Public Roads

A JOURNAL OF HIGHWAY RESEARCH

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION BUREAU OF PUBLIC ROADS

Public Roads
 A JOURNAL OF HIGHWAY RESEARCH

Published Bimonthly

Harry C. Secrest, Managing Editor • Fran Faulkner, Editor Joan H. Kinbar, Assistant Editor

December 1968/Vol. 35, No. 5
U.S. DEPARTMENT OF TRANSPORTATION ALAN S. BOYD, Secretary FEDERAL HIGHWAY ADMINISTRATION LOWELL K. BRIDWELL, Administrator BUREAU OF PUBLIC ROADS F. C. TURNER, Director

CONTENTS

Intermodal Freight Transportation in the United States, by Earle S. Newman. 109
Highways and Rail Piggybacking, by Alexander French 115
Analytic Aerial Triangulation for Highways-A Comparison of Two Methods, by Jesse R. Chaves 121
New Publications 127

THE BUREAU OF PUBLIC ROADS FEDERAL HIGHWAY ADMINISTRATION
U.S. DEPARTMENT OF TRANSPORTATION

Washington, D.C. 20591
FHWA REGIONAL OFFICES
No. 1. 4 Normanskill Blvd., Delmar, N.Y. 12054. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, Vermont, and Puerto Rico.
No. 2. 1633 Federal Building, 31 Hopkins Place, Baltimore, Md. 21201.
Delaware, District of Columbia, Maryland, Ohio, Pennsylvania, Virginia, and West Virginia.
No. 3. 1720 Peachtree Rd., N.W., Atlanta, Ga. 30309.

Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, and Tennessee.
No. 4. 18209 Dixie Highway, Homewood, III 60430.

Illinois, Indiana, Kentucky, Michigan, and Wisconsin.
No. 5. Civic Center Station, Kansas City, Mo. 64106.

Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, and South Dakota.
No. 6. 819 Taylor St., Fort Worth, Tex. 76102. Arkansas, Louisiana, Oklahoma and Texas.
No. 7. 450 Golden Gate Ave., Box 36096, San Francisco, Calif. 94102.
Arizona, California, Hawaii, and Nevada.
No. 8. 412 Mohawk Bldg., 222 SW. Morrison St., Portland, Oreg. 97204.
Alaska, Idaho, Montana, Oregon, and Washington.
No. 9. Denver Federal Center, Bldg. 40, Denver, Colo. 80225.
Colorado, New Mexico, Utah, and Wyoming.
No. 15. 1000 N. Glebe Rd., Arlington, Va. 22201.

Eastern Federal Highway Projects
No. 19. Apartado Q, San Jose, Costa Rica.
Inter-American Highway: Costa Rica, Guatemala, Nicaragua, and Panama.

Public Roads, A Journal of Highway Research, is sold by the Superintendent of Documents, Government Printing Office, Washington, D.C. 20402, at $\$ 2.00$ per year (50 cents additional for foreign mailing) or 40 cents per single copy. Subscriptions are available for 1-, 2-, or 3 -year periods. Free distribution is limited to public officials actually engaged in planning or constructing highways and to instructors of highway engineering. There are no vacancies in the free list at present.
Use of funds for printing this publication has been approved by the Director of the Bureau of the Budget, March 16, 1966.

Trailer-on-flatcar (TOFC) is an expanding form of freight service that combines the established efficiencies of different modes of transportation.

Intermodal Freight Transportation in the United States

BY THE OFFICE OF RESEARCH AND DEVELOPMENT BUREAU OF PUBLIC ROADS

Reported by EARLE S. NEWMAN,
Economist, Economics and
Requirements Division

Introduction

IN recent years, coordination between highway and railroad transportation has progressed notably. Since it was revived in 1954, Trailer-on-flatear (TOFC) service has orobably expanded faster than any other fransportation service. Should TOFC service sontinue to expand markedly, it will affect he use of the Interstate highway system by Iltering the role of highway carriers in the oransportation of long-haul intercity freight.
The need for more coordination among different segments of the transport industry has been apparent for a long time. With the passage of the Hepburn Act in 1906, Congress recognized the importance of coordination among carriers. Under the provisions of the Act, carriers were to establish through-routes and joint rates. The Transportation Act of 1920 also provided for coordination in the use of transportation support facilities.
The need for coordinated transportation service is also evident in the national transportation policy which states that the Interstate Commerce Act is to bring about ". . . de-

Abstract

Intermodal freight transportation is dealt with in this article as it is in the United States today and as it is expected to evolve in the next decade or two. Rather than provide only a single-mode service, the carriers, through increased coordination, now offer the public an improved intermodal service, the inherent advantages of which are a strong impetus to further its growth. Competitive modes of transportation are benefiting from this coordinated service by capturing the best features of each mode. Containerization, creating a new role for motor and rail carriers, has enabled them to develop a more convenient, faster, and versatile service. New cost-saving efficiencies will assure the continued growth of trailer-on-flatcar service, and may produce a surge of traffic in its second or third decade of operation. What eventually is best for the shipper will govern the rate of intermodal-transportation growth. Continued close relations among competitive regulated carriers and shippers may reverse the trend to operate privately owned equipment. Trailer-on-flatcar service has the potential to increase the efficiency of basic transport resources and reduce accidents, fatalities, and injuries on the highways.

velopment, coordinating, and preserving a national transportation system by water, highway and rail, as well as other means . . ." In his message on The Transportation System of Our Nation, submitted to Congress on April 5, 1962, the President stated ". . . we must now consider the Nation's transporta-
tion network as an articulated and closely linked system rather than an uncoordinated set of independent entities." The Presidential Message submitted to Congress in March 1966 again emphasized the need for a ". . . coordinated transportation system that permits travellers and goods to move conveniently

Figure 1.-Piggyback revenue carloadings, 1955-66.
and efficiently from one means of transportation to another, using the best characteristics of each."

The total cost of transportation for the Nation is approximately 20 percent of the Gross National Product (GNP) or about $\$ 150$ billion annually (1). ${ }^{1}$ Approximately half of the expense for freight transportation may go toward paying for what one member of the transportation industry calls the "grand tiddly-winks game of shuffling goods on docks, platforms, between vehicles, and in other side expenses like packaging, damage claims, insurance and the like". (2)
Regardless of the fact that coordination between modes of transportation has been held to be essential, there was very little intermodal coordination until 1954, when TOFC service gained momentum. This service has experienced continuous growth since that time, proving beneficial to both carriers and shippers.
The purpose of this article is to consider possible shifts in intercity freight traffic to TOFC service by assessing the relation of this service to the land transport system and shippers and determining its present status and potential growth.

[^0]
Progress of TOFC Service

It is generally recognized that the growth of TOFC service did not begin until 1954. Since that time, the annual revenue carloadings have increased from 168,150 in 1955 to approximately $1,207,000$ in 1967 , representing a 618 -percent increase, as shown in table 1. Since 1955, annual carloadings have increased each year over the preceding year, as reflected in figure 1.

Although the law has long permitted joint service by various types of carriers, TOFC did not develop as a major transportation service until a variety of arrangements that met the needs and requirements of the shipping public were available. Accordingly, the future growth of this service will probably be contingent on continual flexibility of service and variety of pricing systems.
The Interstate Commerce Commission (ICC) fostered the initial growth of TOFC service by permitting it to develop over a 10 -year period, giving it sufficient time for the principal issues to crystalize, before conducting its investigation and proposing rules. In 1954, the ICC conducted an investigation in the so-called New Haven case (293 I.C.C. 93) in which certain practices had been slowly developing in TOFC service. The ICC's approval of these practices resulted in a strong renewal of interest in coordinated transporta-
tion by the common carriers and in particip tion of additional carriers in specific plans.

With the steady growth of TOFC servi problems have arisen; some have been resols and others will require long and deliber: consideration (8). Problems still exist in terminal areas, standardization of equipme stabilization of rates, and utilization equipment. However, to cope with proble that confront the railroad industry, a Natio Railroad Piggyback Association (NRPA) been organized.

The bylaws of NRPA state that its a are to "foster, protect and promote interests of railroads engaged in the busis of handling traffic by piggyback, to adve such interests throughout the United St and elsewhere through cooperation organization, to stimulate the widespread and recognition of such railroads and to au in the solution of problems affecting membership." The NRPA will deal significant sales, operations, terminals, tainerization, car equipment, and trailer is too early to appraise NRPA's contribu to the solution of problems or to assess future part this organization will pla: promote intermodal freight transporta The organization is not intermodal ir it membership, nor does it have any enforcel in powers among its members.

Developments in TOFC service thus far ave left little doubt that there are opporinities for additional growth as a result of the dvantages that exist in coordinated transporition. In the ICC's investigation Ex Parte 30 , of TOFC service, the examiners described iggyback as "one of the most dynamic formus for transportation this country has ever een." They also stated that "the bounds of his service and its total effect on transportation re as wide and long as the imagination of the en who are providing this service to the ation."
At this time however, when much effort is eing made to stabilize practices into fixed atterns of operation, the potential of TOFC rvice is difficult to assess because of freuently occurring internal and external banges.
Piggyback service may have a tremendous otential for both motor and rail common arrier segments of the transportation industry. t could be the motivating factor in reversing he following predominant trends:

- The use of privately-owned transportation quipment instead of public carriers.
- The lack of cooperation among highly ompetitive common-carrier modes of transortation.
- Increasing private-carrier transportation bsts.

Iajor Categories of Traffic Adaptable to TOFC Service

During the period following World War II, ie trend in the use of private transportation a lieu of public transportation has been ibstantial. The common carrier industry, oth rail and motor, continues each year to sse an appreciable volume of intercity freight affic to the unregulated private operators. 'he Nation's estimated freight bill for interity domestic surface transportation in 1966 as approximately $\$ 39$ billion. This revenue as distributed among the different modes of ansportation as follows:
Amount (billions
Iode: dollars)
Motor-unregulated, intercity --- 17.34
Motor-ICC regulated
10. 15
Railroads
10.92
Railway Express . 40
Bus
pproximately 44 percent of the freight bill as for unregulated highway transportation.
Some of the inherent advantages in piggyack service, such as reduction in damage, limination of pilferage, reduction in labor quirements, greater utilization of carrier quipment, lower freight costs, and contribuion to reduction of highway accidents, should abstantially help reverse the trend to use rivate equipment.
During the past three decades, the motor arrier industry has continually grown, and has been responsible for generating much ew traffic and for diverting traffic from cometitive modes of transportation. Motor

Table 1.-Increase in revenue carloadings of trailer-on-flat-car traffic-class I railroads, 1955-67

Year	Number ${ }^{1}$	Increase		
		$\begin{aligned} & \text { Over } \\ & \text { preceding } \\ & \text { year } \end{aligned}$	Over preceding year	$\begin{aligned} & \text { Over } \\ & 1955 \end{aligned}$
1955	$\begin{gathered} \text { Carloads } \\ 168,150 \end{gathered}$	Carloads	Percent	Percent
1956	207, 783	39,633	23.6	23.6
1957	249,065	41,282	19.9	48.1
1958	278, 071	29,006	11.6	65.4
1959	416, 508	138,437	49.8	147.7
1960	554, 115	137,607	33.0	229.5
1961	591, 246	37, 131	6.7	251.6
1962	706, 441	115,195	19.5	320.1
1963	797,474	91, 033	12.9	374.3
1964	890, 216	92, 742	11.6	429.4
1965 1966	1,034, 377	144, 161	16.2	
${ }_{1} 1966$	$1,162,731$ $1,207,242$	128,354	12.4	591.5
1967	1, 207, 242	44,511	3.8	618.0

${ }^{1}$ Source: Association of American Railroads, Form CS 54 A .
carriers have demonstrated an ability to meet the entire transportation requirements of certain industries. Industry now considers proximity to good highways a major factor in selecting plant locations (4).

Because piggyback service offers many potential advantages to both modes of transportation, a much higher degree of coordination between railroads and motor carriers should result. The burden is on the regulated carriers-both motor and rail-to further develop programs capable of meeting private carrier competition. TOFC services offer the greatest opportunity to accomplish this.

Many freight movements require no separate containers, such as volume shipments of bulk commodities-coal, iron ore, grain and liquids-for which the walls of the vehicles serve as the containers. Other examples of commodities requiring little, if any, containerization are new automobiles, structural steel, and building stone.

Although commodities that do not have to be containerized make up a large portion of the total tonnage transported in intercity freight service, they do not represent as large a portion of the total cost paid for transportation. Package goods, small shipments, and volume shipments of manufactured items, which are readily adaptable to TOFC service, are far more costly to handle, and therefore offer larger potential savings in handling and transportation costs.

National Transportation Policy Report No. 445 , prepared in 1961 by the Committee on Commerce, U.S. Senate, stated that approximately three-fourths of the intercity Interstate freight carriage is by regulated carrier. However, much of the post-war expansion in transportation has accrued to the benefit of the unregulated carriers. It was estimated that 25 percent of the freight moving over the highway was moving in illegal service. It was predicted that by 1975 , only 61 percent of the intercity freight will be handled by regulated carriers, and that the principal impact will be on the railroads. The report projected that the regulated carriers will be handling 1,111 billion ton-miles and the
unregulated carriers 718 billion ton-miles of freight in intercity service.

The requirement for intercity freight transportation is usually related to the output of goods and construction, which represents about two-thirds of the GNP. Based on this relationship, United Research, Incorporated, Cambridge, Mass., made the projections of intercity freight ton-miles through 1985 , shown in table 2.

The year 1962 marked the first post-war year that the collective intercity traffic (total ton-miles) of regulated carriers (rail, highway, and water) gained on their unregulated competitors. Compared with 1962, the relative percentage of distribution remained about the same in 1963 and 1964; there was a slight change in favor of the regulated carriers in 1965 and 1966.

The best opportunity for motor and rail common carriers to generate additional volumes of remunerative traffic is to offer a sufficiently attractive coordinated service to divert freight from the exempt and private carriers. Outside the bulk commodity area there is a great deal of high-revenue-producing traffic currently being handled in unregulated transportation which lends itself to TOFC service. It is possible that much of this freight is being handled in equipment loaded in one direction at an unreasonable cost to the shipper.

Table 2.-Projection of intercity freight

Year	Value of goods and construction	Transportation required	
		Per dollar of goods and construction	Total
$\begin{aligned} & 1970 \\ & 1975 \\ & 1980 \\ & 1985 \end{aligned}$	$\begin{gathered} \begin{array}{c} \text { Billions of } \\ \text { dollars } \\ 457 \\ 500 \\ 631 \\ 754 \end{array}, ~ \end{gathered}$	Ton-miles 3.8 3.7 3.6 3.5	Billions of ton-miles 1. 737 2.012 2.271 2. 639

Source: Future U.S. Transportation Needs by A. H. Norling, United Research, Inc., Cambridge, Mass., 1963, p. VIII-4.

During the past 25 years, the unregulated transportation industry has grown tremendously. Operating independently, neither the motor- nor rail-regulated carriers seems to be able to cope with this competition to the extent that either mode can any longer control the majority of the intercity tonnage or revenue. The traffic handled in unregulated service represents the largest market of potential remunerative traffic adaptable to TOFC service. There has been a relative decline in railroad use, as a factor in surface transportation, and a noticeable inability of the regulated motor carriers alone to significantly reverse the trend in traffic handled by unregulated motor carriers. To make substantial inroads on unregulated competition, and capture or recover a significant part of the intercity freight from the unregulated carriers, the regulated carriers apparently will have to participate to a greater extent in coordinated TOFC service.

It is the freight that is usually the most costly to transport that justifies the inaugura-

Figure 2.-Length of haul by truck and rail, 1940-64. ${ }^{2}$
tion and operation of privately-owned motor service. Because it consists of high-revenueproducing traffic and represents about 40 to 45 percent of the intercity freight, this traffic should provide a strong impetus to regulated motor and rail carriers to expand and perfect their coordinated TOFC services to recapture a larger portion of this market.

Although the motor carriers have grown rapidly because of their important part in the economic development of the United States, about half of their ton-mileage consists of shipments of more than 400 miles, which is subject to being handled in TOFC service. In figure 2 is shown the length of haul by class I intercity motor carriers (common and contract) and all U.S. line-haul railroads, for the years 1940-64. Between 1940 and 1964, the length of haul for the class I common motor carriers increased 9 percent, while the railroads increased 33 percent and the contract motor carriers declined 10 percent. Comparable data are not readily available for private motor carriers, but it is reasonable to believe that during the same period, their average length of haul has increased substantially.

Service and Rates

The inauguration of TOFC service was the first time that two different modes of transportation, motor and rail, combined the best features of their respective services into a large-scale transport operation. This coordinated transportation offers considerable flexibility to shippers, an improvement in reliability of service over a single mode of transportation and, most important, simplified rate structures. The shipper has the combined advantage of door-to-door service by motor

[^1]carriers, and economical long-haul service by the rail carriers.

In their production and distribution processess, industrial firms weigh the costs of inventory, warehousing, and handling to price their products on a competitive basis. Accordingly, any transit-time saving also saves money and can reduce the overall costs of manufacturing and marketing products. This affords the carriers an opportunity to pass these advantages on to consumers.

Another significant advantage of TOFC service is single-carrier control, whereby the shipper can obtain reports on the status of the shipment from the originating carrier. There has also been a substantial reduction in freight damage when goods are shipped by TOFC service. Although there is probably no measure of the extent of damage reduction, it is the consensus of both shippers and carriers that considerably less damage occurs than when goods are shipped in partial loadsless carload or less truckload service.

Faster service, fewer losses, less damage, and high utilization of equipment will substantially influence the quality of service and the rates in TOFC transportation. If TOFC service enables the motor carriers to keep their rising costs in check, and at the same time provides a margin of profit for the rail carriers, these two modes of common carrier transportation will recapture more of the present traffic handled over-the-road in private transportation; working together, they should be able to slacken the rate of growth and reverse the trend in the use of private transportation.

Before World War II, railroads enjoyed a distinct advantage in freight transportation. During the war a major impetus was given to the growth of the motor carrier industry. Following the war, these two modes of transportation competed for traffic, primarily on a
service basis rather than on a cost basis. The greater flexibility of the motor carrier services enabled them to generate much new traffic and to divert an appreciable amount of the more remunerative traffic from the railroads. However, with the establishment and growth of TOFC service since World War II, emphasis has shifted from service competition to rate competition.

Prior to TOFC service, much of the litigation before the ICC involved the question of whether rates were too high; now the litiga. tion usually involves the question of whethe rates are too low. For the regulated carriers this litigation has exerted a downward pressurt on the rate structures, which, if continued should result in attracting more traffic from the private carriers.

One of the most significant aspects o TOFC services is the economic implication of the new departures in rate-making tha accompanied the inauguration of TOF(operations on a large scale. The rates provider under the TOFC plans are based on simpl principles, compared to the conventiona procedures and factors which previousl entered into rate-making. Consequently, sub stantial advantages from both administrativ and monetary standpoints are accruing to th participants in TOFC service.

Coordination Between Motor Carrier and Railroads

While some transportation coordinatio has been permitted under the provisions c the Interstate Commerce Act-through-rout and joint-rate arrangements-generally, ther was very little actual coordination in th country between rail and motor carries prior to 1954 , when piggyback service begas

The ICC has contended that addition: authority is needed for the establishment , through routes and joint rates. Under ti existing statutes, the ICC cannot comp motor common carriers of property to ent into joint-rate and tbrough-route arrang ments with each other, or with comme carriers of other modes. This gap in authori has probably been one of the reasons wl there has not been greater coordinatif among unlike modes of transportation. Whi in the public interest, however, the ICC h repeatedly requested authority from Congre to require through routes and joint rat between motor common carriers of proper and between motor carriers and comm carriers by rail, express, and water.

The development of TOFC service repl sents an appreciable step forward by t motor and rail carriers to reap the potent benefits of coordinated services. Thus f, coordination between motor carriers and $\mathrm{r} \varepsilon$ road industries in TOFC service may be dcussed briefly under four topics-manageri, marketing, technological, and operationas.

Managerial coordination

The further advancement of TOFC serv will depend, to a considerable extent, on 13 degree of managerial coordination betwe the motor and rail carriers. Within the franwork of the five TOFC plans exists
maximum opportunity for such coordination. A motor carrier, for example, may solicit the freight traffic, provide the documentation, labor, motor power for pickups, delivery of trailer, and collect the transportation charges, thereby depending on the railroad only to orovide the power and railcar for the rail-haul portion of the movement. This represents a nigh degree of coordination between two inlike modes of transportation.
This coordination offers certain inherent advantages to carriers. Managers gain greater snowledge of the operating characteristics of गther forms of transportation and become more familiar with the managerial and economic aspects of competitive modes of transbortation. The continual growth of TOFC service during the past 10 years is due to this :oordination, which has not only resulted in substantial advantages for both modes of ransportation, but also has provided the sublic with improved service.

Marketing coordination in TOFC service

TOFC service offers considerable latitude or coordination in marketing a packaged transbortation service. It represents a new era for he shipping public, as it affords an opportuaity to consolidate the advantages of each node of transportation, thereby making available the best service to suit the shipper's equirements at a reduction in cost for furlishing the transportation. The major cusomers do not rely exclusively-from a service und cost standpoint - on either mode of transportation. The services that the two modes ender within the sphere of their respective perations provide transport capability, but ingle mode capability does not provide all he inherent advantages of both modes.

「echnological coordination

The third area of coordination in TOFC ervice is the technological area. The potential f combining the technical features of each node of transportation has been recognized or many years, but only recently have the arriess begun to take advantage of the pportunity. Piggyback focuses attention on he advantage of trucking flexibility to perorm pickup and delivery of short-haul and aedium-haul service, as well as on the cost dvantage of rail in some medium-haul and aost long-haul service.
It has been necessary for the motor and rail arriers to modify existing equipment and to levelop new equipment, including the piggyack car and storage and loading facilities, o meet the technological requirements for n efficient service. Management of both lodes of transportation has been receptive to high degree of coordination in technological reas, as they have received the benefits of Jwer operating costs.

perations coordination

Since 1954, a general atmosphere of cordination between motor and rail carriers as developed. It can be concluded that the hipper advocates the maximum amount of oordination between modes of transportation
to provide direct, expeditious service with a minimum of administrative expense at the most economical rate.

To attract the traffic, each mode of transportation endeavors to render a superior service at sufficiently compensatory rates. Both the rail and motor carriers have certain inherent advantages to offer regarding service and rates. Much freight traffic is susceptible to movement by either mode of transportation, and it is within this area that the greatest opportunity for coordination between the modes exists. By unifying the advantages of each mode, the carriers are capable of offering a combination service heretofore not readily available to the public.

Through cooperative operations and development of the respective modes, the carriers are reaching new peaks of efficiency. Collectively, they are capable of rendering a superior service in many categories of longhaul traffic. However, the continual growth of private transportation has had a significant impact in promoting coordination between regulated motor and rail transportation. Generally, private transportation affects the most desirable traffic-the type that would produce the highest rate of revenue for the regulated carriers.

To illustrate the effect of private transportation, meat and dairy products are highrevenue producing traffic for both rail and motor carriers. In the 1963 Census of Transportation, the Commodity Transportation Survey on meat and dairy products revealed that about 43 million tons of this commodity
were shipped beyond the local area. Private trucks handled more than half of the total tonnage shipped distances of less than 200 miles; motor carriers dominated the middledistance range-from about 200 to 800 milesand railroads transported more than half of total shipments over longer distances. Percentage distribution of this traffic among modes on a tonnage and ton-mile basis is shown by the following tabulation:

Mode of transportation:
 Private.
 Motor-
 Rail

Tons (percent)	Ton-miles (percent)
42	16
30	36
28	48

More of this long-haul traffic could have been handled by coordinated rail-motor service.

Once a shipper is committed to private transportation because of his heavy investment in equipment, he is not easily persuaded to abandon his carrier operations. Although it is not evident that any large shippers have discontinued their private transport operations because of TOFC service, many have refrained from increasing the size of their transport operations because of the availability of TOFC service.

The potential overall advantages that accrue to regulated motor and rail carriers should enable them to offer a coordinated service capable of prompting the operators of private carriage to rely, to a greater extent, on public transportation.

Figure 3.-Piggyback growth, 1959-67-class 1 railroads.

Growth of TOFC Service

As recorded in table 1, the revenue carloadings handled by TOFC service since 1955 have continually increased. The approximately $1,200,000$ carloads of piggyback freight, transported in 1967, represent approximately 2 million loaded truck-trailers. Additionally, more than 800,000 empty trailers were handled for a total of about $2,800,000$ trailers moved in rail service. The carriage of trailers in rail service increased from approximately 740,000 in 1959, to $2,800,000$ in 1967, approximately a 400 percent increase.
TOFC service expanded about 24 percent between 1955 and 1956. (See table 1.) In 1959, it reached an annual growth peak of approximately 50 percent over the preceding year. There have been variations in the annual percentage increases over the preceding years, from a low of 3.8 percent in 1967 to a high of 49.8 percent in 1959 . The large percentage gain between 1958 and 1959 was caused by more carriers offering TOFC service and the increased total volume of freight traffic.

During the last five years, TOFC service has grown an average of approximately 11 percent annually. The trend of piggyback service-even though fluctuating in rate of growth-is still in a stage of considerable expansion. (See fig. 3.) In each of the past 12 years, except 1961 and 1967, growth has exceeded 11 percent (table 1).

A conceptual approach to the growth of TOFC service has been developed showing increases in carloads and truckloads, based on an annual growth of 6,8 , and 10 percent respectively, predicated on an average of 1.7 trailers per flatcar (table 3). The validity of these projections should be accepted in terms of the principal factors directly affecting TOFC service. The ICC rules governing TOFC service, enactment of the Trade Simplification Act and the size and weight legislation, are significant factors that will affect the future growth rate of this service.

It is estimated that at least 6 million and possibly 12 million trailers will be transported in TOFC service by 1986-a three to sixfold increase. This is a conservative projection, as it represents a range of from considerably less than the fivefold increase of the past 10 years to a maximum of a sixfold increase in the next 18 years.

Once the pattern of TOFC operations is established under the factors identified above, it will undergo a sustained period of stable expansion.

Conclusions

Today, the competitive situation in intermodal transportation is intensified. Since World War II, improved highways and technological progress have resulted in longer

Table 3.-Projections of number of carloads and truckloads in trailer-on-flatear revenue service, 1967-87
[Based on an annual increase of the percentages shown]

Year	Projected loads hauled					
	Annual increase - 6 percent		Annual increase-8 percent		Annual increase-10 percent	
	Carloads	Truckloads ${ }^{1}$	Carloads	Truckloads ${ }^{1}$	Carloads	Truckloads ${ }^{1}$
1967 1968 1969	Number $1,207,242$ $1,279,677$ $1,356,458$	$\begin{aligned} & \text { Number } \\ & 2,052,311 \\ & 2,175,451 \\ & 2,305,979 \end{aligned}$	$\begin{aligned} & \text { Number } \\ & 1,207,242 \\ & 1,303,821 \\ & 1,408,127 \end{aligned}$	$\begin{aligned} & \text { Number } \\ & 2,052,311 \\ & 2,216,496 \\ & 2,393,816 \end{aligned}$	$\begin{aligned} & \text { Number } \\ & 1,207,242 \\ & 1,327,966 \\ & 1,460,763 \end{aligned}$	$\begin{aligned} & \text { Number } \\ & 2,052,311 \\ & 2,257,542 \\ & 2,483,297 \end{aligned}$
1970	1,437,845	2, 444, 337	1,520,777	2, 585, 321	1,606, 839	2,731, 626
1971	1,524, 116	2, 590,997	1, 642, 439	2, 792, 146	1,767,532	3,004,789
1972	1,615,563	2,746, 457	1,773, 834	3, 015, 518	1,944, 275	3,305, 268
1973	1,712,497	2,911,245	1,915, 741	3, 256, 760	2, 138, 703	3, 635, 795
1974	1,815,247	3, 085, 920	2, 069,000	3, 517, 300	2,352, 573	3,999, 374
1975	1,924, 162	3,271, 075	2, 234,520	3,798, 684	2,587, 830	4,399, 311
1976	2, 039,612	3, 467, 340	2, 413, 282	4, 102, 579	2, 846, 613	4, 839, 242
1977	2, 161,989	3, 675, 381	2, 606, 345	4, 430, 787	3, 131, 274	5, 323, 166
1978	2, 291, 708	3, 895,904	2, 814, 853	4,785, 250	3, 444, 401	5, 855, 482
1979	2,429,210	4, 129,657	3,040,041	5,168, 070	3, 788, 841	6,441, 030
1980	2,574,963	4, 377, 437	3,283,244	5, 581,515	4,167,725	7,085, 133
1981	2, 729, 461	4,640, 084	3, 545,904	6, 028, 037	4, 584, 498	7, 793, 647
1982	2, 893, 229	4,918, 489	3,829,576	6,510,279	5, 042, 948	8, 573, 012
1983	3, 066, 823	5, 213, 599	4,135,942	7,031, 101	5,547, 243	9, 430, 313
1984	3,250,832	5, 526, 414	4, 466, 817	7,593, 589	6,101, 967	10,373, 344
1985	3, 445, 882	5,857,999	4, 824, 162	8,201, 075	6, 712, 164	11, 410,679
1986	3,652,635	6,209, 480	5,210, 095	8, 857, 162	7,383, 380	12,551,746

${ }^{1}$ Based on an average of 1.7 trailers per carload.
and heavier truck hauls. The highway trailer has grown to the point of having the appearance and nearly the capacity of a boxcar. Industry is no longer attached exclusively to the rail heads. However, TOFC is a modern method of transferring containers and providing industry, regardless of its location, with adequate, efficient, and economical transportation, the further growth of which is now assured.

The past 10-year period has brought forth sufficient developments in TOFC service to support some conclusions and forecasts regarding its continued growth for the future. Although TOFC service, in a sense, may still be a transportation infant, it has considerable potential for substantial additional growth. Further experience will provide more improvements in service, pricing patterns, and coordination between competitors.

Piggyback is definitely a breakthrough in the barrier of cooperation that existed between the regulated railroads and motor carriers, both of which have a common, influential competitor in the unregulated carriers.

During this transitional period, the available statistical data on TOFC operations and services throughout the Nation is not sufficiently refined to reveal the precise answer to many questions such as: (1) To what extent has piggybacking meant the actual diversion of traffic from competitive modes of transportation? (2) Is traffic being handled at noncompensatory rates? (3) How much revenue
is derived by the respective modes from TOFC traffic? and (4) What long-range impact wil this rapidly developing system of coordinated transportation have on the Federal-aid high way system?

Thus far, there is no sign of total TOFC traffic leveling off. But neither have all the major factors that will influence its develop ment settled into a sufficiently definit, pattern to permit forecasting its future rati of growth, other than in the general mannes shown here.

A true indication of the initial impact o TOFC service on highway freight is not yet it sight. It is reasonable to conclude that ther will be considerably more coordinated service and in the reasonably near future it should b possible to measure the impact of TOFC serv ice on highway freight and its potential effec on the highway system.

REFERENCES

(1) Transportation Facts and Trends, Trans portation Association of America, fifth edition Washington, D.C., April 1968.
(2) Containers: The Right Track? Railwa Age, vol. 148, No. 22, May 30, 1960, p. 9.
(3) Piggyback-Progress Has Its Problems Railway Age, vol. 159, No. 22, May 31, 1965 pp. 54-66.
(4) Highways, Trucks, and New Industry by Dept. of Research and Transport Econom ics, American Trucking Association, Inc Washington, D.C., May 1963.

When highway trailers are hauled on rail flatcars in piggyback operations, highway transportation is an essential part of the overall service.

Highways and Rail Piggybacking

BY THE OFFICE OF PLANNING
 BUREAU OF PUBLIC ROADS

Reported by ${ }^{1}$ ALEXANDER FRENCH,
Chief, Planning Services Branch, Current Planning Division

Introduction

TTHE transportation of highway semitrailers and interchangeable highway rail zontainers by rail flatcar provides efficient cong-distance transportation of commodities. In the study reported here, this intermodal :orm of freight transportation, called piggyback, ${ }^{2}$ was analyzed to determine whether a substantial shift in the highway share of total intercity ton-miles or other significant effects on highway administration, planning, or design are likely. It was concluded that niggybacking did not significantly dampen the growth of highway freight transportation luring the past 10 years, nor is it likely to ave a retarding effect in the future.

[^2]
Abstract

Although the trend to transport freight by hauling highuay trailers on flatcars, piggybacking, has been steadily upward, this intermodal freight service apparently has not retarded the growth of highway freight transportation. As pointed out in this article, it is unlikely that piggyback will replace highway transportation for moving freight over short distances; it is more likely to eliminate a substantial amount of intercity highway freight movement over long distances. Even though a large part of the long-distance highuay freight travel would be converted to piggyback transportation, short distance highuay travel should increase to handle movement to and from piggyback terminals. Highway planners must be attentive to the need for a high level-of-service on the arterial highway networks providing access between piggyback terminals and the origins and destinations of shipments.

Special planning and design analyses are recommended for highways serving piggyback terminals to assure efficient intermodal operation. Special, highly localized problems could be caused by the concentration of semitrailer combinations on highways scrving piggyback terminals during the periods immediately before and after loading and unloading of trailer trains. These problems can be readily identified and analyzed as part of the highway plaming process. Roadways can then be
designed to provide the necessary capacity for traffic flow and, where necessary, pavements affected by a high frequency of heavy axles can be strengthened.

National Trends

Trends in intercity rail and highway cargo transportation since 194.5, based on a 1961 index, are shown in figure 1. Data on piggyback ton-miles c:an be estimated, beginning

Figure 1.-Trends in intercity cargo transportation by piggyback, rail, and highuay.
in 1955 , as shown in table 1 . From the index lines in figure 1, it is evident that since World War II, rail traffic has remained nearly constant, while truck and piggyback have in-creased-truck traffic increasing steadily and piggyback ist a much higher rate. The line representing truck ton-miles as a percent of rail, when compared with the line for piggyback ton-miles as a percent of truck, indicates that while piggyback is growing at a very rapid rate, truck ton-mileage continues to grow faster with respect to rail than does piggyback with respect to truck.

Trends in relationships of intercity tonmiles hauled by rail, highway, and piggyback are shown in table 1. The share hauled by rail and piggyback together has declined from nearly 75 percent in 1955 to about 65 percent in 1965 , while the highway share has increased from about 26 percent to 35 percent in the same period. The annual increase for total ton-miles and ton-miles by each of the three categories is also shown in the table. Piggyback has been gaining an increasing share of the annual increase of land vehicular ton-miles. Although piggyback operations have appar-
ently served to hold the rail share, it has not had a very large effect on highway cargo movements.

The procedure for estimating annual rail piggyback ton-miles in table 1 is represented by the equation:

$$
T M_{\mathrm{p}}=O_{\mathrm{D}} \times P \times H \times L,
$$

Where,
$T M M_{\mathrm{p}}=$ estimated ton-miles of cargo hauled by rail piggyback.
$O_{\mathrm{p}}=$ number of piggyback rail cars originating (see "Effect of Piggyback Operation on Volume of Highway Truck Traffic," Alan C. Flott, Highway Research Board Record Number 1.53, 1967).
$P=$ estimated average number of loaded piggyback trailers and containers per originating rail car ranging from $P=$ 1.10 in $1955-59$ to $P=1.64$ in 1964
$H=$ average haul, in miles, estimated for rail piggyback cars, based on the ratic of piggyback car average in I.C.C Statement No. 66-1 to the all-flateas average computed by mileage block from Statement TC-1, then appliec to similar flatear data for 1955-65.
$L=$ average load per loaded piggybact semitrailer body or container es timated to be approximately 16 ton: based on I.C.C. Statement No. 66and confirmed by 1963 truck weigh data for long-haul van body, fully loaded semitrailer combinations.
Although the values and assumptions ar based on extensive discussions with experts it the field, the author takes full responsibilit? for the estimates, which were intended to b . realistic but assure a reasonably high piggy back ton-mile series.

Table 1.-Trend in the amount and share of intercity cargo transportation by railroad, piggyback, and highway

	1945	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965
Ton-miles, millions:												
Railroad excluding piggyback	684,148	625,588	649, 486	619,721	552, 010	574, 349	568, 638	557, 534	583, 423	610,486	644,793	685, 584
Piggyback, TOFC ${ }^{1}$ and COFC ${ }^{2}$		1,305	1,702	2,186	2,524	4,288	6,722	8,761	12, 351	14, 684	17, 296	20,120
Total railroad.	$684,148$			$621,907$				$566,295$	$595,774$			$705,704$
Highway	$66,948$	$223,254$	$248,846$	$254,174$	$255,544$	$278,934$	$285,483$	$296,485$	$309,407$	$336,170$	$356,298$	$388,438$
Total ton-miles	751, 096	850, 147	900, 034	876,081	810,078	857, 571	860, 843	862, 780	905, 181	961,340	1,018, 387	1,094, 142
Percent of total ton-miles:												
Railroad exciuding piggyback	91.09	73.58	72.16	70. 74	68.14	66.97	66. 06	64.62	64.45	63.50	63.32	62. 66
Piggyoack, TOFC ${ }^{1}$ and COFC^{2}		0.15	0.19	0.25	0.31	0.50	0.78	1.02	1.36	1.53	1. 70	1.84
Total railroad	91.09	73. 73	72.35	70.99	68.45	67.47	66.84	65.64	65.81	65.03	65.02	
Itighway.	8.91	26. 27	27.65	29.01	31.55	32.53	33.16	34.36	34.19	34.97	34.98	35.50
Piggyback, TOFC ${ }^{\text {t }}$ and COFC			30.42	28.44	15.46	69.89	56. 76	30.33	40.98	18. 89	17.79	16.33
Total railroad.		13.53	3. 88	-4.50	-10.83	4.35	-0. 57	-1.58	5.21	4.93	5.91	6.59
Highway.		4. 70	11. 46	2.14	0.54	9.15	2. 35	3.85	4.36	8. 65	5.99	9.02
Total change....................		10.90	5.87	-2.66	7.53	5.86	0.38	0. 22	4.91	6. 20	5.93	7.44
Piggyback as percent of highway.		0. 58	0.68	0.86	0. 99	1.54	2.35	2.95	3.99	4.37	4.85	2.18 5.18
Highway as percent of all rail.-	9.78	35.61	38. 21	40.87	46. 08	48.21	49.62	52.36	51.93	53. 77	53.81	55.04
Railroad excluding piggyback.-	123	112	116	111	99	103	102	100	105	109	116	123
Piggyback, TOFC ${ }^{1}$ and COFC		15	19	25	29	49	77	100	141	168	197	230
		111	115	110	98	102	102	100	105	110	117	124
		75	84	86	86	94	96	100	104	113	120	131
Total . - ${ }^{\text {- }}$ - 87		99	104	102	94	99	100	100	105	111	118	127

[^3]Table 2.-Number of trailer-on-flatear (TOFC) movements according to four prescribed plans, 1963 .

Source-appendix C. Piggyback Traffic Characteristics, Statement No. 66-1. Interstate ommerce Commission, December 1966; includes only data for States having at least 5 perint of originating or terminating wa ybills.
${ }_{2}$ Plan I-Railroad transports motor carrier trailers over a portion of the motor carrier's ip. Motor carrier deals with shipper and furnishes pickup and delivery service charging 10tor carrier rates to shipper.
${ }^{3}$ Plan II-Railroad furnishes all equipment, both flat cars and trailers, and provides pickup and delivery service charging railroad rates to shipper. 4 Plan III-Railroad transports trailers either owned or leased by the shipper at a flat rate per mile. Shipper is responsible for pickup and delivery.
per mile. Shipper is responsibie for pickup and delivery.
5 Plan
IV-Railroad transports trailers owned or leased by the shipper on flatcars also owned or leased by shipper at a flat chargo per car, loaded or empty. Shipper picks up and delivers, loads and unloads.

igure 2.-Accumulative percentage of travel from trips of increasing length for passenger cars, single-unit trucks, and combinations.

Characteristics of Piggybach Operation

The Interstate Commerce Commission eport, Piggyback Traffic Characteristics, ${ }^{\text {a }}$ conains extensive information on piggyback perations. Data from appendix C of that eport was used to compile table 2 in which t is shown that shipments were concentrated 12 States. Although data relating piggyback rigins to destinations are not readily availble, a substantial proportion of these movezents are east-west between the major rail and ea transportation hubs. Because the data in whe table are from the Interstate Commerce (2) Ommission's (I.C.C.) 1 percent waybill ample, the total number of shipments can be pproximated by multiplying the sample

[^4]data by 100. Accordingly, it is estimated that 443,900 trailers were shipped by rail to or from Illinois, the State with the maximum number of shipments in 1963. This is an average of 1,216 trailers per day or 51 trailers per hour. Even if all these shipments going through all the piggyback terminals in the State had been concentrated on a single major highway, there would have been fewer trailers on that highway than are usually carried by a typical heary-truck route. On U.S. 66 southwest of Chicago, the number of trailer combinations in 1963 averaged 1,957 vehicles per day. This figure is based on counts obtained by the Illinois Division of Highways. ${ }^{4}$ The trailer volume on this one highway was 60 percent more than all TOFC movements originating or terminating in the State.

[^5]Several comparisons can be made to determine the portion of present highway truck cargo that might be served by piggyback. There would be no advantage to transporting goods by piggyback if transportation by tractor truck semitrailer combination alone is less costly than having the trailer moved part of the way by rail. Depending on the orientation of piggyback terminals with respect to actual origin and destination of shipments, there are minimum distances for which all-highway hauling is more economical than piggyback. "Average short-line length of haul for all piggyback rail waybills, was 711 miles per car; the local average haul was $5 \$ 9$ miles, and for interline service, 929 miles. Plans I and II had the lowest average shortline hauls per car; plan IV had the greatest. Average short-line hauls ranging 600 miles and upward suggest that piggyback competes effectively for relatively long haul traffic. The average hauls computed from the sample exceed distances of 300 to 425 miles which, based on early cost analyses by different transportation interests, were thought to be the shortest distances at which piggyback might be competitive with highway operations. They also exceed 1963 average hauls per ton of 464 miles for class I railroads, and the average hanl for class I motor common carriers and common carriers of gencral freight, 267 and 342 miles, respectively." ${ }^{3}$
As shown in figure 2, approximately 37 percent of all travel by all highway trailer combinations consists of trips 300 miles or longer. Only about 27 percent consists of trips longer than 425 miles. As indicated above, the minimum shipping distances for which piggyback is likely to be competitive with highway transportation has been estimated to be 300 to 425 miles. More detailed trip-length data by vehicle type is given in table 3. Interpolating between the 300- and 500 -mile entries on the line all traiter combinations, it is estimated that less than 3 percent of all trips are longer than 425 miles, although these trips account for 28 percent of all travel by combinations. As these are

Table 3.-Cumulative percentages of trips and travel by different types of vehicles

${ }^{1}$ Nationwide Automobile Use Study conducted April 1961 for Bureau of Public Roads by Bureau of the Census based on one current population survey panel of approximately 4,000 dwelling units.

21963 Special Truck Weight Study data obtained by the State highway departments i cooperation with the Bureau of Public Roads in the summer of 1963.
minimum distances for piggyback usage, and because the percentages are small for longer distances, it appears that less than 20 to 25 percent of all travel by highway trailer combinations can be considered for eventual diversion to piggyback.

Piggyback terminal areas

In or near larger cities, where the majority of shipments originate-either piggyback or all-highway hauling-and where the concentrations of the truck combinations are largest, the diversion from highway transportation to piggyback theoretically would not reduce the amount of travel by trailer combinations on the highways at all; it would more likely increase the travel by truck combinations on urban strects and highways. The reason for this is that the shipments must be transported by highway to and from the piggyback terminal. Why this is likely to occur is shown in figure 3. Shipment A represents a situation in which both origin and destination are within the urbanized area boundary; shipment B represents a situation in which both origin and destination are outside the periphery of the urban area. In situation A, piggyback shipment would eliminate the highway travel as shown by the symbol (-), and add the highway travel, as shown by the symbol (\dagger). Careful location analysis would tend to minimize $(+)$ and maximize (-) on the basis of existing
and future locations of shipment origins and destinations.

In most areas, choices for piggyback terminal locations are limited, as sites where existing rail lines are near freeway interchanges are preferred. Location of plants and warehouses near the piggyback terminal can contribute to efficient operation, but commodities must move through, to, and from other parts of the urban area and the surrounding region. Consequently, the moving of commodities by highway to and from ultimate origins and destinations, whether in the piggyback container or in another vehicle, cannot be eliminated. Within the urbanized area, the sum of highway travel eliminated, shown in figure 3 by symbol (-), cannot be substantially more than the sum of the added travel to and from the piggyback terminal indicated by symbol $(+)$. However, a substantial amount of highway travel between cities can be eliminated.

Shipment B represents a situation in which all-highway movement would not travel through either the origin or destination urban areas. In this situation, the shift to piggyback would produce additional urban travel by trailer combination and reduce rural travel. By shifting to piggyback, the reduction of the long highway trailer trips would be most noticeable in the more remote rural areas between major terminal cities separated by 300
miles or more. At such locations, these lare highway vehicles may constitute 25 percer or more of all traffic; but the total traffic vo ume is usually quite low.
Spatial and temporal concentrations urban trailer combination movements ma cause problems. In figure 3, the sectior identified as connection are intended to repr sent the sections of highways, streets, inte changes, and intersections that provide tl connecting links between the piggyback te minal and the expressway network. With limited number of piggyback terminals, it w be necessary for piggyback shipments from : parts of the urbanized area to traverse the connecting links. The all-highway shipmen will traverse a variety of routes througho the urban area, but in rural areas, the majori will use the principal intercity routes. The spatial dispersions and concentrations ha little significance, except that pavements connecting links must be adequate for frequent, heary loads. It is the concentrati of trailer combination movements during periods immediately before departure after arrival of the rail trains that can cree highway capacity problems, particularly the periods coincide with morning or eveni peak hour periods. Because time costs mon in commodity transportation, shipppers consignees often arrange to deliver and pi up their trailers or containers close to

- truck combination traffic unchanged by rail piggyback or all-highway
- TRUCK COMBINATION TRAFFIC REDUCED BY RAIL PIGGYBACK INSTEAD OF ALL-HIGHWAY
+ TRUCK COMBINATION TRAFFIC INCREASED BY RAIL PIGGYBACK INSTEAD OF ALL-HIGHWAY

Figure 3.-Hypothetical changes in highway travel patterns caused by piggyback.
cheduled train time. As unloading rates exced one trailer per minute, it is not unlikely hat several semitrailer combinations will be idded to the traffic stream during each signal ycle or equivalent time interval at certain onnecting link intersections. If near-capacity raffic already exists at the intersections, erious congestion may result. Because excesive delays would tend to discourage use of he piggyback terminal, it is important that dequate traffic capacity be provided on the onnecting links.
Accordingly, rail piggybacking, although ending to relieve the rural portions of interity routes by as much as 25 percent of travel y trailer combinations, will have little effect in the amount of such travel in the urban reas served by the terminals. Some increase a total urban travel and the possible conentration of trailer combination movements ear piggyback rail terminals warrants the ttention of transportation planners. Addiional lanes of highway for increased capacity t the terminals is one problem. If from one to 'o more than a half dozen combinations each ninute-as limited by rail loading and nloading-entered or left a highway that arves a piggyback terminal, a level 4-lane xpressway would experience added congestion
during peak hours. A more critical problem is the effect on an adequate 4-lane urban expressway of arrivals and departures during off-peak hours. The need is for a sufficiently high level of service on all sections of the urban arterial network so that cargo can be moved expeditiously between the piggyback terminal and the ultimate origins and destinations.

Legal and regulatory considerations

A decision by the Interstate Commerce Commission in 1954 signaled the succeeding rapid growth of piggybacking. ${ }^{5}$ In 1967, a Supreme Court decision established the right of motor carriers to avail themselves of railroad piggyback services at the same rates charged to other customers, ${ }^{8}$ which should encourage piggyback to be used on a larger scale for shipments of sufficient length. As

[^6]indicated previously, this increased use could affect a maximum of about 25 percent of all combination vehicle miles. To approach this maximum would require railroads to be properly located to serve all these long truck movements.
The point at which piggyback becomes economical is related to the distance that a trailer unit can be moved on highways during one 8 -hour work shift. While practices vary according to the type of operation and geographic location, it is evident that once a trailer or semitrailer is connected to a power unit and is underway, the cost for each additional mile driven is small. The owner's costs for capital investment in the vehicle and the driver wages are the same whether the vehicle is being hitched, driven to a piggyback terminal, unhitched, returned empty, or continuing down the road toward the destination. Usually, the driver must be employed for a full shift even if only one or two units are to be moved. When several units are to be loaded at about the same time, near the end of a work shift and shortly before scheduled departure of the trailer train, then several power units may be required to move them all to the loading point on time. If these power units must stand idle except for the
few hours required each day for moving trailers to and from the loading point, it may be more economical to run some or all of the combinations through to the destination.

The capital cost of the power unit and the driver wages represent a large part of the cost of highway cargo movement, and substantial economies can be achieved when more cargo can be moved by a single power unit. Recent changes in State laws have brought about the changes shown in figure 4. The States shown
with dark shading have permitted the use of combinations with a semitrailer and full trailer 65 feet in length since January 1964. The lightly shaded States have subsequently revised their laws and now permit use of these vehicles. In many States these large combinations are restricted to travel only on the major highways, including the Interstate System. In New York and Massachusetts, the combinations are permitted only on certain toll roads, as indicated by the shading. Hence, \ddagger years ago these large
combinations, called double bottoms, were permitted in only a few areas; today, except for the Appalachian barrier, it is legal to drive them almost coast to coast. The increased use of double bottoms has increased, by 30 to 50 percent, the amount of cargo that can be transported by a single power unit and driver Additional economies result for operations in which a full load in a smaller body increases loading and other efficiencies. These change: increase the economy of long distance highway transportation.

Figure 4.-States that have permilted use of tractor semitrailer-full trailer combinations since 1962 and currently (from data summarized by American Trucking Association).

Analytic Aerial Triangulation for Highways

A Comparison of Two Methods

$3 Y$ THE OFFICE OF 2ESEARCH AND DEVELOPMENT 3UREAU OF PUBLIC ROADS

Reported by ${ }^{1,2,3}$ JESSE R. CHAVES, Highway Engineer Engineering Systems Division

Introduction

INALYTIC aerial triangulation has been 1 established as a useful method of obtaining zcurate topographic data that can be used । highway planning, location, and design, ad several methods have been developed for is approach to photogrammetric bridging. wo of the more prominent methods for comating the positions and elevations of points I the ground, those developed by the Na onal Research Council of Canada (NRC) ,2) ${ }^{4}$ and the U.S. Coast and Geodetic

[^7]
Abstract

Results of a comparison of two methods of analytic aerial triangulation are presented in this article. Accuracies of the Canadian National Research Council (NRC) and the U.S. Coast and Geodetic Survey (CGS) systems are compared. The evaluation was performed with 1:4,800- and 1:9,600-scale photographs. Strip coordinate computations and strip adjustments for the two methods were tested using the same measured plate coordinates and ground control.

Although the error propagation within each strip computation is undoubtedly different, the resultant computed ground coordinates are not significantly affected. Either the NRC or the CGS method of analytic aerial triangulation will provide acceptable results for highway location and design.

Survey (CGS) $(3,4)$, were evaluated in the investigation reported here. The coordinates obtained from either method can be used for many purposes in highway location and design, but State highway personnel and others who are concerned with photogrammetry and are interested in this method of bridging often question the accuracy of the methods.
Two scales of photographs were used in the investigation to evaluate the accuracy of computed ground coordinates, and the errors
in the two methods were compared and evaluated. The information presented should assist State highway organizations and others in selecting the method of analytic strip triangulation that will best suit their individual requirements.
Two previous investigations ${ }^{5}$ (5) have been conducted to determine the feasibility of

[^8]using analytic aerial triangulation in highway engineering. These included evaluating computed ground coordinates for supplemental control for large-scale, small contour interval mappling employed in highway location and design. In the previous work, coordinate measurements were made with monocular comparators-in this investigation, a stereocomparator was used.

Aerial Photography

Aerial photographs, used in a mapping project for the extension of Colonial Parkway near Williamsburg, la., were provided by Regional Office 15 of the Federal Highway Administration. Two photographic flight strips, used for the comparative evaluation experiment, were taken with a Wild RC-8 mapping camera equipped with a 6 -inch focal length Aviogon lens. The first flight strip of an area about 12,000 feet long consisted of 10 photographs at a scale of $1: 4,800$. The second flight strip of an area about 16,000 feet long, consisted of six photographs at a scale of $1: 9,600$. The larger scale photographs were used for map compilation and bridging; the smaller scale photographs were used exclusively for analytic bridging. Diapositive plates were printed cmulsion-to-emulsion from the acrial negative film by an automatic-dodging printer.

Ground Control Survey and Photographic Targets

Basic horizontal control was surveyed to better than second-order accuracy using a Tellurometer and Wild T-2 theodolite; rertical control was surveyed to second-order accuracy using a Zciss N-2 automatic level. (iround positions of 39 points and elevations of 42 points were surveyed on the ground. (iround coordinates of these points were available for controlling the triangulated strips and for testing the accuracy of the analytically computed coordinates.

All but four surveyed points were premarked by photographic targets. The other four points were natural objects that could be readily identified in the aerial photographs. Three types of target designs (fig. 1) were used as markers of surveyed ground control. Nine of the type A targets were placed throughout the photographed area by the mapping contractor. Seven targets of the type B and 23 of the type C targets were placed throughout the project by personnel of the Bureau of Public Roads. The legs of the type A targets were made of white muslin. The centers of the type 13 targets consisted of alternating colored cloth wedges of either blue and black or brown and black. The centers of the type C targets were solid black squares. Whenever targets were placed in wooded areas, the legs were extended somewhat to facilitate locating them on the aerial photographs.

Photogrammetric Instruments and Measuring Procedure

Photographic x and y plate coordinates were measured with a Wild STK 1 Stero-
comparator equipped with a Wild EK 4 Electric Coordinate Printer that recorded coordinate measurements to the nearest even micron. Comparator output was recorded on punched cards that could be used as computer input data. Measurements were made at $70^{\circ} \mathrm{F} . \pm 1^{\circ}$ in a temperature controlled room using 11 diameter magnification and a 40-micron diameter measuring mark.

A Wild Pug 3 Point Transfer Device was used to drill six pass points, perpendicular to the flight axis, along the center of each photographic plate. Two holes were drilled in the vicinity of the customary pass-point locations. Wherever feasible, these were located in areas of relatively flat topography so that x and y parallaxes at the time of coordinate measurement could be accurately and readily removed. Although a threedimensional view was available for selection of pass-point locations, all holes were actually drilled monocularly, using the same drill.

During measurement, each plate was oriented with its emulsion side down and the photographic x-axis nearly parallel to the comparator x-axis. The x and y coordinates were measured on the left-hand stage while the parallaxes, $p x$, and $p y$, were recorded from the right-hand stage.

Each of the image points was measured four times. Because the fiducial marks in the camera had open centers, it was necessary to measure each of the four legs and then mathematically intersect for the center of the fiducial. Five measurements were made on each leg.

Analytic Systems

It is beyond the scope of this article to present the mathematical basis of the analytic
aerial triangulation systems used in th investigation; however, the theoretical bas can be pursued by consulting the reference literature (1, 2, 3, 4, 6, 7, 8, 9). Documents FORTRAN computer programs are al: included \ln the referenced literature (1, 2, 4, 9).

Computers

Because of their availability, four IB: computers, were used in the investigatio 7030 (STRETCH), 7010 (60 K), 7090 а 360 Model 50. To avoid unnecessary dela no computer program conversions we attempted during the investigation but : programs are now operational on the IB 360.

The STRETCH computer used for compl. ing the strip coordinates by the triplet meth was made available through the courtesy the CGis. The NRC strip computations we performed on the IBM 7010 system using 18-digit mantissa. The CGS strip adjustmer were computed on the IB M 7090 and the NI strip adjustment with the IB M 360 .

Computer Program Features

For the CGS strip computation phographic x and y coordinates of each ime point occur on separate cards. Measureme s from one to 10 can be made for each point, 1 all the cards must be together. In multi observations, coordinates that deviate m than 25 microns from the mean are rejectl. If two such rejections occur in a given set, computation is stopped and a new triang tion is started. Coordinates of pass points ir each photograph of the triplet must be in a

Figure 1.-Photographic target designs.

Figure 2.-Ground control distribution, 1:4,800-scale photography.
rict sequence, and a card sort is performed - insure the proper order. In the triplet solumn, a given pass-point image is rejected if its sidual parallax exceeds the limit set by the ier. The companion pass point in the same :eal is then substituted for it. If two pass jints, for a given model in the same area :e rejected, the solution is terminated.
The vector sum of all x and y parallaxes is finced out for each pass point that appears - three photographs; only the y parallaxes se output for all other image points. A single iot-mean-square value of all residual paralJes for the 18 pass points in a triplet is also 'tput and serves as a reliability number for te triplet.
The NRC strip computation provides for irrecting the measured photographic co(dinates for the effects of differential film rrinkage, radial lens distortion, earth curvaTre, and atmospheric refraction. ${ }^{6}$ Two corstion factors for differential film shrinkage \therefore applied in the x and y directions. This :igle set of values is applied to all the photoInphs in the flight strip. Any number of iage points may be used for relative orientatin, and an experimental weighing equation ly be applied if the photographs have been (tained with a Wild 6 -inch Aviogon lens. 'ith this equation, image points near the lincipal point are given more weight in the tative orientation solution than those

[^9]located near the corners of the photograph. As many as 10 image points may be used for scaling by an appropriate signal on each scaling point card. Equal weight is given to each scaling point. There are also four standard patterns for the scaling points that can be used, depending on a number punched in the first data card of the strip. This same pattern of image points is used throughout the triangulated strip, but a maximum of four scaling points is permitted with the standard patterns. The program has provisions for disearding anomalous scale transfer points.
The measured photographic coordinates for input to the NRC program are arranged in groups according to models. The first card of each model contains the coordinates of the princiapl points of the two photographs and a number that determines the number of points to be used in relative orientation. The coordinates of corresponding image points: appear on each of the subsequent cards. Immediately following the first card are cards for the relative orientation points. All other object-point cards come last. The residual parallaxes will be at photograph scale, providing the value of the base component $b x$ in the first model has been set equal to the actual distance on the photograph. Residual y parallaxes are printed out for cach image point.
Input datal for the CGS and NRC strip adjustment programs are similar. They include:

- Strip coordinates and surveyed ground control data.
- Strip coordinates of all the points whose ground coordinates are needed.
- The x and y strip coordinates of two points near each end of the flight strip for deffining the axis-of-flight.
- A card containing the degrees of polynomials to be used.
The CGS and NRC methods provide for first, second, and third degree polynomials for correcting the horizontal and vertical coordinates. The NRC program also allows for higher degree polynomials and the use of a scparate degree polynomial for correcting scale and azimuth, longitudinal tilt, and transversal tilt. The NRC program can also be used for a block adjustment of parallel overlapping flight strips.

Evaluation Scheme

In testing the accuracy of the analytic computations by the two methods, the following procedure was employed:

- The measured x and y plate coordinates for the $1: 4,800$ - and $1: 9,600$-scale photographic strips were corrected for film and radial lens distortion. The mathematical formulation is described in reference (8). This method of coordinste refinement is included as an integral part of the Three-Photo Aerotriangulation program (3).
- The strip coordinates for the two flight strips were computed by the NIRC and C(isis methods using the same set of refined coordinates. Twelve image points in each model

VERTICAL AND HORIZONTAL PHOTOGRAPHIC TARGET

- vertical - pIcture point

Figure 3.-Ground control distribution, 1:9,600-scale photography.
were used to compute the relative orientation. Two of these image points were located in each of the six conventional pass-point locations.

- The computed strip coordinates for each scale of photographs were adjusted and transformed to ground coordinates by the NRC and CGS strip adjustment methods. Eecond and third degree polynomial adjustments were employed for each of four combinations. The following four combinations of strip coordinates and strip adjustments permitted a comparison between two independent methods of analytic triangulation and enabled determination of the differences caused by either the strip adjustments or the strip coordinate computation:

> NRC-NRC-N RC strip coordinates and N RC strip adjustment.
> CGS-CGS-CGS strip coordinates and CGS strip adjustment.
> NRC-CGS-NRC strip coordinates and CGS strip adjustment.
> C(iS-NRC-CGS strip coordinates and NRC strip adjustment.

The standard errors for the X, Y, and Z coordinates were computed for all ground surveyed test points that were withheld from the strip adjustment solution.

The ground control distribution used for controlling and testing the computations for the $1: 4,800$-scale photographs is shown in figure 2. Four horizontal and seven vertical control points were used for strip adjustment. The horizontal ground control points used are identified in the figure as T-26, AT-9, T-29, and $T-4$. Vertical control is designated as AT-5, T-26, T-11, T-13, T-28, T-2, and $\mathrm{T}-3$. The ground control distribution for the $1: 9,600$-scale photographs is shown in figure 3. Four horizontal control points (AT-3, AT-9, AT-7, T-4) and eight vertical control points (AT-4, T-17, T-22, T-9, T-11, T-28, T-1, $\mathrm{T}-3$) were used to adjust this strip.

The X and Y ground coordinates of 14 points and the elevations of 13 points were available for testing the accuracy of analytically computed coordinates for the $1: 4,800$ scale flight strip. The horizontal position of 2.5 ground points and elevations of 23 points were available for testing the computed coordinates for the $1: 9,600$-scale strip.

Results

Triangulation-1:4,800-scale photographs

The standard errors obtained from the different combinations of strip coordinate and strip adjustment computations for the $1: 4,800$-scale photographs are shown in tables

1 and 2. By the two independent method using second degree polynomials, no signit cant differences in the computed X and coordinates were evident in comparison No. table 1. The standard error of the Y c ordinates for the CGS method is slight smaller than that for the NRC metho Similarly, in the second comparison, it slightly smaller than that for the NR method. In the second comparison, only slight reduction in the standard error of was caused by the CGS adjustment. comparison No. 3, no significant differenc resulted from the strip adjustments.
In the fourth and fifth comparisons, differences could be attributed solely to t strip computations. Any minor different that may have existed from the strip 1 ordinates alone are likely to have been co pensated by the adjustment procedure. In trial combinations the standard errors for were less than those for X.
In the first comparison shown in table, the CGS computation, compared with NRC method, resulted in standard errs that were larger in X and smaller in Y and . In comparisons Nos. 2, 3, 4, and 5, 13 standard errors for Z suggest that the sliyt improvement in the standard error of the? coordinates in comparison No. 1 may h: c been due to the CGS strip computato rather than to the strip adjustment. A sim:

Table 1.-Standard errors for computed ground coordinates from second degree strip adjustments, scale- $1: 4,800$

Comparison number	Trial identification 1	Coordinate errors		
		X	Y	Z
1.		$\begin{array}{r} \text { Feet } \\ 0.49 \\ .51 \\ .49 \\ .48 \\ .51 \\ .47 \\ .49 \\ .47 \\ .48 \\ .51 \end{array}$	Fcct0.38.27.38.30.27.32.38.32.30.27	Fcet 0.34 .32 .34 .34 .32 .30 .34 .30 .34 32 3
3.				
5.				

${ }^{1}$ NRC-National Research Council; CGS-U.S. Const nd Geodetic Survey.

Table 2.-Standard errors for computed ground coordinates from third degree strip adjustments, scale- $1: 4,800$

Comparison number	Trial identification ${ }^{1}$	Coordinate errors		
		X	Y	Z
1.		$\begin{aligned} & \text { Fcet } \\ & 0.46 \\ & .61 \\ & .46 \\ & .60 \\ & .61 \\ & .48 \\ & .46 \\ & .48 \\ & .60 \\ & .61 \end{aligned}$	$\begin{array}{r} \text { Feet } \\ 0.52 \\ .31 \\ .52 \\ .34 \\ .31 \\ .47 \\ .52 \\ .47 \\ .34 \\ .31 \end{array}$	$\begin{array}{r} \text { Feet } \\ 0.44 \\ .37 \\ .44 \\ .44 \\ .37 \\ .39 \\ .44 \\ .39 \\ .44 \\ .37 \end{array}$
2.				
4				

I NRC-National Research Council; CGS-U.S. Coast nd Geodetic Survey.
able 3.-Error differences resulting from quadratic and cubic polynomials, scale1:4,800

Trial identification	Polynomial	Coordinate errors		
		X	Y	Z
NRC-NRC.-	Quadratic	Feet	Feet	Fect 0.34
NRC-NRC..	Cubic	. 46	. 52	. 44
CGS-CGS	Quadratic Cubic	. 51	. 27	. 32

' NRC-National Research Council; CGS-U.S. Coast Id Goodetic Survey.
'nalysis of comparisons Nos. 2, 3, 4, and 5 hows that the more accurate Y coordinates -if the CGS method were primarily due to the CGS strip adjustment. The smaller tandard error for X in comparison No. 1 was largely a result of the NRC strip djustment.
For all the trials adjusted by the NRC nethod, the standard errors for X were about he same as those for Y, whereas the Y oordinates from the CGS strip adjustments vere about twice as accurate as the X oordinates.
The differences in standard errors resulting rom the quadratic and cubic polynomials sed in the two strip adjustments are shown a table 3. For both the NRC and CGS
method, the second degree strip adjustments gave better overall result, as expected for a relatively short flight strip and dense ground control.

Triangulation-1:9,600-scale photographs

The standard crrors for computed ground coordinates using the $1: 9,600$-scale flight strip appear in tables 3 and 4. Strip adjustments were performed using second degree polynomials for the comparisons shown in table 3.

The CGS method gave slightly lower standard errors for Y and Z in comparison No. 1. In comparison No. 2, no significant differences between the computed coordinates resulted from the two strip adjustments. For comparison No. 3, the results do not corroborate those of the previous comparison because the CGS strip adjustment gave slightly smaller standard errors for X, Y, and Z. In the fourth comparison, no significant differences were caused by the method of strip computation. It is suggested in comparison No. 5 however, that the CGS strip computation gave slightly more accurate elevations.

In both the NRC and CGS strip adjustments, standard errors for X and Y were about equal. This is unlike the standard errors from second degree CGS adjustments for the $1: 4,800$-scale photographs (table 1) in which the Y coordinates were computed more accurately than the X.

Standard errors for the ground coordinates, using third degree polynomials, are shown in table 4. In comparison No. 1, the CGS method gave markedly improved X and Y coordinates and only slightly improved Z coordinates. In the second and third comparisons, the improvements in X and Y were due mainly to the CGS strip adjustment. In these comparisons, it is suggested by the data for the Z coordinates that improvement was a result of the CGS strip adjustment. In comparison No. 4 there appeared to be only slight improvement in X from the NRC strip computation. In comparison No. 5 a similar indication was shown for X, but improvements for Y and Z were also shown because of the N RC strip coordinates.

It is suggested in comparisons Nos. 4 and 5 (tables 3 and 4) that the third degree NRC strip adjustment has simply adjusted out any differences that may have existed between the strip coordinates. The CGS adjustment does this to a lesser extent. It is also possible that the NRC strip computations were more accurate for the $1: 9,600$-scale strip, but the improvement was insignificant in terms of the coordinate improvements resulting from the CGS strip adjustment (comparison No. 1). Comparisons for the $1: 4,800$-scale strip (tables 1 and 2) do not, however, substantiate this conclusion. In table 1, no significant differences were indicated between the two methods of strip computation, whereas in table 2 , it is suggested that the slight improvement in Z coordinates was due to the CGS strip computation.

Both the NRC and C(is strip adjustments resulted in standard errors for X that were about equal to those for I. This is the same relationship, obtained with the quadratic adjustments. Differences obtained from quadratic and cubic polynomial adjustments for the two independent methods of triangualtion are shown in table 6.

A significant difference occurred in the standard errors of the X and Y^{\prime} coordinates owing to the degree of polynomial for the NRC adjustment. There wats little or no difference for the horizontal coordinates regardless of whether a second or third degree CGS adjustment was employed. For both the NRC and C(iS methods, slightly lower standard errors for Z were obtained with second degree adjustments.

Table 4.-Standard errors for computed ground coordinates from second degree strip adjustments, scale- $1: 9,600$

Comparison number	Trial identification 1	Coordinate errors		
		X	ξ	Z
		Feet	Feet	Feet
	$\left\{\begin{array}{l} \mathrm{NRC}-\mathrm{NRC} \\ \mathrm{CGS}-\mathrm{CGS} \end{array}\right.$	0.58 .54	0.61 .51	0.62 .48
2	NRC-NRC	. 58	. 61	. 62
2	NRC-CGS	. 55	1. 58	. 62
3	fCGS-CGS	. 54	. 51	. 48
	1 CGS -NRC	. 60	. 64	. 58
4	$\left\{\begin{array}{l}\text { NRC-NRC } \\ \text { CGS-NRC }\end{array}\right.$. 58	. 61	.62 .58
	NRC-CGS	. 65	.64 .58	. 68
	\{CGS-CGS.	. 54	. 51	. 48

${ }^{1}$ NRC-National Research Council; CGS-UT.S. Coast and Geodetic Survey.

Table 5.-Standard errors for computed ground coordinates from third degree strip adjustments, scale-1:9,600

Comparison number	Trial identification 1	Coordinate errors		
		X	Y	Z
5.		Fect 0.89 .55 .89 .45 .55 .97 .89 .97 .45 .55	Feet 0.92 .45 .92 .33 .45 92 .92 .92 .92 .33 .45 .45	$\begin{aligned} & \text { Feet } \\ & 0.66 \\ & .56 \\ & .1 i t ; \\ & .47 \\ & . i t i \\ & . i t i \\ & . i+5 \\ & . i t i \\ & .47 \\ & \hline \end{aligned}$

NRC-National Research Council; CGS-U.S. Coast and Geodetic Survey.

Table 6.-Error differences resulting from quadratic and cubic polynomials, scale1:9,600

[^10]
Photographic Images

The discussion here largely reflects the observations made by the sterocomparator operator during measurement of the two photographic flight strips used in the investigation. The target designs used in the investigation are illustrated in figure 1 . Based on the use of a 40 -micron diameter measuring mark (black dot) and 11 diameter magnification, the center of the type C target was found to be both too large and too dark for precise measurement. This was true for both the $1: 4,800$ - and 1:9,600-scale photographs. There was a tendency for the black measuring mark to disappear from view within the target center. Under these circumstances, the type C target did not appear suitable for analytic triangulation.

The colored wedges forming the center of the type B target lacked tonal contrast in the aerial photograph. The center of this type of target had a rather uniform, gray photographic tone and appeared more like a type C target except for the lighter tone. The type B target is preferred to type C because the black floating mark can be seen within the target center.

The center of the type A target appeared too large for optimum measuring accuracy on both seales of photographs. It has been suggested that reduction of the leg widths would provide a more suitable target for the two scales of photographs tested.

In general, the picture points selected by the field crew were found acceptable for coordinate measuring. It was impossible to establish any definite correlation between the types of images (picture points or target types) and the errors in position and elevation at these points.

Summary and Conclusions

1)ifferences in computed ground coordinates of the two analytic systems are caused primarily by the strip adjustments. The degree of polynomial used produces significantly different results with the N RC strip adjustment, but it has a lesser effect with the CGS adjust-
ment. Second degree polynomials in both methods gave the better overall results. With the NRC strip adjustment, polynomials higher than second degree appear unwarranted. For the CGS strip adjustment, the degree of polynomial used should depend on the scale of photographs, length and density of flight strip, and distribution of ground control.

Although the error propagation within each strip computation is undoubtedly different, the resulting computed ground coordinates are not significantly affected.

The magnitude of the standard errors obtained for the computed ground coordinates in the investigation do not necessarily represent the utmost in accuracy that can be expected for the scales of photographs and the distributions and densities of ground control used. Regarding optimum densities and distributions of ground control, no conclusions of the effect of using different photographic target designs are possible.

The author believes that the CGS method of compensating for film distortion is superior to the NRC method. In the NRC program, the same average linear scale factors are applied to the entire flight strip. The CGS method, however, is applicable only to cameras with four corner fiducials, or eight fiducials, if additional fiducials are present along the mid-points of the sides. A separate program was written to provide input to the NRC strip computation program whenever photographs with side fiducials are used. This program transforms the origin of the plate coordinates to the principal point and applies linear film distortion compensation to each photograph of the flight strip.

The choice of a particular method of analytic aerial triangulation depends on (1) personal preferences of the user for specific program features, (2) design of aerial camera(s), and (3) size and speed of the available computer. The NRC strip triangulation program requires less computer storage and runs more efficiently than the CGS strip coordinate computation.

For all practical purposes, either the CGS or the NRC method of analytic aerial triangulation will provide acceptable results for highway location and design purposes.

REFERENCES

(1) An Introduction to Analytical Strip Triangulation, with a FORTRAN Program, by G. H. Schut, National Rescarch Council o Canada, AP-PR 34, December 1966.
(2) A FORTRAN Program for the Adjust ment of Strips and of Blocks by Polynomia Transformations, by G. H. Schut, Nationa Research Council of Canada, APR-PR 33 October 1966.
(3) Three-Photo Aerotriangulation, by M Keller and G. C. Tewinkel, U.S. Coast an. Geodetic Survey Technical Bulletin No. $2!$ February 1966.
(4) Aerotriangulation Strip Adjustment, b M. Keller and G. C. Tewinkel, U.S. Coas and Geodetic Survey Technical Bulletin Nc 23, August 1964.
(5) Aerial Analytic Triangulation Investige tion-Wyoming Interstate 80, by J. R. Chave: Public Roads, vol. 34, No. 8, June 1967, pl 151-159.
(6) Analytic Aerotriangulation, by W. I Harris, G. C. Tewinkel, and C. A. Whitter U.S. Coast and Geodetic Survey Technic. Bulletin No. 21, July 1962.
(7) Analytical Aerial Triangulation at t1 National Research Council, by G. H. Schu National Research Council of Canada, AI PR 7, September 1957.
(8) Aerotriangulation Image of Coortina Refinement, by M. Keller, and G. C. Tewinkt U.S. Coast and Geodetic Survey Technic Bulletin No. 25, March 1965.
(9) Development of Programs for Strip al Block Adjustment at National Research Coun. of Canada, by G. H. Schut, Photogrammetr Engineering, vol. 30, No. 2, 1964, pp. 283-26

ACKNOWLEDGMENT

The author wishes to thank the followi individuals for their help and cooperatio Messrs. Charles Theurer and Henry Eihe U.S. Coast and Geodetic Survey: Mess W. O. Comella, W. T. Pryor, D. N. Sha F. W. Turner, and J. R. Jensen, U.S. Bure of Public Roads; Mr. G. H. Schut, Natiort Research Council of Canada; Mr. J. Honyou Air Photographics, Inc.; Mr. W. E. Harme U.S. Geological Survey; and Mr. C. J. Alst Alster and Associates, Inc.

The Bureau of Public Roads has recently ubblished four documents. These publications nay be purchased from the Superintendent if Documents, U.S. Government Printing Ofice, Washington, D.C. 20402, prepaid. The ollowing paragraphs give a brief description if each publication and its purchase price.

Tighway Condemnation Law and Litigation in the United States

Highway Condemnation Law and Litigation n the United States contains a review of highvay condemnation law as reflected in the tatutes of the States. This publication was repared for the Bureau of Public Roads by he University of Wisconsin. It consists of wo volumes:
Vol. 1-A Survey and Critique (70 cents a opy). The survey was conducted on the issumption that there is too much litigation lin highway land acquisition programs. One bjective of the survey was to determine Whether there is a close relation between the iercentage of increase of contested highway ondemnation cases and the seemingly higher wards that are being made by the courts as ompared with appraised valuations.
The author has reviewed the law of conlemnation throughout the United States to inpoint the principal causes of litigation. The eport provides a general review of condemnaion law, identifies the issues that have arisen and the frequency with which they have risen. It contains tables of highway and nonighway condemnation cases, classification of ypes of proceedings involved, issues raised, ind the record of success of parties on appeal. The statutory authority to condemn proprty for highway purposes is reviewed, and xamples are furnished to indicate the range f issues with which such statutes deal among ifferent States. The subject of compensability ; presented under three major categoriespecific rights or interests, requirement of aking, and consequential damages. A descripion of the issues relating to procedure or ractice and a review of the constitutional rovisions dealing with the subject of eminent omain are provided.

Vol. 2-State by State Statistical Summary of Reported Highway Comdennation Cases from 1946 through 1961 ($\$ 1.75$ a copy) -a supplement to the first volume-is a review of 1,890 reported court decisions in the highway condemnation field during the period 1946-61. It contains a State-by-State breakdown of the cases and provides supporting data for some of the findings in the basic report.

The Role of Third Structure Taxes in the Highway User Tax Family

The Role of Third Structure Taxes in the Highway User Tax Family (\$2.25 a copy), a 331-page research and development report prepared under contract with the University of Mississippi, increases the factual basis for assessing the place of so-called third structure taxes in modern State tax systems for the support of highways. The information it provides is based on personal interviews with tax administrators and with representatives of trucking associations and individual trucking firms, on mailed questionnaires, and on examination of tax laws and public records.

The principal emphasis of the report is on the administrative aspects of third structure taxes. Its series of detailed State case studies representing 10 major types of such taxes should be particularly valuable to State legislatures, administrators, and others concerned with the problems of financing highways.

Handbook of Highway Safety Design and Operating Practices

The Handbook of Highway Safety Design and Operating Practices (40 cents a copy) is intended to serve all jurisdictions of government and designed to attract the attention of administrative and technical personnel who are making decisions bearing on the safety aspects of street and highway design and operations.

The publication is an illustrated guidebook presenting some of the latest safety techniques in such categories as the roadway cross-section
and slopes, bridge design, signing, grardrail and barriers, drainage, and railroad grade crossings. Future supplements to the hatudbook will include other aspects of sufety design and operations-construction and maintenance zones, urbon streets and highways, light standards, gores, protective sereening, etc. The handbook has a loose-leaf format to accommodate revisions and additions as new techniques are developed. Users of the handbook are urged to forward to the Federal Highway Administration, Washington, D.C., any ideas, comments, or new techniques that are appropriate for use in the handbook. The principal responsibility for the continuation of the publication has been assigned to the Bureau of Public Roads.

Standard Plans for Highway Bridges. Vol. 1, Concrete Superstructures, 1968

Standard Plans for Highway Bridges, Vol. 1, Concrete Superstructures, 1968 ($\$ 1.25$: copy), is a revised edition of the 1962 publication and pertains to bridge widths and current design specifications and geometrics. The plans are intended to serve as useful guides in the development of suitable and economical bridge designs. Sufficient information has been included so that all plans can be readily modified when contract drawings are prepared.

The volume contains plans for reinforced concrete and prestressed concrete superstructures. Reinforced concrete types include precast channel sections from 20 to 30 feet and cast-in-place I-beam and box girder spans from 40 to 120 feet. The precast-prestressed concrete types include voided sections from 25 to 40 feet, box sections from 40 to 70 feet, and I-beam sections from 35 to 90 feet. For optimum cconomy, the pretensioned I-beam sections have been designed to use the new 270 grade prestressing strands.

Bridge roadway widths used are 25 feet with H15-44 live load for low-traffic volume, low-design-speed roadways and 44 feet with HS20-44 live load for the standard 2 -lime, two-directional roadway.

APPALACHIAN DEVELOPMENT HIGHWAY SYSTEM

STATUS OF IMPROVEMENT AS OF SEPTEMBER 30, 1968

STATE	TOTAL desicrated SYSTIEM MILEAGE	OPEN TO TRAFYIC		
		ADEQUATE SDGMENTS- NO APPALACHLA FUNDS EXPENDED	Inadequaite sbancents. ITPROVED WITY APPNLACEIA FINSS	TOPAL
GEORGIA KENTUCKY	$\begin{array}{r} 89.0 \\ 579.6 \end{array}$	$\begin{array}{r} 2.6 \\ 163.3 \end{array}$	$\begin{array}{r} 0 \\ 40.2 \\ \hline \end{array}$	$\begin{array}{r} 2.6 \\ 203.5 \\ \hline \end{array}$
MARYIAND KEW YORK	$\begin{array}{r} 82.2 \\ 260.0 \end{array}$	$\begin{array}{r} 4.1 \\ 29.5 \end{array}$	$\begin{array}{r} 9.4 \\ \hline .0 \end{array}$	$\begin{aligned} & 13.5 \\ & 29.5 \end{aligned}$
BURT: CAROLITM 0 OIIO	$\begin{aligned} & 199.4 \\ & 295.3 \end{aligned}$	$\begin{array}{r} 1.3 \\ 93.0 \\ \hline \end{array}$	$\begin{array}{r} 14.0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 15.3 \\ & 93.0 \end{aligned}$
PETNETLVANIA TENTESSEE	$\begin{aligned} & 489.9 \\ & 333.3 \end{aligned}$	$\begin{aligned} & 58.1 \\ & 12.8 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 8.6 \end{aligned}$	$\begin{array}{r} 61.2 \\ 21.4 \\ \hline \end{array}$
VIRGIMA WEST VIRGINLA	$\begin{aligned} & 203.8 \\ & 421.7 \end{aligned}$	$\begin{array}{r} 25.0 \\ 9.9 \\ \hline \end{array}$	$\begin{array}{r} 18.3 \\ 6.8 \end{array}$	$\begin{aligned} & 43.3 \\ & 16.7 \\ & \hline \end{aligned}$
TOTAL	2,954.2	399.6	100.4	500.0

PUBLICATIONS of the Bureau of Public Roads

A list of the more important articles in Public Roads and title sheets for volumes 24-34 are available upon request addressed to Bureau of Public Roads, Federal Highway Administration, U.S. Department of Transportation, Washington, D.C. 20591.

The following publications are sold by the Superintendent of Documents, Government Printing Office, Washington, D.C. 20402. Orders should be sent dircet to the Superintendent of Documents. Prepayment is required.

Accidents on Main Rural Highways-Related to Speed, Driver, and Vehicle (1964). 35 cents.
Aggregate Gradation for Highways: Simplification, Standardization, and Uniform Application, and A New Graphical Evaluation Chart (1962). 25 cents.
America's Lifelines-Federal Aid for Highways (1966). 20 cents. Annual Reports of the Bureau of Public Roads :

1963, 35 cents. 1964,35 cents. 1965, 40 cents. 1966, 75 cents. 1966 supplement, 25 cents.
(Other years are now out of print.)
The Bridge to Your Success-Opportunities for Young Engineers in the Bureau of Public Roads (1967). 30 cents.
Capacity Analysis Techniques for Design of Signalized Intersections (Reprint of August and October 1967 issues of PUBLIC ROADS, a Journal of Highway Research). 45 cents.
Construction Safety Requirements, Federal Highway Projects (1966). 55 cents.

Construction Safety Requirements, Federal Highway Projects (1968). 50 cents.

Corrugated Metal Pipe Culverts (1966). 25 cents.
Creating, Organizing, \& Reporting Highway Needs Studies (Highway Planning Technical Report No. 1) (1963). 15 cents. Federal-Aid Highway Map (42×65 inches) (1965). $\$ 1.50$.
Federal Laws, Regulations, and Other Material Relating to Highways (1965). \$1.50.
Federal Role in Highway Safety, House Document No. 93, 86th Cong., 1st sess. (1959). 60 cents.
Freeways to Urban Development, A new concept for joint development (1966). 15 cents.
Guidelines for Trip Generation Analysis (1967). 65 cents.
Handbook on Highway Safety Design and Operating Practices (1968) . 40 cents.

Highway Beautification Program. Senate Document No. 6, 90th Cong., 1 st sess. (1967). 25 cents.
Highway Condemnation Law and Litigation in the United States (1968) :

Vol. 1-A Survey and Critique. 70 cents.
Vol, 2-State by State Statistical Summary of Reported Highway Condemnation Cases from 1946 through 1961. $\$ 1.75$.
Highway Cost Allocation Study: Supplementary Report, House Document No. 124, 89th Cong., 1st sess. (1965). $\$ 1.00$.
Highway Finance 1921-62 (a statistical review by the Office of Planning, Highway Statistics Division) (1964). 15 cents.
Highway Planning Map Manual (1963). \$1.00.
Highway Planning Technical Reports-Creating, Organizing, and Reporting Highway Needs Studies (1964). 15 cents.
Highway Research and Development Studies. Using Federal-Aid Research and Planning Funds (1967). \$1.00.
Highway Statistics (published annually since 1945) :
$1965, \$ 1.00,1966, \$ 1.25$.
(Other years out of print.)
Highway Statistics, Summary to 1965 (1967). $\$ 1.25$.
Highway Transportation Criteria in Zoning Law and Police Power and Plamning Controls for Arterial Streets (1960). 35 cents.
Highways to Beauty (1966). 20 cents.
Highways and Economic and Social Changes (1964). \$1.25.

Hydraulic Engineering Circulars:
No. 5-Hydraulic Charts for the Selection of Highway Culverts (1965). 45 cents.
No. 10 -Capacity Charts for the Hydraulic Design of Highway Culverts (1965). 65 cents.
No. 11-Use of Riprap for Bank Protection (1967). 40 cents.
Hydraulic Design Series:
No. 2-Peak Rates of Runoff From Small Watersheds (1961). 30 cents.
No. 3-Design Charts for Open-Channel Flow (1961). 70 cents.
No. 4 -Design of Roadside Drainage Channels (1965). 40 cents.
Identification of Rock Types (revised edition, 1960). 20 cents.
Request from Bureau of Public Roads. Appendix, 70 cents.
The 1965 Interstate System Cost Estimate, House Document No.
42, 89th Cong., 1st sess. (1965). 20 cents.
Interstate System Route Log and Finder List (1963). 10 cents.
Labor Compliance Manual for Direct Federal and Federal-Aid
Construction, 2 d ed. (1965). $\$ 1.75$.
Amendment No. 1 to above (1966). $\$ 1.00$.
Landslide Investigations (1961). 30 cents.
Manual for Highway Severance Damage Studies (1961). \$1.00.
Manual on Uniform Traffic Control Devices for Sheets and Highways (1961). \$2.00.
Part V only of above-Traffic Controls for Highway Construction and Maintenance Operations (1961). 25 cents.
Maximum Desirable Dimensions and Weights of Vehicles Operated on the Federal-Aid Systems, House Document No. 354, 88th Cong, $2 d$ sess. (1964). 45 cents.
Modal Split-Documentation of Nine Methods for Estimating Transit Usage (1966). 70 cents.
National Driver Register. A State Driver Records Exchange Service (1965). 20 cents.
Overtaking and Passing on Two-Lane Rural Highways-a Literature Review (1967). 20 cents.
Presplitting, A Controlled Blasting Technique for Rock Cuts (1966) . 30 cents.

Proposed Program for Scenic Roads \& Parkways (prepared for the President's Council on Recreation and Natural Beauty), 1966. $\$ 2.75$.

Reinforced Concrete Bridge Members-Ultimate Design (1966). 35 cents.
Reinforced Concrete Pipe Culverts-Criteria for Structural Design and Installation (1963). 30 cents.
Road-User and Property Taxes on Selected Motor Vehicles (1964). 45 cents.

Role of Economic Studies in Urban Transportation Planning (1965). 45 cents.

The Role of Third Structure Taxes in the Highway User Tax Family (1968). \$2.25.
Standard Alphabets for Highway Signs (1966). 30 cents.
Standard Land Use Coding Manual (1965). 50 cents.
Standard Plans for Highway Bridges:
Vol. I-Concrete Superstructures (1968). \$1.25.
Vol. II-Structural Steel Superstructures (1968). \$1.00.
Vol. IV-Typical Continuous Bridges (1962). $\$ 1.00$.
Vol. V-Typical Pedestrian Bridges (1962). \$1.75.
Standard Traffic Control Signs Chart (as defined in the Manual on Uniform Traffic Control Devices for Streets and Highways) $22 \times 34,20$ cents -100 for $\$ 15.00 .11 \times 17,10$ cents -100 for $\$ 5.00$.
Traffic Assignment Manual (1964). \$1.50.
Traffic Safety Services, Directory of National Organizations (1963). 15 cents.

Transition Curves for Highways (1940). \$1.75.
Typical Plans for Retaining Walls (1367). 45 cents.

WASHINGTON, D.C. 20402
OFFICIAL BUSINESS

If you do not desire to continue to receive this publication, please CHECK HERE tear off this label and return it to the above address. Your name will then be removed promptly from the appropriate mailing list.

[^0]: ${ }^{1}$ Italic numbers in parentheses identify the references listed on p. 114.

[^1]: 2 Source: Transportation Statistics in the United States, Bureau of Transport Economics and Statistics, Interstate Commerce Commission.

[^2]: ${ }^{1}$ Assisting in collecting and analyzing the material were F. S. Dickerson and W. J. Page, Highway Research Engileers; J. F. Petring, ITighway Engineer Trainee; and A. J. Simms, Statistical Assistant,
 ${ }^{2}$ Piggyback refers to the transportation of highway trailers in railroad flatears (TOFC) and to the transportation of nterchangeable containers-similar to semitrailer van ,odies-that are designed for transportation by railroad and highway semitrailer (COFC).

[^3]: ${ }^{1}$ TOFC $=$ trailer on flatcar
 ${ }^{2} \mathrm{COFC}=$ container on flatear

[^4]: ${ }^{3}$ Piggyback Traffic Characteristics, Statement No. 66-1, Iterstate Commerce Commission, December 1966.

[^5]: - Traffic Characteristics on Illinois Highways, 1963, Dopartment of Public Works and Buildings, station No. 24 BX , p. 100 .

[^6]: - The New Haven Case, Interstate Commerce Commission Docket No. 31375, Movement of Highway Trailers by Rail, 293, Interstate Commerce Commission 93, July 30, 1954.
 - No. 57, American Trucking Association, Inc., et al. versus the Atchison, Topeka and Sante Fe Railway Company, et al.; No. 59, National Automobile Transportation Association of Detroit, Mich., versus Atchison, Topeka and Santa Fe Railway, et al.; and No. 60, United States, et al., versus the Atchison, Topeka and Santa Fe Railway Company, et al.

[^7]: ${ }^{1}$ Mr. Chaves was with the Office of Engineering and jerations when the project reported here was initiated. ${ }^{1}$ Presented at the Annual Convention of the American ciety of Photogrammetry, Washington, D.C., March 1968. ${ }^{1}$ Previously published by Photogrammetric Engineering, 1. XXXIV, No. 7, July 1968, pp. 697-704.
 ${ }^{1}$ Italic numbers in parentheses identify the references listed p. 126.

[^8]: ${ }^{3}$ Survey Control Extension by Analytic Aerotriangulation for Highways, by J. R. Chaves, unpublished thesis, Syracuse University, Septomber 1965.

[^9]: The coordinate refinement portion of the N RC program b: not used in the investigation.

[^10]: INRC-National Research Council; CGS-U.S. Comst and Geodetic Survey.

