

Vol. 35/No. 8

June 1969

Public Roads

GURE U OF PUBLIC ROAD RECEIVED JUN 6 - 1969 LIBRARY C3

A JOURNAL OF HIGHWAY RESEARCH

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION BUREAU OF PUBLIC ROADS

Public Roads

A JOURNAL OF HIGHWAY RESEARCH

Published Bimonthly

Harry C. Secrest, Managing Editor • Fran Faulkner, Editor

June 1969/Vol. 35, No. 8

CONTENTS

Articles

Acquisition of Loading History Data on Highway	
Bridges,	
by Charles F. Galambos and	
William L. Armstrong	17
Ouality Assurance of Highway Construction Part	

3—Quality	Assurance	of	Portland	Cement	
Concrete,					
by Wesley	M. Baker an	d			
Thurmul	F. McMahor	n			184

Travel by Motor	Vehicles in 1967,	
by W. Johnso	on Page	190

Publications

New Publications	192
Research and Development Reports Available from the Clearinghouse for Federal Scientific and	
Technical Information	192

Publications of the Bureau of Public Roads Available from the Superintendent of Documents_____Inside back cover

COVER

Twin bridge structures on a completed section of Interstate Highway 80 east of Reno, Nev.

U.S. DEPARTMENT OF TRANSPORTATION JOHN A. VOLPE, Secretary

> FEDERAL HIGHWAY ADMINISTRATION F. C. TURNER, Administrator

> > BUREAU OF PUBLIC ROADS

THE BUREAU OF BURLIC

FEDERAL HIGHWAY ADMINISTRATION
FEDERAL HIGHWAY ADMINISTRATION
U.S. DEPARIMENT OF TRANSPORTATION
Washington, D.C. 20591
FHWA REGIONAL OFFICES
No. 1, 4 Normanskill Blvd., Delmar, N.Y. 12054
Connecticut Maine Massachusetts Now
Hampshire New Jerson New York Phodo
Island Vermont and Puerte Piez
No. 2 1622 Foderal Duilding 21 H. L.
No. 2. 1633 Federal Building, 31 Hopkins
Place, Baltimore, Md. 21201.
Delaware, District of Columbia, Maryland,
Ohio, Pennsylvania, Virginia, and West Vir-
ginia.
No. 3. 1720 Peachtree Rd., N.W., Atlanta, Ga.
30309.
Alabama, Florida, Georgia, Mississippi, North
Carolina, South Carolina, and Tennessee.
No. 4. 18209 Dixie Highway, Homewood III
60430.
Illinois, Indiana Kentucky Michigan and Wis-
consin
No. 5 Civic Center Station Kansas City Mo
6/106
Iowa Kanaga Minnagata Missouri Naturala
North Dekote and Oc the Dekit
North Dakota, and South Dakota.
No. 6. 819 Taylor St., Fort Worth, Tex. 76102.
Arkansas, Louisiana, Oklahoma and Texas.
No. 7. 450 Golden Gate Ave., Box 36096, San
Francisco, Calif. 94102.
Arizona, California, Hawaii, and Nevada.
No. 8. 412 Mohawk Bldg., 222 SW. Morrison
St., Portland, Oreg. 97204.
Alaska, Idaho, Montana, Oregon, and
Washington.
No 9 Donvor Enderal Contor Pldg 40 Don
Nor Colo 20225
Ver, Colo. 80225.
Colorado, New Mexico, Utan, and Wyoming.
No. 15. 1000 N. Glebe Rd., Arlington, Va.
22201.
Eastern Federal Highway Projects
No. 19. Apartado Q, San Jose, Costa Rica.
Inter-American Highway: Costa Rica, Guate-
mala, Nicaragua, and Panama.
Public Roads, A Journal of Highway Research, is sold
Printing Office, Washington, D.C. 20402, at \$2.00 per

by the Superintendent of Documents, Government Printing Office, Washington, D.C. 20402, at \$2.00 per year (50 cents additional for foreign mailing) or 40 cents per single copy. Subscriptions are available for 1-, 2-, or 3-year periods. Free distribution is limited to public officials actually engaged in planning or constructing highways and to instructors of highway engineering. There are no vacancies in the free list at present.

Use of funds for printing this publication has been approved by the Director of the Bureau of the Budget, March 16, 1966.

Contents of this publication may be reprinted. Mention of source is requested.

Bridge on Interstate Highway 95 near Dumfries, Va.—the site of a pilot study to test newly developed instrumentation for gathering strain-history data on highway bridges.

BY THE OFFICE OF RESEARCH AND DEVELOPMENT BUREAU OF PUBLIC ROADS

Acquisition of Loading History Data on Highway Bridges

ported by ¹ CHARLES F. GALAMBOS Id WILLIAM L. ARMSTRONG, Strucral Research Engineers, Structures Id Applied Mechanics Division

Introduction

I UCH of the conservative approach to the design of highway bridges is due to the predictability of the precise nature of the adings to which these structures will be bjected in their lifetime, and also to the 2k of knowledge about what the behavior the materials will be under the loadings.

Highway bridges are subjected to a variety forces, ranging from the constant dead loads the structures themselves, through slowly anging forces caused by material creep and mperature differentials, to an almost infinite

Presented at the 43th annual meeting of the Highway search Board, Washington, D.C., January 1969. A data acquisition system to monitor and digitize strains produced in highway bridges by ordinary truck traffic is described in this article. The system and an associated computer program were used in a pilot study, on an Interstate Highway bridge near Dumfries, Va. Strains were monitored during several sampling periods, and trucks were weighed and classified at a nearby weighing station. The performance of the system was satisfactory. Generally low strains, usually less than half of the calculated live-load design values, were measured and elements of the Dumfries bridge seem to be in no danger of fatigue failure.

variety of live loadings caused by moving vehicles. It would be impossible to base bridge designs on any precise knowledge of future loads, and it follows naturally that present design methods are approximations. Most bridges are designed to carry a static load produced by a design truck, with certain empirical allowances for increased stresses owing to dynamic loads.

Design methods provide for the damaging effects of repetitive loads only in a rather

crude fashion—a fact that is becoming of increasing concern to bridge engineers. There is an obvious need to determine the loading history of highway bridges so that the stresses produced by traffic can be predicted and a more rational, realistic estimate of future stresses made.

Attempts at monitoring the stresses caused by traffic traversing a bridge have been cumbersome and time consuming because of laborious data reduction processes. The statis-

Figure 1.—Strain-history-data acquisition system.

tical nature of the problem requires that a large mass of data be collected. Enough information must be gathered on various types of bridges in representative parts of the country so that the loading histories described will be representative of what really takes place.

The Public Roads staff, having been active in the field testing of highway bridges since 1953, is well aware of the problems involved in the data reduction process and has shared in the concern of the need for better instrumentation. Accordingly, the Structures and Applied Mechanics Division of the Office of Research and Development assembled a set of specifications and employed a contractor to develop an instrumentation system to monitor, digitize, and record physical phenomena of highway bridges in service. Work on the project began in the summer of 1965, and the system was completed in May of 1966. Since then it has been subjected to an extensive acceptance test and used in a pilot study on a bridge near Dumfries, Va.

Description of Instrumentation

Detailed components of system

The data acquisition system is an assemblage of instrumentation consisting largely of signal conditioning modules, amplifiers, an analog-to-digital converter, a digital processing unit (computer), and an input-output device (teletype with paper punch). Power supplies, cooling fans, and a voltage regulator complete the assembly, and except for the regulator and the teletype, all units are housed in shock-mounted cabinets. The entire assembly is housed in an office trailer—not part of the development contract—that can be easily transported. Heating and cooling units automatically control the temperature and humidity in the trailer. A view of the instrumentation is shown in figure 1, and a system block diagram is presented in figure 2.

Although electric power to the system can be supplied from portable AC generators, power from the more reliable commercial power lines is preferable. A single-phase, three-wire power source of approximately 40 amperes is required. Except for the air cooling unit in the trailer, which requires 220 volts, all equipment operates on 110-volt power.

Signal conditioning modules

The transducer input circuits from the bridge structure being measured are completed in the signal conditioning modules. Inputs from one-, two-, or four-arm Wheatstone bridges are acceptable. Also, a variety of interchangeable completion cards are available for use with transducers other than strain gages, such as thermocouples, thermistors, and potentiometers. Adjustments have been provided for balancing the signal conditioning circuits and for calibration.

Amplifiers

The DC amplifier multiplexers are interchangeable units, specially designed for use in multichannel, low-level, data acquisition systems. Each unit consists of an inplaamplifier, modulator, demodulator, isolat, wide-band output amplifier, extra output amplifier with an active filter, and mulplexer circuit. The input range is ± 10 milvolts through ± 10 volts for a full-scale output of ± 10 volts.

Access to three outputs is provided. From one output, the filtered, multiplexed sign is fed to the analog-digital converter. The other two outputs provide a continuous sign, which may be used for auxiliary analy recording or monitoring with oscilloscop, tape recorders, or oscillographs.

Analog-to-digital converter

Connected to the output of the mulplexed amplifiers is the analog-to-digil converter, commonly called the digitiz, which accepts analog voltages within a rare of from ± 10 to ± 10 volts and generas parallel digital output signals. The output consists of 12 binary digits, one of whichs used as the sign bit. The remaining 11 \approx used to represent the magnitude of the analy voltage. The conversion rate is about 70,00 12-bit words per second.

Mounted just below the digitizer in the center cabinet is a visual display of the da, where the binary information from the digitizer is shown in octal form for any selectil channel. The visual display is of help when the circuits are being balanced and calibrate, as separate voltmeter or ohmmeter reading are unnecessary.

ita processing unit-computer

The heart and brain of the instrumentation stem is the SDS 910 computer. It accepts e raw data from the digitizer, processes d stores information, enables data to be inted out, and controls the sequencer and, ereby, the sampling rate. It has a basic re memory of 4,096 words, which could be panded by adding additional memory odules. The word size is 24 binary digits. ur hardware priority interrupts are proled. The language used for programing is symbolic language, but conversion routines e available so that FORTRAN II may also used. The computer has buffered inputtput capabilities at rates in excess of 60,000 aracters per second, simultaneous with mputation.

Operations in the system are controlled a clock, which is a 50 kHz. tuning fork cillator divided down by the timing genator to the appropriate frequencies used roughout the system. The timing generator nits a one-pulse-per-second interrupt signal r the computer to update the elapsed time unters.

Input-output device

Communication with the computer is achieved by a teletype machine with paper tape reader and punch placed on line. The maximum speeds of the teletype reader and punch are 10 characters per second each. Usually the program is read in with the tape reader, and specific instructions, for which provisions have been made in the program, are typed in on the teletype. Manual access to the computer is also possible through control switches on the face of the computer panel.

Computer Program

Development of the system also included the writing of a program for the gathering of strain history data on highway bridges. This program was subsequently revised and is described in detail in the succeeding paragraphs.

Program objectives

The principal objective of the program was to count the number of times that a maximum strain range occurs. A *maximum strain range* is defined as the maximum difference in strain that is caused by the passage of a single vehicle. Ten channels are monitored and a counting table for the various strain ranges is maintained for each channel.

The strain ranges are computed by establishing strain levels, as shown in figure 3. The strains on the bridge are presented to the system as analog voltages, usually in the millivolt range. They are conditioned and amplified to a maximum range of ± 10 volts, full scale, and are subsequently converted to digital notation of ± 2047 , full scale.

The strain levels are selected by the operator and represent a percentage of full scale. The program allows for 10 strain levels per channel. When a peak, such as point A in figure 3, is detected, a search is made to determine in which level the point is located. The same procedure is then followed for a valley, such as point B. The maximum strain range is computed as the difference of the strain levels that contain the peak and valley—not the actual values of peak and valley.

To avoid the undesirable counting of peaks and valleys caused by passenger cars and other light vehicles and those caused by small oscillations of the bridge itself, a *test level*, shown as the dashed line in figure 3, is established by the operator. A peak is not recorded

Figure 2.—Block diagram, data acquisition system.

Figure 3.—Maximum strain range.

unless the occurrence exceeds this test level. To be certain that the maximum strain range is obtained, a corresponding valley is not recorded until the strain drops below the zero level.

Another objective of the program was to separate live-load strains from those caused by environmental conditions. It was intended to continuously monitor strains at any particular bridge for periods of several days. During this time the bridge will experience numerous cycles of strain caused by temperature changes. This strain is separated from live-load strains by a zero level adjustment, which is periodically performed.

When the operator determines the strain levels to be used for each channel, he also determines which of these levels will be the zero strain level. During the time that the system is sampling the 10 channels, some drifting of this zero level occurs, as shown in figure 4. To correct for this drifting, each channel is periodically scanned for its new zero level, which is found by sampling until a relatively flat curve-continuous samples of very close magnitude-is detected for a continuous, specified, length of time. This time can be varied by the operator to fit a particular traffic situation. The average value of this flat curve is computed as the new zero level. All strain levels are then shifted by the amount that the zero level shifts from its previous value.

The frequency at which the zero level adjustment is to be performed is determined by the operator when he initiates the program. Five zero level adjustments are allowed during each recording interval. As the digital value of each zero level is printed out at the end of each recording interval, the slowly varying strains in a member caused by temperature changes can be reconstructed merely by converting the values to strains.

Data acquisition and processing

The program is designed to accept and process 15 channels of low-level transducer information. Ten of these channels, primary channels, are monitored for associated peak and valley counts as described earlier. The remaining five channels, secondary channels. may be used for monitoring other transducer signals, such as thermocouples.

The samples from the 10 primary channels are processed first, beginning with channel No. 1. After processing the first sample, the program advances the sequencer to the next channel. Each sample is checked to see whether it is larger than the test level. (See fig. 4.) If it is, it is checked to see whether it is a peak. If so, the level containing the peak is recorded. If another, larger peak occurs before the signal drops below the zero level, the larger peak is recorded in place of the smaller one.

When the signal drops below the zero level, the program starts searching for a valley. It continues to search for valleys until the signal again becomes larger than the test level. At this time, the most negative strain level containing the valley is recorded, and a count is made in the appropriate storage location corresponding to the peak and valley just recorded. This process continues throughout the recording interval.

When the real-time clock detects that it is time for a zero level adjustment, the system processes the zero level adjustment program, which uses the interrupt system to obtain the samples. All 15 channels are sampled in this operation. The samples from each of the channels are accumulated, and the average value computed and saved for output. The zero level adjustment is then performed.

Program summary

The program presents a reasonably accurate method for detecting the maximum strain ranges that occur in a stressed member under cyclic live loading. For each such occurrence, a count is made in the proper matrix accumulator. The counts are accumulated for each channel separately for a predetermined length of time.

The accuracy of the maximum strain ranges recorded depends on several factors. One is the frequency of the cyclic live loading. The maximum sampling rate for each channel is set at 200 samples per second. As the response frequency increases, accuracy decreases. Good accuracy can be obtained with frequencies below 20 cycles per second, and excellent accuracy can be obtained at frequencies bew 10 cycles per second.

Another factor that influences the accure of the maximum strain ranges is drifting of he zero strain level. The program, by performing a zero level adjustment at predetermid intervals, presents a method for separatig and determining strains in members caud by environmental conditions. But between intervals, a peak and corresponding value could be recorded in different levels, owingto the shift in the zero level by the two cas. As shown in figure 4, this could also affet the maximum strain range. In both cases is the same, and in both cases the valy will be recorded in level 6, but in case 1, he peak will be recorded in level 4, and in cse 2, in level 3. Therefore, the maximum strin range will be recorded differently in each c.e.

To minimize this difficulty, the zero kell adjustment should be performed frequeny, and the expected rate of change of the zero level must be considered when setting he length of recording time.

The accuracy of the maximum strain rage is also affected by the magnitude of he difference in the strain levels that are chon. The smaller the difference, the greater ill be the accuracy.

One other source of measurement ear could stem from the use of the test led, which was established to eliminate small o illations of the bridge. The program does ot search for a peak until the signal exceeds at test level. It searches for a valley only wan the signal drops below the zero level. Coquently, erroneous peak and valley assoations could occur infrequently. Referring to figure 3, peak C would be associated wh valley F, since valley D did not drop bew the zero level. Such a situation could our when one vehicle is following closely behd another.

All these sources of error are consider minor, or can be corrected by a careful acptation of the sampling scheme to a specie local traffic and environmental condition.

The data acquisition system and the caputer program were tested on an ac al bridge in a pilot study to determine just by

Figure 5.—Dumfries bridge, northernmost span.

ell they perform the functions for which ney were designed. The conduct of the test, ae results obtained, and an evaluation of the vstem, make up the remainder of this article.

Dumfries Field Study

The bridge chosen for the pilot study was steel girder structure with partial-length, elded cover plates. It was a simple, fourban bridge of composite design located in he northbound lane of Interstate Highway 5 near Dumfries, Va. This site was chosen rimarily because of the heavy truck traffic accommodates, and also because of its earness to a truck weighing station. Views f the structure are shown at the beginning of his article. The bridge has a slight skew ngie, left forward at 3°46'.

Of the four spans, only the northernmost pan was instrumented and tested. Structural etails of this span are shown in figure 5. 'en strain gages were placed on the bottom anges of five of the girders. The sixth girder, eing the outside girder on the left side of the ridge, would have received little stress 'om truck traffic and was not instrumented. On the instrumented girders, one gage was laced in the center of the bottom of the over plate at midspan on a skewed section. nother was placed on the bottom of the irder 4 inches off the south end of the over plate.

During the period of testing, strains were ontinuously monitored, the sampling interals ranging from ½ to 2 hours. At the end of ach sampling interval, the accumulated ata was printed out as strain level peaks and associated valleys. From the summation f these periodic outputs, the stress range istribution for each instrumented member f the bridge was determined, as shown in gure 6. Values from beam 4 are not shown because the gages on the beam malfunctioned during part of the sampling periods.

The data in figure 6 were recorded from May to November 1967 during scattered sampling intervals. The frequency of occurrence of each stress range, computed from the total number of occurrences at each stress level for each beam, is shown in table 1. Beams were numbered right to left looking north. The maximum stress range, between 3,300 and 3,700 p.s.i. occurred on beam 3. However, considering the total number of stress range occurrences above 1,650 p.s.i., there was a larger number on beam 2 than on any other beam. Midspan stresses are shown in figure 6, but end-of-cover-plate stresses were about the same as these.

The number of occurrences shown in table 1 relates to the number of vehicles that crossed the structure, as follows. In addition to the absolute maximum stress range excursion, certain vehicles produced complementary stress cycles, which were also counted. Some of these complementary cycles could have had greater amplitudes than the absolute maximum induced stress caused by other vehicles. For example, figure 3 could have represented the stress caused by the passage of one vehicle. However, two occurrences would have been recorded-A-B and C-F. By keeping a record of the number of trucks that crossed the bridge during the time that strain ranges were recorded, it was possible to obtain the average number of occurrences per vehicle for each beam. The values for this bridge (table 1), ranged from 1.7 for beam 5 to 3.0 for beam 3. Beam 3 had not only the highest recorded stress range, but also the highest ratio of occurrences per event.

Truck type and weight distribution

A State-operated weighing station was located approximately 2 miles from the Dumfries bridge. This station, in continuous operation throughout the year, made it possible to obtain accurate truck counts. The monthly and yearly truck-traffic totals for 1966 and 1967 are shown in table 2. The

Figure 6.—Frequency distribution of stress ranges at midspan.

highest volume of truck traffic occurred during the summer months. The Virginia truck law allows a maximum gross weight of 70,000 pounds, but there is an unofficial enforcement tolerance of 5 percent, which would raise the maximum gross weight to 73,500 pounds. The truck traffic included two 5-axle vehicles, distributed as shown in figure 7.

Records of truck weights were collected at the weighing station during scattered intervals while strains were monitored. From these data, the gross truck weight distribution was determined as shown in figure 8. The greater percentage of truck traffic weighed between 20 and 30 kips, with only 5.6 percent above 70 kips. The average gross weight of each axle group is given in figure 7.

Life expectancy

An attempt was made to predict the life expectancy, or fatigue life, of the Dumfries bridge. The fatigue curve used was developed from the recommendations of the joint ASCE-AASHO Committee on Flexural Members (1).² For rolled beams with cover plates using ASTM A36 steel, the Committee recommended a stress range value of 9,000 p.s.i. for fracture at 2×10^6 cycles. In House Document 354 (2), it is assumed that the stress range value at 200×10^6 cycles is equal to one-third the stress range value at 2×10^6 cycles. If the same assumption is used for the study reported here, the stress range at 200×10^6 cycles is 3,000 p.s.i. Based on the assumption that the stress range and cycles to failure have a linear log-log relation, figue 9 was constructed. This curve, along with Miner's hypothesis of cumulative damage, can be used to predict the fatigue life of a bridge, if the stress ranges to which it will be subjected are known. Other researchers (3, 4) also have developed fatigue curves similar to the one shown in figure 9.

The stress ranges recorded on the Dumfries bridge were not large enough to make a reliable estimate of its fatigue life. The highest stress range recorded, approximately 3,500 p.s.i. on beam 3 at midspan, had an occurrence frequency of less than 0.01 percent. Slightly lower stresses were recorded near the ends of the cover plates. The frequency of occurrence of all stresses on beam 3, which fell on the curve of figure 9, was only 0.06 percent. It is therefore impossible to predict the fatigue life of the bridge from these data.

Summary and Discussion

Evaluation of the data acquisition system indicates that the concept of combining transducer conditioning, amplifying, monitoring, and processing instrumentation into one system controlled by a digital computer is a very good one. The system, as assembled, is certainly able to monitor, digitize, and process the strains produced by ordinary traffic, without any loss of essential information and with a minimum of manpower in attendance.

Having a computer controlled data acquisition system allows for great flexibility in

Table 1.-Number of stress range occurrences, midspan gages

	-				N	Number o	f occurren	nces			
Beam				Str	ess, ran	ge, p.s.i.				Total	Per
	3, 700	3, 300	2, 880	2, 490	2, 07	70 1,6	50 1,5	240 84	0 410		vehicle
1 2 3 5	Tel ()	1	24	$3 \\ 36 \\ 24 \\ 1$	39 276 150 2	287 906 615 12	1, 255 935 1, 236 91	3, 687 2, 674 2, 579 2, 554	3, 475 3, 756 3, 131 6, 717	8, 746 8, 585 7, 740 9, 377	$2.1 \\ 1.9 \\ 3.0 \\ 1.7$

gathering and processing data. One guiding principle during the development of the program was simplicity. As several aspects of the fatigue problem on highway bridges are not known or understood, it was decided to concentrate only on the gathering of major stress ranges. All kinds of minor vibrations and fluctuations in stress could also have been recorded; but these have been shown to have no bearing on the life expectancy of highway structures, and the choice was made to ignore them.

Laboratory fatigue studies together with the development of an applicable cumulative damage fatigue theory will have to accompany loading history studies in the field.

Those aspects of the program relating to the zero level adjustment procedure are believed to be sound, and any errors caused by drifting that are not corrected by the zero level adjustment are very small.

The Dumfries field test was properly named a pilot study, as it was not a full fledged investigation into the loading history of a highway bridge. Initially, the bridge served mainly to check out the new instrumentation, but the volume of data gathered far surpasses that of other investigators who used oscillograph instrumentation to record the passage of trucks in similar studies.

For instance, in a recent Michigan study (3) involving eight bridges, only some 3,000 events were recorded for a single bridge. In a similar investigation in Maryland during the summer of 1967, only about 1,000 events were recorded. In the Dumfries study, the average for each of the several beams instrumented was about 9,000 stress events. Many more were recorded

	-		
	TOTAL EACH TYPE	PCT. OF OVERALL TOTAL	AVERAGE GR. WEIGHT, KIPS
- يْنْسَام	223	19.9	12.5
	157	14.0	28.3
	332	29.7	37.7
	407	36.4	45.6

Figure 7.—Truck type and weight distribution.

Table 2.—Number of trucks weighed, Dufries weighing station, route I-95, no.h bound

Month	1966	1967
January February March April. May. June July. August September October. November December	$\begin{array}{c} 41, 459\\ 42, 149\\ 49, 028\\ 53, 841\\ 51, 846\\ 58, 322\\ 50, 629\\ 58, 605\\ 49, 385\\ 57, 406\\ 44, 129\\ 26, 409\end{array}$	$\begin{array}{c} 36,678\\ 42,823\\ 50,840\\ 43,954\\ 50,497\\ 60,176\\ 47,776\\ 60,123\\ 49,265\\ 54,340\\ 51,886\\ 45,355\end{array}$
Total	583, 208	593, 719

in the early parts of the study, but these we not reported here because the initial computer program did not clearly isolate stress rangs, recording only at which level a maximum p k occurred.

Before any conclusions can be based n the results, not only in this study but in ll other similar ones, it must be determind whether the sampling of data was representive of the effects produced by the trik traffic—in 1 year for instance.

The results reported here were record during the following sampling periods:

May 1—1/2 hour, midday	
2-4 hours, midday	
3—3 hours, midday	
July 5—1 hour, midday	
0 01 111	

6—2 hours, midday

7-4 hours, midday

October 26-4 hours, midday

27-30-64 hours, continuous run cer 1 weekend

31-4 hours, midday

There was no sampling in winter or ely spring, and except for the continuous week d run, the sampling periods fell in the midle of the day, some time between 10 o'cloclin the morning and 4 o'clock in the afternon. However, it is again mentioned that over researchers in similar studies considered this sampling time, although much shorter, tope representative.

The results of the field study, as showin the stress range histogram, figure 7, compre favorably with the results of the reent similar studies in Michigan and Maryled. An interesting comparison among nine ab and steel girder bridges can be made from he data presented in table 3. In general, he maximum measured stress ranges are all below the calculated design live-load stress, including impact. In fact, based on the 1ji

² Italic numbers in parentheses refer to the references listed on page 189.

Figure 9.—Assumed S-N curve for beam with welded partiallength cover plates.

SHO Bridge Specifications, the Dumfries ximum measured stress range was only 45 cent of the design live-load stress for an erior beam. This maximum measured stress rge of 3,500 p.s.i. occurred only once in re than 8,000 events, and if the value of proximately 2,700 p.s.i. (figure 7) had been d, an even lower ratio would have resulted. The Dumfries bridge is a 3-lane bridge h a $2\frac{1}{2}$ -foot sidewalk on both sides of the ldge. It is located on a rural portion of a x Interstate highway and crosses a creek well as a small road; it is therefore at a point in the vertical alignment of the nd. During the conduct of the test it was asionally noted that one truck attempting passing maneuver would be exactly even h another in the centerlane, and both cks crossed the test span at the same itant. However, most of the trucks crossed 1. test span singly, traveling near or above · speed limit of 65 m.p.h. Never were all 3 es of the bridge observed to be loaded h trucks simultaneously. As the live-load ign calculations are based on 2 or more es being loaded simultaneously and on ctain load distribution factors, the low orded stress ranges can be explained in t by the absence of such simultaneous ding. This situation, of course, is peculiar this structure only. Closer agreement ween calculated and recorded live-load esses would be expected on longer span, ane bridges

Because of the low recorded stresses, it was possible to obtain a meaningful forecast of v possible fatigue damage, as pointed out lier.

ver-plate gages

The results from the gages that were placed nehes off the south end (traffic is northund) of the cover plates were very much e the results from the midspan gages, both distribution and magnitude. These results not presented here.

resses caused by temperature

The capability of the instrumentation, with properly programed instructions, to parately monitor and record live-load strains, as well as strains caused by temperature differentials, and perhaps moisture differentials, was described earlier. The desirability for having this capability is twofold: (1) It assures that the live-load strains are not clouded by any drifting of a baseline, and (2) it allows a monitoring of such drifting. In no way can one be certain that all the recorded drift is due to actual strains in the bridge, unless such a condition has been independently verified by another type of strain measurement.

In the Dumfries field test, extreme care was exercised to eliminate as many errors as possible. Amplifier drifting and the drifting of other instrumentation was shown to be negligible when a very stable load cell was used. Temperature compensation in the dummy gages was provided, and the dummy gages were placed as near as possible to the active gages. The one untested source of error might be due to variations in lead wire behavior during the course of a day.

It would be improper to publish any of the recorded long-term strains, as they might contain errors; but it can be said that the magnitude of the long-term strains appears to be two to three times as large as the maximum recorded live-load strain. Also, there seems to be a great variation in longterm strains between gage positions, such as at midspan and at end of cover plate on the same beam, as well as between interior and exterior beams.

Conclusions

Based on experience gained while working with the data acquisition system and on the results of the Dumfries field tests, the following conclusions seem in order:

• The data acquisition system can adequately accomplish the task it was designed to perform—to monitor and digitize strain history data on highway bridges.

• The results from the Dumfries field tests, in the form of measured stress ranges, were always less than half the calculated design live load with impact stress, and usually were much smaller than half.

• The measured stress ranges obtained from the Dumfries bridge are somewhat lower

(Continued on p. 189)

Bridge	Maximum stress range	Occurrence	Maximum measured
	p.s.i.	Percent	
Michigan 1.	6, 300	0, 1	$\frac{6300}{8040} = 0.78$
Michig m 2	5,100	0, 1	$\frac{5100}{7730} = 0,66$
Michigan 3	5, 100	0, 3	5100 = 0.60
Michigan 5	4, 500	0.4	$\frac{4500}{7820} = 0.58$
Michigan 6	3, 900	0. 1	$\frac{3900}{8950} = 0.44$
Aichigan 7.	4,500	0.1	$\frac{4500}{7030} = 0.64$
Aichigan 8.	6, 300	0, 2	$\frac{6300}{7000} = 0.90$
Jaryland U.S. 1.	5,000	0.3	5000 10400 0.45
Dumfries.	3, 500	1 0, 01	$\frac{3500}{7740} = 0,45$

Table 3.—Stress ranges of different bridges

Quality Assurance in Highway Construction

Part 3— Quality Assurance of Portland Cement Concrete

Reported by WESLEY M. BAKER, Highway Research Engineer, and THURMUL F. McMAHON, Principal Quality-Assurance Research Engineer, Materials Division

This is the third part of an interpretative summary of the progress in Public Roads research program for the statistical approach to quality assurance in highway construction. Part 1.—Introduction and Concepts, and Part 2.—Quality Assurance of Embankments and Base Courses, were presented in previous issues of PUBLIC ROADS. The remaining parts, to be presented in succeeding issues, are 4.—Variations of Bituminous Construction, 5.—Summary of Research for Quality Assurance of Aggregate, and 6.—Control Charts.

Introduction

EVER since the development of portland cement concrete for use in the construction of highway pavements and structures, highway engineers have been concerned with the quality of the concrete and of its constituents. From years of experience, methods have been developed to control the quality of concrete and measure its acceptability as a quality material. But responsibility for the quality of portland cement concrete and causes of its failure are still confusing issues.

Research has provided an insight into the causes of variations that have always existed in the results of concrete tests. It has also provided some knowledge of their magnitude as regards blending, mixing, sampling, and testing, especially under laboratory conditions. In early research it was recognized that statistical concepts afforded a useful tool to analyze the data and establish the causes of variation. In fact, as early as the 1940's, Mr. Alfred M. Fruedenthal recommended that statistical concepts be used to revise portland cement concrete specifications (1).¹

A committee on quality control of concrete in the field, appointed in England at the beginning of the 1950's, reviewed all aspects of concrete production and recommended methods of improving quality and testing techniques. The committee's greatest achievement was the adoption of statistical concepts to better understand the nature of variation in concrete production. The normal distribution was shown to be applicable in the concrete industry, particularly for the cylinder strength distribution, and acceptance criteria were established at a 95-percent confidence level.

The first official action in the United States to adapt the statistical approach to quality control of concrete was taken in 1955 by the American Concrete Institute. Criteria were

Pressure meter test for determining air contentin portland cement concrete.

BY THE OFFICE OF RESEARCH AND DEVELOPMET BUREAU OF PUBLIC ROADS

established and rational specifications of structural concrete were recommended.

In this report on the application of statistal quality control methods to the production concrete by the highway industry (2), In Edward A. Abdun-Nur advocated extense use of statistical concepts in specification writing and acceptance sampling. He (nsidered a realistic picture of concrete producd under normal control to be one in which be coefficient of variation of 28-day strengt is 20-25 percent, and defined a good concett as one with a 15-percent coefficient of variation.

Early work in quality control of porthed cement concrete demonstrated the advant.jes of using statistical concepts to specify, mtrol, and accept concrete; however, nore information was needed to make optimm use of them. The Office of Research nd Development, Bureau of Public Roads, as been promoting the gathering of informaon by the States concerning the quality of he concrete being produced under current spei-

¹ Italic numbers in parentheses identify the references listed on p. 189.

ications and the contributing factors in the rariation of test results. The objective of his research program has not been to deternine all factors relating to variations in concrete production, but to isolate variations wing to materials, sampling, and testing. The esults to date are presented and analyzed n the following paragraphs.

Variability in Concrete Strengths

Strength is not always the most important haracteristic of concrete quality, but it is he one that is most often measured. It is ssumed to be indicative of the water-cement atio and, accordingly, an indicator of duraility. The magnitude of the variability in trength is, therefore, an indicator of the nagnitude of variability of the other haracteristics.

Variability in concrete strengths can be ttributed to two other types of variability: 1) Inherent variability in the materials and rocesses that results from chance causes, which cannot be controlled, and (2) variability rom assignable causes which can be controlled. The attainable quality of concrete in the field s limited not only by the chance causes that ontribute to the variation in quality, but lso by the economic factors entailed in educing the assignable causes.

The measurement of variability from chance r inherent causes is complicated by the nherent variability of each of the ingredients a the mix, which can interact with the processes of blending, mixing, and placing, and result in a much larger variability in the concrete itself.

The assignable causes of variability are more numerous and more difficult to isolate, but the production of quality concrete is de-. pendent on the reduction of all variables. However, the isolation and restriction of variables can be carried only as far as economic conditions warrant. Under the present state of knowledge, the ultimate uniformity of concrete production cannot be precisely stated. Extensive research will be necessary to isolate variables and to determine the extent to which variation can be reduced. Current information can be used only to show that variation does exist, and that sampling and testing often contribute as much of the variability as do the ingredients and processes used in construction.

Mr. H. H. Newlon, in a paper (3) described and discussed numerous variables affecting concrete quality. The data concerning concrete variability, presented in table 1, was based on a similar tabulation from his paper. Although such information is interesting and may be used to design specification limits, it is of little worth to the overall problem of reducing variability in concrete construction. The basic need is to isolate the common factors affecting variability. Research aimed at this purpose has been underway for the past 4 years.

Data based on a West Virginia research report (4) are presented in table 2. These data are illustrated in figure 1, which depicts the relations among the materials, sampling, and testing standard deviations. As standard deviations are not additive, the sum of the standard deviation shown does not equal the standard deviation of the concrete strength. A significant indication from these data is that the combined testing and sampling variations are usually greater than the material variation. It is also significant that the materials deviations consist of the material and process variations, whereas the sampling and testing deviations are caused by the measurement process. Figure 1 indicates that sampling did not contribute significantly to the variation of test results on these projects.

An analysis of historical data on compressive strengths of concrete cylinders, presented in table 3, was based on a report by the State Road Department of Florida (5). Two types of concrete, class A and class NS were analyzed in the report. Routine control is normally exercised over class A concrete, whereas class NS concrete is spot checked only occasionally.

Based on the same Florida report the mean strength, standard deviation, and coefficient of variation for the concrete, shown in table 3, were compared by source in table 4. Researchers have shown that the standard deviations of strength test results usually increase with the mean or average strength of the concrete; therefore, the best comparison of these data may be shown by the coefficient of variation. As expected, the coefficients of variation for class NS concrete were greater than those for class A.

The strength data presented-typical of nearly all strength data received-expressed large standard deviations with average strengths well above the usual minimum of 3,000 p.s.i. For example, if the class A concrete of project 4, table 3, were analyzed using normal distribution methods, there would be less than 1 percent chance that a test would result in a compressive strength of less than 3,988 p.s.i. With the same standard deviation. the mean could be as low as 4,698 p.s.i. before a 1-percent chance of being below 3,000 p.s.i. was exceeded. If the standard deviation could be reduced, the mean might be lowered further without risking noncompliance. However, as pointed out previously, the durability

Table 1.—Average deviation of concrete strengths

Agency	Concrete type	Data source	$\begin{array}{c c} Average \\ standard \\ deviation \\ (\overline{\sigma}) \end{array}$
Bureau of Public Roads Do Vo Virginia Department of Highways Do Ontario Department of Highways	Pavingdo	Research Historical 	p.s.i. 585 473 576 467 663 494

¹ The average standard deviation for all data presented.

Table 2.—Portland cement	concrete variations
--------------------------	---------------------

				28-day con	mpressive strength	variations			
Project No.	$\begin{array}{c} \text{Mean} \\ (\overline{X}) \end{array}$	Overall standard deviation (σ_o)	Overall coefficient of variation (v_o)	Standard deviation, testing (σ_l)	Coefficient of variation, testing (v_l)	Standard deviation, sampling (σ_s)	Coefficient of variation, sampling (v_s)	Standard deviation, materials (σ_a)	Coefficient of variation, materials (v_a)
				Structur	al concrete				
1 2	<i>p.s.i.</i> 4, 235 4, 420	<i>p.s.i.</i> 435 482	Pct. 10.0 10.9	<i>p.s.i.</i> 170 323	Pct. 4.0 7.3	<i>p.s.i.</i> 236 39	<i>Pct</i> . 5.6 0	<i>p.s.i.</i> 310 360	Pct. 7.2 8.1
				Paving	concrete				
1 2 3 4 5	4, 675 3, 755 3, 720 4, 760 4, 688	545 420 575 467 733	$ \begin{array}{r} 11.7 \\ 11.2 \\ 15.5 \\ 9.8 \\ 16.5 \\ \end{array} $	377 322 318 200 585	8.1 8.5 8.5 4.2 12.5	91 42 	0 0 0 0 0	386 270 495 420 545	$\begin{array}{r} 8.3 \\ 7.1 \\ 13.3 \\ 8.8 \\ 11.7 \end{array}$

The equivalency of the Chace and pressur meters can be determined by a compariso of the sampling and testing variance of eac in the following manner:

$$\frac{\sigma_{st}^2(C)}{n} = \frac{\sigma_{st}^2(P)}{1}$$

In project 2, table 5, this results in the following equivalency:

$$\frac{.354}{n} = \frac{.166}{1} \therefore n = 2.1$$

or

2 Chace tests = 1 pressure test

Equivalencies computed for the oth projects shown in table 5 ranged from on to 20; six of the 10 were below four, indicating that averages based on four Chace mettests may be suitable for control purpose However, the wide variation in these resulindicate that the actual equivalency of ttwo tests depends somewhat on the operatory

Figure 1.—Portland cement concrete—standard deviation, compressive strength.

of the concrete may be the controlling factor in reducing strength through lowering the design cement content. If it is assumed that strength is an indicator of water-cement ratio, it is possible that more uniform strength will also result in a more uniformly durable concrete. This in turn may allow a reduction of ht design cement content.

If durability should be the controlling factor and if it should have a relation with strength, a test for durability should be developed. This test would eventually replace ¹. strength test in measuring concrete fuality.

Variability of Plastic-Concrete Air Content

Air content of portland cement concrete one of the most important factors in the durability of pavements and bridge decks. Not only is it important that the air content sufficient to prevent damage from freeze and thaw cycles and low enough to preserve strength, but it is also important that the air be distributed uniformly throughout the mix.

Several States have studied variations in air content and evaluated the performance of different test methods. The data shown in table 5. submitted by the State of New York, are representative of this research. The tests proved that, in the State of New York, truck mix concrete was more variable with respect to air than was paver mix or central mix concrete. The tests also showed that the air content measured by the Chace meter was considerably higher than that measured by the pressure meter. As tests with the Chace meter are faster than those with the pressure meter, considerable interest exists in determining the number of Chace meter tests that would give an average that has the same degree of precision as an average based on a lesser number of pressure meter tests.

Table 3.—Historical concrete strength data

	Samples	Mean (\overline{X})	Overall standard deviation (σ₀)	Coefficient of variation (v)	Testing error (σ_i)
	28-day cylin	nders—class A con	ncrete		
Project number: 1 ¹	Number 536 292 96 192 196 112 258 320 232 232 176 126 230 224	$\begin{array}{c} p.s.i.\\ 4,524\\ 4,881\\ 5,686\\ 5,527\\ 5,008\\ 4,826\\ 5,469\\ 5,244\\ 5,289\\ 4,927\\ 5,244\\ 5,289\\ 4,927\\ 5,067\\ 5,140\\ 860\end{array}$	$\mathcal{P}.s.i.$ 396 540 544 566 577 608 667 674 711 725 732 613 192	$\begin{array}{c} Pct.\\ 8.8\\ 11.1\\ 9.6\\ 10.2\\ 11.3\\ 12.6\\ 12.2\\ 12.9\\ 13.4\\ 14.7\\ 14.4\\ 13.1\\ 5.1 \end{array}$	p.s.i. 175 207 185 155 2 48 196 150 158 192 210 162 179 60
	28-day cy	linders—NS cond	erete		Gamer
Project number: 1 1	$50\\340\\240\\240\\196\\148\\94\\108\\182\\156\\224\\138\\178\\246$	$\begin{array}{c} 4,021\\ 3,555\\ 4,006\\ 3,474\\ 3,781\\ 4,112\\ 4,213\\ 4,228\\ 3,657\\ 3,674\\ 4,110\\ 4,179\\ 3,941\\ 3,926\\ 765\end{array}$	$\begin{array}{c}1&398\\550\\605\\670\\729\\733\\774\\774\\776\\776\\825\\884\\698\\334\end{array}$	$\begin{array}{c} 9.9\\ 15.5\\ 14.5\\ 17.4\\ 17.7\\ 17.4\\ 17.4\\ 18.3\\ 21.2\\ 21.1\\ 18.9\\ 9\\ 19.8\\ 22.4\\ 17.8\\ 7.9\end{array}$	$\begin{array}{c} 115\\ 93\\ 134\\ 122\\ 96\\ 160\\ 92\\ 87\\ 116\\ 113\\ 70\\ 127\\ 161\\ 114\\ 91\\ \end{array}$

 Values not included in range calculations.
 Statistical outlier—not included in calculation of range or average. ³ Averages are not weighted and include all values exot the outlier.

Table 4.-Production source comparison, historical concrete strength data

Source	Concrete class	Samples	Mean strength (\overline{X})	Pooled standard deviation $(\overline{\sigma})$	Coefficient of variation (
1 2 3	$\left\{\begin{array}{c}A\\NS\\A\\NS\\\\A\\NS\\\\NS\end{array}\right.$	Number 480 218 540 360 440 308	$\begin{array}{c} p.s.i.\\ 4, 799\\ 4, 091\\ 4, 906\\ 4, 210\\ 5, 054\\ 4, 031 \end{array}$	p.s.i. 593 620 672 660 585 584	$\begin{array}{c} Pct. \\ 12.4 \\ 15.2 \\ 13.7 \\ 15.7 \\ 11.6 \\ 14.5 \end{array}$

Observations Project No. Mixer type and use Test method Testing Material variance (σ_a) Standard deviation (o Mean (\overline{X}) variance (σ_l^2) variance (σ_s Number (Central mix.) Paving..... Central mix.) Paving..... E-34 paver... Paving.... Truck mix... Structural 0.07 0.545 0.04 Pressure 0.043 $\begin{array}{r} 4.55\\ 6.39\\ 5.91\\ 7.42\\ 5.14\\ 7.38\\ 7.90\\ 10.2\\ 6.11\\ 8.75\\ 6.18\\ \end{array}$ Chace____ Pressure $\begin{array}{c} 0.20\\ 0.126\end{array}$ $\begin{array}{c} 0.05\\ 0.50\\ 0.70\\ 0.48\\ 0.33\\ 1.74\\ 1.38\\ 1.27\\ 0.49\end{array}$ 0.134 Chace Pressure. Chace... 0.067 $\begin{array}{c} 0.77\\ 0.76\\ 1.48\\ 1.36\\ 1.16\\ 1.39\\ 0.71\\ 0.89\\ 0.74\\ 1.32\\ 0.89 \end{array}$ $\frac{200}{200}$ $\begin{array}{c} 0.10 \\ 0.29 \\ 0.15 \\ 0.04 \end{array}$ $\begin{array}{c} 0\,.15\\ 0\,.16\\ 0\,.335\\ 0\,.035\\ \end{array}$ Structural Truck mix Structural. $204 \\ 204$ Pressure. 0.99 $\begin{array}{c} 0.48 \\ 0.34 \\ 0.40 \\ 0.39 \\ 0.96 \\ 0.70 \\ 1.02 \\ 2.39 \end{array}$ Central mix Paving E-34 paver. 0.400.060.2560.08 $0.35 \\ 0.105 \\ 0.137 \\ 0.08$ $\frac{200}{200}$ Chace____ Pressure. 4.94 6.41 Paving 200Chace 0.14 E-34 paver. Paving Truck mix Pressure. Chace... Pressure. 0.04 0.047 .24 Paving_____ {Truck mix (Structural. $\begin{array}{c} 0.133 \\ 0.325 \\ 0.136 \\ 0.24 \end{array}$ 2000 43 $0.43 \\ 0.09 \\ 0.28$ Pressure. Chace.... $\frac{\overline{200}}{200}$

Table 5.—Air content of plastic concrete, research data

xterity; and, consequently, it may be cessary to establish operator equivalencies provide sufficient confidence for the control air content by the Chace meter in any test. The data on air content presented in table was reported by West Virginia (4). The ita indicate that in measuring air content, tere is good agreement between the Chace id Roll-A-Meter. Calculation of the equivency of the two tests indicates that in est Virginia, four Chace tests will adequately ibstitute for one Roll-A-Meter test.

ariability of Concrete Consistency

The consistency of plastic concrete, as easured by slump cone or Kelly Ball tests, a measurement of the workability of the ix and an indicator of the water content. owever, consistency is no direct measureent of the water content, as air, gradation, id temperature also affect the consistency. he results of these tests therefore are a good dicator of the uniformity of the mix, and late to a combination of these factors rather an to any one of them.

Results of studies by several States of mcrete consistency, as measured by the ump cone, are presented in table 7. The ita indicate little difference in the variability slump among the several methods of merete production, although there is conderable difference from project to project. he data also indicate that actual material riation contributes more to the overall riation than do sampling and testing.

Data from reports by West Virginia (4) d California (6) on studies to evaluate the elly Ball test are shown in table 8. These ita and that from other sources indicate iat the Kelly Ball test is valid for measuring e consistency of concrete when three adings are averaged to obtain one test due as required in the standard method.

Aggregate Size Variation

One factor stressed in concrete specifications id in concrete-production control is gradaon of coarse and fine aggregates. Research lows that, within projects and between cojects, there is considerable variation in size

Table 6.-Portland cement concrete pavement air content, research data

Project No.	Observations	Test method	$\begin{array}{c} \text{Testing} \\ \textbf{variance} \\ (\sigma_l^2) \end{array}$	$\begin{array}{c} \text{Sampling} \\ \text{variance} \\ (\sigma_s^2) \end{array}$	Material variance (σ_a^2)	Standard deviation (σ)	Mean (\overline{X})
1 2 3 4 5	$\begin{array}{c} Number \\ 176 \\ 141 \\ 104 \\ 200 \\ 196 \\ 172 \\ 154 \\ 192 \\ 198 \end{array}$	Roll-A-Meter Chace Roll-A-Meter Roll-A-Meter Chace Roll-A-Meter Chace Roll-A-Meter Chace	$\begin{array}{c} Pct.\\ 0,102\\ 0,334\\ 0,109\\ 0,470\\ 0,153\\ 0,531\\ 0,126\\ 0,271\\ 0,143\\ 0,249 \end{array}$	$\begin{array}{c} Pct,\\ 0,133\\ 0,233\\ 0,608\\ 0,710\\ 0,362\\ 0,769\\ 0,248\\ 1,026\\ 0,110\\ 0,148\\ \end{array}$	$\begin{array}{c} Pct. \\ 1, 352 \\ 0, 565 \\ 0, 000 \\ 0, 000 \\ 1, 042 \\ 0, 913 \\ 0, 191 \\ 0, 08 \\ 1, 229 \\ 1, 36 \end{array}$	$\begin{array}{c} Pct. \\ 1, 21 \\ 1, 02 \\ 0, 83 \\ 1, 30 \\ 1, 24 \\ 1, 30 \\ 0, 71 \\ 1, 09 \\ 1, 16 \\ 1, 32 \end{array}$	Pet 5. \$ 5. 06 5. 44 5. 1 5. 1 4. 5. 1 4. 5. 1 5. 1 5. 1 5. 1

Table 7.—Variability of concrete consistency, slump cone method

Project No.	Observations	Testing variance (σt^2)	Sampling variance (σ_s^2)	Material variance (σ_a^2)	Overall standard deviation (σ_o)	$\operatorname{Mean}_{(\overline{X})}$	Specification limits
			State	L			
$\begin{array}{c}1&1\\&2&2\\&2&3\end{array}$	Number 184 200 300	<i>Inch</i> 0. 16 0. 13 0. 25	Inch 0. 04 0. 02 0. 09	<i>Inch</i> 0. 26 0. 45 0. 46	<i>Inch</i> 0. 68 0. 80 0. 89	<i>Inches</i> 2. 44 1. 5 2. 76	<i>Inches</i> 0. 5-3. 5 0. 5-3. 5 0. 5-3. 5
			State	e 2			
8 <u>1</u> 4 <u>2</u> 3 <u>3</u> 8 <u>5</u> 6 <u>6</u> 7 <u>7</u> 8	216 200 200 200 204 204 200 200 200	$\begin{array}{c} 0,074\\ 0,06\\ 0,08\\ 0,027\\ 0,066\\ 0,033\\ 0,084\\ 0,158\end{array}$	$\begin{array}{c} 0.\ 00\\ 0.\ 06\\ 0.\ 025\\ 0.\ 012\\ 0.\ 03\\ 0.\ 034\\ 0.\ 086\\ 0.\ 047 \end{array}$	$\begin{array}{c} 0. \ 15 \\ 0. \ 37 \\ 0 \ 42 \\ 0. \ 206 \\ 0. \ 305 \\ 0. \ 14 \\ 0. \ 20 \\ 0. \ 50 \end{array}$	$\begin{array}{c} 0.\ 47\\ 0.\ 70\\ 0\ 73\\ 0.\ 495\\ 0.\ 633\\ 0.\ 456\\ 0.\ 609\\ 0.\ 844 \end{array}$	2. 04 1. 86 2. 34 1. 77 2. 37 2. 12 2. 41 2. 26	

Pavement concrete, truck mix.
 Pavement concrete, truck mix, slipform.
 Pavement concrete, central mix, screw spreader.
 Concrete base, central mix, slide spreader.

distribution of aggregates in the mix. In fact, aggregates-size-distribution specifications are seldom complied with. Part 5 will contain a detailed report on the gradation of concrete aggregates, but table 9 is included here to illustrate the variation. The data from project 1 indicate little variation of either material or of sampling and testing; however, the data from projects 2 and 3 indicate a large material variance, and it is probable that the specification limits were exceeded on many indi-

⁶ Pavement concrete, central mix, slipform.
 ⁷ Pavement concrete E-34 paver.

vidual tests.

Variability in Pavement Thickness

Pavement life expectancy is based on estimated traffic and pavement design thickness. There is still argument as to whether the design of the pavement should be based on minimum thickness or average thickness; however, as in all structures, stresses are

concentrated at the weaker points, and it is axiomatic that large variations in thickness are detrimental to the pavement. Uniformity of thickness will promote better slab action and, therefore, prolong pavement life.

Variation in concrete pavement thickness is shown by the data of figure 2, which is based on a report by the State of Michigan (7). The data depicted represent 656 cores taken from 15 projects from 1959-61. The historical data in table 10, extracted from a report by Louisiana (8), substantiates the variations shown in figure 2.

The variation shown in table 11 are from a statistical study of pavement thickness by the State of Oklahoma (9). The thicknesses were measured by a probe inserted in the plastic concrete. Little variation was exhibited in project 3; but as the mean was below the specified thickness, the pavement life expectancy was less than desired. Project 3 had a probable range of thickness from 7.8 to 10.2 inches, resulting in weak areas that would probably reduce the life of the pavement.

According to the high average concrete thicknesses reported in the Michigan and Louisiana studies, an excess of concrete is being placed by the contractors to avoid penalties. This same high variability-high average thickness relation has also been reported in other studies of thickness. Better control of placement not only could provide savings in concrete, but also produce pavement that is capable of better performance. Moreover, the development of a standard method for measuring the depth of plastic concrete, as placed, would aid in the control of thickness and eliminate expensive coring of the hardened pavement.

Variation in Portland Cement

The production of portland cements is being closely controlled by producers, according to the historical data on chemical analyses reported by several States. It is evident that State highway departments can reduce the testing of portland cement to at least the level recommended by ASTM in section 6 of ASTM-C-183-65T.

Conclusions

Variations in what is generally considered good construction has been shown by the research summarized here. However, the variations are of considerable magnitude and could be important factors in the performance of concrete structures. An awareness of these variations is insufficient; research must be undertaken to evaluate their effect and to develop procedures by which they can be reduced.

In many test results, much of the measured variation could be attributed to sampling and testing methods and procedures, and therefore the *real* variation may not be as large as results indicate. One of the major needs in concrete production is the development of better methods to measure the quality attributes of the concrete and the ingredients incorporated

Table 8.-Methods of measuring consistency of plastic concrete, research data

Project No.	Samples	Test	Mean (\overline{X})	Standard deviation (σ)	$\begin{array}{c} \text{Testing} \\ \text{variance} \\ (\sigma_t^2) \end{array}$	$\begin{array}{c} \text{Sampling} \\ \text{variance} \\ (\sigma_s^2) \end{array}$	Material variance (σ_a^2)
			West Vir	ginia			
1	Number 200	{Slump (Kelly Ball 1	Inches 2.4 2.4	<i>Inches</i> 0.8 0.7	<i>Inches</i> 0. 095 0. 108	Inches 0.095 0.062	Inches 0, 52 0, 30
			Califor	nia			
1 2 3 4	2 200 2 200 2 200 4 200	Kelly Ball ³ do do do	3. 69 3. 85 4. 00 1. 74	$\begin{array}{c} 0, 91 \\ 0, 94 \\ 1, 27 \\ 0, 65 \end{array}$	$\begin{array}{c} 0.\ 08\\ 0.\ 22\\ 0.\ 13\\ 0.\ 32 \end{array}$	$\begin{array}{c} 0.\ 14 \\ 0.\ 04 \\ 0.\ 10 \\ 0.\ 00 \end{array}$	$\begin{array}{c} 0.\ 61 \\ 0.\ 63 \\ 1.\ 39 \\ 0.\ 10 \end{array}$

¹ Converted to inches of slump. Conversion factor—Slump ^a Conversion factor—Slump ^a Conversion factor—Slump ^b Conversion factor—Slump ^c Structural. ^a Conversion factor—Slump ^b Conversion factor—Slump ^c Conversion factor ^c

³ Converted to inches of slump by calibration—1-in, penetration of ball indicates 2 inches of slump. ⁴ Pavement.

Table 9.-Analysis of variance, intermediate aggregate, percent passing 3/4-inch size

Project No.	Range (<i>R</i>)	Mean (\overline{X})	$\begin{array}{c} \text{Material} \\ \text{variance} \\ (\sigma_a^2) \end{array}$	Sampling variance (σ_s^2)	$\begin{array}{c} \text{Testing} \\ \text{variance} \\ (\sigma_l^2) \end{array}$	$\begin{array}{c} \text{Standard} \\ \text{deviation} \\ (\sigma) \end{array}$	Samples
$\frac{1}{2}$	Pct 79–98 33–89 34–92	$\begin{array}{c} Pct. \\ 92.\ 60 \\ 69.\ 09 \\ 71.\ 52 \end{array}$	Pct. 4. 25 122. 92 124. 04	$\begin{array}{c} Pct. \\ 0.\ 00 \\ 5.\ 59 \\ 9.\ 31 \end{array}$	$\begin{array}{c} Pct. \\ 8.12 \\ 4.54 \\ 24.46 \end{array}$	$\begin{array}{c} Pct. \\ 3.52 \\ 11.54 \\ 12.56 \end{array}$	Number 200 200 200

Table 10.—Summary of statistical results on thickness of concrete pavement

	Samples	$\begin{array}{c} \operatorname{Mean} \\ (\overline{X}) \end{array}$	Overall variance (σ^2)	Standard deviation (σ)	Minimum	Maximu
		8-inch uniform	thickness			
Project number: 1	Number 34 39 48 58 61 66 73	Inches 8, 66 8, 42 8, 35 8, 36 8, 05 8, 11 8, 06 8, 29	$\begin{array}{c} Inch \\ 0, 192 \\ 0, 171 \\ 0, 040 \\ 0, 077 \\ 0, 035 \\ 0, 089 \\ 0, 112 \\ 0, 088 \end{array}$	$\begin{array}{c} Inch \\ 0, 435 \\ 0, 415 \\ 0, 200 \\ 0, 276 \\ 0, 185 \\ 0, 300 \\ 0, 333 \\ 0, 300 \end{array}$	<i>Inches</i> 7.63 7.61 7.86 7.76 7.66 7.66 7.46 7.58	Inches 9, 53 9, 13 8, 80 9, 49 8, 59 8, 78 9, 58
		9-inch uniform	thickness			
Project number: 1	35 51 58 65 74 88	$\begin{array}{c} 9,25\\ 9,19\\ 9,28\\ 9,18\\ 9,20\\ 9,11\\ 9,20\\ \end{array}$	$\begin{array}{c} 0.\ 046\\ 0.\ 121\\ 0.\ 048\\ 0.\ 060\\ 0.\ 185\\ 0.\ 029\\ 0.\ 083 \end{array}$	$\begin{array}{c} 0.\ 210\\ 0.\ 350\\ 0.\ 220\\ 0.\ 240\\ 0.\ 430\\ 0.\ 170\\ 0.\ 290 \end{array}$	8. 93 8. 55 8. 84 8. 78 8. 69 8. 85	9, 67 10, 10 9, 99 9, 92 11, 69 9, 66
		10-inch uniforn	1 thickness			
Project number: 1. 2 3. 4. Pooled values.	64 124 132 141	$ \begin{array}{r} 10.38 \\ 10.34 \\ 10.35 \\ 10.28 \\ 10.34 \end{array} $	0. 061 0. 079 0. 079 0. 083 0. 069	0, 240 0, 280 0, 230 0, 290 0, 270	9. 41 9. 82 9. 75 9. 63	$ \begin{array}{r} 10. 91 \\ 11. 48 \\ 10. 94 \\ 11. 27 \end{array} $

therein. Furthermore a clear delineation of responsibility should result in a more uniform product. It is the contractors' responsibility to produce quality material and the States' responsibility to measure the quality produced. Better measurement performance by the State highway departments will allow a more accurate estimate of product quality and provide a better basis for enforcement of the specifica-

Table 11.—Variation in pavement thickney probe method

Project No.	Obser- vations	Standard deviation (σ)	$\frac{\text{Mean}}{(\overline{X})}$	Specifi catior
1 2 3	Number 72 95 100	Inch 0.3 0.1 0.4	Inches 8.5 8.9 9.0	Inche: 8.0 9.0 9.0

tion requirements. This approach can result only in a product that is more uniform in character and has improved performance expectancy.

BIBLIOGRAPHY

(1) Reflections on Standard Specifications for Structural Design, by Alfred M. Freudenthal, Transactions of the American Society of Civil Engineers, vol. 113, 1948, pp. 269–293.

(2) Designing Specifications—A Challenge, by Edward A. Abdun-Nur, Journal of the Construction Div., Proceedings of the American Society of Civil Engineers, vol. 91, May 1965, pp. 29-44.

(3) Variability of Portland Cement Concrete, by Howard H. Newlon, Proceedings of the National Conference on Statistical Quality Control Methodology in Highway and Air Field Construction, University of Virginia, May 1966, pp. 259–281.

(4) Determination of Statistical Parameters for Highway Construction, Research Project No. 18, The State Road Commission of West Virginia, July 1968.

(5) A Study in the General Field of Quality Control Engineering, The State Road Department of Florida, September 1965.

(6) A Statistical Analysis of the Kelly Ball Test, State of California Division of Highways, Research Report No. M&R 631133-4, October 1966.

(7) Highway Quality Control Program, Statistical Parameters, Michigan Department of Highways, Research Report No. R-572, March 1966.

(8) Quality Control Analysis, Part III, Concrete and Concrete Aggregates, Louisiana Department of Highways, Research Report No. 24, Research Project No. 63-IG, November 1966.

(9) Statistical Quality Control of Portland Cement Concrete Pavements, Oklahoma Department of Highways, Study No. 64-02-2, June 1968.

Acquisition of Loading History Data on Highway Bridges

(Continued from p. 183)

an measured results from other recent nilar investigations, specifically those concted on eight bridges in Michigan and on e bridge in Maryland.

• Because of the low-measured stress nges at the Dumfries bridge, elements in at particular bridge do not appear to be in nger of fatigue failure caused by the gular truck traffic.

The last conclusion is valid only if the mpling can be termed representative of the lek traffic crossing the bridge; if it is sumed that the occasionally allowed overids do not induce stresses in excess of the tximum recorded ones, more than 3,500 s.i.; and if the slowly varying stresses used by environmental changes do not atribute to fatigue distress.

ACKNOWLEDGMENTS

The Dumfries bridge study was conducted by members of the Bridges and Structures Group, Structures and Applied Mechanics Division, Bureau of Public Roads. The able assistance of Mr. Harry R. Laatz is especially acknowledged.

The cooperation of the following members of the Virginia Department of Highways is also gratefully acknowledged: Mr. J. N. Clary, Bridge Engineer; Mr. L. E. Brett, Resident Engineer, Fairfax County; Mr. G. H. Roberts, Resident Engineer, Prince William County; Mr. E. L. Tidd, Jr., Associate Traffic Engineer; and the entire crew of the Dumfries weighing station.

REFERENCES

(1) Commentary on Welded Cover-Plated Beams, Journal of the Structural Division, vol. 93, No. ST 4, American Society of Civil Engineers, August 1967, pp. 95-122.

(2) Maximum Desirable Dimensions and Weights of Vehicles Operated on the Federal-Aid Systems, House Doc. 354, 88th Cong., 2d sess., August 1964.

(3) The Effects of Loadings on Bridge Life, by G. R. Cudney, Michigan Department of Highways, Highway Research Record Number 253, 1968, pp. 35-71.

(4) Fatigue in Welded Beams and Girders, by W. H. Munse and J. E. Stallmeyer, University of Illinois, Highway Research Board Bulletin 315, 1962, pp. 45-62.

Travel by Motor Vehicles in 1967

BY THE OFFICE OF PLANNING BUREAU OF PUBLIC ROADS

Reported by W. JOHNSON PAG. Highway Research Engine Current Planning Divisio

VOTOR vehicle travel in the United States in 1967 totaled 965.1 billion vehiclemiles, an increase of 3.7 percent over the travel in 1966. The travel data were compiled by the Bureau of Public Roads from information supplied by the State highway departments. Total travel for 1968, based on information for the first 9 months of the year, is estimated at 1 trillion, 10 billion vehicle-miles, a 4.7-percent increase over 1967.

The term vehicle-miles and the other technical terms used in this article are defined in the following statements:

Vehicle-miles.-Vehicle-miles refers to the amount of travel by one motor vehicle traveling 1 mile and includes travel on all highways and streets in the United States.

Trailer combinations .- A trailer combination is a truck or truck tractor pulling one or

Motor-fuel consumption.-Motor-fuel consumption is the total consumption of motor fuel by highway vehicles for the year, obtained from State records.

Motor-fuel consumption rate.--Motor-fuel consumption rate is the average rate of motor fuel usage in miles per gallon (m.p.g.)

The travel and related information for 1967 are shown in table 1 by road system and vehiele type. Total travel and travel by highway system are considered to be final figures, but because of incomplete data on which to make the distribution by vehicle type, the travel by vehicle type is subject to revision. Such data have been reported in PUBLIC ROADS, A JOURNAL OF HIGHWAY RESEARCH for a number of years; the latest for 1965 and 1966 appeared in vol. 34, No. 12, February 1968, pages 267-269.

Travel estimates by State and administrative highway system are shown in table 2. These are based on estimates prepared by the State highway departments and reported annually to the Bureau of Public Roads, beginning in 1966.

Table 1 has been adjusted to a new base for 1967 to bring it into agreement with table 2. Main rural roads travel in table 1 includes all travel on systems shown as 01, 31, 03, 05, and 09 in table 2. Travel on local rural roads includes travel in systems 07 and 11. Travel on urban streets consists of travel on all even numbered systems in table 2. Prior to 1967, parts of systems 05 and 09 had been classed

Because of their intended principal use, the State estimates of 1967 travel were made according to a system classification and ruralurban distinction directly related to the Federal-aid program. In the Federal-aid law. an urban area is "an area including and adjacent to a municipality or other urban place having a population of 5,000 or more" In the annual estimates reported in table 1 in the past, however, urban signified the areas

within the political boundaries of municipal ties such as cities, boroughs, and villages.

As State estimates are now being received annually, and because it is intended to n them as a base for table 1, it was decided redefine main rural roads, local rural roas and urban streets so that it would not necessary to split mileage and travel in an of the administrative highway systems."

These adjustments resulted in changes the proportionate distribution of mileage : travel among the three highway categories table 1. The main rural roads category chan from 35.2 percent of the total travel on . percent of the mileage in 1966 to 37.3 perc: of the travel on 15 percent of the mileagen 1967. Local rural road travel was 14.3 perce of the total in 1966 on 72 percent of the te mileage, and 12.6 percent of the travel on percent of the mileage in 1967. In 1966, 5 percent of the travel was on urban stres which comprised 14 percent of the ta mileage. These proportions for 1967 are percent and 14 percent, respectively. Thus can be seen that the mileage shifted fin urban streets to main rural roads had a mgreater effect on the distribution of tr: than on the distribution of mileage.

Passenger cars represented 81 percent of vehicles registered, and accounted for 80 cent of all travel in 1967; motoreveles, 2 cent of all vehicles registered and less th: percent of all travel; and trucks and the combinations, 16 percent of all vehicles rdi-

Table 1.-Estimated motor-vehicle travel in the United States and related data for calendar year 1967

								•		
		Mot	cor-vehicle tra	avel ²		Number	Average	Motoconsu	or-fuel mption	Avera
	Main rural roads	Local rural rcads	All rural roads	Urban streets	Total	of vehicles registered	travel per vehicle	Total	Average per vehicle	zallon tuel constite
Personal passenger vehicles:	Million vehicle- miles	Million vehicle- miles	Million vehicle- miles	Million tehicle- miles	Million vehicle- miles	Thousands	Miles	Million gallons	Gallons	Mile
Motorcycles ³ All personal passenger vehicles Buses:	273, 332	94, 597	367, 929	410, 779	770, 971 7, 737 778, 708	80, 458 1, 953 82, 411	9, 582 3, 962 9, 449	$55, 220 \\ 103 \\ 55, 323$		$\frac{13,9}{75,0}\\ 14,0$
Commercial School All passenger vehicles Cargo vehicles:	$1, 007 \\791 \\1, 798 \\275, 130$	$182 \\ 727 \\ 909 \\ 95, 506$	$1, 189 \\ 1, 518 \\ 2, 707 \\ 370, 636$	$1, 934 \\ 338 \\ 2, 272 \\ 413, 051$	$\begin{array}{r} 3,123\\ 1,856\\ 4,979\\ 783,687\end{array}$	$90.5 \\ 246.7 \\ 337.2 \\ 82,748$	34, 508 7, 523 14, 766 9, 471	667 262 929 56, 252	$7,370 \\ 1,062 \\ 2,755 \\ 680$	$\begin{array}{c} 4,6\\ 7,0\\ 5,3\\ 13,9\end{array}$
Trailer combinations. All trucks All motor venneles	$\begin{array}{c} 63,221\\21,617\\84,838\\359,968\end{array}$	$\begin{array}{c} 24,426\\ 1,400\\ 25,826\\ 121,332 \end{array}$	87, 647 23, 017 110, 664 481, 300	60, 021 10, 760 70, 781 483, 832	$\begin{array}{c} 147,668\\ 33,777\\ 181,445\\ 965,132 \end{array}$	$15,364\\830\\16,194\\98,942$	9, 611 40, 695 11, 204 9, 755	$\begin{array}{c} 14,491\\ 6,950\\ 21,441\\ 77,693 \end{array}$	943 8, 373 1, 324 785	10, 1 4, 8 8, 4 12, 4

r the 50 States and District of Columbia

This table has been adjusted to a new base to bring it into agreement with table 2. Consequently, when the data is compared with that of 1966, a decrease in travel on local ross in for 1967, as are decreases in local rural road and urban street travel as percentages of total travel. Separate estimates of passenger car and motorcycle travel are not available by highway category.

									Pade	releatd	highway	cvatem							Not. C	n Federa	-mid eve	teme			
							-		Dinga	DTD_701	111 Rained	n of a com									L new			-duS	
		Inter	state rur	1 TB	Inters	tate urt	eu.	1.0	Other	primary			Secon	dary		(* ° "	- + - E		Other	Other	I Loos	ocal	Sub-	total	
vision	State	Fina. T	raveled 1/ 31	Total	Final Tr	aveled 1/ 32	Total	sub- total Inter- state	tural U 03	Irban 7 Oli	otal	tate St ural ur 05 0	ban mur 5 07	al Loca al urba	L Total	Federal aid rural	rocal Federal- aid urban	Total Federal- ald	State rural 09	otate munici- pal 10	Local H rural H 11	unici- pal 12	rural	urban and aunici- pal	Total
New	Connecticut Maine Massechusetts New Haupshire Rhode Island Vermont	541 1,047 393 59 210	152 174 174 199	703 544 1,221 163 399	1, 321 53 1, 298 1, 298 489 30	398 540 37 103 103 540 53	2,219 130 1,929 512 93	2,922 674 3,049 695 492	1,160 1,367 2,418 2,418 1,094 1,094 1,094	1,518 4,501 1,139 1,139	2,778 1,797 5,919 1,389 1,375 1,375	964 817 611 730 205 305	754 124 523 1,c 390 390	7 4 59 1,30 16 20 16 20	94,000 94,0000 94,0000 94,0000 94,0000 94,0000 94,0000 94,0000 94,0000 94,0000 94,0000 94,0000 94,0000 94,0000 94,00000 94,00000 94,000000000000000000000000000000000000	2,734 2,734 5,309 2,279 2,279 2,279 2,279	4,635 684 684 9,158 2,327 2,327 2,327	7,369 3,412 13,467 2,799 2,889 2,889	218 856 145 135 135 79 8	1,623 291 873 170 157	240 278 705 109 125 195	4,564 387 6,579 411 209 209	3,192 3,862 6,159 2,523 1,802	10,822 1,362 15,610 1,127 3,395 3,395	14,014 5,224 21,769 21,769 4,161 4,161 2,265
	Total	2,745	577	3,422	3,752	1,208	4,960	8,382	7,028	8,124 1	5,152 3	,533 1,	917 1,8	28 1,57	7 8,25	5 15,211	16,578	31,789	1,441	3,114	1,652]	13,087	18, 304	32,779	51,083
lantic	New Jersey New York Pennsylvania Total	231 3,613 5,854	373 221 1,171 1,755	604 604 1, 784	1,771 5,424 2,205 9,400	1,953 739 894 3,485 1	3,624 6,162 3,099 2,885	4,228 9,403 7,983 21,514 1	2,351 8,228 7,789 8,368 2,368 2	5,317 1,581 5,908 1 2,806 4	7,668 9,809 3,697 1,174 7	36 ,740 1, ,516 3,	130 1, 3 130 2, 7 326 4, 1	09 2,24 76 1,39 46 2,33	4 3,68 9 7,04 13 8,98	9 4,300 5 15,985 1 18,135 5 38,4≥0	11,285 20,272 12,426 4,3,983	15,585 35,257 30,561 82,403	1,391 42 3,164 4,597	2,123 58 4,010 6,191	4,234] 7,940] 3,995]	12, 240 16, 434 10, 392 39,066	9,925 23,967 25,295 59,187	25,648 36,764 26,828 89,240	35,573 60,731 52,123 148,427
South lantic North)	Delaware Dist. of Col. Marylend Virginia West Virginia	49 788 2,523	- - 1,056 523	49 - 3,579 831	156 192 1,990 1,990 78	107 155 513 543 192	263 347 2,503 1,299	312 347 3,347 4,978 1,101	985 2,799 4,514 2,030	1,025 2,200 2,179 2,179	1,691 1,025 1,029 1,999 1,999 2,749 1 2,749	319 - 531 5993 - 491	210 	39 40 41 40 33 40 40 40 40 40 40 40 40 40 40 40 40 40	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9 1,353 2 5,711 5 13,127 9 5,222	1,179 1,864 5,933 4,450 1,137	2,532 1,864 11,644 17,577 6,359	72 92 72 72	24 24 24 24 24 24 24 24 24 24 24 24 24 2	82 - 3,052 1,675 301	69 2, 779 2, 878 1, 160	1,435 9,412 14,894 5,530	1,248 2,643 8,411 7,747 2,321	2,683 2,643 17,823 22,641 7,851
	Total	3,568	1,733	5,401	3,072	1,610	4,682	10,083	0,328	6,829]	7,157 6	, 334 1,	720 3,3	50 1,33	32 12,73	5 25,413	14,563	39,976	748	523	5,110	7,284	31,271	22,370	53,641
South lantic South)	Florida Georgia North Carolina South Carolina Total	1,598 1,530 1,311 985 5 524	1,092 1,322 1,062 716 4,102	2,690 2,952 2,373 2,373 1,701	1,251 1,332 350 85 85	799 338 338 159 159	2,050 1,685 244 244	4,740 4,537 3,051 1,945	4,990 5,440 4,202 4,200	3,777 1,798 1,598 1,383 1,383	8,767 4 7,238 5 5,900 5 5,583 3	, 293 2, , 506 1, 682 2, 1, 683 2,	577 514 1,8 109 1,6 440 1,6	06 33 19 3 19 3 19 3 19 55	10,98 3,64 5,45 3,64 10,98	9 12,179 1 12,149 7 15,260 9,101	8,437 4,417 4,688 2,072 2,072	20,516 16,566 19,948 11,173 68.303	325 1,845 307 2.616	1,463 359 561 926 3.309	6,217 1,766 32 345 8.360	4,145 5,391 2,243 335 335	18,721 14,054 17,137 9,753 59,665	14,045 10,167 7,492 3,333 3,333	32,766 24,221 24,629 13,086
E Ast	Illinois Indiana	2,365	1,678	4,043 3,318	1606	066	1,959 1,959	8,909 5,277	8,365	6,928 2,627	5,293 8,634 2	,078	623 1,8	05 54	1 6,04	9 15,891 0 14,031	12,939	28,830	1,472	3,604	2,792] 1,133	13, 160 6, 002	20,155 15,284	29,703 12,115	49,858 27,399
North	Michigan Ohic Wisconsin Total	2,575 3,682 1,345	245 541 132 3.922 1	2,820 4,223 1,478 5,382 1	2,540 3,353 5,41 1,427	1,414 1,364 4,540	3,954 4,717 550 6.045	6,774 8,940 2,023 31,928	6,584 7,955 5,400	5,467 5,483 2,230 2,230	2,251 3,448 7,530 7,255 11	, 351 , 268 1, , 685 1,	417 6,5 460 2,3 570 1,5 574 14,6	23 5,11	2 9,27 9 10,000 5 4,68 34,52	17,268 18,776 0 10,073 9 75,032	11,030 13,619 4,255 47,773	28, 298 32, 395 14, 333 123, 312	37 101 141 1,771	1427 1427 1427 1427 1427	4,415] 4,725] 1,155] 1,220 4	2, 250 2, 074 5, 335 8, 321	21,720 23,602 111,269 92,030	23, 334 26, 120 9, 662 00, 934	45,054 49,722 20,931 192,954
	TIPAOT	10.00)	1 20.06	1		(1.76 170		100 000	1 2 - 1 - 1	(((1)))	(b T	n (/ C	1, (m)	"Color o	0 6	10/10/24	+ 6 *	2.04		430 60	~~~ (~ (- /		
West North Jontral	Iowa Kansas Minnesota Missouri Nebraska North Dakota South Dakota	1,345 810 373 334 334 334	211 265 265 265 265 275 275 275	1,557 1,026 939 2,889 850 4,52 4,52	203 310 751 1,423 11 11	82 88 98 28 98 28 98 98 98 98 98 98 98 98 98 98 98 98 98	287 388 388 388 388 2,119 2,119 2,105 33 27 27 27	1,844 1,414 2,490 5,008 1,85 1,85	4, 944 3,750 5,216 2,352 2,352 1,103 1,533	1, 352 2, 064 2, 064 2, 017 2, 017 147 147	6,306 4,805 7,2805 3,4%0 1,250 1,250	- 574 2,281 195 253 253	33333 3410 33333 33333 33333 33333 33333 33333 3333	23 23 23 23 23 23 23 23 23 23 23 23 23 2	50 50 50 50 50 50 50 50 50 50 50 50 50 5	5 8,023 6,777 3 9,794 10,568 10,568 1,993 2,993 2,993 2,993 2,993 2,993 2,956	1,962 1,866 3,809 4,559 1,37 279 279	9,985 8,643 13,603 15,127 5,836 5,836 2,378 3,141	% ⁻ ⁺ 8% 888	10 , 00 - 00 - 00 - 00 - 00 - 00 - 00 -	886 1,080 1,273 1,948 1,948 562 576	2,471 2,442 6,034 1,865 4,01 1,865 4,01 1,865	8,989 7,943 111,091 112,542 5,999 5,999 3,450	4,484 4,372 7,570 7,570 11,235 2,708 2,708 738	13,473 12,315 18,661 23,777 8,707 8,707 3,444 4,198
	Total	5,962	2,524	3, 385	2,775	1,735	4,510	12,925	927	7,459	32,295	,029	517 5,9	57 1,03	30 13,53	2 45,199	13,515	58,713	343	380	7, 327 3	-7,312	52,953	31,707	84.575
East South Central	Alabama Kentucky Mississippi Tennessec	937 1.004 517 1,033	950 575 472 962	1,537 1,770 1,395	110 575 119 937	721 345. 14.0 567	94.0 120 598 1,504	2,537 2,530 1,577 3,594	3, 193 3, 595 3, 595 4, 765	1,515 1,320 552 1,976	5,40) 5,741	t, 335 3,410 924	259 1, 82 82 1,92 1,92 1,92 1,92 1,92 1,92 1,92 1,9	554 19 770 18 554 4	44 3,14 32 4,13 32 2,03 32 2,03	9 8,185 7 9,255 6,357 6,338	2,909 2,752 1,504 3,796	11,095 12,007 7,951 12,134	41 1,010 13 45	50 530 13	753 1,095 535 1,798	3,083 1,884 1,293 4,021	3,990 11,360 7,011 10,191	5,042 5,265 2,810 7,821	15, 022 15,625 9,821 18,002
	Tota!	3,491	2,970	5,451	1,749	2,203	3, 452	10,403	15,013	5,554	21,577	6,472	990 3,8	54 000	55 11,11	7 32,135	10,951	43,097	1,114	265	4,292]	0,281	37,532	21,939	59,471
West South Central	Arkanses Louisiene Oklahoma Texas Tetal	520 518 1,159 3,019 5,434	1,179 1,179 1,505 3,4:44	1,012 1,737 1,435 4,524 9,958	28" 473 592 5,035 7,479	38 558 1,955 2,704	1,041 304 9,002 10,272	1, 33/ 2, 339 2, 339 12,525 19,140	2,595 2,594 4,591 11,311 11,311 21,042	1, 340 1, 340 5, 227 5, 227	3,519 3,894 5,003 (4,237 1,554 11	2,075 3,412 3,412 7,525 2,	318 542 292 079 221	850 112 133 122 133 29	37 2,59 1 3,96 77 2,21 9,70 35 18,58	5,943 5,7774 5,7774 5,7774 5,7774 5,7774 5,7774 5,943	2,924 2,924 2,955 17,009 24,390	7,546 10,598 10,561 40,569 59,374	58 615 208 1,250 2,132	58 375 113 920 1,475	556 551 975 2,473 1,775 2	1,374 2,289 3,282 3,282 3,790	6,567 9,051 9,889 27,284 51,991	3,045 5,588 5,250 31,718 45,501	9,712 14,539 15,139 59,002 98,492
fountai	Arizona Colorado Mataho Mataha Nevada Nev Mcxicc Wyomia. 2014	1,213 397 1,213 1,213 1,247 1,247 1,245 1,430 445 445 445	1, 354 1, 354 304 557 557 557 557 557 557 557 557 557 55	2,207 1,340 701 701 701 1,360 1,190 1,190 1,190	331 545 545 26 26 140 140 143 143 1351	201 202 202 202 202 202 202 202 202 202	5.55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.7445 2.116 2.116 2.206 2.206 1.710 1.710 1.710 1.7555 1.7555 1.7555 1.7555 1.7555 1.7555 1.7555 1.7555 1.7555 1.75555 1.75555 1.75555 1.7555555 1.75555555555	1,114 2,033 1,131 1,335 1,335 1,335 1,335 1,335 1,335 1,335	295 1,405 224 224 224 224 224 224 224 224 224 22	1, 459 3, 518 3, 518 1, 394 1, 394 1, 394 1, 200 1, 200 039	400 917 325 400 265 803 537 210 210 31,355	48 11 12 12 12 12 12 12 12 12 12 12 12 12	73 1,80 803 - 95 95 16 95 16 113 2,20	9 2,91 70 77 77 77 75 75 75 75 75 75 75 75 75 75	4, 353 4, 353 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	2,770 2,365 374 328 328 956 1,517 1,517	7,123 5,595 5,996 2,996 2,996 2,996 2,297 2,297 2,297 1,378 1,378 1,378 1,378	195 195 36 36 36 36 36 36 36 36 36 36 36 36 36	15 19 19 19 19 19 19 19 19 19 19 19 19 19	1, 273 571 734 100 395 403 275 403	1,519 2,509 555 574 574 574 574 574 574	4,911 5,521 3,194 1,830 1,830 1,830 2,090 2,090 2,090 2,090 2,090	4, 304 5,022 7/89 1,232 2,107 2,258 502 502	9.215 10,543 4,095 4,096 4,096 3,052 5,121 5,121 5,121 5,2582 2,582 2,582 2,582 2,582
		7 . 1. 1	2004 4	CINC	1.0.4			and the f	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12.00	10. 100		110	1 - C + C		4)(2+C2)	100.1	3614.70	200	T(L,	4.004	(1.20)	+(r, t -)+	C21 1 / T	40.074
Pacifi	California Oregon Washington	1994 - 199 1941 - 12 1942 - 12	4, 309 112 967	1,454	10,112	4,028 20 251	14,14	21, 12 35 21, 12 35 31, 332	2, 2574	1 305	25.7%5 3.532 3.532	0.034 0.034	201 3, 201 3,	223, 1, 2, 1	10,54 55 2,419 42 3,98	7 24,573 6 5,454 9 5,207	33,195 2,795 4,646	57, 358 9, 259 20, 353	1 C & 5	1, 197	7,680 3	1,895 3,902	5, 970 9, 049	70.471 4,695 8,692	11,565
	ictal.	736, 4	5,278	10,205	12, 122		T tul er	GH (12	1 422	050 11	30, 402	+ , 4 AD L	10 Stic.	11 2) T	7/ T/, 13	2 50, 344	080.04	(b), P(0)	C #C +	1, 375		2, 207 4	10, 195	04,258	33.124
Total	- ALI DIVISIONS		30, 30	do,033	4T2 ' 44	54 ° 00	1241,142	1 5/11.60		13, 531 8	4 4.04 1 4	0, 41.5, 24,	+2h FW/	C 172 429	33 11/0, 22	5 305, 505	241,100	10° , 10°	12,14,	cf 4, 22	17 966 1	0, 354 4	(9,548 t	31,930	1,535
	Alaska Havaii	15	108	-124	102	548	1.10	ίφ.†	40% 1	101	405 Avs.	105 233	32		41	1 411 5 830	35	547 1,545			107 14.04	219 572	518 1,234	355 1,487	127.5
Unit	ed States Total	55,052	31, 105	95,157	55, 72	501 " 32	- · · 1	1	inst ter	14.031	962° 0	3, 940 Plu.	S. 1 42.	10,00	170.05	C 38 . Ob	24-7,041	1601035	15,741	55 . 30	12 . 36 . 21	1, 244 L	31, 300 4	83.920	Sec. 120
bring 1/ Note:	Traveled-way in t to full Inters Less than 0.5 md For this table t	state star lion vel ravel on	ravel on b ndards. 1 nicle-mile frontage	ilghuays in some s. roads h	in the instance as been	Interste s these placed 1	te Syste are divi n syster	em status ideā hīgh ms ll and	of comp ways wit 12.	letion g h full o	roup 2. ontrol o	This gro f access	and in	ists of a others th	mileage w	hich is ad	guate for p pr four-lane	resent treif undivided h	ic but wild a standard	ill need with no e	further access co	construct ntrol.	tion and 1	mprovenen	to

IBLIC ROADS . Vol. 35, No. 8

L

rane 22-remerennes, by State and fighway system-1904

tered and 19 percent of all travel. Similar figures for buses were less than 1 percent.

Average performance for all vehicles in 1967 differed somewhat from that reported in 1966. The average motor vehicle traveled 9,755 miles in 1967, half of it in cities, and consumed 785 gallons of fuel at a rate of 12.42 miles per gallon. The average passenger car traveled 9,582 miles and consumed 686 gallons of fuel at a rate of 13.96 miles per gallon. According to the State estimates, the traveled way of the Interstate System carried 167.7 billion vehicle-miles, or 17.4 percent of the total 1967 travel on all roads and streets. The traveled way consisted of 22,288 miles of Interstate System highways now in use and of 18,712 miles of existing connecting highways. Service for this total mileage will be provided by the Interstate System when it is completed. From the State estimates it is expected that

by 1975 the 41,000 mile Interstate System, comprising little more than 1 percent of to total road and street mileage of the Unit States, will carry more than 20 percent of to total 1,213 billion miles of travel estimath for 1975.

According to the State estimates of 197 travel, all Federal-aid systems combine, which includes about 25 percent of all ross and streets, carried 65 percent of all travel.

The Bureau of Public Roads has recently published two documents. These publications may be purchased from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402, prepaid. The following paragraphs give a brief description of each publication and its purchase price.

Fatal and Injury Accident Rates on Federal-Aid and Other Highway Systems, 1967

Fatal and Injury Accident Rates on Federal-Aid and Other Highway Systems, 1967 (45 cents a copy), is a 36-page publication and is the first in a contemplated annual series to present accident, fatality and injury rates per 100 million vehicle-miles by State and administrative highway system. Included also are

NEW PUBLICATIONS

similar rates based on numbers of registered vehicles, licensed drivers, and population. In addition to the rates, the actual numbers of highway miles in service, vehicle miles, accidents, fatalities, and injuries are shown in supporting tables. This compilation is based on reports submitted by the State highway departments.

Standard Plans for Highway Bridges, Volume IV, Typical Continuous Bridges, 1959

Standard Plans for Highway Bridges, Volume IV, Typical Continuous Bridges, 1969 (\$1.50 a copy), is a revision of the 1962 edition with respect to bridge widths and current design specifications. These plans are intended to serve as a useful guide in the development of suitable and economical bridge designs. An effort has been made to give sufficient inforntion on all plans so that they may be ready modified in the preparation of contrat drawings.

The volume contains four sets of plans or substructure and superstructure of four-spin continuous bridges, including a concrevoided slab, a concrete T-beam, a concrebox girder, and a composite welded stilgirder.

A variety of bent and footing types here been detailed for the four bridges. Intrmediate supports include monolithic bers, framed bents, and solid wall piers. Foot g types include pedestal piles, steel bearg piles, friction piles, and spread footings.

Bridge roadway width is 44 feet with S 20-44 live loading for the standard 2-lae, two-directional roadway.

HIGHWAY RESEARCH AND DEVELOPMENT REPORTS AVAILABLE FROM CLEARINGHOUSE FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION

As the results of research are useful only when they reach those who can implement them or apply the knowledge gained to other endeavors, the problem of how to make research reports available to interested persons has always been a concern of administrators. This problem was answered, at least in part, by the establishment of the Clearinghouse for Federal Scientific and Technical Information, a repository for technical documents organized in 1964 on the foundations of the Department of Commerce's Office of Technical Services.

The Clearinghouse collects research reports that are the results of work performed by Government laboratories or by industrial firms and private institutions under contract to sponsoring Federal agencies. More than 50 departments and agencies supply 50,000 reports to the Clearinghouse each year. The Clearinghouse announces, reproduces, and sells the reports at a nominal cost. Many organizations use them to produce new items for management, improve production processes, reduce costs, solve technical problems, prepare bids on Government contracts, or keep abreast of the state-of-the-art.

Among the documents collected by the Clearinghouse are the published results of federally supported highway research and development projects. As with all the documents on file, these publications are available as either microfiche or paper copies. Microfiche is a 4- by 6-inch sheet of film that contains as many as 70 pages of a document. Paper copy is produced by offset printing. Microfiche copies are more economical than paper copies, are easier to handle, and can be filed readily.

As a service to the readers of PUBLIC ROADS, A JOURNAL OF HIGHWAY RESEARCH, listings of these highway research and develop-

ment publications available from the Clear ghouse will be published, as space permits in future issues. These publications will be lied chronologically beginning with the first reprint collected by the Clearinghouse and ill continue until all the highway research 1d development publications on file at the Cl ringhouse have been listed. From that pcit, each issue will list the reports that will live been collected by the Clearinghouse since he last issue. Each listing will include the ecession (stock number) of each report. .1y highway research and development publation can be purchased by sending the stek number and a check or money order of Clearinghouse for Federal Scientific ad Technical Information, Sills Building, 785 Port Royal Road, Springfield, Va. 22.1. Paper copies are priced at \$3 each and mi⁻⁰⁻ fiche copies at 60 cents each. The Clearg. house requires prepayment on all orders.

PUBLICATIONS of the Bureau of Public Roads

A list of the more important articles in PUBLIC ROADS and title zets for volumes 24–34 are available upon request addressed to reau of Public Roads, Federal Highway Administration, U.S. partment of Transportation, Washington, D.C. 20591.

The following publications are sold by the Superintendent of cuments, Government Printing Office, Washington, D.C. 20402. ders should be sent direct to the Superintendent of Documents. epayment is required.

cidents on Main Rural Highways—Related to Speed, Driver, and Vehicle (1964). 35 cents.

gregate Gradation for Highways: Simplification, Standardization, and Uniform Application, and A New Graphical Evaluation Chart (1962). 25 cents.

nerica's Lifelines—Federal Aid for Highways (1966). 20 cents.

pacity Analysis Techniques for Design of Signalized Intersections (Reprint of August and October 1967 issues of PUBLIC ROADS, a Journal of Highway Research). 45 cents.

nstruction Safety Requirements, Federal Highway Projects (1967). 50 cents.

prrugated Metal Pipe Culverts (1966). 25 cents.

eating, Organizing, & Reporting Highway Needs Studies (Highway Planning Technical Report No. 1) (1963). 15 cents. Ital and Injury Accident Rates on Federal-Aid and Other Highway Systems, 1967. 45 cents.

deral-Aid Highway Map (42 x 65 inches) (1965). \$1.50.

deral Laws, Regulations, and Other Material Relating to Highways (1965). \$1.50.

deral Role in Highway Safety, House Document No. 93, 86th Cong., 1st sess. (1959). 60 cents.

eeways to Urban Development, A new concept for joint development (1966). 15 cents.

udelines for Trip Generation Analysis (1967). 65 cents.

andbook on Highway Safety Design and Operating Practices (1968). 40 cents.

ighway Beautification Program. Senate Document No. 6, 90th Cong., 1st sess. (1967). 25 cents.

ighway Condemnation Law and Litigation in the United States (1968):

Vol. 1-A Survey and Critique. 70 cents.

Vol. 2—State by State Statistical Summary of Reported Highway Condemnation Cases from 1946 through 1961. \$1.75.

ighway Cost Allocation Study: Supplementary Report, House Document No. 124, 89th Cong., 1st sess. (1965). \$1.00.

ighway Finance 1921-62 (a statistical review by the Office of Planning, Highway Statistics Division) (1964). 15 cents.

ighway Planning Map Manual (1963). \$1.00.

ighway Research and Development Studies. Using Federal-Aid Research and Planning Funds (1967). \$1.00.

ighway Statistics (published annually since 1945) :

1965, \$1.00; 1966, \$1.25; 1967, \$1.75.

(Other years out of print.)

ighway Statistics, Summary to 1965 (1967). \$1.25.

ighway Transportation Criteria in Zoning Law and Police Power and Planning Controls for Arterial Streets (1960). 35 cents.

ighways and Human Values (Annual Report for Bureau of Public Roads) (1966). 75 cents.

Supplement (1966). 25 cents.

ighways to Beauty (1966). 20 cents.

ighways and Economic and Social Changes (1964). \$1.25.

ydraulic Engineering Circulars:

No. 5—Hydraulic Charts for the Selection of Highway Culverts (1965). 45 cents. No. 10—Capacity Charts for the Hydraulic Design of Highway Culverts (1965). 65 cents.

No. 11—Use of Riprap for Bank Protection (1967). 40 cents. Hydraulic Design Series:

- No. 2—Peak Rates of Runoff From Small Watersheds (1961). 30 cents.
- No. 3—Design Charts for Open-Channel Flow (1961). 70 cents.

No. 4—Design of Roadside Drainage Channels (1965), 65 cents.

Identification of Rock Types (revised edition, 1960). 20 cents.

Request from Bureau of Public Roads. Appendix, 70 cents. The 1965 Interstate System Cost Estimate, House Document No. 42, 89th Cong., 1st sess. (1965). 20 cents.

Interstate System Route Log and Finder List (1963). 10 cents.

- Labor Compliance Manual for Direct Federal and Federal-Aid Construction, 2d ed. (1965). \$1.75.
- Amendment No. 1 to above (1966). \$1.00.
- Landslide Investigations (1961). 30 cents.

Manual for Highway Severance Damage Studies (1961). \$1.00. Manual on Uniform Traffic Control Devices for Streets and High-

ways (1961). \$2.00. Part V only of above—Traffic Controls for Highway Construc-

tion and Maintenance Operations (1961). 25 cents.

Maximum Desirable Dimensions and Weights of Vehicles Operated on the Federal-Aid Systems, House Document No. 354, 88th Cong. 2d sess. (1964). 45 cents.

- Modal Split—Documentation of Nine Methods for Estimating Transit Usage (1966). 70 cents.
- National Driver Register. A State Driver Records Exchange Service (1967). 25 cents.
- Overtaking and Passing on Two-Lane Rural Highways—a Literature Review (1967). 20 cents.
- Presplitting, A Controlled Blasting Technique for Rock Cuts (1966). 30 cents.
- Proposed Program for Scenic Roads & Parkways (prepared for the President's Council on Recreation and Natural Beauty), 1966. \$2.75.
- Reinforced Concrete Bridge Members—Ultimate Design (1966). 35 cents.
- Reinforced Concrete Pipe Culverts—Criteria for Structural Design and Installation (1963). 30 cents.
- Road-User and Property Taxes on Selected Motor Vehicles (1964). 45 cents.
- Role of Economic Studies in Urban Transportation Planning (1965). 45 cents.
- The Role of Third Structure Taxes in the Highway User Tax Family (1968), \$2.25.
- Standard Alphabets for Highway Signs (1966). 30 cents.
- Standard Land Use Coding Manual (1965). 50 cents.

Standard Plans for Highway Bridges:

- Vol. I-Concrete Superstructures (1968). \$1.25.
- Vol. II—Structural Steel Superstructures (1968). \$1.00.
- Vol. IV-Typical Continuous Bridges (1969). \$1.50.

Vol. V—Typical Pedestrian Bridges (1962). \$1.75.

Standard Traffic Control Signs Chart (as defined in the Manual on Uniform Traffic Control Devices for Streets and Highways) 22 x 34, 20 cents—100 for \$15.00. 11 x 17, 10 cents—100 for \$5.00.

Study of Airspace Utilization (1968). 75 cents.

Traffic Safety Services, Directory of National Organizations (1963). 15 cents.

Typical Plans for Retaining Walls (1967). 45 cents.

UNITED STATES GOVERNMENT PRINTING OFFICE DIVISION OF PUBLIC DOCUMENTS

WASHINGTON, D.C. 20402

OFFICIAL BUSINESS

If you do not desire to continue to receive this publication, please CHECK HERE [; tear off this label and return it to the above address. Your name will then be removed promptly from the appropriate mailing list.

U.S. GOVERNMENT PRINTING OFFIC POSTAGE AND FEES PAID

