

Public Roads

AJOURNALOFHIGHWAY RESEARCH

PUBLISHED
BIMONTHLY
BY THE BUREAU
OF PUBLIC ROADS,
U.S. DEPARTMENT OF COMMERCE, WASHINGTON

Overhead ramp from Slavin Road to Barbur Boulevard, Portland, Oreg.

[^0]
Public Roals

A JOURNAL OF HIGHWAY RESEARCI

IN THIS ISSUE

Highway Income, Expenditures, and Earnings in 46 Standard Metropolitan Statistical Areas, by S. F. Bielak and J. F. McCarthy
185

Motor Vehicle Size and Weight Limits (AASHO
table on pages 192-193). 200
New Publications 200

Vol. 33, No. 9

August 190

Published Bimonthly
Muriel P. Worth, Editor
Jessie W. Dean, Assistant Editor

THE BUREAU OF PUBLIC ROAD
WASHINGTON OFFICE
1717 H St. NW., Washington, D.C., 20235

REGIONAL OFFICES

No. 1. 4 Normanskill Blvd., Delmar, N.Y., 1205 Connecticut, Maine, Massaclusetts, New Ham; shire, New Jersey, New York, Rhode Islan Vermont, and Puerto Rico.
No. 2. 1610 Oak Hill Avenue, Hagerstown, Mc 21740.

Delaware, District of Columbia, Maryland, Ohi Pennsylvania, Virginia, and West Virginia.
No. 3. 50 Seventh St. NE., Atlanta, Ga., 30323.
Alabama, Florida, Georgia, Mississippi, Nor Carolina, South Carolina, and Tennessee.
No. 4. 18209 Dixie Highway, Homewood, Il 60430.

Illinois, Indiana, Kentucky, Michigan, and W consin.

No. 5. 4900 Oak St., Kansas City, Mo., 64112. Iowa, Kansas, Minnesota, Missouri, Nebrash North Dakota, and South Dakota.

No. 6. Post Office Box 12037, Ridglea Station, Fc Worth, Tex., 76116.
Arkansas, Louisiana, Oklahoma, and Texas.
No. 7. 450 Golden Gate Avenue, Box 36096 , S Francisco, Calif., 94102.
Arizona, California, Hawaii, and Nevada.
No. 8. 412 Mohawk Bldg., 222 SW. Morrison Stre Portland, Oreg., 97204.
Idaho, Montana, Oregon, and Washington.
No. 9. Denver Federal Center, Bldg. 40, Denv Colo., 80225.
Colorado, New Mexico, Utah, and Wyoming.
No. 10. Post Office Box 1961, Juneau, Alaska, 998 Alaska.
Eastern Federal Highway Projects OfficeRegion 15.
1000 N. Glebe Rd., Arlington, Va., 22201.
No. 19. Apartado Q, San Jose, Costa Rica.
Inter-American Highway: Costa Rica, Guateme, Nicaragua, and Panama.

Public Roads is sold by the Superintendent of Documes, Government Printing Office, Washington, D.C., 20402 at $\$ 1$ per year (50 cents additional for foreign mailing) rr 20 cents per single copy. Subscriptions are available ir 1-, 2-, or 3 -year periods. Free distribution is limiterte public officials actually engaged in planning or construc is highways and to instructors of highway engineerg. There are no vacancies in the free list at present.
Use of funds for printing this publication has been p. proved by the Director of the Bureau of the Bud March 6, 1961.

Highway Income, Expenditures, and Highhway-User Earning̣s in 46 Standard Metropolitan Statistical Areas

3Y THE OFFICE OF PLANNING 3UREAU OF PUBLIC ROADS

Reported by ${ }^{1}$ STANLEY F. BIELAK, Chief, Financial Branch, and JAMES F. McCARTHY, Economist, National Highway Planning Division

Introduction

CROWTH in population, motor-vehicle \checkmark registrations, and travel in urban areas las been occurring at such a rapid rate that ncreased allocations of funds for highways lave become necessary. The high cost per nile of urban highway facilities, because of the iniform rate of Federal and State user charges in rural and urban residents, prompted an nvestigation of highway finances in Standard Metropolitan Statistical Areas (SMSA's). ${ }^{2}$ By sing the local and State highway finance data hat have become available recently, informaion is presented in this article to relate highvay income to highway expenditures and arnings of highway-user taxes in 46 Standard Metropolitan Statistical Areas. Although his article provides only a brief glance at he total highway financial picture, it focuses in an area of highway finance that has lot been extensively explored. No attempt las been made to include or evaluate social osis related to the costs of urban highway ystems.
The authors have not presented any direct onclusions, but a statistical summary is ncluded at the end of the article.

Procedure

To determine how highway-user earnings, ighway income, and expenditures are related a urban areas, the SMSA was adopted as the nit of measure. Of the 212 SMSA's defined n the 1960 Census, exclusive of Puerto Rico, 6 were used as the sample for the study eported here. Information collected for the 6 SMSA's and the same information for the 12 SMSA's is given in table 1. The sample

[^1]
Abstract

Information is presented in this article on road-user tax earnings, highway income, and highway expenditures in 46 Standard Metropolitan Statistical Areas, in 1960. This information was collected to obtain a basis for determining whether an equitable contribution for highway construction was being made by urban and rural highway users. Road-user taxes, fees, and tolls are expressed as earnings of road-user taxes, and these revenues are discussed in relation to highway income from all sources and to expenditures for roads and streets, by population groups.

The road-user revenues from motor-vehicle travel in the 46 SMSA's amounted to $\$ 1.65$ billion, but highway expenditures were only $\$ 1.49$ billion. Total highway revenue allocated to the SMSA's was $\$ 1.42$ billion. Therefore, earnings from motor-vehicle use in these areas exceeded the amount assigned for highways, even when income from borrowings was included. Earnings of road-user taxes also exceeded total highway expenditures, which included debt retirement.

The most favorable ratio of earnings to expenditures, by SMSA population groups, was in the population group 500,000 to $1,000,000,1.16: 1$; the population group of $1,000,000$ and more had an earnings-expenditure ratio of $1.13: 1$; the lowest was in the population group of less than 250,000, $0.94: 1$; and for all SMSA's the ratio of earnings to expenditures was 1.11:1. On the basis of the data for the 46 SMSA's, the balance of user earnings from travel in metropolitan areas is favorable when compared to the high per-mile costs of construction of urban highway facilities during an accelerated period of construction activity.

used represents nearly 22 percent of the SMSA's and a little more than 31 percent of the total SMSA population. The sample, as shown by the table, is somewhat weighted in favor of the more populous areas- 37 percent of the population of SMSA's having populations of more than 1 million, and only 20 percent of the SMSA's having populations of less than 250,000 . This disparity has been somewhat minimized in the material presented here as the SMSA's have been grouped according to population and the discussion is related to each of these population groupings individually.

The terms earnings or road-user tax earnings as used in this article refer to taxes levied on the use or ownership of motor vehicles. In this context, a fixed fee or annual charge, such as a motor-vehicle registration fee, operator's license, transfer fee, and other fees are credited to the SMSA where the vehicle is domiciled. A motor-fuel tax, taxes on tires and other components that are consumed by
travel, and tolls are credited to the SMSA where the travel occurs.
All of the States were requested to select and to report for one SMSA the total travel in 1960, subdivided where possible into travel by: (1) automobiles and (2) trucks and buses. They were also asked to give an estimated motor-fuel consumption rate for each of the two classes of motor vehicles. To obtain adequate travel data, the States were asked to report on an area in which a transportation study had been recently completed or was sufficiently advanced to be of aid in preparing the travel estimates.
The 46 SMSA's included in this analysis represent 1 in each of 44 States, and 2 in Indiana, as illustrated in figure 1. New Hampshire did not provide data, and in 1960 there were no SMSA's in Alaska, Idaho, Vermont, and Wyoming. Although the selection on this basis does not sample the geographic or population areas to the same degree, a more representative cross section of other

Figure 1.-Geographic distribution of 46 SMSA's.
characteristics is obtained, some of which are listed in table 2. By sampling each State, it was possible to obtain data on: (1) the diverse State motor-fuel and motor-vehicle tax rates; (2) a variety of construction programs, particularly on The National System of Interstate and Defense Highways where in a given year construction activity in the urban areas of some States may greatly exceed that in others; (3) a sample of areas in which the central cities originated and developed at different times, such as the older eastern cities and the newer and rapidly growing cities in western areas; and (4) those cities that have urban transportation systems developed
around rails and highways, as well as those where transportation is mainly highway oriented.

Data Used

Information concerning the 46 SMSA's selected for a sample is given in table 2. These details are presented to illustrate the differences in makeup of the individual SMSA's. The data for population, land area, and motor-vehicle registrations are a matter of record, except in a few areas where motorvehicle registrations were estimated. The data on vehicle-miles of travel are perhaps the most uncertain link, but they seem to be
acceptably consistent. The extreme rate 20.0 miles of travel per person per day in t Atlantic City, N.J. Area, is attributable to to very heavy seasonal use by nonresiden. This figure and the corresponding figure f 20,372 miles of annual travel in the Atlan City Area, per vehicle registered there, pot up the fact that the denominators of the ratios are somewhat defective because io travel in an SMSA includes that of visitorss well as residents. However, the low rate f 7.8 miles per person per day in the Philadelp Area is reasonably comparable with 11.3 mis in the Los Angeles Area and reflects te populations' use of transit facilities anda

Table 1.-Data on the 46 selected SMSA's and all SMSA's in the United States ${ }^{1}$

Census region and population group	SMSA's and population						Land area			Population per sq. mi.	
	All SMSA's		Study sample		Sample, percent of total		$\begin{gathered} \text { All } \\ \text { SMSA's } \end{gathered}$	Study sample	Sample, percent of	$\begin{gathered} \text { All } \\ \text { SMSA's } \end{gathered}$	Study sample
All SMSA's	$\begin{gathered} \text { Number } \\ 212 \end{gathered}$	Population (thousands) 112, 885		Population (thousands) $35,246$	Number (percent) 21.7	Population (percent) 31.2	Sq. $m i$. 310, 233	$\begin{gathered} \text { Sq. mi. } \\ 75,855 \end{gathered}$	Percent 24.5	Number 364	Number 465
Census regions:											
North Central	$\begin{aligned} & 47 \\ & 59 \\ & 77 \\ & 29 \end{aligned}$	$\begin{aligned} & 35,347 \\ & 30,960 \\ & 26,447 \\ & 20,131 \end{aligned}$	$\begin{array}{r} 7 \\ 13 \\ 16 \\ 10 \end{array}$	$\begin{array}{r} 6,961 \\ 10,443 \\ 7,676 \\ 10,166 \end{array}$	$\begin{aligned} & 14.9 \\ & 22.0 \\ & 20.8 \\ & 34.5 \end{aligned}$	19.7 33.7 29.0 50.5	$\begin{array}{r} 35,650 \\ 87,834 \\ 59,328 \\ 127,421 \end{array}$	6,746 16,678	18.9 19.0	991	1,032
South ${ }^{2}$								15,351	25.9	446	500
West.-								37,080	29.1	158	274
Population groups: More than $1,000,000$ 500,000 to $1,000,000$ \qquad 250,000 to $500,000^{2}$ \qquad Less than 250,000 \qquad	$\begin{array}{r} 24 \\ 29 \\ 48 \\ 111 \end{array}$	$\begin{aligned} & 61,582 \\ & 19,215 \\ & 15,829 \\ & 16,259 \end{aligned}$	$\begin{array}{r} 7 \\ 7 \\ 11 \\ 21 \end{array}$	$\begin{array}{r} 23,065 \\ 5,096 \\ 3,901 \\ 3,184 \end{array}$							
					29.2	37.5	54, 285	19,321	35.6	1,134	1,194
					22.9	24. 2	70,767 78,460	16, 81219	23.9 14.3	272	302 348
					18.9	19.6	106, 721	28,419	26.6	152	112

[^2]much later development of freeways in the Philadelphia Area than in the Los Angeles Area.

Travel data

Each State was requested to report the total notor-vehicle travel on all roads and streets of ;he selected SMSA for the calendar year 1960 . The State was also asked to classify the travel jy that: (1) on the rural roads, (2) on the irban highways and streets, (3) of automojiles, and (4) of trucks and buses combined. The responses by the States were different in legrees of detail that ranged from travel classiied by vehicle types and by road systems to mly the total vehicle-miles of travel and per'entages that indicated distribution of the otal travel between automobiles and trucks ind buses.
The method of estimating and classifying he travel in the SMSA's also differed. For states in which some form of area transportaion studies were available, the information was applied to the 1960 data by travel trends; n others, estimates were prepared from availible information on mileage of local streets ind arterials and the corresponding current ravel volumes on them. Generally, too, where data from area transportation studies were utilized, it was necessary to supplement hem with travel in the area beyond that study's external cordon to the county bounduries forming the SMSA. However, it is beieved that sufficient accuracy was obtained secause the routes that carry the bulk of the ravel are the State highways and primary ocal roads for which data were available from surrent traffic-counting programs, and these jutlying areas were predominantly rural.

Motor-vehicle registrations

Registrations of motor vehicles by counties ire compiled by the States and are currently ivailable for approximately 41 States. In the ,ther States the SMSA registrations were estinated by using collateral data of the Bureau ff the Census (1), ${ }^{3}$ and the annual and special eports of State motor-vehicle registrations (2).

Road and street income

The income for road and street purposes of in SMSA comes from several sources. The lccounting of the income for each SMSA is ibtained by the State highway departments rom State and local records and summarized n reports transmitted annually to the Bureau f Public Roads. Income and expenditure lata of local governments are summarized in his article from forms PR-532, State Highvay Expenditures, and PR-535, Local Road ind Street Finance Report. For each SMSA he PR-535 report includes the annual receipts, lisbursements, obligations issued, application if proceeds, and a statement of interest and ond redemptions. State income from road isers equivalent to State expenditures for lighways given in form PR-532-B, State Iighway Expenditures Within Standard Met-

[^3]Table 2.-Information on population, land area, registered vehicles, and travel in 46 SMSA's, 1960

SMSA's, by population group	Population	Land area	$\begin{aligned} & \text { Persons } \\ & \text { per } \\ & \text { square } \\ & \text { mile } \end{aligned}$	Registered vehicles	Travel	$\begin{aligned} & \text { Persons } \\ & \text { per } \\ & \text { vehicle } \end{aligned}$	Travel	
							$\begin{aligned} & \text { Person } \\ & \text { per } \\ & \text { day } \end{aligned}$	Annual, in SMSA per regis. tered vehicle therein
Less than 250,000								
	Number				Veh.-miles (thousands)			
Atlantic City, N.J. Bay City, Mich	$160,880$			$57,678$	$1,175,000$	$\begin{gathered} \text { Number } \\ 2.8 \end{gathered}$	$\begin{aligned} & \text { Miles } \\ & 20.0 \end{aligned}$	$\begin{gathered} \text { Mileg } \\ \hline 20,372 \end{gathered}$
Cedar Rapids, Iowa	107,042 136,899	${ }_{713}^{446}$	${ }_{2}^{240}$	44,280 63,557	425, 000 501,680	${ }_{2}^{2.4}$	10.9 10.0	9,598 77893
Charleston, S.C..	216, 382	945	229	67, 766	715,000	3.2	10.0 9.1	7,893 10,551
Eugene, Oreg-----	162, 890	4, 560	36	85, 003	643, 400	1.9	10.8	7,569
Fargo, N. Dak...	106, 027	2,799	38	51, 492	451, 962	2.1	11.7	8,777
Fitchburg-Leominster, Mass.	82,486	99	833	28,479	426, 000	2.9	14.1	14,958
Fort Wayne, Ind ----------	232, 196	670	347	99, 016	581, 960	2.4	6.9	5,877
Great Falls, Mont.......--	73,418	2,659	28	35,904	273, 057	2.0	10.2	7,605
Jackson, Miss.--	187, 045	877	213	70, 890	589, 712	2.6	8.6	8,319
Las Vegas, Nev..........-	127,016	7,927	16	75,750	358,823	1.7	7.7	4,737
Lewiston-Auburn, Maine.-	70,295 131,906	120 280	586 471	24,167 53,644	174,125 432,700	2.9 2.5	6.8 9.0	7,205 8,066
Little Rock-No. Little								
Rock, Ark	242,980	767	317	103, 603	795, 700	2.3	9.0	7,680
Lynchburg, Va.	110, 701	1,014	109	37, 168	423, 912	3.0	10.5	11, 405
Macon, Ga	180, 403	630	286	66, 077	451, 870	2.7	6.9	6,839
Madison, Wis	222, 095	1,197	186	87, 628	911, 615	2.5	11. 2	10,403
Sioux Falls, S. Dak South Bend, Ind.-	86,575 238,614	815 467	106	40,403 98,138	340,451 570,090	2. 2.1	10.8 6.5	8,426 5,809
Springfield, Mo.	126, 276	677	187	56,713	659, 096	2.2	14.3	11,622
Waterbury, Conn.	181, 638	182	998	76,696	523,283	2.4	7.9	6,823
Total.	3, 183, 764	28,419	112	1, 324, 052	11, 424, 431	2.4	9.8	8,628
250,000 то 500,000								
Albuquerque, N. Mex	262, 199	1,163	225	109, 249	827, 424	2.4	8.6	7,574
Charleston, W. Va...-	252, 925		279	86, 166	814,431	${ }^{2} .9$	8.8	9,452
Charlotte, N.C.	272, 111	542	502	120, 599	675, 129	2.3	6.8	5, 698
Jacksonville, Fla	455, 411	777	586	187, 524	1, 807, 115	2. 4	10.9	9,637
Nashville, Temn	399, 743	532	751	147, 128	1, 208,996	2.7	8.3	8,217
Omaha, Nebr	457, 873	1,533	299	189, 698	1, 842, 338	2.4	11.0	9, 712
Salt Lake City, Utah	383, 035	164	501	174, 021	$1,155,000$	2. 2	8.3	6,637
Tacoma, Wash	321, 590	1,676	192	134, 292	1, 281, 000	2.4	10.9 10	9,539
Tulsa, Okla. ${ }^{1}$	${ }_{343}^{386,533}$	1,538 999	251	${ }_{161,942}^{187,975}$	1, 436,382	${ }_{2.1}{ }^{2} 1$	110.2	7,641 8,580
Wichita, Kans- Wilmington, Del	343,231 366,157	999 787	344 465	161,042 139,170	1, $1,586,247$	2.6	11.0	8, 11,398
Total	3, 900, 808	11,219	348	1,636,864	14, 015, 858	2.4	9.8	8, 563
500,000 то $1,000,000$								
Birmingham, Ala	634, 864	1,118	568	234, 198	2, 052, 312	2.7	8.9	8,763
Columbus, Ohio-.	682, 9862	, 537	1, 272	282, 428	2, 696, 374	2. 4	10.8 10.3	9, 547 7,525
Denver, Colo...-	929,383 500,409	3,665	254 837	- 175,125	$3,500,000$ $1,123,090$	2.0	10.3 6.1	6, 393
Honolulu, Hawaii	500,409 868,480	1,118	877	175,676 280,907	1,940,483	3.1	6.1	6,908
Nhoenix. Ariz...	6683, 510	9, 226	72	336, 465	3, 083, 304	2. 0	12.7	9, 164
Providence, R.I.	816, 148	634	1,287	318,539	3, 401, 100	2.6	11.4	10,677
Total	5,095,756	16,896	302	2, 093, 338	17, 796, 663	2.4	9.6	8,502
MORE THAN $1,000,000$								
Baltimore, Md_	1, 727,023	1,807	${ }_{956}^{956}$	572,478 448,307	$5,965,707$ $3,417,680$	3. ${ }^{0}$	9. ${ }^{5}$	10,421 7,624
	6,220,913	3,714	1,675		19, 210,133	3. 0	8.5	9,221
Houston, Texas	1, 243, 158	1,711	1,727	572, 343	4, 265, 000	2.2	9.5	7,452
Los Angeles. Calif	6, 742, 696	4, 842	1,393	3,415, 201	27, 808, 000	2.0	11.3	8,142
Minneapolis-St. Paul,	1, 482, 030	2,111	702	642, 617	5, 500, 000	2. 3	10.2	8,559
Philadelphia, Pa-.----	4, 342,897	3,549	1,224	1, 536, 952	12, 313, 914	2.8	7.8	8,012
Total	23, 065, 674	19,321	1,194	9, 271, 107	78, 480, 434	2.5	9.3	8,465
total, ALL SMSA's..----	35, 246, 002	75,855	465	14, 325, 361	121, 717, 386	2.5	9.5	8,497

${ }^{1}$ Does not include the population and area of Osage County of the Tulsa, Okla., SMSA.
ropolitan Statistical Areas, is assigned from State and Federal user revenues, as explained subsequently.

In this article income for highways is classified according to (1) the imposts on highway users collected at the different government levels-Federal, State, and local-and tolls on State and local facilities; and (2) other revenue
income of an SMSA, consisting of property taxes and assessments, general fund appro-priations-State and local-and miscellaneous local income from a variety of sources such as subdivider payments for road improvements, fines for parking meter violations, rentals, excavation permits, utility taxes, adjustments and repairs, and, in some areas, a miscellany

Table 3.-Index of automobile motor-fuel consumption rates for overall operation and operation predominantly in rural and urban areas

| Source | Consumption rates, gallons per mile | | Index of consumption rates | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Average | Rural | Urban | Average | Rural | Urban |
| | | | | | | |

1 Illinois Motor Vehicle Use Study, Illinois Division of Highways, October 1961, p. 205.
2 Passenger Car Fuel Consumption Rates, by Nathan Lieder, PUBLIC ROADS, Vol. 32, No. 5, December 1962 , p. 119
3 A verage ohtained from The Supplementary Report of the Highway Cost Allocation Siudy (S). The rate for consumption in urban areas was developed for this analysis.
that includes traffic fines and other fees not segregated by a specific source.

Expenditures on roads and streets

The expenditures on roads and streets used for each SMSA are as complete as was possible from the available data. The roads and streets in these SMSA's are under several jurisdic-tions-State, county, and municipal. Road and street construction and maintenance is accomplished by one, two, or jointly by all three levels of government. To the extent that capital outlays are identified by system, they are listed in this article by State and local systems-rural and municipal. Expenditures for maintenance, operation, and administration are lumped because they are less easily identified. In the latter classification, local expenditures are complete, but State outlays are not.

State funds may be expended through: (1) capital outlay, which includes Federal aid; (2) maintenance by the State on State highway
extensions in municipalities, on local rural roads, or municipal streets; or (3) grants-inaid payments to local rural or municipal units, which are reflected in construction, maintenance, and administration expenditures at the local level. Funds are also transferred between local rural and municipal units, in addition to direct construction in each other's jurisdiction.

Local rural (county) and municipal highway administration, traffic police, bond service, and other miscellaneous expenditures are believed to be adequately represented in the reported data from the local records. Data for State and local toll facilities are available from the annual reports to Public Roads. For each facility situated entirely within an SMSA, the income and expenditures were used as recorded in the annual reports. However, for those facilities extending beyond the boundary of an SMSA, principally toll roads, the expenditures for all purposes such as construction, maintenance, and administration were

Table 4.-Motor-fuel consumption rates applied to SMSA travel to obtain data on earnings from motor-fuel taxes

Vehicle class	Motor-fuel consumption rates				
	U.S. average gasoline and diesel vehicles ${ }^{1}$		Urban areas		
			Average		Ratio (U.S. $\text { average }=1.0)^{2}$
Automobile Transit bus Intercity bus School and other bus.	$\begin{gathered} \text { Cal./mile } \\ 0.070 \\ .237 \\ .167 \\ .129 \end{gathered}$	$\begin{gathered} \text { Milesifol. } \\ 14.29 \\ 4.22 \\ 5.99 \\ 7.75 \end{gathered}$	$\begin{gathered} \text { Gal./mile } \\ 0.076 \\ .249 \\ .215 \\ .129 \end{gathered}$	$\begin{gathered} \text { Milesi/qu. } \\ 13.161 \\ 4.01 \\ 4.65 \\ 7.75 \end{gathered}$	$\begin{aligned} & 1.08 \\ & 1.05 \\ & 1.29 \\ & 1.00 \end{aligned}$
Trucks and truck combinations: ${ }^{3}$					
	.080.123.180.217	$\begin{aligned} & 12.50 \\ & 8.13 \\ & 5.56 \\ & 5.56 \\ & 5.24 \\ & 4.61 \end{aligned}$.080.148.252.267.304	$\begin{array}{r} 12.50 \\ 6.76 \\ 3.97 \\ 3.97 \\ 3.75 \\ 3.29 \end{array}$	$\begin{aligned} & 1.00 \\ & \text { 1.20 } \\ & \text { 1.40 } 40 \\ & 1.40 \\ & \text { i.40 } \end{aligned}$
- ${ }_{\text {3 }}^{\text {- }}$					
${ }_{2-82}^{2-1}$					
$3^{3} \mathrm{~S} 2$.219.159.204.229.28	$\begin{aligned} & \begin{array}{r} 4.57 \\ 6.290 \\ \hline 4.90 \\ 4.59 \\ 4.37 \end{array} \end{aligned}$.307.223.286.305.321	$\begin{aligned} & 3.26 \\ & 4.48 \\ & \text { 4.50 } \\ & 3.28 \\ & 3.12 \end{aligned}$	$\begin{aligned} & 1.40 \\ & 1.40 \\ & 1.40 \\ & 1.40 \\ & 1.40 \end{aligned}$
${ }_{2-2}^{2-1}$					
trailer combination....................	233	4.29	. 326	3.07	1.40
All trucks, buses, and truck combinations ${ }^{\text {a }}$ -	$\begin{array}{r} 129 \\ .081 \end{array}$	$\begin{array}{r} 7.77 \\ 12.35 \end{array}$. 159	6.2910.87	1. 1.23
All vehicles ${ }^{\text {4 }}$ -					

${ }^{1}$ Weighted average consumption rates developed from those used in Supplementary Report of the Highway Cost Allocation $u t y(8)$. Weighted averages reflect relative numbers of gasoline and diesel vehicles in each vehicle class.
87 th Cong., 1st sess., 1961, at consumption rates indicated in several sped for Hiqhway Cost Allocation Study, H. Doc. No. 54 , th Cong., 1st sess., 1961, at consumption rates indicated in several studies on rural and urban operation.
${ }^{3}$ Each digit indicates the number of axles of a vehicle or of a unit of a vehicle combination. A single digit, or the first digit of a group symbol, represents a single-unit truck or, if followed by an S , represents a truck-tractor. The S designation represents a semitrailer. A digit without an S , in the second or third position in a group symbol, represents a full trailer.
$2=2$-axle single-unit truck.
$3=3$-axle single-unit truck
$\begin{aligned} & 3-81=3 \text {-axle single-unit truck. } \\ & 2 \text {-axle } \\ & 2\end{aligned}$
$2-\mathrm{S} 2=2$-axle truck-tractor with 2 -axle semitrailer.
$2-1=2$-axle truck with 1 -axle trailer.
$2-2=2$-axle truck with 2 -axle trailer.
$2-2=2$-axle truck with 2 -axle trailer.
$2-3=2$-axle truck with 3 -axle trailer.
$2-3=2$-axle truck with 3 -axle trailer.
$3-3=3$-axle truck with 3 -axle trailer.
${ }^{4}$ Weighted by total travel and fuel consumption of all vehicle classes indicated.
assigned in the same proportion that the earnings within the SMSA had to the earnings of the entire facility.

Highway-user earnings

User taxes consist of a variety of levies on the owner or operator of a vehicle, on the vehicle itself, or on the use of a vehicle Registration fees, vehicle excise and use taxes transfer and title charges, certain truck and bus franchise or user permits, and drive licenses are paid periodically and are a require ment for owning and operating a vehicle or the highways. Taxes on: gasoline and specia fuel, truck and bus mileage, and tires and tube are paid intermittently according to the num ber of miles the vehicle is operated.

The Federal excise taxes deposited in th Federal Trust Fund and designated for high way purposes are the 1960 user taxes fo which earnings were evaluated in the stud reported here. These excise taxes included gasoline and special fuels at 4 cents per gallon tires at 8 cents per pound; innertubes at cents per pound; tread rubber at 3 cents pe pound; truck, bus, and trailer excises at percent of manufacturers' wholesale prices and the vehicle-use tax at $\$ 1.50$ per 1,00 pounds. Not included with these earnings ar other Federal automotive excise taxes tha accrue to the general fund, such as the autc mobile vehicle excise tax, parts and acces sories tax, lubricating oil tax, and one-half c the truck, bus, and trailer excise tax at percent of manufacturers' wholesale price.

State user charges consist of gasoline an special fuel taxes; mileage, ton-mile, an franchise taxes; registration fees; operator an chauffeur licenses; and miscellaneous charge for titling or transfer of ownership of vehicle

Local road-user charges are not levied in a States or in all local jurisdictions of a Stati Where imposed, they may consist of moto fuel taxes, bus and wheel taxes, and license for automobiles and trucks. Although traff fines and allied fees are often not considere to be regularly imposed user levies, they hay been included with user taxes when they a identified and used for highway purposes.

In this article earnings based on use we computed for all travel in an SMSA regardle of where the motor vehicles were domicile Registration and other periodic charges usi were those paid only for the vehicles domicilr within the SMSA.

Earnings

Federal, State, and local fuel taxes, whe levied, are earned for each mile of trav Federal excises on tires, tubes, and tre rubber are earned in direct proportion to t amount of travel and are paid at the time t items are purchased or replenished. Sta: and local registration fees; operator a chauffeur licenses; titling taxes; transf certain mileage, permit, and other fees tax earnings in the form of annual or periou charges.

Imposts on highway users at the local led (parking fees and other miscellaneous fees rb usually considered in a user tax category, sut as traffic fines and penalties, but attributal
to motor vehicles or paid as a consequence of (their use) have been included with user earnings in the amounts reported received by the localities making up the SMSA's of this analysis.

Federal and State motor-fuel taxes

To obtain a consumption rate that could be applied to automobiles operating in SMSA's, consumption rates obtained for operation under different conditions in both urban and rural areas were investigated. This included consumption for automobiles operated where low average speeds and a high incidence of stop-and-go driving is necessary, and for automobiles operated where higher average speeds and fewer interruptions from traffic signals and traffic friction are possible. For example, in a report on a study made in the Philadelphia area (4) on the financing of road systems, a motor-fuel consumption rate 50 percent larger was used for all vehicles-automobiles and commercial vehicles-in urban areas than in rural areas. Recent studies on motor-fuel consumption rates for overall, rural, and urban vehicle operation support the evidence that fewer miles per gallon-more gallons per mile - are obtained by vehicles operated only in urban areas than by those operated only in rural areas.

Automobile motor-fuel consumption rates obtained from three studies and the rate adopted for use in this analysis are listed in table 3. The consumption rates of rural and urban operation in the first three studies were obtained from replies to questionnaires. In these studies urban operation was defined as travel at speeds of less than 35 miles per hour. The rates in table 3 for operation under rural conditions are those obtained for vehicles that were reported to have been operated 90 percent or more of their mileage at speeds of more than 35 miles per hour; the rates for urban conditions are for vehicles operated 90 percent or more of the reported mileage at speeds of less than 35 miles per hour.

The fourth set of rates was obtained in a somewhat different manner. The 0.070 gallon per mile, or 14.3 miles per gallon, rate was developed for the Supplementary Report of the Highway Cost Allocation Study (S) as a national average consumption rate for all automobiles. The rural-urban differential applied to this rate was obtained by application of estimates that reflected operating characteristics of an SMSA. Average operating speed in an urban area, the number of stops per mile, duration of stop, and average speeds on rural roads were all arbitrarily determined by considering the data collected.

After consulting with persons who analyze traffic and after reference to study data (5,6), $11 / 2$ stops per mile were used as representative of travel in an SMSA. By using measurements of fuel consumption at different speeds, while coming to a stop and accelerating again to average speed, and while idling at a stop developed in Claffey's investigation (7), an urban rate was obtained that was 1.08 times the average consumption rate. This ratio was applied to the 0.070 -gallon-per-mile national average rate, and a resultant urban
automobile consumption rate of 0.076 gallon per mile, or 13.2 miles per gallon, was obtained.
The consumption rate differential for motorfuel used in urban areas by trucks, buses, and combinations was obtained in somewhat the same manner. The consumption rates per stop and idling time determined by Kent (8) and Sawhill and Firey (9) were used for the range of sizes and weights given for vehicles listed in table 4. The estimates- 25 miles per hour a verage speed in an urban area, $11 / 2$ stops per mile, 15 -second average idling time-were the same as those applied to automobiles. Average speeds of trucks traveling in rural areas were assumed to be 40 miles per hour; of buses, 50 miles per hour; and of automobiles, 45 miles per hour. Because most data on vehicle travel could be obtained only in the broad categories-automobiles and all other vehicles-consumption rates used were those of automobiles and the combination rate of trucks and buses.

The total motor-fuel consumption for each group of motor vehicles in each SMSA was calculated by applying the gallons-per-mile rates to the amount of travel. The Federal earnings from this motor-fuel use were obtained by multiplying the total gallonage by the Federal excise tax of 4 cents per gallon. State and local earnings from motor-fuel taxes were determined by multiplying the gallonage by the appropriate 1960 motor-fuel tax rate. Some of the tax contributions per mile of travel at the different rates at which motor fuel is taxed are, as follows:

| Tax rate per gallon | | Automobile | |
| :---: | :---: | :---: | :---: | | Truck, bus, and |
| :---: |
| Cents | | Cent | | Cent
 truck combinations |
| :---: | :---: | :---: |
| 3 | 0.23 | 0.48 |
| 4 | .30 | .64 |
| 5 | | .38 |
| 6 | .45 | .80 |
| 7 | .53 | .95 |
| 7 | | 1.11 |

Only the State of Missouri had a 3-cent motorfuel tax rate in 1960; no State taxed fuel at 4 cents, which was the Federal excise tax rate. The weighted average State gasoline tax rate, nationally, was 5.92 cents per gallon (2, p. 2), but the weighted average tax rate for the 46 SMSA's was 5.75 cents per gallon.

The 1960 Federal Trust Fund taxes paid by highway users, other than motor-fuel taxes, are shown in table 5. An additional $\$ 5.1$ million of truck, bus, and trailer excise taxes, use taxes, and rubber taxes paid on vehicles owned by the Federal Government were not included in the taxes listed in table 5 but were added to the computations in this article to obtain the rates per-vehicle-mile of travel. No distinction was made between the rural or urban rate of consumption for use taxes, except for motor fuel.
The division of vehicle excise, use, and rubber taxes between those paid for automobile use and commercial vehicle use was accomplished according to the detailed analysis prepared for The Supplementary Report of the Highway Cost Allocation Study (3). The income of the Federal Trust Fund in 1960 from taxes other than motor fuel, including payments on

Table 5.-Trust Fund Taxes, 1960

Taxes	Million dollars	
Motor-fuel	-----	2,269
Other		445
Truck, bus, and trailer excise Motor-vehicle use	127 45	.-....
Tires, tubes, and tread rubber-	273	-.---
total.	-----	2,714

vehicles of Federal agencies, amounted to $\$ 450$ million and was obtained from automobiles and commercial vehicles, as shown in table 6.

State registration fees and taxes

Information about the numbers and classes of registered vehicles in the counties of an SMSA is available in different detail from the registration reports prepared by about 41 States. Also, some of the States included data by countries on payments of registration and other fees. In these States, payments were used as the total contribution by road users in the county or counties of the SMSA. In the States where such payments were not classified by counties, State per-vehicle averages for automobiles and for trucks and buses combined were multiplied by the corresponding numbers registered in the SMSA. An example of the division of receipt of State fees between automobiles and commercial vehicles is shown for Texas in table 7. As in this example, the receipts for each State were identified according to source; that is, automobiles or trucks and buses as were those of a county that had available data classified according to the vehicles for which the fees were paid. The remaining fee data were summarized, and an average per vehicle payment was obtained for each vehicle class according to the number of vehicles registered.
For an SMSA that extended beyond a State boundary, a separate computation was made so that the fee schedules of each State would be reflected. The State motor-vehicle registration and other fees obtained by these methods amounted to an earning of $\$ 376$ million in the 46 SMSA's

Table 6.-Highway Trust Fund receipts from tire, tube, tread rubber, truck and bus vehicle-excise and vehicle-use taxes, 1960

Vehicle class for which paid	Total received	U.S.	
		$\begin{gathered} \text { Travel } \\ 1960 \end{gathered}$	Estimated tax earned per mile
Automobil	$\begin{gathered} \text { Millions } \\ \$ 154 \end{gathered}$	Vehiclemiles (billfons) 588.1	$\begin{aligned} & \text { Cent } \\ & 0.026 \end{aligned}$
tions, and buses.	296	130.7	.227
TOTAL.	\$4.50	718.8	

Table 7.-Highway income in Texas from motor-vehicle registration and other fees, 1960

${ }^{1}$ Oversize and overweight fees, carrier taxes, certificate or permit, and carrier fines and penalties, all of which are attributable to buses and trucks.

2 Title and titling taxes, transfer, inspection, and other fees that were paid by automobiles and commercial vehicles, but no identification by whom paid was available. Division between automobiles and trucks and buses was made by prorating on the basis of the numbers of vehicles registered in the two categories.

Tolls, local taxes, and fees

Most of the local toll facilities, principally bridges, were located entirely within the 46 SMSA's. Information for this analysis was obtained from data in the financial statements of such toll facilities included in reports to Public Roads. For State-administered toll road facilities that extended beyond the
boundaries of an SMSA, the State highway departments reported the total travel and the tolls earned on that travel within the SMSA. Data on local imposts on road users, and other highway income and expenditures for each SMSA, were available from the annual reports to Public Roads-see published Statelocal finance data (2, pp. 127-140). Earnings of motor-vehicle user taxes at the local,

Figure 2.-Sources of income for highways, 46 SMSA's, 1960.
county, or city level consisted of motor-fuel taxes, motor-vehicle registration and other fees where levied, and parking fees.

Income for Roads and Streets

The income of each SMSA, by sourceFederal, State, and local-is shown in table 8 and is classified between imposts on road users, other revenue income, and receipts from borrowing. Total income by source is illustrated proportionally in figure 2. Income from State road-user taxes equal to expenditures on State highways within each SMSA was assigned as recorded in annual reports by the States. Because Federal aid was available exclusively for capital improvements, Federal funds were assigned to each SMSA as a pro rata share of the State capital outlay in the ratio that Federal-aid reimbursements are to total capital outlay by the State. Local income, by source, is as reported annually in SMSA financial reports on roads and streets. Income from toll facilities, both State and local, is as reported for this study from annual financial reports. The total revenue income of the 46 SMSA's (table 8) amounted to $\$ 1,422$ million, of which $\$ 1,044$ million, or 73.4 percent, stemmed from imposts on road users and $\$ 378$ million, or 26.6 percent, from property taxes and assessments, general fund appropriations, and miscellaneous sources. The income of $\$ 1,044$ million from imposts on road users is 63 percent of the road-user earnings of $\$ 1,650$ million in these SMSA's.

SMSA property taxes and assessments, general fund appropriations, and miscellaneous income amounted to 26.6 percent of the income for roads and streets; whereas nationally receipts from such sources (10) accounted for 18 percent of the total receipts for highways, including small amounts of Federal and State general fund appropriations. Investment income and borrowing of $\$ 223$ million supplemented the revenue income for highways, but these items are not relevant to the comparisons made in this article. Borrowing is balanced over time by debt retirements and are not to be considered as revenue income. Investment income, a very small item, does contribute to the funds available for expenditure, but is not relevant to comparisons of user and nonuser income.

The imposts on road users, including tolls, ranged from 71 to 76 percent of the revenue income of the four SMSA groups by population size. The population group 500,000 tc 1 million received the lowest percentage of its total income from road-user imposts, jus under 71 percent, and it was also second lowest 63 percent, in State and Federal road-uses revenue income. The proportion of road-use tax income, excluding tolls, increases as population decreases. The road-user tax in come amounted to 73 percent of the tota revenue income in the smallest population group and 61 in the largest. But, the propor tion of income from local user imposts anc State and local tolls increases as the population increases.

Table 8.-Road and street income of 46 SMSA's, by population groups, 1960

SMSA's, by population group	Revenue income											Income from investments and borrowing	Total income
	Imposts on road users						Other				Tota		
	Federa! aid	State		Tolls		Total	Property taxes and assessments	General fund appropriations	Miscellaneous	Total			
				State facilities	Local facilitie								
LESS THAN 250,000													
Atlantic City, N.J Bay City, Mich. Cedar Rapids, Iowa. Charleston, S.C. Eugene, Oreg	Thousands 1,634 7021.815 6, 727	$\begin{aligned} & \text { Thou- } \\ & \text { sands } \\ & \$ 1,835 \\ & 3,524 \\ & 2,131 \\ & 2,267 \\ & 5,780 \end{aligned}$	Thousands \$273	Thousands \$380	Thousands	Thousands \$3, 038 3,158 4,082 12, 783	Thousands$\begin{array}{r} \$ 1 \\ 48 \\ 2,214 \end{array}$	Thousands \$3,593 449 485	Thousands	Thousands	Thou-	Thou-	Thousands
										\$3,594	\$6,632	\$221	\$6, 353
			210		------				$\begin{array}{r} \$ 219 \\ 122 \end{array}$	$\begin{array}{r} 716 \\ 2,358 \end{array}$	$\begin{aligned} & 5,874 \\ & 5,401 \end{aligned}$	555 561	0.429
			276				,292			485	4, 567		4,567
Fargo, N. Dak									0		14,114	696	14,810
Fitchburg-Leominster, Mass.--	8,298	4, 5233	1,012		--- -	12,821	1,983	573	133	2,689	15,510	2,186	17,696
Fort Wayne, Ind_------------ Great Falls, Mont	1,259	3, 337	-95			4,691	1,079	269 171	198 68	467 1,318	1,785 6,009	7	1,792
Great Falls, Mont.	2, 052	1,465	137			3, 654	1,627			1,627	5,281	181	5. 462
Jackson, Miss.-	1,858	2, 048	137			4,043	2,761	848	301	3,910	7,953	2,313	10, 266
Las Vegas, Nev...-......	2,355	2,012	197			4, 564	635	424	139	1,198	5,762	460	6, 222
Lewiston-Auburn, Maine Lexington, Ky	58 880	53 726	134 81	272	------	517 1,687		717 826	15	132 826	1,249 2, 513	$\begin{array}{r}20 \\ 188 \\ \hline\end{array}$	1,269 1
Little Rock-North Little										826	2,513		2,701
	12, 349	6, 1,202	188 260		------	19,339 2,462	1,084	943	157	2, 184	21,523		21,523
Macon, Ga	1,050	774	174										
Madison, Wis	3,219	6, 780	360		---	10,998	502	493	10	1,005	3,003		3,003
Sioux Falls, S. Dak	4,724	3,492	158		---	8, 374	2, 641	2,493	144	4, 865 1,279	15,224 9,653	1,486 600	16,710 10,253
South Bend, Ind.	99	2, 667	152			2, 918	1, 039		516	1,555	4, 473	1,000	5,473
Springfield, Mo.-	1,408	2,569	770			4,747	860	155	265	1,280	6,027	1,265	6,292
Waterbury, Conn.	1,050	3,296	26			4,372	4	1,960	287	2, 251	6,623	25	6,648
Total Percentage of revenue income	\$53, 114	\$57, 562	\$4, 640	\$652	------	\$115, 968	\$17, 970	\$15, 297	\$2, 821	\$36, 088	\$152, 056	\$11, 552	\$163, 608
	34.9	37.9	3.1	0.4		76.3	11.8	10.1	1.8	23.7	100.0	---------	-...-...-
250,000 то 500,000													
Albuquerque, N. Mex	$\begin{array}{r} \$ 6,589 \\ 422 \\ 970 \\ 10,438 \\ 11,288 \end{array}$	$\begin{array}{r} \$ 4,472 \\ 2,220 \\ 2,706 \\ 10,001 \\ 6,962 \end{array}$	$\begin{array}{r} \$ 629 \\ 257 \\ 144 \\ 427 \\ 1,401 \end{array}$	$\$ 3,338$	------	$\begin{array}{r} \$ 11,690 \\ 2,899 \\ 3,820 \\ 24,204 \\ 19,651 \end{array}$	$\begin{array}{r} \$ 2,692 \\ 363 \end{array}$	$\begin{array}{r} \$ 52 \\ 1,023 \\ 1,857 \\ 1,634 \\ \hline 85 \end{array}$	\$276	\$3, 020	\$14,710	\$2,809	\$17, 519
Charleston, W. Va---					------					1,386	4, 285		4, 285
Jacksonville, Fla					------		2,234		1,997	5,865	5, 30, 277	1,673	5,677 31,742
Nashville, Tenn.-							1,813		198	2,096	21, 747	654	22, 401
Omaha, Nebr_	$\begin{aligned} & 6,591 \\ & 5,798 \\ & 3,341 \\ & 1,996 \\ & 4,149 \\ & 3,762 \end{aligned}$	$\begin{aligned} & 9,489 \\ & 3,707 \\ & 6,495 \\ & 4,380 \\ & 3,478 \\ & 1,597 \end{aligned}$	1,987 257	----------	\$197	$\begin{array}{r} 18,264 \\ 9,762 \\ 9,886 \\ 8,458 \\ 8,404 \\ 10,596 \end{array}$	$\begin{array}{r} 5,003 \\ 2,391 \\ 1,451 \\ 7,850 \\ 7,842 \\ 99 \end{array}$	$\begin{array}{r} 943 \\ 1,157 \\ 744 \\ 362 \\ 4,412 \end{array}$	$\begin{aligned} & 344 \\ & 171 \\ & 259 \\ & 426 \\ & 840 \\ & 828 \\ & 28 \end{aligned}$	$\begin{aligned} & 5,347 \\ & 3,505 \\ & 2,867 \\ & 2,020 \\ & 9,044 \\ & 4,539 \end{aligned}$	$\begin{aligned} & 23,611 \\ & 13,267 \\ & 12,703 \\ & 10,478 \\ & 17,448 \\ & 15,135 \end{aligned}$	2,760	$\begin{aligned} & 26,371 \\ & 13,267 \\ & 12,703 \\ & 14,959 \\ & 24,107 \\ & 20,988 \end{aligned}$
Salt Lake City, Utah													
Tacoma, Wash.			484		-...---								
Wichita, Kans.			418	1,359	------							$\begin{aligned} & 4,481 \\ & 6,659 \\ & 5,853 \end{aligned}$	
Wilmington, Del.			467	4,770									
Total	\$55, 344	\$55, 507	\$6,471	\$10,065	\$197	\$127, 584	\$24, 738	\$12, 269	\$4, 539	\$41, 546	\$169, 130	\$24, 889	\$194, 019
Percentage of revenue income	32.7	32.8	3.8	6.0	0.1	75.4	14.6	7.3	2.7	24.6	100.0		-.......-
500,000 то $1,000,000$													
Birmingham, Ala \qquad Columbus, Ohio Denver, Colo Honolulu, Hawaii. \qquad New Orleans, La Phoenix, Ariz Providence, R.I.	$\begin{array}{r} \$ 3,088 \\ 7,876 \\ 6,677 \\ 3,806 \\ 8,314 \\ 7,651 \\ 13,686 \end{array}$	$\begin{array}{r} \$ 4,020 \\ 16,711 \\ 10,453 \\ 8,284 \\ 8,997 \\ 6,850 \\ 13,454 \end{array}$	$\begin{array}{r} \$ 2,283 \\ 446 \end{array}$			$\begin{aligned} & \$ 9,391 \\ & 25,033 \\ & 17,773 \\ & 16,458 \\ & 22,213 \\ & 14,501 \\ & 29,24 \end{aligned}$	$\begin{array}{r} \begin{array}{r} 4,592 \\ 2,337 \\ 4,441 \\ 3,493 \\ 5,259 \\ 1,635 \\ 12 \end{array} \end{array}$	$\begin{array}{r} \$ 696 \\ 2,580 \\ 85 \\ 5,76 \\ 5,144 \\ 10,104 \end{array}$	$\begin{array}{r} \$ 969 \\ 961 \\ 752 \\ 474 \\ 1,796 \\ 4,349 \\ 222 \end{array}$	$\begin{array}{r} \$ 5,561 \\ 3,994 \\ 7,733 \\ 4,052 \\ 12,531 \\ 11,128 \\ 10,338 \end{array}$	$\begin{array}{r} \$ 14,952 \\ 29,027 \\ 25,546 \\ 20,510 \\ 34,744 \\ 25,629 \\ 39,586 \end{array}$	$\begin{array}{r} \$ 3,300 \\ 8,203 \\ 47 \end{array}$	$\begin{array}{r} \$ 18,252 \\ 37,230 \\ 25,593 \\ 20,510 \\ 43,818 \\ 30,315 \\ 43,954 \end{array}$
				\$643									
			4,368										
			539	2,926	\$1, 437							9,074	
			1,390	718								4,686 4,368	
Total	\$51,098	\$68, 769	\$9,026	\$4, 287	\$1, 437	\$134, 617	\$21, 769	\$24, 085	\$9,523	\$55, 377	\$189,994	\$29,678	\$219, 672
Percentage of revenue income.	26.9	36.2	4.7	2.3	0.8	70.9	11.4	12.7	5.0	29.1	100.0		
MORE than $1,000,000$													
Baltimore, Md.----------	$\begin{aligned} & \$ 7,829 \\ & 8,804 \\ & 88,698 \\ & 15,146 \\ & 32,529 \\ & 26,225 \\ & 12,406 \end{aligned}$	$\begin{array}{r} \$ 32,683 \\ 13,139 \\ 104,595 \\ 21,653 \\ 121,238 \\ 27,770 \\ 40,074 \end{array}$	$\begin{array}{r} \$ 4,602 \\ 78,080 \\ 39,087 \\ 3,686 \\ 1,772 \\ 1,999 \end{array}$	$\begin{array}{r} \$ 5,558 \\ 4,537 \\ 18,426 \end{array}$	\$351	$\begin{array}{r} \$ 51,023 \\ 27,361 \\ 253,007 \\ 37,486 \\ 157,734 \\ 55,067 \\ 84,079 \end{array}$	$\begin{array}{r} \$ 865 \\ 5,069 \\ 30,463 \\ 20,674 \\ 11,202 \\ 19,945 \\ 429 \end{array}$	$\begin{array}{r} \$ 13,016 \\ 18,223 \\ 5,928 \\ 6,387 \\ 44,776 \\ 6,832 \\ 26,987 \end{array}$	$\begin{array}{r} \$ 442 \\ 1,277 \\ 2,741 \\ 3,766 \\ 15,262 \\ 3,175 \\ 7,215 \end{array}$	$\begin{array}{r} \$ 14,323 \\ 24,569 \\ 39,112 \\ 30,827 \\ 71,240 \\ 29,952 \\ 34,631 \end{array}$	$\begin{array}{r} \$ 65,346 \\ 51,930 \\ 292,119 \\ 68,313 \\ 228,974 \\ 85,019 \\ 118,710 \end{array}$	$\begin{aligned} & \$ 4,840 \\ & 12,774 \\ & 83,073 \\ & 19,224 \\ & 10,720 \\ & 11,495 \\ & 14,60 \end{aligned}$	\$70, 186 64, 704 375, 192 239, 694 96, 514 133, 311
Buffalo, N.Y.					2, 208								
Chicago, Ill--.--					2,208								
Houston, Tex Los Angeles, Calif					281								
Minneapolis-St. Paul, Minn--					1,566								
Philadelphia, Pa-------------				28,034	1,566								
	\$191, 637	\$361, 152	\$51, 907	\$56, 655	\$4,406	\$665, 757	\$88, 627	\$122, 149	\$33, 878	\$244, 654	\$910, 411	\$156, 727	\$1, 067, 138
Percentage of revenue income.	21.0	39.7	5.7	6.2	0.5	73.1	9.8	13.4	3.7	26.9	100.0		
TOTAL ALL SMSA'S.	\$351, 193	\$542,990	\$72, 044	\$71,659	\$6, 040	\$1, 043, 926	\$153, 104	\$173, 800	\$50, 761	\$377, 665	\$1, 421, 591	\$222, 846	\$1, 644, 437
Percentage of revenue income	24.7	38.2	5.1	5.0	0.4	73.4	10.8	12. 2	3.6	26.5	100.0		

Line	State	Width inches ${ }^{1}$	Height ft.-in.	Length-feet?					Number of towed units ${ }^{3}$			Axle load-pounds				Operating tire inflatior. pressure pounds per sq. in.	
				Single unit			Truck tractor semi. trailer	Other combination	Semitrailer	$\underset{\text { Frailer }}{\text { Full }}$	Semitrailer and full trailer	Single		Tandem			Pound engin hors pow delive to clu or equiv
				Truck	Bus	Semitrailer trailer						Statutory limit	including statutory enforcement tolerance	Stotutory limit	Including statutory enforcement tolerance		
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Alabamo Alaska Arizona Arkansas Californio	$\begin{aligned} & 96 \\ & 96 \\ & 96 \\ & 96 \\ & 96 \end{aligned}$	$\begin{aligned} & 13.6 \\ & 12.6 \\ & 13.6 \\ & 13.6 \\ & 13.6 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \\ & 40 \\ & 40 \\ & 35 \end{aligned}$	$\begin{array}{r} 40 \\ 640 \\ 40 \\ 40 \\ 935 \end{array}$	$\begin{aligned} & \text { NS } \\ & 40 \\ & \text { NS } \\ & \text { NS } \\ & 40 \end{aligned}$	$\begin{aligned} & 55 \\ & 60 \\ & 65 \\ & 55 \\ & 60 \end{aligned}$	$\begin{array}{c\|} \text { NP } \\ 60 \\ 65 \\ 55 \\ 65 \end{array}$	$\begin{array}{r} 1 \\ 1 \\ 1 \\ 1 \\ \text { NR } \end{array}$	$\begin{array}{r} N P \\ 1 \\ 1 \\ 1 \\ N R \end{array}$	$\begin{array}{r} \text { NP } \\ 2 \\ 2 \\ \text { NP } \\ \text { NR } \end{array}$	$\begin{array}{r} 18,000 \\ 18,000 \\ 18,000 \\ 818,000 \\ 18,000 \\ \hline \end{array}$	19,800	$\begin{aligned} & 36,000 \\ & 32,000 \\ & 32,000 \\ & 32,000 \\ & 32,000 \end{aligned}$	39,600	$\begin{aligned} & \text { NS } \\ & \text { NS } \end{aligned}$	
$\begin{aligned} & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	Colorodo Connecticut Delawore Florido	$\begin{array}{r} 1096 \\ 102 \\ 96 \\ 96 \end{array}$	1113.6 12.6 13.6 13.6	$\begin{array}{r} 35 \\ 50 \\ 40 \\ 1335 \end{array}$	$\begin{aligned} & 40 \\ & 50 \\ & 42 \\ & 40 \end{aligned}$	$\begin{array}{r} \text { NR } \\ \text { NR } \\ 40 \\ 14 \end{array}$	$\begin{aligned} & 60 \\ & 50 \\ & 55 \\ & 55 \end{aligned}$	$\begin{array}{r} 1260 \\ \text { NP } \\ 60 \\ 55 \\ \hline \end{array}$	1 1 1 1	$\begin{array}{r} 2 \\ N P \\ 1 \\ 1 \end{array}$	$\begin{aligned} & 2 \\ & N P \\ & N P \\ & N P \end{aligned}$	$\begin{aligned} & 18,000 \\ & 22,400 \\ & 20,000 \\ & 20,000 \end{aligned}$	$\begin{aligned} & 22,848 \\ & 22,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 36,000 \\ & 36,000 \\ & 36,000 \\ & 40,000 \end{aligned}$	$\begin{aligned} & 36,720 \\ & 44,000 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { NS } \\ & \text { NS } \\ & \text { NS } \\ & \text { NS } \end{aligned}$	
$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$	Georgio Howaii Idaho lllinois	$\begin{array}{r} 96 \\ 108 \\ 1096 \\ 96 \end{array}$	$\begin{aligned} & 13-6 \\ & 13-0 \\ & 14-0 \\ & 13-6 \end{aligned}$	$\begin{array}{r} 55 \\ 40 \\ 1835 \\ 42 \end{array}$	$\begin{array}{r} 55 \\ 40 \\ 1835 \\ 42 \\ \hline \end{array}$	$\begin{aligned} & \text { NR } \\ & \text { NR } \\ & \text { NR } \\ & 42 \end{aligned}$	$\begin{array}{r} 55 \\ 55 \\ 1960 \\ 2155 \end{array}$	$\begin{aligned} & 55 \\ & 65 \\ & 65 \\ & 60 \end{aligned}$	$\begin{gathered} \text { NR } \\ 1 \\ 1 \\ 1 \end{gathered}$	$\begin{array}{r} \text { NR } \\ 1 \\ 1 \\ 1 \end{array}$	$\begin{array}{r} \text { NR } \\ 2 \\ 2 \\ 2 \end{array}$	$\begin{array}{r} 18,000 \\ 24,000 \\ 2018,000 \\ 2318,000 \end{array}$	20,340	$\begin{array}{r} 36,000 \\ 32,000 \\ 32,000 \\ 32,000 \end{array}$	40,680	$\begin{aligned} & \text { NS } \\ & \text { NS } \\ & \text { NS } \\ & \text { NS } \end{aligned}$	
$\begin{aligned} & 14 \\ & 15 \\ & 16 \\ & 17 \end{aligned}$	Indiana lowa Kansas Kentucky	$\begin{array}{r} 1096 \\ 96 \\ 96 \\ 96 \\ \hline \end{array}$	$\begin{array}{r} 13-6 \\ 13-6 \\ 13-6 \\ 1173.6 \end{array}$	$\begin{array}{r} 36 \\ 35 \\ 35 \\ 2735 \\ \hline \end{array}$	$\begin{array}{r} 40 \\ 640 \\ 640 \\ 6435 \end{array}$	$\begin{array}{\|r} \hline \text { NR } \\ { }^{7} \mathrm{NR} \\ \text { NS } \\ \text { NR } \end{array}$	$\begin{array}{r} 55 \\ 2655 \\ 50 \\ 2855 \end{array}$	$\begin{array}{r} 2155 \\ 2655 \\ 50 \\ 2855 \end{array}$	1 1 1 1	1 1 1 1	$\begin{array}{r} 2 \\ 2 \\ \mathrm{NP} \\ \mathrm{NP} \end{array}$	$\begin{array}{r} 2518,000 \\ 18,000 \\ 18,000 \\ 18,000 \\ \hline \end{array}$	$\begin{array}{r} 2519,000 \\ 18,540 \\ 29 \\ 28,900 \\ \hline \end{array}$	$\begin{array}{r} 2532,000 \\ 32,000 \\ 32,000 \\ 32,000 \\ \hline \end{array}$	$\begin{array}{r} 2.33,000 \\ 32,960 \\ 2933,600 \end{array}$	$\begin{aligned} & \text { NS } \\ & \text { NS } \\ & \text { NS } \\ & \text { NS } \end{aligned}$	
$\begin{aligned} & 18 \\ & 19 \\ & 20 \\ & 2! \end{aligned}$	Louisiana Maine Maryland Massachusetts	$\begin{array}{r} 96 \\ 102 \\ 3296 \\ 96 \end{array}$	$\begin{array}{r} 13-6 \\ 3113-6 \\ 332-6 \\ \text { NS } \end{array}$	$\begin{aligned} & 35 \\ & 55 \\ & 55 \\ & 35 \end{aligned}$	$\begin{array}{r} 640 \\ 55 \\ 55 \\ 640 \end{array}$	$\begin{aligned} & \text { NR } \\ & \text { NR } \\ & N R \\ & \text { NR } \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \\ & 55 \\ & 50 \end{aligned}$	$\begin{array}{r} 60 \\ 55 \\ 3455 \\ \mathrm{NP} \end{array}$	1 1 NR 1	$\begin{array}{r} 1 \\ 1 \\ N R \\ N P \end{array}$	$\begin{aligned} & \text { NP } \\ & \text { NP } \\ & N R \\ & N P \end{aligned}$	$\begin{array}{r} 18,000 \\ 3: 22,000 \\ 22,400 \\ 22,400 \end{array}$		$\begin{array}{r} 32,000 \\ 3132,000 \\ 3540,000 \\ 36,000 \end{array}$		NS NS NS NS	
$\begin{aligned} & 22 \\ & 23 \\ & 24 \\ & 25 \end{aligned}$	Michigan Minnesota Mississippi Missouri	$\begin{aligned} & 96 \\ & 96 \\ & 96 \\ & 96 \end{aligned}$	$\begin{aligned} & 13-6 \\ & 13.6 \\ & 13-6 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \\ & 35 \\ & 35 \end{aligned}$	40 40 40 40	40 40 NR NR	$\begin{array}{r} 1555 \\ 50 \\ 55 \\ 50 \end{array}$	$\begin{array}{r} 1555 \\ 50 \\ 55 \\ 50 \end{array}$	1 1 1 1	1 1 1 1	$\begin{array}{r} 2 \\ N P \\ N P \\ 2 \end{array}$	$\begin{array}{r} 3718,000 \\ 18,000 \\ 18,000 \\ 18,000 \end{array}$		$\begin{array}{r} 3832,000 \\ 32,000 \\ 28,650 \\ 32,000 \end{array}$	${ }^{22} 32,000$	NS NS NS NS	
$\begin{aligned} & 26 \\ & 27 \\ & 28 \\ & 29 \end{aligned}$	Montana Nebraska Nevodo New Hampshire	$\begin{array}{r} 1096 \\ 96 \\ 96 \\ 96 \\ \hline \end{array}$	$\begin{array}{r} 13.6 \\ 13.6 \\ \text { NR } \\ 13.6 \end{array}$	$\begin{aligned} & 35 \\ & 40 \\ & \text { NR } \\ & 35 \end{aligned}$	$\begin{array}{r} 40 \\ 40 \\ N R \\ 2240 \end{array}$		$\begin{aligned} & 60 \\ & 60 \\ & \text { NR } \\ & 55 \end{aligned}$	$\begin{gathered} 60 \\ 60 \\ \text { NR } \\ 55 \end{gathered}$	$\begin{array}{r} 1 \\ 1 \\ N R \\ N R \end{array}$	$\begin{array}{r} 1 \\ 1 \\ N R \\ N R \end{array}$	$\begin{array}{r} 2 \\ 2 \\ N R \\ N R \end{array}$	$\begin{aligned} & 18,000 \\ & 18,000 \\ & 18,000 \\ & 22,400 \\ & \hline \end{aligned}$	$\begin{array}{r} 18,900 \\ 18,900 \end{array}$	$\begin{aligned} & 32,000 \\ & 32,000 \\ & 32,000 \\ & 36,000 \end{aligned}$	$\begin{array}{r} 33,600 \\ 33,600 \end{array}$	NS NS NS NS	
$\begin{aligned} & 30 \\ & 31 \\ & 32 \\ & 33 \end{aligned}$	New Jersey New Mexico New York North Carolina	$\begin{array}{r} 4196 \\ 4396 \\ 96 \\ 96 \\ \hline \end{array}$	$\begin{array}{r} 413.6 \\ 13.6 \\ 3313.0 \\ 13.6 \\ \hline \end{array}$	$\begin{aligned} & 35 \\ & 40 \\ & 35 \\ & 35 \end{aligned}$	$\begin{array}{r} 4235 \\ 40 \\ 4435 \\ 640 \\ \hline \end{array}$	$\begin{array}{r} \text { ? } 40 \\ \text { NR } \\ \text { 7 } \mathrm{NR} \\ \mathrm{NR} \end{array}$	$\begin{aligned} & 55 \\ & 65 \\ & 55 \\ & 55 \end{aligned}$	$\begin{aligned} & 50 \\ & 65 \\ & 55 \\ & 55 \end{aligned}$	1 1 1	1 1 1 1	$\begin{aligned} & N P \\ & 2 \\ & N P \\ & N P \end{aligned}$	$\begin{aligned} & 22,400 \\ & 21,600 \\ & 22,400 \\ & 18,000 \end{aligned}$	$\begin{aligned} & 23,520 \\ & 19,000 \end{aligned}$	$\begin{aligned} & 32,000 \\ & 34,320 \\ & 36,000 \\ & 36,000 \end{aligned}$	$\begin{aligned} & 33,600 \\ & 38,000 \end{aligned}$	NS NS NS NS	
$\begin{aligned} & 34 \\ & 35 \\ & 36 \\ & 37 \\ & \hline \end{aligned}$	North Dakota Ohio Oklahoma Oregon	$\begin{array}{r} 4196 \\ 96 \\ 96 \\ 96 \\ \hline \end{array}$	$4113-6$ $13-6$ $13-6$ 13.6	1335 35 35 35	$\begin{array}{r} 640 \\ 640 \\ 45 \\ 2240 \\ \hline \end{array}$	$\begin{array}{r} \text { NR } \\ 40 \\ \text { NR } \\ 2240 \\ \hline \end{array}$	$\begin{array}{r} 60 \\ 55 \\ 4550 \\ 2155 \\ \hline \end{array}$	$\begin{array}{r} 60 \\ 60 \\ 4550 \\ 2265 \\ \hline \end{array}$	1 1 1 1	$\begin{array}{r}1 \\ \text { NR } \\ 1 \\ 1 \\ \hline\end{array}$	$\begin{array}{r} 2 \\ N R \\ N P \\ 22 \\ \hline \end{array}$	$\begin{array}{r} 18,000 \\ 19,000 \\ 18,000 \\ 4018,000 \\ \hline \end{array}$		$\begin{array}{r} 32,000 \\ 31,500 \\ 32,000 \\ 4632,000 \\ \hline \end{array}$		NS NS NS NS	
$\begin{aligned} & 38 \\ & 39 \\ & 40 \\ & 41 \\ & \hline \end{aligned}$	Pennsylvania Rhode Island South Carolina South Dokoto	$\begin{array}{r} 96 \\ 102 \\ 96 \\ 96 \end{array}$	$\begin{array}{r} 3312.6 \\ 12.6 \\ 13.6 \\ 13.6 \end{array}$	$\begin{array}{r} 35 \\ 40 \\ 640 \\ 35 \end{array}$	$\begin{array}{r} 40 \\ 40 \\ 640 \\ 40 \\ \hline \end{array}$	40 40 NR NR	$\begin{array}{r} 4850 \\ 50 \\ 55 \\ 2265 \end{array}$	$\begin{array}{r} 3450 \\ 50 \\ 5455 \\ 2265 \end{array}$	1 1 1 1	1 1 1 1	$\begin{aligned} & \text { NP } \\ & \text { NP } \\ & \text { NP } \\ & 2 \end{aligned}$	$\begin{aligned} & 22,400 \\ & 22,400 \\ & 20,000 \\ & 18,000 \end{aligned}$	23, 072	$\begin{array}{r} 36,000 \\ \mathrm{NS} \\ 5532,000 \\ 32,000 \end{array}$	37,080	NS NS NS NS	
$\begin{aligned} & 42 \\ & 43 \\ & 44 \\ & 45 \end{aligned}$	Tennessee Texos Utah Vermont	$\begin{aligned} & 96 \\ & 96 \\ & 96 \\ & 96 \end{aligned}$	$\begin{aligned} & 13.6 \\ & 13.6 \\ & 14.0 \\ & 13.6 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 45 \\ & 50 \end{aligned}$	40 40 45 50	$\begin{aligned} & \text { 7 NS } \\ & \text { NS } \\ & 45 \\ & \text { NS } \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 60 \\ & 55 \end{aligned}$	1 1 NR 1	$\begin{gathered} 561 \\ 1 \\ \text { NR } \\ 1 \end{gathered}$	$\begin{aligned} & \text { NP } \\ & \text { NP } \\ & \text { NR } \\ & \text { NP } \end{aligned}$	$\begin{aligned} & 18,000 \\ & 18,000 \\ & 18,000 \\ & 22,400 \end{aligned}$	23,520	$\begin{array}{r} 32,000 \\ 32,000 \\ 33,000 \\ 5736,000 \end{array}$		NS NS NS NS	
46 47 48 49	Virginio Washington Wes: Virginia Wiscunsin	$\begin{aligned} & 96 \\ & 96 \\ & 96 \\ & 96 \end{aligned}$	$\begin{array}{r} 13.6 \\ 13.6 \\ 3312.6 \\ 13.6 \end{array}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 35 \end{aligned}$	$\begin{array}{r} 40 \\ 640 \\ 640 \\ 40 \end{array}$	$\begin{aligned} & \text { NR } \\ & 40 \\ & 35 \\ & 35 \\ & \hline \end{aligned}$	$\begin{array}{r} 50 \\ 1960 \\ 50 \\ 55 \\ \hline \end{array}$	$\begin{aligned} & 50 \\ & 65 \\ & 50 \\ & 55 \\ & \hline \end{aligned}$	1 1 1 1	1 1 1 1	$\begin{aligned} & N P \\ & 2 \\ & N P \\ & N P \end{aligned}$	$\begin{aligned} & 18,000 \\ & 18,000 \\ & 18,000 \\ & 18,000 \end{aligned}$	$\begin{array}{r} 18,900 \\ 6019,500 \\ \hline \end{array}$	$\begin{array}{r} 5832,000 \\ 32,000 \\ 32,000 \\ 30,400 \\ \hline \end{array}$	$\begin{array}{r} 33,600 \\ 32,000 \\ \hline \end{array}$	NS NS NS NS	
$\begin{aligned} & 50 \\ & 51 \\ & 52 \end{aligned}$	Wyoming District of Columbio Puerto Rico	$\begin{aligned} & 96 \\ & 96 \\ & 96 \end{aligned}$	$\begin{aligned} & 13.6 \\ & 12.6 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { NR } \\ & \text { NS } \\ & \text { NS } \end{aligned}$	$\begin{aligned} & 65 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 65 \\ & 50 \\ & 50 \end{aligned}$	1 1 1	1 1 1	$\begin{array}{r} 2 \\ N P \\ N P \end{array}$	$\begin{array}{r} 18,000 \\ 22,000 \\ \text { NS } \end{array}$		$\begin{array}{r} 32,000 \\ 38,000 \\ \text { NS } \end{array}$	6236,000	NS NS NS	
	AASHO Policy	102	13.6	40	40	40	55	65	1	1	2	20,000		32,000		95	
! Num	ber of Siotes $\left\{\begin{array}{l}\text { Higher } \\ \text { Some } \\ \text { Lower }\end{array}\right.$	1 3 48	4 37 11	$\begin{array}{r} 8 \\ 12 \\ 32 \end{array}$	10 37 5	35 6 11	$\begin{aligned} & 14 \\ & 24 \\ & 14 \end{aligned}$	$\begin{array}{r} 1 \\ 9 \\ 42 \end{array}$	6 46 0	8 41 3	7 18 27	16 2 34		26 25 1		52 0 0	

NP-Not permitred. NR-Not restricted. NS-Not specified.
buses, haulage of agricultural and forest products; at wheels of vehicles for safety accessories, on designated highways, and school ministratively authorized.
2Vorious exception

2 Various exceptions for utilify vehicles and loads, house trailers and mobile homes.
for farm tractors, mobile homes, etc.
1 ${ }^{5}$ Computed under the following conditions to permit comparison on a uniform basis between Siates with different types of regu-
A. Front axle load of 8,000 pounds
B. Maximum practical wheelbase within applicable length limits
(1) Minimum front overhang of 3 feet; minimum spacing from first to second axle of truck tractor 8 feet.
(2) In the case of a 4 -axle iruck-rracior semitrailer, rear overiang computed as necessary to distribute the maximum pos. semitrailer, within the permitted load limits of each
5 (3) In the case of acombination having 5 or more axies, minimum possible combined front and rear overhang assumed to be 5 feet, with maximum practical load on maximum permitted length of semitrailer, subject to control of loading on axle groups and an iotal wheelbase as applicable.
. Including statutory enforcement tolerance as opplicable
6 Less than three axles 35 feet
${ }^{\text {A }}$ Steering axle 12,000 pounds.

10 Buses 102 inches on highways of surfaced width at least 20 feet or otherwise as administratively authorized.
110 n class $A A$, or designated highways, 12 ft .6 in . on other highways.
${ }^{12}$ Except 3 -unit combinations may use up to 65 ft . combinations on certain highways designated by the Deportment of Righwoys.
is Two-oxle trailer 35 feet, three-axle troiler 40 feet

15 Auto transports permitted 63 feet.
1673,280 pounds maximum, except on roads $17700(\mathrm{~L}+40)$ when L is 18^{\prime} or less; 800 (L span of 20 or over.
${ }^{18}$ On designated highways 40 feet,
Auto transports on designated highways 6
20 Special limits for vehicles hauling timber livestock; single axle 18,900 pounds, tandem axle pounds maximum of 21 -foot axle spocing, vehicle ${ }_{21}$ trailers on designated major routes.

23 On designated highways: 16000 pounds
${ }_{24}$ Axle spacing 44 feet or more; otherwise
25 On designated highways; single axle 22 of weight under one or more limitations of axle lo axle. wise 50 feet lor all combinations

28 Stesignated highways; truck s 26.5 fee
29 Class AA highways only.
${ }^{30}$ Maximum gross weight on
31 Including load 14 feet; various exception
32 Vehicles loaded with tobacco hogsheadsflat glass.
${ }^{34}$ Exception for poles, pilings, structural
35 Eess than 48 inch spocing 36,000 poun
36 Subject to axle and tabular limits.
37. Single oxle spaced less than 9 feet fro

VEHICLES COMPARED WITH AASHO STANDARDS

ht limit		Specified maximum gross weight-pounds ${ }^{4}$						Practical maximum gross weight-pounds ${ }^{\text {s }}$						Line
Applicable to:		Truck		Truck-tractor semitroiler			Other combi nation	Truck		Truck-tractor semitrailer			Other combi. nation	
$\begin{aligned} & \text { Any } \\ & \text { group } \\ & \text { of } \\ & \text { oxles } \end{aligned}$	Total wheel- bose only	2-axle	3-axle	3-axle	4-axle	5-axle		2.0×1 e	3-oxle	3-axle	4-axle	5-axle		
Under 18^{\prime} Under 18' Under 18'	$\begin{array}{r} \quad X \\ \text { Over } 18^{\prime} \\ \text { Over } 18^{\prime} \\ \text { Over } 18^{\prime \prime} \end{array}$	29,000	43,000	47,000	61,000	$\begin{aligned} & 73,280 \\ & 75,000 \end{aligned}$	76,800	$\begin{aligned} & 27,800 \\ & 26,000 \\ & 26,000 \\ & 26,000 \\ & 26,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 47,600 \\ & 40,000 \\ & 40,000 \\ & 40,000 \\ & 40,000 \end{aligned}$	$\begin{aligned} & 47,600 \\ & 44,00 \\ & 44,000 \\ & 44,000 \\ & 44,000 \end{aligned}$	$\begin{aligned} & 67,400 \\ & 58,000 \\ & 58,000 \\ & 58,000 \\ & 58,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 73,280 \\ & 72,000 \\ & 72,000 \\ & 72,000 \\ & 72,000 \end{aligned}$	$\begin{array}{r} N P \\ 76,800 \\ 76,800 \\ 73,280 \\ 76,800 \end{array}$	1 2 3 4 5
x	x X	$\begin{aligned} & 32,000 \\ & 30,000 \end{aligned}$	$\begin{aligned} & 53,800 \\ & 46,000 \end{aligned}$	$\begin{aligned} & 53,800 \\ & 48,000 \end{aligned}$	67,400	73,000	NP	$\begin{aligned} & 26,000 \\ & 30,888 \\ & 28,000 \\ & 30,000 \end{aligned}$	$\begin{aligned} & 44,000 \\ & 44,720 \\ & 44,000 \\ & 52,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 44,000 \\ & 53, \\ & 48,000 \\ & 48,000 \\ & \hline 52,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 62,000 \\ & 67,400 \\ & 64,000 \\ & 73,271 \\ & \hline \end{aligned}$	$\begin{aligned} & 76,000 \\ & 73,000 \\ & 73,280 \\ & 73,277 \\ & \hline \end{aligned}$	$\begin{aligned} & 76,000 \\ & \mathrm{NP} \\ & 73,280 \\ & 73,277 \end{aligned}$	6 7 8 8 9
x		36,000	50,000	50,000	64,000	73,280 ${ }^{24} 73,280$	73, 280 ${ }^{24} 73,280$	$\begin{aligned} & 28,340 \\ & 32,000 \\ & 26,000 \\ & 26,000 \end{aligned}$	48,680 40, 000 40,000 40,000	48,680 56,000 44,000 44,000	69,110 64,000 58,000 58,000	73,280 72,200 73,280 72,000	73,280 80,000 76,800 73,280	10 11 12 13
x	X	$\begin{aligned} & 36,000 \\ & 27,000 \end{aligned}$	50,000 42,000	54, 000 42,000	59,640	73,280	$\begin{array}{r} 72,000 \\ N P \end{array}$	$\begin{aligned} & 27,000 \\ & 26,540 \\ & 26,000 \\ & 27,000 \end{aligned}$	$\begin{aligned} & 41,000 \\ & 40,960 \\ & 40,000 \\ & 42,000 \end{aligned}$	$\begin{aligned} & 45,000 \\ & 45,80 \\ & 44,000 \\ & 42,000 \end{aligned}$	$\begin{aligned} & 59,000 \\ & 59,500 \\ & 58,000 \\ & 59,640 \end{aligned}$	2573,000 73,280 72,000 73,280	2573,000 73,280 73,280 73,280	14 15 16 17
x	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{array}{r} 32,000 \\ { }^{30} 46,000 \end{array}$	$\begin{aligned} & 3151,800 \\ & { }^{36} 60,000 \end{aligned}$	$\begin{aligned} & 51,800 \\ & 36 \\ & 355,000 \\ & 36,000 \end{aligned}$	$\begin{array}{r} 62,050 \\ 36 \\ 65,000 \\ 3073,000 \end{array}$	$\begin{array}{r} 73,280 \\ 3673,280 \\ 3 n 73,000 \end{array}$	$\begin{array}{r} 73,280 \\ 34,73,280 \\ \mathrm{NP} \end{array}$	$\begin{aligned} & 26,000 \\ & 30,000 \\ & 30,400 \\ & 30,400 \end{aligned}$	$\begin{aligned} & 40,000 \\ & 40,000 \\ & 48,000 \\ & 44,000 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 44,000 \\ 51,800 \\ 52,80 \\ 52,800 \end{array} \end{aligned}$	$\begin{aligned} & 58,000 \\ & 62,000 \\ & 55,000 \\ & 66,400 \end{aligned}$	$\begin{aligned} & 72,000 \\ & 72,000 \\ & 73,280 \\ & 73,000 \end{aligned}$	$\begin{aligned} & 76,000 \\ & 73,280 \\ & 73,280 \\ & N P \end{aligned}$	18 19 20 21 21
$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$						73,280	73, 280	$\begin{aligned} & 26,000 \\ & 26,00 \\ & 26,000 \\ & 26,000 \end{aligned}$	2240,000 40,000 2240,000 40,000	$\begin{aligned} & 44,000 \\ & 44,000 \\ & 44,000 \\ & 44,000 \end{aligned}$	$\begin{array}{r} 2 \mathrm{~F} 58,000 \\ 58,000 \\ 58,000 \\ 58,000 \end{array}$	$\begin{aligned} & 2266,000 \\ & 72,000 \\ & 2272,000 \\ & 2722,000 \end{aligned}$	$\begin{aligned} & 22102,000 \\ & 73,280 \\ & 2273,280 \\ & 2273,280 \\ & \hline \end{aligned}$	22 22 23 24 25
Under 18 ' X Under 18	Over 18 ' Over $\begin{array}{r}18 \\ \mathrm{X}\end{array}$	$\begin{aligned} & 36,000 \\ & 33,400 \end{aligned}$	$\begin{array}{r} 54,000 \\ 4055,000 \end{array}$	$\begin{array}{r} 54,000 \\ { }^{40} 52,800 \end{array}$	$\begin{aligned} & 71,146 \\ & 66,400 \end{aligned}$	$\begin{aligned} & 71,146 \\ & 73,280 \end{aligned}$	$\begin{aligned} & 71,146 \\ & 73,280 \end{aligned}$	$\begin{aligned} & 26,000 \\ & 26,780 \\ & 26,900 \\ & 30,400 \\ & \hline \end{aligned}$	$\begin{aligned} & 40,000 \\ & 41,200 \\ & 41,600 \\ & 44,000 \end{aligned}$	$\begin{aligned} & 44,000 \\ & 45,320 \\ & 45,800 \\ & 52,800 \end{aligned}$	$\begin{aligned} & 58,000 \\ & 59,740 \\ & 60,500 \\ & 66,400 \\ & \hline \end{aligned}$	$\begin{aligned} & 72,000 \\ & 73,280 \\ & 75,200 \\ & 73,280 \\ & \hline \end{aligned}$	$\begin{aligned} & 76,000 \\ & 73,280 \\ & 76,800 \\ & 73,280 \\ & \hline \end{aligned}$	25 27 28 28 29
Under 18'	$\text { Over }{ }^{18} \times$	31,500	49,875	49,875	67,200	$\begin{aligned} & 71,000 \\ & 73,280 \end{aligned}$	$\begin{aligned} & 71,000 \\ & 73,288 \end{aligned}$	$\begin{aligned} & 31,520 \\ & 29,600 \\ & 30,400 \\ & 27,000 \end{aligned}$	$\begin{aligned} & 41,600 \\ & 42,320 \\ & 44,000 \\ & 46,000 \end{aligned}$	$\begin{aligned} & 55,040 \\ & 51,20 \\ & 52,800 \\ & 46,000 \end{aligned}$	$\begin{aligned} & 65,120 \\ & 63,920 \\ & 66,400 \\ & 65,000 \end{aligned}$	$\begin{aligned} & 73,280 \\ & 76,640 \\ & 71,000 \\ & 73,280 \end{aligned}$	73,280 88600 71,000 73,230	30 31 32 33
Under 18' Under 18	Over ${ }^{18} \mathrm{X}$ Over ${ }^{18}$					+776,000	+776,000	$\begin{aligned} & 26,000 \\ & 27,000 \\ & 26,000 \\ & 26,00 \end{aligned}$	$\begin{aligned} & 40,000 \\ & 33,500 \\ & 40,000 \\ & 40,000 \end{aligned}$	$\begin{aligned} & 44,000 \\ & 46,000 \\ & 44,000 \\ & 44,000 \end{aligned}$	$\begin{aligned} & 58,000 \\ & 58,500 \\ & 58,000 \\ & 58,00 \end{aligned}$	$\begin{aligned} & 72,000 \\ & 71,000 \\ & 72,000 \\ & 72,000 \\ & \hline \end{aligned}$	$\begin{array}{\|} 73,280 \\ 78,000 \\ 773,280 \\ 476,000 \\ \hline \end{array}$	34 35 35 36 37
x		$\begin{array}{r} 33,000 \\ 5036,000 \\ 32,000 \end{array}$	$\begin{array}{r} 47,000 \\ 5144,000 \\ 46,000 \end{array}$	$\begin{array}{r} 50,000 \\ 5253,800 \\ 50,000 \end{array}$	$\begin{array}{r} 60,000 \\ 5367,400 \\ 65,000 \end{array}$	$\begin{aligned} & 71,145 \\ & 73,280 \\ & 73,280 \end{aligned}$	$\begin{aligned} & 71,145 \\ & 88,000 \\ & 73,280 \end{aligned}$	$\begin{aligned} & 31,072 \\ & 30,400 \\ & 28,000 \\ & 26,000 \end{aligned}$	$\begin{aligned} & 45,080 \\ & 44,000 \\ & 40,000 \\ & 40,00 \\ & \hline \end{aligned}$	$\begin{aligned} & 51,500 \\ & 53,800 \\ & 48,000 \\ & 44,000 \end{aligned}$	$\begin{aligned} & 61,800 \\ & 67,40 \\ & 60,000 \\ & 58,000 \end{aligned}$	$\begin{aligned} & 73,280 \\ & 73,280 \\ & 72,000 \\ & 72,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 73,280 \\ & 88,000 \\ & 73,280 \\ & 73,280 \\ & \hline \end{aligned}$	38 38 39 40 41
	X	36,000	$\begin{aligned} & 44,000 \\ & 51,000 \end{aligned}$	$\begin{aligned} & 48,000 \\ & 54,000 \end{aligned}$	$\begin{aligned} & 62,000 \\ & 69,000 \end{aligned}$	$\begin{aligned} & 73,280 \\ & 79,900 \\ & 73,280 \end{aligned}$	$\begin{aligned} & 79,900 \\ & 73,280 \end{aligned}$	$\begin{aligned} & 26,0000 \\ & 26,000 \\ & 26,000 \\ & 31,520 \end{aligned}$	$\begin{aligned} & 40,000 \\ & 40,000 \\ & 41,000 \\ & 44,000 \end{aligned}$	$\begin{aligned} & 44,000 \\ & 44,000 \\ & 44,000 \\ & 55,00 \end{aligned}$	$\begin{aligned} & 58,000 \\ & 58,000 \\ & 59,000 \\ & 66,40 \end{aligned}$	$\begin{aligned} & 72,000 \\ & 72,000 \\ & 74,000 \\ & 73,280 \end{aligned}$	$\begin{aligned} & 43,500 \\ & 72,000 \\ & 79,900 \\ & 73,288 \end{aligned}$	42 43 44 45 45
$\begin{aligned} & \\ & \text { Under } 18 \\ & x \\ & x\end{aligned}$		28,000	36,000	46,000	$\begin{array}{r} 660,000 \\ 5970,000 \end{array}$	$\begin{array}{r} 70,000 \\ 68,000 \\ 5970,000 \end{array}$	$\begin{array}{r} 70,000 \\ 772,000 \\ 5970,000 \end{array}$	$\begin{aligned} & 26,000 \\ & 26,000 \\ & 26,900 \\ & 27,500 \\ & \hline \end{aligned}$	$\begin{aligned} & 40,000 \\ & 36,000 \\ & 41,600 \\ & 40,000 \end{aligned}$	$\begin{aligned} & 44,000 \\ & 44,000 \\ & 45,800 \\ & 47,000 \\ & \hline \end{aligned}$	$\begin{array}{r} 50,000 \\ 60,000 \\ 00,500 \\ 59,500 \\ \hline \end{array}$	$\begin{aligned} & 70,000 \\ & 68,000 \\ & 73,280 \\ & 73,000 \end{aligned}$	$\begin{aligned} & 70,000 \\ & 72,000 \\ & 73,280 \\ & 73,000 \\ & \hline \end{aligned}$	46 47 49 49
$\begin{aligned} & x \\ & x \end{aligned}$						70,000	70,000	$\begin{aligned} & 26,000 \\ & 30,000 \end{aligned}$	$\begin{aligned} & 44,000 \\ & 46,000 \end{aligned}$	$\begin{aligned} & 44,000 \\ & 52,000 \end{aligned}$	$\begin{aligned} & 62,000 \\ & 68,000 \end{aligned}$	$\begin{aligned} & 73,950 \\ & 70,000 \end{aligned}$	$\begin{aligned} & 73,950 \\ & 70,000 \end{aligned}$	50 51 52
x								28,000	40,000	48,000	60,000	72,000	86,500	
j 18	20							15 2 34	25 24 2	15 2 34	22 3 26	25 20 6	2 0 49	

, 000 pounds maximum.
$900(\mathrm{~L}+40)$ on highways having no struciures with
:trates, aggregates, and agri cultural products including lle: vehicle with 3 or 4 axles permitted 66,000 lling house trailers only; Oregon, truck tractor sem
nds; tolerance of 1,000 pounds on total of oll excesse upon the placing of 9000 F on the front or steering
highways with surface width 22 feet or more; other-

hways.

ighways 30,000 pounds.
ighways 30,000 pounds.
fucts and construction materials,
ex vehicles loaded with hay or strow, or carrying isd 70 feet.

38 On designated highways only and limited to one tandem oxle in combination; otherwise 26,000 pounds.
${ }^{39}$ Trailer 40 feet
${ }^{40}$ On Interstate System 47,500 pounds. Vehicles: in North Dakoto, from Siate Highway Truck Regulatory Deportment.

42 Or as prescribed by P.U.C.
${ }^{42}$ Or as prescribed by P. Bignated highways 102 inches. Body restricted to $96^{\prime \prime}$, additional 6" for tires only.
44 Trackless tralleys and buses 7 passengers or more, P.S.C. certificate 40 feet.
45 Auto transports, oil field equipment, by special permis only, 60 feet.
${ }_{46}$ Auto transports, oil field equipment, by special permit only, 00 -single axle, 34,000 -pounds tandem axle
46 Logging vehicles permitted 7tioot wheelbase tor 47 Governs gross weight permitted on highways designated by resolution of State highway commissian
48 Where truck-tractor was properly registered in Peunds.
Single unit truck with 4 axle permitted 60,000 pounds. 12 feet 36,000 oounds; 12 feel or more gross weight governed by arle limit.
Axles spaced less than 6 feet 32,000 pounds, less 12 feer 10,000 pounds; less than 20 feet 44,000 pounds; 20 feet or Single vehicle with
52 erned by oxle les exper les than 22 feet 46,000 pounds; not less than 27 feet 53,800 pounds
53 Legal limit 67400 pounds, axle spacing 27 feet or more.
54 egal limit 67,400 pounds, axle spach double saddle mounts in daylight hours, 60 feet.
55 On Interstate System; 36,000 pounds on other roads..
56 L imited to 3,500 pounds.
56 Limited to 3,500 pounds.
57 Three-axle tander 42,700 pounds. 58 Vehices egistered before July 1, 1956, oermitted limits in effect January 1, 1956, for life of vehicle.
Vehices
oction. Axle load 21,000 pounds on 2 -axle trucks houling peeled or unpeeled forest products cut crosswise or transporting milk from form to market but not over Interstate System.
from form to marker but not ox all axles of a yehicle or combination-73,000 pounds maximum. Wheel, axle, axle group and gross micle Class B highways are 60% of weights including tolerance authorized for Class A highways.
62 Based on ruling of Attorney Genera!.
6

Table 9.-Expenditures for roads and streets in 46 SMSA's, 1960

[^4]
Expenditures

Expenditures for highways are detailed for wital outlays between those expended on Site administered highways and those on 1 al roads and streets, as shown in table 9 if figure 3. Because of the rural areas in t: SMSA's, rural-municipal classification is (8) wn to the extent that the data permitted. e classification of expenditures for construcin, by systems, is frequently not complete cexact, or the rural-municipal segregation of e enditures on State-administered highways y not be complete. In the Baltimore, 11., Area, for example - perhaps the most freme-Federal aid of $\$ 7.8$ million, matched h $\$ 5.5$ million of local municipal funds, was fended for construction of Federal-aid route tensions in the city of Baltimore that ordit illy would be extensions of State highways. It because State jurisdiction stops at the Iltimore city limit, such extensions are under tnicipal jurisdiction. The capital expendile of the entire $\$ 13.4$ million is included in he 9 with those for local municipal streets ther than with those for municipal extenias of State-administered systems, as for ; other Areas.
The split between rural and municipal ex"ditures is further complicated because the te classification of rural expenditures indes Federal-aid urban outlay to the extent it the Federal-aid urban area extends yond the corporate limits of cities. Alugh such classification difficulties affect columnar data of individual SMSA's in le 9 , the total outlays shown are complete. The total 1960 expenditures for highways ie $\$ 1,491$ million in the 46 SMSA's. bital outlay, which consists of right-of-way, ineering, and construction costs, amounted $\beta 935$ million, 62.7 percent of total expendiles. Maintenance, operation, and administion expenditures were $\$ 476$ million, or 3 percent, and interest and financing costs remainder, $\$ 80$ million or 5.4 percent.
he broad classification of maintenance, oinistration, and operation requires some nition. Local expenditures were conred to be complete and adequately orted. Expenditures for maintenance and oinistration of local toll facilities were ally well reported. At the State level, intenance of condition and operating intenance were included in the analysis for ; study. But expenditures for administrat, collection, and State highway police and :ty were not included in this analysis bese proration would be required that might misleading; neverthelcss, earnings from hway use are expended for these functions. he magnitude of the cost of collecting user is, administration of highway organizais, and highway police and safety expencli23 of the States in 1960 is illustrated by the गwing figures. For example, the total for iway administration, collection of user 2s, and highway police and safety were, lectively, for all States and the District of umbia: $\$ 290$ million, $\$ 212$ million, and 4 million. The same expenditures pro:d to the 46 SMSA's were: $\$ 35$ million, $\$ 36$ ion, and $\$ 39$ million. Costs of collection,

Figure 3.-Expenditures for highways, 46 SMSA's, 1960.
including administrative and enforcement costs, were obtained by relating the total State costs to total State user revenues in each State and applying that relationship to State usertax earnings of the SMSA in that State. State highway administration costs were related to total capital and maintenance ex-
penditures in each State, and that relationship was applied to State expenditures for capital outlay and maintenance of each SMSA. Expenditures for State highway police and safety education were derived only in total for all SMSA's by relating all travel in the SMSA's to the total travel nationwide.

Table 10.-Disbursements for allied street functions and parking facilities for the United States and 46 SMSA's, 1960^{1}

[^5]? Debt service for these functions grouped in total, no breakdown available.

Table 11. -Estimated earnings of motor-vehicle-user taxes and tolls generated by travel and vehicle ownership in 46 SMSI's in 1960 , at 1960 tax rates and tolls

SMSA's, by population group	Vehicle-miles of travel within the SMSA	Collecting agencies							Total user taxes on highway use in SMSA	Ratio of user earnings to expenditures (Expenditures $=1.0$)
		Federal	State agencies ${ }^{1}$			Local governments ${ }^{1}$				
		Excise taxes of the Federal Highway Trust Fund ${ }^{2}$	Motor-fuel and vehicle taxes and fees	Tolls	Total State taxes and fees	Motor-fuel and vehicle taxes and fees ${ }^{3}$	Tolls	Total local taxes and fees		
Less than 250,000										
Atlantic City, N.J Bay City, Mich Cedar Rapids, Iowa Charleston, S.C Eugene, Oreg.	$\begin{array}{r} \text { Million } \\ 1,175 \\ 425 \\ 502 \\ 715 \\ 643 \end{array}$	$\begin{gathered} \text { Thousands } \\ \$ 4,690 \\ 1,751 \\ 2,125 \\ 3,103 \\ 2,597 \end{gathered}$	Thousands \$7, 102 3, 354 4,988 5,332 6,456 6,456		Thousands \$7, 48 3, 354 4, 988 5,332 6,456			Thousands $\$ 273$ $-\quad 210$ $--\quad 276$	Thousands $\$ 12,445$ 5,105 7,323 8,435 9,329	$\begin{array}{r} 1.93 \\ 1.81 \\ 1.29 \\ 1.80 \\ .67 \end{array}$
Fargo, N. J)ak Fitchburg-Leominster, Mass_- Fort Wayne, Ind Great Falls, Mont Jackson, Miss.	$\begin{aligned} & 452 \\ & 426 \\ & 582 \\ & 273 \\ & 590 \end{aligned}$	$\begin{aligned} & 1,962 \\ & 1,492 \\ & 2,399 \\ & 1,048 \\ & 2,526 \end{aligned}$	$\begin{aligned} & 3,835 \\ & 2,286 \\ & 5,072 \\ & 2,174 \\ & 5,112 \end{aligned}$		$\begin{aligned} & 3,835 \\ & 2,286 \\ & 5,072 \\ & 2,174 \\ & 5,112 \end{aligned}$	$\begin{array}{r} 1,012 \\ 95 \\ 137 \\ 137 \end{array}$		$\begin{array}{r} 1,012 \\ 95 \\ 137 \\ 137 \end{array}$	$\begin{aligned} & 5,797 \\ & 4,790 \\ & 7,566 \\ & 3,359 \\ & 7,775 \end{aligned}$	$\begin{array}{r} .34 \\ 2.90 \\ 1.37 \\ .69 \\ 1.08 \end{array}$
Las Vegas, Nev \qquad Lewiston-Auburn, Maine Lexington, Ky Little Rock North Little	$\begin{aligned} & 359 \\ & 174 \\ & 433 \end{aligned}$	$\begin{aligned} & 1,722 \\ & 622 \\ & 1,832 \end{aligned}$	$\begin{aligned} & 3,658 \\ & 1,650 \\ & 3,666 \end{aligned}$	272	3,658 1,922 3,666	197 134 81	---	$\begin{gathered} 197 \\ 134 \\ 81 \end{gathered}$	$\begin{aligned} & 5,577 \\ & 2,678 \\ & 5,579 \end{aligned}$	$\begin{array}{r} .94 \\ 2.20 \\ 2.06 \end{array}$
Rock, Ark Lynchburg, Va.	$\begin{aligned} & 796 \\ & 424 \end{aligned}$	3,876 1,837	7,330 3,220	--------	7,330 3,220	188 260	-----------	$\begin{aligned} & 188 \\ & 260 \end{aligned}$	11,394 5,317	$\begin{array}{r} .51 \\ 1.58 \end{array}$
Macon, (ia Madison, W is Sioux Falls, S. Dak South Bend, Ind Springlield, Mo Waterbury, Conn...	$\begin{aligned} & 452 \\ & 911 \\ & 340 \\ & 570 \\ & 659 \\ & 523 \end{aligned}$	1,721 3,916 1,435 2,301 2,505 2,146	3,273 7,436 3,027 4,888 2,968 4,208		3,273 7,436 3,027 4,888 2,962 4,208	$\begin{gathered} 174 \\ 360 \\ 158 \\ 152 \\ 770 \\ 26 \end{gathered}$		$\begin{array}{r} 174 \\ 3100 \\ 158 \\ 152 \\ 770 \\ 26 \end{array}$	$\begin{array}{r} 5,168 \\ 11,712 \\ 4,620 \\ 7,341 \\ 6,237 \\ 6,380 \end{array}$	$\begin{array}{r} 1.74 \\ .75 \\ .46 \\ 1.88 \\ 1.11 \\ .94 \end{array}$
Total P'ercentage of user taxes...	11, 424	$\$ 47,606$ 33.1	$\$ 91,029$ 63.3	$\$ 652$ 0.4	$\$ 91,681$ 63.7	$\$ 4,640$ 3.2	--.-------	$\$ 4,640$ 3.2	$\$ 143,927$ 100.0	. 94
250,000 то 500,000										
Albuquerque, N. Mex Charleston, W. Va Charlotte, N.C Jacksonville, Fla Nashvilie, Tenn	$\begin{array}{r} 828 \\ 815 \\ 675 \\ 1,807 \\ 1,209 \end{array}$	$\begin{array}{r} \$ 3,531 \\ 3,504 \\ 2,741 \\ 7,297 \\ 5,147 \end{array}$	$\begin{array}{r} \$ 7,109 \\ 8,734 \\ 6,462 \\ 15,715 \\ 10,389 \end{array}$	\$3, 338	$\begin{array}{r} \$ 7,109 \\ 8,734 \\ 6,462 \\ 19,053 \\ 10,389 \end{array}$	$\begin{array}{r} \$ 629 \\ 257 \\ 144 \\ 427 \\ 1,401 \end{array}$	-----------------	$\begin{array}{r} \$ 629 \\ 257 \\ 144 \\ 427 \\ 1,401 \end{array}$	$\begin{array}{r} \$ 11,269 \\ 12,495 \\ 9,347 \\ 26,777 \\ 16,937 \end{array}$	$\begin{array}{r} 0.67 \\ 2.95 \\ 1.67 \\ .70 \\ .78 \end{array}$
Omaha, Nelor. Salt Lake City, Utah Tacoma, Wash. Tulsa, Okla. ${ }^{4}$ Wichita, Kans Wilmington, Del	$\begin{aligned} & 1,842 \\ & 1,155 \\ & 1,281 \\ & 1,436 \\ & 1,382 \\ & 1,586 \end{aligned}$	$\begin{aligned} & 7,585 \\ & 4,929 \\ & 5,087 \\ & 5,931 \\ & 5,514 \\ & 6,554 \end{aligned}$	14,988 8,908 12,035 15,757 8,846 11,000		14,988 8,908 12,035 17,355 9,205 15,770	1,987 257 484 418 467	$\$ 197$	2,184 257 -484 418 467	$\begin{aligned} & \begin{array}{l} 14,757 \\ 14,094 \\ 17,122 \\ 23,770 \\ 15,137 \\ 22,791 \end{array} \end{aligned}$	$\begin{aligned} & \text { 1. } 00 \\ & \text { 1.08 } \\ & 1.28 \\ & 1.67 \\ & .85 \\ & 1.36 \end{aligned}$
Total Percentage of user taxes	14,016	$\$ 57,820$ 29.7	$\$ 119,943$ 61.7	$\$ 10,065$ 5.2	$\$ 130,008$ 66.9	$\$ 6,471$ 3.3	$\$ 197$ 0.1	$\$ 6,668$ 3.4	$\$ 194,496$ 100.0	1.04
5,000,000 то 1,000,000										
Birmingham, Ala Columbus, Ohio Denver. C'olo Honolulu, Lawaii New Orleans, La Phoenix, Ariz Providence, R.I	$\begin{aligned} & 2,052 \\ & 2,696 \\ & 3,500 \\ & 1,123 \\ & 1,941 \\ & 3,084 \\ & 3,401 \end{aligned}$	$\begin{array}{r} \$ 8,140 \\ 10,308 \\ 14,354 \\ 4,544 \\ 9,138 \\ 13,157 \\ 11,997 \end{array}$	$\begin{array}{r} \$ 14,661 \\ 23,291 \\ 26,939 \\ 8,903 \\ 16,690 \\ 21,430 \\ 27,150 \end{array}$	$\$ 643$ $\cdots+\cdots$ \cdots $\cdots-718$	$\begin{array}{r} \$ 14,661 \\ 23,291 \\ 27,582 \\ 8,903 \\ 19,616 \\ 21,430 \\ 27,868 \end{array}$	$\$ 2,283$ 446 $-\quad 4,368$ $-\quad 539$ 1,390	$\$ 1,437$	$\$ 2,283$ 446 $\cdots-\quad-1,368$ 1,976 \cdots $-\quad 1,390$	$\begin{array}{r} \$ 25,084 \\ 34,045 \\ 41,936 \\ 17,815 \\ 30,730 \\ 34,587 \\ 41,255 \end{array}$	$\begin{array}{r} 1.74 \\ 1.17 \\ 1.68 \\ .93 \\ .82 \\ 1.26 \\ .99 \end{array}$
Total Percentage of user taxes	17,797	$\$ 71,638$ 31.8	$\$ 139,064$ 61.7	$\$ 4,287$ 1.9	$\$ 143,351$ 63.6	$\$ 9,026$ 4.0	$\$ 1,437$ 0.6	\$10, 463	$\begin{array}{r} \$ 225,452 \\ 100.0 \end{array}$	1. 16
MORE THAN $1,000,000$										
Baltimore, Md Buffalo, N. Y.-. Chicagn, Ill Iloustion, Tex Los Angeles, Calif Minneapolis-St. Paul, Minn Philadelphia, Pa	5,966 3,417 19,210 4,265 27,88 5,500 12,314	$\begin{array}{r} \$ 24,796 \\ 13,638 \\ 76,656 \\ 17,958 \\ 117,625 \\ 22,557 \\ 48,908 \end{array}$	$\begin{array}{r} \$ 48,698 \\ 31,416 \\ 135,788 \\ 36,935 \\ 264,876 \\ 42,210 \\ 90,797 \end{array}$	$\begin{array}{r} \$ 5,558 \\ 4,637 \\ 18,426 \\ -\cdots+\cdots \\ \hline-\cdots+\cdots \\ \hline 28,034 \end{array}$	$\begin{array}{r} \$ 54,256 \\ 36,053 \\ 154,214 \\ 36,935 \\ 264,876 \\ 42,210 \\ 118,831 \end{array}$	$\begin{array}{r} \$ 4,602 \\ 781 \\ 39,080 \\ 687 \\ 3,886 \\ 1,079 \\ 1,999 \end{array}$	$\$ 351$ $-2,208$ --281 $-1,566$	$\begin{array}{r} \$ 4,953 \\ 71,981 \\ 4188 \\ 6,967 \\ 1,072 \\ 3,565 \end{array}$	$\begin{array}{r} \$ 84,005 \\ 50,479 \\ 272,158 \\ 55,580 \\ 386,468 \\ 65,839 \\ 171,304 \end{array}$	$\begin{array}{r} 1.35 \\ .89 \\ .81 \\ .77 \\ 1.71 \\ .75 \\ 1.46 \end{array}$
Total Percentage of user taxes	78,480	$\begin{array}{r} \$ 322,138 \\ 29.7 \end{array}$	$\begin{array}{r} \$ 650,720 \\ 59.9 \end{array}$	$\begin{array}{r} \$ 56,655 \\ 5.2 \end{array}$	$\begin{array}{r} 707,375 \\ 65.1 \end{array}$	$\begin{array}{r} \$ 51,907 \\ 4.8 \end{array}$	$\begin{array}{r} \$ 4,406 \\ \mathbf{0 . 4} \end{array}$	$\begin{aligned} & \$ 56,313 \\ & 5.2 \end{aligned}$	$\begin{array}{r} \$ 1,085,826 \\ 100.0 \end{array}$	1.13
TOTAT, ALI SMSA'S \qquad Percentage of user taxes.	121,717	$\begin{array}{r} \$ 499,202 \\ 30.2 \end{array}$	$\$ 1,000,756$ 60.7	$\$ 71,659$ 4.3	\$1, 072,415 65.0	$\$ 72,044$ 4.4	$\$ 6,040$ 0.4	$\$ 78,084$ 4.8	$\$ 1,649,701$ 100.0	1.11

truck licenses, and other fees levied on highway users within those jurisdictions.
 Includes parking fees. general fund revenues.
3 Inch oil taxes that
${ }^{1}$ Excludes Osage County.

lied street functions

As stated previously, charges for State adinistration, collection, and police and safety 1 ve not been included with the expenditures sown in table 9 . However, expenditures for lirect municipal strect functions, usually 1-med allied street functions, have been inlided in the amounts shown for maintenance ed administration. These allied street funcins consist of construction, maintenance, id administration for street lighting, strect raning, sidewalks, storm drainage, and lintenance and operation of parking meters dd lots. Because division of the expendiI es for construction or maintenance was not tivays reported, the entire expenditure for s ied street function has been included in the d.ounts shown in table 9 for maintenance d administration.
Except for parking facilities, the expendites for allied street functions provide the Fist benefits to abutting property and in the fim of protection of public health, safety, and furity. For example, storm sewers drain racent property as well as the streets, and seet lighting provides safety and security to plestrians and occupants of nearby buildings. Ihusion of such expenditures in the statistical dia presented here may therefore be regarded b an offset against the omission of the alfated expenditures for State highway admistration, user-tax revenue collection, and K.te highway police.
iunds for allied street functions are derived ninly from property taxes and assessments a from local general revenue funds. Roadur revenues, State and local, are used to some eent when outlays for these purposes are iridental to highway construction or maintemice operations. The amounts shown in tile 8 include the income from these different sirces for the indirect municipal street funct:as, and the expenditures amounting to $\$ 134$ -m lion are included with the amounts shown it table 9. A summary of the nationwide erenditures for allied street functions in 1960 al the corresponding expenditures in the 46 SSA's are shown in table 10.

Bad-user earnings

The motor-vehicle user tax and toll earnings each SMSA are listed in table 11, and Gire 4 shows the proportion of the total anings, by Federal, State, and local sources. Is proportions of earnings from Federal, Ste, and local levies are given in percentages. Ste motor-fuel taxes and motor-vehicle xistration and other fees were 60.7 percent otal carnings, double those realized from Federal excise group. Local levies on - $(1$ users amounted to 4.4 percent of the and and are equal to the earnings of the Ste level toll facilities. Tolls from all . . lities, State and local, were $\$ 79$ million, or l. percent.

The total road-user tax earnings of $\$ 1,650$ fion divided by the number of vehiele-miles Hals a payment of 1.36 cents per vehiclere of travel; of this amount, 0.41 cent was r_{1} Federal Trust Fund excise taxes and 0.88 (t. from State taxes and tolls. Local user

Figure 4.-Estimated earnings for highuays, 46 SMSA's, 1960.
levies amounted to an average per vehicle-mile earnings of slightly less than 0.07 cent.

By comparison, the total 1960 U.S. roaduser taxes (10) amounted to $\$ 8,211$ million, and the corresponding total travel (2, p. 80) was 718,845 million vehicle-miles. These two items equal an average earning rate of 1.14 cents per vehicle-mile of travel. The computed earning rate of 1.36 cents per vehiclemile of travel for the SMSA's was 19 percent more than the national average. The differences in the motor-fuel consumption rate estimated for the SMSA's accounted for 14 of the 19 percent earning rate (table 4). The remainder of the difference is accounted for by the fact that the annual travel in the S\SA per vehicle registered therein (a synthetic figure because much of the travel is contributed by vehicles from outside the Area) runs low- 8,497 miles per year, in comparison with the national per vehicle average, which was 9,652 in 1960 . When the annual mileage is low the effect of registration and other flat fees causes the payment per vehicle-mile to be high.

The last column of table 11 shows the ratio of motor-vehicle user tax earnings to total current highway expenditures in 1960 as shown in table 9 . In 26 of the 46 SMSA's, earnings of user taxes were more than the total current expenditures for highways. The ratios
for the several population groups differ, generally upward as population increases, but there is no similar consistency in the number of places that have ratios of earnings to expenditures of more or less than 1.00 , as shown in table 12.

Statistical Summary

The information in tables 8,9 , and 11 is summarized in table 13 , from which a comparison of road and street income, expenditures, and road-user earnings of each S.MSA population group can be made. In the 46

Table 12.-Ratio of earnings to expenditures, by population groups

Population group	Ratio of earnings to expenditures	
	SMSA's ratios larger than 1.0	$\begin{aligned} & \text { Group } \\ & \text { ratio } \end{aligned}$
Less than 250,000 250,000-500,000. 500,000-1,000,000 More than 1,000,000	Number 12 out of 21 7 out of 11 4 out of 7 3 out of 7	$\begin{gathered} \text { Percent } \\ 0.94 \\ 1.04 \\ 1.16 \\ 1.13 \end{gathered}$
All SMSA's.	26 out of 46	1. 11

Table 13.-Highway income, expenditures, and earnings of motor-vehicle-user taxes, 46 SMSA's 1960

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} \& \multicolumn{10}{|c|}{Standard Metropolitan Statistical Area population group-} \\
\hline \& Less than \& 250,000 \& 250,000 to \& 500,000 \& 500,000 to 1 \& 000,000 \& 1,000,000 an \& more \& Totals, 46 \& MSA's \\
\hline \multicolumn{11}{|c|}{Income} \\
\hline Imposts on highway users State and Federal taxes....I veal Tolls. Total...- \& \[
\begin{gathered}
\text { Thou- } \\
\text { sands } \\
\$ 110,676 \\
4,765 \\
652 \\
116,033
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Per- } \\
\& \text { cent } \\
\& 72.78 \\
\& 3.10 \\
\& 0.43 \\
\& 76.31
\end{aligned}
\] \& \[
\begin{array}{r}
\text { Thou- } \\
\text { sinnds } \\
\$ 110,851 \\
6,471 \\
10,262 \\
127,584
\end{array}
\] \& Percent 65. 54 3. 83 75. 44 \& \[
\begin{array}{r}
\text { Thou- } \\
\text { sands } \\
\$ 119,867 \\
9,026 \\
5,724 \\
134,617
\end{array}
\] \& \[
\begin{aligned}
\& \text { Per- } \\
\& \text { cent } \\
\& 63.09 \\
\& 4.75 \\
\& 3.01 \\
\& 70.85
\end{aligned}
\] \& Thou.
sands
\(\$ 552,789\)
51,907
61,061
665.757 \& Percent 60. 72 6.71 73.13 \& Thousands \$894, 183 72, 109 77. 699 1,043, 991 \& \[
\begin{array}{r}
\text { Per- } \\
\text { cent } \\
62.90 \\
5.07 \\
5.47 \\
73.44
\end{array}
\] \\
\hline \multirow[t]{4}{*}{} \& 17,970 \& 11.82 \& 24, 738 \& 14.63 \& 21, 769 \& 11.46 \& 88, 627 \& 9.73 \& 153, 104 \& 10. 77 \\
\hline \& 15,297 \& 10.06 \& 12, 269 \& 7.25 \& 24, 085 \& 12.68 \& 122, 149 \& 13.42 \& 173, 800 \& 12. 22 \\
\hline \& \[
\begin{array}{r}
2,756 \\
36,023
\end{array}
\] \& \[
\begin{array}{r}
1.81 \\
23.69
\end{array}
\] \& \[
\begin{array}{r}
4,539 \\
41.546
\end{array}
\] \& \[
\begin{array}{r}
2.68 \\
24.56
\end{array}
\] \& 9,523
55,377 \& \[
\begin{array}{r}
5.01 \\
29.15
\end{array}
\] \& \[
\begin{array}{r}
33,878 \\
244,654
\end{array}
\] \& \[
\begin{array}{r}
3.72 \\
26.87
\end{array}
\] \& \[
\begin{array}{r}
50,696 \\
377,600
\end{array}
\] \& \[
\begin{array}{r}
3.57 \\
26.56
\end{array}
\] \\
\hline \& 152,056 \& 100.00 \& 169, 130 \& 100.00 \& 189,994 \& 100.00 \& 910, 411 \& 100.00 \& 1,421, 591 \& 100.00 \\
\hline Investment income and borrowing. \& 11, 552 \& \& \[
24,889
\] \& \& 29,678 \& \& 156, 727 \& \& 222, 846 \& ----- \\
\hline \[
\begin{aligned}
\& \text { TOTAL IN- } \\
\& \text { COME... }
\end{aligned}
\] \& \$163, 608 \& \& \$194, 019 \& \& \$219, 672 \& \& \$1, 067, 138 \& ------ \& \$1, 644, 437 \& ----- \\
\hline \multicolumn{11}{|c|}{Expenditures} \\
\hline \multirow[t]{2}{*}{Capital outlay: On State highways. On local roads and streets. Total..} \& \$82,000 \& 53.42 \& \$97, 375 \& 52.18 \& \$90, 231 \& 46. 50 \& \$416,815 \& 43.57 \& \$686, 421 \& 46.04 \\
\hline \& \[
\begin{array}{r}
24,601 \\
106,601
\end{array}
\] \& \[
\begin{aligned}
\& 16.03 \\
\& 69.45
\end{aligned}
\] \& \[
\begin{array}{r}
26,875 \\
124,250
\end{array}
\] \& \[
\begin{aligned}
\& 14.40 \\
\& 66.58
\end{aligned}
\] \& \[
\begin{array}{r}
36,428 \\
126,659
\end{array}
\] \& \[
\begin{aligned}
\& 18.77 \\
\& 65.27
\end{aligned}
\] \& \[
\begin{aligned}
\& 161,081 \\
\& 577,896
\end{aligned}
\] \& \[
\begin{aligned}
\& 16.83 \\
\& 60.40
\end{aligned}
\] \& \[
\begin{aligned}
\& 248,985 \\
\& 935,406
\end{aligned}
\] \& \[
\begin{aligned}
\& 16.70 \\
\& 62.74
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Maintenance, administration, operation, etc -- \\
Interest on debt-Total. \(\qquad\)
\end{tabular} \& 44,627
2,263
46,890 \& 29.08
1.47
30.55 \& 51,491
10,866
62.357 \& 27.60
5.82
33.42 \& 59,031
8,372
67,403 \& 30.42
4.31
34.73 \& 320,543
59,279
378,822 \& \[
\begin{array}{r}
33.51 \\
6.09 \\
39.60
\end{array}
\] \& 475,692
79,780
555,472 \& 31. 91
5.35
37.26 \\
\hline Total expenditures \& 153, 491 \& 100.00 \& 186, 607 \& 100.00 \& 194, 062 \& 100.00 \& 956, 718 \& 100.00 \& 1,490,878 \& 100.00 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Debt retirement- \\
TOTAT DIS-BURSEMENTS
\end{tabular}} \& 8,120 \& \& 24, 925 \& ------ \& 19,605 \& ------ \& 88, 514 \& - \& 141, 164 \& ----- \\
\hline \& \$161,611 \& \& \$211, 532 \& \& \$213,667 \& ------ \& \$1,045, 232 \& ------ \& \$1,632, 042 \& -.... \\
\hline \multicolumn{11}{|c|}{Earnings From Motor-Vehicle-User Taxes} \\
\hline \multirow[t]{3}{*}{} \& \$47,606 \& 33.08 \& \$57, 820 \& 29.73 \& \$71, 638 \& 31.78 \& \$322, 138 \& 29.67 \& \$499, 202 \& 30. 26 \\
\hline \& 91, 028 \& 63. 25 \& 119,943 \& 61.67 \& 139, 064 \& 61.68 \& 650, 720 \& 59.93 \& 1, 000, 756 \& 60.66 \\
\hline \& \multirow[t]{2}{*}{4,640
652

$\$ 143,927$} \& \[
$$
\begin{aligned}
& 3.22 \\
& 0.45
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
6,471 \\
10,262
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 3.33 \\
& 5.27
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 9,026 \\
& 5,724
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { 4. } 00 \\
& 2.54
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 51,907 \\
& 61,061
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.78 \\
& 5.62
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
72,044 \\
77,699
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
\text { 4. } 37 \\
4.71
\end{array}
$$
\]

\hline total EARNINGS.- \& \& 100.00 \& \$194, 496 \& 100.00 \& \$225, 452 \& 100.00 \& \$1, 085, 826 \& 100.00 \& \$1. 649, 701 \& 100.00

\hline
\end{tabular}

SMSA's studied, road-user income sources provided 73.4 percent of the revenue income, property taxes and assessments and other sources, 26.6 percent. Although the earnings by the travel in these SMSA's amounted to $\$ 1,650$ million, the amount of road-user taxes, fees, and tolls applied to these SMISA's was only $\$ 1,044$ million, or 63.2 percent of the amount earned. Earnings of $\$ 1.6$ billion from the travel in these SMSA's are of the same order of magnitude as: the total receipts for highways, which include $\$ 378$ million from nonuser sourees and $\$ 223$ million of borrowing; and the total expenditures, which include more than $\$ 141$ million of debt retirement.

It is not known, of course, whether the totals of all metropolitan areas of the country, if arrayed in this manner, would compare in the same fashion, but it is reasonable to speculate that they might.

A year's expenditures in an SMSA may substantially exceed earnings when highway construction is at a high level (such as in 1960) and a large part of a State's construction program is within the area of the SMSA. This same concentration of construction probably will not continue indefinitely in any one SIISA, and the expenditure-earning relationship would improve. The relationship between expenditures and earnings cited here is valid
for only 1 year, but the average for $46 \mathrm{~S} M \mathrm{~S}$ may be taken as reasonably indicative of t current trend.

1960 and 1961 data

Because 1960 was the first year for wh the complete highway finance data for SMS were compiled, it was possible to survey come and expenditures for only that 1 ye Since this analysis was undertaken, howev 1961 data for the 46 SMSA's have beco available in sufficient detail to permit a ec parison of the State highway departm expenditures, excluding those for toll facilit with 1960 expenditures and to examine : major fluctuations between the 2 years.

State highway department expenditı may increase or decrease from year to y in an SMSA, as shown in table 14. In table the 1960 and 1961 State highway partment expenditures for capital impre ments on State and local highways presented, the increase or decrease is shi in column 3. The 1960 amount of $\$$ million is a part of the $\$ 686$ million car outlay on State highways (tables 9 and but excludes local expenditures on S administered highways and State toll facili

Column 4 of table 14 duplicates the t road and street expenditures of $\$ 1,491$ mil) given in table 9, then adjusts these amol for each SMSA by substituting the 1961 St capital outlay for that of 1960 . The adjue expenditure is then compared with the 1 road-user earnings of table 11, and in colu 7 of table 14 there is given a new rati earnings to expenditures on this basis.

The result of this exercise demonstr that there is a rather stable relationship tween earnings and expenditures for tl successive years. In the last two columr the table the ratios of the 1960 data and ratios based on the modified 1961 exped tures are presented.

Data for individual SMSA's

The ratio of motor-vehicle user earnink expenditures for the SMSA's varied cori erably: The lowest ratio was 0.34 in the $F: 3$ N. Dak., SMSA; the highest was 2.95 ir Charleston, W. Va., SMSA. Attempt rationalize the differences from the st point of population, travel, amount of area, or population density failed to prii a complete answer. Some effect, of cos was the result of the earnings per vehicleni of travel that in the Areas cited previs) showed the Fargo, N. Dak., SMSA eztur 1.283 cents per mile and the Charleo W. Va., SMSA, 1.534 cents. These de ences can be mainly ascribed to a 5 - al cent-per-gallon gasoline tax rate in : Dakota-the rate changed from 5 to 6 in 1960-compared with a 7 -cent-per-g gasoline tax in West Virginia. A compas of capital expenditures in 1960 and $19 €$ listed in table 14, shows that in the $]$ SMSA, State expenditures for capital o on State and local highways amountt $\$ 11.8$ million in 1960 and $\$ 5.4$ million in whereas in the Charleston SMSA $\$ 0.7 \mathrm{~m}$ was expended in 1960 and $\$ 3.7$ million in

More striking, perhaps, is the situation in e SMSA's of Chicago and Los Angeles. In e former, capital expenditures were $\$ 121$ illion in 1960 and $\$ 61$ million in 1961-a duction in expenditures that, if applied to e 1960 earnings, was sufficient to bring the rnings-expenditure ratio to nearly 1.0 . In is Angeles, capital outlays were $\$ 99$ million 1960 and $\$ 183$ million in 1961. The adsted expenditures compared with 1960 user rnings retained a ratio of more than 1.0. The largest extremes between the earnings d expenditures shown in table 11 are in the oup having a population of less than 250,000 . wo Areas in this group had a ratio of less than 50, and five of less than 0.70 ; whereas only .e Area, Albuquerque, in the population oups of more than 250,000 had an earningspenditure ratio of less than 0.70 . At the her extreme, 8 SMSA's out of 21 in the ;oup having a population of less than $: 0,000$ each had an earnings-expenditure :tio of more than $1.50-38$ percent of the oup-compared with only 6 SMSA's out of in all of the remaining population groups at had a ratio of more than 1.50 .
The more constant relationship in the inSA's having 250,000 or more population ay signify that, at least for 1960-and to the itent that comparisons of the substituted 61 State highway department expenditures ie an indication-there is more stability be--een the user earnings and expenditures in e larger metropolitan areas even during a riod of a high level of highway construction.

REFERENCES

(1) United States Census of Housing: 1960, iole 16 , series $\mathrm{HC}(1)$, by Bureau of the insus, U.S. Department of Commerce.
(2) Highway Statistics 1960, by Bureau of Jblic Roads, U.S. Department of Commerce. (8) Supplementary Report of the Highway ist Allocation Study, H. Doc. 124, 89th Cong., j; sess., 1965.
(4) Improved Transportation for Southtitern Pennsylvania, Bureau of Municipal search, and Pennsylvania Economy League, liladelphia, Pa., May 1960 (Processed).
(5) The Application of Benefit-Cost Ratios to © Expressway System, by Howard W. Bevis, loceèdings, Highway Research Board, 1956, 1. 35, pp. 63-75.
(6) Increasing the Traffic-Carrying Capality of Urban Arterial Streets: The Wisconsin enue Study, by Arthur A. Carter, Jr., Ireau of Public Roads, U.S. Department of 'mmerce, May 1962; and Appendixes to the (iginal Wisconsin Avenue Study.
(7) Time and Fuel Consumption for Highway $l_{\text {er Benefit Studies, by Paul J. Claffey, HRB }}$ llletin 276, Motor Vehicle Time and Fuel (nsumption, 1960, pp. 20-34.
(8) Fuel and Time Consumption Rates for

Table 14.-Expenditures for capital outlay by state highway departments, 16 SMSA's, 1960 and 1961, and 1960 motor-vehicle road-user earnings

SMSA's by populationgroup	Capital outlay by State highway departments on State and locally administered highways		$\begin{gathered} 1961 \\ \text { increase or } \\ \text { decrease } \end{gathered}$	Expenditures		$\begin{aligned} & 1960 \\ & \text { road-user } \\ & \text { earnings } \end{aligned}$	Ratio of user earnings to-		
				Adjusted by sub-	Adjusted expendi-				
	1960	1961			1960 State capital outlay		$\left.\right\|_{1.0\rangle} ^{\text {ditures }}=$		
Less than 250,000									
	Thou-shands$\$ 1,055$3,9131,6173,1708,102	Thousands		$\begin{gathered} \text { Thousands } \\ +\$ 1,308 \\ -1,538 \\ +760 \\ +3,039 \\ -4,335 \end{gathered}$	Thousands$\$ 6,459$6,2865,6844,68713,885	Thousands \$7, 767 4, 748 6, 444 7,726 9, 550	Thousands\$12, 4455,1057,3238,4359,329	$\begin{aligned} & \text { 1. } 60 \\ & \text { 1. } 08 \\ & \text { 1. } 14 \\ & \text { 1. } 09 \\ & \text {. } 98 \end{aligned}$	$\begin{array}{r} 1.93 \\ .81 \\ 1.29 \\ 1.80 \\ .67 \end{array}$
Atlantic City, N.J... Bay City, Mich		$\$ 2,363$							
Cedar Rapids, Iowa		2, 273							
Charleston, S.C...-		6,209							
Eugene, Oreg--									
Fargo, N. Dak	11,769	5,389	-6,380	17,008	10,628	5,797	. 55	34	
Fitchburg-Leominster,	$\begin{array}{r} 106 \\ 2,157 \\ 2,904 \\ 2,765 \end{array}$	$\begin{array}{r} 274 \\ 2,181 \\ 18,815 \\ 2,730 \end{array}$	$\begin{array}{r} +168 \\ +24 \\ -1,089 \\ -35 \end{array}$	$\begin{aligned} & 1,652 \\ & 5,537 \\ & 4,871 \\ & 7,196 \end{aligned}$	$\begin{aligned} & 1,820 \\ & 6,561 \\ & 3,782 \\ & 7,161 \end{aligned}$	4,7907,5663,3597,775	$\begin{aligned} & 2.63 \\ & 1.36 \\ & .89 \\ & 1.09 \end{aligned}$	$\begin{aligned} & \text { 2. } 90 \\ & \text { 1. } 37 \\ & .69 \end{aligned}$	
Fort Wayne, Ind -...-...-									
Great Falls, Mont									
Jackson, Miss - - -									
Las Vegas, Nev....	3, 044	2,850	-194	5,939	5, 745	5,577	. 97	. 94	
Lewiston-Auburn,	1, 110	27	-83	1,218	1, 135	2, 678	2.36	2. 20	
Lexington, Ky .-. Little Rock-North		3,649	+2,092	2,703	4, 795	5, 579	1. 16	2.06	
Little Rock, Ark	$\begin{array}{r} 17,536 \\ 1,411 \end{array}$	13, 352	-4, 184	22, 171	17,987	11, 394	63	51	
Lynchburg, Va.		1,173	-238	3, 364	3, 126	5,317	1. 70	I. 58	
Macon, Ga ,	$\begin{aligned} & 1,627 \\ & 6,748 \\ & 7,440 \\ & 169 \\ & 3,552 \\ & 833 \end{aligned}$	1,482	-145	2,978	2, 833	5. 168	1.82	1. 74	
Madison, Wis.....		15,300	+8,553	15, 569	24, 121	11, 712	. 49	. 75	
Sioux Falls, S. Da		10, 111	+2,671	10, 008	12, 679	4, 620	. 36	. 46	
South Bend, Ind		295	+126	3,907	4,033	7,341	1.82	1.	
Springfield, Mo..		7,431	+3,879	5, 612	9, 491	6,237	. 66	1.11	
Waterbury, Conn		4,786	+3,953	6,757	10,710	6,380	60	. 11	
Tota	\$81, 585	\$89,936	+\$8,351	\$153, 491	\$161, 842	\$143, 927	. 89	. 94	
250,000 то 500,000									
Albuquerque, N. Mex... Charleston, W. Va. Charlotte, N.C Jacksonville, Fla Nashville, Tenn	$\begin{array}{r} \$ 10,076 \\ 655 \\ 1,832 \\ 11,769 \\ 16,258 \end{array}$	$\begin{array}{r} \$ 8,216 \\ 3,708 \\ 1,330 \\ 5,761 \\ 11,558 \end{array}$	$\begin{array}{r} -\$ 1,860 \\ +3,053 \\ -502 \\ -6,008 \\ -4,700 \end{array}$	$\begin{array}{r} \$ 16,752 \\ 4,234 \\ 5,581 \\ 38,310 \\ 21,641 \end{array}$	$\begin{array}{r} \$ 14,892 \\ 7,287 \\ 5,079 \\ 32,302 \\ 16,941 \end{array}$	$\begin{array}{r} \$ 11,269 \\ 12,495 \\ 9,347 \\ 26,777 \\ 16,937 \end{array}$	$\begin{aligned} & 0.76 \\ & 1.71 \\ & 1.84 \\ & 1.83 \\ & 1.00 \end{aligned}$	$\begin{array}{r} 0.67 \\ 2.85 \\ 1.87 \\ .70 \\ .78 \end{array}$	
Omaha, Nebr Salt Lake City, Utah Tacoma, Wash Tulsa, Okla. Wichita, Kans. Wilnington, Del	$\begin{array}{r} 11,697 \\ 8,270 \\ 6,994 \\ 3,771 \\ 6,914 \\ 7,820 \end{array}$	$\begin{array}{r} 12,189 \\ 13,898 \\ 9,531 \\ 5,630 \\ 7,032 \\ 6,690 \end{array}$	$\begin{array}{r} +492 \\ +5,628 \\ +2,537 \\ +1,859 \\ +118 \\ -1,130 \end{array}$	$\begin{aligned} & 24,721 \\ & 13,045 \\ & 13,383 \\ & 14,269 \\ & 17,899 \\ & 16,772 \end{aligned}$	$\begin{aligned} & 25,213 \\ & 18,673 \\ & 15,920 \\ & 16,128 \\ & 18,017 \\ & 15,642 \end{aligned}$	$\begin{aligned} & 24,757 \\ & 14,094 \\ & 17,122 \\ & 23,770 \\ & 15,37 \\ & 22,791 \end{aligned}$	$\begin{array}{r} .98 \\ .75 \\ 1.08 \\ 1.47 \\ .84 \\ 1.46 \end{array}$	$\begin{aligned} & 1.00 \\ & \text { 1. } 08 \\ & \text { 1.28 } \\ & 1.67 \\ & 1.85 \\ & 1.36 \end{aligned}$	
Total..----.-........---	\$86, 056	\$85, 543	-\$513	\$186, 607	\$186, 094	\$194, 496	1.05	1. 04	
500,000 то $1,000,000$									
Birmingham, Ala Columbus, Ohio Denver, Colo Honolulu, Hawaii. New Orleans, La Phoenix, Ariz Providence, R.I	$\begin{array}{r} \$ 5,314 \\ 18,244 \\ 11,089 \\ 7,461 \\ 8,099 \\ 2,940 \\ 24,051 \end{array}$	$\begin{array}{r} \$ 3,964 \\ 14,347 \\ 11,335 \\ 8,015 \\ 7,037 \\ 10,757 \\ 23,175 \end{array}$	$\begin{array}{r} -\$ 1,350 \\ -3,897 \\ +246 \\ +554 \\ -1,062 \\ +7,817 \\ -876 \end{array}$	$\begin{array}{r} \$ 14,421 \\ 2,979 \\ 25,018 \\ 19,071 \\ 37,335 \\ 27,440 \\ 41,798 \end{array}$	$\begin{array}{r} \$ 13,071 \\ 25,082 \\ 25,264 \\ 19,625 \\ 36,273 \\ 35,257 \\ 40,922 \end{array}$	$\begin{array}{r} \$ 25,084 \\ 34,045 \\ 41,936 \\ 17,815 \\ 30,730 \\ 34,587 \\ 41,255 \end{array}$	$\begin{array}{r} 1.92 \\ 1.36 \\ 1.66 \\ .91 \\ .85 \\ .98 \\ 1.01 \end{array}$	$\begin{array}{r} 1.74 \\ 1.17 \\ 1.88 \\ .93 \\ .82 \\ 1.26 \\ .99 \end{array}$	
Total	\$77, 198	\$78,630	+\$1,432	\$194, 062	\$195, 494	\$225, 452	1. 15	1. 16	
MORE THAN $1,000,000$									
Baltimore, Md Buffalo, N. Y Chicago, Ill. Houston, Tex Los Angeles, Calif Minneapolis-St. Paul, Minn Philadelphia, Pa.........	$\begin{array}{r} \$ 26,034 \\ 17,243 \\ 120,734 \\ 35,142 \\ 99,147 \end{array}$	$\$ 37,928$14,39060,70544,338182,551	$\begin{array}{r} +\$ 11,894 \\ -2,853 \\ -60,029 \\ +9,196 \\ +83,404 \end{array}$	$\begin{array}{r} \$ 62,209 \\ 564,468 \\ 334,301 \\ 71,941 \\ 226,185 \end{array}$	$\begin{array}{r} \$ 74,103 \\ 53,615 \\ 274,272 \\ 81,137 \\ 309,589 \end{array}$	$\begin{array}{r} \$ 84,005 \\ 50,472 \\ 272,158 \\ 55,580 \\ 386,468 \end{array}$	$\begin{array}{r} 1.15 \\ .94 \\ .99 \\ .69 \\ 1.25 \end{array}$	$\begin{array}{r} 1.35 \\ .89 \\ .81 \\ .71 \\ 1.71 \end{array}$	
		$\begin{aligned} & 49,586 \\ & 29,203 \\ & \hline \end{aligned}$	$\begin{array}{r} +7,116 \\ -12,718 \end{array}$	$\begin{array}{r} 88,109 \\ 117,505 \end{array}$	$\begin{array}{r} 95,225 \\ 104,787 \end{array}$	$\begin{array}{r} 65,839 \\ 171,304 \end{array}$	$\begin{array}{r} .69 \\ 1.63 \end{array}$	$\begin{array}{r} .75 \\ 1.46 \end{array}$	
	$\begin{aligned} & 42,470 \\ & 41,921 \end{aligned}$								
		29, 203					1.09	1.13	
Total.	\$382, 691	\$418, 701	+\$36,010	\$956, 718	\$992, 728	\$1, 085, 826			
Total, All SMSA's.--	\$627, 530	\$672,810	+\$45, 280	\$1, 490, 878	\$1, 536, 158	\$1, 649, 701	1.07	1.11	

${ }^{1}$ Although local agencies undertake costly facilities also, the impact of interstate construction under State jurisdiction is most certain to affeet large and small population areas.

Trucks in Freight Service, by Malcolm F. Kent, HRB Bulletin 276, Motor Vehicle Time and Fuel Consumption, 1960, pp. 1-19.
(9) Motor Transport Fuel Consumplion Rates and Travel Time, by Roy B. Sawhill and Joseph C. Firey, HRB Bulletin 276, Motor

Vehicle Time and Fuel Consumption, 1960, pp. 35-68.
(10) Total Receipts for Highways, All Units of Government, 1960-63, table IIF-1, December 1962, news release, Bureau of Public Roads, Department of Commerce, Jan. 13, 1963.

Motor Vehicle Size and Weight Limits

A comparison of State legal limits of motorvehicle sizes and weights with standards recommended by the American Association of State Highway Officials is given in the table on pages 192-193. The statutory limits reported in this tabulation, prepared by the Burcau of Public Roads as of December 31, 1964, have been reviewed for accuracy by the appropriate State officials.
Statutory limits are shown for width, height, and length of vehicles; number of towed units; maximum axle loads for single and tandem axles; maximum gross weights for single-unit trucks, truck-tractor semitrailer combinations, and other combinations; and certain performance standards.

New Publications

Supplementary Report of the Highway Cost Allocation Study

The Supplementary Report of The Highway Cost Allocation Study, prepared by the Bureau
of Public Roads and transmitted to the Congress on March 24, 1965, by the Secretary of Commerce, John T. Connor, has been published as House Document 124, 89th Congress, 1st session. This report may be obtained from the Superintendent of Documents, Government Printing Office, Washington, D.C., 20402, for $\$ 1.00$. The Highway Cost Allocation Study, Parts I-V (H. Doc. 54, 87th Cong., 1st sess., 1961) also may be purchased from the Superintendent of Documents; the price is 70 cents.

The supplement, as does the basic report, contains information from a study conducted by the Bureau of Public Roads in response to a Congressional directive to provide information for "an equitable distribution of the tax burden among the various classes of persons using the Federal-aid highways or otherwise deriving benefits from such highways." The supplementary report makes use of the final results of the AASHO Road Test, carried out at Ottawa, Ill., under the sponsorship of the American Association of State Highway Officials.

Congress directed that the Federal-aid highway program be studied on the basis of both the costs incurred to serve the different groups of highway users and the benefits
they receive from the use of the Federal-ai system. Accordingly, incremental cost an differential benefit methods of determining cos responsibility were used in the study.
Incremental cost is the traditional metho used for determining highway-user charge Under this method, each element of highwa design affected by the size or weight of th vehicles in the traffic stream is broken dow into a series of additions, or increments, ar the cost of providing each of these addition is charged only to those vehicles whose si: and weight require them. In this way, vehicles will share in the cost of the first basic increment, but for each succeeding ar heavier increment only the vehicles th require the additional design feature will 1 required to contribute to its cost.

Differential benefit is the method used f assigning cost responsibility to the differe groups of users in direct proportion to t vehicular benefits that they receive throu: their use of the highways. The four kin: of vehicular benefits measured were: (reductions in operating costs, (2) reductions time costs, (3) reductions in accident cos, and (4) reductions in the strains and discoforts of driving. The latter, known impedance costs, were calculated for passe ger-car users only.

PUBLICATIONS of the Bureau of Public Roads

4 list of the more important articles in Public Roads and title ets for volumes 24-32 are available upon request addressed to Ireau of Public Roads, Washington, D.C., 20235.
The following publications are sold by the Superintendent of lcuments, Government Printing Office, Washington, D.C., 20402. (ders should be sent direct to the Superintendent of Documents. lepayment is required.

ANUAL REPORTS

nual Reports of the Bureau of Public Roads :
960,35 cents. 1963,35 cents. 1964, 35 cents. (Other years are now out of print.)

FPORTS TO CONGRESS

Ideral Role in Highway Safety, House Document No. 93 (1959). 30 cents.
1ghway Cost Allocation Study :
Final Report, Parts I-V, House Document No. 54 (1961). 70 cents.
Supplementary Report, House Document No. 124 (1965). $\$ 1.00$.
A ximum Desirable Dimensions and Weights of Vehicles Operated in the Federal-Aid Systems, House Document No. 354 (1964). 5 cents.
Ie 1965 Interstate System Cost Estimate, House Document No. 2 (1965). 20 cents.

PBLICATIONS

AQuarter Century of Financing Municipal Highways, 1937-61, ;1.00.
Acidents on Main Rural Highways-Related to Speed, Driver, ind Vehicle (1964). 35 cents.
Agregate Gradation for Highways: Simplification, Standardizaion, and Uniform Application, and A New Graphical Evaluation Jhart (1962). 25 cents.
Aerica's Lifelines-Federal Aid for Highways (1962). 15 cents.
(librating and Testing a Gravity Model With a Small Computer
(1964). $\$ 2.50$.

Cissification of Motor Vehicles, 1956-57 (1960). 75 cents.
Isign Charts for Open-Channel Flow (1961). 70 cents.
Isign of Roadside Drainage Channels (1965). 40 cents.
Ideral Laws, Regulations, and Other Material Relating to Highvays (1960). $\$ 1.00$.
Flancing of Highways by Counties and Local Rural Governnents: 1942-51 (1955). 75 cents.
Ighway Bond Financing . . . An Analysis, 1950-1962. 35 cents. Ishway Finance 1921-1962 (a statistical review by the Office f Planning, Highway Statistics Division) (1964). 15 cents. Ifhway Planning Map Manual (1963). \$1.00.
Ishway Planning Technical Reports-Creating, Organizing, and Reporting Highway Needs Studies (1964). 15 cents.

PUBLICATIONS-Continued

Highway Research and Development Studies Using Federal-Aid Research and Planning Funds (1964). \$1.00.
Highway Statistics (published annually since 1945) : $1956, \$ 1.00$. 1957, $\$ 1.25$. 1958, $\$ 1.00$. 1959, $\$ 1.00$. 1960, $\$ 1.25$. 1961, $\$ 1.00$. 1962, $\$ 1.00$. 1963, $\$ 1.00$.
Highway Statistics, Summary to 1955. \$1.00.
Highway Transportation Criteria in Zoning Law and Police Power and Planning Controls for Arterial Streets (1960). 35 cents.
Highways and Economic and Social Changes (1964). \$1.25.
Hydraulics of Bridge Waterways (1960). 40 cents.
Increasing the Traffic-Carrying Capability of Urban Arterial Streets: The Wisconsin Arenue Study (1962). 40 cents. Appendix, 70 cents.
Interstate System Route Log and Finder List (1963). 10 cents.
Labor Compliance Manual for Direct Federal and Federal-Aid Construction, 2d ed. (1965). \$1.75.
Landslide Investigations (1961). 30 cents.
Manual for Highway Severance Damage Studies (1961). \$1.00.
Manual on Uniform Traffic Control Devices for Streets and Highways (1961). \$2.00.
Part V-Traffic Controls for Highway Construction and Maintenance Operations (1963). 25 cents.
Opportunities for Young Engineers in the Bureau of Public Roads (1964). 15 cents.

Peak Rates of Runoff From Small Watersheds (1961). 30 cents.
Reinforced Concrete Pipe Culverts-Criteria for Structural Design and Installation (1963). 30 cents.
Road-User and Property Taxes on Selected Motor Vehicles, 1964. 45 cents.
Selected Bibliography on Highway Finance (1951). 60 cents.
Specifications for Aerial Surveys and Mapping by Photogrammetric Methods for Highways (1958) : a reference guide outline. 75 cents.
Standard Specifications for Construction of Roads and Bridges on Federal Highway Projects, FP-61 (1962-1964). \$2.25.
Standard Plans for Highway Bridges (1962) :
Vol. I-Concrete Superstructures. \$1.00.
Vol. II-Structural Steel Superstructures. \$1.00.
Vol. III-Timber Bridges. $\$ 1.00$.
Vol. IV-Typical Continuous Bridges. \$1.00.
Vol. V-Typical Pedestrian Bridges. $\$ 1.00$.
The Identification of Rock Types (revised edition, 1960). 20 cents.
The Role of Aerial Surveys in Highway Engineering (1960). 40 cents.
Traffic Assignment Manual (1964). \$1.50.
Traffic Safety Services, Directory of National Organizations (1963). 15 cents.

Transition Curves for Highways (1940). \$1.75.

United States

Government Printing Office

postage and fees paid

division of public documents WASHINGTON, D.C. 20402

OFFICIAL BUSINESS

If you do not desire to continue to receive this publication, please CHECK HERE \square; tear off this label and return it to the above address. Your name will then be removed promptly from the appropriate mailing list.

[^0]: A dramatic reduction in accidents was brought about by installation of this overhead ramp. Prior to its construction, access was at grade with traffic light control. Accidents averaged 120 a year, with 60 injuries. The number of accidents has now dropped 96 percent to only 4 a year, with 2 injuries, while average daily vehicle counts have increased from 11,000 to 13,000 .

[^1]: ${ }^{1}$ Presented at the 44th annual meeting of the Highway Research Board, Washington, D.C., January 1965.
 ${ }^{2}$ A Standard Metropolitan Statistical Area, established by te Bureau of the Budget for convenience of reporting, consts of the counties, or towns in New England, that contain he entire urbanized portion of a metropolitan area. The MSA includes, of necessity, the rural portion, if any, of its onstitutent counties.

[^2]: ${ }^{1}$ Excludes Puerto Rico.

[^3]: ${ }^{8}$ References indicated by italic numbers in parentheses are sted on p. 199.

[^4]: 1 In some SMSA's, the classification of expenditures by system is not exact. In the Baltimore area for example, the State and Federal-aid expenditures for municipal ex-
 tensions of state highways are inciuded with local municipal street expenditures because
 State highways stop at the Baltimore municipal limits. When the expenditures for
 rural and municipal State highways were not segregated, the amounts are given under rural.
 2 Includes parking, policing, and allied street functions.
 3 No local capital outlay given in the report of expenditures for 1960.

[^5]: 1 Source: Highway Statistics 1961, Bureau of Public Roads, 1903, table UF-12-1960, p. 79

