Public Roads

IJOURNALOFHIGHWAY RESEARCH

UBLISHED
IMONTHLYBYTHE UREAU OF

UBLIC ROADS,

- S. DEPARTMENT

FCOMMERCE,
VASHINGTON

Pasadena Freeway in Los Angeles, Calif.

A JOURNAL OF HIGHWAY RESEARCH Published Bimonthly
Vol. 30, No. 5 December 1958
C. M. Billingsley, Editor

BUREAU OF PUBLIC ROADS
Washington 25, D. C.

REGIONAL OFFICES

No. 1. Delaware and Hudson Bldg., Albany 1, N. Y. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont.

No. 2. 707 Earles Bldg., Hagerstown, Md.
Delaware, District of Columbia, Maryland, Ohio, Pennsylvania, Virginia, and West Virginia.
No. 3. 50 Seventh'St. NE., Atlanta 23, Ga.
Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, Tennessee, and Puerto Rico.

No. 4. South Chicago Post Office, Chicago 17, IIl. Illinois, Indiana, Kentucky, Michigan, and Wisconsin.
No. 5. Federal Office Bldg., Kansas City 6, Mo. Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, and South Dakota.
No. 6. Post Office Box 12037, Ridglea Station, Fort Worth 16, Tex. Arkansas, Louisiana, Oklahoma, and Texas.
No. 7. Old Mint Bldg., San Francisco 3, Calif. Arizona, California, Nevada, and Hawaii.

No. 8. 753 Morgan Bldg., Portland 8, Oreg.
Idaho, Montana, Oregon, and Washington.
No. 9. Denver Federal Center, Bldg. 40, Denver 2, Colo.

Colorado, New Mexico, Utah, and Wyoming.
No. 10. Post Office Box 1961; Juneau, Alaska. Alaska
No. 15. 1440 Columbia Pike, Arlington, Va.
Eastern National Forests and Parks.

Purlic Roads is sold by the Superintendent of Documents, Government Printing Office, Washington 25, D. C., at $\$ 1$ per year (25 cents additional for foreign mailing) or 20 cents per single copy. Free distribution is limited to public officials actually engaged in planning or constructing highways, and to instructors of highway engineering. There are no vacancies in the free list at present.

Use of funds for printing this publication has bsen approved by the Director of the Bureau of the Budget, March 28, 1958.

Travel Patterns in 50 Cities

3Y THE DIVISION OF HIGHW AY PLANNING 3UREAU OF PUBLIC ROADS

Reported by FRANK B. CURRAN, Statistician, and JOSEPH T. STEGMAIER, Highway Research Engineer

Abstract

During the past 15 years origin-and-destination traffic surveys of the homeinterview type have been conducted in more than one hundred cities. This article presents information regarding the purpose for which trips were made by residents in 50 of these urban areas and the mode of travel they used. Data are also included pertaining to basic household characteristics of the areas such as the numbers of dwelling units, residents, and automobiles owned, and the relations between these characteristics and the volume of trips classified according to purpose and mode of travel. The urban areas have been grouped by population size to disclose whatever travel trends or patterns may exist among cities in the several population groups.

The percentage distribution of major trip purposes is fairly uniform in cities of all sizes. Analysis by mode of travel, however, shows a variable pattern. The proportion of trips by automobiles and taxis increases as city size decreases. On the whole, mass transit is by far the most prevalent mode of travel in the largest cities, but its relative importance varies depending upon the trip purpose. Trips for social and recreational purposes, for instance, general'y involve the use of automobiles.

In most cases, the volume of daily trips by residents within an urban area is directly related to the numbers of persons, dwelling units, and automobiles registered in the area. The relations vary, however, depending upon the trip purpose and mode of travel.

aspects of the many-sided travel patterns for 50 of these cities, considered either singly or in combination. Information from the recent past regarding travel habits of city residents should be valuable to urban planners, highway engineers, and economists in attacking the transportation problems of the present and future. It is also hoped that the article will serve to call attention to the quantity and quality of data that have become available as a result of such surveys. A list of the selected cities showing survey dates and population at the time of the study is given in table 1. It should be noted that almost one-third of the studies were conducted during the latter part of World War II and the year following the end of the war. Some of the variations in trip-purpose and travel-mode patterns which are discussed later may be associated with the year of the basic survey or the geographical location of the study area. affecting the planning of streets and lighways are the means by which residents ravel within the city, the purposes for which he trips are made, and the relations between hese trips and residential characteristics such is the number of persons living in the area, he number of dwelling units they occupy, and he number of automobiles they own. At the ime this article was prepared, information of his sort was available from origin-andlestination traffic studies ${ }^{1}$ of the homenterview type which had been made in 101 arban areas since 1944 . The product of ;hese studies includes a great mass of data on ;he local travel habits of urban residents on an zverage weekday during the period of the ;urvey.
Data from these studies have already been analyzed and the results have been put to use in each of the individual urban areas surveyed. However, knowledge of the general or average pattern for groups of cities of similar size should be very beneficial to highway planners. Thus it may be possible to establish norms that might be helpful in anticipating the changes which will take place in the traffic patterns of a city as the pattern of living changes.

The primary intent of this article, therefore, is to call attention to the more significant

[^0] Lynch. Public Roads, vol. 24, No. 6, Oct.-Nov.-Dec. 1945 The procedures used in these studies are given in greater detail in the Manual of Procedures for Home Interview Traffic Study, which is available by purchase from the Public Administration Service, 1313 East 60th Street, Chicago, Ill.

Table 1.-Population and period of survey in 50 urban areas

Urban area	Population	Period of survey
Albuquerque, N. Mex	116, 056	June 1949-July 1949.
Altoona, Pa .	85, 347	July 1950-Sept. 1950.
Appleton, Wis	39,172 912,809	June 1953-July 1953.
Bay City, Mich	69, 231	July 1948-Oct. 1948.
Charleston, S. C	73, 205	Feb. 1947-Mar. 1947.
Chester, Pa	127, 408	June 1951-Oct. 1951.
Columbus, Qa	79, 192	Oct. 1945-Dec. 1945.
Dallas, Tex ${ }^{\text {Duluth, }}$ Minn-Superior, Wis	533,606 130,847	Nov. 1950-Mar. 1951.
Duluth, Minn.-Superior, Wis	130, 847	May 1948-June 1948.
Fargo, N. Dak.-Moorhead, Minn	49, 852	June 1949-Aug. 1949.
Grand Rapids, Mieh	220, 977	July 1947-Oct. 1947.
Harrisburg, Pa	103, 303	June 1946-Sept. 1946.
${ }_{\text {Honolur }}$ Houston, Tex	214, 238	Apr. 1947-Sept. 1947.
Johnstown, Pa	878,509 87	July 1949-Sept 1949.
Kalamazoo, Mich	72, 024	Apr. 1946-May 1946.
Lansing, Mich	122,776	Sept. 1946-Nov. 1946.
Macon, Ga	77, 665	July 1946-Aug. 1946.
Madison, Wis	104, 074	May 1949-June 1949.
Muskegon, Mich	83, 724	July 1946-Aug. 1946.
Newark, N. J	1, 456,947	Aug. 1945-Jan. 1946.
Norfolk, Va	335,910 39,485	June 1950-Aug. 1950.
Philadelphia, Pa	2, 233, 531	June 1947-Nov. 1947.
Phoenix, Ariz	161,567	Nov. 1946-Feb. 1947.
Pontiac, Mich	79,431	A pr. 1947-May 1947.
Portland, Oreg	453, 128	July 1946-sept. 1946.
Reading, Pa .	119, 851	Nov. 1946-Dec. 1946.
Rockford, Il	116, 000	July 1950-Aug. 1950.
Sacramento, Calif	201, 345	Dec. 1947-May 1948.
Saginaw, Mich St. Louis, Mo	112,902	July 1948-Sept. 1948.
St. Paul-Minneapolis, Minn	915,960	May 1949-Nov. 1949.
Salt Lake City, Utah	196, 571	June 1946-Sept. 1946.
San Francisco, Calif.	1, 468,933	July 1946-Dec. 1946.
San Juan, P. R	312,069 137	June 1948-July 1948.
Seattle, Wash	137,089 518,563	June 1950-Aug. 1950.
Sharon-Farrell, Pa	48, 432	June 1949-July 1949.
Spokane, Wash	138,381	July 1946-Dec. 1946.
Tacoma, Wash	138,700 126,900	June 1948-Aug. 1948. Mar. 1948-A pr. 1948
Washington, D. C	1, 109,860	May 1948-Sept. 1948.
Wichita, Kans	238, 302	Nov. 1951-A pr. 1952.
Williamsport, Pa	55, 216	July 1954-Aug. 1954.
Wilmington, Del.	181.445	Apr. 1948-July 1948.
Wisconsin Rapids, W is	16, 004	Sept. 1950-Oct. 1950
York, Pa-	77, 350	July 1951-Aug. 1951.

Figure 1.-Geographical distribution of the 50 cities included in study.

Definitions

The urban areas referred to in this article are the areas within which the basic surveys were conducted. They generally include the central city as well as any portion of the contiguous built-up area that may exist beyond the corporate limits. Their boundaries are usually delimited by an imaginary line called the external cordon. These areas resemble but do not coincide with urbanized areas as defined by the Bureau of the Census. In this article the terms urban area and city are used interchangeably.

A trip is defined as a one-way movement in a vehicle by a resident of the urban area. There are no round trips but rather two or more one-way trips. The only trips considered here are internal trips, so called because both origin and destination are within the boundaries of the survey area. External trips to or from peints beyond the external cordon are not included. The external phase of the basic surveys was concerned only with automobile travel beyond the cordon and only automobile-driver trip information was included. These external automobile-driver trips amounted to about 5 percent of the total internal and external automobile-driver trips in the largest urban areas and about 45 percent in the smallest cities included in this study.

As the term is used in these surveys, mode of travel depends upon (1) the type of vehicle
used (automobile, taxi, truck, or mass-transit vehicle), and (2) the status of the user (driver or passenger). The modes of travel recorded in most of the individual surveys were as follows: automobile drivers, automobile passengers, taxi passengers, truck passengers, bus or streetcar passengers, railroad passengers, and passengers in other mass-transit vehicles. For purposes of analysis, some of these modes have been combined.

The term purpose of trip is used in its obvious sense to explain why a person made the trip. However, for every internal trip recorded, the survey data show not only why the traveler went to his destination (purpose to), but also why he had been at the point of origin (purpose from). The purposes (both to and from) were originally ten: work, business, medical-dental, school, social-recrea-
tional, eat meal, shop, change mode of trave serve passenger, and home. However, a with modes of travel, some of the trip purpose have been combined.

Household characteristics include the num bers of persons, dwelling units, automobile owned, and persons 5 years of age and over Dwelling unit is used in the sense of the Burea of the Census-"In general, . . . a group o rooms or a single room occupied or intende for occupancy as separate living quarters b a family or other group of persons livin together or by a person living alone."

Scope of Article

Although at the time of this analysis ove one hundred comprehensive urban traffic sur veys had been completed, trip purpose-to

Table 2.-Distribution by population groups of all urbanized areas, of urban areas wher origin and destination studies have been made, and of urban areas included in th present study

Urban area population groups	$\begin{aligned} & \text { All urbanized areas, } \\ & 1950 \text { census } \end{aligned}$		Urban areas with completed 0 \& D studies		Urban areas included in this study	
	Number	Percent	Number	Percent	Number	Percent
Over 1,000,000	12					
$500,000-1,000,000$ $250000-500$	${ }_{24}^{13}$	8.3 15	${ }_{9}^{11}$	10.9 8.9	${ }_{3}$	12.0
200,000-500,000-	24 70	15.3 44.6	${ }_{43}^{9}$	${ }_{42.6}$	$2{ }_{20}^{3}$	-6.0
50,000-100,000			22	21.8	12	24.0
Less than 50,000			10	9.9	5	10.0
Total	157	100.0	101	100.0	50	100.0

purpose tabulations had been prepared in only 50 cities with sufficient uniformity to permit summarizing the results by city groups.

These 50 cities seem to provide a sufficiently good distribution among the population groups studied so that the data are representative.

Figure 1 shows the geographical distribution of the selected cities by population groups. The 50 cities accounted for 10.8 percent of the

Table 3.-Number of trips by each mode of travel in Madison, Wis., classified according to trip purpose

Trips from-	Trips to-										
	Work	Business	Medicaldental	School	Socialrecreation	Eat meal	Shop	Change mode of travel	Serve passengers	Home	Total
Automobile Drivers											
Work		663 828	89	41	522	3, 717	990	-	1,242	11,214	26,486
Business Medical-dental	623 49	828 20	10 10	30	301 31	190 9	468 119		210 50	2, 164	4, 824
School	72	20	10	119	139	290	40	--.........	150	1,092	1,932
Social-recreation_ Eat meal	- ${ }^{142}$	190	40	20 169	1,377	258	401	10	1,206	6,395	10,039
Shop......	$\begin{array}{r}370 \\ \hline 107\end{array}$	${ }_{251}$	29	169 31	598 598	139	1,365	11	439 321	791 5,333	5,128 8,348
Change mode of travel		10	10		10	20	${ }^{21}$		20	r, 148	-239
Serve passengers - -- Home	1,924 12,648	300 2,624	70 341	$\begin{array}{r} 209 \\ 1,331 \end{array}$	926 5,749	349 691	620 4,234	20 99	1,776 6,953	5,827	12,021 34,670
Total.	26, 903	5,077	609	1,950	9,943	5,663	8,359	140	12,367	33, 235	104, 246
Automobile Passengers											
Work.... Business.	191 41	63 217	30 30	10	203 184	503 20	196 153	71	--	3, 971	5,228
Medical-dental		21		10	184 52		153		-----	725 303	1,380 458
School	20	52	53	82	256	188	20			871	1,542
Social-recreation Eat meal	${ }_{4}^{92}$	82 10	10	89 267	3,739	297	451 20	101	-----...-	10, 048	14,909
Shop--.-.-......--	29	63	10	11	535	62	708	10		6990 2,673	1,679 4,101
Change mode of travel	30				20	10	22	10	-	271	4, 363
Home...-....	4,533	901	313	2,676	9,384	558	2, 421	285	-		21,071
Total	5,377	1,409	446	3,145	14, 624	1,638	4, 063	477	-......--	19, 552	50, 731
Streetcar and Bus Passengers											
Work	130	69	20	10	140	504	220	175		7, 429	8,697
Medical-dental		10		10	30 20			10 20		805 300	1,005 360
School...	161	40	20	90	180	553	201	60		5,213	6,518
Social-recreation	20	41	20	20	159	40	70	41		3, 258	3, 669
Eat meal Shop	434 40	20 49	10	454 50	40 131		20 150	40		- 2,522	1,331 2,992
Change mode of travel	110	10		59	70	10	59	40		${ }^{2} 161$	2,919
Home....	8,153	1,118	382	5,556	3,238	361	1,730	210			20,748
Total	9, 078	1,417	452	6,269	4, 008	1,468	2, 500	596		20, 051	45,839
Taxi Passengers											
Work...	41 10	20 10	50	10		10 10	10	-1......	-.........	413 149	${ }_{209}^{574}$
Medical-dental	10				10	10		.-...-		131	151
School..........- Social-recreation	21	$11-$	---------	10	11 79	20 20	-	--.-.......	${ }_{481}^{121}$	162 612
Eat meal - . . .	20				10	20	10			481 40	612 80
Shop......-. ${ }_{\text {Change mode of travel }}$	30 10						40			90	160
Change mode of trave Serve passengers.----	10				20						140
Home	804	139	110	239	500	60	102	89			2, 043
Total	946	180	160	259	680	120	162	89	---------	1,535	4,131
Truck Passengers											
Work_...	92				-..........	-.....-	-------	--.--	----------	31	123
Business-_-.al Medical-dental				-----------	---------	--	.	-	-..........-	-	
School_-1.al-	--.--....		----------		---	--......	-........	-......	-...-.		10
Eat meal.	-	-		-	-....-	--...	-		-....--	10	10
Shop............						--7...-	-	--1.-	--.........	-...----	-----....-
Change mode of travel Serve passengers							-...--		.-.	-..	--.......
Home .-.-........	11	------7.----			10						21
Total.	103	---------	---------	--.......-	10	---.-.-.	-------			41	154
All Modes or Travel											
Work	8,462	815	189	51		4,734	1,416		1,242	23, 058	41, 108
Business - Medical-dental	704 59	1,115	40 10	70 20	535 113		671 191	10 20	210 50	3,843 1,005	7,418 1,528
School.-.......	253	112	83	301	586	1, 051	261	60	150	7,297	10,154
Social-recreation	275	324	70	129	5,354	, 615	922	152	1,206	20, 192	29, 239
Eat meal - . . .	4, 062	201		890	591		${ }^{151}$		439	1, 884	8,218
Shop_..............-	369 150	363 20		92 59	1,264	201 40	2, 263	61 50	321 20	10,618 690	15, 601
Change mode of travel Serve passengers....	(150	20 300	10 70	59 209		40 349	102 620	50 20	1,776		1,261 12,021
Home	26, 149	4,782	1,146	9,802	18,881	1,670	8,487	683	6,953		78,553
Total	42, 407	8, 083	1,667	11,623	29,265	8,889	15, 084	1,302	12,367	74, 414	205, 101

Table 4.-Number and percentage of trips by each mode of travel in 50 cities, classified according to trip purpose

Mode of travel	Trip purpose											
	Work and business		Social and recreation		Shop		Miscellaneous		Home		Tetal	
	Number	Percent										
Automobile drivers	3, 679,848	13.2	1,079,942	3.9	910, 831	3.3	1,524,373	5.5	4, 187,918	15.1	11, 382, 912	41.0
sengers Mass-transit passengers.	$1,065,361$ $3,014,103$	3.9 10.8	$1,520,382$ 736,487	5. 5	488,798 690,435	1.6 2.6	$\begin{array}{r} 486,546 \\ 1,270,461 \end{array}$	1.7 4.6	$\begin{aligned} & 2,634,629 \\ & 4,487,541 \end{aligned}$	$\begin{array}{r} 9.5 \\ 16.2 \end{array}$	$\begin{array}{r} 6,195,716 \\ 10,199,027 \end{array}$	$\begin{aligned} & 22.2 \\ & 36.8 \end{aligned}$
Total	7, 759, 312	27.9	3,336, 811	12.0	2,090, 064	7.5	3,281,380	11.8	11,310, 088	40.8	27, 777, 655	100.0

total United States population in 1950, and 16.8 percent of the urban population. As table 2 indicates, the distribution of the 50 cities by population groups among the 157 urbanized areas of the 1950 census is only fair, but it follows very closely the group distribution of the 101 cities from which origin-destination traffic survey data were available.

The present analyses have been limited to two questions: how and why residents make their trips within an urban area. It does not consider two other important questions which relate to the origin and destination of trips within the area. Although these data are available for each city, records of trips from place to place within a city cannot justifiably be combined for more than one city at a time, because it is difficult to relate areas when so little is known about their land-use characteristics.

The process of summarizing data to discover travel patterns, related to purpose of trip and mode of travel, began with the cities where the surveys were made. In each of the 50 cities the procedures recommended in the Manual of Procedures for Home Interview Traffic Study were generally followed, and tables were compiled in which trips were classified uniformly by mode of travel and pur-
pose of trip. One tabulation was prepared for each mode of travel, showing the number of trips from each purpose to each purpose. However, the number of travel modes reported in different cities varied; trips by train passengers were reported only in 2 cities and trips by "other" passengers were reported only in 5 cities. A typical example of the basic tabulations for an individual city is presented in table 3.

In the course of assembling and combining the data from different cities it became evident that certain less significant trip purposes and travel modes might advantageously be combined. On the average, the 5 least important trip purposes accounted for less than 12 percent of the total number of trips, and not one of these purposes accounted for as much as 4 percent. These categories were combined to form a miscellaneous group.

Minor trip purposes and the percentages of trips accounted for by each were as follows: to serve passenger, 3.4 percent, change mode of travel, 3.3 percent, school, 2.3 percent, eat meal, 1.7 percent, and medical-dental, 1.1 percent.

In addition, since business trips amounted to less than 5 percent of all internal trips and were often difficult to dissociate from work
trips, the two were combined as work and business trips. Thus, the five major trip pur poses were work and business, social-recrea tional, shopping, miscellaneous, and home.

An examination of the data for the 7 modes of travel indicated that 4 modes accounted fo: less than 2 percent of all trips, and not 10 the 4 modes accounted for as much as 1 per cent of the trips. The least important trave modes were as follows: taxi passengers, $0 . \delta$ percent, train passengers, 0.7 percent, truck passengers, 0.2 percent, and other passengers, 0.2 percent.

Since these travel modes represented such small proportions of the total, they were combined with other modes of similar characteristics. Taxi and truck passengers were combined with automobile passengers, whereas passengers using trains or other interurban facilities such as subways, ferries, or highway buses were combined with streetcar and bus passengers. Thus, three major modes of travel appeared to be sufficiently representative: automobile drivers, automobile and taxi passengers, and mass-transit passengers.

Although the trip purposes and travel modes that have lost their identity through summarization are relatively insignificant in the total travel pattern, they may be important

Figure 2.-Percentage distribution of trips according to purpose, and further classified by mode of travel.

Table 5.-Number and percentage of trips by each mode of travel in six population groups, classified according to trip purpose

Mode of travel	Population group	Number of citles	Trip purpose											
			Work and business		Social and recrea- tion		Shop		Miscellaneous		Home		Total	
			Number	Per- cent	Number	Percent								
Automobile drivers Automobile and taxi passengers_ Mass-transit passengers	$\left\{\begin{array}{l} 1,000,000 \text { and } \\ \text { over } \end{array}\right.$	4	$\left\{\begin{array}{r}1,143,303 \\ 344,013 \\ 1,401,980\end{array}\right.$	35.4 19.1 28.2	300,892 420,539 345,528	$\begin{array}{r} 9.3 \\ 23.3 \\ 7.0 \\ \hline \end{array}$	201, 334 116, 687 309, 684	$\begin{aligned} & \text { 6. } 2 \\ & \text { 6. } 5 \\ & \text { 6. } 2 \end{aligned}$	414,396 151, 320 884, 034	$\begin{array}{r} 12.9 \\ 8.4 \\ 17.8 \end{array}$	$\begin{array}{r} 1,165,651 \\ 769,472 \\ 2,027,099 \end{array}$	$\begin{aligned} & 36.2 \\ & 42.7 \\ & 40.8 \end{aligned}$	$3,225,576$ $1,802,031$ $4,968,325$	$\begin{aligned} & 100.0 \\ & 100.0 \\ & 100.0 \end{aligned}$
Total.			[2,889, 296	28.9	1,066,959	10.7	627, 705	6.3	1,449, 750	14.5	3,962, 222	39.6	9,995, 932	100.0
Automobile drivers. Automobile and taxi passengers Mass-transit passengers	$\begin{gathered} 500,000- \\ 1,000,000 \end{gathered}$	6	$\left\{\begin{array}{r}1,110,178 \\ 289,710 \\ 983,146 \\ \hline\end{array}\right.$	31.5 16.6 33.0	309,475 402,040 184,998	8.8 23.0 6.2	296, 569 145, 159 201, 002	$\begin{aligned} & 8.4 \\ & 8.3 \\ & 6.8 \end{aligned}$	$\begin{aligned} & 438,527 \\ & 156,448 \\ & 190,078 \end{aligned}$	12.4 9.0 6.4	$\begin{array}{r} 1,370,171 \\ 753,517 \\ 1,418,248 \end{array}$	$\begin{aligned} & 38.0 \\ & 43.1 \\ & 47.6 \end{aligned}$	$\begin{aligned} & 3,524,920 \\ & 1,746,874 \\ & 2,977,472 \end{aligned}$	$\begin{aligned} & 100.0 \\ & 100.0 \\ & 100.0 \end{aligned}$
Total			(2,383, 034	28.9	896, 513	10.9	642, 730	7.8	785, 053	9.5	3,541,936	42.9	8,249, 266	100.0
Automobile drivers \qquad Automobile and taxi passengers. Mass-transit passengers	$\begin{aligned} & 250,000- \\ & 500,000 \end{aligned}$	3	$\left\{\begin{array}{r}234,358 \\ 70,884 \\ 175,776\end{array}\right.$	33.9 16.9 30.2	72,134 110,151 52,309	$\begin{array}{r} 10.4 \\ 26.3 \\ 9.0 \end{array}$	$\begin{aligned} & 58,241 \\ & 34,775 \\ & 42,057 \end{aligned}$	$\begin{aligned} & \text { 8. } 4 \\ & 8.3 \\ & 7.2 \end{aligned}$	84, 678 31, 456 60, 348	$\begin{array}{r} 12.2 \\ 7.5 \\ 10.4 \end{array}$	242, 866 172, 196 251, 271	35.1 41.0 43.2	692,277 419,462 581, 761	$\begin{aligned} & 100.0 \\ & 100.0 \\ & 100.0 \end{aligned}$
Total			(481,018	28.4	234,594	13.8	135, 073	8. 0	176, 482	10.4	666, 333	39.4	1,693,500	109.0
Automobile drivers Automobile and taxi passengers. Mass-transit passengers	$\begin{aligned} & 100,000- \\ & 250,000 \end{aligned}$	20	$\left\{\begin{array}{r}888,964 \\ 264,644 \\ 330,220 \\ \hline\end{array}\right.$	$\begin{aligned} & 30.4 \\ & 16.0 \\ & 26.3 \end{aligned}$	287,031 428, 819 115, 567	$\begin{array}{r} 9.8 \\ 25.9 \\ 9.2 \end{array}$	270, 770 104, 161	$\begin{aligned} & 9.3 \\ & 8.9 \\ & 8.3 \end{aligned}$	433, 692 116, 747 108, 051	14.8 7.1 8.6	$\begin{array}{r} 1,042,586 \\ 696,795 \\ 596,264 \end{array}$	$\begin{aligned} & 35.7 \\ & 42.1 \\ & 47.6 \end{aligned}$	$\begin{aligned} & 2,923,043 \\ & 1,653,801 \\ & 1,254,263 \\ & \hline \end{aligned}$	$\begin{aligned} & 100.0 \\ & 100.0 \\ & 100.0 \end{aligned}$
Total.			(1,483, 828	25.4	831,417	14.3	521, 727	8.9	658,490	11.3	2,335, 645	40.1	5,831, 107	100.0
Automobile drivers. \qquad Automobile and taxi passengers. Mass-transit passengers	$\begin{gathered} 50,000- \\ 100,000 \end{gathered}$	12	$\left\{\begin{array}{r}242,565 \\ 79,696 \\ 110,197 \\ \hline\end{array}\right.$	30.0 17.5 29.8	$\begin{array}{r}87,061 \\ 120,083 \\ 33,696 \\ \hline\end{array}$	$\begin{array}{r} 10.9 \\ 26.3 \\ 9.1 \end{array}$	$\begin{aligned} & 65,073 \\ & 35,941 \\ & 28,778 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.9 \\ & 7.8 \end{aligned}$	117, 711 24, 855 24, 280	14.6 5.5 6.6	$\begin{aligned} & 294,964 \\ & 195,281 \\ & 172,236 \end{aligned}$	$\begin{aligned} & 36.5 \\ & 42.8 \\ & 46.7 \end{aligned}$	$\begin{aligned} & 808,274 \\ & 455,856 \\ & 369,187 \end{aligned}$	$\begin{aligned} & 100.0 \\ & 100.0 \\ & 100.0 \end{aligned}$
Total			432,458	26.5	241, 740	14.8	129, 792	7.9	166, 846	10.2	662,481	40.6	1,633, 317	100.0
Automobile drivers. Automobile and taxi passengers. Mass-transit passengers .-........	$\begin{aligned} & \text { Less than } \\ & 50,000 \end{aligned}$	5	$\left\{\begin{array}{r}60,480 \\ 16,414 \\ 12,784 \\ \hline\end{array}\right.$	29. 0 13.9 26.6	$\begin{array}{r}22,449 \\ 38,750 \\ 4,389 \\ \hline\end{array}$	$\begin{array}{r} 10.8 \\ 32.9 \\ 9.2 \end{array}$	$\begin{array}{r}18,844 \\ 9,440 \\ 4,753 \\ \hline\end{array}$	$\begin{aligned} & 9.0 \\ & 8.0 \\ & 9.9 \end{aligned}$	$\begin{array}{r} 35,369 \\ 5,720 \\ 3,670 \end{array}$	16.9 4.9 7.6	71,680 47,368 22,423	$\begin{aligned} & 34.3 \\ & 40.3 \\ & 46.7 \end{aligned}$	$\begin{array}{r} 208,822 \\ 117,692 \\ 48,019 \end{array}$	$\begin{aligned} & 100.0 \\ & 100.0 \\ & 100.0 \end{aligned}$
Total.			(89,678	24.0	65,588	17.5	33,037	8.8	44,759	11.9	141,471	37.8	374,533	100.0
Automobile drivers Automobile and taxi passengers. Mass-transit passengers...........	All groups	50	$\left\{\begin{array}{l}3,679,848 \\ 1,065,361 \\ 3,014,103\end{array}\right.$	32.3 17.2 29.5	$\begin{array}{r}1,079,942 \\ 1,520,382 \\ 736,487 \\ \hline\end{array}$	9.5 24.5 7.2	910, 831 488, 798 690, 435	$\begin{aligned} & 8.0 \\ & 7.9 \\ & 6.8 \end{aligned}$	$\begin{array}{r} 1,524,373 \\ 486,546 \\ 1,270,461 \end{array}$	134 7.9 125	$\begin{aligned} & 4,187,918 \\ & 2,634,629 \\ & 4,487,541 \end{aligned}$	$\begin{aligned} & 368 \\ & 425 \\ & 440 \end{aligned}$	$\begin{array}{r} 11,382,912 \\ 6,195,716 \\ 10,199,027 \end{array}$	$\begin{aligned} & 100.0 \\ & 100.0 \\ & 100.0 \end{aligned}$
Total...			7,759,312	27.9	3,336, 811	12.0	2,090, 064	7.5	3,281,380	11.8	11,310, 088	40.8	27, 777, 655	100.0

under certain conditions and in individual cities. Further comments are given in the appendix on page 120 .

Summary for 50 Cities

All of the internal trips by residents of the 50 urban areas have been combined in table 4 and classified according to the 5 purposes and 3 modes of travel. Of the total trips numbering almost 28 million, trips by automobile drivers accounted for the largest share and were followed in order by mass-transit passengers and automobile and taxi passengers. Homeward-bound trips predominated among the five major trip purposes; work and business trips ranked second, and were followed by social-recreational, miscellaneous, and shopping trips in that order.

Although automobile drivers represented the predominant travel mode, mass-transit passengers traveling home constituted the largest mode-purpose category, accounting for nearly one-sixth of all trips. Homewardbound automobile drivers followed closely with 15 percent of all trips; automobile drivers on work and business trips, 13 percent; masstransit passenger trips to work and business, 11 percent; and automobile and taxi passengers on their way home, 9 percent. The remaining individual mode-purpose categories accounted for 5 percent or less of the total trips.

These percentage distributions of the total trips by purpose and mode of travel are also shown in figure 2. In this chart the area of each rectangle and the percentage shown

Table 6.-Percentage of trips for each trip purpose in six population groups, classified according to mode of travel

Purpose of trip	Population group	Number of cities	Mode of travel			
			Automobile drivers	Automobile and taxi passenger	Masstransit passengers	Total
Work and business .-	1,000,000 and over	4	39.6	11.9	48. 5	100.0
Social and recreation Shop			28.2 32.1	39.4 18.6	32.4 49.3	100.0 100.0
Miscellaneous ---			28.6	10.4	61.0	100.0
Home			29.4	19.4	51.2	100.0
all purposes			32.3	18.0	49.7	100.0
Work and business	500,000-1,000,000	6	46.6	12.2	41.2	100.0
Social and recreation			34.5	44.9	20.6	100.0
Shop_-........			46.1	22.6	31.3	100.0
Miscellaneous..			55.9 38.7	19.9	24.2	100.0
All purposes			42.7	21.2	36.1	100.0
Work and business	250,000-500,000	3	48.7	14.7	36. 6	100.0
Social and recreation			30.7	47.0	22.3	100.0
Shop			43.1	25.7 17	31.2	100.0
Miscellaneous			48.0 36.5	17.8 25	34.2 37	100.0
Home All purposes			36.5 40.9	25.8 24.8	37.7 34.3	100.0 100.0
Work and business	100,000-250,000	20	59.9	17.8	22.3	100.0
Social and recreation			34.5	51.6	13.9	100.0
Shop -			51.9	28.1	20.0	100.0
Miscellaneous			65.9	17.7	16.4	100.0
Home All purposes			44.7 50.1	29.8 28.4	${ }_{21.5}^{25.5}$	100.0 100.0
Work and business	50,000-100,000 $\ldots \ldots$.	12	56.1	18.4	25.5	100.0
Social and recreation			36.4	49.7	13.9	100.0
Shop			50.1	27.7	22. 2	100.0
Home All purposes			49.5	27.9	22.6	100.0
Work and business	Less than 50,000	5	67.4	18.3	14.3	100.0
Social and recreation			34.2	59.1	6.7	100.0
Shop -1..........--			57.0	28.6	14.4	100.0
Miscellaneous Home			79.0 50.7	12.8 33.5	8.2 15.8	100.0 100.0
All purposes			55.8	31.4	12.8	100.0
Work and business	All groups - . .	50	47.4	13.7	38.9	180.0
Social and recreation			32.4	45.5	22.1	100.0
Shop - .-.........-			43.6	23.4	33.0	100.0
M iscellaneous .			46.5 37	14.8	38.7 39	100.0
Home			37.0 41.0	23.3 22.2	39.7 36.8	100.0 100.0
All purposes				22.2	30.8	100.0

therein represent the relation of the number of trips in each mode-purpose category to the total number of trips. Upon examining the horizontal bars for each mode of travel, it is seen at a glance that a larger proportion of automobile drivers were on work and business trips than mass-transit passengers, but relatively more transit passengers were going home. Also, proportionately many more automobile and taxi passengers were on social and recreational trips than was the case with either of the other two modes of travel. This chart, of course, is not typical of any particular city, but represents all of the trips
made in the 50 urban areas by residents of these areas on a typical weekday during the various periods studied.

Distribution of Trips by Population Groups

In table 5 the trips are shown by population groups of the urban areas in which they were made. Almost 10 million trips are accounted for in the 1 million and over population group and nearly 375,000 trips in the smallest group, which is for cities of less than 50,000 population. The number of trips in the various
purpose-mode cells ranged from less thal 4,000 to more than 2 million.

Purpose distribution

A pattern of uniformity for trip purposes among all population groups is observed is table 5. Generally, there was no pronouncec trend in the purpose distribution of trip: from one population group to another Exceptions to this observation were al increase in the proportion of social anc recreational trips and a slight reduction in the percentage of work and business trips, a:

Figure 3.-Percentage distribution of trips according to purpose, and further classified by mode of travel and population group.
opulation decreases, but these trends did ot hold for the individual modes of travel. The slight effect that city size apparently as en the percentage distribution of trips by urpose is portrayed in figure 3 . For cach of he six population groups and for each mode
of travel, home trips were the most common, accombting for abont two-fifths of the trips in all eategories. This is not unexpected smee home is the return trip destination of the great majority of trips. Work and business trips ranked second in all population groups,
lotaling about 28 percent of the trips for all purposes.

In the largest population group, trips for miscellaneous purposes ranked third, social and recreational trips next, and shopping trips last. This same ranking held for auto-

Figure 4.-Percentage distribution of trips according to mode of travel, and further classified by purpose and population group.

Table -.-Range in percentage of trips for each trip purpose by each mode of travel in six population groups

mobile-driver trips in each of the population groups. Although not shown in the tables of this article, a study of the basic data revealed that the relative importance of miscellaneous trips was largely due to the number of automohile drivers who traveled for the purpose of serving passengers. Also in the larger cities a number of change-mode-of-travel trips by mass-transit passengers were classified as miscellaneous. In the other population groups, considering all modes of travel, social and recreational trips ranked third, ahead of trips for miscellaneous purposes.

Among the automobile- and taxi-passenger trips, those for social and recreational purposes ranked second, above work and business trips, and accounted for one-fourth of all trips by this mode. Of the three principal modes, automobile and taxi passengers showed the greatest variation among the different population groups in trips to work and business
and for social-recreational purposes, but the least variation in home trips.

Home was the most frequent objective of mass-transit passengers in all population groups. Work and business trips ranked second. For reasons which have been mentioned, miscellaneous trips were relatively important among transit passengers in the largest cities, but in all other population groups social-recreational and shopping trips were about as important as trips for miscellaneous purposes.

Mode distribution

The percentage distribution of trips by mode of travel in the six population groups, shown in table 6 , indicates that as the size of city increases the proportion of mass-transit trips generally increases with a corresponding decrease in automobile trips. With some

Table 8.-Average number of trips per city in each population group classified according to trip purpose by each mode of travel

minor exceptions, this trend occurred amor trips in each purpose category.

The mode-of-travel pattern by populatic groups is shown in figure 4. For all purposi combined, the proportion of trips by mas transit passengers ranged from 50 percent i the cities with over 1 million population to 1 percent in the less than 50,000 populatio group. On the other hand, trips by aut. mobile drivers ranged from 32 to 56 percen and automobile and taxi passengers, from 1 to 31 percent. On the basis of individu: trip purposes, the ranges among populatio groups were much greater in some cases, ε seen in table 7.

It is evident from figure 4 that the privatel owned automobile, considering both drives and passengers, was the predominant choic for trips to all purposes in cities of less than million population. Automobile travel ws also greatly preferred for social and recreє tional trips by residents of cities in the million or more population group.

Average trips per city

Table 8 contains the number of intern ε trips made by residents by each mode of trave and for each trip purpose in the average cit within each population group. Although th figures are pure arithmetic means of the tota trips made in the cities within each popula tion group, the volumes are indicative of wha might be expected in other cities of simila size. Of special note is the regularly increas ing volume of trips for each trip purpose fron the smallest to the largest population groul for each mode of travel.

However, there appears to be a near maxi mum volume of automobile-driver trips fo shopping purposes when cities reach thi $500,000-1,000,000$ population size. In citie: of 1 million population and over, trips made b? automobile drivers for shopping purpose: exceeded those in the $500,000-1,000,00$ (population group by less than 2 percent This is reflected in table 6 which shows that automobile drivers made only 32 percent of the shopping trips in the largest cities as comparec with 46 percent in the next smaller popula tion group. This difference may be explainec partly by the inability of the downtowr shopping districts of very large cities tc accommodate automobile drivers and partly by the increased availability of transit facilities and taxicabs, particularly around the densely populated areas in the vicinity of the central business district.

Distribution of Trips by Individual Cities

The number of trips by residents according to purpose in each of the 50 urban areas are presented in tables 9 and 10 for automobile drivers, autemobile and taxi passengers, masstransit passengers, and for all modes of travel. In these tables the cities are listed in descending order of population size at the time of the basic survey. The general tendency for a greater volume of trips in the more populous urban areas agrees with the same relationship already mentioned in the discussion of popula-
jon groups, but in the case of individual cities several exceptions are apparent. The more obvious exceptions are readily noticed.
The residents of San Juan made far fewer 'xutomobile-driver and automobile- and taxipassenger trips than persons living in mainand cities of the same size. This relatively small number of trips existed throughout all the major purposes, but applied particularly so shopping trips. The abnormally high number of trips made in Philadelphia for missellaneous purposes may be related to the arge number of mass-transit passenger trips for the intermediate purpose of changing mode of travel. In the St. Paul-Minneapolis area, an unusually large number of trips for social and recreational purposes were made by automobile.

The high volume of mass-transit passenger trips in Philadelphia, St. Louis, and Honolulu
is noteworthy, and conversely the relatively small number of automobile-driver and auto-mobile- and taxi-passenger trips in the same cities. In Houston there was an exceptionally large volume of trips by modes other than mass transit, particularly for shopping and miscellaneous purposes. A large number of automobile trips for all purposes is noted in Grand Rapids and Wichita. However, the relative stability of work and business trips and homeward-bound trips is significant throughout all cities.

Purpose distribution

The percentages of trips for each purpose in each of the 50 urban areas are presented in figure 5. Although generally displaying a pattern of uniformity in the percentage distribution of trip purposes within each city, this chart reveals several proportional trip
variations which are not readily apparent in the tables of absolute trip volumes.

The large percentage of trips for miscellaneous purposes in Philadelphia again reflects the volume of trips made by mass-transit passengers for the purpose of changing mode of travel. In Wisconsin Rapids the high percentage of miscellaneous trips may be explained by the fact that over 90 percent of the miscellaneous transit trips in this small Wisconsin city were to school. Madison, Wis., a university city, also had a relatively large proportion of trips to school. The percentage of work and business trips is especially high in St. Louis, particularly among automc bile and taxi passengers. This is undoubtedly due in part to the time of the survey which was begun just before the end of World War II. There are other extremes of more or less importance, such as the relatively small pro-

Table 9.-Number of trips by automobile drivers and automobile and taxi passengers in each of 50 cities in six population groups, classified according to trip purpose

portion of work and business trips in Honolulu, Muskegon, and Bay City, which, in a sense, are somewhat offset by social and recreational trips. However, in spite of these variations among individual cities, the overall effect is to reemphasize the essentially uniform pattern of trip purposes among the population groups.

Though not shown in this article, similar data also were developed for each separate mode of travel. In most cities the combination of work-business and home trips accounted for about 70 percent of all automo-bile-driver trips as well as mass-transit passenger trips, with social-recreational and shopping trips each accounting for another 7 to 10 percent. On the other hand, trips by automobile and taxi passengers were more frequently made for a social or recreational purpose rather than work or business. Social and recreational trips generally amounted to
one-fourth of the total trips by passengers in automobiles and taxis.

Among automobile drivers, trips to home comprised the major portion of the travel in 41 cities. Work and business trips ranked second in these cities and were foremost in the other nine cities.

Homeward-bound trips also ranked first among automobile and taxi passengers in all cities except one. In the Fargo-Moorhead area, social and recreational trips ranked first for this mode of travel. In all but 10 of the remaining 49 cities, social-recreational trips ranked second and were followed by work and business trips. This order was reversed in the remaining 10 cities.

The pattern of trip purposes for masstransit passengers resembled the automobiledriver pattern more than that of automobile and taxi passengers, but among transit pas-
sengers, home trips predominated in all citic without exception. Work and business trip ranked second in all but two cities, Philade phia and Wisconsin Rapids, where changing mode-of-travel and school trips caused th miscellaneous group to exceed work and bus: ness trips.

The composite of all modes of travel fol lowed the pattern of mass-transit passenger with home trips predominating in all cities followed by work and business trips in all bu Honolulu and Bay City, where social-recrea tional trips ranked second.

These consistencies in trip patterns sugges the possibility of utilizing the present dat in making estimates in cities where survey have not been completed. Although th ranking of trip purposes is fairly uniform, th limits of the individual percentages show wid variations not directly related to the size 0

Table 10 . - Number of trips by mass-transit passengers and by all modes of travel in each of 50 cities in six population groups, classifier according to trip purpose

City	Population group	Number of mass-transit passenger trips made for purposes of -						Number of trips by all modes of travel for purposes of -					
		Work and	Sccial and recreation	Shop	Miscellaneous	Home	Total	Work and business	Social and recreation	Shop	Miscel- laneous	Home	Total
Philadelphia, Pa San Francisco, Calif Newark, N. J Washington, D. C	$1,000,000$ and	583,557 296,825 $28,4,434$ 237,164	$\begin{array}{r} 135,154 \\ 79,652 \\ 78,023 \\ 52,699 \end{array}$	$\begin{array}{r} 126,102 \\ 6,397 \\ 78,313 \\ 38,872 \end{array}$	$\begin{array}{r} 692,382 \\ 86,241 \\ 54,244 \\ 51,167 \end{array}$	$\begin{aligned} & 861,013 \\ & 414,667 \\ & 453,361 \\ & 298,058 \end{aligned}$	$\begin{array}{r} 2,398,208 \\ 943,782 \\ 948,755 \\ 677,960 \end{array}$	$\begin{aligned} & 961,758 \\ & 838,215 \\ & 573,786 \\ & 515,537 \end{aligned}$	$\begin{aligned} & 299,150 \\ & 356,957 \\ & 200,620 \\ & 210,232 \end{aligned}$	$\begin{aligned} & 182,086 \\ & 199,826 \\ & 135,988 \\ & 109,805 \end{aligned}$	$\begin{aligned} & 810,512 \\ & 347,115 \\ & 121,987 \\ & 170,136 \end{aligned}$	$\begin{array}{r} 1,294,574 \\ 1,063,372 \\ 886,116 \\ 718,160 \end{array}$	$\begin{aligned} & 3,548,080 \\ & 2,805,485 \\ & 1,918,497 \\ & 1,723,870 \end{aligned}$
Total		1, 401, 980	345, 528	309, 684	884, 034	2, 027,099	4, 968, 325	2, 889, 296	1,066, 959	627, 705	1, 449, 750	3, 962, 222	9, 995, 932
St. Lollis, Mo St. Paul-Minneapolis, Minn.	$\begin{aligned} & 500,000- \\ & 1,000,000 . \end{aligned}$	$\begin{aligned} & 428,806 \\ & 137,017 \end{aligned}$	$\begin{aligned} & 69,134 \\ & 29,327 \end{aligned}$	$\begin{aligned} & 70,793 \\ & 33,728 \end{aligned}$	$\begin{aligned} & 30,495 \\ & 30,394 \end{aligned}$	$\begin{aligned} & 562,209 \\ & 201,235 \end{aligned}$	$\begin{array}{r} 1,161,437 \\ 431,701 \end{array}$	$\begin{aligned} & 626,060 \\ & 442,551 \end{aligned}$	$\begin{aligned} & 112,383 \\ & 242,638 \end{aligned}$	$\begin{array}{r} 97,066 \\ 119,376 \end{array}$	$\begin{array}{r} 52,232 \\ 162,910 \end{array}$	$\begin{aligned} & 824,563 \\ & 665,054 \end{aligned}$	$\begin{aligned} & 1,712,304 \\ & 1,632,529 \end{aligned}$
Baltimore, Md Houston, Tex Dallas, Tex Seattle, Wash		$\begin{array}{r} 201,560 \\ 66,022 \\ 68,066 \\ 81,675 \\ \hline \end{array}$	$\begin{array}{r} 44,773 \\ 8,630 \\ 7,421 \\ 25,713 \\ \hline \end{array}$	$\begin{aligned} & 42,922 \\ & 14,227 \\ & 12,317 \\ & 27,015 \end{aligned}$	46,233 44,125 22,299 16,532	$\begin{array}{r} 307,263 \\ 119,265 \\ 95,968 \\ 132,308 \end{array}$	$\begin{aligned} & 642,751 \\ & 252,269 \\ & 206,071 \\ & 283,243 \end{aligned}$	$\begin{aligned} & 385,113 \\ & 433,046 \\ & 256,996 \\ & 239,268 \end{aligned}$	110, 184 203, 292 106, 777	$\begin{array}{r} 77,255 \\ 18,692 \\ 96,107 \\ 64,234 \\ \hline \end{array}$	$\begin{array}{r} 87,331 \\ 27,219 \\ 145,695 \\ 61,666 \end{array}$	534, 834 750,078 347, 239	$\begin{aligned} & 1,194,717 \\ & 1,850,327 \\ & 1,040,205 \\ & 819,184 \end{aligned}$
Total		983, 146	184, 998	201, 002	190, 078	1,418, 248	2, 977, 472	2, 383, 034	896, 513	642, 730	785, 053	3, 541, 936	8, 249, 266
Portland, Oreg Norfolk, Va. San Juan, P. R	250, 000-500, 000	75, 407 40, 920 59, 449	$\begin{array}{r} 27,190 \\ 8,230 \\ 16,889 \end{array}$	$\begin{array}{r} 24,837 \\ 7,180 \\ 10,040 \end{array}$	$\begin{array}{r} 10,838 \\ 6,060 \\ 43,450 \end{array}$	$\begin{array}{r} 110,779 \\ 55,350 \\ 85,142 \end{array}$	$\begin{aligned} & 249,051 \\ & 117,740 \\ & 214.970 \end{aligned}$	$\begin{array}{r} 253,196 \\ 152,120 \\ 75,702 \end{array}$	$\begin{array}{r} 138,248 \\ 66,720 \\ 29,626 \end{array}$	$\begin{aligned} & 83,033 \\ & 39,200 \\ & 12,840 \end{aligned}$	$\begin{aligned} & 76,014 \\ & 48,460 \\ & 52,008 \end{aligned}$	$\begin{aligned} & 340,757 \\ & 218,420 \\ & 107,156 \end{aligned}$	$\begin{aligned} & 891,248 \\ & 524,920 \\ & 277,332 \end{aligned}$
Total		175, 776	52, 309	42, 057	60,348	251, 271	581, 761	481, 018	234, 594	135, 073	176, 482	666, 333	1,693, 500
Wichita, Kans Grand Rapids, Mich Honolulu, T. H Sacramento, Calif Salt Lake City, Utah Wilmington, Del Phoenix, Ariz Tacoma, Wash Spokane, Wash Scranton, Pa Duluth, Minn., Superior,	100,000-250,000	18,508 23,407 34,179 14,517 21,079 28,532 15,863 14,967 14,915 15,765 17	3,484 6,942 18,845 3,708 7,642 9,317 5,046 4,724 4,979 9,282 7,2	5,349 5,704 9,064 3,917 6,332 6,551 5,484 4,742 6,177 14,017	8,927 8,931 3,331 17,751 8,770 3,735 7,244 10,897 5,340 5,057 1,960	31,441 34,176 82,366 27,344 35,060 46,242 34,028 25,400 32,090 40,238	67,709 73,560 162,205 58,256 73,848 97,886 77,318 55,173 63,218 81,262	169,128 135,431 89,614 10,647 81,619 81,019 96,178 66,758 55,788 38,886	62,940 99,475 91,149 42,598 46,750 37,54 58,363 29,363 24,987 24,208 24,809	62,257 58,785 32,826 35,697 20,421 17,641 54,133 16,846 16,115 20,264	97,370 52,086 57,53 54,331 19,981 29,505 66,268 23,298 15,875 7,344	$\begin{array}{r} 247,324 \\ 222,621 \\ 210,018 \\ 138,314 \\ 123,524 \\ 117,832 \\ 161,696 \\ 87,573 \\ 96,687 \\ 80,315 \end{array}$	$\begin{aligned} & 639,019 \\ & 568,488 \\ & 481,060 \\ & 371,587 \\ & 291,695 \\ & 284,055 \\ & 436,638 \\ & 219,638 \\ & 208,768 \\ & 171,618 \end{aligned}$
Wis		17,648		4, 953		27,658	59,971	61,327					
Chester, Pa		8,197	1,922	2,311	3, 057	12,680	28, 167	30, 170	12, 839	9,363	9,143	49,303	110,818
Tucson, Ariz		7,310	2, 490	2, 640	5, 590	16,290	34, 320	64, 705	37, 772	29, 137	37, 454	101, 632	270, 700
Lansing, Mich Reading, Pa		8,543 23,717	2,719 4,907	2,583	3,797 3,552	14,478 32885	32,120 69 69	66,293 55 55	33,940 13 13	22,465	32, 248	86, 961	241, 907
Albuquerque,		8,668	3, 597	3,069	2, 266	15, 290	- 32,890	55, 566	15, 217	$\begin{array}{r}\text { 18,591 } \\ \hline 1\end{array}$	13, 238	60, 835	157, 112
Rockford, III		10,911	3, 059	6, 749	1, 354	20, 484	42, 557	71,160	43,419	27, 034	17,424	122, 831	281, 868
Saginaw, Mich		6, 217	2, 074	1,427	, 871	9,471	20, 060	57, 444	31, 588	24, 806	30, 706	90, 394	234, 938
Madison, W is Harrisburg, Pa		10,495	4, 008	2,500		20,051	45, 839	50,490	29, 265	15,084	35, 848	74, 414	205, 101
Harrisburg, Pa		26,782	9,578	5,861	3,299	38, 592				13,387	14, 300	79, 526	190, 739
Tot		330, 220	115, 567	104, 161	108, 051	596, 264	1, 254, 263	1,483, 828	831, 417	521, 727	658, 490	2, 335, 645	5, 831, 107
Johnstown, Pa	30,000-100,000	11, 424	3, 924	3, 132	1,176	17,940	37, 596	27,973	14,463	10, 491	6,326	41,535	
Altoona, Pa---- Muskegon, Mich		6, 107	1,823	2, 391	946	10,300	21,567	26, 267	17, 173	11, 326	7,988	45, 051	107, 805
Pontiac, Mich.		7,122	1,949	1, 648	4, 813	12, 768	28,300	38,901	17, 427	13,251 10,392	14,042	69,356 59 59	174, 347
Columbus, G		21, 645	2, 894	3, 765	4, 024	30, 903	63,231	47,624	12,628	11, 575	14,165	-69, 954	155, 946
Racine, Wis		7,653	2,916	2, 390	2, 832	11, 257	27,048	38,412	23,021	13,078	22, 973	54, 329	151, 813
Macon, Ga-		20,549	4, 418	5,006	2,915	33, 154	66, 042	46, 607	10,082	9,769	10,529	68, 662	145, 649
York, Pa-----		4, 281 10,498	1,377	1,496 2,261	1,345	6,537 15,885	15,036 34,501	47,309 29,928	18,234 19,687	10,354 8,414	17,450 6,082	50,291 50,098	143,638 114,209 14,
Kalamazoo, Mich		7,189	2,546	2, 247	3,031	11,144	26, 157	37,775	19, 24,247	8,414 10,799	6, 15,929	50,098 58,623	114,209 147,373
Bay City, Mich-		4, 955	1,978	1,239	1,337	7,017	16, 526	32,698	34, 522	14, 456	20,967	62, 839	165, 482
Williamsport, Pa		2,401	781	896	498	3,971	8,547	19,535	11,987	5,887	9, 784	32,001	79, 194
Total		110, 197	33, 696	28,778	24, 280	172, 236	369, 187	432,458	241, 740	129, 792	166, 846	662, 481	1, 633, 317
Fargo, N. Dak., Moorhead, Minn. Sharon-Farrell, Pa Norristown, Pa Appleton, W is. Wisconsin Rapids, Wis.	$\begin{aligned} & \text { Less than } \\ & 50,000 . \end{aligned}$	3,543	1,690	1,310	885	5,994	13,422	32, 264	27, 800	7,592	15,429	46,446	129, 531
		4,229 3,908 3,92	1,489	2,021	585 1.759	7,688 6,527	16,012 14,009	19,506	15, 120	9, 175	8,492	34, 112	86, 405
		1, 052	356	445	, 325	1,994	- 4 4, 172	16,867	11,528	3,613 9,559	9,408	-24, 240	72,932
			12		116	220	404	6,990	4,173	3,098	5,560		
Total		12,784	4, 389	4, 753	3, 670	22,423	48,019	89,678	65, 588	33,037	44,759	141, 471	374, 533
Grand total.	All groups.-	3, 014, 103	736, 487	690, 435	1, 270, 461	4, 487, 541	10, 199, 027	7, 759,312	3, 336, 811	2,090,064	3, 281, 380	11, 310, 088	27,777,655

ity and indicate that such a basis would rovide only a rude forecast at best.
The ranges in percentages of trips for each
trip purpose by each mode of travel are shown in table 11. Despite the wide range between the maximum and minimum percentages, it is

SAN FRANCISCO	
	NEWARK
	WASHINGTO
	St. LOUIS
	St. PAUL-MINN.
baltimore	
	houston
dallas	
	seattle
portland	
	norfolk
san juan	
	wichita
grand rapios	
Sacramento	
	salt lake city
WILMINGTON	
	Phoenix
tacoma	
	spokane
scranton	
OULUTH-SUPER.	
	tucson
lansing	
	reaoing
albuouerque	
	ROCKFORD
saginaw	
	madison
harrisburg	
johnstown	
	altoona
MUSKEGON	
pontiac	
	columbus
racine	
macon	
	YORK
CHARLESTON	
kalamazoo	
	bay city
WILLIAMSPORT	
fargo-molrhead	
SHARON-FARRELL	
APPLETON	
WISCONSIN RAP.	
	total

Figure 5.-Percentage distribution of trips in each city, according'to purpose.

MASS-TRANSIT PASSENGERS

\qquad

 ockFord
aginaw
ADISON

 MACON
YORK

CHARLESTON | CHARLESTON |
| :--- |
| KALAMAZOO |

Figure 6.-Percentage distribution of trips in each city, according to mode of travel.
Table 11.-Range in percentage of trips for each trip purpose by each mode of travel in 50 cities

Mode of travel	Percentage range, by mode of travel, in trips made for purposes of-				
	Work and business	Social and recreation	Shop	Miscel- laneous	Home
Automobile drivers:					
Maximum	41.3 22.9	16.8 4.0	13.6 4.5	20.1 4.1	47.6 30.4
Automobile and taxi passengers:					
Maximum	31.7	39.3	13.7	12. 2	47. 9
Minimum_-.........-	10.6	12.3	4.5	2. 5	36. 7
Mass-transit passengers: Maximum	36.9	16.3	17.3	28.9	54.5
Minimum	12. 9	3.0	1.0	2.3	35.9
All modes of travel:					
Maximum-...---- Minimum	$\begin{aligned} & 36.6 \\ & 18.6 \end{aligned}$	22.0 6.9	13.1 4.6	$\begin{array}{r} 22.8 \\ 3.1 \end{array}$	$\begin{aligned} & 48.2 \\ & 34.4 \end{aligned}$

seen later that for any particular urban area it is possible to make a fairly reasonable forecast of the absolute volume of trips from which percentages may be computed.

Mode distribution

The percentage distribution of trips in the 50 individual cities by mode of travel is presented in figure 6. The most noticeable difference from the previous distribution by trip purpose is the relative lack of uniformity among the several cities when considering travel mode. While not included in this article, similar percentages were developed for each trip purpose and a variable pattern was found in each case. The ranges in the percentage of trips by each mode of travel for each trip purpose and for all purposes are shown in table 12.

Besides being small in absolute volumes, trips by automobile drivers and automobile and taxi passengers were also few on a relative basis in San Juan, where 7 out of 9 persons making trips traveled as mass-transit passengers, largely iri "publicos" (privately owned public conveyances, usually station wagons, which generally operate over established routes but with no fixed schedule). On the other hand, exceptionally high percentages of automobile trips were observed for each trip purpose in cities of Texas, New Mexico, Arizona, California, Washington, Michigan, and Wisconsin.

It may be that these variations are related to the period during which the basic studies were made or to the geographical area in which the cities are located. Some of the studies where mass-transit facilities played an important role were made during or shortly after World War II when automobile driving was restricted. Also, other evidence indicates that the preference for automobile travel has increased progressively over the decade during which the studies were made in the various cities. Insofar as location is concerned, it is not unusual to find a particularly high proportion of automobile-driver trips in the Southwestern and Pacjfic States, and certain States in the Great Lakes region where automobile ownership and travel are relatively high.

Table 12.-Range in percentage of trips by each mode of travel for each trip purpose in 50 cities

Purpose of trip	Percentage range, by purpose of trip, in trips made by-		
	Automobile drivers	Automobile and taxi passengers	Masstransit passengers
Work and business:			
Maximum	79.2	24.9	78.5
Minimum	14.5	4.8	. 7
Social and recreation: Maximum	45.9	65.9	61.5
Minimum	13.8	10.7	. 3
Shop:			
Maximum	70.6	35.4	78.2
Minimum.	10.8	4.7	. 1
Miscellaneous:			
Maximum	84.9	37.5	85. 4
Minimum	9.0	5.6	2.1
Home:			
Maximum	65.1	38.7	79.5
Minimum........	8.8	5.6	2.1
All purposes:			
Maximum.	67.9	35. 7	77.5
Minimum......-.	11.1	5.6	1.3

In spite of the noticeable lack of uniformity as far as mode of travel for each trip purpose is concerned, there was an overall trend for a larger percentage of automobile trips in smaller cities as would be expected. Converscly, there seemed to be a general trend toward a larger percentage of mass-transit passenger trips in the larger cities. Mass transit was the predominant mode of travel in the largest cities, but automobile drivers comprised over half of the vehicular trips by residents in most of the medium-size and smaller cities. These trends appeared among trips for each purpose.

Trips from Purpose to Purpose

All of the previous discussion has dealt with the purpose of trips in connection with their point of destination. This section considers the purpose from which the trips were made at points of origin, as related to the destination purpose. This type of information is presented only in summary form for all 50 urban areas, although detailed data are available from individual city reports. The number of trips made by persons "from" a purpose "to" a purpose are included. This somewhat unusual phraseology is used to express an idea that could not otherwise be expressed precisely in so few words. It describes not only why a person made a trip to his destination, but why he was at the place he left.

Table 13 shows the volume of trips in all 50 urban areas from each purpose to each
purpose for each mode of travel. The predominant purposes of trips by all modes of travel were from home to work and business, followed closely by trips from work and business to home. These same trips were dominant among mass-transit passengers and automobile drivers, but ranked second among automobile and taxi passengers. The trips from work or business to home did not quite equal the volume of trips in the reverse direction because of the intermediate trips from work or business for some other purpose prior to returning home. For instance, some of this difference was accounted for by the excess of trips from social-recreational purposes to home, over and above the number of trips from home for social and recreational purposes. Also pedestrian trips, not included in the basic surveys, could have accounted for some of the apparent discrepancies.

Trips between home and social-recreational activities were the next most important category (after the home and work-business cycle) among the trips by all modes of travel combined, but they were the most important purpose-to-purpose category among automobile and taxi passengers. Trips between home and miscellaneous purposes ranked second for automobile drivers and mass-transit passengers, third for all modes of travel combined, and fourth for automobile and taxi passengers. The third ranking category among automobile drivers and mass-transit passengers was home trips to and from social-recreational purposes. Trips between home and shopping ranked
third with automobile and taxi passengers and fourth with each of the other modes o travel and with all modes combined. Th only other significant purpose-to-purpose cate gories were the automobile- and taxi-passenge trips from one social or recreational purposi to another, trips from work or business ti work or business by automobile drivers, anc trips between work or business and miscella neous purposes by each mode of travel.
Table 13 also shows the percentage dis tribution of trips from each purpose to eacl purpose for all travel modes. Trips from home to work and business by mass-transi passengers were the foremost type of interna trips by residents of the 50 urban areas These trips accounted for nearly 10 percent o the total trips by all modes for all purposes Trips either to or from home were the mosi numerous of all. The only other categories of trips accounting for 1 percent or more of the total were trips by automobile drivers for work or business and miscellaneous purposes and social-recreational trips by automobile and taxi passengers.
Table 13 is the basis for figure 7 whick presents the percentage distribution of trips from each purpose to each purpose, and that proportion attributable to each mode of travel. Since trips are grouped first by trip purpose and then by all purposes, each trip is represented at least twice in this chart. The arrows indicate the direction of trip purpose In the upper left-hand corner of the chart, for instance, under the home category, it may be

Table 13.-Number and percentage of trips by each mode of travel in 50 cities from each purpose to each purpose

Trips from-	Trips to-											
	Work and business		Social and recreation		Shop		Miscellaneous		Home		Total	
	Number	Percent	Number	Percent	Number	Percent	Numbe:	Percent	Number	Percent	Numbnr	Percerıt
Automoryle Drivers												
Work and business. Social and recreation. Shop Miscellancous Home. \qquad	$\begin{array}{r} 1,137,747 \\ 31,061 \\ 43,624 \\ 34,199 \\ 2,127,277 \end{array}$	$\begin{array}{r} 4.1 \\ .1 \\ .2 \\ 1.2 \\ 7.6 \end{array}$	$\begin{array}{r} 69,070 \\ 135,366 \\ 46,590 \\ 03,187 \\ 735,729 \end{array}$	$\begin{array}{r} 0.2 \\ .5 \\ .2 \\ .3 \\ 2.7 \end{array}$	$\begin{array}{r} 103,456 \\ 43,584 \\ 138,149 \\ 7+, 324 \\ 551,018 \end{array}$	$\begin{array}{r} 0.4 \\ .2 \\ .5 \\ .2 \\ 2.0 \end{array}$	338, 519 93, 036 43. 602 237, 668 811, 4.18	$\begin{array}{r} 1.2 \\ .3 \\ .2 \\ .9 \\ 2.9 \end{array}$	$\begin{array}{r} \text { 2, 042, } 942 \\ 774.933 \\ 628,494 \\ 741,549 \\ \hline-\quad-\quad-\quad . \end{array}$	$\begin{aligned} & 7.4 \\ & 2.8 \\ & 2.2 \\ & 2.7 \end{aligned}$	$\begin{array}{r} 3,691,834 \\ 1,077,920 \\ 900,759 \\ 1,486,927 \\ 4,225,472 \end{array}$	$\begin{array}{r} 13.3 \\ 3.9 \\ 3.3 \\ 5.3 \\ 15.2 \end{array}$
Total	3, 679,848	13.2	1,079,942	3.9	910,831	3.3	1,524.373	5.5	4,187,918	15.1	11,382,912	41.0
Automorile and Taxi Passengers												
Work and business Social and recreation Shop. Miscelianeous IIome.	$\begin{array}{r} 117,942 \\ 21,597 \\ 12,575 \\ 48,862 \\ 854,385 \end{array}$	0.4 .1 .1 .2 3.1	$\begin{array}{r} 42,639 \\ 305,659 \\ 41,213 \\ 51,781 \\ 1,079,090 \end{array}$	$\begin{array}{r}0.2 \\ 1.1 \\ .1 \\ .2 \\ 3.9 \\ \hline\end{array}$	36,541 40,438 73,229 17,394 321,196	0.1 .1 .2 .1 1.1	61,531 38,734 9.402 26,310 350,569	$\begin{array}{r} 0.2 \\ .1 \\ -1 \\ \hline 1.1 \\ 1.3 \end{array}$	$\begin{array}{r} 837,854 \\ 1,159,437 \\ 351,404 \\ 285,934 \end{array}$	$\begin{gathered} 3.0 \\ 4.2 \\ 1.3 \\ 1.0 \\ -\cdots-- \end{gathered}$	$\begin{array}{r} 1,096,507 \\ 1,56,865 \\ 487,823 \\ 430,281 \\ 2,615,240 \end{array}$	3.9 6. 6 1.7 1.6 9.4
Total.	1,065,361	3.9	1,520,382	5.5	488,798	1.6	486, 546	1.7	2, 631, 629	9.5	6, 195, 716	22.2
Mass-Transit Passengers												
Work and business Social and recreation Shop. Miscellaneous fome	$\begin{array}{r} 118,402 \\ 9,096 \\ 13,399 \\ 237,287 \\ 2,635,929 \end{array}$	$\begin{gathered} 0.4 \\ -. \quad . \\ \hline 9.5 \end{gathered}$	$\begin{array}{r} 35,234 \\ 35,688 \\ 21,087 \\ 52,453 \\ 592,025 \end{array}$	0.1 .1 .1 .2 2.1	$3 \times, 464$ 12,298 23,085 53,753 562,325	$\begin{gathered} 0.2 \\ \cdots \cdots .1 \\ . .2 \\ 2.1 \end{gathered}$	$\begin{array}{r} 233,567 \\ 39,639 \\ 44,347 \\ 189,914 \\ 762,994 \end{array}$	$\begin{array}{r} 0.9 \\ .2 \\ .2 \\ .6 \\ 2.7 \end{array}$	$\text { 2. } \begin{array}{r} 533,978 \\ 598,686 \\ 590,706 \\ 704,206 \end{array}$	$\begin{aligned} & 9.1 \\ & 2.2 \\ & 2.1 \\ & 2.8 \end{aligned}$	$\begin{array}{r} 2,959,645 \\ 695,257 \\ 692,624 \\ 1,297,628 \\ 4,553,873 \end{array}$	$\begin{array}{r} 10.7 \\ 2.5 \\ 2.5 \\ 4.7 \\ 16.4 \end{array}$
Total.	3, 014, 103	10.8	736, 487	2.6	690, 435	2.6	1,270,461	4. 6	4, 487, 541	16.2	10, 199, 027	36.8
All Modes of Travel												
Work and business. Social and recreation. Shop. Miscellaneous. Home.	$\begin{array}{r} 1,374,091 \\ 61,684 \\ 69,598 \\ 626,348 \\ 5,627,591 \end{array}$	$\begin{array}{r} 4.9 \\ .2 \\ .3 \\ 2.3 \\ 20.2 \end{array}$	$\begin{array}{r} 146,943 \\ 476,713 \\ 108,890 \\ 197,421 \\ 2,406,844 \end{array}$	$\begin{array}{r} 0.5 \\ 1.7 \\ .4 \\ 8.7 \end{array}$	$\begin{array}{r} 178,461 \\ 96,230 \\ 234,763 \\ 115,471 \\ 1,435,139 \end{array}$	$\begin{array}{r} 0.7 \\ .3 \\ .8 \\ .5 \\ 5.2 \end{array}$	$\begin{array}{r} 633,717 \\ 171,409 \\ 97,351 \\ 453,892 \\ 1,925,011 \end{array}$	$\begin{array}{r} 2.3 \\ .6 \\ .4 \\ 1.6 \\ 6.9 \end{array}$	$\begin{aligned} & 5,414,774 \\ & 2,733,706 \\ & 1,50,604 \\ & 1,791,704 \end{aligned}$	$\begin{array}{r} 19.5 \\ 9.2 \\ 5.6 \\ 6.5 \end{array}$	$\begin{array}{r} 7,747,986 \\ 3,339,042 \\ 2,081,206 \\ 3,214,836 \\ 11,394,585 \end{array}$	$\begin{array}{r} 27.9 \\ 12.0 \\ 7.5 \\ 11.6 \\ 41.0 \end{array}$
Total....	7, 759,312	27.9	3, 336, 811	12.0	2,090, 064	7.5	3, 281, 380	11.8	11,310, 088	40.8	27,777,655	100.0

een that trips in connection with work and fusiness accounted for the largest proportion of home trips. Trips from home to work and Jusiness slightly exceeded those in the reverse lirection (20.3 percent as compared with 19.5 bercent). Mass-transit passengers ranked irst in these trips, and automobile and taxi jassengers ranked third behind automobile Irivers.

Home trips that were linked with social and ecreational purposes were fewer than those nvolving work and business. Their pattern liffered from the latter in that trips from home :o social-recreational activities were fewer than he reverse trips. Also, in this case, auto-nobile- and taxi-passenger trips were the most lumerous, and were followed by automobiledriver and mass-transit passenger trips. As I matter of fact, home trips linked with work and business were made less often by automobile and taxi passengers than home trips linked with a social-recreational purpose. Figure 7 is adaptable similarly to an analysis
of trips associated with other or with all to and from purposes.

Table 14 shows the percentage of trips made both to and from each purpose for each mode of travel. Since for each single trip there are two purposes, one from and one to, the totals add to 200 percent. This table formed the basis for figure 8 , from which it is apparent that first home and then work and business were the top-ranking purposes among all modes except one. Automobile and taxi passengers traveled more frequently from or to a social-recreational purpose (50 percent) than a work or business purpose (35 percent). Work and business trips were relatively more significant among the automobile drivers, since 65 percent of their trips were for that purpose. Mass-transit passengers were the group most likely to be traveling from or to home. The fact that this purpose accounted for almost 89 percent of their trips may be related to the greater possibility that intermediate trips by these persons were
made by walking than in the case of automobile drivers and automobile and taxi passengers. Miscellaneous trips accounted for about

Table 14.-Percentage of trips for each mode of travel in 50 cities, classified according to purpose at both origin and destination

Purpose	Mode of travel ${ }^{1}$			
	Automobile drivers	Automobile and taxi passengers	Masstransit passengers	All modes of travel
Home.	73.9	84.7	88.6	81.8
Work and business	64.8	34.9	58.6	55.8
Social-recreation. \qquad	19.0	49.8	14.0	24.0
Miscellaneous	26.4	14.8	25.2	23.4
Shopping.-	15.9	15.8	13.6	15.0
Total	200.0	200.0	200.0	200.0

${ }_{1}^{1}$ Percentages add to 200 for each mode of travel because the purpose of each trip is considered twice, at place of origin (purpose from) and at place of destination (purpose to).

Figure 7.-Percentage distribution of trips from each purpose to each purpose, by mode of travel.

one-fourth of the trips by both mass-transit passengers and by automobile drivers. Trips to or from shopping amounted to approximately 15 percent of the trips by each mode of travel.

The percentage distribution of trips from each purpose to each purpose is presented in figure 9 for all modes of travel combined. This chart was constructed in a manner similar to figure 2. It shows, for instance, that trips from home to work and business predominated, accounting for almost 50 percent of the trips from home and over 20 percent of all trips. The reverse trips from work and business to home also accounted for about one-fifth of all trips, but they comprised 70 percent of the trips from work and business. Trips to home accounted for threefourths of the trips from social-recreational and from shopping purposes, but in comparison with total trips, they represented only 9 and 6 percent, respectively. The large proportion of trips both to and from home, 82 percent, is particularly apparent in figure 9.

Household Characteristics

In addition to data concerning the daily trips of residents, the basic origin and destination surveys of the home-interview type
provided information concerning the numbers of dwelling units, automobiles owned, residents, and persons 5 years of age and older. Some of these household characteristics for the 50 urban areas are recorded in table 15.

By and large they varied directly with popr. lation. This pattern is more apparent : table 16, which compares the mean averag. for each of six population groups. In th table and in all of the following analyses Sa Juan, Puerto Rico, was omitted because , the significant differences from the pattern, travel in the continental United States.

Trips Related to Household Characteristics

The ratios of trips by each travel mode t household characteristics are shown in tabl 17 for the average city in each populatio group. The ratios of total trips and autome bile trips tended to vary inversely wit population, while mass-transit trip ratic varied directly with population, as seen i figure 10. The sharp upturn in the patter for total trips per automobile owned in th highest population group was due to th relatively low automobile ownership ratic in cities of the 1 million or more pepulatio group and the greater incidence of mass-transi trips in these cities. The reverse situatio caused the low point in this pattern for citic of less than 50,000 population. Some of th other variations of the patterns in the 500,00 to $1,000,000$ and 50,000 to 100,000 populatio: groups would be smoothed out by eliminatin surveys conducted during World War II.

The basic tables 9 and 10, giving trip pur pose and mode of travel in each of the 5 cities, and the household characteristic shown in table 15 may be used to develo] similar individual city ratios for each mode o travel and each trip purpose. For each tri] purpose there appears to be an inverse linea correlation between population and trips pe dwelling unit or trips per person for the auto mobile travel modes; that is, the larger citie have smaller trip ratios. In the case o trips by mass-transit passengers, the corre lations generally appear to be direct for eac] trip purpose.
The relations existing between a few of thes irip ratios and the number of automobile

Figure 9.-Percentage distribution of trips from each purpose to each purpose.
able 15.-Selected household characteristics in each of 50 cities in 6 population groups

City	Population group	Number of dwelling units	Number of passenger cars owned	Number of persons, all ages	Number of persons, 5 years of age and older
Philadelphia, Pa San Francisco, Calif. Newark, N. J Washington, D. C.-	1,000,000 and over...	$\begin{aligned} & 659,165 \\ & 554,200 \\ & 436,886 \\ & 336,181 \end{aligned}$	257,907 317, 400 203, 464	$\begin{aligned} & 2,233,531 \\ & 1,408,933 \\ & 1,456,947 \\ & 1,169,860 \end{aligned}$	$\begin{array}{r} 2,048,388 \\ 1,348,835 \\ 1,345,138 \\ 992,644 \end{array}$
Total		1, 986,432	1, 023,922	6, 269, 271	5, 735, 005
St. Louis, Mo St. Paul-Minneapolis, Minn Baltimore, Md Houston, Tex Dallas, Tex Seattle, Wash	500,000-1,000,000	$\begin{aligned} & 294,757 \\ & 299,510 \\ & 275,778 \\ & 272,722 \\ & 168,066 \\ & 188,732 \end{aligned}$	$\begin{aligned} & 143,415 \\ & 226,815 \\ & 123,998 \\ & 256,300 \\ & 153,777 \\ & 118,622 \end{aligned}$	974,545 915, 960 912, 809 878, 629 518,563	$\begin{aligned} & 878,377 \\ & 825,625 \\ & 830,909 \\ & 765,942 \\ & 471,044 \\ & 471,911 \end{aligned}$
Total		1,499,565	1, 022, 927	4,734, 112	4, 243, 828
Portland, Oreg Norfolk, Va. San Juan, P. R	250,000-500,000..	$\left\{\begin{array}{r} 152,586 \\ 108,000 \\ 63,131 \\ \hline \end{array}\right.$	$\begin{array}{r} 103,245 \\ 61,480 \\ 8,011 \end{array}$	$\begin{aligned} & 453,128 \\ & 335,910 \\ & 312,069 \end{aligned}$	$\begin{aligned} & 412,358 \\ & 293,270 \\ & 267,726 \end{aligned}$
Total		323, 717	172, 736	1, 101, 107	973, 354
Wichita, Kans Grand Rapids	100,000-250,000 $\ldots \ldots$	$79,534$	75, 888	238,302 220	206, 529
Honolulu, T. H		651,422	32, 692	2214, 236	194, 141
Sacramento, Calif		79, 100	53, 900	201, 345	179, 778
Salt Lake City, Utah		57, 103	38,851	196, 571	172, 557
Wilmington, Del		49, 903	30, 190	181, 44.5	162, 503
Phoenix, Ariz		48, 221	36, 372	161,567	145, 198
Tacoma, Wash		48,008	35, 175	138,700	125, 002
Spokane, Wash		48, 517	29, 644	138, 381	124, 952
Scranton, Pa---- Wis Duluth, Minn., Superior,		41, 362	${ }^{22,093}$	137,089	126, 541
Duluth, Minn., Superior, Wis		42,550	25, 596	130, 847	119, 056
Tueson, Ariz		35,200 38,690	24,449 32,910	127,408 126,900	114, 709
Lansing, Mich		35, 821	30, 252	122, 776	110, 269
Reading, Pa		37, 910	17, 184	119,850	112, 504
Albuquerque, N. Mex		34,884 36,200	27,469 33,100	116,056	100, 817
Saginaw, Mich		31, 915	27,028	112, 902	101, 438
Madison, W is		33, 365	25,328	104, 074	94, 300
Harrisburg, Pa		31,599	16,363	103, 303	96, 100
Total		926, 480	667, 279	3, 008, 729	2, 691, 833
Johnstown, Pa	50,000-100,000 $\ldots \ldots$.	23, 130	13,828	87, 509	80,351
Altoona, Pa Ma-		24,060	16,758	85, 347	77,477
Muskegon, Mich Pontiac, Mich..-		$\stackrel{23,507}{22,251}$	18,941 17,808	83.724 79,431	75,009 71,851
Columbus, Ga		20,307	8,808	79, 192	70,621
Racine, W is		23,280	18,483	78,033	69, 508
Macon, Pa		20,089	9, 529	77,665	69, 966
Charleston, S. C		-25,310	20,473	77, 350	69, 387
Kalamazoo, Mich		22,645	17, 198	72,024	65,945
Bay City, Mich.		19,561	15, 927	69, 231	61,454
Williamsport, Pa		17,016	14, 715	55, 216	48,675
Total		261, 414	179, 647	917, 927	825, 724
Fargo, N. Dak., Moorhead, Minn.	Less than 50,000.----	15,617	12,688	49,852	44, 030
		13,657	9,442	48,432	44, 310
		10,282 11,769	7,466 11,073	39,485 39,172	36,106 33,923
Wisconsin Rapids, Wis.		4,700	4,660	16, 504	14,428
Total...		56,025	45,329	193, 445	172, 797
Grand total.		5, 053, 633	3, 111, 840	16, 224, 591	14, 642, 541

〕er dwelling unit are shown in figure 11. It s noted that in areas of high automobile,wnership ratios, the total trips per person and the automobile trips per person were ,reater. Also, since automobile-driver trips jer automobile tended to increase as autonobile ownership increased, the number of .rips per vehicle may be expected to increase is the ownership ratio of automobiles per amily continues to grow. Whether mileage raveled per vehicle follows the same trend lepends upon trip lengths. As in the case of igure 10 , these curves are also affected by the lata from older studies and by the economic is well as the population characteristics of he cities studied.
Volume of trips and percentage of trips by ndividual purposes and modes of travel were issociated with the ratios of automobiles per lwelling unit and persons per automobile. Although there was fairly good linear correlaion between percentage of trips (by purpose and mode) and automobiles per dwelling unit, ; hese correlations were not as high as others
relating trips to the absolute household data in each urban area. In the latter case, better correlations were found between volume of trips (by purpose and mode) and the numbers of persons over 5 years of age, automobiles or dwelling units, than between percentage of trips (for a particular purpose or mode of travel) and any one of these variables.

The household characteristic which was most closely related to volume of trips varied,
depending upon the mode of travel or purpose of trip. These relations are shown in table 18, together with their respective correlation coefficients. These two-variable, linear correlations were deemed to be sufficiently high to forgo the need for testing correlations based upon second-degree equations or logarithms. However, for convenience of presentation the related scatter diagrams shown in figures 12-16 have been plotted on logarithmic scales.

No attempt was made to associate all household characteristics with the volume of automobile- and taxi-passenger trips, but the scatter diagram in figure 17 suggests that the number of automobiles owned in the area is a good factor.

The relatively low correlation for trips with miscellaneous purposes is not unusual because of the varying nature of such trips. A better correlation factor is hardly required, however, since there is less cause for estimating these miscellaneous trips due to their relatively small number-less than 12 percent of the total. More favorable multiple correlations might be developed if required. For instance, the addition of the factor automobiles owned to the number of persons over 5 years of age raised the correlation with mass-transit passengers from +0.941 to +0.987 .

In view of the large number of automobiledriver trips made for the purpose of going to work and for transacting business, these particular trips were also associated with the several household factors. Although total work and business trips in an area were more closely related to dwelling units (a higher correlation coefficient) than total automobile-driver trips were related to automobiles owned, it was found that work and business trips made by automobile drivers were more closely associated to automobiles owned. In the latter comparison, which is illustrated in figure 18, the correlation coefficient was +0.984 .

In order to more precisely estimate the volume of trips by each mode of travel for each individual purpose, it would be necessary to determine by means of correlation techniques similar maximum coefficients for the other modes and purposes. Of course, any application of estimates must be consistent with the resulting standard error. Further development is not attempted here, since this article is primarily concerned with existing conditions within the 50 urban areas. However, this discussion should be sufficiently indicative of the types of analysis which may be continued and expanded in an effort to

Table 16.-Average number of dwelling units, passenger cars owned, and residents per city for each of six population groups

Population group	Number of cities	Average number (in thousands) of-			
		$\begin{aligned} & \text { Dwelling } \\ & \text { units } \end{aligned}$	Passenger cars owned	Persons, all ages	Persons, 5 years of age and older
1,000,000 and over	4	497	256	1,567	
500,000-1,000,000 $250,000-500,000$	6 2	250 130	170 82	789 395	${ }^{7} 157$
$250,000-500,000$ $100,000-250,000$	20	130 46	33	150	135
100,000-100,000	12	22	15	76	69
Less than 50,000	5	11	9	39	35
All groups.	49	102	64	325	294

Table 17.-Average ratios per city between number of trips by each mode of travel and selected household characteristics in six populatio groups

Population group	Trips per dwelling unit by mode of travel				Trips per automobile owned by mode of travel				Trips per person by mode of travel			
	Automobile driver	Automobile and taxi passenger	$\begin{gathered} \text { Mass- } \\ \text { transit } \\ \text { passenger } \end{gathered}$	Total	Automobile driver	Automobile and taxi passenger	$\begin{gathered} \text { Mass- } \\ \text { transit } \\ \text { passenger } \end{gathered}$	Total	Automobile driver	Automobile and taxi passenger	$\begin{gathered} \text { Mass- } \\ \text { transit } \\ \text { passenger } \end{gathered}$	Total
1,000,000 and over	1. 62	0.91	2. 50	5. 03	3. 15	1. 76	4. 85	9. 76	0.51	0. 29	0. 79	1. 59
$500,040-1,000,000$	2. 35	1. 16	1. 99	5. 50	3. 45	1. 70	2. 91	8. 06	. 74	. 37	. 63	1.74
250,000-500,000	2. 54	1. 49	1.41	5. 44	4. 02	2. 35	2. 22	8. 59	. 84	. 49	. 46	1. 79
100,000-250,000.	3. 15 3 15	1.79	1. 35	6. 29	4. 38	2. 28	1.88	8. 74 9 9.09	. 97	. 55	. 42	1. 1.94
50,000-100,000.	3. 09	1. 75	1. 41	6. 25	4. 50 4.61	2. 54	2.05	9.09 8.07	+ 88	. 50	- 40	1.78
Less than 50,000 .	3. 73	2. 10	. 85	6. 60	4.61	2. 60	1.06	8. 27	1.08	. 61	. 25	1.94

Figure 10.-Relation of trips per person, trips per dwelling unit, and trips per automobile to population size of cities.
facets of the total urban travel complex wer obscured as a result of the combining prc cesses. Several of the more notable individu aspects are included here.

For all cities, medical-dental trips accounte for 5.5 percent of the trips by taxi passenger: and, conversely, taxi-passenger trips accounte for 4.2 percent of the trips for medical c dental purposes. Changing of mode accounte for 10 percent of the train-passenger trips an train passengers accounted for 2.2 percent c the trips to change mode of travel. Also, j is significant that 8.9 percent of the autc mobile drivers made trips for the purpose c serving passengers. All of the serve-passenge trips were made by drivers of automobiles

In addition to the cases just cited, there ar several interesting facts regarding individua cities, which were concealed when trip pur poses and modes of travel were grouped. Fo example, in Columbus, Ga., Baltimore, Md Charleston, S. C., Reading, Pa., and Gran Rapids, Mich., over 10 percent of the auto mobile-driver trips were for the purpose o transacting business. In Pontiac, Mich., an Sacramento, Calif., 14 percent of the auto mobile-driver trips were to serve passengers The fact that 11 percent of the automobile driver trips and 9 percent of the mass-transi trips in San Juan, P. R., were for the purpos. of eating is due largely to the prevalent loca custom of returning home for lunch at midday

In the category of trips for the purpose 0 changing mode of travel, several unusual situl ations occurred in individual urban areas These trips accounted for 10 and 25 percen of the total streetcar- and bus-passenger trip: in Norristown and Philadelphia, Pa., respec tively. Also, in Philadelphia, change-modı trips amounted to 60 percent of the subway- 0 elevated-railway passenger trips and 24 per cent of the train-passenger trips.

Over 12 percent of the streetcar- and bus passenger trips were to school in Madison
develop predictive factors representative of local travel in typical urban areas.

Appendix

Up to this point, the discussion has dealt with several aspects of the travel pattern in 50 urban areas with regard to the 5 major trip purposes and the 3 most important modes of travel. It was mentioned, however, that the basic origin and destination surveys, which provided the data for these analyses, included information with respect to 7 possible travel modes and 10 trip purposes; and in certain cases some rather interesting and significant

Table 18.-Correlation coefficients computed for certain types of trips and related house. hold characteristics in 49 cities ${ }^{1}$

Mode of travel or purpose of trip	Household characteristic	Correlation coefficient
Mode of travel:		
All modes.	Dwelling units.	0.987
Automobile driver -...	Automobiles owned............	. 975
Mass-transit passenger	Persons 5 years of age and over.	. 941
Purpose of trip: Work and business	Dwelling units_	989
Social and recreation	Automobiles owned	968
Shop.		. 979
Miscellaneous	Persons 5 years of age and over Dwelling units	. 916

${ }^{1}$ Scatter diagrams, except for social-recreational, miscellaneous, and home trip purposes, are presented in figures 12-16.

Wis., Pontiac, Mich., Sacramento, Calif., and n Phoenix and Tucson, Ariz. Trips to transict business accounted for 11 percent of all
taxi-passenger trips in Charleston, S. C., and in Salt Lake City, Utah, and 13 percent in Seattle, Wash.

Figure 11.-Trips per person and trips per automobile related to automobiles owned per dwelling unit.

Figure 12.-Number of trips related to number of dwelling units.

Figure 13.-Number of automobile-driver trips related to number of automobiles owned.

Figure 14.-Number of mass-transit passenger trips related to number of persons 5 years of age and over.

Figure 15.-Number of work and business trips related to number of dwelling units.

With regard to modes of travel, again there are individual city exceptions, which were absorbed in the grouping procedure. Among the more important variations which should be mentioned is the case of Washington, D. C., where taxi passengers accounted for almost 3 percent of all trips. Also truek and taxi passengers combined accounted for over 3 percent of the total trips in Baltimore, Md., and Macon, Ga. Finally, train-passenger trips amounted to 5 percent of the total trips in Newark, N. J., and 2 percent in Philadelphia.

Figure 16.-Number of shopping trips related to number of automobiles owned.

Figure 17.-Number of automobile- and taxi-passenger trips related to number of automobiles owned.

Figure 18.-Number of automobile-driver work and business trips related to number of automobiles owned.

Observations Concerning Urban Trafific Volume Patterns in Tennessee

BY THE DIVISION OF HIGHW AY PLANNING BUREAU OF PUBLIC ROADS

Reported ${ }^{1}$ by BORIS B. PETROFF, Head, Traffic Inventory Section, and ANTHONY P. KANCLER, Statistician

Abstract

The accuracy of estimates of traffic volumes on rural roals in 28 States has been determined in previous studies by probability measures. The production characteristics of the various traffic-counting methods were evaluated, and in the majority of these States efficiency was improved by appropriate changes in procedures. An important conclusion drawn from the rural studies was that traffic-volume sampling variations were relatively small and could be effectively controlled. Intuitively it has been recognized that in some aspects of traffic volume patterns on city streets a greater uniformity exists than on rural roads, and traffic volumes can be effectively sampled and accurately interpreted by even simpler statistical control devices. It was not, however, until the State of Tennessee had undertaken comprehensive urban traffic volume research that facts began to replace opinions.

The findings of the present study support the judgment previously exercised in Tennessee in the use of some of the procedures and indicate the possibility of improving others. But in addition to the local benefits, the Tennessee studies provide an invaluable background upon which other States and cities can develop efficient urban traffic-counting procedures.

SINCE 1954, 55 continuous-count traffic recorders at 52 locations have been installed in Tennessee cities in order to study the characteristics of urban traffic volumes. The recommendations of the Highway Research Board Committee on Urban Volume Characteristics were used as guides for the selection of locations for these recorders. The 1956 data at 30 locations in 13 cities were analyzed in studies for machine counts, and 1955 data at 33 locations were used in the analysis for manual counts.
To determine the actual annual average daily number of vehicles, hereinafter called ADT, at a particular point on a road or street would require continuous counting for 365 days. On the other extreme, a qualified person could make an estimate without counting, just from general knowledge of the situation. The latter method usually would not be considered acceptable because of the suspected lack of accuracy. Since an exact determination is seldom possible, it becomes axiomatic that the ADT estimates are based on sampling, and the cost of obtaining these estimates must be related to their accuracy. The problem therefore is to find means of measuring the accuracy of ADT estimates obtained by various methods of sampling traffic volumes. The measures employed in the Tennessee studies made use of the configuration of similar patterns of repetition in

[^1]the mass movement of people and the concepts of probability of these repetitions.

At the present time, only a few basic analyses have been undertaken to aid in the evaluation of existing sampling procedures and to provide essential measures in the development of new traffic-counting schedules. The present as well as other possible schedules were presumed to be based on the assumption that a sample weekday count is representative of the average weekday volume of traffic during the month of the sample count. Therefore, this basic assumption was evaluated and the size of the standard error was estimated. The standard error is a measure of the dispersion about their averages of all possible estimates which are based on samples of a given size. Although the mathematics of probability do not require the knowledge of the true values in these studies, the true (or practically true) values are available at the continuous-count recorders and are therefore used as the basis for measuring errors of estimates developed by sampling.

Conclusions

The following conclusions were reached regarding the observations of 30 urban trafficcounting stations in 13 Tennessee cities:

1. Traffic counts of 24 -hour duration on weekdays may be assumed to represent the annual average daily traffic volumes with certain limitations, some of which are subsequently referred to in the discussion of the St. Louis and Detroit studies. Although previous
studies have indicated that this assumption may result in an overestimate, the error is within practical limits of acceptance.
2. The monthly variations of traffic are very uniform for the 30 continuous-count stations. The predominant majority of the ratios of ADT to the daily averages at individual stations fall within the ± 10-percent range from the respective monthly means. The standard deviation for the Tennessee urban stations was ± 5.2 percent. Earlier studies in St. Louis and Detroit showed standard deviations of approximately ± 6.0 percent. It appears that confidence limits could be set so that a range lower than ± 10 percent could be achieved if populations could be identified in urban areas. Heterogeneous populations can be separated on the basis of parameters showing similar configurative patterns or selected maximum ranges of deviation.
3. The goodness-of-fit tests as applied to the Gaussian or normal curve can be used to detect heterogeneous populations. These tests include the chi-square and Fisher's g_{1} and g_{2} statistics. Samples may be taken from heterogeneous populations, and with proper statistical safeguards that samples are representative of the original population they will give satisfactory results. The statistical safeguards are the F - and T-tests.
4. It can be stated from the studies that the 30 -station mean monthly adjustment factors could be satisfactorily used. Furthermore, practically the same factors could be obtained from the data for 6 or 7 stations randomly selected. The tests indicate the possibility of refinements in the accuracy of adjustments for monthly variations. Such refinements would require identification of populations which is a costly operation. Even if this were accomplished, the study of Nashville which is subsequently described would indicate that the improvement in the accuracy of estimates of ADT, when based on 24 -hour weekday samples, could hardly be expected to reduce the value of the standard deviation by more than 1 percent.
5. Satisfactory estimates of 24 -hour weekday traffic volumes can be obtained from weekday counts of 4 -hour duration which include either the morning or afternoon hour of peak traffic volume.
6. Differences in social and economic characteristics, upon which the selection of the locations of continuous-count recorders was
based, did not seem to influence to any great extent the monthly variations of traffic volumes. However these characteristics should not be disregarded in future studies as they may be found to be significant in other measures of traffic.

Selection of Traffic Stations

In the selection of locations for the 55 continuous-count traffic recorders, State officials have followed in general the recommendations developed by the Committee on Trban Volume Characteristics of the Highway Research Board. These committee suggestions as interpreted by code for Tennessee are as follows:
A. Distribution by city characteristics:
I. By dominant economic base (as described on pages 37 and 48 of the 1950 Municipal Yearbook):
(a) Manufacturing and industrial, including diversified manufacturing, mining, and transportation.
(b) Retail, including diversified retail.
(c) Wholesale.
(d) Resort.
(e) Education.
(f) Government.
(g) Dormitory.
II. By population size (1950 census):
(a) $1,000,000$ and over
(b) $500,000-1,000,000$
(c) $250,000-500,000$
(d) $100,000-250,000$
(e) $50,000-100,000$
(f) $25,000-50,000$
(g) $10,000-25,000$
(h) Under 10,000
B. Location by street classification:
I. By traffic function:
(a) Major or arterial streets:

1. Radials that are part of primary State highways.
2. Radials that are not part of primary State highways.
3. Crosstown (or rings) connecting two or more major radials.
(b) Secondary streets:
4. Radials and crosstowns.
5. Local, commercial, and industrial. 3. Local and residential.
II. By average overall speed range in peak period:
(a) 5-15 miles per hour.
(b) 15-25 miles per hour.
(c) 25-35 miles per hour.
(d) 35-45 miles per hour.

The coding of urban continuous-count stations according to these classifications is shown in table 1.

Data for one complete year of operations, 1956, were available for 30 locations scattered throughout 13 cities. Table 2 shows the distribution of these stations by cities. It is noted in table 1 that these cities vary in population from 514 in Decaturville to over 400,000 in Memphis.

For the purpose of statistical analysis three tabulating cards were developed: Nos. 21 and 31 as shown in figure 1, and the general card, the code sheet of which is shown as figure 2.

Table 1.-Tennessee cities in which continuous-count traffic stations were located

City	Population	City characteristics ${ }^{\text {I }}$	Station No.	City street classification ${ }^{2}$
Nashrille.	176, 170	A-I (a) (b) (c) (e) (f), A-II (d).	$\begin{aligned} & 500 \\ & 501 \\ & 502 \\ & 503 \\ & 504 \\ & 505 \end{aligned}$	$\begin{aligned} & \mathrm{B}-\mathrm{I} \text { (a) } 1, \mathrm{~B}-\mathrm{II} \text { (c). } \\ & \mathrm{B}-\mathrm{I} \text { (b) } 3, \mathrm{~B}-\mathrm{II} \text { (b). } \\ & \mathrm{B}-\mathrm{I} \text { (a) } 1, \mathrm{~B}-\mathrm{I} \text { (c). } \\ & \mathrm{B}-\mathrm{I} \text { (b) } 1, \mathrm{~B}-\mathrm{II} \text { (c). } \\ & \mathrm{B}-\mathrm{I} \text { (a) } 2, \mathrm{~B}-\mathrm{II} \text { (b) } 2, \mathrm{~B}-\mathrm{II} \text { (c). } \end{aligned}$
Memphis	407, 439	A-I (a) (b) (c) (e), A-II (c) ...	$\begin{aligned} & 506 \\ & 507 \\ & 508 \\ & 509 \\ & 510 \\ & 511 \end{aligned}$	$\begin{aligned} & \text { B-I (a) } 1, \text { B-II (c). } \\ & \text { B-I (b) } 2, \text { B-II (a). } \\ & \text { B-I (b) } 1, \text { B-II (b). } \\ & \text { B-I (a) } 2, \text { B-II (c). } \\ & \text { B-I (b) } 3, \text { B-II (b). } \\ & \text { B-I (a) } 3, \text { B-II (c). } \end{aligned}$
Knoxville	124,769	A-I (a) (b) (c) (c), A-II (d)	$\begin{aligned} & 512 \\ & 513 \\ & 514 \\ & 515 \\ & 516 \\ & 551 \end{aligned}$	$\begin{aligned} & \text { B-I (b) } 1, \mathrm{~B}-\mathrm{II} \text { (b). } \\ & \text { B-I (b) } 2, \text { B-II (a). } \\ & \text { B-I (a) } 1, \mathrm{~B}-\mathrm{II} \text { (c). } \\ & \text { B-I (a) } 1, \mathrm{~B}-\mathrm{II} \text { (c). } \\ & \text { B-I (b) } 3, \mathrm{~B}-\mathrm{II} \text { (b). } \\ & \text { B-I (a) } 1, \mathrm{~B}-\mathrm{II} \text { (d). } \end{aligned}$
Johnson City -	28,337	A-I (b) (c) (e), A-II (f)	$\begin{array}{r} 517 \\ 518 \end{array}$	$\begin{aligned} & \text { B-I (a) } 2, \text { B-II (c). } \\ & \text { B-I (b) } 3, \text { B-II (b). } \end{aligned}$
Morristown	13,151	A-I (a) (b) (c), A-II (g)	$\begin{aligned} & 519 \\ & 520 \end{aligned}$	$\begin{aligned} & \mathrm{B}-\mathrm{I} \text { (b) } 2, \mathrm{~B}-\mathrm{II} \text { (a). } \\ & \mathrm{B}-\mathrm{I} \text { (a) } 1, \mathrm{~B}-\mathrm{II} \text { (c). } \end{aligned}$
Crossville.	2,291	A-I (b) (c), A-II (h)	521	B-I (a) 1, B-II (c).
Rockwood.	4,272	A-I (a) (b) (c), A-II (h)	522	B-I (b) 1, B-II (a).
McMinnville.	7,577	A-I (a) (b) (c), A-II (h)-	523	$\mathrm{B}-\mathrm{I}$ (b) $1, \mathrm{~B}-\mathrm{II}$ (a).
Columbia	10,911	A-I (a) (b) (c), A-II (g)	$\begin{aligned} & 524 \\ & 525 \end{aligned}$	$\begin{aligned} & \mathrm{B}-\mathrm{I} \text { (b) } 1, \mathrm{~B}-\mathrm{II}(\mathrm{~b}) . \\ & \mathrm{B}-\mathrm{I} \text { (a) } 1, \mathrm{~B}-\mathrm{II} \text { (c). } \end{aligned}$
Jackson.	33,354	A-I (a) (b) (c) (e), A-II (f)	$\begin{array}{r} 526 \\ -\quad 527 \end{array}$	$\begin{aligned} & \mathrm{B}-\mathrm{I} \text { (a) } 1, \underset{\mathrm{~B}-\mathrm{II}(\mathrm{c})}{\mathrm{B}-\mathrm{I} \text { (a) } 3, \mathrm{~B}-\mathrm{II} \text { (b). }} \end{aligned}$
Dyersburg	12,063	A-I (b) (c), A-II (g)	$\begin{aligned} & 528 \\ & 529 \end{aligned}$	$\begin{aligned} & \text { B-I (b) } 1, \underset{\text { B-II (a). }}{\text { B-I (b) }} 1, \mathrm{~B}-\mathrm{II} \text { (b). } \end{aligned}$
Dresden	1,509	A-I (b), A-II (h)-	530	B-I (a) 1, B-II (c).
Waverly.	2,410	A-I (b), A-II (h)-	531	B-I (b) 3, B-II (b).
Decaturville	514	A-I (b) , A-II (h)--	532	B-I (b) 1, B-II (b).
Rogersville.	2,670	A-I (b) (c), A-II (h)-	533	B-I (a) 1, B-II (c).
Kingsport	19,609	A-I (a) (b) (c), A-II (g)	$\begin{aligned} & 534 \\ & 535 \end{aligned}$	$\begin{aligned} & \mathrm{B}-\mathrm{I} \text { (b) } 3, \mathrm{~B}-\mathrm{II} \text { (b). } \\ & \mathrm{B}-\mathrm{I} \text { (b) } 2, \mathrm{~B}-\mathrm{II} \text { (a). } \end{aligned}$
Athens	10,103	A-I (b) (c), A-II (g)----	$\begin{gathered} 536 \\ 537 \end{gathered}$	$\begin{aligned} & \text { B-I (b) } 3, \text { B-II (h). } \\ & \text { B-I (b) } 1, \text { B-II (b). } \end{aligned}$
Chattanooga	131,041	A-I (a) (b) (c), A-II (d)-	$\begin{aligned} & 538 \\ & 539 \\ & 540 \\ & 541 \\ & 542 \end{aligned}$	$\begin{aligned} & \mathrm{B}-\mathrm{I} \text { (a) } 2, \mathrm{~B}-\mathrm{II} \text { (c). } \\ & \mathrm{B}-\mathrm{I} \text { (b) } 3, \mathrm{~B}-\mathrm{II} \text { (b). } \\ & \mathrm{B}-\mathrm{I} \text { (a) } 3, \mathrm{~B}-\mathrm{II} \text { (b). } \\ & \mathrm{B}-\mathrm{I} \text { (a) } 1, \mathrm{~B}-\mathrm{II} \text { (c). } \\ & \mathrm{B}-\mathrm{I} \text { (b) } 2, \mathrm{~B}-\mathrm{II} \text { (b). } \end{aligned}$
Bolivar.	2,429	A-I (b) (c), A-II (h) .-.-.-----	543	B-I (a) 1, B-II (c).
Humboldt.	7,426	A-I (b) (c), A-II (h)	$\begin{aligned} & 544 \\ & 545 \end{aligned}$	$\begin{aligned} & \text { B-I (a) } 1, \underset{\text { B-II (c) }}{\text { B-I (a) }} 3, \mathrm{~B}-\mathrm{II} \text { (c). } \end{aligned}$
Union City .	7,665	A-I (b) (c), A-II (h)--	$\begin{aligned} & 546 \\ & 547 \end{aligned}$	$\begin{aligned} & \mathrm{B}-\mathrm{I} \text { (b) } 1, \underset{\mathrm{~B}-\mathrm{II} \text { (b). }}{\mathrm{B}-\mathrm{I} \text { (a) } \mathrm{I}, \mathrm{~B}-\mathrm{II} \text { (c). }} \end{aligned}$
Shelbyville.	9, 847	A-I (b) (c), A-II (h)-	$\begin{aligned} & 548 \\ & 549 \end{aligned}$	$\begin{aligned} & \mathrm{B}-\mathrm{I} \text { (a) } 1, \mathrm{~B}-\mathrm{II} \text { (c). } \\ & \mathrm{B}-\mathrm{I} \text { (a) } 2, \mathrm{~B}-\mathrm{II} \text { (c) } . \end{aligned}$
Lewisburg	5,312	A-I (b) (c), A-II (h)	550	B-I (a) 1, B-II (b).

${ }_{2}^{1}$ Economic characteristics and population groups. Explanation of codes is given in the text on the left.
2 Traffic functions of streets and average speeds. See codes given in the text on the left.
${ }_{2}$ Traffic functions of streets and average speeds. See codes given in the text on the left.

Procedure

The sampling error of 24 -hour weekday (Monday through Friday) counts, which were distributed throughout all months of the year, was computed for the six stations in Memphis as shown in table 3. The mean coefficient of variation of ± 5.9 percent denotes that when the traffic volume for a 24 -hour period on a given weekday was compared with the average 24 -hour weekday traffic during that month at that point, then, based on a normal distribution, it could be expected that approximately two-thirds of such 24 -hour weekday counts would not differ by more than ± 5.9 percent from the respective monthly means, and 95 percent of such counts should not differ from their respective monthly means by more than twice the value of the coefficient of variation, or ± 11.8 percent. It is noteworthy that similar tests conducted by the Bureau of

Public Roads during 1957 on the 1954 data for 12 stations in St. Louis, Mo., resulted in a standard deviation of ± 5.4 percent; and studies made on 1954-55 data (April through November) at 10 stations in Detroit, Mich., indicated a standard deviation of ± 6.3 percent.

If the truest adjustment ratio of ADT to the average weekday of the month (the ratio derived from the same station from which the sample was taken) were applied to the sample to estimate the ADT, the measure of error in such estimates would still be expressed by the coefficient of variation of ± 5.9 percent. Since the mean ratio value of the various tests based on ADT is unity (1.00), the coefficient of variation is equal to the standard deviation. The significance of the measure of standard deviation in these cases is practically synonymous with that of the coefficient of variation. Thus, the ± 5.9-percent measure of the
Table 2.-Ratios of annual average daily traffic to average daily traffic volumes for 30 stations in 13 Tennessee cities during 1956

							s of		d	,	ave		fic	nes	devi	10	h r	m t	mean	nthl	ratio				
(31)	statiou		uury		ruary		arch		pril		Jay		me		uly		gust	Sep	mber		ober	Nov	ember	Dec	ember
		Ratio	$\begin{aligned} & \text { Devia- } \\ & \text { tion- } \end{aligned}$	Ratio	$\begin{gathered} \text { Devia- } \\ \text { lion } \end{gathered}$	Ratio	$\begin{aligned} & \text { Devia- } \\ & \text { tion } \end{aligned}$	Ratio	$\begin{gathered} \text { Devia- } \\ \text { tiond } \end{gathered}$	Ratio	$\begin{aligned} & \text { Devia- } \\ & \text { tion } \end{aligned}$	Katio	$\begin{aligned} & \text { Devia- } \\ & \text { tion } \end{aligned}$	Ratio	$\begin{aligned} & \text { Devia- } \\ & \text { tion } \end{aligned}$	Ratio	$\begin{aligned} & \text { Devia- } \\ & \text { tion } \end{aligned}$	Ratio	$\begin{aligned} & \text { Devia- } \\ & \text { tion } \end{aligned}$	Ratio	$\begin{aligned} & \text { Deviar- } \\ & \text { tion } \end{aligned}$	Ratio	$\begin{aligned} & \text { Devia- } \\ & \text { tion } \end{aligned}$	Katio	$\begin{aligned} & \text { Devia- } \\ & \text { tion } \end{aligned}$
Nishrille...	501 5011 55102 5503 503 5045	$\begin{aligned} & 1.10 \\ & 1.11 \\ & \text { 1.12 } \\ & \text { 1.22 } \\ & \text { 1.1.07 } \\ & 1.09 \end{aligned}$	$\begin{array}{r} -1 \\ 0 \\ 11 \\ -4 \\ -2 \end{array}$	$\begin{aligned} & 1.02 \\ & \text { 1. } 92 \\ & 1.9 \\ & 1.01 \\ & 1.04 \\ & 1.04 \end{aligned}$	$\begin{gathered} -4 \\ -7 \\ -- \\ 0 \\ -2 \\ -2 \end{gathered}$	$\begin{aligned} & 1.01 \\ & 1.99 \\ & 1.99 \\ & 1.93 \\ & 1.03 \end{aligned}$	$\begin{array}{r} -1 \\ -3 \\ -1 \\ -3 \\ 1 \\ 1 \end{array}$	$\begin{aligned} & 0.97 \\ & 1.01 \\ & .95 \\ & .95 \\ & 1.00 \\ & 1.03 \end{aligned}$	$\begin{array}{r} -3 \\ 1 \\ -5 \\ -5 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} 0.97 \\ \left.\begin{array}{r} 96 \\ .97 \\ .95 \\ .99 \\ .97 \end{array} \right\rvert\, \end{array}$	$\begin{array}{r} 0 \\ -1 \\ 0 \\ -2 \\ 2 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} 0.99 \\ 1.95 \\ 1.94 \\ .94 \\ 1.91 \\ \hline 93 \end{array}$	$\begin{array}{r} 3 \\ 9 \\ -2 \\ -2 \\ -5 \\ -3 \end{array}$	$\begin{aligned} & 0.96 \\ & 1.02 \\ & 1.88 \\ & .98 \\ & 1.93 \\ & 1.94 \end{aligned}$	$\begin{array}{r} -1 \\ 5 \\ -9 \\ 1 \\ 6 \\ -3 \end{array}$	$\begin{aligned} & 0.98 \\ & 1.02 \\ & 1.87 \\ & .98 \\ & .95 \\ & .94 \end{aligned}$	$\begin{array}{r} 2 \\ 6 \\ -9 \\ 2 \\ -1 \\ -2 \end{array}$	$\begin{aligned} & 1.02 \\ & 1.01 \\ & 1.000 \\ & . .98 \\ & .94 \\ & 99 \end{aligned}$	$\begin{array}{r} 4 \\ 3 \\ 2 \\ 0 \\ -4 \\ -1 \end{array}$	$\begin{array}{r} 1.017 \\ 1.03 \\ 1.93 \\ .995 \\ 1.05 \end{array}$	$\begin{array}{r} 2 \\ -2 \\ 4 \\ 0 \\ -4 \\ -4 \\ 6 \end{array}$	$\begin{aligned} & 1.02 \\ & .97 .05 \\ & 1.01 \\ & 11.01 \\ & 1.01 \end{aligned}$	$\begin{array}{r} 2 \\ -3 \\ 5 \\ 1 \\ 1 \\ 1 \end{array}$	$\begin{array}{r} 0.97 \\ .93 \\ 1.99 \\ 1.100 \\ 1.00 \\ 1.00 \end{array}$	-2 -6 -6 0 1 1 1
Memphis	5066 5.507 5.508 509 5090 510 511	$\begin{aligned} & \text { 1.090 } \\ & \text { 1. } 00 \\ & \text { 1.05 } 02 \\ & \text { 1.08 } \\ & \text { 1. } 19 \end{aligned}$	$\begin{array}{r} -2 \\ -11 \\ -6 \\ -9 \\ -3 \\ -3 \end{array}$	$\begin{aligned} & \begin{array}{l} 1.13 \\ 1.06 \\ 1.07 \\ 1.96 \\ 1.03 \\ 1.06 \end{array} \end{aligned}$	$\begin{array}{r} 0 \\ 1 \\ -10 \\ -3 \\ 0 \end{array}$	$\begin{aligned} & 1.065 \\ & 1.05 \\ & 1.02 \\ & 1.98 \\ & 1.00 \\ & 1.00 \end{aligned}$	$\begin{array}{r} 4 \\ 3 \\ 0 \\ -4 \\ -2 \\ -2 \end{array}$	$\begin{aligned} & 1.05 \\ & 1.02 \\ & .97 \\ & .94 \\ & 1.03 \\ & 1.11 \end{aligned}$	$\begin{array}{r} 5 \\ 2 \\ -3 \\ -3 \\ -6 \\ 3 \\ 11 \end{array}$	$\begin{array}{r} .95 \\ 1.90 \\ 1.95 \\ .93 \\ 1.02 \\ .96 \end{array}$	$\begin{array}{r} -2 \\ 3 \\ -2 \\ -4 \\ 5 \\ -1 \end{array}$	$\begin{aligned} & .91 \\ & .92 \\ & .97 \\ & .94 \\ & .99 \\ & .92 \end{aligned}$	$\begin{array}{r} -5 \\ -4 \\ 1 \\ -2 \\ 3 \\ -4 \end{array}$	$\begin{array}{r} .90 \\ .93 \\ .99 \\ 1.98 \\ 1.010 \\ 1.95 \end{array}$	$\begin{array}{r} -7 \\ -4 \\ 2 \\ 11 \\ 4 \\ -2 \end{array}$	$\begin{array}{r} .87 \\ .98 \\ .98 \\ 1.05 \\ .96 \\ .89 \end{array}$	$\begin{array}{r} -9 \\ 2 \\ 2 \\ 9 \\ 3 \\ -7 \end{array}$	$\begin{aligned} & .87 \\ & 1.80 \\ & (20 \\ & 1.05 \\ & .96 \\ & .89 \end{aligned}$	$\begin{array}{r} -11 \\ 2 \\ \hline 7 \\ -2 \\ -9 \end{array}$	$\begin{aligned} & .87 \\ & 1.01 \\ & .97 \\ & 1.09 \\ & .97 \\ & .99 \end{aligned}$	$\begin{array}{r} -12 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \end{array}$	$\begin{gathered} .91 \\ 1.90 \\ .981 \\ 1.90 \\ .97 \\ .95 \end{gathered}$	$\begin{aligned} & -9 \\ & 1 \\ & -2 \\ & -5 \\ & -3 \\ & -5 \end{aligned}$		$\begin{array}{r} 3 \\ 5 \\ -6 \\ -64 \\ \hline 14 \end{array}$
Knoxville	$\begin{aligned} & 512 \\ & 513 \\ & 515 \end{aligned}$	$\begin{aligned} & 1.07 \\ & 1.24 \\ & 1.11 \end{aligned}$	$\begin{array}{r} -4 \\ 13 \\ 0 \end{array}$	$\begin{aligned} & 1.05 \\ & \text { 1.15 } \\ & \text { 1.04 } \end{aligned}$	$\begin{array}{r} -1 \\ 9 \\ -2 \end{array}$	$\begin{aligned} & \text { 1.03.031 } \\ & \text { 1. } 11 \\ & .96 \end{aligned}$	$\begin{array}{r} 1 \\ 9 \\ -6 \end{array}$	$\begin{aligned} & 1.01 .04 \\ & 1.04 \\ & .98 \end{aligned}$	$\begin{array}{r} 1 \\ 4 \\ -2 \end{array}$	$\begin{aligned} & 1.03 \\ & \begin{array}{l} 95 \\ .98 \end{array} \end{aligned}$	$\begin{array}{r} 6 \\ -2 \\ -2 \end{array}$	$\begin{array}{r} 1.05 \\ .90 \\ .94 \end{array}$	$\begin{array}{r} 9 \\ -6 \\ -2 \end{array}$	$\begin{aligned} & .86 \\ & .91 \\ & .93 \end{aligned}$	$\begin{gathered} -11 \\ -6 \\ -4 \end{gathered}$	$\begin{aligned} & 1.00 \\ & .88 \\ & .94 \end{aligned}$	$\begin{array}{r} 4 \\ -8 \\ -2 \end{array}$	$\begin{aligned} & 1.02 \\ & 1.99 \\ & 1.02 \end{aligned}$	$\begin{aligned} & 4 \\ & 1 \\ & 4 \end{aligned}$	$\begin{array}{r} .93 \\ \begin{array}{r} 93 \\ 1.09 \end{array} \end{array}$	$\begin{array}{r} -6 \\ 0 \\ 4 \end{array}$	$\begin{array}{r} .96 \\ .96 \\ 1.08 \end{array}$	-4 -4 -8 8	1.04 1.00 1.03	5 1 4
Johnson City	$\begin{aligned} & 517 \\ & 518 \end{aligned}$	1.15	17	$\begin{aligned} & \text { 1. } 05 \\ & 1.11 \end{aligned}$	- 5	${ }_{1.05}^{1.02}$	$\begin{aligned} & 0 \\ & 3 \end{aligned}$	${ }^{1.00}$	$-{ }_{-}^{0}$	$\begin{aligned} & .96 \\ & .95 \end{aligned}$	$\begin{aligned} & -1 \\ & -2 \end{aligned}$	$.98$	$-_{-1}^{2}$. 96	$\begin{aligned} & -1 \\ & -4 \end{aligned}$	$.94$	-16	$\begin{aligned} & .96 \\ & .86 \end{aligned}$	$\begin{gathered} -2 \\ -12 \end{gathered}$	$\begin{aligned} & .98 \\ & .99 \end{aligned}$	$\begin{array}{r} -1 \\ 0 \end{array}$	${ }_{(2)}^{1.02}$	2	1.000 1.05 1.0	${ }_{6}^{16}$
Morristown	$\begin{aligned} & 519 \\ & 520 \\ & 520 \end{aligned}$	$\begin{aligned} & \text { 1. } 09 \\ & \text { 1. } 13 \end{aligned}$	-2	$\begin{aligned} & 1.08 \\ & 1.14 \end{aligned}$	${ }_{8}^{2}$	$\begin{aligned} & 1.03 \\ & 1.10 \end{aligned}$	${ }_{8}$	$\begin{aligned} & 1.01 \\ & 1.03 \end{aligned}$	$\frac{1}{3}$	$\begin{array}{r} .98 \\ 1.00 \end{array}$	$\frac{1}{3},$	$.95$	$\begin{array}{r} -1 \\ 1 \end{array}$	$\begin{array}{r} .95 \\ 1.06 \end{array}$	$\begin{array}{r} -2 \\ -2 \end{array}$	$\begin{array}{r} 94 \\ .99 \end{array}$	-2	$\begin{array}{r} .97 \\ 1.01 \end{array}$	$-\frac{1}{3}$	$\begin{array}{r}1.00 \\ 89 \\ \hline\end{array}$	-10	${ }^{1.01} 85$	-15	$\stackrel{1.113}{.93}$	-6
Crossville	521	1.21	10	1.16	10	1.08	6	1.05	5	. 96	-1	86	-10	. 88	-9	. 84	-12	91	-7	1.01	2	1.11	11	1.11	12
Rockwood.	522	1.03	-8	1.02	-4	1.00	-2	1.00	0	. 99	2	94	-2	1.00	3	. 98	2	. 99	1	1.03	4	1.05	5	. 98	-1
MeMinnville	523	${ }^{1.13}$	2	1. 10	4	1.03	1	1.03	3	1.00	3	1.03	7	. 97	0	. 97	1	. 99	1	. 96	-3	. 94	-6	. 91	-8
Columbia.-	$\begin{aligned} & 524 \\ & 525 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.08 \\ & 1.12 \end{aligned}$	-3 1	$\begin{aligned} & 1.01 \\ & { }_{1}^{206 t} \end{aligned}$	-5 0	.97 1.00	${ }_{-2}{ }^{1}$	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	${ }_{0}^{0}$	$\begin{aligned} & .96 \\ & .96 \end{aligned}$	${ }_{-1}^{-1}$	$\begin{aligned} & 1.04 \\ & .99 \end{aligned}$	$\begin{aligned} & 8 \\ & 3 \end{aligned}$	$\begin{array}{r} 1.07 \\ .99 \end{array}$	${ }_{2}^{10}$	$\begin{aligned} & 1.04 \\ & .97 \end{aligned}$	8	$\begin{gathered} .94 \\ .95 \end{gathered}$	$\begin{aligned} & -4 \\ & -3 \end{aligned}$	$.97$	$\begin{aligned} & -2 \\ & -1 \end{aligned}$	$\begin{aligned} & .97 \\ & .99 \end{aligned}$	$\begin{aligned} & -3 \\ & -1 \end{aligned}$	$\begin{aligned} & .98 \\ & 1.01 \end{aligned}$	$-\frac{1}{2}$
Jackson,	$\begin{aligned} & 526 \\ & 527 \end{aligned}$	$\begin{aligned} & 1.03 \\ & 1.05 \\ & 1 \end{aligned}$	-8	$\begin{aligned} & 1.99 \\ & 1.03 \end{aligned}$	-7	$\begin{aligned} & .95 \\ & 1.01 \end{aligned}$	-7 -1	: 97	-3	$\begin{array}{r} 1.01 \\ .97 \end{array}$	${ }_{0}^{4}$	$\begin{gathered} 1.01 \\ .99 \end{gathered}$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.04 \end{aligned}$	7	$\begin{aligned} & \left({ }^{2}\right) 3 \\ & 1.03 \end{aligned}$	7	$\begin{array}{r} .99 \\ .99 \end{array}$	1 1 1	.99	$\begin{gathered} 0 \\ -2 \end{gathered}$	1.00 .98	- $\begin{array}{r}1 \\ -2\end{array}$	$\begin{array}{r} .96 \\ .97 \end{array}$	-3 -2
D yersburg.	$\begin{aligned} & 528 \\ & 529 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.09 \\ & 1.07 \end{aligned}$	- -4	${ }^{1.02} .97$	-9 -9	$.97$	-5	1. ${ }^{1.90}$	- ${ }_{-4}$	$.97$	-9	$\text { . } 89$	$\begin{aligned} & -2 \\ & -7 \end{aligned}$	$\begin{aligned} & .94 \\ & 1.06 \end{aligned}$	$\begin{array}{r} -3 \\ 9 \end{array}$	$\begin{array}{r} .96 \\ 1.05 \end{array}$	${ }_{9}$	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	$\frac{2}{2}$	$\begin{aligned} & 1.03 \\ & 1.06 \end{aligned}$	$\stackrel{4}{7}$	$\begin{aligned} & 1.07 \\ & 1.11 \end{aligned}$	11	$\begin{aligned} & 1.00 \\ & 1.1 \end{aligned}$	12
Dresden.	530	1.15	4	1.10	4	. 93	-9	. 93	-7	99	2	98	2	. 98	1	1.00	4	1.02	+	1.09	10	1. 05	5	. 86	-13
Decaturville.	532	1.17	6	1.10	4	1.14	12	1.12	12	. 95	-2	97	1	. 94	-3	. 90	-6	1.04	6	1.00	1	. 94	-6	86	-13
$\begin{aligned} & \text { Mean monthly ratio } \\ & \Sigma d \text { (net) } \\ & \Sigma d^{2} \text { (total) } \end{aligned}$		1.11	1,305	1.06	$\begin{aligned} & 10 \\ & 756 \end{aligned}$	1.02	719	1.00	$\begin{aligned} & 12 \\ & 564 \end{aligned}$. 97	245	. 96	649	. 97	990^{4}	. 96	$\begin{aligned} & -11 \\ & 1,111 \end{aligned}$. 98	$\begin{gathered} -6 \\ 634 \end{gathered}$. 99	615	1.00	947	99	$\begin{array}{r} 11 \\ 1.181 \end{array}$

${ }^{1}$ Deviation $(d)=\left(X_{1}-X\right) 100$, where X_{1} is the ratio of the station's annual ADT to the average daily traffic of the month and X is the mean monthly ratio for all stations.
:Values were unaceptable for v arious reasons.

Figure 1.-Tabulating cards used by the Tennessee Department of Highuays and Public Works for summarizing urban traffic data.
sampling error is the minimum that can be expected in the distribution of errors in ADT stimates in this particular study; that is,
when these estimates are based on adjustment ratios computed in terms of ADT to the average weekday of the month from any other

	Card Column Number	Sundoy	Monday	Tuesday	Wednesday	Thursday	Friday	Soturday
Station Number	$1-2-3-4$							
Doy Of Week	5	7	1	2	3	4	5	6
Month Of Count	$6-7$							
Day Of Month	8-9							
Year	$10-11$							
Troffic Volume 6 A.M. - 7 A.M.	$12-15$							
$7-8$	$16-19$							
$8-9$	20-23							
$9-10$	24-27							
$10-11$	28-31							
11 - 12 Noon	$32-35$							
12 Noon - IP.M.	$36-39$							
$1-2$	40-43							
$2-3$	$44-47$							
$3-4$	48-51							
$4-5$	$52-55$							
$5-6$	$56-59$							
$6-7$	$60-63$							
$7-8$	$64-67$							
$8-9$	68-71							
Tolal 24 Hour Volume	72-76							
Peok Hour Volume	77-80							

Figure 2.-Coding sheet for antomatic traffic recorder data.
source, it generally can be expected that the measure of the error in ADT estimates will be greater than the measure of the sampling error.
The 24 -hour weekday counts were adjustec to the ADT by application of appropriate factors. These factors were obtained from : group of stations having similar patterns of monthly variations of traffic volumes. They should be in terms of ratios of ADT to the weekday traffic of the respective months. Since the factors were based on group values, the resulting group mean values are characterized by differences between the individuas station data and the group mean data. Thus, factors were another source of error contributing to the error in the ADT estimates. The material readily availabic did not permit the evaluation of the error in such factors. However, a reasonable approximation was available in terms of the ratios of ADT to the average daily volume for each month for the 30 stations in 13 cities. These ratios permitted the measurement of monthly variations and the comparisons of these variations among stations. The ratios and comparisons are shown in table 2. It is noted that the overwhelming majority of the monthly ratios vary from the respective means of the 30 stations by ± 10 percent or less, and the standard deviation of these differences is ± 5.2 percent.

$$
S=\sqrt{\frac{1}{N-1}\left[\Sigma d^{2}-\frac{1}{N}(\Sigma d)^{2}\right]}=
$$

$$
\sqrt{\frac{1}{354-1}\left[9,716-\frac{1}{35 \ddagger}(16)^{2}\right]}=\sqrt{27.52}= \pm 5.2
$$

By comparison with the spread of seasonal variation usually encountered on rural roads, the extremely narrow range observed in this study and the implications of these observations as regards traffic survey costs were given special attention in the analysis.

Table 3.-Errors in sampling of Memphis traflic volumes for 21-hour periods on weekdays in $1955{ }^{1}$

: Mean coefficient of variation $=426.2 /: 2= \pm 5.9$ pereent.

Monthly Expansion Factors

Experience with rural traffic counts ${ }^{2}$ indiates that when monthly factors fall within he ± 10-percent range of the group mean, then he effect of added amount of error to the samling error of the 24 -hour sample in the estinates of ADT is very small. Thus, it apyeared that single monthly expansion factors, which are the means of the 30 stations, could se used in Tennessee for the expansion of 24 lour weekday sample counts so that the re;ulting errors in ADT estimates would not be nuch larger than those which are expressed jy the standard deviation of ± 5.9 percent.
${ }^{2}$ Experience in application of statistical method to traffic ounting, by Boris B. Petroff. Public Roads, vol. 29, ㄷ. 5, Dec. 1956.

Figure 3.-Comparison of observed and theoretical distributions of deviations of individual ratios of ADT from the mean monthly ratios.

The chi-square test of these data (standard deviation ± 5.2 percent) showed a probability level between 5 and 1 percent. Considering "good fit" within the range from 5 to 95 percent, the goodness of fit was not quite acceptable. The normal distribution is applicable only when chance forces are in operation. In this instance the normal distribution of the observed values is borderline, which indicates the possibility of forces or heterogeneous populations causing results not due to chance alone.

The computation of chi square given in table 4 and the values obtained are presented in figure 3 . The tendency for the traffic observations to concentrate bimodally on either side of the mean contributes to the low chi-square probability level.

Three random samples of 6,5 , and 4 stations were taken from the data for 30 stations; the respective standard deviations (S) were ± 5.93, ± 4.70, and ± 2.53. The F-test related the variance $\left(S^{2}\right)$ of each of the three random samples to the variance of the 30 -station data and expressed the probability level of the relation. The test showed that the 5- and 6station random samples yielded stable results, whereas variations for the 4 -station random sample were so much greater as to be unreliable. The formula for the F-test is as follows:

$$
F=\frac{S_{1}{ }^{2}}{S_{2}{ }^{2}}
$$

Where:
$S_{1}{ }^{2}=$ The larger variance .
$S_{2}{ }^{2}=$ The smaller variance.
Another test for conformity, the T-test, related the significance of the differences in thes monthly means of each of the three random samples to the monthly means of the 30 -station data, but here the differences were not significant for all three.

$$
T=\frac{\bar{X}_{1}-\bar{X}_{2}}{S_{\left(\bar{X}_{1}-\bar{X}_{2}\right)}}
$$

Where:

$$
S_{\left(\bar{x}_{1}-\bar{x}_{2}\right)}=\sqrt{\frac{\left(N_{1}+N_{2}\right)\left(\boldsymbol{\sum} d_{1}{ }^{2}+\boldsymbol{\sum} d_{2}{ }^{2}\right)}{N_{1} N_{2}\left[\left(N_{1}-1\right)+\left(N_{2}-1\right)\right]}}
$$

$\bar{I}_{1}=$ Monthly mean of sample having N_{1} observations per month.
$\overline{\mathrm{T}}_{2}=$ Monthly mean of sample having N_{3} observations per month.
$\Sigma d_{1}{ }^{2}=$ Sum of the squares of the deviations of N_{1} observations from the monthly mean.
$\Sigma d_{2}{ }^{2}=$ Sum of the squares of the devidtions of N_{2} observations from the monthly mean.
A chi-square test on each of the three ran dom samples conformed with normal curve requirements. Random samples are not always representative since they are subject to the laws of chance. In this particular instance, the use of the 4 -station random sample would appear to be the least satisfactory.

Table 4.-Chi-square test of deviations of weekday ratios of ADT from the monthly averages

Grouping Stations

It was previously mentioned that the Tennessee 30 -station data could have had a heterogeneous population. The following method was used to divide the original data into population groups having similar characteristics or, as in this case, pattern conformity: (1) An
array of the 30 stations based on their ratio values was set up for each month of the year, as shown in table 5 ; (2) the median and quartile values for each month were determined; (3) arbitrary values were assigned to the quartile position of each station for each month, as shown in table 6, thereby setting up a configurative pattern for each station's

Table 5.-Frequency distribution of traffic stations by values of the ratio of annual average daily traffic to the average daily traffic volumes for each month ${ }^{1}$

Ratio	January	February	March	A pril	May	June	July	August	September	October	November	December
0.80	-..-	-.--	-.--	--	-..	-..-	1	-	----	----	---
. 84	--..	-...	-...	----	-.--	----	1	--..	-...	-..-	-...
. 85			--	-.--	--.-	${ }^{-\cdots}$	1	-.-.	1	-	---	$-{ }^{-}$
. 87	-	--.	---	-..-	-	-..-	--	2	1	1	----	...-
. 88	-..-	--.-	--..	..--	1	-	2	1	1	-	-..-
. 89	----	----	-..-	----	-	1		1	1	1	----	--.
. 90	-...	--.	----	---	-	1	1	1	--.	...-	--.-	----
. 91	--	----	----	--..	----	1	1	1	--.-	1	1
. 92	----	--	---	1	1	2 1	8	--..-	-.--	\cdots	-.--	\cdots
. 94				1		6	3	4	2		2	--
. 95			1	2	6	2	2	1	1	1	1	1
. 96		1	1	1	6	--	2	1	9	1	2	1
. 97	-...	1	2	8	5	3	1	8	1	5	3	2
. 98	----	----	1	3	2	2	2	5	1	2	2	2
. 99		2	9	-..-	9	4	2	2	6	5	1	1
1. 00	1		3	6	3	-	2	2	4	2	1	5
1.01	-	1.	3	3	1	2	1	-	2	3	4	1
1.02	1	3	9	1	1	--	1	1	4	--.-	2	1
1.03	2	2	5	4	1	1	1	1	--	4	1	9
1.04		3	-	1	---	1	1	1	1	1	-	2
1.05	2	2	3	2	--	2	--	2	1	1	4	1
1.06		4	1	----	---	---	2	----	----	1	--	----
1.07	9	1	-	----	-	----	2	----	--.	----	1	----
1.08	2	1	1	---.	----	-.--	-...	-...	-	1	-
1.09	4	-	1	--.-	----	--.-	----	----	--.-	1	----	----
1. 10	1	3	1	1	--..	----	----	----	----	-.--		
1.11	2	1	1	1	-..-	----	-.--	-.--	----	-...-	2	2
1.12	1	-	-.--	1	--..	----	--..	--.	--. -	-..--	-.-.	
1. 13	2	1	-	--	----	-...	.-.-.	--.-	----	-..--	----	1
1.14	--..	1	1	-..-	--	-...	--.-	-...	---	-...	-...	--
1. 15	2	1	--	--	--.-	----	----	----		---	---	-...
1.16		1	--	--	----	----	--	----	----	-.--	--	-..-
1.17	1	1	--.	--	----	-..--	-.--	----	--..	--	----	---
1.19	,	-.--	-...	-...	----	----	-	----	---	--.	--	--
1. 21		-	...-	--.-	--.-	----	--.	--.-	----	----	-...	-...
1. 22	1	-...	..--	-.--	----	----	----	----	----	----	----	-...
1. 24	1	-..-	----	--.-	----	----	----	----	----	--.-	--..
1. 28	1	----	----	----	----	----	----	----	----	----	----	----
Number of stations.	29	29	30	30	30	30	30	29	29	30	29	29

Numbers in Italics indicate the first, second, and third quartile points in each month.
relationship to all other stations; and (4) si tions were grouped into five categories accor. ing to individual patterns.

Group I.-Stations having a relatively sm amplitude of deviations from the month medians.

Group II.-Stations tending to devia greatly from the monthly median values f the first 6 months of the year.

Group III.-Stations tending to devia greatly from the monthly median values f the last 6 months of the year.

Group IV.-Stations having monthly valu occurring within the interquartile range f more than 9 months of the year. In a norm distribution the interquartile range is t l 50 -percent probability level as contrast with the standard deviation of 68 percer For the Tennessee data, this range was a proximately ± 5 percent and the grou included 12 of the 30 stations.

Group V.-A station having monthly valu closest to the monthly mean or median of ε stations was selected. Using the month mean or median values of this station (No. 51^{\prime} as a control, all stations having values fallir within ± 10 percent of the control values we: included in group V. Although this methc does not necessarily separate populations frol a heterogeneous group, it does elimina: extreme values and trouble spots whic probably should have been eliminated orig nally for one reason or another.

Testing by Statistical Method

To test whether groups I through V belon to significantly different populations, the were checked against each other by the use f the F - and T-tests. The results showed the groups I, II, and III were distinct population: and groups I and IV were not significantl different, since their selection was based mol or less on the frequency of montbly centr: tendency. Group IV is a mixed population

Table 6.-Quartile position by month for each station in relation to all stations ${ }^{1}$

Station number	Group number	January	February	March	April	May	June	July	August	September	October	November	December
$\begin{aligned} & 500 \\ & 501 \\ & 502 \\ & 503 \\ & 504 \\ & 505 \end{aligned}$	$\begin{gathered} \text { III } \mathrm{IV}, \mathrm{~V} \\ \mathrm{I}, \mathrm{~V} \\ \text { III, IV, V } \\ \text { II, IV } \\ \text { II, V V } \\ \text { IV, V } \end{gathered}$	$\begin{gathered} 3 \\ 3 \\ \hdashline 4 \\ Q^{1} \\ Q_{2} \end{gathered}$		$\begin{array}{r} 2 \\ Q_{1} \\ 2 \\ Q_{1} \\ 3 \\ 3 \end{array}$	$\begin{array}{r} \mathrm{Q}_{1} \\ 3 \\ 3 \\ 1 \\ 1 \\ \mathrm{Q}_{2} \\ \mathrm{Q}_{3} \end{array}$	$\begin{aligned} & \mathrm{Q}_{2} \\ & 2 \\ & 2 \\ & \mathrm{Q}_{2} \\ & \mathrm{Q}_{1} \\ & \mathrm{Q}_{3} \\ & \mathrm{Q}_{2} \end{aligned}$	$\begin{gathered} Q_{3} \\ 4 \\ Q_{1} \\ Q_{1} \\ 4 \\ 1 \end{gathered}$	$\begin{aligned} & 2 \\ & 4 \\ & 1 \\ & 3 \\ & 4 \\ & 2 \end{aligned}$	3 4 1 3 2 Q_{1}	$\begin{array}{r} 4 \\ \mathrm{Q}_{3} \\ 3 \\ 2 \\ 2 \\ 1 \\ \mathrm{Q}_{2} \end{array}$	$\begin{array}{r} 3 \\ Q_{1} \\ Q_{3} \\ Q_{2} \\ 1 \\ 4 \end{array}$	$\begin{array}{r} 3 \\ Q_{1} \\ Q_{3} \\ Q_{2} \\ Q_{2} \\ 3 \end{array}$	$\begin{array}{r} 2 \\ 1 \\ 2 \\ Q_{2} \\ Q_{2} \\ Q_{2} \end{array}$
$\begin{aligned} & 506 \\ & 507 \\ & 508 \\ & 509 \\ & 510 \\ & 511 \end{aligned}$	$\begin{gathered} \text { II } \\ \text { I, V } \\ \text { I, IV, V } \\ \text { III } \\ \text { II, IV, V } \\ \text { II, V } \end{gathered}$	$\begin{gathered} \mathrm{Q} 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 4 \end{gathered}$	$\begin{aligned} & 4 \\ & 3 \\ & 3 \\ & 3 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 4 \\ Q_{3} \\ Q_{2} \\ 1 \\ 2 \\ Q_{3} \end{array}$	$\begin{array}{r} 4 \\ 3 \\ Q_{1} \\ 1 \\ Q_{3} \\ 4 \end{array}$	$\begin{array}{r} \mathrm{Q}_{1} \\ 4 \\ \mathrm{Q}_{1} \\ 1 \\ 4 \\ 2 \end{array}$	$\begin{array}{r} 1 \\ 1 \\ 3 \\ Q_{3} \\ Q_{3} \\ 1 \end{array}$	$\begin{array}{r} 1 \\ Q_{1} \\ 3 \\ 4 \\ Q_{3} \\ 2 \end{array}$	$\begin{array}{r} 1 \\ 3 \\ 3 \\ 4 \\ Q_{3} \\ 1 \end{array}$		$\begin{array}{r} 1 \\ 3 \\ \mathrm{Q}_{1} \\ 4 \\ \mathrm{Q}_{1} \\ \mathrm{Q}_{2} \end{array}$	$\begin{gathered} 1 \\ Q_{2} \\ 2 \\ Q_{3} \\ Q_{1} \\ 1 \end{gathered}$	$\begin{array}{r} 3 \\ 4 \\ 1 \\ -\quad 1 \\ 4 \end{array}$
$\begin{aligned} & 512 \\ & 513 \\ & 516 \\ & 517 \\ & 518 \\ & 519 \end{aligned}$	$\begin{gathered} \text { I, V V } \\ \text { II } \\ \text { I, IV, V } \\ \text { I, IV, V } \\ \text { II IV, V } \end{gathered}$	$\begin{array}{r} Q_{1} \\ 4 \\ 3 \\ 3 \\ Q_{3} \\ 4 \\ 4 \end{array}$	$\begin{gathered} Q_{2} \\ 4 \\ 2 \\ Q_{2} \\ 4 \\ 3 \end{gathered}$	3 4 1 42 2 2 3 3	3 4 2 Q_{2} 2 3	$\begin{array}{r} 4 \\ Q_{1} \\ 3 \\ 2 \\ 2 \\ Q_{1} \\ 3 \end{array}$	4 1 $Q 1$ 3 3 2 2	$\begin{array}{r} 1 \\ 1 \\ Q_{1} \\ 2 \\ Q_{1} \\ 2 \end{array}$	$\begin{gathered} 4 \\ 1 \\ \mathrm{Q}_{1} \\ \mathrm{Q}_{1} \\ 1 \\ \mathrm{Q}_{1} \end{gathered}$	$\begin{array}{r} 4 \\ Q_{2} \\ Q_{1} \\ 4 \\ 1 \\ 2 \end{array}$	1 Q_{2} Q_{3} 2 2 Q_{2} 3	1 1 1 3 Q_{2}	$\begin{gathered} 4 \\ \mathrm{Q}_{2} \\ \mathrm{Q}_{3} \\ \mathrm{Q}_{2} \\ 4 \\ \mathrm{Q}_{3} \end{gathered}$
$\begin{aligned} & 520 \\ & 521 \\ & 522 \\ & 523 \\ & 524 \\ & 525 \end{aligned}$	$\begin{gathered} \text { II } \\ \text { II } \\ \text { III, IV, } \\ \text { II } \\ \text { I } \\ \text { I, IV, V } \end{gathered}$	3 4 1 3 2 3	4 4 Q_{1} Q_{1} 1 3	4 4 2 3 1 2	$\begin{gathered} Q_{3} 3 \\ 4 \\ Q_{2} \\ Q_{3} \\ Q_{2} \\ Q_{2} \end{gathered}$	$\begin{array}{r} 4 \\ 2 \\ Q_{3} \\ 4 \\ 4 \\ 2 \\ 2 \end{array}$	$\begin{array}{r} 3 \\ 1 \\ Q_{1} \\ 4 \\ 4 \\ 4 \\ Q_{3} \end{array}$	$\begin{array}{r} 4 \\ 1 \\ 3 \\ 2, \\ 4 \\ 4 \\ 3 \end{array}$	$\begin{gathered} \mathrm{Q}_{3} \\ 1 \\ 3 \\ \mathrm{Q}_{2} \\ 4 \\ \mathrm{Q}_{2} \end{gathered}$	$\begin{gathered} \mathrm{Q}_{3} \\ 1 \\ \mathrm{Q}_{2} \\ \mathrm{Q}_{2} \\ 1 \\ 1 \end{gathered}$	$\begin{array}{r} 1 \\ 3 \\ Q_{3} \\ 1 \\ Q_{1} \\ 2 \end{array}$	$\begin{array}{r} 1 \\ 4 \\ \mathrm{Q}_{3} \\ 1 \\ \mathrm{Q}_{1} \\ 2 \end{array}$	1 4 2 1 2 3
$\begin{aligned} & 526 \\ & 527 \\ & 527 \end{aligned}$	$\begin{gathered} \text { I, V } \\ \text { II, V V } \end{gathered}$	1 1 2	$\stackrel{1}{\square}$	1 2 1	$\begin{gathered} Q_{1} \\ 2 \\ Q_{2} \end{gathered}$	$\begin{aligned} & 4_{2}^{4} \\ & Q_{2} \\ & \mathrm{Q}_{2} \end{aligned}$	$\begin{gathered} 4 \\ Q_{3} \\ Q_{1} \end{gathered}$	$\begin{aligned} & 3 \\ & 4 \\ & 2 \end{aligned}$	${ }^{4}$	$\begin{aligned} & Q_{2} \\ & Q_{2} \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{2} \\ & \mathrm{Q}_{1} \\ & \mathrm{Q}_{3} \end{aligned}$	2 2 4	Q^{1} 2 Q_{3}
$\begin{array}{r} 529 \\ 530 \\ 533 \\ \hline 632 \end{array}$	III II II	Q_{1} Q_{3} 4	$\begin{gathered} 1 \\ Q_{3} \\ Q_{3} \end{gathered}$	1 1 4	1 1 4	$\begin{aligned} & 1 \\ & Q_{3} \\ & Q_{1} \end{aligned}$	1 3 3	4 3 2	4 4 1	3 4 4	4 4 3	4 Q^{4} 1	4 1 1

[^2]ut it can be used when the least variance om the mean is desired. Ciroup V is also a sixed population, tending to resemble groups and IV; it serves to eliminate undesirable xtreme values due to error or forces incomatible with the remainder of the data. The sparate populations can be broken down into ubpopulations; however, there is danger in ccepting the manifestations of a small group f individual stations which may not be truly spresentative of the whole population group. The chi-square test was applied to all five roups with satisfactory results for all except. roups III and V, indicating that these two roups still had heterogeneous populations nd could be divided into more populations.
Another test supplementing the chi-square bodness-of-fit test to the normal curve was Iso made, namely Fisher's g_{1} and g_{2} statistics. "or each sample, these values are based on the rst through the fourth moments of the deiations of the observations from the mean of frequency distribution where the X -axis ; the class interval of the monthly value of he ratio of each station's ADT to the average
day of the month, and the l-axis is the frequency of occurrence. Just as the first and second moments about the mean are measures of the average deviation from the mean and the standard deviation, respectively, so are the first through the third moments used to obtain a measure of asymmetry $\left(g_{1}\right)$ and the first through the fourth moments a measure of the kurtosis, flatness, and/or peakedness (g_{2}) as compared with the normal curve. The statistics g_{1} and g_{2} are calculated from the k statistics, which are in turn derived from the sum of the powers, from the second through the fourth, of the deviations from the mean of a frequency distribution. Thus,

Where

$$
\begin{aligned}
& k_{2}=S_{2} /(N-1) \\
& k_{3}=N S_{3} /(N-1)(N-2) \\
& k_{1}=\frac{N\left[(N+1) S_{4}-3(N-1) S_{2}^{2} / N\right]}{(N-1)(N-2)(N-3)}
\end{aligned}
$$

$S_{2}=$ The sum of the squares of the deviations about the mean.
$S_{3}=$ The sum of the cubes of the deviations about the mean.
$S_{4}=$ The sum of the fourth powers of the deviations about the mean.
In converting the values of g_{1} and $g_{2}{ }^{-}$to ${ }^{-} t$ values which show the probability levels and significance of the sample in relation to the normal curve, the following formulas were 11sed:

$$
t_{s_{1}}=\frac{c_{1}}{S_{s_{2}}^{2}} \text { and } t_{s_{2}}=\frac{g_{2}}{S_{R_{2}}^{2}}
$$

Where:
$S_{2}{ }_{g_{1}}\left(\right.$ variance of $\left.g_{1}\right)=$
$\frac{6 N(N-1)}{(N-2)(N+1)(\Lambda+3)}$
$\mathrm{St}_{\mathrm{K}_{2}}\left(\right.$ variance of $\left.g_{2}\right)=$

$$
\frac{24 N(N-1)^{2}}{(N-3)(N-2)(N+3)(N+5)}
$$

$N=$ Number of observations in samples.
All interesting sidelight on the value of $\|_{2}$ is ifs use in determining the minimum size of : sample to be taken from a larger sample on population when the value of g_{2} of the larger sample is knowl. The minimum sample size is computed as follows: $\beta_{2}=g_{2}+3$, and N (sizo of sample $)=\left(\beta_{2}-1\right) / 4 V^{2}$. In the Tennesser 30 -station data, the value of g_{2} is 0.447 , aud assuming the desired coefficient of variaion (V) of the standard deviation is equal to 10 percent, $\beta_{2}=0.4477+3.000=3.4477$. The size of sample $N=3.4477-1 / 4(0.10)^{2}==$ $2.4477 / 0.04=61.2$ months.

Since each station reports for 12 months. the minimum sample required is $61.2 / 12$ or 5 stations. However, this sample of 61.2 months is a random sample distributed over all stations and not clustered in 5 stations. This cluster effect has not yet been invesfigated, but because of its possible effect the number of stations may have to be raised io 6 or 7.

It has been observed that when the chisiquare lest for goodness of fit showed weakness, the g_{1} and g_{2} tests tended to sub)stantiate this weakness. A summary of the results of the various tests for selected gromps is shown in table 7 .

Nashville and Memphis Studies

From the data of $t i$ stations located in Nashville, 63 random samples of 2 thour duration were selected as shown in table 8. These samples were adjusted to the ADT estimates by application of the 6-station monthly means of ratios of AJT to the respective average weekday traffic volumes as shown in table 9 . The differences (errors) of these estimates from their respective true values were expressed by the standard deviation of ± 6.7 percent. Recalling that the sampling error of the 2 thour samples was measured by the standard deviation of ± 5.9 percent for Memphis, the effect of factorization on the final error is small indeed.

Further, to test the practical meaning of the significance of the observed ± 10-percent range of variation in the monthly characteristices of the variations among stations, it was
${ }^{1}$ Values exceeding 1.35 are significant at the 5 -perent le vel. 2 Acceptable probahility level is betwern 4.95 and 0.05 . ${ }^{3} P$ values less than 0.05 are considered significuntly differnt from a normal fit.
assumed that no monthly adjustment ratios were available from Nashville stations. Instead, the monthly mean ratios for the 6 stations located in Memphis were used for estimating the ADT in Nashville using the same 63 samples. The standard deviation resulting from this procedure was ± 7.2 percent.

The difference between 7.2 and 6.7 percent could hardly be considered of practical significance, and yet it implies the absence of
need for Nashville data for the adjustment of samples. At least for this purpose, the six stations in Nashville could be considered unnecessary. Furthermore, the identification of possible different populations as previously discussed could not have had any appreciable practical effect on the accuracy of ADT estimates based on 24 -hour weekday samples, as the error could not be expected to fall below the ± 5.9 percent standard deviation of sampling.

A comparison of the same 63 sample cour with the ADT disclosed that the differenc between the sample traffic volumes and t. respective ADT volumes were measured by standard deviation of ± 8.7 percent. Co sidering that the corresponding minimum pc sible measure was ± 5.9 percent, and the be results upon factorization (by Nashville f ε tors) was 6.7 percent, a significant conclusi is derived. If on a 68-percent confiden limit, errors of 9 percent or less would

Table 8.-Errors in AlbT estimates of Nashville traffic for 1956 , based on 24-hour weekday samples expanded by mean factors

Month	$\begin{gathered} \text { 24-hour } \\ \text { week- } \\ \text { day } \\ \text { volumes } \end{gathered}$	Using mean Nashville factor				Using mean Memphis factor				24-hour weekday volumes	Using mean Nashville factor				Using mean Memphis factor			
		Firctor	Estimated ADT	Error ${ }^{1}$		Factor	Estimated ADT	Error ?			Factor	Estimated ADT	Error ${ }^{1}$		Factor	Estimated ADT	Error ${ }^{3}$	
				Volume	Percent			Volume	Percent				Volume	Percent			Volume	Percen
Station 500 -ADT 26,635										Station 503-ADT 7,615								
January	24. 821	1. 199	27,055	420	1. 6	1.06	26.310	-325	-1.2	7, 436	1. 09	8,105	490	6. 4	1. 06	7,882	267	3.5
Fehruary	25, 528	1.02	26. 038	-597	-2.2	1.03	26, 294	-341	-1.3	7.834	1. 02	7,991	376	4.9	1. 03	8, 069	454	6.0
March.	25. 727	. 98	25, 212	-1,423	-5.3	1.01	25,984	-651	-2.4	7,967	. 98	7. 808	193	2. 5	1. 01	8,047	432	5.7
April	27, 727	95	26,341	-294	-1.1	1.01	28,004	1,369	5.1	8,219	. 95	7,808	193	2.5	1.01	8,301	686	9.0
May	29.876	.92	27. 486	851	3.2	. 96	28, 681	2, 046	7.7	8,641	. 92	7,950	335	4. 4	. 96	8,295	680	8.9
June	30, 435	. 43	28.305	1,670	63	. 93	28.304	1,669	63	8.010	. 93	7, 449	-166	-2.2	. 93	7, 449	-166	-2.2
July	27.407	. 93	25, 489	$-1,146$	-4.3	. 96	26,311	-324	-1.2	8. 295	. 43	7, 714	99	1.3	. 96	7,963	348	4.6
August		. 92				. 94				8, 453	. 92	7,777	162	2.1	. 94	7,946	331	4.3
Scptember		. 95				. 95				8. 363	. 95	7.945	330	4. 3	. 95	7,945	330	4.3
October.	25, 6880	. 9.5	24,396	-2, 239	-84	. 96	24,653	1, 482	-7.4	7,861	. 45	7, 468	-147	-1.9	. 96	7, 547	-68	$-.9$
November I) enember	24,853	.97 .94	24, 107	$-2,529$	-9.5	.96 .95	23,859	2, 776	-10.4	8.023 7,980	.97 .94	7,782 7,501	167 -114	2.2 -1.5	.96 .95	7,702 7,581	87 -34	1.1 -.4
Station 501-ADT 576										Station $504-$ ADT 7,863								
January	458	1.09	499	-77	-13.3	1. 06	485	-91	-15.8	8,061	1. 09	8,786	923	11.7	1. 06	8,545	682	8.7
February	594	1.02	606	30	5. 2	1. 03	612	36	6. 3		1.02				1. 03			
March	668	. 98	655	79	13.7	1. 01	675	99	17. 2	8,226	. 98	8,061	198	2. 5	1. 01	8,308	445	5.7
April.	548	. 95	521	-55	9.5	1.01	553	-23	-4.0	8,734	95	8,297	434	5. 5	1.01	8, 821	958	12. 2
May	602	. 92	5.54	-22	-3.8	. 96	578	2	. 3	8, 281	. 92	7.619	-244	-3.1	. 96	7,950	87	1.1
Junce	565	. 93	525	-51	-8.9	. 93	525	-51	-8.9	8, 822	. 93	8, 204	341	4. 3	. 93	8,204	341	4.3
July	6195	. 93	563	-13	-2.3	. 96	581	5 -78	-.9	7,936	. 93	7,380	-483	-6.1	. 96	7,618	-245	-3.1
August	530	. 92	488	-88	-15.3	. 94	498	-78	-13.5	8,540	. 92	7,857	-6	-. 1	. 94	8,028	165	2.1
September	531	. 95	504	-72	-12.5	. 95	504	-72	-12.5		. 95				. 95			
October...	561	. 4.5	533	-42	-7.3	. 96	539	-37	-6. 4	8,772	. 95	8,333	470	6.0	. 96	8, 421	558	7.1
November	573	. 97	556	-20	-3.5	. 96	550	-26	-4.5	8. 400	. 97	8, 148	285	3.6	. 96	8, 064	201	2.6
December	633	. 94	595	19	3.3	. 95	(0)1	25	4.3	8,601	. 94	8,085	222	2.8	. 95	8,171	308	3.9
Station 502-ADT 4,868										Station 505-ADT 17,439								
January	4,456	1. 09	4.857	-411	-8. 4	1.06	4.723	-145	-3.0	17,869	1. 09	19,477	2,038	11. 7	1. 06	18,941	1,502	8.6
Fehruary	4,489	1.02	4,579	-289	-5.9	1. 03	4,624	-244	-5.0		1.02				1.03			
March	5, 285	. 98	5,179	311	6. 4	1.01	5, 338	470	9.7	17,420	. 98	17,072	-367	-2.1	1. 01	17. 594	155	y
April	5,736	95	5, 449	581	11.9	1.01	5,793	925	19.0	17,061	. 95	16,208	-1,231	-7.1	1. 01	17, 232	-207	-1.2
May	5,515	. 92	5,074	206	4.2	. 96	5. 294	426	8. 8	18,993	. 92	17, 474	35	. 2	. 96	18, 233	794	4. 6
June	5, 844	. 93	5, 435	567	11.6	. 93	5, 435	567	11.6	19, 157	. 93	17,816	377	2.2	. 93	17,816	377	2.2
July	5, 428	. 93	5,513	645	13. 2	. 96	5, 691	823	16.9		. 93				. 96			
August		. 92				. 94				18,274	. 92	16,812	-627	-3.6	. 94	17,178	-261	-1.5
September	5, 099	. 95	4, 844		$-.5$. 95	4.844		-. 5	17.998	. 95	17,098	-341	-2.0	. 95	17,098	-341	-2.0
October	5. 140	. 95	4,883	15	. 3	. 96	4.934	66	1. 4	18,810	. 95	17.869	430	2.5	. 96	18,058	619	3.5
Vovember	5, 267	. 97	5, 109	241	4.9	. 96	5,056	188	3.9	17,883	. 97	17,346	-93	$-.5$. 96	17, 168	-271	-1.6
December.		. 94				. 95				19,789	. 94	18,602	1,163	6.7	. 95	18,800	1,361	7.8
$\text { 1. Standart heviation (Nashville): } S=\frac{\sqrt{\Sigma(p e r c e n t ~ c r r o r)}}{N-1}=\frac{\sqrt{2,786.54}}{63-1}= \pm 6.7 \text { percent. } \quad 2 \text { Standard deviation (Memphis): } S=\frac{\sqrt{\Sigma(\Gamma e r c e n t ~ e r r o r)}}{N-1}=\frac{\sqrt{3,255.18}}{63-1}= \pm 7.2 \text { percent. }$																		

Table 9.-Ratios (mean factors) of annual average daily traffic to average weekday traffic volumes for Nashville and Memphis, 1956

City and station number	January	Fehruary	March	April	May	June	July	August	Suptember	October	November	December	A verage daily traffic
Nashville: 500	1.09												
501 -	1.12	1.02	1.01	0.96 1.04	0.97 .95	0.94 1.04	0.94 1.01	0.96 1.01	1.01 1.00	1. 00	1.02	0.95	26,635
502.	1.14	1.11	. 94	. 88	. 89	1.88	. 84	. 82	1.00 .93	.95 .94	. 96	. 91	576 4,868
503	1. 15	1. 019	. 94	. 91	89	. 89	. 92	. 92	. 93	. 93	. 96	. 96	7,615
504.	1. 10	. 98	. 97	. 94	93	. 94	. 96	. 88	. 88	. 88	. 94	. 94	7,863
505.	1. 0.3	. 98	. 98	. 98	91	. 89	. 90	. 90	. 94	. 99	. 98	. 95	17, 439
Mean	1.09	1. 02	. 98	. 95	. 92	. 93	. 93	. 92	. 95	. 95	. 97	. 94	
Memphis:	1.12	1. 16	1. 10	1. 11	1.01	. 95	94	90	91	90		. 90	
507	. 95	. 99	1. 99	. .97	1.91	. 87	. 88	. 93	.91 .97	.90 .97	.95 .95	.99 .99	23,671 10,394
508.	1. 05	1. $\%$	1.02	. 97	. 95	. 97	. 98	. 97	. 98	. 96	. 97	. 92	12, 282
509	. 99	193	. 95	. 91	. 90	. 90	1. 03	1. 00	1.01	. 99	1.01	. 95	21,254
510	1. 07	1.01	. 98	1. 01	. 99	. 96	. 97	. 95	. 94	. 95	. 93	. 92	7,058
511	1.17	1. 04	1.04	1. 10	95	. 90	. 93	. 87	. 88	. 96	. 92	. 95	27,903
Mean	1. 06	1.03	1.01	1.01	.96	. 93	. 96	. 94	95	. 96	. 96	. 95	-...---

icceptable as sufficiently accurate, then a t-hour weekday traffic comit may be issumed ') represent the ADT.

Similar tests of Detroit and st. Louis data appear to bear out this conclusion with the following qualifications: (1) The months of
able 10.-Factors for the expansion of 4-hour urban counts to 24 -hour counts on weekdays and the evaluation of the accuracy of these factors

1 Weighted average based on card count.

Traffic Article Postponed

The article Traffic and Travel Trends, which has appeared annually (except for 1954) in Public Roads magazine since 1946 , will not be included this year.

The comprehensive study of highways, begun in 1956 in aceordance with section 210 of the Highway Revenue Act of 1956 , was given preference over the work of reporting and analyzing the 1957 traffic trends data. The
consequent postponement of this work has delayed the publishing of the usual traffic trends article for this one year. Tabular material, which would have been a part of the report had it been published, will be available to subscribers of Purlic Roads during the first quarter of calendar year 1959, and a set of tables giving 1957 traffic information will be furnished at that time upon request addressed to the Bureau of Public Roads.

Traffic data furnished in conjunction with the section 210 study will undoubtedly result

Jamatry, July, August, and Decermber shom a high degree of dispersion for the test observattions and hence are not representative month of the year; (2) there are low-volume roads in urban areas which will also show a high degree of di-persion and may not be reliable; and (3) the average weekday count is generally higher that the respective ADT, the average difference for the year being about +5 percent of the ADT. When seasonal rariation is considered, the average range of the $2 t$-hour weekday come is about 95 to 110 percent of the ADT. In Tennessee, because the factors are already available, the adjustmenti for monthly variations will be made.

Four-Hour Weekday Counts

Manmal counts of thour duration on weekdays are also used in Tennessee cities for the purpose of estimating ADT. The evaluation of the conversion of weekday $2 t$-hour counts to estimates of ADT has already been discussed. Ttilizing an electronic computer, a population study was made on the 1955 datat of 33 urban continuous-count recorders for the purpose of determining and evaluating the procedure for the expansion of these 4 -hour samples into estimates of traffic for 24 -hour periods on weekdays.

Table 10 shows the mean expansion factors, the standard deviation, and the standard errors of the means of the expansion factors by months and by different 4 -hour periods of traffic counts. The great similarities of the mean monthly factors and the consistency of the standard deviation for various t-hour periods are evident. It is observed, however, that the greatest variation, average standard deviation ± 0.71, occurs during the period from $6 \mathrm{a} . \mathrm{m}$, to $10 \mathrm{a} . \mathrm{m}$., being 15.8 percent of the mean factor of 4.5 . The smallest variation is for the period from $1 \mathrm{p} . \mathrm{m}$. to $\overline{5} \mathrm{p} . \mathrm{m}$. for which the average standard deviation is ± 0.31 or ± 8.3 percent of the mean factor of 3.75 . These characteristics indicate that estimates of 24 -hour weekday volumes are accurate in terms of standard deviations of about ± 12 to 13 percent, which mity be considered satisfactory for practical purposes.

The following publications are sold by the Superintendent of Documents, wernment Printing Office, Washington 25, D. C. Orders should be u direct to the Superintendent of Documents. Prepayment is required.

NNUAL REPORTS

ork of the Public Roads Administration:
1941, 15 cents. 1948,20 cents.
1942, 10 cents. 1949,25 cents.
ublic Roads Administration Annual Reports:
1943; 1944; 1945; 1946; 1947.
(Free from Bureau of Public Roads)
nnual Reports of the Bureau of Public Roads:
$\begin{array}{lll}1950,25 \text { cents. } & 1953 \text { (out of print). } & 1956,25 \text { cents. } \\ 1951,35 \text { cents. } & 1954 \text { (out of print). } & 1957 \text { (out of print). } \\ 1952,25 \text { cents. } & 1955,25 \text { cents. } & \end{array}$

UBLICATIONS

Report of Factors for Use in Apportioning Funds for the National System of Interstate and Defense Highways, House Document No. 300 (1958). 15 cents.
ibliography of Highway Planning Reports (1950). 30 cents. raking Performance of Motor Vehicles (1954). Out of print. onsideration for Reimbursement for Certain Highways on the Interstate System, House Document No. 301 (1958). 15 cents. onstruction of Private Driveways, No. 272MP (1937). 15 cents. riteria for Prestressed Concrete Bridges (1954). 15 cents.
lesign Capacity Charts for Signalized Street and Highway Intersections (reprint from Public Roads, Feb. 1951). 25 cents. lectrical Equipment on Movable Bridges, No. 265T (1931). 40 cents.
actual Discussion of Motortruck Operation, Regulation, and Taxation (1951). 30 cents.
inancing of Highways by Counties and Local Rural Governments: 1931-41, 45 cents; 1942-51, 75 cents.
irst Progress Report of the Highway Cost Allocation Study, House Document No. 106 (1957). 35 cents.
ieneral Location of the National System of Interstate Highways, Including All Additional Routes at Urban Areas Designated in September 1955. 55 cents.
Lighway Bond Calculations (1936). 10 cents.
lighway Capacity Manual (1950). \$1.00.
Iighway Needs of the National Defense, House Document No. 249 (1949). 50 cents.
Iighway Practice in the United States of America (1949). Out of print.
Iighway Statistics (annual) :

1945 (out of print).	1949,55 cents.	$1953, \$ 1.00$.
1946 (out of print).	1950 (out of print).	1954,75 cents.
1947 (out of print).	1951,60 cents.	$1955, \$ 1.00$.
1948,65 cents.	1952,75 cents.	$1956, \$ 1.00$.

Iighway Statistics, Summary to 1955 . $\$ 1.00$.
Iighways in the United States, nontechnical (1954). 20 cents. Iighways of History (1939). 25 cents.
dentification of Rock Types (reprint from Public Roads, June 1950). 15 cents.
nterregional Highways, House Document No. 379 (1944). 75 cents.

PUBLICATIONS (Continued)

Legal Aspects of Controlling Highway Access (1945). 15 cents.
Local Rural Road Problem (1950). 20 cents.
Manual on Uniform Traffic Control Devices for Streets and Highways (1948) (including 1954 revisions supplement). \$1.25.

Revisions to the Manual on Uniform Traffic Control Devices
for Streets and Highways (1954). Separate, 15 cents.
Mathematical Theory of Vibration in Suspension Bridges (1950). $\$ 1.25$.
Needs of the Highway Systems, 1955-84, House Document No. 120 (1955). 15 cents.
Opportunities in the Bureau of Public Roads for Young Engineers (1958). 20 cents.

Parking Guide for Cities (1956). 55 cents.
Principles of Highway Construction as Applied to Airports, Flight Strips, and Other Landing Areas for Aircraft (1943). Out of print.
Progress and Feasibility of Toll Roads and Their Relation to the Federal-Aid Program, House Document No. 139 (1955). 15 cents.
Public Control of Highway Access and Roadside Development (1947). 35 cents.

Public Land Acquisition for Highway Purposes (1943). 10 cents.
Public Utility Relocation Incident to Highway Improvement, House Document No. 127 (1955). 25 cents.
Results of Physical Tests of Road-Building Aggregate (1953). $\$ 1.00$.
Roadside Improvement, No. 191 MP (1934). 10 cents.
Selected Bibliography on Highway Finance (1951). 60 cents.
Specifications for Aerial Surveys and Mapping by Photogrammetric Methods for Highways, 1956: a reference guide outline. 55 cents.
Standard Specifications for Construction of Roads and Bridges on Federal Highway Projects, FP-57 (1957). \$2.00.
Standard Plans for Highway Bridge Superstructures (1956). \$1.75.
Taxation of Motor Vehicles in 1932. 35 cents.
Tire Wear and Tire Failures on Various Road Surfaces (1943). 10 cents.
Transition Curves for Highways (1940). $\$ 1.75$.

[^3]
United States

Government Printing Office
division of public documents WASHINGTON 25, D. C. OFFICIAL BUSINESS

If you do not desire to continue to receive this publication, please CHECK here tear off this label and return it to the above address Your name will then be removed promptly from the appropriate mailing list.

PENALTY FOR PRIVATE USE TO AVOID PAYMENT OF POSTAGE, $\$ 300$ (GPO)

[^0]: ${ }^{1}$ Traffic planning studies in American cities, by John T

[^1]: ${ }^{1}$ This article was presented at the 37th Annual Meeting of the Highway Research Board, Washington, D. C., January 1958.

[^2]:

[^3]: Single copies of the following publications are available to highway engineers and administrators for official use, and may be obtained by those so qualified upon request addressed to the Bureau of Public Roads. They are not sold by the Superintendent of Documents.

 Bibliography on Automobile Parking in the United States (1946). Bibliography on Highway Lighting (1937). Bibliography on Highway Safety (1938). Bibliography on Land Acquisition for Public Roads (1947). Bibliography on Roadside Control (1949).
 Express Highways in the United States: a Bibliography (1945). Indexes to Public Roads, volumes 17-19 and 23.
 Title Sheets for Public Roads, volumes 24-29.

