no
Signio. ${ }_{\text {S }}$ Sifant at 5 percent level (4.41)	$\begin{gathered} \text { 4. } 67 \\ \text { yes } \end{gathered}$	$\begin{aligned} & 0.033 \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { 6. } 13 \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \text { 4. } 52 \\ & \text { yes } \end{aligned}$	$\begin{gathered} 0.16 \\ \text { no } \end{gathered}$	$\begin{gathered} 7.57 \\ \text { yes } \end{gathered}$

${ }^{1} \mathrm{~L}=$ Low beam.
$\mathrm{H}=$ High beam
$\mathrm{G}=$ Polarized beam with glasses
$\mathrm{V}_{\mathrm{V}}=$ Polarized beam with visor.
subject driver and the arrival of the approaching test vehicle at the intersection-was first transformed into distance, based on the appropriate test vehicle speed. An analysis of variance was performed on each experimental series to determine whether the observed differences in gap-acceptance means were real differences or were due to variance in the experimental situations. As expected, there were significant differences not only between lighting modes in both the judgment and performance tests but also between age groups in the performance test.

Lighting mode

The data were further analyzed to ascertain which of the lighting modes contributed to these differences. A summary of these analyses is given in table 2. The data from both the performance and judgment tests indicated statistically significant differences at the 5 percent level of confidence between the low-beam-high-beam combination and between the low-beam-polarized-beam-with-visor combinations. The data from the performance test alone showed significant differences between the high-beam-polarized-beam-withglasses combination and between the polarized-beam-with-visor-polarized-beam-with-glasses combination. The latter differences are probably due to the driver's alertness during the performance runs and the stimulation from the involved risks, as the tests had been performed under more realistic conditions.

In general, it can be concluded that the drivers required a slightly longer gap in traffic to enter the intersection when the glare level was highest-high beam and polarized beam with visor. This difference in gap acceptance usually was no more than 50 feet. (Sce table 3.) For the performance run, the mean values for all 10 drivers of each age group are given in figure 6. Comparable data from the $20-$ and $45-\mathrm{m}$. p.h. judgment run are also shown in figure 6 . These two sets of data
shown in figure 5. The additional lamp just to the right of the license plate had not yet been installed when the experiment was conducted. For practical reasons, the lamps of the opposing stationary vehicle were mounted on a test stand directly in front of the vehicle, instead of on the vehicle itself. These stationary lamps were powered by a 12 -volt battery, which was charged continuously to maintain the same intensity of illumination throughout the experiment. To produce polarized beams, dichroic filters were placed in front of the headlamps and alined to set the vibration plane of the emergent light at 45 degrees to the horizontal plane. The axis of the analyzer had the same orientation and, therefore, was perpendicular to that of opposing headlamps.

Results

To combine the data from the runs at different speeds, the gap-size data-elapsed time between the action taken (decision) by the

Figure 8.-Discomfort-glare evaluation for each lighting mode.

Figure 9.-Gap-acceptance distribution for each lighting mode and age group, performance tests.

Figure 10.-Mean gap-acceptance times for each speed.
show similar trends; the small differences in the judgment runs were due largely to the experimental situation.

As shown in figure 7 for the performance runs, the high beam and polarized beam with visor produced almost identical distributions of gap size. Greater variability was observed in runs using these two lighting modes (table 3 and fig. 7). The data for low beam and polarized beam with glasses, although again clustered about the same points, demonstrated much less variability. The data from the judgment runs were much the same, but the differences were less striking.

The test situation was developed to determine the effect of glare from an approaching vehicle oriented 90 degrees to the subject's vehicle. The visor in the subject's vehicle was mounted on the sun visor and protected the subject only from glare directly ahead. When the subject turned his head to look at the test vehicle approaching from his right, he was no longer protected by the visor and, consequently, received approximately the same glare intensity as that of the high beam. The glasses, on the other hand, provided protection regardless of which way the driver turned his head. Accordingly, it would seem that glare level was the prime factor that caused the differences in test results of the four lightingmode conditions.

Discomfort ratings

As mentioned previously, the subjects were asked to evaluate their discomfort at the completion of each run. The results of their evaluations are shown in figure 8. As expected, in both age groups, the low-beam condition was rated best, the high-beam condition worst, and the two polarized conditions in between. In all probability the polarized condition with glasses would have received lower discomfort scores had the drivers been able to aline the axis of their glasses perpendicular to the axis of the polarizers on the approaching vehicle. Such alinement is easy to accomplish in a head-on situation, but when the approaching vehicle is at 90 degrees, the normal tilt of the driver's head makes alinement more difficult. Two of the 20 drivers, both in the older group, objected to the polarized glasses and used them hesitantly in the runs. Their objections probably were due to the general hesitancy of older people to wear glasses.

Contrary to expectation, the numerical rating of discomfort was somewhat lower in the older group of subjects. Individuals more than 50 years old generally have a higher sensitivity to glare; consequently, it was expected that they would experience more discomfort. One explanation for the lower rating is that these subjects over compensated in their subjective evaluations, due to the fact that they usually have more difficulties with night driving. Another possibility is that this particular group was not typical of the over-50 category.

It was much more difficult to recruit the older subjects, and it is likely that the selected individuals in the older group had better visual abilities than would be suggested by
the normative data published for that age group.

Statistically significant differences were shown by the performance runs of the two age groups. In figure 9 the distributions of the two age groups for each lighting mode are compared. The older group had a higher variability and possibly required somewhat longer distances to perform the task.

Speed

The effect of speed on gap acceptance was examined for the four speeds used during the experiment.

In the judgment runs, the difference between lighting modes at different speeds was not significant, but on the performance runs, the interaction of speed and lightingmode differences was statistically significant.

According to figure 10, gap acceptance times associated with high-glare lighting modes were longer during the performance runs. The lower speeds produced longer gap times, which presumably was due to the driver's uncertainty in judging the speeds of the oncoming vehicle.

Discussion and Summary

The study reported here was designed primarily to determine the effect of approaching vehicles' headlight glare on gap-acceptance behavior at a right angle intersection. In general, the four vehicular lighting systems employed could be divided into two sub-groups-those that produced at the eye of the subject driver a low level of glare and those that produced a high level of glare. There was a consistent pattern of differences between the lighting modes, especially under the fully dynamic test condition in which the subject was forced to take risks. Under the more glaring conditions, the subject drivers required a longer gap-acceptance time and there was more variance in the data, although the variance was not large enough to cause the two distributions to overlap completely. When exposed to the high-glare conditions, the subjects never accepted gaps quite as short as those that were accepted in the extreme low-glare conditions. Therefore, the high-glare conditions appeared to make drivers behave more conservatively and to induce a somewhat greater margin of safety.

The advantage of low glare headlight systems in terms of gap acceptance was significant, but whether the relation has any practical significance is questionable. In the tests, the gap-acceptance differences were small; however for the older group of subjects in the performance study, differences in mean values between extreme conditions were as much as 100 feet or more (table 3). Such large gap requirements might have an adverse effect on traffic flow, particularly when a high volume exists, as during the evening peak hours on the main road. If a polarized headlight system is employed to obtain the superior forward, head-on visibility that other studies have shown it to have, then more effort should be concentrated on the design of a better analyzer or viewer system to give drivers glare protection from the side. This
may be especially desirable for older drivers, although it has been shown in several studies that older drivers drive little after dark.
There was evidence from the study that a satisfactory analyzer could be designed for use in a polarized headlight system. A polarized system in which a visor protected the driver only from oncoming glare produced much the same gap acceptance distribution as the high beam mode, because the visor was ineffective for sidewise glare protection. The situation was improved by use of glasses which did provide protection from the sides also.
In the performance studies, the younger age group usually had lower gap-acceptance values and showed less variability in their performance than the older group. In the judgment studies, the differences were less sharply defined; both groups had the same pattern of acceptance values for the four lighting modes. For the right-angle approach situation studied, the majority of drivers in both groups expressed the opinion that either polarized lighting system was better than conventional high-beam lamps, but that low-beam lamps were least bothersome of all.
No significance difference among vehicular lighting modes at the different speeds was shown by the experiment. As might be expected, the minimum distances that the subjects considered safe for gap acceptance at low speeds were less than those accepted at higher speeds, however, in terms of time gaps, the gaps were somewhat larger at lower speeds.

A comparison of the data obtained under the two methods of study-performance and judgmental-indicated that only the fully
dynamic test situation gave valid results for the type of complex behavioral situation studied. Until a subject is exposed to a realistic situation that he assumes is a normal risktaking situation, the results, though perhaps showing appropriate trends, will not necessarily be indicative of real world performance. Future investigations of the effect of vehicle lighting systems at intersections, accordingly, should be conducted under fully dynamic test conditions.

Conclusions

- The distance interval accepted by drivers as a minimum safe gap in which to cross an intersection was somewhat longer under conditions of forward vehicular illumination that produced more glare. The more glaring conditions also produced more variance.
- If a polarized headlighting system is to be employed, it is desirable to provide the driver with an analyzer system that protects his vision when he encounters vehicles from the side as well as those from head-on.
- Younger drivers had shorter gap acceptance values with less variable performance than older drivers over 50 years of age.
- Subjective discomfort glare evaluation indicated, for the situations studied, that both polarized systems were superior to conventional high beams but that low beams were least bothersome.
- The minimum time gap was somewhat larger at lower speeds.
- If the effect of vehicle lighting at intersections should be further investigated, a fully dynamic test procedure should be used.
(Continued on p. 15)

Table 3.-Mean gap acceptances and standard deviations

Speed and age group	Lightning mode							
	Low beam		Polarized beam				High beam	
	$\begin{gathered} \text { Mean } \\ \text { gap } \end{gathered}$	Standard deviation	Glasses		Visor		$\begin{gathered} \text { Mean } \\ \text { gap } \end{gathered}$	Standard deviation
			$\begin{aligned} & \text { Mean } \\ & \text { gap } \end{aligned}$	Standard deviation	$\begin{aligned} & \text { Mean } \\ & \text { gap } \end{aligned}$	Standard deviation		
Performance test								
20 and 45 m.p.h.: Both age groups 18-30 years old. More than 50 years old \qquad 20 m.p.h.: 18-30 years old \qquad More than 50 years old \qquad 45 m.p.h.: 18-30 years old \qquad More than 50 years old.	Feet							
	223.2	73.81 75.40	227.1 234.3	76.89 70.62	285.0 279.5	${ }_{87}^{82.12}$	${ }_{277} 78.2$	86. 10
	240.3	72.31	220.0	88.15	290.6	103.52	2704.0 284.0	91.26
	$\begin{aligned} & 160.2 \\ & 185.2 \end{aligned}$	66.59 64.22	$\begin{aligned} & 186.2 \\ & 198.3 \end{aligned}$	$\begin{aligned} & 72.68 \\ & 71.98 \end{aligned}$	$\begin{aligned} & 242.6 \\ & 272.6 \end{aligned}$	$\begin{aligned} & 58.25 \\ & 88.52 \end{aligned}$	$\begin{aligned} & 239.3 \\ & 224.4 \end{aligned}$	$\begin{aligned} & 60.85 \\ & 80.54 \end{aligned}$
	252.0 295.4	67.37 91.63	282.4 241.7	79.26 80.89	$\begin{aligned} & 316.4 \\ & 30.6 \end{aligned}$	98. 19	$\begin{aligned} & 301.7 \\ & 343.7 \end{aligned}$	$\begin{array}{r} 94.08 \\ 110.63 \end{array}$
Judgment test								
$20,30,45$ and 60 m.p.h.: Both age groups 18-30 years old More than 50 years old								
	253.2 256.0	65.4 78.5	273.5 280.3	61.4 78.9	285.4 281.2	96.4 108.8 8	279.2 283.2	88.8 89.0
	250.1	71.5	266.7	66.2	289.7	89.4	274.0	79.2
$\begin{aligned} & 20 \mathrm{~m} . \mathrm{ph} . \mathrm{F} \\ & \text { 18-30 years old } \\ & \text { More than } 50 \text { years old. } \end{aligned}$	195.8	65. 66	190.7	50.80	185.9	55.13	186.8	56. 65
	204.2	54. 60	225.3	59.90	243.4	76.37	231.7	57.47
$\begin{aligned} & 30 \text { m.p.h.: } \\ & \text { 18-30 years old } \end{aligned}$								
More than 50 years old	232.7	80.08	249.6	74. 90	272.1	189.79	255.4	80.92
45 m.p.h.:	254.4		294.2	90.49	295. 2		313.8	
More than 50 years old	264.9	89.74	276.6	74.87	304.8	91.06	285.0	88.16
More than 50 years old...-	300.1	98.30	315.3	68. 63	338.5	125. 65	324. 2	$\begin{aligned} & 128.12 \\ & 124.01 \end{aligned}$

State Highway Department Management Part 2.-Training and Manpower Development

BY THE OFFICE OF RESEARCH AND DEVELOPMENT BUREAU OF PUBLIC ROADS

Reported by DAVID H. SUMMERVILLE
Management Analyst, Economics and Requirements Division

Introduction

0NE of the obvious needs of contemporary State highway departments is a greater mphasis on the training and development of aighway personnel. This need was clearly lemonstrated by several State highway lepartments that undertook studies in a rogram that dealt with specific aspects of ,ersonnel training and development to ittempt to improve highway department idministration and management. Highlights rom these studies are presented here hopeully to motivate other State highway departnents to review the basic studies and apply hose findings that are adaptable to their ituations. Those areas of training and levelopment determined to be of general ignificance or interest to the management unction are dealt with primarily.

Although the subject areas and problems of the participating States were frequently elated, it was difficult, and sometimes imossible, to extract applicable generalizations rom the individual studies, largely because rach of the individual studies had specific

This is the second part of a report on management studies that were conducted in several States to upgrade the quality of highway administration. The findings related to highway department organization, or structure, were presented in the February 1970 issue of PUBLIC ROADS, vol. 35, No. 12, Additional findings of other aspects of highway department management will be presented in a future issue.

The information in this part is not intended as a comprehensive guide for developing training and manpower programs. It reports on the significant findings of the State-conducted studies that might be of general interest to highway department personnel who deal with training and manpower-development matters. Although many of the findings have general application, some are specifically suited to the State that conducted the study.
objectives that differed from those of the other studies, as well as problems to solve that were peculiar to the particular State. Consequently, most of the solutions and findings were suited to the State conducting the study.

Because of the many divergencies-organization, size, population patterns, political climate, and training needs-that exist throughout the States, the conclusions presented are not necessarily the best or only solutions, but are the ones that were gleaned
from the studies conducted by the participating States.

Manpower and Training Needs

In recent years training needs of State highway departments have increased for all employee levels and categories, owing to the upsurge of expansion being experienced by all State highway departments. Although somewhat a result of the increase in the
total mileage of the State highway systems, this expansion is primarily a product of the planning, construction, and maintenance of new roads in the Interstate and Defense Highway System. Construction especially has increased, as indicated in Mimnesota (1) ${ }^{1}$ where construction expenditures have increased 2.4 times in the $1955-64$ period. According to a study in the State of Washington (2), highway construction is predictable, at an accelerated pace, with reasonable accuracy through completion of the current Interstate road program. Projecting beyond completion of the Interstate program the Washington study assumed that other highway programs will be undertaken, probably at a cost of about 75 percent of the projected Interstate volume.

Since commencement of the Interstate program, there has been a substantial increase in total highway expenditures, owing largely to emphasis on Interstate-System construction. In Minnesota (1), Federal aid in 1966 constituted about 50 percent of the highway department's entire budget. Large expansion of this type, with subsequent increased expenditures, has resulted in monumental increases in the workloads of State highway departments. Moreover, additional increases in workloads have been caused by new technology and by the complexity of highway operations, as well as by the increased number of departmental activities-traffic safety, data processing, planning and programing, management services, etc. In keeping with the general overall amplification of highway operations, highway department staffs have been increased, but the staff increases have not kept pace with the expanded workloads, and numerous management problems have been created.

These relatively recent problems have resulted in expanding program needs, rising State expectations, additional financial needs, and requirements for more effective public relations for a variety of reasons:

- Construction of the Interstate System.
- Need for more roads-to meet future requirements.
- Increased maintenance requirements
- Safety programs-as traffic increases and becomes more complex.
- Growing State populations-requiring more and better highways to meet their growth potential.
- Need for additional funding-to meet expansion.
- Need for good working relations with the public-to obtain needed funds.

Highway managers will need to keep aware of both changing state requirements and changing expectations of highway users. They must also be prepared to manage a larger and continually expanding program. The highway departments will need a plan of organization that is matched to the rapidly changing and developing programs. Highway department exceutives will need to adopt improved and more sophisticated operating methods and

[^2]management controls. Manpower and facilities will need to be used effectively. The total amount of manpower that highway departments can command will always be limited; consequently, effective use of available staff will be necessary. Shortages of qualified executives and technicians will necessitate particularly effective supervision of those available and development of those capable of assuming greater executive and technical responsibility. Changing requirements and expectations must be studied continuously to provide goals that meet them, to provide a source of directed action for highway departments, and to provide a cohesive team approach for all the geographically separated elements of departments.

Selected State Study Findings

Most highway department training programs neglect the management aspects that are extremely necessary to the modern administrator. Many of the State studies indicated the need for training in administration and management as well as in technical skills. In the Minnesota report (1), it was stated that a higher degree of managerial skill will be required in the future because of larger, more complex programs, and that to prepare future executives with the necessary background, the department should undertake a management development program. Despite the pervasive tendency to specialization, men capable of manning higher caliber positions than those taken immediately after graduation can be developed and the interests of both the individual and the highway department can be better served by giving the trainee at least an initial program of managerial training to prepare him for future leadership.

It is evident, however, that many of the recent additional highway functions are technical even though they are not necessarily compatible with traditional skills. In several of the State studies it was noted that additional training is needed in specialized technical areas, including, safety, traffic and highway control, finance, and computer application. It was also noted that training is warranted in any specific technical area in which a traince is deficient. In fact, many trainees and managers need instruction in basic communication skills, both written and oral.

There is a very definite nced for training programs dealing with supervisory and managerial knowledge and skills. Management personnel, as well as potential management personnel, should be acquainted with techniques that have been proved effective in managing large operations. Highway management cannot use outmoded techniques to build modern highways, but must take full advantage of current management methods dealing with manpower utilization, planning and programing, data processing, and policy and procedure. Because of ever increasing expenditures, management also must have an understanding of long-range financial planning and cost control. Work scheduling
can be made more effective with the application of new electronic-computer techniques like PERT and Critical Path Method.

A knowledge of working relations, both internal and external, also is necessary in training effective managers. Internally, the administrator must be aware of department organization and of how the different bureaus and offices are related. He must also have an understanding of basic personnel and contractural relations. External relations include the general public; other units of the State government, including the governor and the legislature; and other governmental entities like counties, municipalities, and the Federal Government.

Although heretofore the need for management training and development has been stressed, the limitations to the effectiveness of training in the overall scheme of manpower development must be recognized. Determining management needs is an operation that must account not only for training but also for the more comprehensive management development problems. For example, in the Indiana study (3), several steps to continue the improvement of employee training and management development, were outlined as follows:

- Perform a continuing study of the highway commission's managerial, supervisory, and technical personnel. Inventory manpower periodically to provide the data necessary for this study-employee qualifications, performance, promotion potential, and development needs. Include employees in all classifications under the career employment policy on this inventory.
- Develop a system to catalog the inventory data so that it will be readily accessible and usable.
- Develop a continuous, 5-year projection of manpower needs to consider anticipated attrition or any contemplated organizational changes, and base the projection on an established program of future highway improvements. Review and update the projection annually.
These steps were implemented by the consultant who conducted the Indiana study, and as a result, the following information is continually available:
- Short and long-range managerial personnel needs are known before they occur.
- Specific capable individuals who are worthy of promotion to higher positions, as well as those who possess potential ability to advance in the future, have been identified.
- A sound basis has been provided to plan and conduct personnel training and individual development activities to meet definite needs and to qualify for advancement those persons having promotion potential.
This management development program now serves as a guide for planning future training and development requirements.

Training is only one of the tools that can be used to strengthen the skills of new and old personnel alike; in fact it is often an inadequate solution to acquiring new skills. Nothing can take the place of experience in making sound
judgments nor can anything replace satisfactory work performance. Training therefore is just an aid to management development and rates with other factors like experience, maturity, and responsibility.

There is a great need for a system that requires superiors to appraise their subordinates periodically and to review the appraisals with the individuals involved not only to let them know how they are doing and what their strong and weak points are, but also to provide counseling as to how weaknesses may be overcome and overall performance improved. Some of the descriptive terms for qualities and characteristics that often need improvement are: diplomacy, tact, consideration of others, forcefulness, aggressiveness, initiative, ambition, self-confidence, self-reliance, control of emotions, tolerance and patience, and job interest. Many of these characteristics can be corrected or improved if the individual is made aware of his deficiencies and is told how they are affecting his performance. Without a system that requires periodic appraisals and reviews by superiors, subordinates' performances will not be openly discussed, as supervisors tend to avoid the seemingly unpleasant tasks of discussing individuals' deficiencies.

Minnesota

Progress from the beginning-level positions is not enough to insure competent future management because too much strain is put on the highway department to develop and identify the beginning employees who have potential for advancement. In the Minnesota study (1), this problem was noted and it was recommended that more emphasis be given to manpower planning and development. It was also noted that the personnel systems and procedures of the Department of Highways were oriented toward meeting the requirements of civil service practices and policies regarding recruitment, placement, classification, evaluation, and promotion. In these areas, the Department of Highways had only limited options, and a number of prerogatives that were not fully exercised in the system were pointed out:

- Manpower planning was limited to itemizing personnel needs for inclusion in the biennial budget. No effort was made to translate the construction program into its long term personnel requirements.
- The personnel requirements included in the budget expressed needs in terms of additional positions and titles. The Department did not develop its requirements in terms of skill shortages and position vacancies caused by retirements, transfers, and turnover.
- The training activity of the Department tended to focus on beginning technical positions and made only limited provision for administrative and management positions.
- Development of future managers in the Department was left to the initiative of individual supervisors. There was no process for identifying potential managers and for strengthening their skills for responsible future positions.

On the basis of these observations, the following recommendations were offered: (1)

Make manpower planning an integral part of the Department's 5 -year program (2) establish a management-development program to identify and train future highway exccutives, and (3) broaden the training and development program to encompass nontechnical areas and to include positions above the starting level. These recommendations are discussed in the following three paragraphs.

Manpower planning-To prepare its 5-year program, the Department must establish its future workload, therefore, each operating unit should be able to translate its workload into manpower requirements. The office of personnel services should be responsible for compiling the approved manpower requirements of the departmental units to develop the overall manpower requirement plan of the first recommendation. The plan should identify anticipated departmental staffing levels for each year included in the plan, the staffing levels of each unit, and the type and proficiency of required skills. The plan also should guide the recruiting and training activities of the offices. Additional information on manpower planning will be presented in a future issue of this journal.
Management development-In the Minnesota personnel system, career progress from beginning level positions is emphasized, and consequently, the Department has a heavy responsibility for identifying and developing the beginning employees who have potential for advancement. It does not concentrate on this responsibility, however, and leaves career progress largely to individual intitiative and ability to pass promotional examinations. In future years the problem of managment succession will become even more serious than it is today. Employees who entered the Department during the 1930's are retiring in large numbers and the salaries and benefits offered by private industry make it difficult to find suitable replacements. The Minnesota report, accordingly, recommended that the Department undertake a managment development program that would include the following basic elements, or development guides, which in turn should be used as the basis to formulate the content of the training and development program:

- Develop a set of performance criteria for each job in the Department.
- Have supervisors suggest names of individuals who should be included in the initial group to be trained for more managerial responsibility.
- Gather data on each individual's background, education, and experience.
- Develop an appraisal form by which each supervisor can evaluate the present job performance and managerial potential of his suboridnates. The appraisal should identify strengths and development needs.
- Have the professional personnel staff interview each of the employees to obtain an objective evaluation of the employee's interest, strengths, development needs, and career potential.
- Develop for each employee a career development guide from the material collected and from the interview notes. The guide should
identify the employec's potential and the area in the organization where he is best suited to work, as well as recommend a training program to help the employee fulfill his potential.
Broadening training and development-It was recommended in the Mimnesota report that the content of the training program be broadened to include the following areas and needs:
- Technical training to provide the skills necessary to do the job for which a person is hired.
- Supervisory training to prepare employecs to direct groups of other employecs. This training should include labor relations, work planning, work methods, budgeting, and manpower controls.
- Management training to provide employces with the sophisticated control techniques necessary to manage large scale operations such as work scheduling, PERT and Critical Path analysis, project control techniques, and management reporting.
- Job rotation among the Department's units to expose individuals to the total operation and increase their grasp of the magnitude of the management task.
- Formal specialized university courses for selected individuals who require additional education in areas of interest to the Department.

As pointed out in this discussion of the Minnesota study, the training of new management and other personnel must be inclusive enough to produce men capable of higher caliber positions than those usually occupied by trainees immediately after graduation. Training is a major requirement in any organization and an effective training program for highway departments should be given top priority and consideration. The major aspects of the management development program recommended in the Minnesota study have been implemented largely through the impetus of the management study.

Indiana

The need for increased emphasis on manpower training was illustrated by the Indiana State Highway Commission's study (3), It was shown in this study that in 1964, there were 5 percent fewer engincers in the 41-55-age bracket, in which personnel were seasoned and experienced, than in the over-55-age bracket, in which personnel were approaching retirement. It was also shown that 19 percent of the Department's engineers wore expected to retire during the next 5 years.
According to the study, recruitment of engineers in quantity was not a large problem, but because successors to prospective retirees were often in the same age bracket as the prospective retirees themselves and because experienced young men capable of promotion were few, the normal line of succession provided little backup for key positions. This disclosure indicated that promotion opportunities were available mostly to younger inexperienced men and pointed up the need of a training and development program for managers. The consultant who performed this study reported that uncovering this situation moved the Highway Commission to employ a professionally qualified personnel director
and establish a training function in the Personnel Division. The Commission further provided for a qualificd training director to develop an effective training program, which will be described later.

As previously mentioned, improved teehnology and complex highway operations have added many new functions to the highway program and increased the number of skills necessary for efficient operation. For this reason any effective management training program must have clearly defined objectives to provide:

- Highly qualified persons for each position.
- A reservoir of skills to improve organization and program effectiveness.
- A means of appraisal to select individuals for promotion.

These training objectives must be compatible with the overall department objectives, but they must also be flexible enough to permit fitting the training to the trainec's needs, interests, and qualifications, as well as to the needs of the department. Goals are necessary for a training program both to pinpoint additional needed areas of training and to help climinate time that might be used to develop skills already considered adequate.

Virginia

Traditionally there has been little deviation in the training of new engineers who will eventually assume management positions. What might be considered a typical program to train engineers for management positions was described in a report prepared from a study of Virginia's graduate engineer training program (4).

The Virginia Department of Highways, the first State highway organization in this country to begin a formal training program for graduate engineers, began its engineer training program in 1945. The originally announced intention of the program was to provide a 4 -year on-thc-job course specifically designed to meet a pressing demand for assistant resident engineers. The program was divided into six basic areas: surveys, location and design, bridge design, materials control, construction, and administration. It also provided for a possible further research assignment. During the period 1945-63, trainee losses were greater than anticipated, and the Virginia Department of Highways initiated the aformentioned study to investigate the effectiveness of the program and determine ways to better serve the aims of the program. As one of the conclusions of this study was that the 4 -year training program was too long, the overall length of the program was reduced from 4 years to 30 months.

Louisiana

A comprehensive study of the State high-way-maintenance organizational structure and of its operating policies and practices was conducted by the Louisiana Department of Highways (5). The study consisted of several parts, each of which produced results that reflected the findings, developments, and
recommendations of a specific research area. One of the specific arcas, Manpower Inventory and Training Needs Analysis, was completed in 1967 and uncovered some unique training needs and limitations on personnel training.

The situation in Louisiana was unique in that both French and Cajun languages were used by maintenance personnel in addition to English. Large differences in the educational levels of supervisors and potential supervisors were revealed. Of the supervisors, 34 percent had fewer than 8 years of education, and only 32 percent had graduated from high school. Only 7 percent of the supervisors had attended college, and only 3 percent had graduated from college. Of the potential supervisors, 63 percent had fewer than 8 years of education and only 11 percent had graduated from high school.

These differences in educational attainments among persons of the same training population indicated a need for carefully prepared training materials that could be understood by all personnel without reducing the motivation of better educated individuals. Any training program would have to include basic courses that would be prerequisites to technical courses for persons with limited educations, and training materials would have to be developed in at least two languages. The study concluded that basic training policies reflecting the needs of the Department should be adopted, that maintenance training materials should be developed from the activities performed in the maintenance function, and that development of these materials should consider variations in age, education and experience, limited capacities of persons to work with abstract matters and, the capacities of persons to work with mainte-nance-related problems.

The Department of Highways has developed a training program that includes maintenance training. The subject matter for maintenance training is developed and approved by experts from the maintenance organization, and a training specialist then converts the approved subject materials into training manuals, which are subsequently used by the Department after they have been appropriately tested.

Typical Training Problems

Management training is never completed, because requirements, situations, and people seldom are static in a progressive, dynamic organization. The problem therefore is to determine what kind of training is required, where it is needed, and what the best means are of accomplishing it. To be successful, the training program must have clearly defined goals that are formulated for compatability with department objectives so that training can be fitted to the changing needs of the organization it serves.

The content and goals of the program must not only be carefully outlined and clear to both training staff and the trainees, but they must be understood and used to the best advantage by the department. Often when the aims are not understood, resistance to the training pro-
gram develops. For example, maintenance type training programs, in which poorly educated, less knowledgeable maintenance employces fail to recognize the intended benefits of management training, may be resisted because personnel are reluctant to risk comparisons of their backgrounds with those of better educated, more knowledgeable individuals. In such situations, a training program that permits the employee to learn at his own pace, spares the embarrassing exposure of his lack of knowledge to other trainees and to instructors. In the report of the Louisiana study (5), which dealt with the training of maintenance personnel, it was stated in one of the conclusions that the maintenance function should continue employment of existing supervisory personnel with limited learning potential while it develops more capable supervisors from other personnel with adequate learning potential. It was further stated that any employer who demonstrates such a lack of interest in his employees that he would take steps to reduce the rank of a significant number of employees, to isolate them, or to terminate them because of changes in personnel standards, can expect difficulty in recruiting and retaining personnel who meet new standards.
One form of resistance to on-the-job training is the giving of preference to workloads rather than to training. When the workload is overemphasized, the training program is not fully effective and is being used most inefficiently. Moreover, supervisors can sacrifice training and use trainees to complete jobs. In the Mississippi study (6) it was noted that on-thejob training is of ten made more difficult when the trainee is assigned a new job experience. This occurs when construction activity is at its peak and experienced personnel, who assist with training, are spread to the limit. Therefore, if on-the-job type training is to be fully effective, training should have priority over workloads, except in emergency situations.

A functional and effective training program must have an aggressive training administration with capable supervisors for on-the-job training as well as professional training personnel. The training supervisors should be authorized to obtain qualified employees from the department to assist in developing effective manuals and to serve as instructors. Training manuals must be written in language that is at the trainee's level of comprehension. Instructors must be given sufficient advance notice of their instruction schedule to permit them to prepare their training materials well enough to give the trainees full benefit of their knowledge and experience. Also, in maintenance training, and in other types of training to be performed at district and field levels, it is necessary to have the program developed and administered at headquarters to insure high and uniform standards of training throughout the department.
The success of a training program is also dependent on other factors. For instance, the length of a formal training program is very important. It must be long enough to cover adequately the various aspects and phases of the program, but be brief enough to be prac-
tical and interesting to the trainee. The Virginia training program for graduate engineers was too long according to many of the engineers who had completed the program, and the basic formal training program was shortened from 48 months to 30 months.

A good orientation phase is also important to a well designed training program. It helps both to acquaint the trainee with the aims of the training and to make the trainee feel at home in the department. Orientation is especially important for trainees recently recruited for formal training programs. These factors and several others will be further discussed later when retention is considered.

The Virginia study was designed to revamp the existing graduate engineer training program to increase its effectiveness and the retention rate of graduates. The study proposed a new curriculum to solve some of the problems of the old one-mainly reduction of material devoted to construction matters. Interspersed in the new program are varied short periods devoted to introduction to the training policy and orientation. However, even after shortening the overly long program, a considerable portion is still devoted to construction matters, and administrative training has been shortened instead of increased. From evidence in several of the State studies, it would seem that administrative and management aspects should be increased rather than decreased because of the ever increasing demand being placed on all levels of both supervisory technicians and professional personnel.

Organizing and planning a training program is not a prearranged or set process. Attention must be given to the objectives and goals of the Department as well as to training needs. In attempting to solve old problems, no new problems should be created. Before the formulation of a program is attempted, each aspect of organized training must be studied thoroughly by professional training personnel and by experts from the various disciplines. The final product, an effective training program, necessarily must be a composite of the best solutions for each problem defined by the needs, limitations, and peculiarities of the particular department.

Types and Methods of Training

It is often effective to use more than one type of training in a training program. The most important consideration is that the most effective type of training be selected for each requirement. In many situations formal on-the-job training has proved to be the most effective way to develop a new engineer. It is especially effective in smaller organizations in which development of a sophisticated classroom and work activity would be virtually impossible. On-the-job training has the advantage of giving the trainee both the necessary technical skills and a working knowledge of his impending job. Also, simply by informal job rotation, the individual can be exposed at least to the total operation and magnitude of the organization.

However, many of the new management techniques are too complicated to be efficiently taught while its trainces are on the job. Most management presentations require classroom training, which is harder to justify because it removes the individual from his regularly assigned work and increases the workload of others, even though the training is necessary. This problem can be partly solved by conducting classes during slack work periods.

Management techniques often can be taught more effectively outside of the organization because of a lack of qualified instructors in the organization. In the Washington study (2) it was suggested that formal management training be offered outside of the department at various training seminars or programs available through universities and associations. This method of training can even include such programs as subsidized study at a recognized graduate school of business. In the Indiana study (3) use of an annual road school, a cooperative venture between the State Highway Commission and Purdue University, was utilized. This school is held annually at Purdue University for State, city, and county highway personnel, as well as for contractors, materials and equipment suppliers, and others involved with highway matters. Papers on various technical subjects are presented at many of the sessions held at the school. Other sessions are discussion type seminars on various subjects suggested by the attendees. Highway Commission attendance usually consists of high management personnel and a few engineers from the different districts.

In some States, formal out-service training is encouraged by reimbursing employees for all or part of their tuition and fees for courses of study taken on their own time. Of course, the studies must be adjudged beneficial to both the employee and the highway organization.

Indiana also has an interesting arrangement in which two men alternately attend work and school while earning their degrees in civil engineering. The two men share a given job in the State Highway Commission and alternate their attendances at school and work for specified periods-one man is on campus while the other is on the job.

Informal training and self-improvement should be encouraged as a supplement to formal training. Informal training might take several forms, one of which could consist of trainees passing on to associates and sub ordinates knowledge gained in formal training courses. Forms of self-improvement could be memberships in professional associations, selfadvancement through the study of professional journals, and self-study to qualify for licensing by professional boards.

The types and methods of training are many and varied such as formal, informal, in-service, and out-service. For any modern highway organization, a program that envelops all types is necessary to keep pace with changing requirements and demands. The problem is to determine the types needed for different requirements and how best to marshal the means
to conduct the training. A highwar organization should overlook no type of training that can contribute to a program that fulfills its needs.

Recruitment

Recruitment as it relates to obtaining qualified trainees for formal managementlevel training programs and positions is dealt with here. Often recruitment will take place within the organization, but for certain highlevel management positions, recruitment must be directed to outside sources where qualified trainees and persomel are available. The subject of recruitment as it relates to the personnel function will be discussed in more depth in a future issue of this journal.

One of the increasingly difficult tasks of highway organizations today is the reeruitment of qualified personnel to be trained for management level positions. It was indicated in several of the State studies that such recruitment in the past was limited largely to engineering personnel, but it is becoming increasingly apparent that top management requires training in other disciplines as well.

In the Indiana study (3) it was recommended that recruiting be broadened to include candidates with other than civil engineering backgrounds. This recommendation, which was adopted and implemented, refers particularly to the Commission's college recruiting program. It was the consultants' opinion that the recruiting of civil engineers was being overemphasized although it was recognized that the Commission's task was strongly engineer oriented because of its technical nature. However, according to the consultants, an organization as large and diverse in its activity as the Indiana State Highway Commission needed a greater variety of talent than was being employed at that time. Although the predominate need was for civil engineers, other positions could be filled as well or better by persons other than civil engineers with nonengineering or nontechnical qualifications.

It was also disclosed in the Indiana study that a number of civil engineers were employed as technicians, administrators, nonengincering specialists, and even clerks. The consultant concluded that because the organization had tended to operate without a long-range plan, insofar as manpower needs were concerned, there had been little attempt to analyze and determine the best kind of education and background for particular positions. He also concluded that improper use of civil-enginecring talent leads to crroneous conclusions about true engincer needs, contributes to the shortage of such talent, and deprives the organization of the contributions by persons with other knowledge and ability.

Effective recruiting can be aimed at both recent college graduates and private industry. The Washington study (2) emphasized that particular attention should be given to the methods of recruiting for management-level positions in administration and enginecring. It recommended, for the State of Washington, that the college recruitment program be expanded so that capable college graduates
with interests and talents in administration and engineering could be identified and encouraged to consider highway-department emplorment. It was noted that, in the past, this program had been restricted largely to civil engineering graduates.

In the West Virginia study (7), a recruiting source heretofore largely overlooked in highway recruiting, was noted. This study stated that a major criterion for a recruitment plan is. the selection of an area that is becoming indutrially depressed and where qualified people, many with outstanding experience, are available.

Both in colleges and in industry, the highway organization must attempt to get top quality candidates for its training programs by screening, by making offers to qualified candidates, and by developing followup programs to obtain candidates' acceptance. Many factors influence an individual's acceptance of employment for a training program. The Virginia study (4), which investigated the Department of Highways training program, examined this matter and disclosed the following important reasons why trainees accepted employment with the Department:

- The merits of the program itself-location, security, benefits, pay, recruitment program, and advancement opportunities.
- The experience to be gained in varied assignments.
- Interest in a highway enginecring career.
- Prior highway experience-full or part time. This is especially effective in recruiting college graduates.
- Short term employment before armedservices commitment or an interim employment.
- On the job training and/or refreshercourse possibilities.

Because of an ever increasing shortage of qualified candidates for employment and training, highway organizations have encountered stiff competition with industry and often lose top candidates owing to lower pay and less security than is being offered by industry. The salary scales of trainees, as well as of regular employees, must be kept competitive not only with other highway organizations but with industry as well. Job security and a well administered personnel program must be assured.

Many States have a well administered per-somnel-civil service system, but other States not only have no system but other factors, like political patronage, are detrimental. In Indiana, for instance, there was no career employment policy and little job security. But in the Indiana study (3), the consultant developed and recommended a career employment policy that specified position classifications to be included in the parameters of existing legislation and established the conditions and procedures for installing and administering a merit-type system, which included more than 100 classifications in the engineering, nonengineering, professional, administrative, supervisory, and technical categories. The career employment policy was approved by the State Highway Commission
and the Indiana State Department of Administration and placed into effect by executive order of the governor. Besides correcting the problem of job security for management, the career employment policy provided other benefits such as:

- Better employee performance, which improved considerably when it became apparent that job security and tenure was no longer tied primarily to political factors.
- Better qualified individuals were employed to fill vacancies as new recruitment sources were used and some selectivity in screening applicants' qualifications became possible.
- A new tool was available to attract qualified applicants. Persons who formerly would not consider employment with the Commission were now doing so.
- Training plans were initiated to further upgrade employee's capabilities instead of ignoring this important activity because of anticipated wholesale dismissals after changes of administration.
- A basis was now available to plan and develop a longer range personnel program, including training, as future needs were better known.
In competing with industry State highway organizations must offer benefits and security similar to those in industry if they are to attract well qualified trainees for top management and training programs. The trainee not only must be attracted to the work and its opportunities, but he must be motivated by them to have an active, positive attitude toward his career.

Retention

The success of a training program is measured by how well an organization can retain its trainese and graduates of training programs.

Of course, this measure of success can be applied to retention of all levels and categories of employees. However the following discussion is based largely on retention as it applies to trainees. A good retention rate indicates satisfaction with the training program and the organization itself. Many factors both inside and outside of a training program directly influence the rate of employee attrition. The following discussion, which is summarized largely from the findings of the Virginia study (4), deals with the more important reasons for trainees' resignations from the Department of Highways both during training and immediately following it. Also some reasons for a favorable retention rate in Virginia, as well as in other States, are mentioned.

Dynamic program goals and efficient planning not only influence employee retention directly, but these factors also help to establish nearly all the other related factors. For example, during the Virginia study a questionnaire was sent to the highway departments of other States to obtain comparative statistical and policy data relating to their current training programs. Response from Florida reported that the State has a relatively high trainee-retention rate for the following reasons:

- The program is established and well defined, and the content of each phase of training is described in detail.
- Although the training program is an in-service one, each traince is a working employee who is expected to perform his assigned job on the same basis as any other employee. Training is given preference, and when the allotted time is up on any phase, the trainee is transferred to the next phase.
- Usually, each trainee is visited at 3month intervals or at least once during each phase either by the Engineer of Research and In-Service Training or by his Director of In-Service Training.
- Trainee transferring is kept to a minimum.

Realistic training objectives are only partly adequate unless they can be communicated to the trainee and modified to fit the program and the changing needs of the trainee and of the highway organization. Communication is accomplished through orientation, evaluation, and counseling. Often a highway organization can seem large and impersonal, and orientation-introduction to the training program and to highway organization-is important not only to introduce goals to the trainee but also to provide the important favorable first impression. Response from Arizona to the Virginia questionnaire emphasized the importance of the personal touch that makes the trainee feel at home and treats him as an individual and potential leader.
Personal counseling and communication are even more essential than orientation in developing this feeling. Several States responding to the Virginia questionnaire indicated that visits at periodic intervals by upper echelon personnel from the organization instilled in the trainee a feeling of importance and prestige.

Organized counseling likewise is essential to the trainee in developing a long range assignment plan as well as in career planning. Within the sphere of counseling, trainee evaluation, as well as trainee planning, can be accomplished to some extent using devices like progress interviews. Other methods of evalutating trainees and training received reported by States having high retention rates were monthly progress reports by the trainee and monthly progress evaluation reports by immediate training supervisors. These evaluation reports can help determine the extent of training, degree of trainees' success, and areas of potential program improvement, all of which have a direct bearing on the trainee retention rate.

The length of the training program and the amount of employee relocation both affect the retention rate. The training program must be no longer than the minimum time required to adequately cover all aspects. Excessive moving, especially on short notice, must be kept to a minimum. Individual training schedules help the trainee anticipate major moves in advance. In Pennsylvania it was reported that trainees select the District they prefer, which is likely to be the location of their permanent assignment after they complete their training. Selection of the work
location not only satisfies the trainee but it also tends to improve the quality of training received, as the district engineer is then responsible for training his own future permanent employees.

Monetary remuneration that is competiive with industry is extremely important o successful trainee recruitment. Salaries ooth during training and afterward must be idequate. Long-range income, as well as idvancement possibilities, must seem attracive to the trainee. Although not directly elated to training, these factors together with fringe benefits, which are becoming ncreasingly more appealing to employees, are lirectly related to retention rates.
Military obligations also influence retention -ates, but this factor is one over which a uighway department has no control. A new lraft policy may help mitigate this factor.

The training and the work assigned after raining must be challenging. The variety and ype of work and training, the results of a job vell done, and the feeling of accomplishment ind responsibility are important factors nfluencing continued employee retention. Is with any responsible person, the trainee ikes to feel that his time is spent productively ind that his education and training are being used to advantage. By stressing the value of ontinued education and development, the rainee also can be made to understand that is future role will be an important one.
Every effort should be made to promote a ,ositive trainee-retention rate without sacriicing the goals of the training program. A raining program that leaves the trainee with positive, enthusiatic attitude toward the ,rogram and the organization is of the utmost mportance to effective highway management.

Evaluation of Training Programs

One of the prerequisites of a successful raining program is an effective evaluation rocedure. To understand the needs of the rainee and to plan an efficient training pro;ram around these needs, both management ,ersonnel and new trainees must be evaluated und rated periodically. Management personnel leed to be evaluated to determine their pronotion potential. Also the organization must rovide the means to develop and groom mployees who have promotion potential. Ivaluation should include such factors as ob performance, professional knowledge, udgment and decision-making ability, interst, cooperation, and leadership.

From a manpower inventory survey, the onsultant in the Indiana study (3) concluded hat the State needed a system that requires uperiors to appraise their subordinates ,eriodically. This conclusion, equally appliable to the evaluation of trainees, stated that uppraisal should be reviewed with the indiridual being appraised who should be told low he is doing and what his strong and weak ,oints are. Moreover, the superior should :ounsel the individual as to how his weaknesses nay be overcome and his overall performance mproved, based on a variety of descriptive
terms indicating qualities and characteristics such as diplomacy, tact, forcefulness, initiative, ambition, self-confidence, tolerance, patience, and job interest.

Concerning the training program itself, the training progress should be checked and reviewed regularly to insure adherence to the training plan and to discourage the use of trainces to offset workloads. According to the Virginia study (3), progress of trainees in that State had not been properly and regularly reviewed, and individual counseling for the most part was lacking. Furthermore, communication channels to express satisfaction or dissatisfaction were not clearly defined. Consequently, because of recommended corrective action, counseling sessions are now held with individual trainees at least every 3 months, and the system for evaluating trainees has been improved.

Effective evaluation is an invaluable basis for formulating the content of a training and development program, as well as for guiding the program itself. Evaluation also helps management in many other ways. For instance, evaluation criteria can produce a guideline to judge qualifications of new employees and applicants. It can also be used to develop a comprehensive management-development program that includes training but is not limited to it. After training has been completed, training evaluations can prove valuable in appraising managerial potential. Furthermore, as mentioned earlier, employee evaluation and counseling both during and after training can serve as a training device and be corrective in itself. Just giving an individual an awareness of problems concerning his many personal characteristics will help his self-improvement.

Evaluation then is seen to play a very important role in the overall plans of manpower development, specifically of training. It also influences the retention of trainees as discussed in the previous section.

Conclusions

This presentation was not intended as an exhaustive dissertation on all aspects of highway department training and development, but rather as the product of the findings of several State-conducted studies that dealt wholly or partly with the subject. Each of these State studies was devoted to a particular problem being encountered by the individual State. Therefore, comprehensive answers to the manpower problems of every State could not be given. Reports on the basic studies listed in the references contain specific information on these problems in the respective States who sponsored the studies.

The conclusions expressed here are more than a repetition of what others have disclosed. The findings helped to compile an outline of the different manpower and training aspects covered, and this article is meant to help draw those aspects into focus and demonstrate what must be considered in organizing and administering a manpower development and training program. The conclusions and findings were developed for particular States that may have had unique or
unusual training and manpower problems and must be judged accordingly. Thus considered, the material presented and the knowledge gained will be helpful in secking answers to highway department manpower and training matters.

REFERENCES

(1) Organization and Management Survey, Department of Highways, State of Minnesota, by Booz, Allen \& Hamilton, Inc., 1966.
(2) Report on Management Research Project, by Booz, Allen \& Hamilton, Inc., for Washington State Highway Commission, Department of Highways, 1965.
(3) Management Improvement Project, by Roy Jorgensen \& Associates for the Indiana State Highway Commission, 1962-64.
(4) Virginia Training Program for Graduate Engineers, Virginia Department of Highways, by VMI Research Laboratories, Virginia Military Institute, 1965.
(5) Louisiana Highway Research, Mainte nance Research Report Two-Manpower Inventory and Training Needs Analysis, by Roy Jorgensen \& Associates, for Louisiana Department of Highways, 1967.
(6) Training Manual for Inspectors and Technicians, by Mississippi State Highway Department, 1966.
(7) Highway Management System, State Road Commission of West Virginia, by Management Technology, Inc., 1964.

Driver Judgments as Influenced by Vehicular Lighting at Intersections

(Continued from p.8)

REFERENCES

(1) Comparison of Day and Night GapAcceptance Probabilities, by Nicholas G. Tsongos and Sidney Weiner PUBLIC ROADS, A JOURNAL OF HIGHWAY RESEARCH, vol. 35, No. 7, April 1969, pp. 157-165.
(2) Light Sensitivity as Related to Age and Sex, by Albert Burg, Perceptual and Motor Skills, vol. 24, No. 3, Part 2, June 1967, pp. 1279-1288.
(3) Polarized Light, Production and Use, by William A. Shurcliff, Harvard University Press, 1962, pp. 129 and 130.
(4) The Effect of Headlight Glare on Vehicle Control and Detection of Highway Vision Targets, by Roger H. Hemion, Southwest Research Institute, May 1968.
(5) Headlamp Beam Usage on U.S. Highways, by Charles T. Hare and Roger H. Hemion, Southwest Research Institute, December 1968.
(6) Disability Glare Effects During a Transition to Polarized Vehicle Headlights, by Roger H. Hemion, Southwest Research Institute, January 1969.
Table 2．－Vehicle－miles of travel in 1968 on all roads and streets，free and toll，by State and highway system－estimated by State highway departments

	品		边		令		$\left.\begin{gathered} \mathbf{c}_{8}^{8} \\ 0 \\ 0 \end{gathered} \right\rvert\,$		－		$\begin{aligned} & 8 \\ & \substack{x \\ \underset{\sim}{2} \\ \hline} \end{aligned}$	 	¢		$\begin{aligned} & \vec{n} \\ & \tilde{\sim} \\ & \end{aligned}$		$\left\|\begin{array}{l} 2 \\ \stackrel{2}{\infty} \\ \dot{\sim} \end{array}\right\|$	 			¢		88	f 0 0 0 i
			－				$\begin{aligned} & \infty \\ & \vdots \\ & \underset{\sim}{n} \end{aligned}$		8		$\begin{aligned} & \sum_{e}^{m} \\ & e_{0} \end{aligned}$		2			$\begin{aligned} & \text { 5yg } \\ & \text { minc. } \\ & \text { min } \end{aligned}$	$\begin{aligned} & \frac{\pi}{\pi} \\ & \hdashline 3 \\ & \hline \end{aligned}$		$\left\lvert\, \begin{aligned} & 9 \\ & \\ & \end{aligned}\right.$		y্ê		T－n	$\stackrel{\text { \％}}{\substack{\text { \％} \\ \sim \\ \sim \\ \sim}}$
	言高萝		辟		$\left\|\begin{array}{c} \vec{e} \\ \overrightarrow{0} \\ \overrightarrow{-1} \end{array}\right\|$		$\stackrel{y}{g_{2}}$		0		$\frac{N}{y}$	 	$\begin{aligned} & \frac{\tilde{2}}{2} \\ & \vec{n} \end{aligned}$					䟩呙だきたよ	$\mid \bar{x}$		登	$\begin{aligned} & \mathbf{W}_{6} \\ & 8 \\ & 8 \end{aligned}$	$\dot{\sim}$	
			$\stackrel{\sim}{\sim}$		－		8		0		$\begin{gathered} o \\ 0 \\ i \\ i \end{gathered}$	๗ ๙ 85	$\begin{aligned} & 8 \\ & 2 \\ & \vdots \\ & \hdashline \end{aligned}$				$\frac{\pi}{\square}$		\％		，		\％	\％
		¢	－		\＃	\％，	等		$\xrightarrow{\circ}$		$\underset{y}{\approx}$		$\begin{aligned} & 8 \\ & \stackrel{y}{2} \\ & = \end{aligned}$		$\begin{aligned} & \stackrel{n}{0} \\ & \vdots \\ & \hdashline \end{aligned}$				$$		$\begin{aligned} & \overrightarrow{7} \\ & \stackrel{⿳ 亠 二 口}{1} \\ & \end{aligned}$	$\begin{gathered} \infty \\ \infty \\ \hline \end{gathered}$	ず年	－
			$\stackrel{\circ}{\square}$		\％	※尺ㅠㄱ	莒		\mathfrak{m}	§own	$\begin{gathered} n \\ i n \\ i \end{gathered}$	85묵우，ar	\％		$\stackrel{\text { a }}{ }$		$\left\|\begin{array}{l} 0 \\ 8 \end{array}\right\|$	亿으N，8\％9\％	5	$x:$	$\stackrel{\approx}{\approx}$	$\begin{gathered} \stackrel{\sim}{\omega} \\ \underset{\sim}{\sim} \\ \end{gathered}$		N
			気	\mathbb{Y}	雨		¢		F		$\underset{\sim}{\infty}$		\％	nog	$\begin{array}{\|l} 8 \\ \underset{\sim}{8} \end{array}$		$\begin{aligned} & \circ \\ & 0 \\ & 0 \end{aligned}$	ダが，ズぎ	\％		～	$$	\bigcirc	$\stackrel{\text { \％}}{\substack{3 \\ ⿻ 上 丨}}$
			\％		た		\％		E	Migio		 	\mathfrak{y}		$\left\|\begin{array}{l} 8 \\ 8 \\ 5 \end{array}\right\|$		\％	and			$\begin{aligned} & \vec{t} \\ & \stackrel{\tilde{\infty}}{2} \end{aligned}$	$\begin{aligned} & \text { 旁 } \\ & \text { 势 } \end{aligned}$	～00	8
			－		$\begin{array}{\|c\|c\|c\|c\|c\|} \substack{0 \\ \hdashline \\ \hline} \end{array}$		艺		\％		$\begin{aligned} & 2 \\ & \sim \\ & \sim \end{aligned}$	ベゥデ土	$\begin{aligned} & \infty \\ & z \\ & z \end{aligned}$	a్ర	$\left\|\begin{array}{l} \tilde{y} \\ \vdots \\ \hdashline \end{array}\right\|$		䓓		\％${ }^{\text {a }}$			$\begin{aligned} & \frac{2}{c} \\ & \stackrel{\rightharpoonup}{c} \\ & \stackrel{\rightharpoonup}{x} \end{aligned}$	\％®	哭
	\％${ }^{\text {a }}$		寺		$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$				\mathfrak{m}		脪	马an	\mathfrak{c}		$\left\|\begin{array}{c} \ddot{2} \\ \dot{\sim} \\ \dot{m} \end{array}\right\|$		T		$\begin{gathered} \pi \\ \substack{\pi \\ \\ \hline \\ \hline} \end{gathered}$		－		9\％	N
	咢		\％	忥	$\begin{gathered} \stackrel{\infty}{\infty} \\ \stackrel{\rightharpoonup}{\infty} \end{gathered}$	品号茀禺嗃	$\underset{\sim}{\underset{\sim}{\sim}}$		管			Fib	$\begin{gathered} n \\ n \\ y=1 \end{gathered}$		$\begin{gathered} \text { 等 } \\ \hdashline \end{gathered}$		O		$\begin{gathered} \stackrel{a}{\hat{\omega}} \\ \underset{\omega}{2} \end{gathered}$		$\underset{\sim}{\infty}$		雨笑	$\stackrel{\text { t }}{\text {＋}}$
	7	F	\％	eig or	\％	욱ํํํํ	\neq	ぎすぐ	号		等		$\begin{gathered} 4 \\ 0 \\ -3 \end{gathered}$	78．	$\stackrel{@}{7}$	$\stackrel{\square}{\sim}$	\％	${\underset{\sim}{8}}_{-1}, 8, \underline{\sim}, \tilde{q}^{\sigma}$	$\left.\begin{aligned} & \frac{0}{2} \\ & \dot{c} \end{aligned} \right\rvert\,$		${ }_{\sim}^{\circ}$	$\begin{array}{r} \overrightarrow{8} \\ \dot{\omega} \\ \stackrel{y}{*} \\ \hline \end{array}$	\％	¢
			厢		$\stackrel{\text { \％}}{\sim}$		\％	呈苟m			$\left\lvert\, \begin{gathered} \infty \\ y_{1} \\ - \end{gathered}\right.$		$\left\|\begin{array}{c} \vec{a} \\ \underset{n}{2} \end{array}\right\|$	Kinco	－	N\％5．	İ	よう	$\begin{gathered} \tilde{\sim} \\ \underset{\sim}{2} \\ \hline \end{gathered}$	$=$			\％	\％
		울	\％	ogia	－		范		$\begin{gathered} \bar{m} \\ \sim \end{gathered}$	－	$\stackrel{\text { a }}{\ddagger}$		先		$\begin{gathered} n \\ \\ \end{gathered}$		5		\％		－		98	䓓
		ま゙った	$\stackrel{\sim}{n}$		会	웅．Fixy	考				$\begin{gathered} \infty \\ \\ \underset{y}{2} \end{gathered}$		N	$\begin{aligned} & \text { 哥表名感 } \end{aligned}$	$\begin{gathered} \text { च } \\ \stackrel{y}{0} \end{gathered}$		∞_{∞}		$\begin{aligned} & 0 \\ & \\ & \vdots \\ & \vdots \end{aligned}$				5	8 \％ a
			合		10				\mathfrak{c}		$\begin{aligned} & 8 \\ & \substack{8 \\ 0 \\ 0} \\ & \hline \end{aligned}$	ら゙テだがッデー			$\begin{gathered} \frac{7}{2} \\ \\ \hline \end{gathered}$		$\mathfrak{o l}$		$\left.\begin{array}{\|c\|c\|c\|c\|c\|} \hline \\ 0 \\ 0 \end{array} \right\rvert\,$	$\underset{\pi}{x}$	$\begin{gathered} \infty \\ z_{0} \\ \tilde{m} \end{gathered}$		9\％9	秫
			¢		$\begin{array}{\|l\|l} 8 \\ 3 \\ 3 \end{array}$	8ム⿳亠口冋⿱⿰㇒一乂心表に	$\underset{\sim}{0}$		$\begin{aligned} 0 \\ 0 \\ \vdots \\ \vdots \end{aligned}$	 Finició	8	テーテベッ	\%		$\left\lvert\, \begin{gathered} 2 \\ y_{0} \\ 0 \end{gathered}\right.$	OUGも	$=$	హ్ర్ల	$\begin{gathered} 0 \\ \hdashline \end{gathered}$		d	$\begin{aligned} & \text { ह } \\ & \text { M } \end{aligned}$	25	F
	\％${ }^{\text {\％}}$		$\stackrel{\circ}{2}$				$\begin{aligned} & \circ \\ & 0 \\ & \\ & \end{aligned}$		0				\sum_{n}^{∞}	mag eq	$\begin{aligned} & \underset{y}{z} \\ & \underset{\sim}{2} \end{aligned}$	「ごぎすぎき	$\begin{aligned} & 0 \\ & 0 \\ & z \\ & z \end{aligned}$		锥		$\begin{gathered} \infty \\ 0 \\ 0 \\ 0 \end{gathered}$			\％
		¢n may	$\begin{aligned} & 8 \\ & 8 \\ & 0 \end{aligned}$		$\begin{aligned} & x \\ & x_{n} \\ & \stackrel{n}{2} \end{aligned}$		$\begin{aligned} & \ell \\ & 0_{0} \\ & \hline \end{aligned}$		$\begin{array}{\|c\|c\|} \hline \\ 0 \\ \\ \end{array}$		0		$\begin{aligned} & 5 \\ & \\ & =1 \end{aligned}$	agag Now	$\begin{aligned} & \tilde{z} \\ & \tilde{y} \end{aligned}$		$\begin{aligned} & \infty \\ & 20 \end{aligned}$		$\begin{aligned} & \vec{~} \\ & \vdots \\ & \vdots \end{aligned}$		$\begin{aligned} & \underset{\sim}{7} \\ & \substack{0} \end{aligned}$	$\begin{aligned} & \text { no } \\ & \dot{\circ} \\ & \dot{a} \end{aligned}$	\％	
		Naz			$\begin{gathered} n \\ \\ \end{gathered}$		$\begin{gathered} z \\ z \end{gathered}$		$\left.\begin{aligned} & \vec{z} \\ & -3 \end{aligned} \right\rvert\,$	F\%	$\left[\begin{array}{c} \tilde{2} \\ =0 \\ =1 \end{array}\right.$	－i	$\begin{aligned} & \frac{9}{3} \\ & 4 \end{aligned}$		0	路器符	5		8		$\left.\begin{gathered} \widetilde{8} \\ \underset{\sim}{\sim} \end{gathered} \right\rvert\,$		\％	\＆
			ฐ	nư	0°		8		\％		（		告	8゙き等等	\％		N		ã		\bigcirc	$\begin{gathered} \overrightarrow{~ t} \\ \vec{a} \\ \vec{t} \end{gathered}$	$\stackrel{\text { ® }}{\text { ¢ }}$	等
	5 \％\％				$\begin{gathered} \text { w } \\ \alpha \end{gathered}$	ఇัำ	$8 \begin{aligned} & \bar{g} \\ & y_{0} \end{aligned}$		\mathfrak{c}		$\begin{gathered} 0 \\ x_{1} \\ z_{1} \end{gathered}$		$\stackrel{\substack{\alpha \\ ल \\ \hline}}{ }$	－	on	¢్లి	\％	\％5mpras	9		発		も	哿
			$\left(\left.\begin{array}{c} n \\ \\ \end{array} \right\rvert\,\right.$	Mog	0		$\hat{8} \left\lvert\, \begin{aligned} & 2 \\ & n \\ & n \end{aligned}\right.$		$\begin{array}{r} 9 \\ 0 \\ 0 \\ 0 \end{array}$				$\begin{aligned} & 2 \\ & \alpha \\ & \alpha \end{aligned}$		$5 \begin{gathered} 2 \\ 6 \\ 6 \end{gathered}$	ダずあ	$\begin{aligned} & \overrightarrow{\tilde{W}_{1}^{2}} \\ & \hline \end{aligned}$	ベन	$\left.\begin{gathered} \vec{a} \\ \alpha \\ \alpha \end{gathered} \right\rvert\,$		$\begin{gathered} m \\ =0 \\ 7 \end{gathered}$		声	－
			H	짹ํ궇	庿	，产號罢	N	\％\％	\％		（\％）		紷	2゙\％	\％		충	とix	\％		8	$\begin{gathered} \check{\infty} \\ \stackrel{\otimes}{\infty} \\ \stackrel{y}{2} \end{gathered}$	\＃	\％
	㒭		$\not \subset$				\％	\％\％9す！			考		$\begin{aligned} & 5 \\ & 0 \\ & 0 \end{aligned}$	\％	む		\％		N		\％	\％	8	\％
											5		尔		d		砏		\％					
	¢			㝘美										易譩意				$\stackrel{\text { s }}{ }$		苂				

Table 4.-Comparison of preliminary estimates of vehicle registrations and highway use of motor fuel and relationships of these items to each other and to total travel, 1968
[From table TA-1 ${ }^{1}$ with published estimates by the Bureau of Public Roads]

Division	State	Vehicles registered, thousands		Annual miles per vehicle		Motor fuel, million gallons		Gallons per vehicle		$\begin{gathered} \text { Miles } \\ \text { traveled } \\ \text { per galllon } \end{gathered}$	
		```Prel1m- inary est1mate 2/ 5/```	$\begin{aligned} & \text { Table } \\ & \text { MV- } \\ & 3 / \end{aligned}$	Preliminary estimate 2)	Based on tables MV-1 and VM-2 3/4/		Table MF-21 3)		Based on tables MV-1 and MF-21 3/		$\begin{gathered} \text { Based on } \\ \text { tables } \\ \text { MP-21 and } \\ \text { VM--2 } \\ 3 / 4 / \end{gathered}$
$\begin{gathered} \text { New } \\ \text { England } \end{gathered}$	Connecticut   Maine   Massachusetts   New Hampshire   Rhode Island   Vermont	$\begin{array}{r} 1,624 \\ 480 \\ 2,490 \\ 355 \\ 447 \\ 210 \\ \hline \end{array}$	$\begin{array}{r} 1,626 \\ 480 \\ 2,336 \\ 353 \\ 452 \\ 207 \end{array}$	$\begin{array}{r} 9,198 \\ 11,542 \\ 9,326 \\ 10,718 \\ 9,682 \\ 11,677 \end{array}$	$\begin{array}{r} 9,286 \\ 11,544 \\ 9,912 \\ 10,779 \\ 9,639 \\ 11,845 \end{array}$	$\begin{array}{r} 1,149 \\ 443 \\ 1,855 \\ 300 \\ 325 \\ 191 \\ \hline \end{array}$	$\begin{array}{r} 1,148 \\ 438 \\ 1,957 \\ 304 \\ 321 \\ 191 \\ \hline \end{array}$	$\begin{aligned} & 708 \\ & 923 \\ & 745 \\ & 845 \\ & 723 \\ & 910 \\ & \hline \end{aligned}$	$\begin{aligned} & 706 \\ & 912 \\ & 838 \\ & 861 \\ & 709 \\ & 925 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.00 \\ & 12.50 \\ & 12.51 \\ & 12.68 \\ & 13.39 \\ & 12.84 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.01 \\ & 12.65 \\ & 11.83 \\ & 12.52 \\ & 13.57 \\ & 12.84 \\ & \hline \end{aligned}$
	Total	5,606	5,454	9,676	9,946	4,263	4,359	760	799	12.72	12.44
Middle Atlantic	New Jersey   New York   Pennsylvania	$\begin{aligned} & 3,498 \\ & 6,482 \\ & 5,587 \\ & \hline \end{aligned}$	$\begin{aligned} & 3,334 \\ & 6,310 \\ & 5,547 \end{aligned}$	$\begin{array}{r} 11,162 \\ 9,615 \\ 10,172 \end{array}$	$\begin{array}{r} 11,313 \\ 9,877 \\ 10,253 \end{array}$	$\begin{aligned} & 2,739 \\ & 5,042 \\ & 4,238 \\ & \hline \end{aligned}$	$\begin{aligned} & 2,704 \\ & 5,022 \\ & 4,279 \\ & \hline \end{aligned}$	$\begin{aligned} & 811 \\ & 778 \\ & 758 \\ & \hline \end{aligned}$	$\begin{aligned} & 811 \\ & 796 \\ & 77 \end{aligned}$	$\begin{aligned} & 13.77 \\ & 12.36 \\ & 13.42 \end{aligned}$	$\begin{aligned} & 13.95 \\ & 12.41 \\ & 13.29 \\ & \hline \end{aligned}$
	Total	15,567	15,191	10,080	10,330	12,019	12,005	772	790	13.06	13.07
$\begin{gathered} \text { South } \\ \text { Atlantic } \\ \text { (North) } \end{gathered}$	Delaware   Dist. of Col.   Maryland   Virginia   West Virginia	$\begin{array}{r} 278 \\ 258 \\ 1,709 \\ 2,048 \\ 810 \end{array}$	$\begin{array}{r} 283 \\ 257 \\ 1,704 \\ 2,048 \\ 805 \end{array}$	$\begin{array}{r} 9,388 \\ 10,585 \\ 10,994 \\ 11,986 \\ 10,155 \end{array}$	$\begin{array}{r} 9,223 \\ 10,626 \\ 11,026 \\ 11,986 \\ 10,217 \\ \hline \end{array}$	$\begin{array}{r} 233 \\ 246 \\ 1,424 \\ 1,897 \\ 658 \\ \hline \end{array}$	$\begin{array}{r} 244 \\ 246 \\ 1,423 \\ 1,890 \\ 659 \\ \hline \end{array}$	$\begin{aligned} & 837 \\ & 953 \\ & 833 \\ & 926 \\ & 810 \\ & \hline \end{aligned}$	$\begin{aligned} & 861 \\ & 956 \\ & 835 \\ & 923 \\ & 819 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.21 \\ & 11.11 \\ & 13.19 \\ & 12.94 \\ & 12.54 \end{aligned}$	$\begin{aligned} & 10.70 \\ & 11.10 \\ & 13.20 \\ & 12.99 \\ & 12.48 \\ & \hline \end{aligned}$
	Total	5,103	5,097	11,150	11,164	4,458	4,462	874	875	12.76	12.75
$\begin{aligned} & \text { South } \\ & \text { Atlant1c } \\ & \text { (South) } \end{aligned}$	Florida   Georgia   North Caroline   South Carolina 6	$\begin{aligned} & 3,635 \\ & 2,338 \\ & 2,572 \\ & 1,250 \end{aligned}$	$\begin{aligned} & 3,628 \\ & 2,324 \\ & 2,573 \\ & 1,250 \end{aligned}$	$\begin{array}{r} 9,584 \\ 11,142 \\ 10,152 \\ 11,353 \end{array}$	$\begin{array}{r} 9,603 \\ 11,210 \\ 10,148 \\ 11,353 \end{array}$	$\begin{aligned} & 2,805 \\ & 2,140 \\ & 2,206 \\ & 1,113 \end{aligned}$	$\begin{aligned} & 2,804 \\ & 2,142 \\ & 2,195 \\ & 1,113 \end{aligned}$	$\begin{aligned} & 772 \\ & 915 \\ & 858 \\ & 890 \end{aligned}$	$\begin{aligned} & 773 \\ & 922 \\ & 853 \\ & 891 \end{aligned}$	$\begin{aligned} & 12.42 \\ & 12.18 \\ & 11.84 \\ & 12.75 \end{aligned}$	$\begin{aligned} & 12.42 \\ & 12.16 \\ & 11.90 \\ & 12.75 \end{aligned}$
	Total	9,795	9,775	10,331	10,352	8,264	8,254	844	844	12.24	12.26
East North Central	Illinois   Indiana   Michigan   Oh10   Wisconsin	$\begin{aligned} & 5,007 \\ & 3,020 \\ & 4,308 \\ & 5,390 \\ & 2,184 \end{aligned}$	$\begin{aligned} & 4,990 \\ & 2,739 \\ & 4,317 \\ & 5,442 \\ & 2,027 \end{aligned}$	$\begin{array}{r} 10,413 \\ 9,140 \\ 11,153 \\ 9,802 \\ 9,615 \end{array}$	$\begin{array}{r} 10,449 \\ 10,078 \\ 11,129 \\ 9,709 \\ 10,947 \end{array}$	$\begin{aligned} & 4,198 \\ & 2,364 \\ & 3,748 \\ & 4,254 \\ & 1,690 \end{aligned}$	$\begin{aligned} & 4,224 \\ & 2,386 \\ & 3,798 \\ & 4,332 \\ & 1,695 \end{aligned}$	$\begin{aligned} & 838 \\ & 783 \\ & 870 \\ & 789 \\ & 77^{4} \end{aligned}$	847   871   880   794   836	$\begin{aligned} & 12.42 \\ & 11.76 \\ & 12.82 \\ & 12.42 \\ & 12.42 \end{aligned}$	$\begin{aligned} & 12.34 \\ & 11.57 \\ & 12.65 \\ & 12.22 \\ & 13.09 \end{aligned}$
	Total	19,909	19,515	10,187	10,392	16,254	16,425	816	842	12.48	12.35
West North Central	Iowa   Kanses   Minnesota   Missouri   Nebraska   North Dakota   South Dakota	$\begin{aligned} & 1,599 \\ & 1,502 \\ & 2,082 \\ & 2,474 \\ & 909 \\ & 414 \\ & 411 \end{aligned}$	$\begin{aligned} & 1,703 \\ & 1,501 \\ & 2,086 \\ & 2,345 \\ & 909 \\ & 414 \\ & 411 \end{aligned}$	$\begin{array}{r} 8,145 \\ 8,356 \\ 9,558 \\ 10,019 \\ 9,849 \\ 8,72 \\ 10,487 \end{array}$	$\begin{array}{r} 8,126 \\ 8,361 \\ 9,539 \\ 10,572 \\ 9,849 \\ 8,572 \\ 10,487 \end{array}$	$\begin{aligned} & 1,326 \\ & 1,101 \\ & 1,623 \\ & 2,151 \\ & 723 \\ & 274 \\ & 317 \end{aligned}$	$\begin{aligned} & 1,321 \\ & 1,114 \\ & 1,615 \\ & 2,167 \\ & 720 \\ & 272 \\ & 319 \\ & \hline \end{aligned}$	$\begin{aligned} & 780 \\ & 733 \\ & 780 \\ & 869 \\ & 795 \\ & 662 \\ & 771 \end{aligned}$	$\begin{aligned} & 776 \\ & 742 \\ & 794 \\ & 924 \\ & 792 \\ & 658 \\ & 776 \end{aligned}$	10.44   11.40   12.26   11.52   12.38   12.95   13.50	$\begin{aligned} & 10.48 \\ & 11.27 \\ & 12.32 \\ & 11.44 \\ & 12.43 \\ & 13.05 \\ & 13.51 \end{aligned}$
	Total	9,491	9,369	9,260	9,381	7,515	7,528	792	804	11.70	11.68
East South Central	Alabama   Kentucky   Miss1ssipp1   Tennessee	$\begin{aligned} & 1,815 \\ & 1,685 \\ & 1,077 \\ & 1,926 \end{aligned}$	$\begin{aligned} & 1,806 \\ & 1,691 \\ & 1,061 \\ & 1,907 \\ & \hline \end{aligned}$	9,107   10,522   9,840 9,774	$\begin{array}{r} 9,153 \\ 10,502 \\ 9,989 \\ 9,871 \\ \hline \end{array}$	$\begin{array}{r} 1,470 \\ 1,335 \\ 1,982 \\ 1,674 \end{array}$	$\begin{array}{r} 1,473 \\ 1,335 \\ 982 \\ 1,698 \\ \hline \end{array}$	$\begin{aligned} & 810 \\ & 792 \\ & 912 \\ & 869 \\ & \hline \end{aligned}$	$\begin{aligned} & 816 \\ & 790 \\ & 926 \\ & 891 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.24 \\ & 13.28 \\ & 10.79 \\ & 11.24 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.22 \\ & 13.30 \\ & 10.79 \\ & 11.09 \end{aligned}$
	Total	6,503	6,465	9,797	9,855	5,461	5,488	840	849	11.67	11.61
West South Central	Arkansas Louisiana oklehoma Texas	$\begin{aligned} & 1,033 \\ & 1,663 \\ & 1,609 \\ & 6,170 \end{aligned}$	$\begin{aligned} & 1,023 \\ & 1,662 \\ & 1,610 \\ & 6,180 \\ & \hline \end{aligned}$	9,913   9,224   9,975 10,079	$\begin{array}{r} 10,000 \\ 9,237 \\ 9,968 \\ 10,063 \\ \hline \end{array}$	$\begin{array}{r} 935 \\ 1,391 \\ 1,286 \\ 5,572 \\ \hline \end{array}$	$\begin{array}{r} 912 \\ 1,398 \\ 1,289 \\ 5,581 \\ \hline \end{array}$	$\begin{aligned} & 906 \\ & 836 \\ & 800 \\ & 903 \\ & \hline \end{aligned}$	892 841 800 903	$\begin{aligned} & 10.94 \\ & 11.03 \\ & 12.48 \\ & 11.16 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.22 \\ & 10.98 \\ & 12.45 \\ & 11.14 \\ & \hline \end{aligned}$
	Total	10,475	10,475	9,911	9,911	9,184	9,180	877	876	11.30	11.31
Mountain	Arizone   Colorado   Idaho   Montana   Nevada   New Mexico   Utah   Wyoming	$\begin{array}{r} 977 \\ 1,278 \\ 469 \\ 464 \\ 314 \\ 585 \\ 624 \\ 226 \end{array}$	$\begin{array}{r} 944 \\ 1,300 \\ 471 \\ 463 \\ 303 \\ 589 \\ 571 \\ 226 \end{array}$	$\begin{array}{r} 10,278 \\ 8,542 \\ 8,985 \\ 8,944 \\ 9,551 \\ 11,074 \\ 8,868 \\ 12,376 \end{array}$	$\begin{array}{r} 10,638 \\ 8,495 \\ 8,947 \\ 8,963 \\ 9,898 \\ 10,998 \\ 9,701 \\ 12,376 \end{array}$	807 895 339 399 291 550 443 233	796 959 347 367 289 551 469 233	$\begin{array}{r} 826 \\ 700 \\ 723 \\ 774 \\ 927 \\ 940 \\ 709 \\ 1,031 \\ \hline \end{array}$	$\begin{array}{r} 844 \\ 738 \\ 736 \\ 793 \\ 953 \\ 934 \\ 821 \\ 1,031 \end{array}$	$\begin{aligned} & 12.44 \\ & 12.34 \\ & 12.42 \\ & 11.56 \\ & 10.30 \\ & 11.78 \\ & 12.51 \\ & 12.00 \end{aligned}$	$\begin{aligned} & 12.62 \\ & 11.52 \\ & 12.14 \\ & 11.31 \\ & 10.38 \\ & 11.76 \\ & 11.81 \\ & 12.00 \end{aligned}$
	Total	4,937	4,857	9,573	9,711	3,917	4,011.	793	824	12.07	11.78
Pacific	$\begin{aligned} & \text { Call formis } \\ & \text { Oregon } \\ & \text { Weshington } \end{aligned}$	$\begin{array}{r} 11,125 \\ 1,241 \\ 1,987 \end{array}$	$\begin{array}{r} 11,123 \\ 1,242 \\ 1,987 \end{array}$	$\begin{aligned} & 9,534 \\ & 9,697 \\ & 9,574 \end{aligned}$	$\begin{aligned} & 9,536 \\ & 9,689 \\ & 9,574 \end{aligned}$	$\begin{array}{r} 8,506 \\ 988 \\ 1,442 \end{array}$	$\begin{array}{r} 8,535 \\ 983 \\ 1,433 \\ \hline \end{array}$	$\begin{aligned} & 764 \\ & 796 \\ & 726 \end{aligned}$	$\begin{aligned} & 767 \\ & 791 \\ & 721 \end{aligned}$	$\begin{aligned} & 12.42 \\ & 12.18 \\ & 13.19 \end{aligned}$	$\begin{aligned} & 12.43 \\ & 12.24 \\ & 13.27 \end{aligned}$
	Total	24,353	14,352	9,554	9,555	10,936	10,951	762	763	12.54	12.52
Total - All Divisions		101,739	100,560	9,946	10,062	82,271	82,663	809	822	12.30	12.24
	Alaska   Hawal1	$\begin{aligned} & 120 \\ & 354 \end{aligned}$	$\begin{aligned} & 123 \\ & 355 \end{aligned}$	$\begin{aligned} & 7,320 \\ & 8,089 \end{aligned}$	$\begin{aligned} & 7,382 \\ & 8,065 \end{aligned}$	$\begin{array}{r} 76 \\ 204 \end{array}$	$\begin{array}{r} 76 \\ 203 \end{array}$	$\begin{aligned} & 610 \\ & 578 \end{aligned}$	$\begin{aligned} & 613 \\ & 573 \end{aligned}$	$\begin{aligned} & 12.00 \\ & 14.00 \end{aligned}$	$\begin{aligned} & 11.95 \\ & 1.4 .10 \end{aligned}$
United States Total		102,213	101,038	9,937	10,052	82,551	82,942	808	821	12.30	12.25

highwar "Table TA-1.--Statewde mileage, travel and nonfatal and fatal injury accidents" is submitted to the Bureau of Public Roads by the State
highway departments early in April each year, while the final Bureau of Public Roads estimates are not usually completed until midsurmer.
Data source: Table TA-1, 1968 for the 50 States and the District of Columbia.
spectively, sources: Vehicle registrations, highway use of motor fuel, and drivers licenses in force from tables MV-1, MF-2l, and DL-1, re
January 28, 1969.
All travel related items were calculated using State estimates of total travel as shown in table VM-2 for 1968
Excludes motorcycles.
Note: Totals may not add to the same totals given in tables MV-1, MF-21, DL-1, or Current Population Reports, series P-25, No. $4 \mathrm{l}^{2} 4$, due to
rounding.
hicle-miles for each road section-a long, borious process. Another good approach is , sample randomly certain road sections on weh system and obtain an average figure for hicle-miles per mile on each system, from hich the vehicle-miles can be calculated.
Most often, one of the following methods, - a combination of them, is used to arrive at tal travel: (1) The product of vehicle regisations and an estimated annual miles per hicle; (2) the product of fuel consumption id an estimated miles-per-gallon figure; i) the product of the population and an estiated annual miles-per-capita figure. Of these, le second is the most frequently used beuse there is a more direct relationship bereen travel and gallons of fuel used than stween travel and any other variable.
For many years, estimates and forecasts of avel have been very important for highway anning. They are needed for urban transortation studies, statewide transportation udies, studies of highway needs and financg , etc. Travel estimates have been used in lese studies as base year data for forecasts, , compare service provided among highway rstems, and to compare different modes of ansport. Although the greatest accuracy ossible, within practical limits, is always dered for these purposes, consistency is as imortant, or even more important, than accuicy. The basic estimates can be high or low, at as long as consistency between the factors maintained, decisions based on these factors ill be correct.
Distributing travel among the systems in re proper proportions is essential. Even if the ase year travel estimate and the related ctors of miles per gallon and annual miles or vehicle are in error, forecasts of fuel conimption and vehicle registrations for highway 3eds and revenue studies will not be adversely fected as long as consistent relations among lese factors are maintained throughout the recast period.
Because of the increased emphasis on highay safety programs in the last few years, avel estimates are acquiring even more imortance. Reliable travel estimates are needed ot only by highway systems but also by shicle type, age and sex of driver, weather onditions, road condition, day or night, etc., , properly evaluate State-to-State accident sperience. This need for increased detail in avel estimates brings with it a need for creased accuracy.
As more detail is required in the breakdown total travel, the relative positions of the arious elements become less dependable and ss useful, and the absolute values more aportant. The greater the number of parts lat total travel is divided into, the lesser the kelihood that proper relationships between ements will be maintained. To properly isess the accident-causation potential of the ifferent combinations of driver-vehicle-road-ay-weather interrelations, reliable accident ites under these conditions must be known. ccident rates are functions of accident umbers and of exposure-exposure being the mount of travel produced under given onditions. Accordingly, two things are neces-
sary to develop accurate accident rates: accurate reporting of accidents and reliable detailed travel estimates. Because of this increasing need for accurate and detailed travel estimates, estimates of some of the factors that contribute to travel estimating will be explained.

Vehicle registrations, highway use of motor fuel, drivers' licenses in force, and population are listed in tables 4 and 5 in which comparisons of preliminary estimates and later published estimates, as well as the relationships of the listed items to each other and to total travel are shown. Variations between preliminary estimates and published estimates usually were small, as illustrated by the small number of States with estimates that varied by more than 2 percent from the published figures-vehicle registrations, nine States; highway use of motor fuel, five States ; population, nine States; and drivers' licenses in force, 17 States. The State estimates are reported for the preceding year in table TA-1, which is submitted in April of each year. Preliminary estimates of vehicle registrations, population, and particularly fuel consumption, are near enough to the published values to be used in estimating travel when final data are not available. However, drivers' licenses in force has not been as reliable a figure. Because of differences in administrative procedures and in extent of enforcement, the significance of the numbers of drivers' licenses varies among the States. The relations of drivers' licenses in force to other variables are even more erratic among the States.

Vehicle registrations and fuel consumption are published each year in the Public Roads publication Highway Statistics (see list of publications inside back cover), which is based
on actual State figures that have been adjusted to achieve consistency in reporting. Thus, figures used in estimating are never obsolete by more than 1 year, and errors should be slight. Although actual population counts are made only in the decennial census, populations in all States are estimated each year by the Bureau of the Census and are based on data that can be quantified on a consistent basis.

The items that relate known variables to the unknown variable, travel, cannot be quantified with the same assurance. For this reason, three of these items, miles per gallon, anuual miles per vehicle, and gallons per vehicle, will be discussed in more detail. Of these three, gallons per vehicle can be more reliably ascertained as it is derived from the vehicle registrations and the figures for fuel consumed. The gallons-per-vehicle figure is useful in analyzing the consistency of forecasts of vehicle registrations, fuel consumption, and travel. When the figures from the different States are compared, the comparison can provide a clue to help identify those States that have a high or low proportion of fuel purchases by out-of-State vehicles.

## Miles per gallon

As stated previously, the most common method used to estimate total travel in a State is to multiply the number of gallons of fuel consumed for highway use by a miles-pergallon figure. As a very close estimate of fuel consumption can be obtained, the accuracr of the resulting travel estimate is dependent on the miles-per-gallon figure.

Nationally, miles traveled per gallon, which had remained fairly stable at 12.47-12.49 from 1963 through 1966, dropped to 12.38 in 1967, and to 12.25 in 1968. These decreases can be


Figure 1.-Miles traveled per gallon of fuel consumed in 1968.

Table 5．－Comparison of preliminary estimates of population，and drivers licenses in force and relationships of these items to each other and to total
［From table TA－I ${ }^{1}$ with published estimates by the Burcau of the Census and the Burean of Public Roads respectively］

			$\begin{aligned} & \substack{2 \\ \infty \\ \infty} \end{aligned}$		\％				$\left\{\begin{array}{l} \hat{a} \\ =0 \end{array}\right.$		\％	かぁの⿱宀⿱一兀口	$\begin{array}{lll} 0 \\ 0 \end{array}$		$\left\|\begin{array}{l} x \\ 0 \\ 0 \\ \hdashline \end{array}\right\|$			 	$\left\|\begin{array}{c} 8 \\ 8 \\ \hdashline 0 \end{array}\right\|$		\％	8	\％
＂			患		$\begin{gathered} \tilde{a} \\ \substack{\infty \\ \infty} \end{gathered}$		\％				霏	788웅… かぁ⿱⿱一口⿴囗十	会考				$\left\lvert\, \begin{gathered} 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}\right.$	 	$\left\|\begin{array}{c} \stackrel{\sim}{\hat{N}} \\ \dot{\alpha} \end{array}\right\|$			\％	
			\％		～		$: \begin{aligned} & 0 \\ & 0 \\ & z \\ & -0 \end{aligned}$	द⿳士口冖口力	$0 \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & n \end{aligned}$		I				$\begin{aligned} & 2 \\ & -8 \\ & -1 \end{aligned}$				$\begin{aligned} & \infty \\ & \stackrel{y}{2} \\ & \sim \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \end{array}$	$\begin{aligned} & a \\ & \\ & n \\ & n \end{aligned}$	$\cdots$	\％
			$\left\|\begin{array}{c} \pi \\ -2 \end{array}\right\|$		$\stackrel{\sim}{\sim}$		\％	Fing	等		尔	ํㅜㅇㅇํ웅운			$\begin{aligned} & {\left[\left.\begin{array}{l} 0 \\ \hdashline \\ - \end{array} \right\rvert\,\right.} \end{aligned}$		$\left\|\begin{array}{c} 0 \\ \\ n \end{array}\right\|$		㨞	Moig	$5$	8	$\stackrel{ }{\circ}$
			$\because$	\％¢์	F		9	$\begin{aligned} & \text { まg ge } \\ & \text { ono } \end{aligned}$	$\%$	R才ช8\％	8		${ }^{\circ}$		$\left\lvert\, \begin{aligned} & 0 \\ & \dot{\circ} \end{aligned}\right.$		ま	8589888		\％\％\％	${ }_{\circ}^{\circ}$	๗ั	\％
			－		$\pm$	¢\％きのです	$\cdots$		\％	\％\％\％\％\％	$\because$	8の8ロよ\＆ま	$\left.\right\|_{i}$		$\underset{o}{o}$	べずす	＊${ }_{\circ}^{\text {¢ }}$		$8$	－${ }^{\text {ar }}$	8	\％	$\stackrel{\square}{4}$
		Co	$\stackrel{\circ}{\circ}$		$\stackrel{\sim}{*}$		¢		$\stackrel{\otimes}{\square}$		$\stackrel{\widetilde{\circ}}{\substack{\text { ci}}}$		7	588	$\stackrel{\sim}{\sim}$	－	$\underset{\sim}{\infty}$		\％		F	¢	\％
		¢¢がする	¢	－87	雩		\％	Fy\％			\％	のartiont	$\bigcirc$	¢\％\％	\％		ه̀i		a	¢0\％	$\bigcirc$	8	$\%$
			$\left\|\begin{array}{l} 8 \\ 0 \\ 0 \end{array}\right\|$		$\left\|\begin{array}{c} \approx \\ \underset{\sim}{\tilde{\sim}} \\ \underset{\sim}{2} \end{array}\right\|$			$\begin{aligned} & \text { aderf } \\ & \text { nof } \end{aligned}$	$\begin{aligned} & \circ \\ & \\ & \stackrel{y}{2} \end{aligned}$			ためめよがた  	$\left.\begin{array}{\|c} 8 \\ i \\ i \end{array} \right\rvert\,$		$\left\|\begin{array}{l} 8 \\ 0 \\ 9 \end{array}\right\|$		$\frac{\square}{x}$	 	$\left\lvert\, \begin{aligned} & x \\ & \vdots \\ & \dot{n} \end{aligned}\right.$		$\left\|\begin{array}{c} a \\ 0 \\ \dot{n} \end{array}\right\|$	\％	$\stackrel{\sim}{\sim}$
			$\left\|\begin{array}{l} \infty \\ \dot{n} \end{array}\right\|$	ダすき 部守	$\left\|\begin{array}{c} 8 \\ 0 \\ \hline 0 \end{array}\right\|$		$\stackrel{c}{\infty}$	$\begin{aligned} & \text { of Fit } \\ & 0.0 \\ & 0.0 \end{aligned}$	$=$		$\left\|\begin{array}{c} \vec{a} \\ \dot{\circ} \end{array}\right\|$	$888.5$ जँ	$\begin{gathered} 7 \\ \vdots \\ i \end{gathered}$		$\underset{\sim}{2}$	nis ing	$\underset{\sim}{\infty}$	 	$\underset{\sim}{a}$	$\begin{array}{\|c}  \\ 080 \\ \text { no. } \\ \text { cin } \end{array}$	$\left\|\begin{array}{c} \tilde{n} \\ \tilde{\sim} \end{array}\right\|$	¢	$\stackrel{\text { i }}{\text { i }}$
	글				$\approx$		$\left\|\begin{array}{c} n \\ \text { a } \\ n \end{array}\right\|$	型	$\frac{\pi}{2}$		$\begin{gathered} x_{2}^{m} \\ =\sim \end{gathered}$		$\frac{2}{\alpha}$	唯虎家	\＃	ప్ర్ర్రే్ర	感		$\left\|\begin{array}{c} n \\ \hdashline \\ -7 \end{array}\right\|$		$\left\|\begin{array}{c} \infty \\ =\sim \\ =1 \end{array}\right\|$		帪
					$\left.\begin{array}{\|c} \stackrel{a}{\alpha} \\ \underset{\sim}{2} \end{array} \right\rvert\,$				$\vec{x}_{2}^{5}$				$\frac{9}{\alpha} \frac{9}{3}$			$\begin{aligned} & \text { afoge } \\ & \text {-ivinu } \end{aligned}$	$\begin{gathered} \stackrel{\alpha}{\alpha} \\ \alpha_{0} \end{gathered}$		$\frac{w}{x}$		$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ j \end{array}\right\|$		\％
		\％		$\begin{gathered} 0.0 \\ 0.0 \\ 0.0 \\ 0 \end{gathered}$					$\theta_{0}^{\circ}$		$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Rajng ia	$\left\|\begin{array}{c} 8 \\ 8 \\ 8 \end{array}\right\|$		$\left\|\begin{array}{c} \text { an } \\ \end{array}\right\|$		$\begin{aligned} & \stackrel{8}{9} \\ & \dot{\sim} \end{aligned}$		$\%$		登		\％
						Ř\％			$\begin{aligned} & 2 \\ & \\ & \\ & \\ & \hline \end{aligned}$			ベッデョー	$\begin{aligned} & 4 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$		$\begin{aligned} & 7 \\ & \underset{\sim}{7} \end{aligned}$		$\begin{aligned} & 2 \\ & \dot{\partial} \\ & \underset{\sim}{\alpha} \end{aligned}$		$\left\|\begin{array}{c} \tilde{e}_{\substack{0}}^{\infty} \end{array}\right\|$		$\left\|\begin{array}{c} \hat{8} \\ x_{0}^{2} \end{array}\right\|$		考
郘															号		g						䈞
																		$\begin{aligned} & \frac{5}{5} \\ & \frac{5}{8} \\ & \frac{1}{2} \end{aligned}$		苋			


ure 2.-Annual miles traveled per registered vehicle (excluding motorcycles) in 1968.
tibuted to several causes. The proportion fnew cars purchased with power steering, rer brakes, and air conditioning continues oncrease, and Federal standards now require bt all new cars have emission-control devices. 1 these devices place additional demands on bengine, reduce the effective power transmite to the wheels, and thus decrease the miles reled per gallon of fuel consumed. In speed ties conducted jointly by the State highway Leartments and the Bureau of Public Roads, 6 ras shown that from late 1945 -after the तrld War II speed limit of 35 miles per hour * rescinded-to 1968, the average speeds of $t$-moving vehicles increased by 15 miles per r. As speed increases above about 40 miles hour, so does the amount of fuel consumed mile traveled.
Niles-per-gallon figures differed considerI) among the States in 1968, as shown in ple 4 and figure 1. Hawaii had the most miles rveled per gallon at 14.10 , and Nevada had least at 10.38. This difference does not bon that vehicles in Nevada are less efficient In those in any other State. The miles-peran figure is obtained simply by dividing tal travel in the State by the number of hlons of fuel purchased in the State for highF use. Some of the fuel in Nevada was pursed for vehicles from the San Francisco and thern California areas and was consumed if in Nevada but on California highways fing the return trip. The opposite situation ats in many States that have high miles-perIon figures. States like New Jersey, Rhode ind, Maryland, and Connecticut, all of fich reported fuel consumption rates in exis of 13 miles per gallon, may be affected by lging traffic. The bridge effect adds travel cthe State's highways that is not reflected rasoline purchases in the State. The bridge
effect would apply only to those States that could be traversed in one dimension on one tankful of gasoline, or less, and would normally be significant only if there were one or more heavy traffic corridors in the bridge direction.

Other factors that affect the fuel-consumption rate in a State are distribution of traffic by vehicle type, average speeds, percentages
of urban travel to total travel, and altitude. A higher miles-per-gallon figure would be more likely in a State that has a low percentage of heavy-truck travel than in a State that has a high percentage of heavy-truck travel. States with low speed limits, rigidly enforced, would probably show higher miles-per-gallon rates than States with high speed limits or more relaxed enforcement. States that have high percentages of urban travel would be expected to have lower miles-per-gallon rates than those States that have little urban travel and are less affected by the traffic congestion. Engines tuned for operation at low elevations lose efficiency at much higher altitudes.
Indications are that miles-per-gallon figures may be high in some States; studies in several States usually have lowered the figures for total travel and miles-per-gallon. For example, the Montana Vehicle Classification Study, 1965-66 showed that average fuel consumption for all vehicles in Montana was 11.56 miles per gallon compared to the national average at that time of 12.45 miles per gallon. As accurate total travel and miles-per-gallon figures are developed in other States, national totals and averages, which are but composites of the State figures, will be adjusted accordingly.

## Annual miles per vehicle

Figures reported by the States in 1968 for annual miles per vehicle ranged from a low of 7,382 in Alaska to a high of 12,376 in Wyoming (table 4 and fig. 2). As shown in table 4, the average for the Nation is 10,052 which differs from the figure of 9,847 in table 1 because registration data used to develop the annual
(Continued on p.24)


Figure 3.-Average gallons of fuel sold for highway use per registered vehicle (excluding motorcycles) in 1968.

# Fatal Collisions With Fixed Objects on Completed Sections of the Interstate Highway System, 1968 

Harold R. Hosea and J. N. McDonald, Office of Traffic Operations, Bureau of Public Roads

Investigations of fatal accidents on completed sections of the Interstate Highway System during $1968^{1}$ disclosed that two out of every five persons killed were occupants of vehicles that ran off the road and collided with one or more fixed objects. Certain of the more common series of events or accident patterns in these single-vehicle, off-the-road collisions are described in the analysis here, which is based on police investigation reports on 1,208 such accidents that resulted in the deaths of 1,400 persons.

In nearly two-fifths (37 percent) of these crashes, the vehicle struck one or more fixed objects after its first collision. In a slightly larger proportion of the crashes, the vehicle also overturned, frequently ejecting occupants. Some of the single-vehicle accident patterns are given in general terms by the data in the accompanying table.

For example, in 30 percent of the 1,208 accidents, the vehicle first struck a guardrail. In three of every five of these accidents, the vehicle subsequently struck at least one other object, most frequently a bridge or overpass structure. In two out of five accidents in this category, the vehicle also overturneda significant number of the overturns occurring prior to the second impact as a result of initial impacts with guardrails. In many accidents, however, the vehicles were deflected by the guardrail, or vaulted it, and then overturned on embankments or slopes.

These statistics support the conclusion that guardrail itself is a roadside hazard and that on projects under construction, and on future projects, it should be determined initially whether guardrail is actually necessary. Moreover, the necessity for guardrail should be reviewed on existing mileage. Where possible, rigid sign supports, open cross-drainage channels, raised inlets, and other safety hazards should be changed or improved, and the existing guardrail removed. Where guardrail is definitely required, it should, according to present standards, have proper height, increased strength by closer post spacing, adequate blockouts, proper flares and/or turned-down end sections.

The single-vehicle accident data also reveal that 18 percent of the 1,208 vehicles collided initially with a bridge or overpass structure. In these accidents, relatively few subsequent impacts with other objects or overturns occurred obviously owing to the characteristics of the objects first struck. Again it is erident that guardrail installations should be modified by upgrading the guardrail, extending it beyond bridge piers, and securing it to bridge parapets and/or curbs.

[^3]Curbs were the first object struck in many off-the-road accidents in which disproportionate numbers of overturns and the largest percentage of subsequent collisions with other objects occurred. Guardrails, bridge elements, and light standards, in that order, were the objects struck most frequently following initial impacts with curbs and, frequently, after overturns, indicating a need to minimize the use of curbs adjacent to main lanes, in gore areas, and even on outer edges of shoulders. Temporary curbs, often constructed on the outer edge of shoulders to control erosion on new fill slopes, should be removed after vegetation has adequately covered the slopes. Also, in a combined installation in which guardrail is located behind curbs, the face of the guardrail should be installed in virtually the same vertical plane as the face of the curb to negate the possibility of a vehicle striking the curb and vaulting over the guardrail.

Accidents in which vehicles ran into ditches resulted in the most overturns. Overturns were also frequent in accidents in which an embankment or backslope was the first object struck, which points out the need to use flatter slopes, both foreslopes and backslopes, to provide an adequate recovery area. Well
rounded or swale-type ditches should be signed and constructed to carry the nor roadway drainage. However, where it necessary to provide channels parallel to roadway that carry more than normal re way drainage, they should be located pre ably beyond the normal right-of-way line construction easements, or at least near normal right-of-way line, to provide a w recovery area between the pavement edge the channel.

A third of the vehicles that struck mer barriers subsequently struck a second obj most frequently a guardrail. In some of $t$ ] accidents, the vehicle was deflected across lanes by the barrier and struck the guarc on the right. In others, especially where c or chain link dividers were in place, the v cles penetrated the median and struck gui rails at the far side of the opposing la These accident patterns amplify the rec mendations contained in the Yellow Bookz1 median barriers should be designed to prer penetration and also to minimize deflectio the vehicle.

[^4]Characteristics of single-vehicle, off-the-road fatal accidents in which fixed objects wt struck on completed sections of the Interstate Highway System, 1968

Fixed object	All accidents				Overturns			
	First object struck		Second object struck		All accidents		Second object stru	
	Number	Percent	Number	Percent	Number	Percent	Number	Perce
Bridge or overpass.	217	18.0	36	16.6	40	18.4	17	42.5
Sign..........	97	8.0	21	21. 6	22	22.7	6	27.3
Embankment	86	7.1	28	32.6	62	72.1	21	33.9
Curb.	72	6. 0	56	77.8	40	55. 6	27	67.5
Divider	71	5.9	24	33.8	21	29.6	10	47.6
Light pole	63	5.2	19	30.2	13	20.6	5	38.5
Ditch	57	4.7	9	15.8	51	89.5	8	15.7
Cuivert	51	4. 2	13	25.5	25	49.0	4	16.0
Fence (right-of-way)	28	2.3	19	67.9	16	57.1	9	56.3
Tree.--	26	2.2	5	19.2	4	15.4	1	25.0
Other		6.3	5	6. 6	34	44.7	6	17.6
Tota	1,208	100.0	448	37.1	480	39.7	204	42.5

## Travel By Motor Vehicles in 1968

(Continued from p. 23)
miles per vehicle in table 1 included motorcycles and the registrations shown in table 4 did not. Annual miles per vehicle reported by 24 States ranged from 9,500 to 10,500 , or within 5 percent plus or minus of the national average.

Actually, the annual-miles-per-vehicle figure, which is a ratio of total travel in the State to total number of vehicles registered in the State, does not give a true indication of the annual miles traveled by the average vehicle in a State. If travel in the State by out-of-State vehicles were balanced by an
equal amount of travel out of the State State-registered vehicles, the ratio of tre to-vehicles would equal the average $n$ traveled by vehicles registered in the $S$ But this is not always true, as some St: contain large national parks, scenic wonc well-kno wn historic sites, or other locatior interest and attract more tourist travel 1 other States. The greater the attrac and the smaller the State's population $k$ the more out-of-State travel affects State's total travel. The high annual I per vehicle, of 12,376 in Wyoming, ref
significance of travel by out-of-State qicles. Yellowstone and Grand Teton Ctional Parks together draw approximately ,00,000 visitors to Wyoming annually; 1968 , the State population was 315,000 .

## llons per vehicle

The State-by-State figures for gallons per acle in table 4 are based on vehicle regisdions that exclude motorcycle registrations. Consistent with its high annual-miles-peraicle figure, Wyoming showed the highest lons per vehicle at 1,031 , and Hawaii wed the lowest at 573 . The national aver1\$ was 821. As indicated in the discussion of bual miles per vehicle, a large part of the vel in Wyoming is performed by out-ofte vehicles, and consequently, much of the oline purchased in Wyoming is for out-ofte vehicles that do not appear in the nber of registered vehicles used in calcuang the gallons-per-vehicle figure.

## nsistency of Relationships Among the Factors

Consistency among the factors of miles per : lon, miles per vehicle, and gallons per hicle, mentioned previously for a few of the freme deviations, is explained in more detail e. It is not within the scope of this article Wanalyze completely the factors discussed 1 of the other factors that affect them, either lectly or indirectly, nor are sufficient data vilable to permit such an analysis. Neither st possible to conclude that values for any If State are correct or incorrect. The purpose this general discussion is to indicate some Fhe conditions that should be considered in ging the reasonableness of these factors and the travel estimates or forecasts to which y are related.
n figures 1, 2, and 3, the States are ranked Hescending order on miles per gallon, annual fes per vehicle, and gallons per vehicle, cpectively.
Df the States that are least influenced by -of-State travel, Hawaii ranked first of the States and District of Columbia in miles veled per gallon at 14.10 , but ranked 50 th innual miles per vehicle at 8,065 , and 51 st fallons per vehicle at 573 . The consistency ween these items is obvious; a State having high miles-per-gallon figure and a low Hual-miles-per-vehicle figure would be exted to have a low value for gallons per iicle. It is not surprising that Hawaii ranks $t$ in gallons per vehicle and 50 th in annual tes per vehicle. As the State consists of nds there is no motor vehicle travel across te lines, and maximum trip lengths are ch shorter than in the continental United tes. This results in lower average travel vehicle and lower fuel consumption per aicle.
llaska, though not an island State like (waii, is similar to Hawaii because its ation from the remainder of the continental fited States makes the effect of out-of-State ffic insignificant. Also the few highway tes of significant length result in relatively
short average trip length and low travel per vehicle. Alaska's 7,382 annual miles per vehicle figure is the lowest of all the States. In gallons per vehicle, Alaska at 613 ranks 50 th . In these two items, the two States are similar, yet Alaska ranks 32 d on miles per gallon at 11.95 compared to Hawaii's highest rank at 14.10.

Part of the dissimilarity in miles traveled per gallon of fuel consumed between these two States, which are so close in the other two factors, can be explained by the difference in the composition of travel by vehicle type. According to data available from truck weight studies and classification counts, truck travel constitutes more than 30 percent of the total travel in Alaska but only about 15 percent in Hawaii. What about the other factors involved? Does Hawaii have a higher proportion of small cars in its vehicle population than Alaska? Are the average speeds lower in Hawaii than in Alaska? What effect does the relatively stable temperature and humidity in Hawaii have compared to the greater range found in Alaska.?

These questions apply also to the 48 contiguous States, except that in these States the effects are modified by out-of-State travel. Some States are affected by bridging travel, yet some of the States reporting a high miles-per-gallon figure could not be considered bridge States. These include States like North Dakota, South Dakota, Pennsylvania, Washingtoll, and Wisconsin.

It was attempted to relate the high and low miles-per-gallon values to the percentage of urban travel, and to average free-flowing speeds for main rural roads from Traffic Speed Trends, but no consistent relations could be established. Several States that had miles-per-gallon values of more than 13 had average speeds of $4-10$ miles per hour lower than the national average. These States also ranked higher in percentage of urban travel. The higher percentage of stop and go conditions in urban travel would imply lower miles-per-gallon rates, and tend to offset the advantages gained from lower average speeds, but some States that had low miles-per-gallon figures also had a low percentage of urban travel, and were close to the national average in speeds.

Speed data, as reported are of limited value for these analyses. Speed observations, on which these data were based, were made at points where the traffic was free flowing and drivers could drive at their desired speeds. Thus, a true average speed or operating speed could not be determined from these data.

## Summary

There is an increasing need for accuracy and detail in travel estimates. When sufficient vehicle-count data are available, highly reliable travel estimates can be made without other factors. Usually, manpower and time are not available to obtain these data so factors that relate travel to known variables like vehicle registrations, fuel consumed for highway use, and population must be used. It is
imperative, therefore, that these relations be evaluated as accurately as possible and factors that influence these relations in each State must be determined, and to what extent. This requires independent estimates of travel for each highway system.

## New Publications

The Bureau of Public Roads has recently published two documents. These publications may be purchased from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 , prepaid. The following paragraphs give a brief description of each publication and its purchase price.

## Highway Statistics, 1968

Highway Statistics, 1968 ( $\$ 1.75$ a copy), a 191-page bulletin, is the 24 th in the amual series presenting statistical and analytical tables of general interest on motor fuel, motor vehicles, highway-user taxation, State and local highway financing, road and street mileage, and Federal aid for highways.

The Highway Statistics series has been published annually beginning with the year 1945, but most of the earlier editions, except 1965,1966 , and 1967 , are now out of print. However, much of the information presented in earlier editions is summarized in Highway Statistics, Summary to 1965, which may be purchased from the Superintendent of Documents for $\$ 1.25$.

## Highway Research and Development Studies, Using Federal-Aid Research and Planning Funds

The 1969 issue of Highway Research and Development Studies Using Federal-Aid Research and Planning Funds (\$1.50 a copy) lists studies approved in the Office of Research and Development, Bureau of Public Roads, FHWA, for fiscal year 1970 and calendar year 1969, as of July 1, 1969.

The information has been grouped by the seven major technical goals of the National Program of Research and Development in Highway Transportation. An eighth grouping includes miscellaneous projects of local, regional, or national importance. Data are also presented on the objective of each study, the conducting agency, and the funding for each stụdy.

Available reports on Federal-aid highway research studies are listed and the makeup and operation of the Federal-aid highway research and development program is explained. The publication is intended not only for Federal Highway Administration personnel, but also for those outside the Government who are interested in the program and may desire to participate in it.

# Highway Research and Development Reports Available From Clearinghouse for Federal Scientific and Technical Information 

The following highway research and development reports are available from the Clearinghouse for Federal Scientific and Technical Information, Sills Building, 5285 Port Royal Road, Springfield, Va. 22151. Paper copies are priced at $\$ 3$ each and microfiche copies at 60 cents each. To order, send the stock number of each report desired and a check or money order to the Clearinghouse. Prepayment is required.

Highway research and development reports available from the Clearinghouse are also listed by subject in Public Roads annual publication Highway Research and Development Studies (see inside back cover) according to the goals and projects of the national program of highway research and development.

Stock No.
PB 179251
Statistical Approach to the Quality Control of Plant Mix Pavement.
PB 179257
Time-dependent Deflection of a Box Girder Bridge.
PB 179259 Traffic Systems Reviews and AbstractsJuly Issue, 1968
PB 179260 Highway Coding for Route Designation and Position Description-Vols. I and II.
PB 179262
PB 179263
PB 179268
PB 179269
PB 179270
PB 179271
PB 179272
PB 179273
PB 179274
PB 179275
PB 179276
$\begin{array}{ll}\text { PB } & 179277\end{array}$
PB 179278
PB 179287

PB 179288
PB 179318

P'B 179319

PB 179320

PB 179392
PB 179402

PB 179403
PB 179416

B 1741

Stock No. PB 179423 PB 179424

PB 179437
PB 179438
PB 179439
PB 179440 PB 179441

PB 179442
PB 179443
PB 179444
PB 179445

PB 179448

PB 179568

PB 179582

PB 179583
PB 179584
PB 179585

PB 179586
PB 179588
PB 179590

PB 179644
PB 179646

PB 179647
PB 179648
PB 179682

PB 179683
PB 179684
PB 179685
PB 179686

PB 179687

PB 179688

PB 179689

PB 179690
PB 179691
PB 179692
PB 179693

Guidelines for Police Services on Controlled Access Roadways.
Use of Precast, Prestressed Concrete for Bridge Decks.
Traffic Systems Reviews and AbstractsAugust Issue, 1968.
Rates of Asphalt Hardening at In-service Temperature.
The Lane Drop Study.
Ration Bypass Study-After Phase.
The Effect of Headlight Glare on Vehicle Control and Detection of Highway Vision Targets.
Development of a Flexible Pavement Performance Equation.
Hardened Cement Pastes of Low Porosity. The Influence of Joint Widths and Spacing on Pavement Riding Qualities
The Impact of the Highway Beautification Act of 1965 on the Outdoor Advertising Industry in West Virginia
Maintenance Research Report Three Maintenance Reporting System
A Study of Variability in Production, Sampling and Testing Bituminous Concrete Base-Part III, The 1966-67 Study.
A Regional Analysis of the Economic and Social Impact of Interstate Highways in the Employment and Retail Markets Served by Birmingham, Ala.

Report No. 31-A.
Report No. 31-B.
Report No. 31-C.
Determination of Accuracies in Earthwork Quantities from Photogrammetrically Made Surveys.
Highway Drainage Study-Annual Report for Fiscal Year 1968.
Embankment Testing With the Menard Pressuremeter.
Correlation of Rapid Hydrometer Analysis for Select Materials to Existing Procedure LDH-TR-407-66.
Observation and Analysis of Continuously Reinforced Concrete Pavement.
The Feasibility of installing Emergency Call Equipment on Rural Freeways and Study of Effectiveness of an Emergency Call Sys-tem-Phased I.
Flexible Pavement Deflection Research Feasibility Study.
Johnsongrass Control and Eradication.
A Statistical Study of Rock Slopes on Joint Gnesis With Reference to Highway Rock Slopes Design:
Vol. I
Vol. II
Vol. 1 II
Vol. IV
Analysis of Steel Stress and Concrete Movement on an Experimental Continuously Reinforced Concrete Pavement.
Causes and Control of Soil Erosion-Part I of III Parts of Roadside Development and Erosion Control.
Maintenance of Vegetative Ground CoversPart II of III Parts of Roadside Development and Erosion Control
Weed Control and Eradication-Part III of I11 Parts of Roadside Development and Erosion Control.
Development and Evaluation of Raised Traffic Lane Markers
Investigation of Additive Effects on FJ-1 Wearing Mixtures.
Investigation of Additive Effects on ID-2 Wearing Mixtures.
Reflective Traffic Bead Study-3rd Interim Report.

Stock No.
PB 179789

PB 179858

PB 179859

PB 179860

PB 179861
PB 179873
PB 179874
PB 179875

PB 179876

PB 179877

PB 179878
PB 179879
PB 179880
PB 179881
PB 179882
PB 179883

PB 179884
PB 179901
PB 179902
PB 179903

PB 179905
PB 179987

PB 179988
PB 180022

PB 180079
PB 180057

PB 180114

PB 180115
PB 180120

PB 180122

PB 180123
PB 180124

PB 180125

Report on the Influence of Asphait Pro ties on the Behavior of Bituminous $C$ crete.
A Method for Estimating the Impact Travel Time or Cost Changes on Diver of Car Drivers to Transit: Patterns of 1 Ownership, Trip Generation and 7 Shares in Urbanized Areas-Vol. II.
A Method for Estimating the Impact Travel Time or Cost Changes on Diver of Car Drivers to Transit: Work Trave the Central Business Districts-Vol. I.
The Responsibility of Test Results U: Various California Bearing Ratio Pro ure and the Resistance R-value.
Traffic Simulation Case Study: City of troit, New Center Area Network.
Comprehensive Evaluation of Hight Sign and Billboard Regulations.
Establishment of Bermudagrass See With Annual Ryegrass.
Influence of Chemical Admixtures Mixing Methods on the Air Void Syst in Portland Cement Mortars.
Investigation and Appraisal of the formance of Cement Tested Bases Used in Composite Pavement in C fornia.
Application of Instrumental Methods Evaluating Highway Materials T] Progress Report: Pyrolysis Gas Chro tography.
Stabilization of Chinle Clay by Elec osmotic Treatment.
Removal and Backfill of Material in Loi ana Mucklands.
Cracking in Pavements Influenced by Vi elastic Properties of Soil-Cement.
Continuously-Reinforced Concrete P ment Observation Program.
Dynamic Vehicular Weighing System.
Study of the Effect, If Any, of An Ur Freeway Upon Residential Propet Contiguous to the Right-of-Way.
Large Culvert Studies in Montana.
A Computer Program to Analyze B Columns Under Movable Loads.
Suggested Nuclear Depth Gage Calibrai Procedures.
Subgrade Moisture Variations: Interim port V-Data Summary 1966-1967. Traffic Systems Reviews and Alistrac Seutember 1968 Issue.
A Systems Analysis of Lighway Commi cations:
Vol. I
Vol. II
Highway Estheties Functional Criteria Planning and Design.
A Reusable Energy Absorbing Highr Protective System for Median Areas.
L- nd Economics Report Interstate 71 No South Freeway, Franklin County (OI
Economic Impact of the Highway Beauti tion Act:
Vol. I-Staff Report
Vol. II-Appendix to Staff Report. Urban Intersection Study: Vol. I-Summary Report. Vol. II-A Computer Simulation Mod Driver Behavior at Intersections. Vol. III-Exploratory Study of Indivi Driver Behavior.
Vol. IV--IIeadway Change Detec During Car-Following.
Vol. V-Judgment of Velocity in Dimensions.
Vol. VI-The Driver in a Real Life vironment.

Vol. VII-Resources on Driver BehaviorAbstracts.
Highway Condemnation Law and Litigation in the United States-Printed Report.
Evaluation of the Portable Borehole Deflec-tometer-Interim Report.
Bolted Joints With Rectangular or Circular Fillers.
Effect of Surface Coatings and Exposure on Slip Behavior of Bolted Joints.
Texas Studies Relating to the Highway Beautification Program.
Investigation of a Prestressed-Precast Bridge System.
Effects of Chemical and Mineralogical Properties on the Engineering Characteristics of Arkansas Soils:
Chicot County.
Mississippi County.
Greene County.
A kansas County.
Kentucky Rock Asphait Hot-Mix Surfaces. An Interim Report on a Study of Roadway Lighting System.
In-service Degradation of Base Course Aggregates.
Final Report on Investigation of Mechanism of Delayed Failure of Prestressing Steel.
Report of the Results of Two Full Scale Impact Tests on the Multi-Directional Slip Base for Lighting Supports.
Composite Beam Tests With High-Strength Bolt Shear Connectors.
Asphalt Mixture Behavior in Repeated Flexure: Study of an In-service Pavement near Morro Bay, California.
Harbor Freeway Ramp Closure.
Display Subsystem Evaluation, MERGE-PAS-ERGS.
A Statistical Study of Asphaltic Concrete. Bay Area Freeway Operations Study.
East Los Angeles Interchange Operation Study.
Stripping in Hot-Mixed, Sand-Asphalt Mixtures.
Final Report of the Study Determination of Strength Equivalencies of Bituminous Mixes (N. Dak.).
Investigation of Losses Associated With Pretensioned Girders.
Posey Canyon Arch Culvert Instrumentation.
Pushout Tests With High Strength Bolt Shear Connectors.
Analysis of Ribbed Plates.
Statistical Quality Control of Highway Construction Materials.
Statistical Correlation and Variance Analysis Project Related to the Quality Control of Highway Materials.
An Investigation of Asphalt-Aggregate Adhesion by Measurement of Heats of Immersion.
Structural Behavior of a Reinforced Concrete Arch Culvert, Phase II-Posey Canyon.
Statewide Investigation of Flexible Pavements.
Improved Fiscal and Management Controls Projects.
Ices Bridge Design System: Project Findings and Achievements.
Ices Bridge Design System Engineering User's Manual for Steel Girder Design and General Loading Description.
Optimization of Span Arrangement for Highway Bridges.
Street Tree Study for the District of Columbia Final Report.
Use of Retarders with Cement Treated Soils, Interim Report No. 2-X-Ray Diffraction Study of Unretarded and Retarded Cement Pastes.
Field Experiment With Statistical Methods.
Traffic Systems Reviews and AbstractsOctober Issue, 1968.
Effectiveness of Freeway Sign FormatsFinal Report.

Blic ROADS - Vol. 36, No. 1

Stock No.
PB 180350
PB 180351
PB 180352
PB 180353

PB 180354

PB 180360
PB 180362

PB 180363
PB 180364
PB 180365
PB 180392
PB 180406

PB 180474
PB 180533
PB 180678
PB 180679
PB 180680
PB 180681
PB 180682
PB 180683
PB 180704
PB 180705
PB 180706

PB 180707

PB 180708
PB 180709
PB 180721
PB 180722

PB 180723
PB 180760
PB 180761
PB 180762
PB 180782
PB 180810 Manual of Landslide Recognition in Pierre Shale, South Dakota.
PB 180955 Seminar on the Relationship of Transportation and Poverty Edited Transcript.
PB 180956 Seminar on the Relationship of Transportation and Poverty-Summary and Conclusions and Papers Presented.
PB 1809581968 World Survey of Current Research and Development on Roads and Road Transport.
PB 180959 Fatigue Behavior of Welded Thin Web Girders as Influenced by Web Distortion and Boundary Rigidity.
PB 182084 Fuel Tax Differentials of Texas Cargo Vehicles.
PB 182102 Model Study of the Proposed Precast-Prestressed Bridge System.
PB 182103 Comparative Study of Several Concretes Regarding Their Potentials for Contributing to Prestress Losses.
PB 182104 A Modern Highway Code for Delaware.

Stock No. PB 182105

PB 182106
PB $18: 107$

PB $\quad 182109$

PB 182110
PB 182111
PB 182115
PB 182116

PB 182137
PB 182138

PB 182252

PB 182264
PB 182266

PB 182967

PB 182278

PB 182282
PB 182285

PB 182286

PB 182454 Durability of Lightweight Concrete, Phase I-Concrete Temperature Study.
PB 182524 Traffic Systems Reviews and AbstractsJanuary 1969 Issue.
PB 182534 An Investigation of the Design and Performance of Traffic Control Devices.
Lime or Chloride Treatment of Granular Base Course Materials-Special Report.
Laboratory Corrosion Test of Steel in Concrete.
The Effectiveness of Darkening Surface and Insulating Bridge Slabs to Reduce Unequal Icing.
Study of Composito Bridge Stringers. Behavior of Stud Shear Connectors in Lightweight and Normal-Weight Concrete.
Curing Compounds for Portland Cement Concrete.
The Effectiveness of Diaphragms in Steel Stringer Bridges.
Use of Retarders with Cement Treated Soils-Interim Report No. 3.
Shear Connections in Haunched Composite Members.
Traffic Systems Reviews and AbstractsNovember Issue 1968.
Traffic Systems Reviews and AbstractsDecember Issue 1968.
Continuously Reinforced Concrete Pavement Performance.
Maintenance Performance Laboratory-Report Four.
Influence of Temperature and Other Climatic Factors on the Performance of SoilPavement Systems.
A Study of the Relationships Between Reflectance, Microprofile and Skid Resistance Characteristics of Highway Surface.
Culvert Outlet Energy Dissipator Incorporating Radial Flow and a Transverse Sill.
Hot Melt Traffic Marking Materials.
The Statistical Approach to Quality Control in Highway Construction, Phase IMeasuring the Variability, Part A-Comipacted Embankments.
The Statistical Approach to Quality Control in Highway Construction, Phase IMeasuring the Variability, Part B-Asphalt Construction.
Determination of Statistical Parameters for Highway Construction-Continuation 1. Dynamic Tests of Short Sections of Corrugated Metal Beam Guardrail Series XIII.
Dynamic Tests of Five Breakaway Lighting Standard Base Designs Series XVIII and XIX.

An Evaluation of the Road Logger.
A Study of a Three Span Continuous Bridge Structure.
A Study of the Relationship Between Air Temperatures and Depth of Frost Penetration as Related to Pavement Performance of West Virginia's Highways.
Induced Bridge Loads and Moments During a Ten Year Period.
Subgrade Moisture Variations-Interim Report VI.
Information Requirements for Existing at Interchanges.
Dual Entrapping Guardrail System.
Search for a Strength and Toughness Test for Crushed Stone.
Reef Shell in Portland Cement Concrete and Reef Shell-Beach Sand Concrete by Sandor Popovics, Auburn University.
Use of a Rumble Stripe to Reduce Maintenance and Increase Driving Safety.
Coefficient of Friction of Various Grooving Patterns on Portland Cement Concerto Pavement.
Field and Laboratory Studies on Skid Resistance of Pavement Surfaces.
Statistical Analysis of Portland Cement Test Data.
Field Evaluation of Trench Backfilling Procedures.

Statistical Quality Control Studies and Findings Relative to Highway Construction: An Annoted Bibliography.
PB 182633
PB 18:9634
PB 182635

PB 182636
$\begin{array}{ll}\text { PB } & 182637\end{array}$
PB 182638
PB 18:659
PB 182660
PB 182661
PB 18-662
PB 182663

PB 182829
PB 182830

PB 182835

PB 182836
$\begin{array}{ll}\text { PB } & 182837\end{array}$
$\begin{array}{ll}\text { PB } & 182838\end{array}$

PB 182839
PB 182840
PB 182841
PB 182842
PB 182843

PB 182844
PB 182845
PB 182849

PB 182865

PB 182886

PB 182887
PB 182895

PB 182999

PB 183000

PB 183001
PB 183002
PB 183003

PB 183004
PB 183005
PB 183006

PB 183008

PB 183009

PB 183010
Phenomena.
Wind Screen Subdues Gale Force Winds on a Mountain Bridge.
Instrumentation and Testing of Concrete Bridges Reinforced with Strength Steel.
Lateral Distribution of Vehicular Loads in a Prestressed Concrete Box-Beam BridgeWhite Haven Bridge. (Pa.).
Mixture Design for Lime-Treated Soils,
Magnitude and Frequency of Missouri Floods.
Evaluation of the TTI Gyratory Compactor. Highway S.D. 50 Bypass on Tyndall, South Dakota.
Highway S.D. 37 Bypass on Tripp, South Dakota.
Perspective Picture Output for Automobile D) ynamies Simulation.

Vehicle Dynamics in Single Vehicle Acci-dents-Validation and Extensions of a Computer Simulation.
Tesign of Rigid Foundary Energy Dissipating Structures.
The Effect of the Matrix on Aggregate Retention and Surface Wear Characteristics of Bituminous Surfaces.
SIGOP Traffic Signal Optimization Pro-gram-Users Manual.
SIGOP Traffic Signal Optimization Pro-gram-Field Test and Sensitivity Studies.
The Response of Bituminous Mixtures to D) ynamic and Static Loads Using Transfer Functions
Large Shingle Splices That Simulate Bridge Joints.
An Investigation of Headlight Glare as Related to Lateral Separation of Vehjeles. Early Hardening of Asphalt Cement
Dielectric Measurement of Asphalt Content.
Vision Test Scores and Driving RecordAdditional Findings.
Coal Hydrogenation Study:
Vol. I
Vol. II
Vol. III
Rational Analysis of Kentucky Flexible Pavement Design Criterion-Interim Report.
The Moisture Mechanism that Causes Asphalt Stripping in Asphaltic Pavement Mixtures.
The Effect of Access on Highway Right of Way Cost and the Determination of Special Benefits.
Use of the Wave Equation to Predict Soil Resistance on a Pile During Driving.
Fundamental Statistical Research in Traffic Flow-Final Report.
Hydraulics of Energy Dissipation in Steep Rough Channels.

Traffic Systems Reviews and AbstractsFebruary 1969 Issue.
Newburgh-Hampden Experimental Paving Project Interim Report.
Headlamp Beam Usage on U.S. Highways. Disability Glare Effects During a Transition to Polarized Vehicle Headlights.
A 20-Year Report on the Illinois Continuously Reinforced Pavement.
Vegetative Cover Study for Problem Soils.
Fracture Toughness of Portland Cement Concretes.
Storm Drainage Research Project: Technical Report No. 5-A Description of Drainage Areas Gaged by the Storm Drainage Research Project.
Technical Report No. 6-The Effect of Basin Characteristics on the Outlet Hydrograph from a 9 -Acre Impervious Drainage Basin.

PB 183058
PB 183059
PB 183066

PB 183072

PB 183075

PB 183076

PB 183077

PB 183078

PB 183079
PB 183146
PB 183147
PB 183148

PB 138149
PB 183150
PB 183151
PB 183152
PB 183166
PB 183230
PB 183249
PB 183251

PB 183252
PB 183253

PB 183254
PB 183255

PB 183256
PB 183257
PB 183263
PB 183299
PB 183300

PB 183405

PB 183406

PB 183409

PB 183410

PB 183484
PB 183485

PB 183487

PB 183488

Technical Report No. 7-Synthesis of the Inlet Hydrograph from Small Pervious and Combination Pervious-Impervious Drainage Areas.

Stock No

A Study of Physical Factors Affecting the Durability of Asphaltic Pavements.
Static Tests on Unsymmetrical Plate Girders Main Test Series.
Investigation of Use of Preformed, Compressed Neoprene Seals in Joints of Concrete Bridge Decks.
An Interim Report of the Chloe Profilometer Study As Performed by the Maine Staie Highway Commission Pavement SectionBituminous Group.

PB 183532
PB 183585 lane Traflic Flow. A Survey of the Litera ture.
Experimental Guardrail Fosts-Final Report on a Method of Reducing Post Checking.
Ices Bridge Design System Engineering User's Manual for Simple Span Deck and Girder Optimization and Span Arrangement Optimization.
Experimental Bituminous Concrete Pave. ment Study, Route, I-84, Southbury and Middlebury-Report 2, Analysis of Various Data Obtained During and After Construction.
Pilot Tests on the Ultimate Static Strength of Unsymmetrical Plate Girders.
Pavement Marking Points: Interim Report.
The Effects of Contaminants in BitumenAggregate Mixtures.
Instrumentation for Measurements of Lateral Earth Pressure in Drilled Shafts.
A Systems Approach to the Flexible Pavement Design Problem.
A Study of Lime-Reactivity of California Soils by Electrical Dispersion Method.
Statewide Flexible Pavement Performance and Deflection Study.
Allowable Cover on Corrugated Steel Pipe.
Radial Flow Energy Dissipator for Culvert Outlets.
A Statistical Study of Asphaltic Concrete. Shear Fatigue Tests of Prestressed Concrete I-Beams With Web Reinforcement.
Use of Insulation to Attenuate Frost Heaving.
Post-Cast Headers for Bituminous Concrete Surfacing at Bridge Expansion Joints.
Application of Statistical Quality Control Procedures to the Preparation of Specification.
Numeric Ground Image Systems Design Soil Damping Constants Related to Common Soil Properties In Sand and Clays.
Flexural Crack Width at the Bars in Reinforced Concrete Beams.
Test of Upper Anchorage of No. 145 Column Bars in Pylon Design.
Creep and Shrinkage of Eccentrically Loaded Prisms.
Use of Color Aerial Photography for Pavement Evaluation Studies in Maine.
Color Airphotos for Terrain Analyses in Maine Technical Paper 68-5R.
Highway Planning, Location, and Geometric Design Research Project-Final Report.
Automobile Accidents Related to Railroad Grade Crossings A Study of the Effects of Topography and a Computer-Graphics Display of Traffic Flow.
Louisiana Highway Research-A Study of Transit Mixed Concrete.
Louisiana Highway Research-Concrete Wear Study.
Dynamic Studies on the Bearing Capacity of Piles-Phase II Volume I.
Dynamic Studies on the Bearing Capacity of Piles-Phase II Volume II.
An Empirical Equation for Predicting Pavement Deflections,
Fatigue Analysis of the Cast Aluminum Bore.
Technical Report 2-An Economic Study of Urban on Highway Drainage Systems.
Restraint Characteristics of Flexible Riveted

Stock No. and Bolted Beam-To-Column Connections.

PB 183589 PB 183590

PB 183597

PB 183590

PB 183600

PB 183601
PB 183602
Seat Belt Installation and Use-Staff $\mathrm{R}_{1}$
Seam Strength of Asphalt Coated Struc
Plate Pipe.
Traveler Attitudes Toward Highway board Advertising-A Survey of Sel Wyoming Motel Patrons.
Driver Management Requirements Di
Concepts and Acceptance Factor:
Electronic Route Guidance System.
An Estimated 1967 Input-Output-Mod Southwestern Wyoming.
Emulsion-Type Pavement Marking Pi Methods for Analysis of Fardened Coner Early Frost Damage to Portland Ce Concrete.
PB 183603
Behavior of Soils Ender Flexible Paver Development of Rapid Frost Suscep ity Test.
PB 183604
$\begin{array}{ll}\text { PB } & 183605\end{array}$
PB 183620
PB 183663

PB 183664
$\begin{array}{ll}\text { PB } & 183665\end{array}$
PB 183666
PB 183667

PB 183668
PB 183669

PB 183670
PB 183671
$\begin{array}{ll}\text { PB } & 183672\end{array}$
PB 183673

PB 183674
PB 183675

PB 183676
PB 183677

PB 183678
PB 183681

PB 183682

PB 183688
PB 183689

PB 183690

PB 183691

PB 183692
PB 183693
Predicted
Frequency of Peak Flows Predicted
Rainfall Frequencies-Interim Ri No. 7 .
PB 183694 Interim Report No. 2 on Wrong-Way Dri (Phase III)-Driver Characteristics, F tiveness of Remedial Measures, and E of Ramp Type.
PB 183695 Effect of Traffic Operation of Use of Sho as Traveled Way on Portions of $\S$ Monica Freeway.
PB 183696 Study of the Operational Aspects of way and Two-way Streets.
PB 183697
Description and Evaluation of Traffic trol on a Two-Lane, High-Speed, Volume Freeway Entrance.

PB 183608

PB 183699
Conceptualization of O vertaking and Pa on Two-Lane Rural Roads-Vol. I.
Driver Judgment and Decision-Maki vol. II.

Other highway research and development reports avai from the Clearinghouse will be announced in future is
A. list of the more important articles in Public Roads and title heets for volumes 24-35 are available upon request addressed to Bureau of Public Roads, Federal Highway Administration, U.S. lepartment of Transportation, Washington, D.C. 20591.
The following publications are sold by the Superintendent of pocuments, Government Printing Office, Washington, D.C. 20402. prders should be sent direct to the superintendent of Documents. Prepayment is required.
iccidents on Main Rural Highways-Related to Speed, Driver, and Tehicle (1964). 35 cents.
ggregate Gradation for Highways: Simplification, Standardization, and Uniform Application, and A New Graphical Evaluation Chart (1962). 25 cents.
imerica's Lifelines-Federal Aid for Highways (1969). 35 cents. inalysis and Modeling of Relationships between Accidents and the Geometric and Traffic Characteristics of the Interstate System (1969). \$1.00.
The Bridge to Your Success (1969) . 45 cents.
lalibrating \& Testing a Gravity Model for Any Size Urban Area (1968). \$1.00.
dapacity Analysis Techniques for Design of Signalized Intersections (Reprint of August and October 1967 issues of PUBLIC ROADS, a Journal of Highway Research). 45 cents.
;onstruction Safety Requirements, Federal Highway Projects (1967) . 50 cents.

Sorrugated Metal Pipe Culverts (1966) . 25 cents.
reating, Organizing, \& Reporting Highway Needs Studies
(Highway Planning Technical Report No. 1) (1963). 15 cents. 'atal and Injury Accident Rates on Federal-Aid and Other Highway Systems, 1968. 45 cents.
'ederal-Aid Highway Map (42 x 65 inches) (1965). \$1.50.
'ederal Laws, Regulations, and Other Material Relating to Highways (1965). \$1.50.
'ederal Role in Highway Safety, House Document No. 93, 86th Cong., 1st sess. (1959). 60 cents.
'reeways to Urban Development, A new concept for joint development (1966). 15 cents.
iuidelines for Trip Generation Analysis (1967). 65 cents.
Iandbook on Highway Safety Design and Operating Practices
(Supplement No. 1, November 1968. 35 cents). 40 cents.
Iighway Beautification Program. Senate Document No. 6, 90th Cong., 1st sess. (1967). 25 cents.
Iighway Condemnation Law and Litigation in the United States (1968) :

Vol. 1-A Survey and Critique. 70 cents.
Vol. 2-State by State Statistical Summary of Reported High-
way Condemnation Cases from 1946 through 1961. \$1.75. Iighway Cost Allocation Study : Supplementary Report, House Document No. 124, 89th Cong., 1st sess. (1965). \$1.00. Iighway Finance 1921-62 (a statistical review by the Office of Planning, Highway Statistics Division) (1964). 15 cents. Iighway Planning Map Manual (1963). \$1.00.
Iighway Research and Development Studies Using Federal-Aid Research and Planning Funds (1969). \$1.50.
Iighway Statistics (published annually since 1945) :
$1965, \$ 1.00 ; 1966, \$ 1.25 ; 1967, \$ 1.75 ; 1968, \$ 1.75$.
(Other years out of print.)
Iighway Statistics, Summary to 1965 (1967). \$1.25.
Iighway Transportation Criteria in Zoning Law and Police Power and Planning Controls for Arterial Streets (1960). 35 cents.
Iighways and Human Values (Annual Report for Bureau of Public Roads) (1966). 75 cents.
Supplement (1966). 25 cents.
Iighways to Beauty (1966) . 20 cents.
Iighways and Economic and Social Changes (1964). \$1.25.
Iydraulic Engineering Circulars :
No. 5-Hydraulic Charts for the Selection of Highway Culverts (1965). 45 cents.
No. 10 -Capacity Charts for the Hydraulic Design of Highway Culverts (1965). 65 cents.
No. 11-Use of Riprap for Bank Protection (1967). 40 cents.

Hydraulic Design Series :
No. 2-Peak Rates of Runoff From Small Watersheds (1961). 30 cents.

No. 3-Design Charts for Open-Channel Flow (1961). 70 cents.
No. 4 -Design of Roadside Drainage Channels (1965). 65 cents.
Identification of Rock Types (revised edition, 1960). 20 cents. Request from Bureau of Public Roads. Appendix, 70 cents.
The 1965 Interstate System Cost Estimate, House Document No. 42, 89th Cong., 1st sess. (1965). 20 cents.
Interstate System Route and Log Finder List (1963). 10 cents.
Labor Compliance Manual for Direct Federal and Federal-Aid Construction, $2 d$ ed. (1965). $\$ 1.75$.
Amendment No. 1 to above (1966). $\$ 1.00$.
Landslide Investigations (1961). 30 cents.
Manual for Highway Severance Damage Studies (1961). \$1.00.
Manual on Uniform Traffic Control Devices for Streets and Highways (1961). \$2.00.
Part V only of above-Traffic Controls for Highway Construction and Maintenance Operations (1961). 25 cents.
Maximum Desirable Dimensions and Weights of Vehicles Operated on the Federal-Aid Systems, House Document No. 354, 88th Cong. 2d sess. (1964). 45 cents.
Modal Split-Documentation of Nine Methods for Estimating Transit Usage (1966). 70 cents.
National Driver Register. A State Driver Records Exchange Service (1967). 25 cents.
National Highway Needs Report, H. Comm. Print 90-22 90th Cong. $2 d$ sess. (1968). 25 cents. Supplement 10 cents.
The National System of Interstate and Defense Highways (1969). 15 cents.
Overtaking and Passing on Two-Lane Rural Highways-a Literature Review (1967). 20 cents.
Presplitting. A Controlled Blasting Technique for Rock Cuts (1966). 30 cents.

Proposed Program for Scenic Roads \& Parkways (prepared for the President's Council on Recreation and Natural Beauty), 1966. $\$ 2.75$.

Reinforced Concrete Bridge Members-Ultimate Design (1969). 45 cents.
Reinforced Concrete Pipe Culverts-Criteria for Structural Design and Installation (1963). 30 cents.
Road-User and Property Taxes on Selected Motor Vehicles (1968) . 45 cents.

Role of Economic Studies in Urban Transportation Planning (1965). 65 cents.

The Role of Third Structure Taxes in the Highway User Tax Family (1968). $\$ 2.25$.
Specifications for Aerial Surveys and Mapping by Photogrammetrical Methods for Highways (1968). \$1.25.
Standard Alphabets for Highway Signs (1966). 30 cents.
Standard Land Use Coding Manual (1965). 50 cents.
Standard Plans for Highway Bridges :
Vol. I-Concrete Superstructures (1968). \$1.25.
Vol. II-Structural Steel Superstructures (1968). \$1.00.
Vol. III-Timber Bridges (1969). 75 cents.
Vol. IV-Typical Continuous Bridges (1969). $\$ 1.50$.
Vol. V-Typical Pedestrian Bridges (1962). \$1.75.
Standard Specifications for Construction of Roads and Bridges on Federal Highway Projects (1969). $\$ 3.50$.
Standard Traffic Control Signs Chart (as defined in the Manual on Uniform Traffic Control Devices for Streets and Highways). $22 \times 34,20$ cents- 100 for $\$ 15.00 .11 \times 17,10$ cents- 100 for $\$ 5.00$.
Study of Airspace Utilization (1968). 75 cents.
Traffic Safety Services, Directory of National Organizations (1963). 15 cents.

Transition Curves for Highways (1940). \$2.50.
Ultrasonic Testing Inspection for Butt Welds in Highway and

## United States

## Government Printing Office

## DIVISION OF PUBLIC DOCUMENTS

WASHINGTON, D.C. 20402
OFFICIAL BUSINESS

If you do not desire to continue to receive this publication, please CHECK HERE tear off this label and return it to the above address. Your name will then be removed promptly from the appropriate mailing list.


PENALTY FOR PRIVATE USE TO AVOID PAYMENT OF POSTAGE, $\$ 300$ U.S. GOVERNMENT PRINTING OFFICE POSTAGE AND FEES PAID

The title sheet for vol. 35, Apr. 1968-Feb. 1970, of PUBLIC ROADS, A Journal of Highway Research, is now available. This sheet contains a chronological list of article titles and an alphabetical list of authors' names. Copies of this title sheet can be obtained by sending a request to the managing editor of the magazine, Bureau of Public Roads, Federal Highway Administration, Washington, D.C. 20591.


[^0]:    ${ }^{1}$ Presented at the 49th Annual Meeting of the Highway Research Board, Washington, D.C., January 1970.

[^1]:    ${ }^{2}$ Italic numbers in parentheses identify the references listed on page 15

[^2]:    ${ }^{\text {I }}$ Italic numbers in parentheses identify the references listed on p. 15.

[^3]:    Fatal Accidents on Completed Scctions of the Interstate Highway System, 1968 , P UBLIC ROADS, A Journal of highway research, vol. 35 , No. 10 , October 1969, pp. 217-224.

[^4]:    Highway Design and Operational Practices Relat Highway Safety, A Report of the Special AASHO T Safety Committee, February 1967.

