

Kixid

$$
5
$$

雨数教

$$
5
$$

Wran 1
175 508

\qquad

2 2

4ig
3x

Public Roads

A JOURNAL
0 F
H I G H W A Y
RESEARCH

PUBLISHED
BIMONTHLY
BY THE BUREAU
OF PUBLIC ROADS, FEDERAL HIGHWAY ADMINISTRATION, U.S. DEPARTMENT OF TRANSPORTATION, WASHINGTON

SPECIAL ISSUE
Design capacity charts for signalized intersections
Second installment-continued from vol. 34, No. 9

of the Bureau of Public Roads

A list of the more important articles in PUBLIC Roads and title slieets for volumes 24-33 are available upon request addressed to Bureau of Public Roads, Washington, D.C. 20235.

The following publications are sold by the Superintendent of Documents, Government Printing Office, Washington, D.C. 20402. Orders should be sent direct to the Superintendent of Documents. Prepayment is required.

ANNUAL REPORTS

Annual Reports of the Bureau of Public Roads :
1960, 35 cents. 1963,35 cents. 1964,35 cents. 1965,40 cents. 1966, 75 cents. 1966 supplement, 25 cents. (Other years are now out of print.)

REPORTS TO CONGRESS

Federal Role in Highway Safety, House Document No. 93 (1959). 60 cents.
Highway Cost Allocation Study:
Supplementary Report, House Document No. 124 (1965). \$1.00.
Maximum Desirable Dimensions and Weights of Vehicles Operated on the Federal-Aid Systems, House Document No. 354 (1964). 45 cents.
The 1065 Interstate System Cost Estimate, House Document No. 42 (1965). 20 cents.

PUBLICATIONS

A Quarter Century of Financing Municipal Highways, 1937-61, $\$ 1.00$.
Accidents on Main Rural Highways-Related to Speed, Driver, and Vehicle (1964). 35 cents.
Aggregate Gradation for Highways: Simplification, Standardization, and Uniform Application, and A New Graphical Evaluation Chart (1962). 25 cents.
America's Lifelines-Federal Aid for Highways (1966). 20 cents.
Calibrating and Testing a Gravity Model for Any Size Urban Area (1965). \$1.00.
Capacity Charts for the Hydraulic Design of Highway Culverts (Hydraulic Engineering Circular, No. 10) (1965). 65 cents.
Design Charts for Open-Channel Flow (1961). 70 cents.
Design of Roadside Drainage Channels (1965). 40 cents.
Federal-Aid Highway Map (40×63 inches) (1965). \$1.50.
Federal Laws, Regulations, and Other Material Relating to Highways (1966). \$1.55.
Freeways to Urban Development, A new concept for joint development (1966). 15 cents.
Highway Bond Financing . . . An Analysis, 1950-62. 35 cents. Highway Finance 1921-62 (a statistical review by the Office of Planning, Highway Statistics Division) (1964). 15 cents.
IIighway Planning Map Manual (1963). \$1.00.

PUBLICATIONS-Continued

Highway Planning Technical Reports-Creating, Organizing, and Reporting Highway Needs Studies (1964). 15 cents.
Highway Research and Development Studies, Using Federal-Aid Research and Planning Funds (1965). \$1.00.
Highway Statistics (published annually since 1945) : 1965, $\$ 1.00$.
(Other years out of print.)
Highway Statistics, Summary to 1965. \$1.25.
Highway Transportation Criteria in Zoning Law and Police Power and Planning Controls for Arterial Streets (1960). 35 cents.
Highways to Beauty (1966). 20 cents.
Highways and Economic and Social Changes (1964). \$1.25.
Increasing the Traffic-Carrying Capability of Urban Arterial Streets: The Wisconsin Avenue Study (1962). Out of printRequest from Bureau of Public Roads. Appendix, 70 cents.
Interstate System Route Log and Finder List (1963). 10 cents.
Labor Compliance Manual for Direct Federal and Federal-Aid Construction, 2d ed. (1965). \$1.75.
Landslide Investigations (1961). 30 cents.
Manual for Highway Severance Damage Studies (1961). \$1.00.
Manual on Uniform Traffic Control Devices for Streets and Highways (1961). $\$ 2.00$.
Part V-Traffic Controls for Highway Construction and Maintenance Operations (1963). 25 cents.
Opportunities for Young Engineers in the Bureau of Public Roads (1965). 30 cents.

Presplitting, A Controlled Blasting Technique for Rock Cuts (1967). 30 cents.

Reinforced Concrete Bridge Members-Ultimate Design (1966) 35 cents.
Reinforced Concrete Pipe Culverts-Criteria for Structural De sign and Installation (1963). 30 cents.
Road-User and Property Taxes on Selected Motor Vehicles (1964) 45 cents.
Standard Plans for Highway Bridges (1962) : Vol. III-Timber Bridges. $\$ 1.00$.
Vol. IV-Typical Continuous Bridges. $\$ 1.00$.
Vol. V-Typical Pedestrian Bridges. \$1.75.
Standard Traffic Control Signs Chart (as defined in the Manua on Uniform Traffic Control Devices for Streets and Highways $22 \times 34,20$ cents- 100 for $\$ 15.00$. $11 \times 17,10$ cents- 100 for $\$ 5.0 C$
The Identification of Rock Types (revised edition, 1960). 20 cents
The Role of Economic Studies in Urban Transportation Plannin; (1965). 45 cents.

Traffic Assignment and Distribution for Small Urban Area (1965). $\$ 1.00$.

Traffic Assignment Manual (1964). \$1.50.
Traffic Safety Services, Directory of National Organization (1963). 15 cents.

Transition Curves for Highways (1940). \$1.75.

Capacity Analysis Techniques for Design of Sig̣nalized Intersections

 Installment No. 2OFFICE OF ENGINEERING AND OPERATIONS
BUREAU OF PUBLIC ROADS

by ${ }^{1}$ JACK E. LEISCH, Vice President and Chief Highway Engineer, DeLeuw, Cather \& Co. of Canada Ltd.

PART 4-HIGH-TYPE FACILITIES AND INTERCHANGES

ITHE PROCEDURES AND CHARTS dealt with in previous parts of this article PUBLIC ROADS vol. 34, No. 9) are also pplicable to high-type facilities, including atersections designed to above-minimum tandards that incorporate channelization. ometimes such facilities accommodate relaively high-speed traffic characteristic of uburban and rural conditions. The at-grade amp terminals of diamond and parclo interhanges generally are forms of high-type atersections. Whereas the problem solutions reviously covered consider only one or two pproaches to illustrate basic procedures and ses of charts, part 4 deals with the entire atersection-all approaches and a complete olution. Included is a standard computaional form to tacilitate analyses and a uggested format for a drawing or sketch howing the resulting geometric design, signal hasing, and a summary of volume-capacity elations.

roblem 35

The intersection indicated in figure 15 oprates under congested conditions during peak eriods, particularly between 5:15 and 6:15 m. It is to be reconstructed, not only to emove the present bottleneck but also to
${ }^{1} \mathrm{Mr}$. Leisch was formerly Chief of Design Development ranch, Bureau of Public Roads. Mr Leisch acknowledges 3e assistance of DONALD W. LOUTZENHEISER, TILLLAM P. WALKER, and DONALD B. LEWIS of te Bureau of Public Roads who provided guidance during reparation of the material and reviewed the completed ork. JOEL P. LEISCH and ARNE HAALAND of leLeuw, Cather \& Co. of Canada Limited also assisted in ceparation of material and development of charts.

Abstract

This is the second and final installment of an article in which procedures are presented for the graphic solution of capacity problems related to signalized intersections. The first installment was published in the August issue, vol. 34, No. 9 , of PUBLIC ROADS.

The procedures are based on a set of charts consisting of 20 nomographs. Eighteen of the nomographs together with appropriate application procedures and sample problems were presented in the first installment. The other two nomographs and the remainder of the article are presented here.

The nomographic charts and procedures were devised by the author in 1950 to simplify the computational procedures of the 1950 Highway Capacity Manual. They were presented in PUBLIC ROADS in 1951 and were acclaimed by those concerned with intersection design. Since publication of the 1965 Highway Capacity Manual has provided a revised and comprehensive basis for capacity computations, the author in this article has again filled the need for a graphic procedure incorporating current knowledge. The original charts have been updated and new charts have been prepared to cover capacity procedures for which calculations previously required extensive application of judgment. The information presented provides a graphic procedure for the capacity analysis of most signalized street and highway intersections. Full discussion of the principles and procedures in the application of the charts in addition to sample problems have been included.

accommodate, at level of service \mathbf{C}, the future traffic based on a 15 -year projection. The north-south expressway at-grade, which has a design speed of $50 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., is to remain substantially the same. The east-west arterial, however, is to be improved basically to a 4lane divided highway, using a design speed of 40 m.p.h., 12 -foot lanes and a 16 -foot median, with additional lanes, as required, at the major intersections. The percentages of trucks on the different approaches are N and $\mathrm{S}-6$ percent, $\mathrm{W}-10$ percent, and $\mathrm{E}-12$ percent. A continuous right-turning movement is to be provided from W to S. Determine the geometrics for the improvement and the signal timing. Right-of-way is not a factor; moderate channelization is to be considered.

Figure 15.-Problem 35 illustrated.

PROJECT
INTERSECTION \qquad

BASIC CONDITIONS:
$\begin{aligned} & \text { METRO POPULATION } \\ & \text { AREA: RESID. CBD RURAL FRINGE (Circle One) OBD }\end{aligned}$

APPROACH	$T=$		\%	$\mathrm{R}=$	-	$L=\quad \%$	BUS STOP	
MOVEMENT	W ${ }_{\text {A }}$	CHART	G / C		CAPACITY		DHV ${ }^{\text {* }}$	REMARKS ${ }^{\text {® }}$
MOVEMENT	FEET	REFERENCE	REQ'D	USED	C_{0}	C_{p}		

$$
\text { APPROACH } T=\% \quad R=\%
$$

BUS STOP

MOVEMENT	$\mathrm{W}_{\text {A }}$	CHART	G / C		CAPACITY		DHV ${ }^{*}$	REMARKS ${ }^{\text {® }}$
MOVEMENT	feet	REFERENCE	REQ'D	USED	C_{D}	C_{p}		

[^0]Figure 16.-Capacity analysis worksheet form.
olution: As a first step it is necessary to k for capacity of the left-turn on each rsection approach as discussed in part 3 er the heading Check for Capacity of Left n. A multi-phase signal control appears ly, for which a cycle length upwards of 80 ,nds is generally required. Using chart 3 with an assumed $C=80$ seconds, the gn capacity of the left-turn movement, if ating simultaneously with the opposing ugh movement, is $C_{D 3}=70+$ on each apach; possible capacity is $C_{P 3}=95$. Only the
left turn E-S (70 v.p.h.) can be accommodated without a separate phase or advance green.

The opposing left turns on approach S and approach N are both relatively large and require a separate signal indication. This is a logical pattern for a third phase allowing both left-turning movements to operate simultaneously, each on a left arrow designation while all other traffic is stopped. Since the leftturning movement on approach W calls for a separate signal indication and the opposing

SIGNALIZED INTERSECTION
 CAPACITY ANALYSIS

IJECT BLAIR AVE. IMPROVEMENT
ERSECTION BLAIR AVE. AND RAND EXPRESSWAY

C. Signal cycle - 60 sec.

		sec.				$A / C=1 / 180=0.14$	
PHASE 1		PHASE 2		PHASE 3-A		PHASE 3-8	
	$\begin{aligned} & \stackrel{a}{w} \\ & \stackrel{\omega}{w} \\ & \frac{1}{2} \end{aligned}$		$\begin{aligned} & \stackrel{\alpha}{w} \\ & \stackrel{\omega}{w} \\ & \stackrel{\alpha}{\alpha} \end{aligned}$				¢
$3 i \mathrm{C}=0.31$	4	$\mathrm{G} / \mathrm{C}=0.20$	3	$\mathrm{G} / \mathrm{C}=0.10$	0	$\mathrm{G} / \mathrm{C}=0.25$	4
$\mathrm{j}=25 \mathrm{sEc}$.	¢c.	$\mathrm{G}=16 \mathrm{sec}$.	sec.	$\mathrm{G}=8 \mathrm{sec}$.	sec.	$\mathrm{G}=20 \mathrm{sec}$	sec.

PROACH	N	$T=6 \%$		$\mathrm{R}=0 \times$		$L=0 \%$	gus stop NONE	
ovement	${ }_{\text {feet }}$	$\xrightarrow[\text { CHART }]{\text { REFERENCE }}$	REO'O			c	DhV*	remarks ${ }^{\text {a }}$
NS	24	4	0.29	0.31	800	960	740	TAPERS $=225$
NW	$Q=12$.	18-B, -C	0.29	0.31	330	430	110	$D_{2}=200^{\circ}$
NE	$a=12$	18-B, - -6	0.21	0.20	220	290	180	$\mathrm{D}_{3}=320$

ovement	$$	$\begin{gathered} \text { CHART } \\ \text { REFERENCE } \end{gathered}$	G/C		capacity		DHV ${ }^{\text { }}$	remarks ${ }^{\text {a }}$
					c_{0}	c_{p}		
SN	24	4	0.32	0.31	800	960	830	TAPERS $=225$
SE	$Q=12$	17-D, -E	0.32	0.31	330	430	80	$D_{z}=200^{\circ}$
SW	Q $\cdot 12$	18-B, - C	0.21	0.20	220	290	230	$D_{3}=350^{\circ}$

PRO	w	$T=10 \%$		$\mathrm{R}=0 \times$		$L=0 *$	BUS STOP NQNE		
OVEment	$\overline{w_{A}}$	CHART REFERENCE	rea'D	USED		c_{p}	DHV *	remarks ${ }^{\text {a }}$	
WE	24	4	0.32	0.35	860	1030	780	TAPERS $=175$	
WS	$a=12$	Sp Cond 8	1.00	1.00	1080	1400	200	$D_{z}=350^{\circ}$	
WN	$Q=12$	$18-B_{1}-C_{1}^{\text {, \%/8 }}$. $10+26$. $10+25$	150	200.	50	$D_{3}=190^{\circ}$	¢

By get 3-20-67
CHECKED J.RL. $3.21-67$

Figure 17.-Capacity analysis worksheet for problem 35.
left-turning movement on approach E does not, an advance green interval is logical and will be assumed in the preliminary analysis. On this basis, the signal phasing, with the third phase in two parts, is diagramed in figure 17 .

The signal time required for moving through traffic on the expressway (phase 1) is controlled by approach S , which accommodates the larger of the two movements. Using in chart $4, W_{A}=24, T=6 \%, R=0 \%, L=0 \%$ (both right- and left-turning movements are on separate lanes), $M P=750,000$ population and $V=C_{D}=830$, the required G / C is 0.32 .

For the separate right-turn lane, on approaches S and N , using chart $17-\mathrm{D}$ with $G / C=0.32, a=12, T_{2}=6 \%$, and no pedestrian interference, the design capacity for each turning lane is found to be $C_{D 2}=350 \mathrm{v} . \mathrm{p} . \mathrm{h}$., which is in excess of the demand volumes. The left-turning volume of $230 \mathrm{v} . \mathrm{p} . \mathrm{h}$. on approach S is the controlling movement on phase 2 . In chart 18 -B, using $V=C_{D 3}=230$ v.p.h., $T_{2}=6 \%$, and $a=12$, the required $G^{\prime} / C=0.21$.

To determine the minimum length of advance green required on approach W during phase 3 , it is necessary first to determine the portion of the turning volume that can be accommodated at the end of the green period-on the amber-from chart 17-B; for $C=80$ seconds, it is $70 \mathrm{v} . \mathrm{p} . \mathrm{h}$. Volume to be accommodated by the advance green is $150-70=80 \mathrm{v} . \mathrm{p} . \mathrm{h}$. Enter the nomograph in figure 10 with a volume of 80 v.p.h., and using the condition of no pedestrians, $T_{3}=10 \%$ and $C=80$, read $G_{A}=8$ seconds; $G_{A} / C=8 / 80=0.10$.

The three amber periods needed for the 3 -phase control are selected to be two at 4 seconds following phases 1 and 3, and one at 3 seconds following phase 2. The portion of the cycle occupied by the amber periods is $(4+4+3) / 80=0.14$. The portion of the cycle remaining for the balance of phase 3 , and for handling the movement on approach E , is $1.00-(0.32+0.21+0.10+0.14)=0.23$.
Total G / C for approach W during phase 3 is $0.10+0.23=0.33$. The through volume that can be discharged from this approach on two lanes at design capacity, using chart 4 with $W_{A}=24, \quad T=10 \%, \quad R=0 \%, \quad L=0 \%, \quad M P=$ 750,000 population, and $G / C=0.33$, is found to be $C_{D}=820$ v.p.h., while the demand volume is 780 v.p.h. A continuous rightturning movement is assumed on approach W with an added lane on the approach as well as on the exit. The design capacity, as discussed in part 3 under the heading RightTurning Movement-Continuous, Controlled by Yield Sign, or Permitted on Red After Stop is $1,200 \div(1+0.10)=1,080 \mathrm{v}$.p.h. This is more than adequate since the demand volume is 200 v.p.h.
The G / C available for approach E , as previously discussed, is 0.23 . Testing two lanes in chart 4 for the through-plus-right volume of $V=C_{D}=760+130=890$ v.p.h., $W_{A}=24, \mathrm{~T}=$ $12 \%, R=130 / 890=15 \%, L=0 \%$ and $M P=$ 750,000 population, reveals the need for G / C of 0.38 . To overcome the deficiency a greater width should be provided. Assuming a widened approach through the intersection, and using

Figure 18.-Solution for problem 35.
in chart $4 W_{A}=36$ and the other conditions noted above, find $G / C=0.27$. The 3-lane approach although somewhat deficient for level of service C operation is considered acceptable with a slight readjustment in the other phases. Lengths of widening, as discussed in part 3 under the heading Widened Approaches, are $D_{a}=275$ feet (minimum) preceded by 175 -foot taper and $D_{b}=300$ feet followed by 200 -foot taper. The required lengths of turning lanes are as follows:

Approach N.-Left-turn lane, $D_{3}=320$ feet (chart 18-C) is based on the premise that, because through traffic and left-turning traffic operate on separate phases, the length of left-turn lane must be sufficient to allow vehicles to accumulate in the lane without being blocked by stored vehicles in through lanes. The controlling value is the through traffic of $740 / 2=370 \mathrm{v} . \mathrm{p} . \mathrm{h}$. per lane storing on the approach, which stipulates a minimum length of 320 feet in chart 18-C. Right-turn lane, $D_{2}=200$ feet, is specified for deceleration from $50 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. (figure 9). Also, based on this speed, a taper length of 225 feet is indicated preceding the turning lanes.

Approach S.-Left-turn lane, $D_{3}=350$ feet (chart 18-C), is based on the minimum storage per lane of $830 / 2=415 \mathrm{v} . \mathrm{p} . \mathrm{h}$. in the through lanes to allow the left-turning vehicles to clear the end of the through traffic queue. Right-turn lane, $D_{2}=200$ feet, is based on deceleration from $50 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. In addition, a taper length of 225 feet is indicated for each lane.

Approach W.-Left-turn lane, $D_{3}=190$ feet (chart 18-C), is based on storage and is larger than the dimension indicated in figure 9 for deceleration from $40 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. The left turn does not operate on a signal phase separate from the through movement on the approach, and therefore there is no need to lengthen the left-turn lane to clear the end of through traffic storage. Since the rightturn lane is designated for continuous operation, it must be long enough to clear the through traffic queue for which $D_{2}=350$ feet. This is determined in chart $18-\mathrm{C}$ on the basis of a through-volume storage per lane of $780 / 2=390$ v.p.h. In addition, a taper length of 175 feet (figure 9) is indicated for each turning lane.

Approach E.-Left-turn lane, $D_{3}=1:$ (figure 9), is based on deceleration fri m.p.h., which is greater than the required for storage in chart 18-C. A length of 175 feet is indicated.

A form that can be used as a capcit analysis worksheet is shown in figure 1 T form, which can be duplicated for actual capacity problems, is design facilitate the analysis of complete in rse tions and to serve as a compact reed calculations. It can also be used as acon panion sheet to the solution format inceate in figures 18,22 , and 26. For most interse ion the entire solution can be accomplist . one copy of the form, which allows or signal phases and for 4 intersection apprcele For analysis of more complex interse ion two or more forms can be used. If nectar any number of trial solutions can be atte pte and the computations for the workable lai retained for the record to show the prerre or selected plan.

The analysis for problem 35, altoug covered step by step in preceding dise sio
also presented on the calculation form in ure 17. The simplicity and compactness of 3 analysis is well illustrated with all the ded information shown on one form. By owing the design capacity, possible capacity, d the $D H V$ for each basic movement, a rough insight is gained as to the effectiveis of the solution. A design can rarely be aieved where each movement operates at scisely the desired level of service. Some of controlling movements are set to operate design capacity, whereas other movements ult in operation where the demand volume either below or slightly above design oacity. Since this information is tabulated individual movements, it also allows for nparison and weighting of results between
various movements. Thus, the analyst able to make adjustments readily in geomeor signal timing to produce an effective erall solution and a balanced design. The alysis information is then transferred to the sution format shown in figure 18, which mpletely summarizes the results, including pmetric requirements, and serves as a ndard document for preliminary or funcnal design.

ON AND EXITING FROM: EXPRESS WAY - 6% 2 atM AVENUE - 10%

NO BUS STOPS
TRAFFIC DESIGNATION:
iO DHV, AM PEAK
0) DHV, PM PEAK

Figure 19.-Problem 36 illustrated.

SIGNALIZED INTERSECTION

CAPACITY ANALYSIS

PROJECT GREGDRY EXPRESSWAY

intersection $24^{\text {th }}$ Ave Diamono Interch. (AB-CD)

```
BASIC CONDITIONS:
```



``` RESID CBD
```

```
METRO POPULATION 1,600,000 PHF0.93
        RESID
RURAL FRINGE (circle One)}08
```


APPROACH A $\quad T=10 \% \quad \mathrm{R}=0 \%$ BUS STOP NONE

MOVEMENT	$\underset{\text { FEET }}{\mathrm{W}_{\mathrm{A}}}$	CHART REFERENCE	G/C		CAPACITY		$\begin{aligned} & \mathrm{OHV}^{\circ} \\ & \text { AM } \end{aligned}$	REMARKS ${ }^{\text {a }}$
			REQ'O	USED	C_{0}	C_{p}		
$A B$	36	4	0.36	0.34	1270	1560	1350	$D_{2}=240^{\circ}$
$A D$	$Q=12$	18-8	0.20	0.34	360	470	200	

APPROACH B T:/O\% R=O\% $L=0 \%$ BuS stop NONE

MOVEMENT	$\underset{\text { FEET }}{W_{A}}$	CHART REFERENCE	G/C		CAPACITY		OHV '	REMARKS ${ }^{\text {a }}$
			REQ'D	USE O	C_{0}	C_{p}		
$B A$	24	4	0.44	0.57	1540	1850	1180	$0_{3}=200^{\circ}$
80	$Q=24$	$18.8,71611$	0.19	0.19	340	440	340	
APPROACH	C	$T=6$	\%	$R=0$	$L=0 \%$		BUS STOP	STOP NONE
MOVEMENT	$\begin{aligned} & W_{A} \\ & \text { FEET } \end{aligned}$	CHART REFERENCE	G / C		CAPACITY		$\begin{gathered} \text { DHV } \\ A M \end{gathered}$	REMARKS ${ }^{\text {* }}$
$C A$	$a=24$	8.B. FIG I/	0.15	0.33	700	910	300	$\left\{\begin{array}{l} O_{z}=180^{\circ} \\ O_{3}=410^{\circ} \\ z-\angle A N E \text { RAMP } \\ \text { ENTO }+2 \text { CANES } \end{array}\right.$
<8	$a=24$	18-8, F16/1	0.35	0.33	670	870	720	
							WIDENTOE+2 CANES	

Figure 20.-Capacity analysis worksheet for problem 36, intersection AB-CD.

Problem 36

A diamond interchange is proposed at the crossing of a major street and an expressway in the outlying residential area of a city having a projected metropolitan population of 1.6 million. For the conditions indicated in figure 19, determine the essential geometric features of the cross street (24th Avenue) and the adjoining ramp terminals, including the number and arrangement of lanes, channelization, and signal phasing. Prepare a design sketch setting out the geometric requirements.
Solution: A detailed description of the procedural steps through the charts is not included for this problem. Instead, the solution is provided directly on the capacity analysis forms with primary references to charts 4 and 18. The results are tabulated on the worksheets in figures 20 and 21, covering intersections $\mathrm{AB}-\mathrm{CD}$ and EF-GH, respectively. Both a.m. and p.m. peak-hour periods have been analyzed, and the different requirements for each are shown. The need for a 3 -dial control system is apparent to allow for full efficiency and flexibility of operation to fit the characteristics and separate demands of the morning-, evening-, and off-peak periods.

An early step in the analysis of a complete intersection is the establishment of signal phasing. Sometimes there are several ways of phasing an intersection. Each way should be tested and the most efficient phasing established through preliminary use of the charts. After a phasing arrangement has been selected, the analysis is continued in a straightforward manner by determining the G / C required for each intersection approach based on the approach width, demand volume, and other pertinent conditions. The sum of the G / C^{\prime} s, together with the amber periods divided by the cycle time, A / C, should be equal to or less than 1.00. If the G / C 's total less than 1.00, each G / C is adjusted upward by inspection or in proportion to demand on the approaches to the required total. If the G / C 's total more than 1.00 , the design capacity or the service volume for a given level of ser vice has been exceeded, and it may be necessary to re-analyze some of the approaches by increasing the width or changing some other condition in order to reduce the G / C total to approximately 1.00 .
It is not always feasible to have each individual movement accommodated precisely at design capacity; this kind of balance is practically impossible. Some movements will operate at a volume below the available design capacity; other movements may operate at a volume exceeding the design capacity. Although an attempt is made to avoid the latter situation, a slight excess of demand volume over design capacity, that is, a nominal lowering of the selected level of service, is frequently acceptable as illustrated in movement AB for the a.m. peak shown in figure 20 . Here the required G / C of 0.36 was adjusted downward to 0.34 to achieve a balance in the total G / C; otherwise, it would have been necessary to increase the approach from 3 to 4 lanes.

PROJECT GREGORY EXPRESSWAY

BASIC CONDITIONS:
METRO POPULATION 1,600,000 PHF 0.93 AREA RESIO FBINGE (Circle One) 080

 APPROACH E $T=10 \% \quad R=0 \% \quad$ BUS STOP NONE

MOVEMENT	$\underset{\text { FEET }}{\mathbf{W}_{A}}$	CHART REFERENCE	G/C		CAPACITY			
			REQ'D	USED	C_{0}	C_{p}	$\begin{gathered} \mathrm{OHV} \\ A M \\ \hline \end{gathered}$	REMARKS ${ }^{\text {a }}$
$E F$	24	4	0.53	0.69	1850	2220	1420	$D_{5}=370^{\circ}$
EG	$8=24$	$18 \cdot 8,71611$	6.33	0. 33	650	850	650	
APPROACH	H	$T=6$	\%	$R=0$	$L=0 \%$		Bus	TOP NONE
MOVEMENT	$W_{\text {A }}$	CHART REFERENCE	G / C		CAPACITY		DHV ${ }^{\text { }}$	REMARKS ${ }^{\text {- }}$
HE	$Q=24$	F $/ 6 / 2$	0.20	0.21	400	520	380	CONB. JOUS $\angle T . F R T$ TUK WITH OPTIONA $\angle A N E . D=24$
HF	$Q=24$		0.20	0.21	290	390	250	

MOVEMENT	$\underset{\text { FE }}{\mathrm{W}_{\mathrm{A}}}$	CHART REFERENCE	G / C		CAPACITY		$\begin{gathered} \text { DHV }^{\prime} \\ \hline \text { PM } \end{gathered}$	REMARKS
			REQ'D	USED	C_{0}	C_{p}		
$E F$	24	4	0.41	0.69	1860	2230	1080	$0_{3}=180^{\circ}$
$E G$	$Q=24$	18-8, F/GII	0.18	0.28	530	690	300	

APPROACH H		$T=6 \%$		$R=0 \%$		\% \%	BUS STOP	STOP NONE
MOVEMENT	$\begin{aligned} & W_{A} \\ & \text { FEET } \end{aligned}$	CHART REFERENCE	REQ'O	USED	c_{0}	${ }^{\text {c }}$ p	$\begin{aligned} & \text { DHV ' } \\ & \text { PM } \end{aligned}$	REMARKS*
HE	$Q=24$	F/G 12	0.18	0.22	240	310	200	$\} 0=210^{\circ}$
HF	$a=24$	5	0.18	0.22	420	550	340	

Figure 21.-Capacity anlaysis worhsheet for problem 36, intersection EF-GH.

INTERSECTION DE-FG AM PEAK

$\begin{aligned} & \text { APPROACH } \\ & \text { OR } \\ & \text { MOVEMENT } \end{aligned}$	SIGNAL CONTROL		CAPACITY		DHV
	PHASE	G/C	DESIGN	POSSIBLE	
FE	(1) GL F_{F}	0.32	1180	1450	1140
F G			330	430	280
EF	(2)F	0.33	1850	2220	1420
E G			650	850	650
HE	(3)	0.21	400	520	380
HF			290	380	250

INTERSECTION DE-FG
PM PEAK

FE	$\text { (1) } G L_{F}$	0.36	1340	1650	950
F G *			720	940	720
EF	(2)	0.28	1860	2230	1080
EG			530	690	300
FG *			*	*	*
HE	(3)	0.22	240	310	200
HF			420	550	340

* Moves during phoses 1 and $2(G / C=0.69)$; fotol shown under phase I

Figure 22.-Solution for problem 36.

The solution, showing the design requirements, is indicated in figure 22 . The tabulations below the geometric layout are part of the suggested format for summarizing the analysis. Both a.m. and p.m. peaks are considered, and the selected signal phasing and a comparison for each movement of the $D H V$ with design capacity and possible capacity are shown. The other information tabulated on the worksheets of figures 20 and 21 -such as the number, arrangement, and lengths of lanesis reflected in the design sketch of figure 22. Several features developed in this design are characteristic of diamond interchanges in urban areas. The cross street widens within the interchange to accommodate left-turning vehicles. In urban areas, the 2 -abreast leftturn design on the cross street is sometimes required, frequently for one and occasionally for both left-turning movements. The 4 -lane approach at C divides into a 2-lane rightturning movement and a 2 -lane left-turning movement to handle the indicated volumes. The ramp proper widens from a 2-lane width at the expressway exit to a 4-lane section at C. Lengths called for on the widened portion, D_{2} and D_{3}, are indicated on the plan. The requirement on approach II is a 3 -lane section, separating into two 2-lane turning movements with the center lane serving as ad optional lane. Exit G is designed for 3 lanes to allow the 2 -lane movement EG to merge with the relatively large movement $F G$ during phase 2 in the evening peak. The ramp then narrows to 2 lanes before entering the expressway.

Figure 23.-Problem 37 illustrated.

SIGNALIZED INTERSECTION

 CAPACITY ANALYSISpronect Gregory Expressway intersection $24^{\text {en }}$ Ave Parcio A interch (AB-c0)

```
BASIC CONDITIONS:
METRO POPULATION 1600,000 PHF 0.93 AREA: RESID CBD RURAL FRINGE (CICle OBE) OBD
```


APPROACH	B	$T=10$	\%	$R=0$	$L=0 \%$		BUS STOP		NONE
MOVEMENT	$\begin{aligned} & W_{A} \\ & \text { FEET } \end{aligned}$	CHART REFERENCE	G / C		CAPACITY		$\begin{gathered} \text { OHV } \\ \text { PM } \end{gathered}$		REMARKS ${ }^{\text {® }}$
BA	24.	4	0.33	0.50	1350	1620	900		
BC	Q $=12$	CONTROLES	Br	EAMP	$1 / 20$	1400	250		
			CAPACITY						

APPROACH \subset

MOVEMENT	$\begin{gathered} \mathbf{W}_{\mathrm{A}} \\ \mathrm{FEET} \end{gathered}$	CHART REFERENCE	G/C		CAPACITY		$\begin{aligned} & \text { OHV " } \\ & \text { PM } \end{aligned}$	REMARKS ${ }^{\text {* }}$
			REQ'O	USED	C_{0}	C_{p}		
$<A$	$a=24$	18.B, FIG//	0.30	0.40	960	1250	650	$D_{2}=280^{\circ}$
68	$a=24$	18.B, FIGII	0.16	0.40	820	1070	280	$0_{3}=150^{\circ}$
							WIDENS	TO $2+2$ LANES

Figure 24.-Capacity analysis worksheet for problem 37, intersection AB-CD.

SIGNALIZEO INTERSECTION
CAPACITY ANALYSIS
1OUECT GKEGORY EXPRESSWAY tersection $24^{\text {th }}$. Ave Parclo A Interch. (EF.GH)

BASIC CONOITIONS:
$\underset{\text { MREA: POPULATION CBD }}{\text { METRO }} 160,000$ FRINGE $\frac{0.93}{080}$
RESID ROD RURAL FRINGE (circle One) 080
C = SIGNAL CYCLE = GOSEC.

$\begin{aligned} & \stackrel{\alpha}{\omega} \\ & \underset{\alpha}{\omega} \\ & \underset{\alpha}{\omega} \end{aligned}$	$A / C=6.160=0.10$	
	PHASE	
	* * Note: LAGGING GREEN ON FG FOR ISEC DUEING PM PEAK ONLY. $(\sigma, 6=0.70)$	a w ¢ z d
SEC.	$\begin{aligned} & G / C= \\ & G=\quad \operatorname{SEC} \end{aligned}$	SEC.

PPROACH	H	$T=6$	\%	$R=0$	\%	$L=0 \%$	BUS STOP NONE	
MOVEMENT	$\underset{\text { FEET }}{W_{A}}$	CHART REFERENCE	REQ'D	USED	C_{0}	C_{p}	$\begin{aligned} & \text { DHV } \\ & { }^{\prime} \\ & \hline \end{aligned}$	REMARKS ${ }^{\text {® }}$
HE	$a=24$	$\text { fFt6 } 2$	0.20	0.25	480	620	380	COMB. DOUBLE LT. G RT. TURN WITH OPIIONAL LANE. $D=190^{\circ}$
HF	$a=24$		0.20	0.25	310	400	250	

Figure 25.-Capacity anlysis worksheet for problem 37, intersection EF-GII.

The eapacity analysis, using the 3 -phase control at intersection AB-C1) and at intersection EF-GII, provides the basis for the geometrie design of the interchange along 24th Avenue. A more refined and complete analysis of signalization, including the use of limespace diagrams and overlap intervals 10 provide maximum degree of coordination between the two intersections and progression of movements, also c:an be: ill important aspeet of design. Usually, however, this is not essential in establishing the basie geometry of the intersection. Sometimes a nominal increase in capacity is achieved through such refinement; but, if not accounted for initially, it places the design on the safe side.

Problem 37

For the basic conditions deseribed in problem 36, a parclo-A interchange of the form shown in figure 23 is also to be considered at the same location. As before, determine the essential geometric features of the cross strect and the adjoining ramp terminals, including the number and arrangement of lames, channelization, and signal phasing. Prepare a design sketch setting forth the geometric requirements.

Solution: The analysis and procedure in the solution are much the same as in the previous problem. An important initial step in the analysis is the determination of signal phasing. For a parclo-A a simple 2 -phase control at cach intersection is all that is required. Complete analysis for intersections $\mathrm{AB}-\mathrm{CD}$ and EF-GII for both a.m. and p.m. peaks are detailed on the workshects of figures 24 and 25 . The solution, including the geometric layout, signal timing, and summary of rolume-capacity relations, is shown in figure 26 .

Basically, the parclo-A requires no widening of the cross street through the interchange. Moreover, the space occupied by the approaches to the interchange is equivalent to the normal street width. The designs for the movements exiting from the cross street differ significantly from the diamond interchange; however, the designs for the entering ramp terminals, approaches C and H , are essentially the same as on the diamond interehange. In this example, the parelo-A requires not only a lesser number of lames than the diamond to handle the same traffic, but operates at an overall higher level of service; that is, for the majority of the movements there is a greater difference between capacity and $D H V$.

To achieve a more meaningful comparison of the two alternative plans with regard to capacity potential, a design capacity index cans be employed. This measure of performathere or overall ability of the intersection to hatnde. traffic is the ratio of the sum of all traffic entering the intersection, during a given period of time, to the sum of all approach design captacties handling this traffic. In brief, it is the composite V^{T} / C_{D}, representing the a.m. peak, the p.m. peak, or a combination of the two. For example, the design capacity index, V / C_{D}, for intersection $\mathrm{AB}-\mathrm{CD}$ during

INTERSECTION AB-CD

APPROACH or MOVEMENT	SIGNAL CONTROL			ACITY	DHV
	PHASE	G/C	DESIGN	POSSIBLE	
		0.50			
$A B+A D$			1870	2300	1550
BA			1350	1620	1180
BC			1120	1400	340
CA		0.40	960	1250	300
$C B$			820	1070	720

INTERSECTION AB-CD

	$\begin{aligned} & \text { (1) } C L \\ & \text { PED } \\ & A=0 \end{aligned}$				
$A B+A D$		0.50	1870	2300	1480
BA			1350	1620	900
BC			1120	1400	250
CA		0.40	960	1250	650
CB			820	1070	280

INTERSECTION EF-GH

APPROACH OR MOVEMENT	SIGNAL CONTROL		CAPACITY		OHV
	PHASE	G/C	DESIGN	possible	
FE	$\text { (1) } \underset{H}{\rightleftarrows}$	0.65	1750	2100	1140
FG			670	870	280
EF			1750	2100	1420
EH			1120	1400	650
HE	(2)	0.25	480	620	380
HF			310	400	250

* FG has 3 -sec. logging green during $P M$ peak only, yielding $G / C=0.70$

Figure 26.-Solution for problem 37.
the a.m. peak is: on the diamond interchange, $4,090 / 4,880=0.84$; on the parclo-A interchange. $4,090 / 6,020=0.68$. The indices indieate that, as at whole, the diamond is operating at 84 percent of design capacity, and the parclo-A at 68 percent of design capacity. Comparison of the two operating percentages in itself is not fully indicative of conditions. It is also
necessary to consider the number of individual movements or vehicles operating at V / C_{D} larger than 1.00. For the diamond interchange, movements AB and CB are in this category; but on the parclo-A interchange, all movements are well below the ratio of 1.00 .

Another more detailed way of evaluating and comparing volume-eapacity relations on
alternative designs is by determining des" capacity indices along with levels of serve for individual movements. The following th ulation, compiled from the summary tables 1 . figures 22 and 26 , allows for a comparisor f the a.m. peak of intersection $\mathrm{AB}-\mathrm{CD}$ on diamond with the a.m. peak of intersectul $\mathrm{AB}-\mathrm{CD}$ on the parclo-A.

Diamond Interchange
Parclo-A Interchange

Wovenent	V	C_{D}	V / C_{D}	Level of Service	Movement	I	C_{D}	V / C_{D}	Level of Service
AB	1,350	1,270	1. 06	D	$A B+A D$	1,550	1,870	1). 8.3	A
AD	200	360	0. 56	A	BA	1,180	1,350	0. 87	A
BA	1, 180	1,540	0. 77	A	BC	340	1,120	1). 30	A
B1)	340	340	1. 00	C	CA	300	860	0. 35	A
CA	300	700	0. 43	A	CB	720	820	0. 88	A
CB	720	670	1. 07	D			820	(1. 88	A
Jesign					Design				
Yapacity					Capacity				
\|ndex--	4,090	4, 880	0. 84	$\mathrm{A}-\mathrm{D}$	Index	4, 090	6, 020	0. 68	A

The levels of service shown in the tabulafions were determined by comparing the V / C_{D} ratios with the f factors in tables 3 and 5 . A thorough insight is gained with regard to operation and capacity potential of the two designs. Note the superiority of the parclo-A interchange when the levels of service of individual movements and the design capacity indices are compared. The operation of a complete intersection cannot be rated, with a single level of service, imless all component movements of the intersection operate at one given level. Thus, as shown above, the intersection on the diamond is rated as a range level of service A-1), with a design capacity index of 0.84 . The intersection on the parclo-A is rated-level of service A with a design capacity index of 0.68 .

PART 5-OVERALL INTERSECTION CAPACITY

1PART of planning and preliminary design processes, a quick, approximate letermination of capacities is often needed. The problem usually resolves itself into one if two conditions: (1) where the approach olumes and street widths are known, the dequacy of the capacity of the intersection nust be determined; or (2) where the approach olumes and the width of one street are nown, the width of the intersecting street nust be determined. The need for analysis nay pertain to an individual intersection, or nay extend to a route with a series of interections, or possibly to a whole system of treets in a given sector of a city. Charts 19 ind 20 were devised for this purpose; they :ombine the necessary information for both of he intersecting streets on one chart and ;ive results in terms of overall capacity. Jach chart takes into account jointly, for iverage conditions, the intersection of any wo facilities, regardless of 1 -way or 2 -way peration, type of area, and parking regulaion. The left half of the chart is used for the ipproach on one street and the right half for he approach on the other or intersecting itrect. A line projected between the inner ides of the two halves of the chart determines, it the intersection of the $y-y$ axis and related netropolition sizes, the adequacy of the street ntersection.
The two parts of charts 19 and 20 are identi'al except for the reverse plotting. The arangement of each part is similar to that of tharts 1 and 2 , but the G / C ratio in charts 19 ind 20 is made the outer scale and the volume s shown as the lower series of curves. The G / C atio on the side scales is the proportion of ime required on the one approach for operaion at design capacity. Assuming that 10
percent of the cycle time is being used in amber periods, design capacity is obtained when the total of two green intervals is 90 percent of the cycle (the sum of the two G / C values $=0.90$). The 1.00 point on the $y-y$ axis is located so that a straight line between any two G / C values passes through the 1.00 point when their sum is 0.90 . The scale values above and below the 1.00 point on the y-y axis show the proportion by which the sum of the G / C values is deficient or in excess of the design eapacity condition.
The scale on the axis also gives V / C_{D}, the ratio of approach volume to design capacity, combined for the two approaches. Thus, when the combined approach volumes equal the combined design capacities, the ratio is 1.00 (level of service C operation). Points on the seale below 1.00 indicate operation at superior levels of service, B or A. Points above 1.00 indicate operation at less favorable levels of service, D, E, and F. Possible capacity, level E, is the value on the $y-y$ axis corresponding to the average f value for the two approaches as found in table C on charts 19 and 20. Also, any reading on the axis can be compared with the average values for the two approaches in tables 3 and 4 to find the level of service at which the intersection as a whole is operating. The $y-y$ axis is representative of conditions in metropolitan areas of 250,000 population. To allow for adjustment of results to other metropolitan sizes, bar scales parallel to the $y-y$ axis are included.

Charts 19 and 20 are intended for preliminary design and general evaluation of operation and capacity of intersections, including analyses of a series of intersections and street systems. The charts incorporate numerous specific conditions and several average conditions. Specific conditions ac-
counted for are alpproach width; 1-way or 2 way operation; parking regulation; area of city, such as $C B D$, fringe, etc.; approach volume, G / C; and metropolitan area population. Average conditions built into the charts assume 5 percent trucks, 10 percent right turns, 10 percent left turns, and no bus stops. Allowance of 10 percent total for amber periods is incorporated in the charts as a constant. Under normal circumstances the deviation from these average conditions is not significant. Moreover, those variables that generally have a pronounced effect on capacity allow for adjustment in the charts. Hence, the results produced are reasonably correct for regular intersections.
Charts 19 and 20 also may be adapted to other than regular intersections for planning and preliminary design, as follows:
(1) Approaches with separate left-turn lane, not requiring separate signal indication: Deduct 10 percent of the approach volume or 100 v.p.h., whichever is smaller, and use the width of approach exclusive of the separate left-turn lane.
(2) Approaches with separate left-turn lane, requiring separate signal indication: Deduct left-turn volume from approach volume. Use the width of approach exclusive of the separate left-turn lane. Allow an additional G / C of 0.10 for left-turning volumes of 120 to 140 v .p.h., and an additional $G / C=$ (v.p.h. turning left) $\div 1,000$ for larger volumes. Thus, for a left-turning volume of 200 v.p.h., the additional G / C would equal 0.20 . The procedure in the chart for applying the additional G / C is demonstrated in problem 40 and figure 28(1).
(3) Intercepted approaches at T or Y intersections: The capacities of intercepted approaches are lower than on the approaches
of normal (4-leg) intersections, as discussed in part 3 under the heading T and Y Intersections. The overall adjustment, indicated therein, for the angle of turn of the predominant movement may be applied to the solution in charts 20 and 21. For angles of turn in the vicinity of 90 degrees, capacities or service volumes on interecpted approathes are approximately 0.80 of the capacities or service volumes on $4-\mathrm{leg}$ intersection approaches for the same width and traffic conditions. Thus, if the end product in chart 19 or 21 is the approach (service) volume for an intercepted approach, the result should be multiplied by 0.80 . If the end product is the V / C_{D} ratio, the G / C indicated for the intercepted approach should be divided by 0.80 , and the adjusted G/C should then be used to complete the solution.

The various applications of charts 19 and 20 are demonstrated in the following problems.

Problem 38

In the (BBD of a 2 million population metropolitan area, a 1 -way street (approach A) 42 feet wide with parking on both sides intersects a 2 -way street (approach B) 66 feet wide without parking. Conditions are assumed to be arerage. Determine whether the intersection capacity is adcquate when the peakhour volume in one direction on approach A is $900 \mathrm{v} . \mathrm{p} . \mathrm{h}$. and on approach B $1,280 \mathrm{v}$.p.h.

Solution: For approach A, enter chart 19 at upper left with $W_{A}=42$, proceed right to the curve for 1 -way street with parking on both sides in the CBD, then down to an approach volume of $90(0$ v.p.h. and to the right where at (i) $C^{r}=0.41$ is intersected. For approach B, enter chart at extreme right with $W_{A}=66 / 2=33$, proceed left to the curve for 2-way street without parking in the CBD, then down to an approach volume of 1,280 r.p.h., and to the left where a $G / C=0.56$ is intersected. Find the intersection point on the y-y axis by drawing a straight line between the two $(i / C$ values. Project horizontally to the left. intersecting the MP scale for over 1 million population; read $V / C_{D}=0.90$.

Becaluse the result falls below the level of service C line (ratio 1.00), operation is superior to level of service C; that is, the demand volume is below design capacity. To find the required G / C at design capacity for approtach A and approach B, for the indieated city size, to handle the volume of 900 and 1,280 v.p.h., respectively, the $(i / C$ values previously found should be divided by the adjustment factor shown in the chart along the top of the $M P$ scales (see footnote under left part of chart). Thus, for approach A the required $G / C=0.41 / 1.20=0.34$, ancl for approatch B the required $G / C=0.56 / 1.20=0.47$. If it is desired to adjust the G / C values proportionally to acheive balanced operation, the required G / C values should be divided by the V / C_{D} tatio or $\operatorname{ci} / C=0.34 / 0.90=0.38$ for approach A and $(i / C=0.47 / 0.90=0.52$ for approach B; that is, inclusling 10 percent of the eycle for amber, the total $=0.38+0.52+0.10=1.00$.

Problem 39

In the $O B D$ of a $\overline{5} 50,000$ population metropolitan area, a 2 -way strect (approach A) 86 feet wide with parking intersects a 1-way street (approach B), 47 feet wide with parking on one side. Conditions are assumed to be average. The DHV on approach A is 1,200 v.p.h. and on approach B it is 2,200 v.p.h. Determine the following:
(1) Level of service at which the intersection would operate.
(2) The extent to which traffic can be increased on approath A -keeping approach B constant-to produce possible capacity operation on the intersection as a whole.
(3) The extent to which traffic can be increased uniformly in solution (1) to produce possible capacity operation on the intersection as a whole; what would be the signal timing?
(4) The required width of approach B for operation at design capacity, if parking on approach B is removed and all other conditions remain the same; what would be the signal timing?

Solution: The solutions for the four parts of this problem are illustrated by the schematics in figure 27, which show the various ways in which charts 19 and 20 can be userl.

Part 1.-To find the level of service, first the V / C_{D} ratio must be found in chart 20 . The procedure is demonstrated in figure 27(1). For approach A, course $a-b-c-d$ is followed, producing on the left G / C scale an intercept of 0. 44 ; for approath B, course $e-f-g$ - h is followed, producing on the right G / C scale an intercept of 0.61 ; points d and h are connected by a straight line intersecting the y-y axis at point i; a horizontal projection from i to point j on the MP scale for 750,000 population yields the result $V^{\prime} / C_{D}=1.06$. Because this ratio is larger than 1.00 , the demand volume exceeds design capacity or level C service volume. Demand volume, however, is well within possible capacity (level E) limitations, for which the V / C_{D} ratio would be 1.25 , the average f value for the two approaches determined in table C (ehart 20). To find the specific level of service at which the intersection is operating, it is necessary to consult tables 3 and 4 . The composite f values for the two approaches, representing various levels of service, are the averages for the $4: 3$-foot approach on a 2 -way street with parking and for the 47 -foot approach on a 1 -way street with parking on one side. These are level A, 0.87 ; level B, 0.90; level C, 1.00 ; level 1), 1.15; and level E, 1.25 . The V / C_{D} ratio of 1.06 found in chart 20 for this intersection falls between 1.00 and 1.15 , the limiting values of levels (and D). The intersection, therefore, operates at level I) during peak hours.

Part 2.-To find the extent to which traffic may be increased on approach A to correspond to possible capacity, the composite f value for approaches A and B of 1.25 , as found in part 1 , must be used in chart 20 . The chart is entered by locating a point at 1.25 on the V / C_{D} scale for $M P=750,000$. This is point k as shown in the schematic of figure $27(2)$. Proceed to the right horizontally from k to intercept point l on y-y axis. Enter chart at
the upper right for approach B, following a: before course e-f-g-h. From h project as straighi line throngh l to point m at the intersection with the left G / C seale. Proceed horizontally to the left from m to the intersection point r. on the previously established course $a-b-c$ for approach A. Read at intersection point n ar approach A volume of 1,730 v.p.h.

Part 3.-To find the extent to which traffic may be increased on both approaches uni. formly to obtain possible capacity operation the chart is entered with $V / C_{D}=1.25$ as it part 2, establishing points k and l. As shown it the schematic of figure $27(3)$, dratw line p, through point l parallel to line $d h$, set in thi solution of part 1 . Project a horizontal line to the left from point p to intersect point r or course $a-b-c$ situated before; read at volume o 1,470 v.p.h. on approach A. Project a hori zontal line to the right from point q to inter sect point s on the previously set course e $e f-g$ read a volume of $2,500 \mathrm{v} . \mathrm{p} . \mathrm{h}$. on approach B The G / C values of 0.54 and 0.70 at points i and q pertain to $M P$ base of 250,000 and t_{1}

Figure 27.-Churt solutions for problem 34

	PARKING	FACTOR f, when W_{A} (infeet) is:-									$\begin{aligned} & \text { EXAMPLE } \\ & \frac{\text { Given }}{M P} \end{aligned}$
STREET TYPE	CONDITIONS	10	15	20	25	30	35	40	50	60	APP
Two	No Porking	1. 20	1.20	1.20	1.20	1.21	1.23	1.25	1.27	1.30	
WAY	With Porking	-	-	1.10	1.14	1.18	1.21	1.25	1.31	1.34	
ONE WAY	No Porking Parking One Side Parking Both Sides	-	-	1.15	1.13	1.12	1.12	1.13	1.15	1.17	
		-	-	1. 10	1.13	1. 16	1.18	1. 20	1.25	1.30	
		-	-	-	1.25	1.25	1.25	1. 27	1.32	1.37	

the volumes if handled at design eapacity. These values, however, can be used proportionately to establish the signal timing for possible capacity operation, as follows: approach $\mathrm{A}, \quad(\quad / C=0.54 /(0.54+0.70)=0.39 ;$ approach $13,(i / C=0.70 /(0.54+0.7(1)=0.51$. The sum of the G / C 's checks the requirement of 0.90) for 2 -phase control, allowing for 0.10 for amber periods.

Part 4.-Here the required solution is for the width of approach B when the approach A width and the intersecting volumes are given. The procedure through the chart is continuously from left to right, using a design eapacity setting on the y-y axis. The steps are diagramed in the schematic of figure 27(4). Enter chart at upper left with $W_{A}=43$ feet for a 2-way street with parking and approach volume of 1,200 r.p.h. This is shown by course $a-b-c-d$, intercepting $G / C=0.45$ at d. Locate point u on a reading of 1.00 on the V / C_{D} scale for $M P=750,000$, and project horizontally to the right to intersect point v on the $y-y$ axis. Draw line $d w$ through point v intercepting a value of 0.54 on the right G / C seale. Proceed horizontally from w to x, turning on $V=2,200$. Continue vertically to 1-way, no parking curve and turn on point y. Then proceed to the right and read $W_{A}=44$ feef at point z. Actual signal timing is: for approach A, $G / C=0.45 / 1.10=0.41$; and for approach $B, G / C=0.54 / 1.10=0.49$.

Problem 40

In the $C B D$ of a metropolitan area having a population of 1 million, a 2 -way, 40 -foot street intersects a 2 -way 56 -foot street. There is no parking on either street. The latter uses the center 12 -foot lane for opposing left turns, while the remaining 22 -foot approach accommodates through-plus-right movements. The critical approach, A, on the 40 -foot street carries a traffic volume of $650 \mathrm{v} . \mathrm{p} . \mathrm{h}$. The critical approach, B, on the 56 -foot street accommodates 800 r.p.p. of which 200 v.p.h. use the exclusive left-turn lane on a separate signal indication. Other conditions are assumed to be average. Determine the adequacy of the intersection and signal timing.

Solution: Although a heavy left-turning movement is to be accommodated, chart 19 can be used by assuming an addlitional average G / C of 0.20 for the third signal phase. For approach A enter chart on left with $W_{A}=$ 20 feet and, using 2 -way, no parking curve and $V=650$, intercept an initial G / C of 0.47 as shown by course $a-b-c-d$ in figure 28(1). For approach 13 enter chart on right with $W_{A}=$ 22 and, using 2 -way, no parking curve and $V=800$, intercept an initial G / C of 0.51 , course $e-f-g-h$. Adjusted initial G / C for approach 13 is $0.51+0.20=0.71$, as indicated by a vertical shift from h to i. Connect the two G / C 's, 0.47 and 0.71 , by as straight line di. From the intersection point, j, on the $y-y$ axis, project a line horizontally to the left to intercept the V / C_{D} scale for $M P$ of 1 million population; at point k read $V / C_{D}=$ 1.12. In table 3, find f values for approathes A and B combined, as follows: level C, 1.00 ; level D, 1.14; level E (possible capacity), 1.20.

The intersection, therefore, can accommodate the indicated volumes at level of service D. The required G / C 's for operation at level of service D are determined by adjusting the initial G / C values for metropolitan size and for V / C_{D} ratio; that is, the initial G / C for each phase, in this case, is divided by 1.15 and by 1.12. For approach A, $G / C=0.47 /$ $(1.15 \times 1.12)=0.36$; for approach B, through-plus-right movement, $G / C=0.51 /(1.15 \times 1.12)$ $=0.39$; and for approach B , left-turning movement, $G / C=0.20 /(1.15 \times 1.12)=0.15$. Allowing 10 percent of the cycle for amber, the sum $(0.36+0.39+0.15+0.10)$ totals 1.00 .

Problem 41

A 66 -foot, 2 -way street intersects a 42 -foot 1-way street in the residential section of a metropolitan area of 100,000 population. There is no parking on either street. Conditions are assumed to be average. If 50 percent of the cycle is to be devoted to green on the 66foot street and 40 percent of the cycle on the 42 -foot street, what volumes can be accommodated on each facility at design capacity and at possible capacity?

Solution: For approach A, enter chart 20 with $W_{A}=33$ and turning on the 2 -way, no parking curve, project downward through the approach volume curves, as indicated by course $a-b-c$ in the schematic of figure 28(2). For approach B, enter chart with $W_{A}=42$ and turning on the 1 -way, no parking curve, project downward through the approach volume curves, as shown by course $e-f-g$. Locate point d at a reading of 1.00 on the V / C_{D} scale for MP of 100,000 population. Project to the left horizontally intercepting the $y-y$ axis at point h. Through h draw line $k l$ parallel to line $i j$ (where line ij connects $G / C=0.50$ on the left scale and $G / C=0.40$ on the right scale, the signal split as per problem statement). From point k project horizontally to the intersection point m on line be previously established; read $V=1,300$ v.p.h. on approach A. From point l project horizontally to the intersection point n on line $f g$ previously established; read $V=1,500$ v.p.h. on approach B. Dividing the intercepted G / C values of 0.45 at point k and 0.35 at point l by the MP adjustment factor of 0.90 , yields the required G / C values of 0.50 and 0.40 on approaches A and B. The approach volumes which the intersection can handle at possible capacity are the volumes found above corresponding to design capacity multiplied by the f factor in table C of chart 20. Possible capacity: approach A, $1,300 \times 1.22=1,600$ v.p.h.; approach $\mathrm{B}, 1,500 \times 1.13=1,700$ v.p.h.

Problem 42

In the $C B D$ of a metropolitun area of $1 / 2$ million population, Main Avenue, a 2 -way arterial, is to be improved from a 62 -foot street with parking to a facility with two 34 -foot traveled ways, without parking, and a 14 -foot median including separate left-turn lanes. The existing conditions ats well as the proposed improvements of Main Avenue, together with a series of five intersections, are shown in the upper part of figure 29. The
peak-hour traffic projected for the improve. ment is indicated at the critical approache: on the plan. As part of the planning proces; and preliminary design of a street improve ment program, determine first the adequacy of the intersections with Main Avenue im proved and cross streets unaltered. Then, a: a second step, determine the improvements that are also required on the cross streets tu provide operation at level of service C. Typi of operation and parking condition on eacl cross strect is to be retained. Generally widening is to be kept to a minimum; however approximate limits to which the streets ma? be widened curb-to-curb, if required, are 20 th and 21 st Streets, 44 feet; 22 d and 24 tl Streets, 50 feet; and 23 d Street, 68 feet. T save space, the latter may be an odd numbe of lanes with the center lane at the inter section reserved for left turns.

Solution: The analysis, using chart 19 , fo the condition where Main Avenue is improve to two 34 -foot traveled ways and a 14 -foo median with left-turn lanes, while the cros streets remain unaltered, is shown in the lef part of the tabulation in figure 29. Futur traffic, representative of the p.m. peak, i applied to the plan. Although average cond tions are assumed in this type of analysi: adjustment in approach volumes should k made where turns take place on separate lane: In such instances, the deduction should be c the order of 10 percent of the approach volum or 100 v.p.h., whichever is smaller. A dedui tion of $100 \mathrm{v} . \mathrm{p} . \mathrm{h}$. has been applied generally as shown in the tabulation, on Main Avenu approaches at 21 st, 22 d and 24 th Streets. A $23 \mathrm{~d}^{-}$Street, the left-turning movement in th northwest quadrant is sufficiently heavy t require a separate signal indication. The lef

Figure 28. - Chart solutions for problen 40 and 11.

$\begin{aligned} & \text { STREET } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { PARKING } \\ & \text { CONDITIONS } \end{aligned}$	FACTOR f, when w_{A} (infoel) is:-									$M P=750,000,0.8 .0$. APPROACH A:	$V / c_{D}=1.06$		
		10	15	20	25	30	35	40	50	60				
Two	No Porking With Parking	1.20	1.20	1.20	1.20	121	1.23	1.25	1.27	1.30			Operation inferior to	
WAY		-	-	1.10	1.14	1.18	121	125	1.31	1.34	With parking		demand volume exceeds design copocity, but well within passible capocity forwhich the rafio would be 1.25 (overoge f for the two approoches in Table C).	
$\begin{aligned} & \text { ONE } \\ & \text { WAY } \end{aligned}$	No Porking Porking One side Parking Both Sides	-	-	1.15	1.13	1.12	1.12	1.13	1.15	1.17	$W_{A}=43$ $D H V=1200 \mathrm{vph}$			
		-	-	1.10	1.13	1.16	1.18	1.20	1.25	1.30				
			-	-	1.25	1.25	123	127	1.32	137				

CAPACITY ANALYSIS FOR WIDENED MAIN AVENUE

CROSS STREETS - EXISTING							$\begin{aligned} & \text { CROSS STREETS - IMPROVED } \\ & \text { WA - APPROACH WIDTH - feet } \\ & \text { FORLEVEL OF SERVICE } C \end{aligned}$	
CROSS	Street	$\begin{aligned} & W_{A} \\ & \text { feet } \end{aligned}$	DHV-vph ONE DIRECTION		$V / C_{D}^{* *}$	f		
LOCATION	TYPE		MAIN *	CROSS ST.			REQUIRED	SELECTED
20 TH	1-WAY, NP	28	1250	1300	1.17	1.17	39	44 (44)
$215 T$	1. WAY, NP	34	1050	1500	1.07	1.17	40	44 (44)
22ND	2-WAY, PKG	19	950	650	1.14	$1 \cdot 16$	25	25 (50)
23RD	2-WAY, NP	23	900 ${ }^{\text {* }}$	$750^{\text {* }}$	1.12	1.21	25	$24(60)^{\text {8 }}$
24 TH	2-WAY, NP	20	800	750	0.93	1.21	18	20 (40)

- LEFT-TURN MOVEMENT ON SEPARATE LANE REMOVED: 200 VPH AT $23 R O$ ST; 100 VPH AT $2 I S T, 22$ NO ANO 24 TH STS.
- LEFT-TURN MOVEMENT ON SEPARATE LANE REMOVED: 200 VPh AT $23 R O$ ST
\$ 650 ON IMPROVED CROSS STREET, ALLOWING FOR 100 V Sh ON SEPARATE LEFT-TURN LANE.
? $24+12+24$; CENTER LANE FOR LEFT TURNS.

METRO POPULATION - 500,00 LOCATION - CBD

TRAFFIC SHOWN: DHV - PM PEAK

AVERAGE CONDITIONS ASSUMED EXCEF FOR TURNING MOVEMENTS AT:
2OTH-2IST ST. COUPLE, SW OUA 2OTH-2IST ST. COUPLE, SW QUA ANO AT $23 R D$ ST., NW QUA

MAIN STREET - EXISTING
SECTION 1-1

MAIN STREET - IMPROVED
SECTION 2-2

Figure 29.-Problem 42 illustrated.
turning volume of 200 (v.j) h. is deducted from the approateh volume and an additional G / C of 0.20 is assumed in the solution of chart 19.

With the information listed in the first five columns of the tabulation in figure 29, the V^{7} / C_{D} values were found readily in chart 19 and recorded in the sixth column. In the serenth colum, the possible capacity ratios, or f factors, were obtained for the same intersections from table C in chart 19. All V / C_{D} ration exeeed 1.00, indicating that design capacity would be surpassed, exeept at 24 th Street. Comparison of V / C_{D} values with the f
factors clearly indicates the degree of overloading beyond level of service C. Intersections at 20 th and $22 d$ Streets would operate at alpproximately the possible capacity, and intersections at 21st and 23 d Streets would operate at ant intermediate level between design and possible capacities. The cross streets at these intersections require improvement along with Main Avenue to accommodate the future traffic. The intersection at 24 th Street, on the other hand, shows a V / C_{D} ratio of less than 1.00 , indicating that no widening on the cross street is required.

The proposed cross-strect improvemer are shown in the last two columns of t tabulation and in the lower plan of figure : The required widths of cross streets wi taken directly from chart 19, using the dicated volumes, a 34 -foot approach on $\mathrm{M}_{\text {i }}$ Avenme, and a design capacity control. T selected widths are rounded values predieat on lane widths of 11 feet or more, within t indicated limits of permissible maximu widening. Twenty-fourth Street was h maltered becanse of atailable capaci reserve.

Vol. 34, No. 10
October 1967

Published Bimonthly
Harry C. Secrest, Managing Editor

Fran Faulkner, Editor

IN THIS ISSUE

Capacity Analysis Techniques for Design of Signalized Intersections

Installment No. 2

P.t 4.-High-Type Facilities and Interchanges.211
P t 5.-Overall Intersection Capacity 221

ERRATA

In:he first installment of this article, published in the August 1967 ise of PUBLIC ROADS, A Journal of Highway Research, vol. 34, N 9 , an error has been noted in charts 3 through 15. In the last line of he note at the top of each of these charts, please change item 5 to ead page 198. Also, in chart 10, under example, Pkg left side st ald read Pkg right side.

THE BUREAU OF PUBLIC ROADS
washington office
1717 H St. NW., Washington, D.C. 20235
FHWA REGIONAL OFFICES
No. 1. 4 Normanskill Blvd., Delmar, N.Y. 120J. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New Yorl, Rhode Island, Vermont, and Puerto litico.
No. 2. 1610 Oak Hill Avenue, Hagerstown, Md. 21740.

Delaware, District of Columbia, Maryland, Ohio, Pennsylvania, Virginia, and West Virginia.
No. 3. 1720 Peachtree Rd. NW., Atlanta, Ga., 30309. Alubamu, Florida, Georgia, Mississippi, North Carolina, South Carolina, and Tennessee.
No. 4. 18209 Dixie Highway, Homewood, Ill. 60430. Illinois, Indiuna, Kentucky, Michigan, and Wisconsin.
No. 5. Civic Center Station, Kansas City, Mo. $6+106$.
Iowa, Kansas, Minnesota, Missouri, Nebraska, Noith Dakiota, and South Dakota.
No. 6. 819 Taylor St., Fort Worth, Tex. 76120.
Arkansas, Louisiana, Oklahoma, and Texas.
No. 7. 450 Golden Gate Avenue, Box 36096, San Francisco, Calif. 94102.
Arizona, California, IIawaii, and Nerada.
No. 8. 412 Mohawk Bldg., 222 SW. Morrison Street, Portland, Oreg. 97204.
Idaho, Montana, Oregon, and Washington.
No. 9. Denver Federal Center, Bldg. 40, Denver, Colo. 80225.
Colorado, New Mexico, Utah, and Wyoming.
No. 10. Post Office Box 1648, Juneau, Alaska 99801. Alaska.
Eastern Federal Highway Projects OfficeRegion 15.
1000 N. Glebe Rd., Arlington, Va.. 22201.
No. 19. Apartado Q, San Jose, Costa Rica.
Inter-American Highway: Costa Rica, Guatemala. Vicuragua, and Panama.

Public Roads, A Journal of Highway Research, is sold by the Superintendent of Documents, Government Printing Office, Washington, D.C. 20402, at $\$ 1.50$ per year (50 cents additional for foreign mailing) or 25 cents per single copy. Subscriptions are available for $1-, 2$-, or 3 -year periods. Free distribution is limited to public officials actually engaged in planning or constructing highways and to instructors of highway engineering. There are no vacancies in the free list at present.
Use of funds for printing this publication has been approved by the Director of the Bureau of the Budget, March 16, 1966.

United States

Government Printing Office
DIVISION OF PUBLIC DOCUMENTS WASHINGTON, D.C. 20402

OFFICIAL BUSINESS

If you do not desire to continue to receive this publication, please check here \square; tear off this label and return it to the above address. Your name will then be removed promptly from the appropriate mailing list.

[^0]: * DESIGNATE EACH APPROACH BY LETTER; 1-W OR 2-W (1- OR 2-WAY); PKG., N.P. (NO PKG.) ; ENTER DHV's , HURN A.ANE, OR COMP. (COMPOSITE PEAK.)
 Q TURN LANE LENGTHS $-\mathrm{D}_{2}, \mathrm{D}_{3}$; TRUCKS $-\mathrm{T}_{2}, \mathrm{~T}_{3}$; WIDENED APPROACH LENGTHS -- $\mathrm{D}_{\mathrm{a}}, \mathrm{D}_{\mathrm{b}}$, ETC.

