Public Roads

AJOURNALOF
H I G H W A Y
R E S E A R C H

PUBLISHED
BIMONTHLYBYTHE BUREAU OF PUBLIC ROADS, U. S. DEPARTMENT OF COMMERCE, WASHINGTON

In this issue: A discussion of new methods for determining traffic capacity of rural highways.
(U. S. Route 40, south of Hagerstown, Md.)

A JOURNAL OF HIGHWAY RESEARCH Published Bimonthly
Vol. 30, No. 2
June 1958
C. M. Billingsley, Editor

BUREAU O F P UBLIC ROAD S
Washington $25, \mathrm{D} . \mathrm{C}$.

REGIONAL OFFICES

IN THIS ISSUE

New Methods for Determining Capacity of Rural Roads in Mountainous Terrain 25
The Economic Costs of Motor-Vehicle Accidents of Different Types 40
Use of the Swiss Hammer for Estimating the Compressive Strength of Hardened Concrete 45
Wind Tunnel for Aerodynamic Testing of Sec- tion Models of Suspension Bridges 51
Power. Shovel Productivity-a motion picture 52

No. 1. Delaware and Hudson Bldg., Albany 1, N. Y. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont.

No. 2. 707 Earles Bldg., Hagerstown, Md.
Delaware, District of Columbia, Maryland, Ohio, Pennsylvania, Virginia, and West Virginia.
No. 3. 50 Seventh St., NE., Atlanta 23, Ga Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, Tennessee, and Puerto Rico.
No. 4. South Chicago Post Office, Chicago 17, Ill. Illinois, Indiana, Kentucky, Michigan, and Wisconsin.

No. 5. Federal Office Bldg., Kansas City 6, Mo.
Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, and South Dakota.

No. 6. 502 U. S. Courthouse, Fort Worth 2, Tex. Arkansas, Louisiana, Oklahoma, and Texas.

No. 7. Old Mint Bldg., San Francisco 3, Calif. Arizona, California, Nevada, and Hawaii.

No. 8. 753 Morgan Bldg., Portland 8, Oreg.
Idaho, Montana, Oregon, and Washington.
No. 9. Denver Federal Center, Bldg. 40, Denver 2, Colo.
Colorado, New Mexico, Utah, and Wyoming.
No. 10. Post Office Box 1961, Juneau, Alaska. Alaska.
No. 15. 1440 Columbia Pike, Arlington, Va. Eastern National Forests and Parks.
U. S. DEPARTMENT OF COMMERCE SINCLAIR WEEKS, Secretary LOUIS S. ROTHSCHILD, Under Secretary for Transportation

BUREAU OF PUBLIC ROADS BERTRAM D.TALLAMY, Administrator

Pubiic Roads is sold by the Superintendent of Documents, Government Printing Office, Washington 25, D. C., at $\$ 1$ per year (25 cents additional for foreign mailing) or 20 cents per single copy. Free dis tribution is limited to public officials actually engaged in planning or constructing highways, and to instructors of highway engineering. There are no vacancies in the free list at present.

Use of funds for printing this publication has been approved by the Director of the Bureau of the Budget, March 28, 1958.

New Methods for Determining Capacity of Rural Roads in Mountainous Terrain

BY THE DIVISION OF HIGHW AY TRANSPORT RESEARCH BUREAU OF PUBLIC ROADS

Abstract

Reported ${ }^{1}$ by O. K. NORMANN, Chief, Traffic Operations Branch, Bureau of Public Roads, JAMES O. GRANUM, Automotive Safety Foundation, and HARRY C. SCHWENDER, West Virginia State Road Commission

Abstract

The development of traffic capacity information needed for the design of roads in rough or mountainous terrain has required the combined results of a number of independent yet related investigations, including studies of commercial-vehicle weights and performance characteristics, driver passing practices, and the many types of studies normally associated with a capacity analysis such as frequency distributions of speeds and headways under different traffic volume and roadway conditions.

This article is a combined effort of several agencies to develop practical procedures for the application of the results of such studies to a determination of highway needs in mountainous terrain. The procedures are, however, equally applicable to all types of terrain. They provide a significant advance in analytical procedures for determining improvements in traffic-operating conditions through better alinement, reduction in gradient, and the use of truck climbing lanes on the uphill side of steep grades.

IN a comprehensive survey of highway needs, it is essential to establish a certain level of performance for each highway system in a State and then determine the improvements needed to bring the existing systems up to these performance levels. The levels of performance which are established must be feasible and be based on safe and efficient operation of vehicles, with due consideration being given to the future demands of highway transportation.
Performance levels may be measured and also specified in terms of safe operating speeds. Comprehensive studies as well as past experience have shown that drivers demand, and that it is more feasible to construct, facilities that will permit higher operating speeds (1) in level terrain than in rough or mountainous terrain, (2) on primary highways carrying most of the long-distance travel than on local roads where the average trip length is shorter, and (3) on roads of the same system carrying the higher traffic volumes than on those carrying the lower traffic volumes. While the type of service to be provided by a highway under construction is largely an administrative deci-

[^0]sion, this decision must be based on driver desires and traffic demand.
Once having established the type of service which a highway or a system of highways should provide, it is necessary to specify this service in terms of design speed and operating speed. The design speed is a speed determined for design and correlation of the physical features of a highway that influence vehicle operation; it is the safe speed that can be maintained over a specified section of the highway when conditions are so favorable that the design features of the highway govern (1). ${ }^{2}$ In short, it is the maximum speed that vehicles can safely travel over any section of the highway during extremely low traffic densities. In the design of a highway, the assumed design speed automatically establishes such features as the minimum stopping sight distance, the minimum sight distance at intersections, the maximum curvature, and the superelevation. Other features, such as widths of pavements and shoulders and clearances to walls and rails, are not directly related to design speed but they should be accorded higher standards for the assumed higher design speeds.

The operating speed is the highest overall speed exclusive of stops at which a driver can safely travel on a given highway under the prevailing traffic conditions without at any time exceeding the speed which is compatible with the design features of the highway. For this discussion it applies to the conditions during the 30th highest hourly traffic volume for the year under consideration. It is therefore a measure of the type of service which a highway provides during most of the hours

[^1]of peak flow. The operating speed on an existing highway is affected by the design speed, the traffic volume, and the number of lanes. Also, for two-lane roads, it is affected by the availability of sections on which the sight distance is of sufficient length to permit safe passing maneuvers. In the design of a new highway, it is the one factor which together with the traffic volume and assumed design speed determines the needed geometric features.

Drivers will accept as reasonable a somewhat lower operating speed, or a higher degree of congestion, on a highway that has been in existence for several years than they will accept or expect on a new highway or one recently reconstructed. Also for a needs study to be realistic, there must necessarily be some overlap in the standards by which existing highways are judged for adequacy and those used for a new highway.

In the early stages of the West Virginia Highway Needs Study, the Engineering Committee after reviewing the results of speed studies on highways throughout the State agreed upon a set of tolerable conditions for judging the adequacy of existing highways in order to determine those in need of construction or reconstruction. A set of standards was also prepared for use on new construction. Both were in terms of operating speeds and design speeds. The tolerable conditions and the construction standards for highways in West Virginia carrying over 1,800 vehicles per day are shown in table 1. These conditions and standards were determined prior to the passage of the Federal-Aid Highway Act of 1956 .

After these tolerable conditions and standards in terms of service to traffic had been

Table 1.-Tolerable conditions for existing rural highways in West Virginia carrying over 1,800 vehicles per day, and standards for new construction or reconstruction in terms of the service provided ${ }^{1}$

Highway system and type of terrain	Tolerable conditions		Construction standards	
	Operating speed	Design speed	Operating speed	Design speed
Interstate System highways: Valley or level terrain.....	$\begin{gathered} M_{.} p . h . \\ 45-50 \\ 40-45 \\ 40-45 \end{gathered}$	$\begin{gathered} \text { M. } p . h . \\ 60 \\ 50 \\ 45 \end{gathered}$	$\begin{gathered} M . p . h . \\ 500.55 \\ 45-50 \\ 45-50 \end{gathered}$	$\begin{gathered} \text { M. p. } h . \\ 70 \\ 60 \\ 60 \end{gathered}$
Rolling terrain........				
Mountainous terrain.				
Other than Interstate System highways:	$\begin{aligned} & 45-50 \\ & 40-45 \\ & 35-40 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 50-55 \\ & 45-50 \\ & 40-45 \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \\ & 60 \end{aligned}$
Valley or level terrain...-				
Mountainous terrain				

${ }^{1}$ As determined prior to the passage of the Federal-Aid Highway Act of 1956.
Table 2.-Geometric standards ${ }^{1}$ for new construction of two- and four-lane primary rural State highways

Design features	Two-lane highways with future average daily traffic volumes of-												Two-lane highways on Interstate System, and located in-			Four-lane highways located		
	Less than 500 ADT, and located in-			$\begin{aligned} & 500-1,800 \mathrm{ADT} \text {, and located } \\ & \text { in-- } \end{aligned}$			$1,800-3,000 \mathrm{ADT}$, and located			Over 3,000 ADT, and located								
	Valley terrain	$\begin{aligned} & \text { Rolling } \\ & \text { terrain } \end{aligned}$	$\begin{aligned} & \text { Moun- } \\ & \text { tainous } \\ & \text { terrain } \end{aligned}$	$\begin{aligned} & \text { Valley } \\ & \text { terrain } \end{aligned}$	Rolling terrain	$\begin{aligned} & \text { Moun- } \\ & \text { tainous } \\ & \text { terrain } \end{aligned}$	$\begin{aligned} & \text { Valley } \\ & \text { terrain } \end{aligned}$	Rolling terrain	$\begin{aligned} & \text { Moun- } \\ & \text { tainous } \\ & \text { terrain } \end{aligned}$	Valley terrain	Rolling terrain	Moun tainous terrai	$\begin{aligned} & \text { Valley } \\ & \text { errain } \end{aligned}$	Rolling terrain	$\begin{aligned} & \text { Moun- } \\ & \text { tainous } \\ & \text { terrain } \end{aligned}$	$\begin{aligned} & \text { Valley } \\ & \text { errain } \end{aligned}$	$\begin{aligned} & \text { Relling } \\ & \text { terrain } \end{aligned}$	Mountainous terrain
	50 $40-45$ 49 350 10	40 $35-40$ 14 275 10	35 $30-35$ 20 225 10	60 $45-50$ 6 525 225 211	50 $40-45$ 9 350 200 211	40 3540 14 275 275 211	70 $45-50$ 4 700 12	60 $45-50$ 6 525 12	50 $40-45$ 88 350 12	70 $50-55$ 3 700 12	60 $45-50$ 5 525 525 12	50 $40-45$ 78 350 12	70 $50-65$ 3 700 12	60 $45-50$ 50 525 12	60 $45-50$ 5 525 125 12	$\begin{array}{r} 70 \\ 50-55 \\ 50 \\ 700 \\ 700 \\ 3 \\ \hline 12 \end{array}$	60 $45-50$ 5 5 525 312	600 $45-50$ 5 525 512
	5 7	3 5		${ }_{8}^{6}$		${ }_{7}^{4}$		${ }_{8}^{6}$	${ }_{8}^{4}$	8 10	10	${ }_{8}^{4}$	888	10	${ }_{8}^{4}$	${ }_{10}^{8}$	${ }_{10}^{8}$	4
able: 1,500 feet.. 1,000 feet ...do.	$\begin{aligned} & \text { (4) } \\ & \text { (1) } \end{aligned}$	(4)	$\begin{aligned} & (4) \\ & (4) \end{aligned}$	- 10	--......-		10	7		${ }^{10}$	7	7	10	7		$\begin{aligned} & (5) \\ & (0) \end{aligned}$	$\stackrel{(5)}{(5)}_{(5)}$	(9) ${ }_{(8)}$
Grade ? 	$\begin{array}{r} 5 \\ 60 \\ \text { 6 } \end{array}$	$\begin{array}{r} 70 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ 60 \\ \text { Low } \end{array}$			$\begin{array}{r} 80 \\ \text { Medium } \end{array}$	$\begin{array}{r} 100 \\ \text { Hig } \end{array}$	$\begin{aligned} & 100 \\ & \text { High } \end{aligned}$	$\begin{array}{r} \begin{array}{r} 100^{1} \\ \text { High } \end{array} \end{array}$	$\begin{array}{r} 120 \\ \mathrm{High} \end{array}$	$\begin{gathered} 120 \\ \text { Higig } \end{gathered}$	$\begin{array}{r} 120^{7} \\ \text { High } \end{array}$	$\begin{gathered} 120 \\ \mathrm{High} \end{gathered}$	$\begin{array}{r} 120 \\ \text { High } \end{array}$	$\begin{array}{r} 70^{120} \\ \text { High } \end{array}$	$\begin{array}{r} 200^{2} \\ \text { High } \end{array}$	$\begin{array}{r} 200^{7} \\ \text { High } \end{array}$	200 High
	$\underset{14.5}{\mathrm{H} 15-\mathrm{S} 12}$	H15-S12	$\text { H15-S12 }{ }_{14.5}$	H15-S12	$\mathrm{H}_{15-\mathrm{S} 12}^{14.5}$	$\underset{\mathrm{H} 15-\mathrm{S} 12}{14.5}$	H15-S12	$\underset{14.5}{\mathrm{H} 15-\mathrm{S} 12}$	H15-S12	$\begin{array}{r} \mathrm{H} 20-\mathrm{S} 16 \\ 14.5 \end{array}$	$\underset{14,5}{\mathrm{H} 20-\mathrm{S} 16}$	$\underset{14,5}{\mathrm{H} 20-\mathrm{S} 16}$	$\underset{14.5}{\mathrm{H} 20-\mathrm{S} 16}$	$\begin{gathered} \mathrm{H} 20-\mathrm{S} 16 \\ 14.5 \end{gathered}$	$\xrightarrow{\text { H20-S16 }}$	$\begin{gathered} \mathrm{H} 20-\mathrm{S} 16 \\ 14.5 \end{gathered}$	${ }_{\text {H20-S16 }}^{14.5}$	H20-S16

[^2] For 2 -lane high ways carrying less than 500 vehicles per day, add 2 percent for grades under 750 feet long; for 2 -lane highways carrying from 500 to 1,800 vehicles per day, add 1 percent for grades under 750 feet long; for 2 -lane highways隹 pavement plus 4 feet and the width of the median in the case of 4-lane divided highway
10 For highways carrying less than 3,000 vehicles per day, the loading shall be H 15 -Si2 or one H 20 truck, whichever produces the greater stress; for highways carrying 3,000 or more vehicles per day and a volume of heavy truck traffic

Table 3.-Tolerable conditions ${ }^{1}$ for two- and four-lane primary rural State highways

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Design features} \& \multicolumn{12}{|l|}{Two-lane highways with future average daily traffic volumes of-} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Two-lane highways on Interstate System, and located in-}} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Four-lane highways located}}

\hline \& \multicolumn{3}{|l|}{Less than 500 ADT , and located in-} \& \multicolumn{3}{|l|}{$$
\begin{gathered}
500-1,800 \mathrm{ADT} \text {, and located } \\
\text { in- }
\end{gathered}
$$} \& \multicolumn{3}{|l|}{$$
1,800-3,000 \mathrm{ADT} \text {, and located }
$$} \& \multicolumn{3}{|l|}{Over 3,000 ADT, and located} \& \& \& \& \& \&

\hline \& Valley terrain \& Rolling terrain \& $$
\begin{aligned}
& \text { Moun- } \\
& \text { tainous } \\
& \text { terrain }
\end{aligned}
$$ \& Valley terrain \& Rolling terrain \& Mountainous terrain \& Valley
terrain \& Rolling terrain \& $$
\begin{aligned}
& \text { Moun- } \\
& \text { tainous } \\
& \text { terrain }
\end{aligned}
$$ \& Valley
terrain \& Rolling terrain \& Mountainous terrain \& Valley terrain \& $\underset{\text { Rerrain }}{\text { Rolling }}$ \& Moun-
tainous
terroin terrain \& Valley \& Rolling terrain \& Mountainous terrain

\hline \& 40
3-40
14
275

9 \& 35
$30-35$
200
225
9 \& 30
$25-30$
205
200
9 \& 50
$40-45$
9
350
10 \& 40
$3-40$
14
275
270 \& 35
$30-35$
300
205
225
220 \& 60
$45-50$
6
475
40 \& 50
$40-45$
9
350
10 \& 40
$35-40$
14
275

10 \& $$
\begin{array}{r}
60 \\
45-50 \\
5 \\
475 \\
10 \\
\hline
\end{array}
$$ \& 50

40
40
7
750
10 \& 40
$35-40$
11
175
10 \& $\begin{array}{r}60 \\ 45-50 \\ 4 \\ 475 \\ 40 \\ \hline 10\end{array}$ \& 50
re-45
40
750
350
10 \& 45
$40-45$
9
300
10 \& 60
$45-50$
5
475
40 \& 50
$40-45$
7
350
10 \& 45
40
$40-45$
90
300
10

\hline \& ${ }_{3}^{3}$ \& ${ }_{3}^{3}$ \& ${ }_{3}^{2}$ \& ${ }_{6}^{6}$ \& ${ }_{4}^{3}$ \& ${ }_{4}^{3}$ \& ${ }_{8}^{6}$ \& ${ }_{6}^{4}$ \& 4 \& \& ${ }_{6}^{4}$ \& 4 \& ${ }_{8}^{6}$ \& ${ }_{6}^{4}$ \& ${ }_{4}^{4}$ \& ${ }_{8}^{6}$ \& ${ }_{6}^{4}$ \& $\stackrel{4}{4}$

\hline \& $$
\begin{aligned}
& \left(\begin{array}{l}
(3) \\
(3) \\
\text { Low }
\end{array} .\right.
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& { }^{\left(\begin{array}{l}
3 \\
(3)
\end{array}\right.} 8 \\
& \text { Low }
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
(\stackrel{i}{3}) \\
(3) \\
\text { Low } \\
\text { Low }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\stackrel{(3)}{(3)}_{(3)}^{5} \\
\text { Low }
\end{gathered}
$$

\] \& \[

\stackrel{(3)}{(3)}_{{ }_{Low}}{ }^{2}

\] \& \[

$$
\begin{gathered}
(3) \\
{ }_{(3)}^{(3)} \\
\text { Low }^{8}
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
10 \\
\cdots-\quad 8 \\
\text { Medium }
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
5 \\
\cdots--\overline{8} \\
\text { Medium }
\end{array}
$$

\] \& \[

$$
\begin{array}{|c}
r^{5} \\
8 \\
\text { Medium }
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
10 \\
\cdots-\quad 7 \\
\text { Medium }
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
5 \\
\cdots \\
\hdashline-\quad . \quad{ }^{7}
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\cdots 5 \\
\mathbf{B}_{5} \\
\text { Medium }
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
10 \\
\hdashline-\quad-\quad \\
\text { Medium }
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
5 \\
\cdots--\overline{7} \\
\text { Medium }
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\cdots 5 \\
M e d i u m
\end{array}
$$

\] \& (4) Medium \& \[

$$
\begin{gathered}
\text { (4) } \\
\text { (4) } \\
\text { Medium }
\end{gathered}
$$
\] \& (4)

(4) Medium ${ }^{7}$

\hline Bridges:
Loading
Minimum vertical cearance...-..........- \& ${ }_{13}{ }_{15}$ \& ${ }_{\text {H15 }}^{13}$ \& H15
13 \& ${ }_{13}{ }_{13}$ \& ${ }_{\text {H15 }}$ \& ${ }_{13}{ }_{13}$ \& $H 15$
13 \& $H 15$
13 \& $H 15$
13 \& H_{13}
13 \& $\xrightarrow{H 15} 13$ \& ${ }_{\text {H15 }}^{13}$ \& $H 15$

13 \& | $H 15$ |
| :---: |
| 13 | \& $H 15$

13 \& $\underset{\mathrm{H} 15}{ }$ \& $\mathrm{H15}$
13 \& H 15
13

\hline
\end{tabular}

${ }_{2}$ As determined prior to the passage of the Federal-Aid Highway Act of 1956 . ${ }^{7}$ For highways carrying 500 or more vehicles per day, a good road surface condition is required; control of access is 9 feet may be aceepted as tolerable for volumes under 800 vehicles per day with a small percentage \quad not required.

[^3]'able 4.-Average daily capacities of two-lane highways with 12 -foot traffic lanes and constructed to a given design speed ${ }^{1}$

Percentage of highway with passing sight distance ${ }^{2}$ of		Valley or flat terrain with operating speed, 50-55 m. p. h.; design speed, $70 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.	Rolling terrain with operating speed, 45-50 m. p. h.; design speed, $60 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.	Mountainous terrain	
1,500 feet	1,000 feet			Interstate System with operating speed 45-50 m. p. h.; design speed, $60 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.	Other than Interstate System with operating speed, 40-45 m. p. h.; design speed, $60 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.
$\begin{array}{r} 100 \\ 80 \\ 60 \end{array}$	100 90 80	$\begin{array}{r} V . p . d . \\ 4,850 \\ 4,450 \\ 3,950 \end{array}$	$\begin{gathered} V . p, d . \\ 6,500 \\ 5,850 \\ 5,050 \end{gathered}$	$\begin{gathered} V, p, d . \\ 5,500 \\ 5,000 \\ 4,300 \end{gathered}$	$\begin{array}{r} V . p . d . \\ 6,550 \\ 6,000 \\ 5,300 \end{array}$
40 20 0	70 60 50	$\begin{aligned} & 3,350 \\ & 2,400 \\ & 1,300 \end{aligned}$	$\begin{aligned} & 4,200 \\ & 3,450 \\ & 2,600 \end{aligned}$	$\begin{aligned} & 3,600 \\ & 2,900 \\ & 2,200 \end{aligned}$	$\begin{aligned} & 4,600 \\ & 3,850 \\ & 3,050 \end{aligned}$

[^4]greed upon, it was relatively easy to esblish the design requirements for new conruction and tolerable conditions, as shown tables 2 and 3 , from the information now intained in the AASHO policy on Geometric esign of Rural Highways (1) and to prepare ble 4 from the results of traffic operation and tpacity studies conducted during the past :veral years.
Table 4 shows the average daily traffic olumes that can be accommodated by a ro-lane highway constructed to a given ssign speed with various percentages of the ghway having sight distances in excess of 500 and 1,000 feet. The values in this table e for the following average conditions oplicable in West Virginia:

1. The 30 th highest hourly volume during le year is 12 percent of average daily traffic r that year.
2. During the 30th highest hourly volume a year, trucks with dual tires account for percent of the traffic.
3. In a capacity sense, the average dualtired truck is equivalent to 2 passenger cars in valley or level terrain, to 4 passenger cars in rolling terrain, and to 8 passenger cars in mountainous terrain.
For highways where these average conditions do not exist or are not expected to be present during the year for which the highway is designed, appropriate corrections must be made in the capacities by the application of factors similar to those included in the discussion on capacities of existing highways.

Design Speeds of Existing Highways

If the AASHO definition of design speed were applied to existing highways with profiles and alinements that were constructed prior to the time that this term came into common usage, it would be found that in many cases the average running speed of traffic would be several miles per hour above the design speed. Likewise, recent studies have shown that highways constructed to modern
able 5.-Average daily capacities of two-lane highways located on level terrain and carrying 5-percent truck traffic during the 30th highest hour ${ }^{1}$

Operating speed	Percentage of highway with passing sight distance of -		A verage highway speed of-					
	1,500 feet	$\begin{aligned} & 800 \text { to } 1,000 \\ & \text { feet } \end{aligned}$. $70 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.	$60 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.	$55 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.	$50 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.	$45 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.	$40 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.
M.p.h.	100	100	$V \cdot p . d$.	V. p. ${ }_{4}$. 7 .	$V . p . d$.			
50-55	80	92	4,450	4,150	3,750			
50-55	60	84	3, 950	3, 450	3, 000			
50-55	40	76	3,350	2,700	2, 250			
50-55	20	68	2,400	1,800	1,350			
50-55	0	60	1,300	900	550			
45-50	100	100	7,100	7,100	6, 600	5, 650	---------	
45-50	80	90	6, 800	6,400	5,750	5, 050	---------	
$45-50$	60	80	6, 400	5,550	4,800	4,000	---------	-.--------
45-50	40	70	5,750	4, 600	3,900	2, 800	----------	----------
45-50	20	60	4,900	3, 750	2, 800	2,000	---.------	
45-50	0	50	3, 800	2, 800	2,000	1,250	------------	-----------
40-45	100	100	8,450	8,450	8.050	7,450	6,550	
40-45	80	87	8,250	7,700	7. 300	6,700	5, 800	-------------
40-45	60	76	7,900	6, 800	6,450	5, 700	4,850	------------
$40-45$	40	64	7,350	5,900	5, 300	4,600	3,700	
40-45	20	52	6,650	4,950	4,100	3, 200	2,200	
40-45	0	40	5,850	3,950	2, 700	1,950	1,250	
35-40	100	100	9,900	9,900	9,900	9, 600	9, 100	7,900
35-40	80	85	9, 750	9,350	9, 000	8, 750	8, 200	7,150
35-40	60	72	9, 400	8,650	8, 100	7,950	7,250	6,000
35-40	40	58	8,950	8,000	7,150	6,950	6,150	4,700
35-40	20	44	8,400	7,350	6, 300	5, 850	4,500	3, 100
35-40	0	30	7,650	6,600	5,350	3, 850	2,450	1,500

${ }^{1}$ A truck factor of 2.0 for West Virginia; the normal factor is 2.5 . The 30th highest hourly volume is 12 percent of ADT.
standards may provide radically different operating conditions even though their traffic volumes and design speeds are identical. Average speeds, for example, will be much higher on a highway with few 5 -degree curves and a lot of tangent alinement than on a highway with many 5 -degree curves and little tangent alinement. This is because aboveminimum design values are utilized where feasible and drivers do vary their speeds to a considerable extent with the immediate geometric conditions rather than adopting one uniform speed for the entire length of a highway.

Conversely, for a given operating speed, a highway with few curves and mostly tangent alinement will accommodate higher volumes of traffic than a similar highway with many curves of the same degree and less tangent alinement. In relating the operating speed of a highway to its oapacity, it is therefore necessary to determine the average highway speed, especially for existing highways.

The introduction of the term "average highway speed," which is in effeet the average maximum safe speed or the operating speed for a passenger car over a section of highway during extremely low traffic densities, is an approach which has not previously been employed in relating alinement and profile to capacities. It is, however, an approach which must be employed to obtain reasonable accuracy in capacity determinations, especially for existing highways.

The average highway speed of an existing highway may be determined by weighting the possible speeds of traffic on the individual sections during low traffio flows by the length of the sections. The possible speeds for various horizontal curves and stopping sight distance conditions may be determined by use of the AASHO tables (1) relating these features to the design speed.

When preparing plans for a highway, the designer should base the geometric features on an assumed design speed over a substantial length of highway to obtain a balanced design. Invariably there are sections where the designer utilizes values that are adequate for higher speeds than the design speed which he has assumed. The lower the design speed, the greater is the likelihood of the occurrence of such sections. As a result, the high-speed driver can travel over the section during low traffic densities at an average speed which exceeds the assumed design speed. This speed is the average highway speed and is equivalent to the low-volume operating speed.

Figures 1 and 2 show how the operating speeds on a two-lane highway vary with the average highway speeds, the percentage of highways having 1,500 -foot passing sight distance, and the traffic volumes. The average daily traffic volumes in these charts are based on highways located in essentially level terrain, with 12 -foot traffic lanes, carrying 5 -percent dual-tired vehicles with a passengercar equivalent of 2 , and a 30 th highest hourly volume during the year of 12 percent of the average daily traffic. The charts were prepared for the Tennessee Programing Study from the information contained in table 5

Figure 1.-Effect of traffic volumes and available passing sight distances on operating speeds with average highway speeds of 60 and miles per hour.
which was prepared for the 1953-54 West Virginia Needs Study. Table 5 in turn was prepared from the results of extensive highway capacity studies conducted by the Bureau of Public Roads in cooperation with the various State highway departments and includes the results reported in the Highway Capacity Manual (2) supplemented by more recent investigations.
In figures 1 and 2 there are curves representing roadways with sight distances that are continuously in excess of 1,500 feet to those which have no sections with 1,500 -foot sight distance. The relation between operating speed and traffic volume as shown by the curves is applicable, however, only when the
percentage of the highway not having a 1,500 foot sight distance is fairly evenly distributed between the limits of 1,500 feet and the stopping sight distance for the design speed. This is the more usual condition.

It must be pointed out that most of the data on which figures 1 and 2 are based were obtained by studies conducted during traffic volumes within the lower three-quarters of the range (below 12,000 ADT). Studies conducted on two-lane highways during capacity volumes represent principally level tangent sections well removed from sharp horizontal or vertical curves. For this reason, all except the top curves (100 percent with with 1,500 -foot sight distance) are shown as
broken lines for traffic volumes above 11,0 vehicles per day. There is still considerak question as to whether all the curves for t same average highway speed meet at a col mon point on the right, or whether the possik capacity and the speed at this capacity a slightly lower for the highways with t poorer alinement than for those with a co tinuous sight distance in excess of $1,500 \mathrm{fet}$ This, however, is not too important a co sideration because the practical capacities two-lane highways are well within the ran for which reliable data are available.

The charts may be used either to determis the operating speed for a given traffic volun or the traffic volume which the highway w

gure 2.-Effect of traffic volumes and available passing sight distances on operating speeds with average highway speeds of 35, 40, 45, 50 , and 55 miles per hour.
commodate at a given operating speed. hen it is desired to determine the capacity a given operating speed for lane widths her than 12 feet, for 30 th highest hourly fetors other than 12 percent, for truck perntages other than 5 percent, or for truck (uivalents other than 2, the following
procedure must be applied to adjust the capacity volumes to the prevailing or estimated future conditions:

1. For 11 -foot lanes multiply the volumes by 0.86 , and for 10 -foot lanes multiply by 0.77 .
2. When the 30th-highest-hour factor is
other than 12 percent, multiply the volumes by 12 /actual percentage.
3. When there is other than 5 percent trucks during the peak hour or the truck equivalent is greater than 2 , as it will be on grades and in rolling or mountainous terrain, multiply the volumes by-

Figure 3.-Operating speeds on four-lane highways in the direction of heavier travel for various average highway speeds.

$$
\frac{105}{100-\mathrm{P}+\mathrm{PT}}
$$

Where:
$\mathrm{P}=$ The percentage of trucks.
$\mathrm{T}=$ The truck equivalent in terms of passenger cars.

The operating speed for a given traffic volume, when conditions other than those used for figures 1 and 2 are applicable, may be determined by employing the reciprocal of the correction factors shown in items 1 through 3 to the given traffic volume before entering in the chart.

Tables $\mathrm{A}-\mathrm{H}$ are included at the close of this article on pages 38-39 for the conditions most prevalent on two-lane highways in West Virginia. The number of charts or tables that can be prepared for other combinations of the many variable conditions is almost un-
limited. A similar set of tables may be prepared for the conditions prevailing within any State or area.

Operating and Average Speeds on Four-Lane Divided Highways

Figure 3 shows the relation between operating speeds, average highway speeds, and traffic volumes on four-lane divided rural highways free from the influence of intersections. The lowest curve represents the minimum speed at which traffic must flow to attain a given traffic volume. For example, traffic must be traveling at least 10 miles per hour for a four-lane highway to accommodate the 30th highest hourly volume when the average daily traffic is 25,000 vehicles.

The other solid lines in figure 3 represent the normal operating speeds during various traffic volumes for different average highway speeds. Any point representing the speed-
volume relation must fall between the lov curve and the line representing the avera highway speed.
The dashed-lines show the effect of enforced speed limit on the speed-volume re tion. A speed limit has an effect on operating speed only when it is lower than 1 highway speed. Also, it has an effect or when the traffic volume is below the volu at which the dashed-line (speed limit) int sects the solid line corresponding to the his way speed. At higher volumes, the solid lin show the normal speed-volume relation, sir at these volumes the speeds are governed the traffic density rather than by the spt limits.

Figure 4 is similar to figure 3 except t average speed rather than operating speed related to the traffic volume. Figure 3 a shows the daily volumes based on a 30 highest-hour factor of 12 percent and inclu

Figure 4.-Average speeds on four-lane highways in the direction of heavier travelfor various average highway speeds.
; percent trucks with a passenger-car equivaent of 2, whereas figure 4 shows hourly volmes and includes no trucks.
These two charts represent average condiions found on modern highways throughout he United States. In some areas, such as he central States where the terrain is level ind speeds are higher than for the country as 4 whole, the speeds as shown by these charts vill be somewhat low especially for the low raffic volumes. For certain other areas they nay be high, but in general any difference will not be great and the relative speeds for the lifferent conditions will be accurate.
The traffic volumes or capacities at a given perating speed or at a given average speed re shown in terms of numbers of vehicles in wo 12 -foot lanes for the one direction of ravel. Daily and hourly volumes or capacties for various percentages of trucks and a ange of truck factors may be determined by tandard procedures.

The results for multilane highways as shown by figures 3 and 4 explain to a large extent the aany variations in the speed-volume relation ound by other investigators. Sometimes they lmave found that an increase in the traffic volerame or density results in only a very slight or o drop in speeds. This would be the case as d hown by the dashed-lines in figures 3 and 4 rel ren a speed limit or factors other than the traffic density are exerting a controlling influitnce on vehicle speeds.
on The results of still other investigators show duy. curvilinear relation with the speeds dropping inte t an increasing rate as the traffic density iigiacreases. This would occur as the traffic vollir mes exceed the range within which the speed sin mits are effective and especially when the dolumes approach possible capacities. At sper olumes approaching possible capacities on aultilane facilities (above 1,500 vehicles per thour per lane), the safety factor for capacity, red s indicated by the distance between the upper 2 nd lower curves of figures 3 and 4, decreases 30iapidly with the result that a slow driver or fudome other minor condition interrupting the ormal flow of traffic can cause a sudden lowdown of all vehicles with speeds decreasig from a point on one of the higher curves f figures 3 and 4 to a point on the bottom urve, or to any intermediate point. The loser the possible capacity is approached, the reater is the possibility of such an occurrence.
The most baffling results obtained from peed-volume investigations are those which how an increase in speed with an increase in olume. Generally this occurs when a study is started during off-peak hours with light raffic and is continued through the peak or ush-hour volumes in the afternoon. As the raffic volume increases, the percentage of peat drivers in a hurry to get home increases the result that speeds show little or no ecline and oftentimes increase temporarily ith the traffic volume. When capacity olumes are reached or closely approached here is then an abnormal decrease in speeds roducing the curvilinear relation between peed and traffic volume. Studies of this type - not show the true effect of increased lolume or speeds, since there is a marked
change in the character of traffic from off-peak to peak periods. The true effect of volume on speeds as shown in figures 3 and 4 can be obtained by simultaneous studies at different points where the geometric features of the highway are identical but the traffic volumes are different.

Information Needed for Capacity Analysis

An engineering analysis of the ability of a highway to accommodate present or estimated future traffic volumes, in accordance with prescribed standards of service in terms of operating speeds, requires the following information:

1. The type of terrain through which the highway is located.
2. The average highway speed and the frequency of occurrence of sharp curves that cause abnormally low speeds.
3. The percentage of the highway on which the passing sight distance exceeds 1,500 feet. On highways for which an operating speed of 40 miles per hour or less has been specified, the percentage of highway with an 800- to 1,000 -foot sight distance is required whenever there is a low percentage of the 1,500 -foot sight distance.
4. The average truck factor and the truck factor on all long or steep grades.
5. Cross-section items such as shoulder and surface type, width, and condition.
These five items were determined for all highways in West Virginia expected to carry annual volumes in excess of 1,800 vehicles per day within the next 20 years.

Type of terrain

Generally the alinement of an existing highway will be an indication of the surrounding terrain. Whether standards for level, rolling, or mountainous terrain should be applied to an existing road is largely a matter of engineering judgment. Just because the existing highway has many sharp curves and steep grades, however, does not necessarily mean that a much better alinement and profile could not be obtained in the same general vicinity at a reasonable cost with modern equipment and methods. A large part of West Virginia has terrain through which it is extremely difficult and costly to build highspeed highways of modern design.

Average highway speed

The average highway speed of each section of highway was determined by driving a passenger car over the highway at the maximum safe speed during extremely low traffic volumes to obtain a profile of the speed based on the geometric features of the highway. The safe speed was governed by sight distance, curvature, and possible marginal interferences. All speed zones and speed limits were observed. Long tangent sections of highway were recorded as having a 60 -miles-per-hour highway speed even though the test car was not necessarily operated at that speed. Such sections are, however, comparatively rare in West Virginia.

This method of determining the average highway speed and obtaining a \log of the
sharp curves and other speed restrictions was employed because sufficiently detailed information was not available from any other source. Furthermore, this method as it was employed was sufficiently accurate and probably resulted in a more realistic appraisal than could have been obtained from detailed plans had they been available.

Passing sight distance

A second car with an accurate odometer was driven over each highway at a slow speed (about $30 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.) to determine the length and location of all sections with sight distances in excess of 1,000 feet and 1,500 feet, in lieu of more accurate and detailed sight distance information. The driver informed the passenger, who acted as the recorder, each time there was a change in the sight distance from some value below 1,000 fect or 1,500 feet to a value above 1,000 or 1,500 feet. He also informed the recorder each time the sight distance again became less than either of these values.

The recorder noted the odometer readings at these locations and at control points such as crossroads, city limits, and major structures. It was possible to check the accuracy of the driver's estimate by this procedure as each reading was recorded so that a sufficiently accurate estimate was obtained of the percentage of the highway with a sight distance in excess of 1,000 feet and the percentage in excess of 1,500 feet.

Average truck factor

Commercial vehicles with dual tires reduce the capacity of a highway in terms of vehicles per hour. In level terrain where commercial vehicles can maintain speeds that equal or approach the speeds of passenger cars, it has been found that the average dual-tired vehicle is equivalent, in a capacity sense, to 2 passenger cars on multilane highways and to 2.5 passenger cars on two-lane highways. The number of passenger cars that each dual-tired vehicle represents is termed the "truck equivalent" or the "truck factor."
The results of highway capacity studies have shown that the truck equivalent on long or steep grades increases with an increase in the difference between the normal speeds of passenger cars and the speeds of trucks. They have also shown that the truck equivalent changes very little, if at all, with a change in the percentage of trucks in the total traffic stream. ${ }^{3}$
Truck equivalents are normally determined by obtaining detailed information on the speeds and headways of vehicles during various traffic volumes on highways with different alinements and profiles. An average truck factor is obtained for dual-tired vehicles under each condition. If the study is of sufficient magnitude, it is possible to obtain

[^5]

Figure 5.-Two distributions of normal passenger-car speeds used in determining truck factors (passenger-car equivalents).
a truck factor for each type of dual-tired vehicle classified by speed groups

The results of these studies have shown that truck factors can also be calculated with a high degree of accuracy from the separate speed distributions of passenger cars and trucks recorded during light volumes when vehicles can travel at their normal speeds. The criterion used is the relative number of passings that would be performed per mile of highway if each vehicle continued at its normal speed for the conditions under consideration. That the results from such an analysis agree with those obtained by the more painstaking methods is not surprising. It is the difference between truck speeds and passenger-car speeds on grades that causes trucks to reduce the capacity of a highway. The greater the speed difference, the greater is the reduction in capacity with a corresponding increase in the truck factor.

Table 6 shows how the truck factor varies with the truck speed for two different pas-senger-car speed distributions as shown in figure 5. The higher the passenger-car speeds, the higher are the truck equivalents. The factors in the right-hand column of table 6 are the rounded values used for the West Virginia study and from which figure 6 was plotted. The truck equivalent can be determined for any dual-tired vehicle by know-

Table 6.-Truck factor for various truck speeds as related to normal passenger-car speeds

Truck speed (miles per hour)	Truck factor-passenger-car equivalents		
	For average passengercar speed of $48.5 \mathrm{~m} . \mathrm{p} . \mathrm{h}^{1}$	For average passengercar speed of 42.5 m. h. p. ${ }^{1}$	Adopted for use in West Virginia study
40	1.8	1.5	2
35	3.0	2.7	3
30	5. 0	4.9	5
25	8.6	7.6	8
20	13.9	11.7	13
15	22.9	18.7	20
10	40.5	32.5	35
5	94.5	75.0	80

${ }^{1}$ Distributions of passenger-car speeds are shown in figure 5.
ing its average speed under any highway condition such as a steep or long grade The average truck factor can also be determined for any location or section of highway by knowing the average speed for all trucks if the passenger-car speeds are within the limits of those shown in figure 5 . In this case, there will be a slight error if there is a wide range in the truck speeds because the curve of figure 6 is not a straight line. The error will be slight, however, for most conditions.

Control Truck Used for Obtaining Average Truck Speed

In flat or rolling terrain it is possible to conduct sufficient speed studies to determine the speeds of trucks for the typical and unusual profiles that are encountered on a

Figure 6.-Truck factors (passenger-car equivalents) for average truck speeds ranging from 5 to 40 miles per hour.

Figure 7.-Average speeds of control truck on grades ranging from 3 to 7 percent.
dighway system. In mountainous terrain, owever, this approaches an impossible task. This is especially true for West Virginia. 1. unique method was therefore employed o obtain the average truck factor for each ection of highway and for each grade or ombination of grades on all roads in West Tirginia likely to carry more than 1,800 ehicles per day during the next 20 years.
The method involved the selection of a ypical truck with a typical load. This truck ras driven over the highway system at its aaximum safe speed consistent with normal ruck operation to obtain a continuous speed rofile. The speed of the truck and its dometer reading were recorded at the bottom nd top of each grade, at crossroads or other ontrol points, each time the gears were hifted, and each time there was a change of i miles per hour in the speed of the truck. When the truck reached a crawl speed on ong grades, the crawl speed was recorded to he nearest mile per hour. The truck was perated in both directions on the more mportant roads to get a speed profile for ach direction of travel.

The control truck and its load were selected to obtain a weight-power ratio of 325 pounds per horsepower so that its effect on highway capacity would be the same as the average dual-tired vehicle. Its gross load was 40,000 pounds which is considerably lighter than the heaviest group of vehicles recorded during recent loadometer surveys, but also heavier than the average dual-tired vehicle including those with and without payloads. Since the curve in figure 6 is not a straight line, the possible speed of the control truck on an upgrade was purposely recorded somewhat lower than the average for all dual-tired trucks on the same grade. This was necessary so that the truck factor obtained for the speed of the control truck from figure 6 would equal the average factor for all trucks.

As an example, the average truck factor for speeds of 35 and 15 miles per hour is 11.5 or $(3+20) \div 2$. A truck factor of 11.5 is represented by a speed of 21 miles per hour rather than 25 miles per hour - the average of 35 and 15.

Soon after placing the control truck in operation, its speeds on hills with known gra-
dients were checked with the performance curves for vehicles under controlled test conditions and found to be in agreement. Trial runs on the same grade were also remarkably consistent.

Speed data for trucks on grades, recorded at spot locations and also over the entire length of long grades by the stopwatch method, showed that the average truck factor was somewhat lower than the truck factor obtained by using the speed of the control truck. The difference varied from 10 to 20 percent. Since this was on the conservative side and would make a difference of less than 5 percent when used for estimating the capacities of existing roads, no adjustment or correction was made. Had it been desired to more accurately duplicate the average performance of present-day commercial vehicles as found in West Virginia, the load on the control truck should have been reduced about 5,000 pounds.

The average speeds of the control truck on 3 to 7 percent uniform grades up to 6 miles long are shown in figure 7 and table 7. Figure 8 shows the speed of the truck at any point on these grades. The speeds as shown by the solid lines are based on the assumption that the truck enters the grade at 41 miles per hour.

These curves may also be used to determine the speed reduction due to any length and steepness of grade for other approach speeds. For example, if the approach speed is 40 miles per hour (initial distance 85 feet), the speed at the top of a 4 -percent grade 1,000 feet long will be 26 miles per hour (final distance 1,085 feet). Similarly, if this same grade is approached at a speed of 30 miles per hour, the speed at the top will be 17 miles per hour.

The dashed-curves emanating from 9 miles per hour show the maximum performance of vehicles when the approach speed is so low that the vehicle must accelerate to eventually reach the sustained speed. These curves show that it takes exceedingly long distances to accelerate on grades when the approach speed is below that of the sustained speed. To change the speed on a 2 -percent grade from 20 miles per hour to the sustained speed of 21.5 miles per hour, an increase of only 1.5 miles per hour, the vehicle would have to travel 1,050 feet.

If needed, similar curves can be prepared for trucks with other weight-power ratios or for other entering speeds from the results of motor-vehicle performance studies conducted by the Bureau of Public Roads and others (3-6). This was not necessary for the West Virginia needs study because the truck was operated over all routes under consideration.

Table 7.-Average speed of typical truck entering grades at a-speed of 40 miles per hour

Gradient	A verage speeds on grades extending-												Sustained speed on grade	Distance required to reach sustained speed
	0.1 mile	0.2 mile	0.4 mile	0.6 mile	0.8 mile	1.0 mile	1.5 miles	2.0 miles	3.0 miles	4.0 miles	5.0 miles	6.0 miles		
Pct.	M. p. h.	M. p. h.	M. p.h.	M. p. y	M p. h .	M. p. h.								
3----				24.6	21.9	20.4	18.7	${ }_{17.9}$	${ }_{17.3}$	${ }_{16.9}$				Miles
	36.1	31.7	23.4	18.5	16.6	15.7	14.6	14.1	13.6	13.4	13.3	13.2	12.8	. 60
	35. 2	29.3	18.2	14.9	13.7	13.1	12.3	11.9	11.6	11.5	11.4	11.3	11.0	. 37
	34.0	25.8	14.5	12.4	11.5	11.0	10.5	10.2	10.0	9.8	9.8	9.7	9.5	. 28
	32.6	21.4	11.8	10.2	9.5	9.2	8.8	8.5	8.4	8.3	8.2	8.2	8.0	. 24

Figure 8.-Effect of length of grade on the speed of the control truck.

If the grades had been uniform and their length and gradient known, it would have been possible to determine the average truck factor by applying the data from figure 7 to figure 6. Driving the truck over the routes would have been unnecessary. This method was employed in Kentucky and Tennessee. In West Virginia, however, the needed information for the grades was not available. Furthermore, in this State there are few uniform grades. Practically all have multiple gradients for which it is possible, but rather difficult and time-consuming, to calculate truck speeds accurately. One such example is shown in figure 9. Also shown is the speed profile recorded for the control truck.

Truck Climbing Lanes Increase Capacity

Truck climbing lanes on the uphill side of long steep grades, as shown in figure 10 , provide a means for improving the capacity of two-lane roads through rough or mountainous terrain. It is on a long steep grade that the greatest difference occurs between the normal speed of passenger cars and the normal speed of trucks. The need for adequate passing opportunities is therefore greatest on the long steep grades, whereas the passing opportunities are generally less than on the level sections of a two-lane highway. This results in higher truck factors and lower capacities for uphill sections of a two-lane highway than for the level sections.

Where truck climbing lanes are provided, the truck factor becomes zero and the capacity of the normal section of the two-lane highway is the same as though there were no trucks. Under certain conditions, therefore, truck climbing lanes will increase the practical capacity of an entire two-lane highway to a value higher than that for the same alinement with no grades. This is because the provision of a climbing lane reduces the average truck factor and increases the percentage of the highway on which passing maneuvers may be performed.
Climbing lanes will also increase the capacity of multilane highways. In fact, an added lane for each direction of travel over
the entire length of a multilane highway may often be avoided by providing an added lane on the uphill side of long or steep grades.

The quantitative effect that trucks have on the capacity of multilane highways with long steep grades is not as well known, however, as for two-lane highways. For example, it is entirely possible that a few heavy trucks on a long steep grade of a multilane highway might have nearly as great an effect as a much larger number. The factors used at present are average values determined for less than 20 percent dual-tired vehicles-usually 5 to 10 percent.

Application of Uphill Truck Lanes

The benefit to traffic by providing an uphill truck lane at a specific location depends upon the following factors: (1) traffic volume, (2) percentage of trucks, (3) length and steepness of grade, and (4) availability of passing sight distance.

The information in table 8 offers some guidance for the application of climbing lanes. The fourth column in this table, for example, shows the lengths of grade for an average truck speed of 34 miles per hour or a truck factor of 3.0. At this average speed, even

Figure 9.-Speed profile of the control truck.

Figure 10.-Truck climbing lane on U. S. Route 40, south of Middletown, Md.

Table 8.-Speed characteristics of control truck on upgrades, when entering grade from level section at 40 miles per hour

Gradient	Crawl speed ${ }^{\text {: }}$		Distance upgrade for an average speed of -		
	$\begin{aligned} & \text { Veloc- } \\ & \text { ity } \end{aligned}$	$\left\|\begin{array}{c} \text { Dis- } \\ \text { tance } \\ \text { upgrade } \end{array}\right\|$	$\left\lvert\, \begin{gathered} 34 \mathrm{~m} . \text { p.b. } \\ \text { or a } \\ \text { truck } \\ \text { factor } \\ \text { of } 3.0 \end{gathered}\right.$	$\begin{array}{\|c\|} \hline 27 \text { m.p.h. } \\ \text { or a } \\ \text { truck } \\ \text { factor } \\ \text { of } 6.5 \end{array}$	19 m.p.h or a truck of 13.8
Pct.	M.p.h.	Ft.	Ft.	Ft.	
,	16.0	4,000	1,100	2,000	6, 600
	12.8	2,600	800	1,500	3,000
5	11.0	1,800	600	1,200	2,000
	9.5	1,500	500	1,000	1,500
7	8.0	1,300	400	800	1,200

${ }^{1}$ Speed which truck can maintain indefinitely,
though about half of the trucks will be traveling at somewhat lower speeds, the speeds of passenger cars will not be affected sufficiently to greatly inconvenience the drivers. At traffic volumes approaching practical capacities for level sections of two-lane highways, few passenger cars will overtake a truck on grades that are shorter than those shown in column 4. For those that do, the necessary reduction in speed and the lost time in reaching the top of the grade when the passing sight distance is restricted will not be appreciably greater than commonly necessary due to oncoming traffic on straight level sections. Truck climbing lanes cannot be justified, therefore, on grades shorter than those shown in the fourth column of table 8 .

The fifth and sixth columns of table 8 show lengths of grade on which there is the same relative need for a truck climbing lane. With - a given traffic volume, for example, there is 4 the same need for a climbing lane on a 3-percent grade 2,000 feet long as on a 7 -percent ${ }_{2}^{2}$ grade 800 feet long.

The capacities of two-lane highways on grades with and without truck climbing lanes are shown in table 9 for the conditions applicable to West Virginia. The various groups shown for the length of grade in the second column are purely arbitrary with the exception of the shortest length shown for each gradient. The grades could have been divided into a larger or smaller number of length groups with corresponding changes in the average annual traffic volumes. The number of groups that have been used are believed to be consistent with the accuracy justified by the analyzed data.

Table 9 is based on the assumption that each climbing lane will be continuous from a point near the bottom of the grade to a point beyond the top of the grade where the sight distance becomes unrestricted and truck speeds again approach those of passenger cars. All steep grades of equal gradient longer than 4,000 feet have the same capacities. Prior to traveling 4,000 feet upgrade, most trucks will have reached their crawl speeds.

For certain traffic and terrain conditions on exceedingly long grades, the use of passing bays may be an adequate and a more feasible solution than a continuous climbing lane (5). With passing bays, the capacity of a two-lane road would be greater than without the passing bays and, for certain conditions, might equal
the capacities shown in table 9 for the two-lane roads with a truck lane. The maximum capacities with continuous truck lanes are actually higher than most of the values in table 9. It was assumed that the capacity on a grade with a truck lane could not exceed the capacity of a two-lane level section. The capacity with a truck lane falls below the capacity of a level section only on the long grades over 5 percent where downhill speeds of trucks traveling in the lower gears affect capacities.

Application to Capacity Determinations

The tables and charts that have been presented are the basic information needed for capacity determinations in connection with the West Virginia needs studies. From this information, an almost unlimited number of special tables and charts can be prepared for specific conditions in either West Virginia or other States. The data can also be applied in many different ways as will be explained by the applications made for the West Virginia, Kentucky, and Tennessee studies.

In order to determine the highway needs in West Virginia, it was necessary to have a vast amount of information concerning the roads and the traffic using them. For the capacity determination with which this report is concerned, only the factors that have been previously discussed were needed. Their effect on the capacities of two-lane roads can be determined from tables $\mathbf{1}, 5$, and 9 , and figure 6. Figure 7 was also needed for the Kentucky and Tennessee studies since a control truck was not used to determine the truck factors in these States.

It is important that the conditions be similar over a length of highway for which a capacity determination is made. Section limits, for this reason, were usually defined by
urban limits; or by a change in the traffic volume, surface width, average highway speed, or type of terrain; or by a marked change in the percentage of highway with a 1,500 -foot passing sight distance. In addition, a county line was the end of one section and the beginning of another.

Application to West Virginia highways

Five typical sections analyzed during the West Virginia studies will illustrate the procedures used to apply the capacity information. The basic information and the resulting calculations for each of these sections are shown in table 10.
Section 1 as shown in table 10 is located on U. S. Route 60 about 20 miles west of Charleston in Putnam County. It is 6.4 miles long with a 26 -foot pavement in rolling terrain. It has an excellent passing distance as compared with most West Virginia roads, since 59 percent of its length has a sight distance in excess of 1,500 feet. The average highway speed is 65 miles per hour, and the generally flat profile results in a truck equivalent of only 2 . The average daily traffic volume was 5,500 in 1955 with a design-hour factor of 12 percent of the ADT having 7 percent trucks.

The capacity of this section is 5,800 vehicles daily at an operating speed of $45-50$ miles per hour, or 7,150 vehicles daily at a tolerable operating speed of $40-45$ miles per hour. As U. S. Route 60 is one of the most important highways in the State, it is desirable to provide conditions conducive to a high operating speed.

For an operating speed of $45-50$ miles per hour the existing traffic volume is practically equal to the capacity of the section. As it would be impractical to attempt to increase the capacity of the existing road by improving passing sight distances, the only recourse to accommodate expected future traffic volumes is to add additional lanes by constructing

Table 9.-Capacities of two-lane highways on grades carrying 5-percent truck traffic, based on a 30th highest hour of 12 percent of the average annual traffic volume

Gradient	Length of grade	Average annual traffic volumes							
		Average highway speed, $70 \mathrm{~m} . \mathrm{p} . \mathrm{h} . ;$ operating speed, $50-55 \mathrm{~m}$. p. h.		Average highway speed, $60-70 \mathrm{~m} . \mathrm{p}$. 50 m . p. h.		Average highway speed, $60-70 \mathrm{~m}$, p . $45-50 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.		A verage highway speed, $50-70 \mathrm{~m} . \mathrm{p}$. $40-55 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.	
		$\begin{gathered} \text { Without } \\ \text { truck } \\ \text { lane } \end{gathered}$	$\begin{gathered} \text { With } \\ \text { truck } \\ \text { truek } \\ \text { lane } \end{gathered}$	Without truck lane	$\begin{gathered} \text { With } \\ \text { Hruck } \\ \text { trane } \end{gathered}$	$\begin{gathered} \text { Without } \\ \text { truck } \\ \text { lane } \end{gathered}$	$\begin{gathered} \text { With } \\ \text { truck } \\ \text { lane } \end{gathered}$	$\begin{gathered} \text { Without } \\ \text { truck } \\ \text { lane } \end{gathered}$	$\begin{gathered} \text { With } \\ \text { truck } \\ \text { lane } \end{gathered}$
$\begin{gathered} P c t \\ 3 \end{gathered}$		$\begin{gathered} v_{i} p \cdot d . \\ 4,300 \\ 3,850 \\ 3,500 \end{gathered}$	$\begin{aligned} & v_{i}, p_{i} . d_{0} \\ & 4,700 \\ & 4,700 \end{aligned}$	$\begin{aligned} & v_{i} p . d . \\ & 4.850 \\ & 4.300 \\ & 3,800 \end{aligned}$	$\begin{aligned} & V . p . d . d . \\ & \begin{array}{c} 5,500 \\ 5,500 \\ 5,500 \end{array} \end{aligned}$	$\begin{aligned} & V_{v} \cdot p . d . \\ & \begin{array}{l} 5.150 \\ 4,550 \\ 4,050 \end{array} \\ & 4,050 \end{aligned}$	$\begin{aligned} & V . p . d . \\ & \begin{array}{l} 6,0_{0} \\ 6,000 \\ 6,000 \\ 6,000 \end{array} . \end{aligned}$	$\begin{aligned} & V \cdot p . d . \\ & \begin{array}{c} 6,500 \\ 6,250 \\ 5,550 \\ 5,550 \end{array} . \end{aligned}$	$\begin{aligned} & V_{i, p, d .}^{7, j} \\ & 7,000 \\ & 7,000 \\ & 7,000 \end{aligned}$
4	$800-1,000$ $1,5000.300$ $3,000-4,000$ Over 4,000	$\begin{aligned} & 4,300 \\ & 3,850 \\ & 3,400 \\ & 3,200 \end{aligned}$	$\begin{aligned} & 4,700 \\ & 4,700 \\ & 4,700 \\ & 4,7700 \end{aligned}$	$\begin{aligned} & 4,850 \\ & 4,200 \\ & 3,750 \\ & 3,400 \end{aligned}$	$\begin{aligned} & 5,500 \\ & 5,500 \\ & 5,500 \\ & 5,500 \\ & 5,500 \end{aligned}$	$\begin{aligned} & 5,150 \\ & 4,400 \\ & 4,000 \\ & 3,800 \end{aligned}$	$\begin{aligned} & 6,000 \\ & 6,000 \\ & 6,000 \\ & 6,000 \\ & 6,000 \end{aligned}$	$\begin{aligned} & 6,500 \\ & 5,800 \\ & 5,450 \\ & 5,100 \end{aligned}$	$\begin{aligned} & 7,000 \\ & 7,000 \\ & 7,000 \\ & 7,000 \end{aligned}$
5	$\left\{\begin{array}{r}600-1,200 \\ 1,200-2,000 \\ 2,00-1,000 \\ \text { Over 4, } 000\end{array}\right.$	$\begin{aligned} & 4,300 \\ & 3,500 \\ & 3,200 \\ & 2,800 \end{aligned}$	$\begin{aligned} & 4,700 \\ & 4,700 \\ & 4,700 \\ & 4,700 \end{aligned}$	$\begin{aligned} & 4,850 \\ & 3,800 \\ & 3,700 \\ & 3,250 \end{aligned}$	$\begin{aligned} & 5,500 \\ & 5,500 \\ & 5,500 \\ & 5,500 \end{aligned}$	$\begin{aligned} & 5,150 \\ & 4,050 \\ & 3,950 \\ & 3,500 \end{aligned}$	$\begin{aligned} & 6,000 \\ & 6,000 \\ & 6,000 \\ & 6,000 \\ & 6,000 \end{aligned}$	6,500 600 6,750 5,700 4,800	$\begin{aligned} & 7,000 \\ & 7,000 \\ & 7,000 \\ & 7,000 \end{aligned}$
6	$\left\{\begin{array}{l} 500-1,000 \\ 1,000-1,500 \\ 1,500-4,000 \\ 0 \text { ver } 4,000 \end{array}\right.$	$\begin{aligned} & 4,300 \\ & 3,500 \\ & 3,050 \\ & 2,550 \end{aligned}$	$\begin{aligned} & 4,700 \\ & 4,700 \\ & 4,200 \\ & 3,600 \end{aligned}$	$\begin{aligned} & 4,850 \\ & 3,800 \\ & 3,550 \\ & 3,950 \\ & \hline, 950 \end{aligned}$	$\begin{aligned} & 5,500 \\ & 5,500 \\ & 5,2,00 \\ & 4,000 \\ & 4, \end{aligned}$	$\begin{aligned} & 5,150 \\ & 4,050 \\ & 3,800 \\ & 3,200 \end{aligned}$	$\begin{aligned} & 6,000 \\ & 6,000 \\ & 6,000 \\ & 4,200 \\ & 4,200 \end{aligned}$	$\begin{aligned} & 6,500 \\ & 6,150 \\ & 5,350 \\ & 4,500 \end{aligned}$	$\begin{aligned} & 7,000 \\ & 7,000 \\ & 7,000 \\ & 7,800 \end{aligned}$
7	$\left\{\begin{array}{r} 400-800 \\ \begin{array}{c} 800-1,200 \\ 1,2000,200 \\ 2,500.400 \\ 0 \text { ver } 4,000 \end{array} \\ \hline \end{array}\right.$	$\begin{aligned} & 4,300 \\ & 3,500 \\ & 2,200 \\ & 2,600 \\ & 2,000 \\ & 2,000 \end{aligned}$	$\begin{aligned} & 4,700 \\ & 4,780 \\ & 4,200 \\ & 3,2000 \\ & 3,000 \\ & 3,000 \end{aligned}$	$\begin{aligned} & 4,850 \\ & 3,800 \\ & 3,400 \\ & 3,400 \\ & 3,400 \\ & 2,400 \end{aligned}$	$\begin{aligned} & 5,500 \\ & 5,500 \\ & 5,500 \\ & 4,000 \\ & 4,400 \\ & 3,400 \end{aligned}$	$\begin{aligned} & 5,150 \\ & 4,150 \\ & 4,050 \\ & 3,650 \\ & 3,300 \\ & 2,650 \end{aligned}$	$\begin{aligned} & 6,000 \\ & 6,000 \\ & 6,000 \\ & 4,200 \\ & 4,2000 \end{aligned}$	$\begin{aligned} & 6,500 \\ & 5,550 \\ & 5,100 \\ & 4,600 \\ & 3,700 \end{aligned}$	$\begin{aligned} & 7,000 \\ & 7,000 \\ & 7,000 \\ & 5,800 \\ & 4,800 \end{aligned}$

Table 10.-Capacity analysis of typical highway sections in West Virginia

	Section No. 1	Section No. 2	$\begin{aligned} & \text { Section } \\ & \text { No. } 3 \end{aligned}$	Section No. 4	$\begin{aligned} & \text { Section } \\ & \text { No. } 5 \end{aligned}$
Known Conditions					
Route designation	U. S. 60	U. S. 21	U. S. 60	U. S. 50	U. S. 50
	6. 37	6. 21	7.00	4.13	11.46
	Rolling 65	Rolling 40	Rolling ${ }_{5}$	Rolling ${ }_{57}$	Rolling 5
	65 59 59	40 2	53 10	57 9	53 15
	26	18	22	22	20
	12	12	12	13	14
	40	32	29	25	24
		2, ${ }^{5}$			
1955 average daily traffic	5,500	2,300 None	${ }_{\text {(1) }}^{2,400}$	${ }_{(1)}^{2,400}$	(1)
Sharp curves.	None	None	${ }^{(2)}$	None	$\left.{ }^{2}\right)$
Determined Values					
	40-45	40-45	40-45	40-45	40-45
		50	50	50	50
	7,300	None	3, 070	3, 800	3,405
Width factor-	1.00	. 70	. 86	. 86	. 77
30th-hour factor	1.00	1.00	1.00	. 92	. 86
Truck equivalent	2.0	4.0	5.0	8.0	9.0
	. 98	. 91	88	78	. 75
	7,150	None	2,300	2,350	1,700

Section $3,0.40$ mile at 8 percent; section $4,0.50$ mile at 7.5 percent, 0.35 mile at 4 percent, 0.60 mile at 2.5 percent; section $5,0.5$ mile at 6.5 percent, 1.2 miles at 5 percent, 2.5 miles at 2.5 percent.

2 Section 3 , three curves at 30,35 , and 45 miles per hour, and two curves at 50 miles per hour; section 5 , one curve at 40 , one at 45, and three at 50 miles per hour.
${ }_{3}$ Taken from table 1.
4 Taken from table 5.
${ }^{8}$ Computed as follows: $105+(100$-percentage of commercial vehicles $)+$ (percentage of commercial vehicles \times truck equivalent).
another one-way roadway and using the existing lanes for the other direction of travel.

Section 2 on U. S. Route 21 in Jackson County is also on one of the more important roads in the State, although the traffic volume is not high. The 6.2-mile section is located in rolling terrain about 20 miles north of Charleston. Both the alinement and profile are poor, resulting in a low design speed and limited sight distance. Pavement width is 18 feet and the truck equivalent is 4 . The traffic volume during 1955 was 2,300 vehicles per day with the design-hour factor of 12 percent of the ADT with 5 percent trucks.

The road as it exists today does not meet the tolerable standards for this class of highway. Since its average highway speed is only 40 miles per hour, it cannot carry traffic at the tolerable speed of 50 miles per hour during low volumes nor at 40 to 45 miles per hour during the 30 th highest hourly volume of the year. It therefore has no capacity for these speeds.

Some improvement in alinement could be made to increase the average highway speed and the amount of passing sight distance. By providing a 1,500 -foot sight distance over 10 percent of the length and raising the average highway speed to 45 miles per hour, the capacity would be increased to 2,200 vehicles per day at an operating speed of $35-40$ miles per hour, or to 1,050 vehicles per day at a $40-$ to 45 -miles-per-hour operating speed.

Widening the entire section to 24 feet would increase the capacities at the 35 - to 40 - and 40 - to 45 -miles-per-hour operating speeds to 3,100 and 1,600 vehicles per day, respectively.

Since the tolerable operating speed for this highway is $40-45$ miles per hour, the 35 - to 40 -miles-per-hour operating speed would be inadequate and undesirable. The capacity at a minimum desirable operating speed with
the alinement and sight distances improved to the extent possible on the existing location is still considerably less than the existing traffic volume. The conclusion is, therefore, that the only lasting solution is a complete redesign of the highway.
Section 3 is located on U. S. Route 60 in Greenbrier County about 100 miles east of Charleston. The terrain is rolling over this 7.0-mile section, the average highway speed is 53 miles per hour, about 10 percent of the highway has a 1,500 -foot sight distance, and the truck equivalent is 5 . Tolerable operating speed for this highway is $40-45$ miles per hour. At this speed the capacity of the section is 2,300 vehicles per day.

Several possibilities are available for increasing the capacity of the section, including removal of some or all of the five substandard curves, the addition of truck lanes on grades, and minor improvements in the sight distance by removal of trees, daylighting curves, etc.

Reducing curvatures would increase the average highway speed to about 55 miles per hour, resulting in a tolerable capacity of about 2,600 vehicles per day. Passing sight distance might be increased an additional 5 percent by miscellaneous measures, such as brush removal, curve daylighting, etc. This would further increase capacity to about 2,800 vehicles per day.

The next alternative is the provision of truck lanes. The existing grades would require about one mile of truck lanes to be added, resulting in a decrease in the overall truck equivalent from 5 to 3. Minor improvement in the alinement would also provide additional passing sight distance so that a 1,500 foot sight distance would be available over approximately 20 percent of the highway. All these improvements would increase the capacity of the highway to about 3,380
vehicles per day at an operating speed of 40-45 miles per hour. At the normal rate of traffic growth, this volume would not be exceeded for a period of 6 or 7 years. Thereafter it would be necessary to undertake major changes in the alinement or to provide a four-lane highway in order to maintain the desired operating speed.
Section 4 has 11 -foot traffic lanes and is located on U. S. Route 50 in Wood County. It is a 4.1 -mile section through rolling terrain. The alinement is fairly good since the average highway speed is 57 miles per hour and 9 percent of the highway has a 1,500 -foot sight distance. The traffic volume in 1955 was 2,400 vehicles per day with a design-hour factor of 13 percent of the ADT including 5 percent trucks.

For the tolerable operating speed of $40-45$ miles per hour, the capacity is 2,350 vehicles per day. This is slightly lower than the present volume. Building a truck lane one mile long on a critical grade would reduce the truck equivalent to 3 and would increase the $1,500-$ foot passing sight distance from 9 percent to about 18 percent of the length. As a result the capacity would be increased to 3,250 vehicles per day at anoperating speed of $40-45$ miles per hour. Some additional 1,500 -foot sight distance could be obtained by increasing the view on the inside of several curves by simply removing the obstructions such as brush and low banks on the right-of-way. When the obstruction is off the right-of-way, additional right-of-way must be purchased or an agreement reached with the property owner to keep it cleared. An additional 5 percent of 1,500 -foot sight distance can be obtained in this manner. This would increase the capacity at the desired operating speed to 3,450 vehicles per day, which represents an increase of nearly 60 percent over the present traffic volume, or to approximately the volume expected in 1970.

Section 5 is located on U. S. Route 50 in Hampshire County in the northeastern part of the State. The section is 11.5 miles long with uniform design characteristics in the rolling terrain. The average highway speed is 53 miles per hour, the surface width is 20 feet, and 15 percent of the highway has a 1,500 -foot sight distance. The truck equivalent is 9 . The present ADT is 2,600 per day with a design-hour factor of 14 percent including 5 percent trucks. Under these conditions, the capacity at an operating speed of $40-45$ miles per hour is 1,700 vehicles per day.
Several possibilities exist for improving the capacity. These include reducing the sharpness of five substandard curves, widening the surface, the addition of truck lanes on grades, and minor improvement in the sight distance. Widening from 20 to 24 feet would increase the capacity to 2,200 vehicles per day. Removal of the substandard curves will increase the average highway speed to about 55 miles per hour and would increase the passing sight distance 1 to 2 percent. These improvements, including the widening, would result in increasing the capacity to 2,550 vehicles per day.

The addition of $2^{1 / 2}$ miles of truck lanes would increase the sections on which passings could be performed to about 25 percent of the highway and reduce the truck equivalent to 3 . The total resulting capacity would be 3,600 vehicles per day or 38 percent above the present volume.

These five examples are rather typical of the way the capacity information was applied in West Virginia to determine highway sufficiency. Its use was found especially helpful in pointing out the changes that could be made to improve capacity. Altering some highway features will have little effect on the capacity at a desired operating speed, while others, such as the provision of truck lanes and substantially improving the passing sight distances, will have a major effect.

Application to Kentucky and Tennessee highways

The principles employed for capacity determinations in West Virginia have general application wherever curvatures and grades create special highway capacity problems. This was the case throughout most of Kentucky and Tennessee where highway needs studies were started during the period that the West Virginia study was being completed.

The two special features needed in the refinement of the capacity analysis, which were the average highway speed and the truck equivalent, could have been obtained in the same manner as described for West Virginia. Utilizing the experience gained in the West Virginia study, however, it was found desirable and more feasible to derive these data from existing records rather than from test vehicle operation.

Kentucky and Tennessee lacked data on actual truck operations which would be consistent with probable future conditions. Following many years of severe restrictions on truck sizes and weights, Tennessee had just revised its law so as to be in substantial agreement with AASHO recommendations. Truck operations, however, had not as yet changed to conform with the higher limits. Kentucky still retained its low limits, but it was anticipated that a more realistic position would be adopted-as it was in 1956-bringing that State in line with Tennessee and the other States. Without actual data on vehicle weights for the revised weight limits, it was assumed that future conditions in Kentucky and Tennessee would be similar to those on which the West Virginia study was based.

In both Kentucky and Tennessee, geometric design data were available, mile by mile, in the State Highway Planning Division records, or were easily obtainable from plans. Thus actual curvature was known, and curve lengths could be obtained or sampled from the plans. In both States, the gradient and the length of the grades on each section of highway were available from the plans. This was not the case for most roads in West Virginia.

Alternate method used for determining average highway speed in Kentucky and Tennessee.Operation of a test car, as in West Virginia, accounted for several factors that would affect the average highway speed, but horizontal
curvature was by far the most significant. From available data, therefore, it was possible to approximate the average highway speed of control sections in the other States by concentrating the analysis on the combined effect of horizontal curves and tangents.

Vehicle speeds are affected ahead and beyond a curve for a distance which varies with the degree of curvature. That is, a vehicle on a tangent approaching a sharp curve must begin to slow down before reaching the curve in order to reduce its speed to the allowable speed on the curve. After traveling around the curve, additional time and distance are required to accelerate back to the normal tangent speed. It was therefore necessary to determine the following information for each section of highway requiring a separate capacity analysis:

1. The possible safe speed, or design speed, of each curve.
2. The length of each curve.
3. The distance before and after each curve that the speed was affected, together with the average speed while decelerating and accelerating.
4. The average speed weighted by the length of the tangents, the curves, and by the deceleration and acceleration distances. This speed was used as the average highway speed.
The safe speeds for curves of various degrees (or radii) were determined from the tables in the AASHO policy on Geometric Design of Rural Highways (1). The length of each curve was obtained from the highway plans or from planning survey information. Comfortable rates of acceleration and deceleration as shown in the AASHO policies were used to determine the length of speed transitions between the curves and tangents.

A special study conducted by sampling the curves on level sections from Kentucky highway plans showed that, regardless of curvature, the average total effect of a curve on the speed of a vehicle was equivalent to a travel distance of about 800 feet at the safe speed for the curve. For example, the 9 -degree curves good for a design speed of 45 miles per hour had an average length of 667 feet. Decelerating and accelerating from the 65 miles per hour tangent speed required a total of 485 feet. On an average, a vehicle would be affected for a total distance of 1,152 feet but the time lost was the same as if the speed was 45 miles per hour for 915 feet and the tangent speed was 65 miles per hour on the rest of the section. Likewise for the 40 -degree curves, the equivalent distance at 20 miles per hour was 691 feet. The equivalent distances varied from curve to curve but the average was 780 feet with values much greater or less than the average being comparatively rare. An equivalent length of 800 feet or 0.15 mile for all curves was therefore used to determine the average highway speeds for the highway sections in Kentucky and Tennessee.

Tangent sections and curves as sharp as 3 degrees were assumed to have a highway speed of 70 miles per hour if there were no curves as sharp as 4 degrees on the highway. If any curves on the highway were as sharp as 4 degrees, the tangent sections and the

Table 11.-Illustration of method used in estimating the average highway speed of a two-lane highway

Curvature	Safe speed	Number of curves	Total length	Product of columns 2 and 4
Degrees	M. p.h.		Miles	
6	55	1	0.15	8. 25
10	43	2	. 30	12.90
12	40	8	1.20	48.00
20	35	4	. 60	21.00
30	25	1	. 15	3. 75
0	6.5	0	7. 60	494.00
Total	------	-------	10.00	587.90
Average highway speed $\ldots . .587 .90 \div 10.00=59 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.				

curves of 4 degrees or flatter were assumed to have a highway speed of 65 miles per hour. These assumptions are in accordance with the AASHO definition of design speed as related to the travel speeds found on main rural highways during low traffic densities.

Table 11 illustrates the method used in estimating the average highway speed of a two-lane section of highway 10 miles long. If weighted by travel time the average highway speed would be 56 miles per hour. Within the limits of reasonable accuracy, however, either method should be satisfactory. For the needs studies conducted in Ontario, Canada, the weighting to obtain the average highway speed was done on the basis of time involved rather than length.

Method used for determining truck equivalent in Kentucky and Tennessee. - The first section of this article calls attention to the fact that driving a test truck to establish a speed profile would be unnecessary if gradient and length were known, since available test data are adequate to establish truck speeds on known grades (fig. 8).

With grade data available in Kentucky and Tennessee, the truck equivalent in terms of passenger cars, for capacity computations, was determined from figures 7 and 6 , in that order.

It was first assumed that the entering speed of trucks approaching a grade was 40 miles per hour. It is recognized that momentum from downgrades and actual level speeds may frequently be greater, but in the mountainous terrain where this analysis was especially pertinent, horizontal curvature is such that higher speeds are seldom encountered. For example, the speed profile of the test truck on U. S. Route 50 in West Virginia shows a maximum of only 45 miles per hour for short distances at only three locations in a 50 -mile section.

It was also assumed for the purposes of this study that the average truck speed was 40 miles per hour on level terrain, on all grades of less than 3 percent, and on grades of 3 percent less than 500 feet long. For all other grades, the average truck speed was determined from curves in figure 7 for each grade or average compound grade in one direction only.

For the control section or a long subsection, the average truck speed was determined by weighting by distance the speeds on level terrain and the several grades. Finally, the
(Continued on page 44)

Table A.-Tolerable capacities of existing two-lane highways located in flat terrain, assuming an operating speed of $45-50$ miles per hour and 5 -percent truck traffic during 30th highest hour

Percentage of highway with passing sight distance of-		A verage annual daily traffic volumes of two-lane highways with-															
		12-foot traffic lanes and passengercar speeds at low volume of-				11-foot traffic lanes and passengercar speeds at low volume of-				10-foot traffic lanes and passengercar speeds at low volume of -				9 -foot traffic lanes and passengercar speeds at low volume of-			
$\begin{aligned} & 1,500 \\ & \text { feet } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { feet } \end{aligned}$	$\begin{gathered} 70 \\ \text { m.p.h. } \end{gathered}$	M. p. h.	$\frac{55}{\mathrm{M} . \mathrm{p} . \mathrm{h} .}$	$\stackrel{50}{\text { M. p. . }}$	$\stackrel{70}{\text { M. p. . }}$	$\begin{gathered} { }^{60} . \text { p.h. } \end{gathered}$	$\begin{gathered} 55 \\ \text { M.p. . . } \end{gathered}$	$\stackrel{50}{\mathrm{M} . \mathrm{p} . \mathrm{h} .}$	$\begin{aligned} & \text { M. р. . } \\ & \hline 0 \end{aligned}$	$\text { M.p. }{ }^{60}$	$M_{\mathrm{M}}^{55} \mathrm{p} \cdot \mathrm{~h} .$	$\mathrm{M} . \mathrm{p} . \mathrm{h} .$	$\mathrm{M}^{70} \mathrm{p} . \mathrm{h} .$	$\stackrel{60}{\text { M.p. h. }}$	$\begin{gathered} \stackrel{55}{\text { M. p. h. }} . \end{gathered}$	$\stackrel{50}{\text { M. p. . }}$
$\begin{gathered} 100 \\ 80 \\ 60 \end{gathered}$	$\begin{array}{r} 100 \\ 90 \\ 80 \end{array}$	$\begin{aligned} & 7,100 \\ & 6,800 \\ & 6,400 \end{aligned}$	$\begin{aligned} & 7,100 \\ & 6,400 \\ & 5,550 \end{aligned}$	$\begin{aligned} & 6,600 \\ & 5,750 \\ & 4,800 \end{aligned}$	$\begin{aligned} & 5,650 \\ & 5,050 \\ & 4,000 \end{aligned}$	$\begin{aligned} & 6,100 \\ & 5,850 \\ & 5,500 \end{aligned}$	$\begin{aligned} & 6,100 \\ & 5,500 \\ & 4,750 \end{aligned}$	$\begin{aligned} & 5,700 \\ & 4,950 \\ & 4,150 \end{aligned}$	$\begin{aligned} & 4,850 \\ & 4,350 \\ & 3,450 \end{aligned}$	$\begin{aligned} & 5,450 \\ & 5,250 \\ & 4,950 \end{aligned}$	$\begin{aligned} & 5,450 \\ & 4,950 \\ & 4,250 \end{aligned}$	$\begin{aligned} & 5,100 \\ & 4,450 \\ & 3,700 \end{aligned}$	$\begin{aligned} & 4,350 \\ & 3,900 \\ & 3,100 \end{aligned}$	4,950 4,750 4,500	$\begin{aligned} & 4,950 \\ & 4,500 \\ & 3,900 \end{aligned}$	4,600 4,000 3,350	$\begin{aligned} & 3,950 \\ & 3,550 \\ & 2,800 \end{aligned}$
40 20 0	$\begin{aligned} & 70 \\ & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & 5,750 \\ & 4,900 \\ & 3,800 \end{aligned}$	$\begin{aligned} & 4,600 \\ & 3,750 \\ & 2,800 \end{aligned}$	$\begin{aligned} & 3,900 \\ & 2,800 \\ & 2,800 \end{aligned}$	$\begin{aligned} & 2,800 \\ & 2,000 \\ & 1,250 \end{aligned}$	$\begin{aligned} & 4,950 \\ & 4,200 \\ & 3,250 \end{aligned}$	$\begin{aligned} & 3,950 \\ & 3,200 \\ & 2,400 \end{aligned}$	$\begin{aligned} & 3,350 \\ & 2,400 \\ & 1,750 \end{aligned}$	$\begin{aligned} & 2,400 \\ & 1,700 \\ & 1,050 \end{aligned}$	$\begin{aligned} & 4,450 \\ & 3,750 \\ & 2,900 \end{aligned}$	3,550 2,900 2,150	3,000 2,150 1,550	$\begin{aligned} & 2,150 \\ & 1,550 \\ & 950 \end{aligned}$	4,000 3,450 2,650	3,200 3,600 1,950	2,750 1,950 1,400	1,950 1,400 850

Table B.-Tolerable capacities of existing two-lane highways located in flat terrain, assuming an operating speed of $40-45$ miles per hour and 5 -percent truck traffic during 30th highest hour

Percentage of highway with passing sight distance of -		Average annual daily traffic volumes of two-lane highways with-															
		12-foot traffic lanes and passengercar speeds at low volume of-				11-foot traffic lanes and passengercar speeds at low volume of -				10 -foot traffic lanes and passengercar speeds at low volume of -				9 -foot traffic lanes and passengercar speeds at low volume of-			
$\begin{aligned} & 1,500 \\ & \text { feet } \end{aligned}$	$\begin{gathered} 1,000 \\ \text { feet } \end{gathered}$	M. p. h.	${ }_{\mathrm{M}}^{55} \cdot \mathrm{p} . \mathrm{h} .$	M. p.h.	$\begin{gathered} 4^{45} \\ \text { M. p. . } . \end{gathered}$	M. p. h.	$\begin{gathered} \text { M. p. h. } \end{gathered}$	$\begin{gathered} \text { M.p. h. } \end{gathered}$	$\stackrel{45}{\text { M. p. h. }}$	M, p. h.	$\begin{gathered} \mathrm{M} . \mathrm{p} . \mathrm{h} . \end{gathered}$	$\stackrel{50}{\text { M. p. h. }}$	${ }^{45}$	M. p. ¢.	$\stackrel{55}{\mathrm{M} . \mathrm{p} . \mathrm{h} .}$	$\begin{gathered} 50 \\ \text { M. p. h. } \end{gathered}$	$\stackrel{45}{\text { M. p. h. }}$
$\begin{array}{r} 100 \\ 80 \\ 60 \end{array}$	$\begin{array}{r} 100 \\ 87 \\ 76 \end{array}$	$\begin{aligned} & 8,450 \\ & 7,700 \\ & 6,800 \end{aligned}$	$\begin{aligned} & 8,050 \\ & 7,300 \\ & 6,450 \end{aligned}$	$\begin{aligned} & 7,450 \\ & 6,700 \\ & 5,700 \end{aligned}$	$\begin{aligned} & 6,550 \\ & 5,800 \\ & 4,850 \end{aligned}$	$\begin{aligned} & 7,250 \\ & 6,600 \\ & 5,850 \end{aligned}$	6,900 6,300 5,550	$\begin{aligned} & 6,400 \\ & 5,750 \\ & 4,900 \end{aligned}$	5,650 5,000 4,150	$\begin{aligned} & 6,500 \\ & 5,550 \\ & 5,250 \end{aligned}$	6,200 5,600 4,950	5,750 5,150 4,400	$\begin{aligned} & 5,050 \\ & 4,450 \\ & 3,750 \end{aligned}$	5,900 5,400 4,750	5, 650 5,100 4,500	5,200 4,700 4,000	4,600 4,050 3,400
$\begin{array}{r} 40 \\ 20 \\ 0 \end{array}$	$\begin{aligned} & 64 \\ & 52 \\ & 40 \end{aligned}$	$\begin{aligned} & 5,900 \\ & 4,950 \\ & 3,950 \end{aligned}$	$\begin{aligned} & 5,300 \\ & 4,100 \\ & 2,700 \end{aligned}$	$\begin{aligned} & 4,600 \\ & 3,200 \\ & 1,950 \end{aligned}$	$\begin{aligned} & 3,700 \\ & 2,200 \\ & 1,250 \end{aligned}$	$\begin{aligned} & 5,050 \\ & 4,250 \\ & 3,400 \end{aligned}$	$\begin{aligned} & 4,550 \\ & 3,550 \\ & 2,300 \end{aligned}$	$\begin{aligned} & 3,950 \\ & 2,750 \\ & 1,700 \end{aligned}$	$\begin{aligned} & 3,200 \\ & 1,900 \\ & 1,100 \end{aligned}$	$\begin{aligned} & 4,550 \\ & 3,800 \\ & 3,050 \end{aligned}$	4,100 4,150 2,100	3,550 3,450 1,500	2,780 1,700 950	4,150 4,450 3,750	$\begin{aligned} & 3,700 \\ & 2,850 \\ & 1,900 \end{aligned}$	3,200 2,250 1,350	2,600 1,550 900

Table C.-Tolerable capacities of existing two-lane highways located in rolling terrain, assuming an operating speed of $45-50$ miles per hour and 5 -percent truck traffic during 30 th highest hour

Percentage of highway with passing sight distance of-		Average annual daily traffic volumes of two-lane highways with-															
		12-foot traffic lanes and passengercar speeds at low volume of-				11-foot traffic lanes and passengercar speeds at low volume of-				10-foot traffic lanes and passengercar speeds at low volume of -				9-foot traffic lanes and passengercar speeds at low volume of-			
$\begin{aligned} & 1,500 \\ & \text { feet } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { feet } \end{aligned}$	$\stackrel{70}{\text { M. p. h. }}$	M. p. h.	M. p. . .	$\stackrel{50}{\text { M. p. . . }}$	$\begin{gathered} 70 \\ \text { M. p. h. } \end{gathered}$	$\text { M. p. } \quad{ }^{60}$	M. p. h.	$\stackrel{50}{\text { M. p. h. }}$	M. p. h.	${ }^{60} .$	M. p. h.	$\stackrel{50}{\text { M. p. }}$	$\text { M. p. . } \quad \text {. }$	$\text { M. p. }{ }^{60}$	$\begin{gathered} 55 \\ \text { M. p. h. } \end{gathered}$	$\text { M. p. } \quad \text {. }$
$\begin{gathered} 100 \\ 80 \\ 60 \end{gathered}$	$\begin{array}{r} 100 \\ 87 \\ 76 \end{array}$	$\begin{aligned} & 6,500 \\ & 6,200 \\ & 5,850 \end{aligned}$	6,500 5,850 5,050	$\begin{aligned} & 6,050 \\ & 5,250 \\ & 4,400 \end{aligned}$	$\begin{aligned} & 5,150 \\ & 4,600 \\ & 3,650 \end{aligned}$	$\begin{aligned} & 5,600 \\ & 5,350 \\ & 5,050 \end{aligned}$	$\begin{aligned} & 5,600 \\ & 5,050 \\ & 4,350 \end{aligned}$	$\begin{aligned} & 5,200 \\ & 4,500 \\ & 4,800 \end{aligned}$	$\begin{aligned} & 4,450 \\ & 3,950 \\ & 3,150 \end{aligned}$	5,000 4,750 4,500	$\begin{aligned} & 5,000 \\ & 4,500 \\ & 3,900 \end{aligned}$	$\begin{aligned} & 4,650 \\ & 4,050 \\ & 3,400 \end{aligned}$	$\begin{aligned} & 3,950 \\ & 3,550 \\ & 2,800 \end{aligned}$	$\begin{aligned} & 4,550 \\ & 4,350 \\ & 4,100 \end{aligned}$	$\begin{aligned} & 4,550 \\ & 4,100 \\ & 3,550 \end{aligned}$	4,250 3,700 3,100	$\begin{aligned} & 3,600 \\ & 3,200 \\ & 2,550 \end{aligned}$
40 20 0	64 52 40	5,250 4,500 3,450	4,200 3,400 2,550	3,550 3,550 1,850	2,550 1,800 1,150	4,500 3,850 3,000	3,600 2,950 2,200	3,050 2,200 1,600	2,200 1,550 1,000	4,050 3,450 2,650	3,250 3,600 1,950	2,750 1,950 1,400	$\begin{array}{r}1,950 \\ 1,400 \\ \hline\end{array}$	3,700 3,150 2,400	2,950 2,400 1,800	2,500 1,800 1,300	1,800 1,250 800

Table D.-Tolerable capacities of existing two-lane highways located in rolling terrain, assuming an operating speed of $40-45$ miles per hour and 5 -percent truck traffic during 30 th highest hour

Percentage of high- way with passing sight distance of -		Average annual daily traffic volumes of two-lane highways with-															
		12-foot traffic lanes and passengercar speeds at low volume of -				11-foot traffic lanes and passengercar speeds at low volume of-				10 -foot traffic lanes and passengercar speeds at low volume of -				9-foot traffic lanes and passengercar speeds at low volume of -			
$\begin{aligned} & 1,500 \\ & \text { feet } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { feet } \end{aligned}$	M. p. h.	$\stackrel{55}{\mathrm{M}_{\mathrm{p}} . \mathrm{h} .}$	M. p. h.	$\mathrm{M}^{45} \text { p. h. }$	$\text { M. p. . } \quad 6$	$\text { M. p. . } \quad \frac{55}{}$	M. p. h.	$\mathrm{M}_{\mathrm{M}}^{45} \mathrm{p} \cdot \mathrm{~h} .$	$\text { M. }{ }^{60} \mathrm{p} \cdot \mathrm{~h} .$	$\frac{55}{5 . \text { p. h. }}$	$\stackrel{50}{\text { M. p. h. }}$	$\mathrm{M}^{45} \mathrm{p} \cdot \mathrm{~h} .$	$\mathrm{M} \cdot \mathrm{p} \cdot \mathrm{~h} .$	$\stackrel{55}{\text { M. p. h. }}$	M.p.h.	$\mathrm{M}^{45} \text { p. h. }$
$\begin{array}{r} 100 \\ 80 \\ 60 \end{array}$	$\begin{array}{r} 100 \\ 85 \\ 72 \end{array}$	$\begin{aligned} & 7,700 \\ & 7,050 \\ & 6,200 \end{aligned}$	$\begin{aligned} & 7,350 \\ & 6,650 \\ & 5,900 \end{aligned}$	$\begin{aligned} & 6,800 \\ & 6,100 \\ & 5,200 \end{aligned}$	$\begin{aligned} & 6,000 \\ & 5,300 \\ & 4,400 \end{aligned}$	6,600 6,050 5,350	6,300 5,700 5,050	5,850 5,250 4,450	5,150 4,550 3,800	$\begin{aligned} & 5,950 \\ & 5,450 \\ & 4,750 \end{aligned}$	$\begin{aligned} & 5,650 \\ & 5,100 \\ & 4,550 \end{aligned}$	$\begin{aligned} & 5,250 \\ & 4,700 \\ & 4,000 \end{aligned}$	$\begin{aligned} & 4,600 \\ & 4,100 \\ & 3,400 \end{aligned}$	5,400 4,950 4,350	5,150 4,650 4,150	$\begin{aligned} & 4,750 \\ & 4,250 \\ & 3,650 \end{aligned}$	$\begin{aligned} & 4,200 \\ & 3,700 \\ & 3,100 \end{aligned}$
40 20 0	$\begin{aligned} & 58 \\ & 44 \\ & 30 \end{aligned}$	5,400 4,500 3,600	$\begin{aligned} & 4,850 \\ & 3,750 \\ & 2,450 \end{aligned}$	$\begin{aligned} & 4,200 \\ & 2,900 \\ & 1,800 \end{aligned}$	$\begin{aligned} & 3,400 \\ & 2,000 \\ & 1,150 \end{aligned}$	4,650 4,850 3,100	4,150 4,200 2,100	3,600 3,500 1,550	2,900 1,700 1,000	4,150 4,450 2,450	3,750 3,900 1,900	3,250 3,250 1,400	2,600 1,550 900	3,800 3,150 2,500	3,400 2,600 1,700	2,950 2,050 1,250	2,400 1,400 800

Cable E.-Tolerable capacities of existing two-lane highways located in rolling terrain, assuming an operating speed of $35-40$ miles per hour and 5 -percent truck traffic during 30 th highest hour

Percentage of highway with passing sight distance of-		Average annual daily traffic volumes of two-lane highways with-															
		12-foot traffic lanes and passengercar speeds at low volume of -				11-foot traffic lanes and passengercar speeds at low volume of -				10-foot traffic lanes and passengercar speeds at low volume of-				9-foot traffic lanes and passengercar speeds at low volume of-			
$\begin{gathered} 1,500 \\ \text { feet } \end{gathered}$	$\begin{aligned} & 1,000 \\ & \text { feet } \end{aligned}$	$\stackrel{55}{\text { M. p. h. }}$	$\stackrel{50}{\text { M. p. h. }}$	M. p. h.	M. p. h.	55 M. p. h.	$\begin{gathered} 50 \\ \text { M.p. h. } \end{gathered}$	${ }^{45} \text {. p. h. }$	$\mathrm{M.}^{40} \text { p. h. }$	$\stackrel{55}{\text { M. p. h. }}$	$\stackrel{50}{\text { M. p. h. }}$	${ }^{45}$	M. p. h.	${ }^{55}$	$\stackrel{50}{\text { M. p. h. }}$	M. p. h.	M. p. h.
100	100	9,050	8,750	8,300	7, 200	7,800	7,500	7,150	6,200	7,000	6,750	6, 400	5,550	6,350	6, 100	5, 800	5, 050
80	83	8,200	8,000	7, 500	6,500	7,050	6,900	6,450	5, 600	6,300	6,150	5, 800	5,000	5, 750	5,600	5,250	4,550
60	67	7,400	7,250	6,600	5, 500	6,350	6,250	5,700	4,750	5,700	5,600	5,100	4,250	5,200	5,100	4,620	3,850
40	51	6,500	6,350	5,600	4,300	5, 600	5,450	4,800	3,700	5,000	4,900	4,300	3,300	4,550	4,450	3,920	3,000
20	36	5,750	5,350	4,100	2,850	4,950	4,600	3,500	2,450	4,400	4,100	3, 150	2, 200	4,000	3,750	2,900	2,000
0	20	4,900	3,500	2,250	1,400	4,200	3,000	1,950	1,200	3,800	2,700	1,750	1,100	3, 450	2,450	1,600	1,000

Cable F.-Tolerable capacities of existing two-lane highways located in mountainous terrain, assuming an operating speed of 45-50 miles per hour and 5 -percent truck traffic during 30th highest hour

Percentage of highway with passing sight distance of-		Average annual daily traffic volumes of two-lane highways with-															
		12-foot traffic lanes and passengercar speeds at low volume of -				11-foot traffic lanes and passengercar speeds at low volume of-				10-foot traffic lanes and passengercar speeds at low volume of-				9 -foot traffic lanes and passengercar speeds at low volume of-			
$\begin{aligned} & 1,500 \\ & \text { feet } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { feet } \end{aligned}$	$\begin{gathered} 70 \\ \text { M. p. h. } \end{gathered}$	${ }_{\text {M. p. h. }}^{60}$	$\text { M. }{ }_{\text {M. . h. }}$	${ }^{50}{ }^{50} \text {. }$	$\begin{gathered} 70 \\ \text { M. р. . }^{2} \end{gathered}$	$\begin{gathered} \text { M. p. h. } \end{gathered}$	M. p. h.	$\begin{gathered} 50 \\ \text { M. p. . } \end{gathered}$	$\mathrm{M}^{70} \text { p. h. }$	$\begin{gathered} 60 \\ \text { м. p. . } \end{gathered}$	${ }_{\text {M. }}$	M. p. h.	$\mathrm{M}^{70} \text {. . . . }$	$\begin{gathered} \text { M. } \\ \text { M. h. } \end{gathered}$	$\mathrm{M}_{\mathrm{M} . \mathrm{p} . \mathrm{h} .}$	$\begin{gathered} 50 \\ \text { M. р. . . } \end{gathered}$
$\begin{aligned} & 100 \\ & 80 \\ & 60 \end{aligned}$	$\begin{gathered} 100 \\ 87 \\ 76 \end{gathered}$	$\begin{aligned} & 5,500 \\ & 5,300 \\ & 5,0000 \end{aligned}$	5,500 5,500 4,300	$\begin{aligned} & 5,150 \\ & 4,450 \\ & 4,750 \end{aligned}$	$\begin{aligned} & 4,400 \\ & 3,900 \\ & 3,100 \end{aligned}$	$\begin{aligned} & 4,750 \\ & 4,750 \\ & 4,300 \end{aligned}$	$\begin{aligned} & 4,750 \\ & 4,300 \\ & 3,700 \end{aligned}$	$\begin{aligned} & 4,450 \\ & 3,850 \\ & 3,200 \end{aligned}$	$\begin{aligned} & 3,800 \\ & 3,350 \\ & 2,650 \end{aligned}$	$\begin{aligned} & 4,250 \\ & 4,100 \\ & 3,850 \end{aligned}$	$\begin{aligned} & 4,250 \\ & 3,850 \\ & 3,300 \end{aligned}$	$\begin{aligned} & 3,950 \\ & 3,450 \\ & 3,900 \end{aligned}$	$\begin{aligned} & 3,400 \\ & 3,000 \\ & 2,400 \end{aligned}$	$\begin{aligned} & 3,850 \\ & 3,700 \\ & 3,500 \end{aligned}$	$\begin{aligned} & 3,850 \\ & 3,500 \\ & 3,000 \end{aligned}$	$\begin{aligned} & 3,600 \\ & 3,100 \\ & 2,600 \end{aligned}$	$\begin{aligned} & 3,100 \\ & 2,750 \\ & 2,150 \end{aligned}$
$\begin{gathered} 40 \\ 20 \\ 0 \end{gathered}$	$\begin{aligned} & 64 \\ & 52 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 4,450 \\ & 3,800 \\ & 2,950 \end{aligned}$	$\begin{aligned} & 3,550 \\ & 2,900 \\ & 2,200 \end{aligned}$	$\begin{aligned} & 3,050 \\ & 2,200 \\ & 1,550 \end{aligned}$	2,200 1,550 950	$\begin{aligned} & \begin{array}{l} 3,850 \\ 3,250 \\ 2,550 \end{array} \end{aligned}$	$\begin{aligned} & 3,050 \\ & 2,500 \\ & 1,900 \end{aligned}$	$\begin{aligned} & 2,600 \\ & \begin{array}{l} 1,900 \\ 1,900 \end{array} \end{aligned}$	$\begin{aligned} & 1,900 \\ & 1,350 \\ & 8000 \end{aligned}$	$\begin{aligned} & 3,450 \\ & 2,950 \\ & 2,250 \end{aligned}$	$\begin{aligned} & 2,750 \\ & 2,250 \\ & 1,700 \\ & 1,700 \end{aligned}$	$\begin{aligned} & 2,350 \\ & 1,770 \\ & 1,200 \end{aligned}$	$\begin{aligned} & 1,700 \\ & 1,200 \\ & 750 \end{aligned}$	$\begin{aligned} & 3,1100 \\ & 2,650 \\ & 2,050 \end{aligned}$	$\begin{aligned} & 2,500 \\ & 2,050 \\ & 2,550 \\ & 1,550 \end{aligned}$	2,150 1,550 1,100	1,550 1,100 650

Cable G.-Tolerable capacities of existing two-lane highways located in mountainous terrain, assuming an operating speed of $40-45$ miles per hour and 5-percent truck traffic during 30th highest hour

Percentage of highway with passing ight distance of		Average annual daily traffic volumes of two-lane highways with-															
		12-foot traffic lanes and passengercar speeds at low volume of -				11-foot traffic lanes and passengercar speeds at low volume of-				10 -foot traffic lanes and passengercar speeds at low volume of-				9-foot traffic lanes and passengercar speeds at low volume of-			
${ }_{\text {feet }}^{1,500}$	${ }_{\text {leet }}^{1,000}$	$\begin{gathered} \text { M. } \\ 60 . \end{gathered}$	${ }_{\text {M.p. h. }}^{55} .$	$\text { M. p. h. }^{50}$	$\text { M.p. } 45 .$	${ }_{\text {M. p. h. }}^{60}$	$\begin{gathered} \text { M. p. h. } \end{gathered}$	$\stackrel{50}{\text { M. .h. }}$	$\text { M.p. . }_{45}$		$\begin{gathered} \text { M. p. h. } \end{gathered}$	$\begin{gathered} \mathrm{m}_{\mathrm{p} . \mathrm{p} . \mathrm{h}} . \end{gathered}$	${ }^{45} .{ }^{45} \text {. . } .$	$\begin{gathered} \text { M. p. h. } \end{gathered}$	$\begin{gathered} 55 \\ \text { M.p. h. } \end{gathered}$	$\begin{gathered} 50 \\ \text { M. . . . } \end{gathered}$	$\frac{45}{\text { M. . . . }}$
$\begin{aligned} & 100 \\ & 80 \\ & 60 \end{aligned}$	$\begin{aligned} & 100 \\ & 85 \\ & 72 \end{aligned}$	6,550 6,500 5,300	$\begin{aligned} & 6,250 \\ & 5,700 \\ & 500 \end{aligned}$	5, 200 5,200 4,450	5,100 4,500 4,750	$\begin{aligned} & 5,650 \\ & 5,150 \\ & 4,550 \end{aligned}$	5, 350 4,900 4,300	5, 4000 4,450 3,850	4,400 3,850 3,200	5, 4 , 400 4,600 4,100	4,800 4,400 3,850	$\begin{aligned} & 4,450 \\ & 4,450 \\ & 4,450 \end{aligned}$	$\begin{aligned} & 3,950 \\ & 3,450 \\ & 2,900 \end{aligned}$	$\begin{aligned} & 4,600 \\ & 4,200 \\ & 3,700 \end{aligned}$	$\begin{aligned} & 4,350 \\ & 4,050 \\ & 3,500 \end{aligned}$	$\begin{aligned} & 4,050 \\ & 3,650 \\ & 3,100 \end{aligned}$	$\begin{aligned} & 3,550 \\ & 3,150 \\ & 2,600 \end{aligned}$
40 20 0	58 44 40	4,600 3,850 3,050	4, 100 3,200 2,100	3,600 2,500 1,500	2,900 1,700 950	3,950 3,300 2,600	3,550 2,750 1,800	$\begin{aligned} & 3,100 \\ & 2,150 \\ & 2,1500 \end{aligned}$	2,500 1,450 800	3,550 2,950 2,350	$\begin{aligned} & 3,150 \\ & 2,450 \\ & 1,600 \end{aligned}$	2,750 1,900 1,150	2,250 1,300 750	$\begin{aligned} & 3,200 \\ & 2,700 \\ & 2,150 \end{aligned}$	2,850 2,250 1,450	2,500 1,750 1,050	$\begin{array}{r}2,050 \\ 1,200 \\ \hline 600\end{array}$

Table H.-Tolerable capacities of existing two-lane highways located in mountainous terrain, assuming an operating speed of $35-40$ miles per hour and 5 -percent truck traffic during 30th highest hour

Percentage of highway with passing sight distance of -		Average annual daily traffic volumes of two-lane highways with-															
		12-foot traffic lanes and passengercar speeds at low volume of-				11 -foot traffic lanes and passengercar speeds at low volume of-				10-foot traffic lanes and passengercar speeds at low volume of-				9-foot traffic lanes and passengercar speeds at low volume of -			
$\begin{gathered} 1,500 \\ \text { feet } \end{gathered}$	$\begin{aligned} & 1,000 \\ & \text { feet } \end{aligned}$	$\stackrel{55}{\mathrm{M}} \cdot \mathrm{p.h} .$	M. p. h.	$\stackrel{45}{\text { M. p.h. }}$	M. p.h.	$\stackrel{55}{\mathrm{M} . \mathrm{p} . \mathrm{h} .}$	$\begin{gathered} 50 \\ \text { M. p. h. } \end{gathered}$	$\stackrel{45}{\text { M. p. h. }}$	$\stackrel{40}{\text { M. p. h. }}$	$\stackrel{55}{\mathrm{M} . \mathrm{p} . \mathrm{h} .}$	$\stackrel{50}{\text { M. p.h. }}$	$\stackrel{45}{\text { M. p. h. }}$	$\text { M. p. } \quad \stackrel{40}{ }$	$\stackrel{55}{\mathrm{M} . \mathrm{p} . \mathrm{h} .}$	$\stackrel{50}{\mathrm{M} . \mathrm{p} . \mathrm{h}}$	$\stackrel{45}{\text { M.p. h. }}$	$\stackrel{40}{\text { M. p. .h. }}$
100 80 60	100 83 67	7,700 7,000 6,300	7,450 6,800 6,200	7,050 6,350 5,650	6,150 5,550 4,650	6,600 6,000 5,400	6,400 5,850 5,350	6,050 5,450 4,850	5,300 4,750 4,000	5,950 5,400 4,850	5,750 5,250 4,750	5,450 4,900 4,350	4,750 4,250 3,600	5,400 4,900 4,400	5,200 4,750 4,350	4,950 4,450 3,950	$\begin{aligned} & 4,300 \\ & 3,900 \\ & 3,250 \end{aligned}$
40 20 0	$\begin{aligned} & 51 \\ & 36 \\ & 20 \end{aligned}$	5,550 4,900 4,150	5,400 4,550 3,000	4, 800 3,500 1,900	3,650 2,400 1,150	4,750 4,200 3,550	4,650 4,900 2,600	4,150 3,000 1,650	$\begin{aligned} & 3,150 \\ & 2,1,50 \\ & 1,000 \end{aligned}$	4, 250 3,750 3,200	4,150 3,500 2,300	3,700 2,700 1,450	$\begin{aligned} & 2,800 \\ & 1,850 \\ & 900 \end{aligned}$	$\begin{aligned} & 3,900 \\ & 3,450 \\ & 2,900 \end{aligned}$	$\begin{aligned} & 3,800 \\ & 3,200 \\ & 2,100 \end{aligned}$	$\begin{aligned} & 3,350 \\ & 2,450 \\ & 1,350 \end{aligned}$	2,550 1,700 800

The Economic Costs of Motor-Vehicle Accidents of Dififerent Types

BY THE DIVISION OF HIGHW AY TRANSPORT RESEARCH

BUREAU OF PUBLIC ROADS

Reported ${ }^{1}$ by ROBIE DUNMAN Transportation Economis

This article discusses the frequencies and direct costs of different types of accidents involving passenger cars in Massachusetts during 1953.
Of the 131,500 accidents recorded in this study, nearly three-fourths were property-damage-only accidents, one-fourth were nonfatal-injury accidents, and less than half of one percent were fatal-injury accidents. For every dollar spent as a result of these accidents, nonfatal-injury accidents accounted for 57 cents; property-damageonly accidents, 40 cents; and fatal-injury accidents, 3 cents.

Collisions between passenger cars or passenger cars and other motor vehiclesby far the most frequent type of accidentaccounted for 83 percent of the number and the same proportion of the cost of all accidents. Collisions with pedestrians, fixed objects, other objects, and noncollision types of accidents made up the remaining 17 percent.

Angle, rear-end, and head-on collisions represented nearly 81 percent of the number and 89 percent of the cost of all collisions between passenger cars or passenger cars and other motor vehicles. Angle collisions were the most frequent and were followed in order by rear-end and head-on collisions.

IDecember 1947 the Highway Research Board recommended that the Bureau of Public Roads cooperate with the States in conducting studies of the economic costs of motor-vehicle accidents. These studies are now underway in Massachusetts, New Mexico, and Utah, and a fourth study is programed in Wisconsin. On the basis of preliminary discussion, it is anticipated that a fifth study will be started in Michigan during 1958.

This article reports data developed by the Massachusetts Department of Public Works and by the Massachusetts Registry of Motor Vehicles in cooperation with the Bureau of Public Roads. It is emphasized that the findings may not be typical or average for all States.

The number and direct cost of motorvehicle traffic accidents involving passenger cars in Massachusetts during 1953 are shown by type of accident and severity of accident. Comparisons are made on the basis of cost per accident, per capita, per passenger car reg-

[^6]istered, per licensed operator, per mile of road, and per 100 million vehicle-miles of travel.
The purpose of this article is to present the cost of accidents in relation to the types of accidents in a way that will be helpful to groups and individuals who are trying to reduce traffic accidents and the resulting economic loss.
Statistical studies of the economic cost of motor-vehicle accidents are based on a probability sample of the accident experience of vehicle owners. They are designed to be accurate within 10 percent. By means of mailed questionnaires and through personal interviews with selected vehicle owners, their accident experience for one year is obtained. From these data the direct cost of accidents is estimated and correlated with the more important characteristics of accidents, including those peculiar to the highway and street facilities, the driver, and the vehicle. These studies are statewide and comprehensive. Because the data collected and analyzed in each State are so detailed and voluminous, this article is confined to one segment of the comprehensive study of traffic-accident costs in Massachusetts during 1953 and relates only to accidents in which passenger cars were involved. The accidents were motor-vehicle traffic accidents occurring on public roadways and involving motion.

Definitions

Direct costs are defined as the money value of damages and losses to persons and property that were the direct result of these accidents and which might have been saved had these accidents not occurred. Direct costs are composed of the money value of damage to property; hospitalization; services of physicians, dentists, and nurses; ambulance use; medicine; work time lost; damages awarded in excess of other direct costs; attorneys' services; court fees; and other miscellaneous but small items.
The type of collision was determined by the direction of travel of the vehicles involved before the collision, and not by what took place because of efforts on the part of drivers to avoid collision. Thus, any collision involving an intentional change of direction such as a right, left, or U-turn was classified as a turning movement, even though this may have resulted in a head-on or rear-end type of collision. Similarly, an angle collision resulted when two or more vehicles, each traveling in a straight line, came together at an intersection. Al-
though one or both drivers may have swerver to avoid impact and collided in a sideswip fashion, this was still classified as an angh collision. On the same basis, a collision in volving a vehicle entering or leaving a parkins space was classified as a parking maneuver even though the vehicle struck, or was strucl by another, in a head-on, rear-end, or side swipe fashion. A sideswipe occurred only when vehicles collided while overtaking ani passing in the same direction, passing in thi opposite direction, or passing a parked vehicle

All other definitions are from the manua Uniform Definitions of Motor-Vehicle Accidents 1947, prepared under the auspices of thi National Conference on Uniform Traffic Acci dent Statistics and published by the Federa Security Agency, U. S. Public Health Service

In 1953 the population of Massachusett; was $4,773,000$. There were $1,239,000$ regis tered passenger cars and $1,858,000$ licensec operators who drove their cars 11,628 millior vehicle-miles over the Commonwealth's 24,50 (miles of streets and highways. These passen ger-car operators experienced 222,000 involve ments in 131,500 accidents that resulted in s direct cost of $\$ 50,224,000$.

Accident Severity

All motor-vehicle traffic accidents fall ints one of three severity classes-property damage-only accidents, nonfatal-injury acci dents, and fatal-injury accidents.

Table 1 shows the accident experience o Massachusetts passenger-car operators durin ξ 1953 and brings into focus the numerical rela. tion of accidents of different severity. Thi 33,270 nonfatal-injury accidents and the 31 t fatal-injury accidents are in the ratio of 106:1 This ratio is slightly more than 3 times the 35: 1 injury-to-fatal-accident ratio ordinarily used in estimating the cost of accidents Whether or not this high ratio will hold ir predominantly rural States will be knowr within a short time when results of the Utal and New Mexico studies are available.

It is apparent from table 1 that 3 out of 4 motor-vehicle traffic accidents resulted ir property damage only, 1 out of 4 accident: resulted in a nonfatal injury, and only 1 in 41 i accidents resulted in a fatal injury. It is alsc evident that there were 106 times as many nonfatal-injury accidents and 311 times as many property-damage-only accidents as there were fatal-injury accidents per 100 mil . lion vehicle-miles of travel.

On a population basis, there was 1 fata
able 1.-Motor-vehicle traffic accidents involving passenger cars in Massachusetts during 1953, classified by severity of accident

${ }^{1}$ Rounded from 2.7 .
able 2.-Direct cost of motor-vehicle traffic accidents involving passenger cars in Massachusetts during 1953, classified by severity of accident

Severity of accident	Total direct cost	Percent of total	Total direct cost-					
			$\begin{gathered} \text { Per } \\ \text { accident } \end{gathered}$	$\underset{\text { capita }}{\text { Per }}$	Per passenger car registered	Per licensed operator	Per mile of road	Per 100 million vehiclemiles of travel
Fatal injury	$\begin{gathered} 1,000 \\ \text { dollars } \\ 1,642 \end{gathered}$	3.3	\$5, 213	\$0. 34	\$1. 32	\$0.88	\$67	$\begin{gathered} 1,000 \\ \text { dollars } \\ 14 \end{gathered}$
Nonfatal injury	28, 688	57.1	\$862	6.01	23.15	15. 44	1,171	247
Property damage only	19,894	39.6	203	4.17	16.06	10.71	1, 812	171
All accidents..	50, 224	100.0	382	10.52	40.53	27.03	2,050	432

ccident for every 15,152 persons, 1 nonfataljury accident for every 143 persons, and 1 roperty-damage-only accident for every 49 ersons. The accident severity rate for pasenger cars registered was as follows: 1 fatal ccident for every 3,933 passenger cars, 1 non-atal-injury accident for every 37 passenger ars, and 1 property-damage-only accident or every 13 passenger cars. The accident everity rate for licensed passenger-car drivers ras 1 fatal-injury accident for every 5,898 rivers, 1 nonfatal-injury accident for every 6 drivers, and 1 property-damage-only accient for every 19 drivers.
The direct costs of motor-vehicle traffic ccidents in Massachusetts are presented in able 2. It should be remembered in considring these costs that they apply only to ccidents involving passenger cars, and they lo not include any indirect costs such as the resent value of future earnings and the overead cost of motor-vehicle accident insurance. After comparing the number of accidents vith the costs shown in table 2, it is found that fatal accident with a direct cost of $\$ 5,213$ is he equivalent of either 6 nonfatal-injury accilents with a direct cost of $\$ 862$ each or 25 roperty-damage-only accidents with a direct ost of $\$ 203$ each. However, it is also ap-
parent that on the basis of 100 million vehiclemiles of travel, property-damage-only accidents cost 12 times as much and nonfatalinjury accidents, 18 times as much as the cost of fatal accidents.

Furthermore, table 2 shows that from the economic point of view, nonfatal-injury accidents were by far the most significant. They accounted for 57 cents of every accident directcost dollar. Property-damage-only accidents accounted for 40 cents of every accident direct-cost dollar, whereas the emotion-packed and often highly dramatized fatal accident accounted for only 3 cents. This comparison does not minimize the personal tragedy of fatal accidents.

The relation of direct cost of accidents to population, licensed operators, passenger cars registered, and road mileages are also given in table 2.

The per capita cost ranged from 34 cents for fatal-injury accidents to $\$ 6.01$ for non-fatal-injury accidents, and the total direct cost for all accidents averaged $\$ 10.52$ per capita.

On the basis of direct cost per passengercar registered, the range was from $\$ 1.32$ for fatal-injury accidents to $\$ 23.15$ for nonfatalinjury accidents. The total direct cost of all
[able 3.-Motor-vehicle traffic accidents involving passenger cars in Massachusetts during 1953, classified by type of accident

Number and rate of accidents	Passenger cars colliding with-				Noncollision accidents	$\begin{gathered} \text { All } \\ \text { accidents } \end{gathered}$
	$\begin{aligned} & \text { Other } \\ & \text { motor } \\ & \text { vehicles } \end{aligned}$	Pedes. trians	Fixed objects	Other objects		
	109, 700	5,900		6,400		131,500
Percent of total	83.4	4.5	5.5	4.9	1.7	100.0
Number of accidents per 100 million vehiclemiles of travel	943	51 809	63	${ }_{7}^{55}$	19	1,131
Number of persons per accident..-1.-.-....-	44	809	654	746	2,170	36
Number of passenger cars registered per accident	11	210	170	194		14
Number of licensed operators per accident.	17	315	255	290	845	14

Figure 1.-Direct cost of traffic accidents per passenger-car mile of travel in Massachusetts during 1953, classified by severity of accident.
accidents was $\$ 40.53$ per passenger car registered.

Similar comparisons of costs per licensed passenger-car operator and per mile of road indicated a range of 88 cents to $\$ 15.44$ and $\$ 67$ to $\$ 1,171$ for fatal- and nonfatal-injury accidents, respectively.

Figure 1 shows that the direct cost of operating a passenger car 1 mile was 0.17 cent for property-damage-only accidents, 0.25 cent for nonfatal-injury accidents, and 0.01 cent for fatal-injury accidents, or a total of 0.43 cent for each mile of passenger-car operation.

Type of Accidents

Motor-vehicle traffic accidents fall into one of five types: collision between motor vehicles, collision with pedestrians, collision with fixed objects, collision with other objects, and the noncollision-type accidents in which the vehicle turns over in the road or runs off the road.

It is evident in table 3 that of all accident types, collisions between inotor vehicles were by far the most numerous. More than 8 out of 10 accidents involving passenger cars were of this type. Furthermore, out of a total of 1,131 accidents per 100 million vehicle-miles of travel, 943 involved passenger-car collisions with other motor vehicles.
Second from the standpoint of numbers of accidents was passenger-car collisions with objects, fixed and otherwise. This type accounted for 1 out of 10 accidents. About 1 in every 20 accidents involved passenger cars and pedestrians, and less than 1 in 50 accidents were the noncollision type. However, the number of accidents alone is not a measure of the relative economic significance of accidents of different types; both the number and the severity of accidents must be considered.

By relating the number of accidents as shown in table 3 with population, passenger cars registered, and licensed drivers, accident rates were as follows:

Table 4.-Direct cost of motor-vehicle traffic accidents involving passenger cars in Massachusetts during 1953, classified by type of accident

Type of accident	Total direct cost	Percent of total	Total direct cost-					
			Per accident	Per capita	Per passenger car registered	Per licensed operator	Per mile of road	Per 100 million vehiclemiles of travel
Passenger-car collision withOther motor vehicles.	1,000 dollars 41, 816	83.3	\$381	\$8. 76	\$33.75	\$22. 50	\$1,707	$\begin{aligned} & \text { 1,000 } \\ & \text { dollars } \\ & 360 \end{aligned}$
Pedestrians........--	3,375	6.7	\$72	\$8.71	\$3.72	1.82	+138	29
Fixed objects.	3,023	6.0	414	. 63	2.44	1.63	123	26
Other objects..	, 673	1.3	105	. 14	. 54	. 36	27	6
Noncollision accidents.	1,337	2.7	608	. 28	1.08	. 72	55	11
All accidents.......	50,224	100.0	382	10.52	40.53	27.03	2, 050	432

There was 1 collision between motor vehicles for every 44 persons, 1 collision with pedestrians for every 809 persons, 1 collision with fixed objects for every 654 persons, 1 collision with other objects for every 746 persons, and 1 noncollision accident for every 2,170 persons.

On the basis of passenger cars registered, there was 1 collision between motor vehicles for every 11 passenger cars, 1 collision with pedestrians for every 210 passenger cars, 1 collision with fixed objects for every 170 passenger cars, 1 collision with other objects for every 194 passenger cars, and 1 noncollision accident for every 563 passenger cars.

Considering the number of licensed operators, there was 1 collision between motor vehicles for every 17 drivers, 1 collision with pedestrians for every 315 drivers, 1 collision with fixed objects for every 255 drivers, 1 collision with other objects for every 290

Figure 2.-Direct cost of traffic accidents per passenger-car mile of travel in Massachusetts during 1953, classified by type of arcident.
drivers, and 1 noncollision accident for every 845 drivers.
The average direct cost for each type of accident, as shown in table 4, was found to be as follows: Collisions between motor vehicles, $\$ 381$; collisions of passenger cars with pedestrians, $\$ 572$; collisions with fixed objects, $\$ 414$; collisions with other objects, $\$ 105$; and noncollision accidents, $\$ 608$.
These average costs reflect the severity of accidents of different types rather than their economic importance. It was found that noncollision accidents were the most severe type of accident, and following in
order were passenger-car collisions wit pedestrians, passenger-car collisions wit. fixed objects, collisions between motor $\mathrm{v} \epsilon$ hicles, and passenger-car collisions with othe objects.

The overriding economic impact of coll sions between motor vehicles is made quit clear in table 4. Out of every accident direct. cost dollar, 83 cents applied to this type c accident. On the basis of 100 million vehicle miles of travel, collisions between moto vehicles cost five times as much as all othe types of accidents combined.

Other types of accidents ranked in orde of cost (fractional parts of a dollar) were a follows: passenger cars colliding with pedes trians, 7 cents; collisions with fixed objects 6 cents; noncollision accidents, 3 cents; an collisions with other than fixed objects, 1 cent

By relating the direct cost data in table 4 t population, passenger cars registered, license operators, and road mileages, accident cos rates were determined as follows:

The per capita direct cost was $\$ 8.76$ fo collisions with other motor vehicles, 71 cent for collisions with pedestrians, 63 cents fo collisions with fixed objects, 14 cents fo collisions with other objects, and 28 cents fo noncollision accidents.

Table 5.-Number of collisions between passenger cars or passenger cars and other moto vehicles in Massachusetts during 1953, classified by type of collision

Number and rate of collisions	Type of collision								All collisions
	Angle	Rearend	Headon	Sideswipe, same direction	Parking maneuver	Turning movement	Backing in traffic lane	Sideswipe, opposite direction	
Number of collisions.	53, 200	22,500	12,800	7,100	5,200	4,800	2, 600	1,500	109, 700
Percent of total	48.5	20.5	11.7	6.5	4.7	4.4	2.4	1.3	100.0
Number of collisions per 100 million vehicle-miles of travel.	458	193	110	61	45	41	22	13	943
Number of persons per collision	90	212	373	${ }^{1} 225$	--	-			44
Number of passenger cars registered per collision.	23	55	97	158	---------	---------	---------	----------	11
Number of licensed operators per collision.	35	83	145	188	------	-------	------	-------	17

${ }^{1}$ Includes "sideswipe, same direction" and the four remaining types of collisions.
Table 6.-Direct cost of collisions between passenger cars or passenger cars and othe motor vehicles in Massachusetts during 1953, classified by type of collision

Type of collision	Total direct cost	$\begin{gathered} \text { Percent } \\ \text { of } \\ \text { total } \end{gathered}$	Total direct cost-	
			Per collision	Per 100 million vehiclemiles of travel
Angle.-	$\begin{gathered} 1,000 \\ \text { dollars } \\ 17,386 \end{gathered}$	41.6	\$327	$\begin{gathered} 1,000 \\ \text { dollars } \\ 150 \end{gathered}$
Rear-end	10,842	25. 9	482	93 78
Sideswipe, same direction.	1,958	4.7	276	17
Parking maneuver...-----	-599	1.4	115	5
Turning movement...	1,114	2.7	232	10
Backing in traffic lane-......	133	. 3	51	1
Sideswipe, opposite direction All collisions.	706 41,816	1.7 100.0	${ }_{381}^{471}$	6 360

able 7.-Number of accidents involving passenger cars (other than collisions between motor vehicles) in Massachusetts during 1953, classified by type of accident

Number and rate of accidents	Passenger cars colliding with-			$\begin{aligned} & \text { Noncolli- } \\ & \text { sion } \\ & \text { accidents } \end{aligned}$	Total
	Pedestrians	Fixed objects	Other objects		
Number of accidents.	5,900	7,300	6, 400	2,200	21,800
	27.1	33.5	29.3	10.1	100.0
Number of accidents per 100 million vehicle-miles of travel.	51	63	55	19	188
Number of persons per accident.-.......................	809	654	746	2, 170	219
Number of registered passenger cars per accident...... Number of licensed operators per accident.........	${ }_{315}^{210}$	170 255	194 290	563 845	57 85

able 8.-Direct cost of accidents involving passenger cars (other than collisions between motor vehicles) in Massachusetts during 1953, classified by type of accident

Type of accident	Total direct cost	Percent of total	Total direct cost-				
			$\begin{gathered} \text { Per } \\ \text { accident } \end{gathered}$	$\begin{aligned} & \text { Per } \\ & \text { capita } \end{aligned}$	Per passenger car registered	$\begin{aligned} & \text { Per } \\ & \text { licensed } \\ & \text { operator } \end{aligned}$	Per 100 million vehiclemiles of travel
Passenger-car collision with-	$\begin{gathered} 1,000 \\ \text { dollars } \end{gathered}$						1,000 dollars
Pedestrians.	3,375	40.1	\$572	\$0.71	\$2. 72	\$1. 82	29
Fixed objects.-	3, 023	36.0	414	. 63	2. 44	1. 63	26
Other objects.....	673	8.0	105	. 14	. 54	. 36	6
Noncollision accidents All accidents.-.	1,337 8,408	15.9 100.0	608 386	1. 28	1. 68	$\begin{array}{r}\text { - } \\ 4.53 \\ \hline\end{array}$	11
					6.8		

The direct cost per passenger-car registered as $\$ 33.75$ for passenger-car collisions with her motor vehicles, $\$ 2.72$ for collisions with destrians, $\$ 2.44$ for collisions with fixed bjects, 54 cents for collisions with other jjects, and $\$ 1.08$ for noncollision accidents.
The direct cost per licensed passenger-car berator was $\$ 22.50$ for passenger-car collions with other motor vehicles, $\$ 1.82$ for llisions with pedestrians, $\$ 1.63$ for collisions ith fixed objects, 36 cents for collisions with her objects, and 72 cents for noncollision cidents.
The direct cost per mile of road was $\$ 1,707$ r passenger-car collisions with other motor hicles, $\$ 138$ for collisions with pedestrians, 23 for collisions with fixed objects, $\$ 27$ for llisions with other objects, and $\$ 55$ for ncollision accidents.
Figure 2 shows that the cost of operating a issenger car 1 mile was 0.36 cent for collisions tween motor vehicles, 0.029 cent for pas-nger-car collisions with pedestrians, 0.026 nt for passenger-car collisions with fixed bjects, 0.006 cent for passenger-car collisions ith other objects, 0.011 cent for noncollision cidents, and a total accident direct cost of 43 cent per mile.

Collisions Between Motor Vehicles

All collisions between motor vehicles fall to one of the eight collision types as shown table 5. The different types of collisions e listed in the order of their numerical uportance. Angle collisions, which were by r the most numerous, accounted for nearly
half of the collisions between motor vehicles. About 1 out of 5 collisions was a rear-end collision, and one in 9 was a head-on collision. These three collision types accounted for 80 percent of all collisions between motor vehicles.
There were less than half as many rear-end collisions and approximately one-fourth as many head-on collisions as there were angle collisions per 100 million vehicle-miles of travel. On this same basis there were more rear-end collisions than there were collisions of the following five types combined: sideswipes in the same direction, parking-maneuver collisions, turning-movement collisions, back-ing-in-traffic-lane collisions, and sideswipes in the opposite direction. In fact, these five types together accounted for only one-fifth of all collisions between motor vehicles.

Collision rates based on travel, population, registered vehicles, and licensed operators further emphasize the high frequencies of the angle type of collision.

It is evident from table 6 that angle collisions ranked far above all other types in economic importance. Almost 42 cents of the direct-cost dollar spent for collisions between motor vehicles resulted from angle collisions. The rear-end collision ranked second and accounted for almost 26 cents of every dollar spent for collision accidents. Following closely were head-on collisions, which accounted for almost 22 cents of every collisioncost dollar. The five remaining types of collisions were of considerably less economic importance. Together they accounted for less than 11 cents of every dollar.

A comparison of the average direct cost per collision reveals that the head-on type of collision was by far the most expensive of all types, and was followed in order by rearend, sideswipe (opposite direction), and angle collisions.

The direct cost of operating a passenger car 1 mile, as shown in figure 3 , was 0.15 cent for angle collisions, 0.09 cent for rear-end collisions, 0.08 cent for head-on collisions, and 0.04 cent for all other types of collisions. The total direct cost of all types of collisions between motor vehicles was 0.36 cent per mile of passenger-car operation.

Accidents, Excluding Collisions Between Motor Vehicles

Passenger-car accidents other than collisions between motor vehicles are ordinarily classified into eight types as follows: collisions with fixed objects, collisions with pedestrians, collisions with bicycles, collisions with animals or animal-drawn vehicles, collisions with railroad trains, collisions with streetcars, collisions with other objects, and noncollision accidents. However, since accidents involving collisions with bicycles, animals or animaldrawn vehicles, trains, and streetcars together accounted for less than 3,000 of the almost 22,000 passenger-car accidents, excluding collisions between motor vehicles, these four accident types were combined with other objects in tables 7 and 8.

Of the 21,800 accidents other than collisions between motor vehicles, 1 out of 10 was a

Figure 3.-Direct cost of collisions between passenger cars or passenger cars and other motor vehicles per passenger-car mile of travel in Massachusetts during 1953, clasified by type of collision.
noncollision type in which the vehicle turned over in the road or ran off the road without striking anything. In 9 out of 10 accidents, the passenger car struck something other than another motor vehicle.

The costs shown in table 8 represent 16.6 percent of the total direct cost of all motorvehicle traffic accidents experienced by Massachusetts passenger-car drivers during 1953. Not included in the table are collisions between motor vehicles.

Among the four types of accidents shown, collisions with pedestrians were of the greatest economic importance. Collisions with fixed objects ranked second, noncollision accidents ranked third, and collisions with other objects ranked last. On the basis of cost per accident, the noncollision-type accident ranked first and was followed by collisions with pedestrians, collisions with fixed objects, and collisions with other objects.

Direct Costs Summarized

The severity-class dollar illustrated in figure 4 is representative of the $\$ 50,224,000$ spent on accidents in Massachusetts during 1953. This diagram shows that the cost of nonfatal-injury accidents is greater than that of fatal accidents and property-damage-only accidents combined. The diagram also portrays the minor economic role of fatal accidents.

The accident-type dollar, as diagramed in figure 4, brings accidents of different types into proper economic perspective. It illustrates the overriding economic importance of collisions between motor vehicles.

Figure 4 also illustrates the allocation of costs for the various types of collisions between motor vehicles. Angle, rear-end, and head-on collisions accounted for 90 cents of the colli-sion-between-motor-vehicles dollar.

The noncollision and collision-with-objects dollar, as diagramed in figure 4 , is the equivalent of a 17 -cent segment of the accident-type dollar. It is representative of the $\$ 8,408,000$ spent for noncollision accidents and passengercar collisions with objects other than another motor vehicle.

Figure 4.-Direct cost of passenger-car accidents shown as fractional parts of a dollar and classified according to severity of accident, type of accident, type of motor-vehicle collision, and other types of collision and noncollision accidents.

Continued from page 37)
weighted average truck speed was entered in figure 6 to determine from the curve the truck equivalent in terms of passenger cars. Capacity analysis then was completed as previously described.

Descriptions of working procedures and the application of these data in estimating the requirements for truck lanes or other design modifications are discussed also in the manuals $(7,8)$ published by the State highway departments of Kentucky and Tennessee.

REFERENCES

(1) American Association of State Highway Officials

A policy on geometric design of rural highways. Published by the Association, 1954, Washington, D. C., 655 pp .
(2) Bureau of Public Roads

Highway capacity manual. Published by the Bureau, 1950, Washington, D. C., 147 pp. (3) Saal, Carl C.

Hill-climbing ability of motor trucks. Public Roads, vol. 23, No. 3, May 1942.
(4) Taragin, Asriel

Effect of length of grade on speed of motor vehicles. Proceedings of the Highway Research Board, vol. 25, 1945, pp. 342-353.
(5) Willey, William E.

Survey of uphill speeds of trucks on mountain grades. Proceedings of the Highway Research Board, vol. 29, 1949, pp. 304-310. Truck congestion on uphill grades. Highway

Research Board bulletin 104, 1955, pp. 21-3 Survey of downhill speeds of trucks on mountai grades. Proceedings of the Highway Researc Board, vol. 30, 1950, pp. 322-329.
(6) Huff, T. S., and Scrivner, F. H.

Simplified climbing-lane design theory an road-test results. Highway Research Boar bulletin 104, 1955, pp. 1-11.
(7) Commonwealth of Kentuckx, Di partment of Highways

Manual of engineering procedure for d_{1} termining needs of the Kentucky rural Sta trunkline system. Frankfort, Ky., Feb. 195 (8) Tennessee Higeway Study Commi; SION

Manual of engineering procedure for d termining the needs of the Tennessee Sta highway system. Nashville, Tenn., Apr. 195

Use of the Swiss Hammer for Estimating the Sompressive Strengith of Hardened Concrete

Y THE DIVISION OF PHYSICAL RESEARCH UREAU OF PUBLIC ROADS

Reported ${ }^{1}$ by WILLIAM E. GRIEB, Highway Physical Research Engineer

Abstract

4 simple and portable instrument for use estimating the compressive strength of urdened concrete in place has been deloped recently. The device, popularly rown as the Swiss Hammer, is designed for ld use and is not intended as a substitute r control testing. It is being used in the old to gage increases in concrete strength ith age and in locating low-strength areas hen laboratory tests of control concrete linders or other conditions indicate that th areas might exist. It is also useful in trveys of old structures. The results of the sts given in this article show that factors tch as surface smoothness, surface moisire condition, and type of coarse aggregate fect the strength values obtained by the se of the device.

1
TEST METHOD which is simple, quick, and nondestructive has been developed Ernest Schmidt, a Swiss engineer, for estiating the compressive strength of hardened merete in place. The device consists of a eel plunger or hammer, free to travel in a ibular frame. When the head of the hammer pressed against the surface of concrete, the immer is retracted into the frame against te force of a tension spring. When the head completely retracted, the spring is autoatically released driving the hammer against te concrete. A small sliding pointer indicates ie rebound of the hammer on a graduated ale. The scale is 75 mm . in length, and ads from zero to 100 in equally spaced divions. The amount of this rebound, R, was und by the inventor to be related to the mpressive strength of concrete.

[^7]A number of research organizations have studied the performance of the Swiss Hammer both in the laboratory and in the field. The consensus of their reports is that the empirical relationships between hammer rebound and strength are affected by moisture conditions of the concrete and type of aggregate, thus limiting the usefulness of the hammer to cases where an approximation of strength is all that is required. However, these reports do not include sufficient data to determine fully the capabilities of this instrument.

Testing Procedure

The surface of the concrete selected for test should be smooth and free from any rough spots or honeycomb. A surface produced by form work or troweling is usually satisfactory. When necessary, a smooth surface may be prepared by rubbing with a carborundum stone an area approximately 2 inches in diameter. A suitable stone is furnished in the carrying case of the apparatus.

In performing the test, the hammer is held perpendicular to the surface of the concrete and pressed against it until the hammer is released and strikes the surface of the concrete. While the device is still pressed firmly against the concrete, a button on the side of the instrument is pressed which locks the pointer in position. This permits the removal of the device to facilitate reading the amount of rebound. The apparatus is shown in figure 1.

For any selected area, five or more rebound readings are taken and the average of these readings is used to estimate the compressive strength. Areas where the reinforcing steel is known to be close to the surface, or where the coarse aggregate is exposed, are avoided.

The manufacturer of the instrument furnished a graph showing the relation between
the compressive strength of the concrete and the rebound readings. This graph has been reproduced as figure 2. The data for establishing the relation represented by the curve were based on tests by the Swiss Federal Testing Laboratory. The curve for estimating the compressive strength shows values of rebound obtained when the hammer is held in a horizontal position against a vertical concrete surface. For other than horizontal positions of the hammer, a correction factor should be applied to the rebound readings before using the curve for estimating the strength of the concrete. A chart giving these correction factors was furnished by the manufacturer. These factors vary with the angle from the horizontal and the amount of the rebound; as the rebound reading increases, the correction factor decreases. For example with a rebound reading of 30 , the corrections applied are as follows:

Angle from	$\begin{aligned} & \text { Correction } \\ & \text { factor } \end{aligned}$
izontal	
90°	-6
60°	5
30°	-3
0	- 0
(downward)	
30°	.- +2
60°	+3
90°	- +4

Laboratory Tests

To determine the value of the Swiss Hammer as a tool for use in estimating the strength of concrete used in highway construction, three series of laboratory tests were made as well as numerous associated studies.

Series 1

The specimens used in this series were 6by 12 -inch cylinders submitted from various field projects. The concretes covered a wide variation in mixes and materials. All tests were made on specimens in a moist condition. Rebound readings were taken on the sides of the cylinders just prior to tests for compressive strength. The cylinders were tested in a vertical position with the side of the cylinder resting against an 8 - by 12 -inch machinedsteel plate which in turn was supported by a wall of the laboratory. The hammer was held horizontal and perpendicular to the side

Figure 2.-Relation between compressive strengths and rebound readings as determined by the manufacturer.
of the cylinder. Usually 12 readings were taken on the side of each cylinder- 3 readings on each quadrant with one reading 1 inch from the top, one at the center, and the other 1 inch from the bottom. Immediately after the rebound readings were taken, the cylinders were tested for compressive strength in a 400,000 -pound hydraulic testing machine.

The results of the impact hammer and compressive strength tests on these cylinders are shown in figure 3. The upper curve represents the average relation between the rebound readings and the actual compressive strength. The strengths as shown by this curve are approximately 50 percent higher than the compressive strengths corresponding to the same rebound readings as shown in the curve furnished with the hammer. For example, the compressive strength for a rebound reading of 20 , as determined from the curve for this series of tests, would be 2,750 p.s.i. as compared with 1,850 p.s.i. from the manufacturer's curve. For a rebound reading of 30 , the compressive strength from the series 1 tests would be 5,300 p.s.i. as compared with only 3,600 p.s.i. from the manufacturer's curve for the same rebound reading.

The results of these tests indicated that the concrete cylinders held in the manner described did not have enough mass or rigidity to give reliable rebound readings, and that some of the energy from the blow may have been absorbed by movement of the cylinders.

Series 2

A second series of tests was made on another group of 6 - by 12 -inch cylinders submitted from projects under construction. To hold the cylinder firmly while the readings were taken with the hammer, each cylinder was
put in the compression testing machine and a small load applied. A load of approximately 300 p.s.i. was found sufficient. Tests showed that greater loads had no effect on the rebound readings. After the rebound readings were taken, the cylinders were tested for compressive strength.

The results of these tests are shown ir figure 4. The compressive strength for any rebound reading, as determined from the upper curve in figure 4, is approximately 18 percent higher than the compressive strengtr based on the curve submitted by the manufacturer of the hammer. Figure 5 shows the Swiss Hammer being used in the series 2 laboratory tests.

Series 3

In series 3 tests, the effect of type of coarse aggregate on the rebound-compressive strengtb relation was studied. All of the concrete cylinders were made in the laboratory and were tested as described in series 2. In the first part of the series (series 3A), four different gravels were used in making the cylinders tested. The results of the tests on thest specimens are shown in figure 6. The spread in compressive strength among the curves representing the concrete prepared with the four gravel coarse aggregates varied from 250 to 600 p.s.i.

In the second part of this series, comparisons were made between concrete prepared with a siliceous gravel and crushed limestone. The curves giving the average relation between rebound readings and compressive strength for concrete containing these aggregates are shown in figure 7. The curve for the concrete prepared with crushed stone aggregate indicated about 25 percent greater strength for a given rebound reading than for the concrete prepared with gravel.

The curve for the relation between rebound readings and compressive strength for the gravel concrete corresponds very closely to that furnished by the manufacturer and shown in figure 2.

Figure 3.-Relation between compressive strengths and rebound readings on 6-by 12-inch concrete cylinders-series 1 tests.

Figure 4.-Relation between compressive strengths and rebound readings on 6-by 12-inch concrete cylinders-series 2 tests.

These tests show that type of coarse aggregate is a governing factor in the reboundcompressive strength relation. This means that the Swiss Hammer is of most value in making comparative tests on concrete prepared with the same coarse aggregate. If comparisons between concretes prepared with different aggregates are desired, curves for the rebound-compressive strength relation for each aggregate should be obtained.

Associated Tests

Rebound readings were taken on the top and bottom of cylinders as cast prior to capping as well as on the sides. The readings were taken as described in the series 1 tests.

Figure 5.-The Swiss Hammer as used in the series 2 tests.

There was considerable difference in the readings on the top, bottom, and sides of the same cylinder. The results are shown in table 1. This table also shows the estimated compressive strengths, which correspond to these readings, taken from the curve furnished
by the manufacturer and the actual compressive strength of the concrete.

The average of the readings taken on the bottoms of all of the cylinders was 23 percent higher than the average of the readings taken on the sides of the cylinders, whereas the average of the readings on the top was only 5 percent higher. An explanation for some of this difference could be a difference between the quality of the concrete in the top and bottom of the cylinder. It is also possible that the cylinders were in a more rigid position when the readings were taken on the top and bottom than they were when readings were taken on the side.

Rebound readings were taken on a few cylinders in a dry condition and then on the same cylinders after immersion in water for 24 hours. The readings on the cylinders in a dry condition in all cases were larger than those in a moist condition. The results of these tests are shown in table 2. The estimated compressive strengths taken from the manufacturer's curve are also shown in this table.

A study was made to determine whether the rebound readings increased with age as the compressive strength increased. Of 12 concrete cylinders made from the same batch of concrete, 4 were tested at an age of 5 days, 4 at 10 days, and 4 at 20 days. The results of these tests are shown in table 3 . The estimated compressive strength and the actual compressive strength of this concrete are also shown. The increase in rebound values was approximately proportional to the increase in the actual compressive strength.

Studies were made of the uniformity of the concrete in 6 - by 6 - by 21 -inch beams, and

Figure 6.-Effect of gravel from different sources on rebound readings of 6-by 12 -inch concrete cylinders-series 3 A tests.

Figure 7.-Effect of type of coarse aggregate on rebound readings of 6-by 12-inch concrete cylinders-series 3B tests.
rebound readings were made on the sides, top, bottom, and ends of 29 beams. Five tests were made on the ends of each beam and 10 tests on each of the other faces. Average values for the entire group of beams were as follows:

Face of beam	$\begin{gathered} \text { Rebound } \\ \text { value } \end{gathered}$
Side	25.5
Top.	23. 6
Bottom	26.1
End	28. 2

It is believed that these values correctly reflect slight differences between the quality
of the concrete in different faces of the beams. With consideration given to the tendency of concrete to "bleed," the bottom of a beam should be more dense and have a higher rebound reading than the sides or the top. The rebound tests at the ends of the beams were made on a concrete specimen with a depth of 21 inches $-31 / 2$ times the depth of concrete at any other point. This may be the reason for the greater readings.

A study was also made of the relation between rebound readings taken on the ends of 6 - by 6 - by $\cdot 21$-inch beams and readings taken on the sides of 6 - by 12 -inch cylinders.

Table 1.-Rebound readings on top, bottom, and side of 6- by 12-inch concrete cylinders

Cylinder number	Average rebound reading on side ${ }^{1}$	Estimated compressive strength ${ }^{2}$	A verage rebound reading on top 1	Estimated compressive strength ${ }^{2}$	Average rebound reading on bottom	Estimated compressive strength 2	Actual compressive strength ${ }^{3}$
		P. s. i.		P. s. i.		P. s. i.	P. s. i.
1	18.3 19.2	1,640 1,750	20.8 22.2	1,960 2,160	24.2	2, 480	2,410
3	20.8	1,750	22.8 21.8	2,100	27.4	2,420 3,050	3,210 3,250
4	21.3	2,040	21.6	2,050	29.4	3,420	2,980
5	21.3	2,040	22.0	2,130	25.4	2,690	3, 290
6	22.2	2,160	22.0	2,130	29.2	3,380	2,800
7	22.8	2,250	24.3	2, 500	26.9	2,960	3,080
8	23.0	2, 280	23.5	2,360	27.4	3, 050	2,950
9	23.5	2,360	24.9	2,600	28.0	3, 160	3,270
10	25.6	2,730	26.0	2,800	30.6	3,650	3,900
11	26.9	2,960	31.0	3,730	34.8	4, 560	3,870
12	26.9	2,960	26.5	2,890	30.2	3, 570	4,180
13	27.9	3,140	30.0	3,530	32.8	4,120	3,800
14	28. 0	3,160	27.0	2,980	33.8	4, 340	4,790
15	28.7	3,290	29.2	3,380	33.8	4,340	4,700
16	29.4	3,420	32.2	3,980	35.8	4, 780	4,200
A verage_-	24.1	2,510	25.3	2, 700	29.6	3,500	3, 540
Index.-	100		105	----.-..--	123		

[^8]${ }^{3}$ Results of strength tests on cylinders.

A beam and a corresponding cylinder were made from the same batch of concrete. Half of the total number of specimens contained gravel coarse aggregate and the other half contained crushed stone. The readings were taken on the beams held against the wall and the cylinders were placed in the testing machine with a small applied load as described in the series 2 tests. The beams were tested for flexural strength after the rebound readings were made.

The rebound values are shown in table 4 for both beams and cylinders, together with the actual compressive strengths of the cylinders and the flexural strengths of the beams. The average of all rebound readings on the cylinders for gravel concrete was 31.2 as compared with 30.9 for the beams made with gravel concrete. The average rebound reading was 32.3 for both cylinders and beams made from stone concrete.
There appears to be a definite relation between rebound readings taken on the ends of the beams and the flexural strength for this series of tests. This relation is shown in figure 8.

The Swiss Hammer could be used to estimate the flexural strength of paving concrete. Readings taken on control beams would indicate increases in flexural strength with age. From these readings, the age at which flexural strength tests should be made to meet specification requirements may be determined. This would reduce the number of control beams necessary.

Field Tests

The Swiss Hammer was used to estimate the strength of several concrete structures in the field. In one case, tests were made on three beam sections cast for post tensioning for use in a concrete bridge. Readings were taken on all beams prior to stressing and on one beam after stressing.

The concrete used in the beams was made with gravel aggregate. Each beam measured approximately 3 feet by 3 feet by 75 feet. Rebound readings were taken along the length of the beam at intervals of about 3 feet from one end to the center. Three readings were taken at each location: one reading 5 to 10 inches from the top, one at the center, and the other about 10 inches from the bottom. The beams were cured with wet burlap on the job site and were in a moist condition when readings were taken. Figure 9 shows the hammer being used on these beams.

Concrete cylinders for control were cast at the same time the beams were made. These were stored on the job for 5 days and then taken to a laboratory for moist storage and testing.

The rebound readings on the beams, the estimated compressive strength of the concrete in each beam as obtained from the curve furnished by the manufacturer (fig. 2), and the actual strengths of the test cylinders are shown in table 5. The average estimated compressive strengths of the beams were approximately 20 percent greater than the average compressive strengths of the test cylinders. Differences in curing and testing

Table 2.-Rebound readings on concrete cylinders in dry condition and after 24 hours immersion in water ${ }^{1}$

Cylinder number	A verage rebound reading, dry	Estimated compressive strength ${ }^{2}$	A verage rebound reading wet	Estimated compressive strength ${ }^{2}$
		P. s. i.		P.s. i.
1	26.8	2,940	25. 0	2,620
2	27.7	3, 100	27.3	3,040
3	27.8	3,120	26.9	2,960
4	28.3	3,220	26.0	2,800
		3,280		
6	29.4	3,420	26.3	2,860
7	34.7	4,540	30. 5	3,630
8	35. 1	4,620	32.8	4,120
9	35.8	4,780	32.5	4, 050
10	37.6	5, 170	34.4	4,470
A verage.-	31.2	3,820	28.9	3,350

1 Each value is an average of 12 readings. Approximate age of dry
cylinders was 14 days.
${ }_{2}$ Estimated values taken from curve in figure 2.
procedures or in materials used may account for this variation.
With few exceptions the individual rebound readings show very little variation from the average. A few readings were excluded because the hammer had probably been held against a piece of exposed aggregate or against a thin layer of mortar over a void.

The Swiss Hammer was also used on the piers of a bridge which were about $2 \frac{1}{2}$ years old. The average compressive strength of control test cylinders at the age of 28 days was reported as 4,500 p.s.i. The average estimated compressive strength of this concrete at $2 \frac{1}{2}$ years, as determined from the rebound readings given in table 6 and the curve in figure 2 , was 5,660 p.s.i.

The reconstruction of a bridge which was about 38 years old offered an excellent opportunity to try the Swiss Hammer on concrete in place and on specimens obtained for tests in the laboratory. This concrete was in good condition. Swiss Hammer readings were taken at four locations on the vertical face of the hand rail of the bridge. The average rebound reading of 40.9 , when checked against the curve in figure 2, indicates a compressive strength of 5,850 p.s.i.

Three prisms approximately 6 inches square and 9 inches high were sawed from the hand rail at about the same location where the rebound readings were taken. After these specimens had been prepared for tests of compressive strength, they were placed under a

Table 4.-Relation between rebound readings on concrete cylinders and beams prepared with two types of aggregate ${ }^{1}$

Gravel concrete				Stone concrete			
Rebound reading		Actual compressive strength of cylinders	Modulus of rupture of beams	Rebound reading		Actual compressive strength of cylinders	Modulus of rupture of beams
Side of cylinders ${ }^{2}$	End of beams ?			Side of cylinders ${ }^{2}$	End of beams ${ }^{2}$		
		P. s. i.	P. s.i. ${ }_{\text {i }}$			$P_{4 .}$ s. i.	P. 8. i.
25.3	23.5	2, 380	450	24.7	25.1	3,660	670
26.0	25.5	3, 220	455	26.3	27.2	4, 220	710
26.6	27.0	3, 640	445	27.1	26.0	4,230	735
26.8	25.2	2, 450	490	27.6	28.0	4,560	720
27.3	27.3	3, 630	460	27.8	28.8	4,550	740
27.9	28.6	3, 190	510	28.1	28.8	4, 760	720
28.4	26.5	3, 570	470	28.6	28.8	4,520	785
29.0	27.3	3,420	420	28.9	28.2	4,740	755
29.2	28.7	3,380	480	29.4	29.6	4,990	690
29.7	28.8	3,740	460	29.6	28. 4	5, 090	720
29.7	30.7	3,840	470	30.4	32.6	5, 400	725
29.8	29.7	3,900	440	30.8	30.4	4, 850	800
30.3 30.4	31.1 30.5	3,490 4,200	480 445	31.1 31.9	29.3 31.4	4,990 5,540	795 735
31.4	30.6	3,990	480	31.9	33.6	5,840	770
31.6	30.6	3, 820	480	32.2	32.0	5, 360	780
31.6	31.8	3,790	560	32.2	34.4	5,430	840
31.7 32.9	30.8 30.1	3,880 3,860	535 595	32.4 32.6	31.9 31.8	5,140 5,650	815 690
33.0	35.0	4,950	515	33.7	35.3	5, 660	930
33.1	33.4	4,450	610	36.0	37.3	6,010	955
34.5	33.5	4,640	575	36.0	37.6	6, 080	905
35. ${ }^{35} 9$	35.1 37.0	4,960 5,400	490 590	38.8 38.8	37.5 38.8	6,100 6,330	775 925
35. 9	37.0	5, 400	590	38.8	38.8	6,330	925
36.2	40.0	4,780	675	39. 1	36.9	6, 620	845
36.2	33.8	4, 420	${ }_{50} 10$	40. 9	40.2	6,740	925
38.6	39.4 40.5	5,140 5,440	595 650	41.2 43.7	39.6 41.9	6,890 7,090	995
41.4		5,440			41.9	7,090	
(31.2)	(30.9)	$(3,950)$	(515)	(32.3)	(32.3)	$(5,350)$	(790)

${ }^{1}$ Figures in parentheses are average values for all tests.
8 Each value is an average of 10 or 12 readings.

Table 3.-Rebound readings on concrete cylinders tested at various ages

Age at test	Average rebound reading 1	Estimated compressive strength 2	Actual compressive strength 3
		P. s.i.	P. 3. i.
Days	21.9	2,10	3,410
10	25.0	2,620	3,920
20	28.3	3,220	4,800

${ }^{1}$ Each rebound reading is an average of 12 readings on each of 4 cylinders.
${ }_{2}$ Estimated values taken from curve in figure 2.
${ }^{3}$ Results of strength tests on cylinders.
small load in the testing machine. Rebound readings of these specimens had an average value of 41.2 , corresponding to an estimated compressive strength of 5,980 p.s.i. The actual compressive strength of the three prisms corrected for H/D (height over depth) averaged 5,470 p.s.i.

In two of the three trials of the Swiss Hammer on concrete structures, direct comparisons could be made between the actual compressive strength of test specimens representing the concrete and the compressive strength as determined from the rebound reading and use of the curve in figure 2. In both cases, the rebound reading indicated a strength 10 to 20 percent higher than was obtained by

Table 5.-Rebound readings obtained with Swiss Hammer in field tests of beams for a post-tensioned bridge

Beam No. 5, age 8 days	Beam No. 5, age 16 days	Beam No. 2, age 35 days	Beam No. 4, age 21 days	Beam No. 4, age 29 days
Rebound Readings ${ }^{2}$				
$\begin{array}{r} 35 \\ 36 \\ 39 \\ 37 \\ 37 \\ 34 \end{array}$	44 447 44 43 43 38 37	$\begin{aligned} & 31 \\ & 39 \\ & 40 \\ & 41 \\ & 38 \\ & 37 \end{aligned}$	$\begin{aligned} & 38 \\ & 38 \\ & 38 \\ & 36 \\ & 37 \\ & 35 \end{aligned}$	$\begin{aligned} & 41 \\ & 42 \\ & 40 \\ & 39 \\ & 40 \\ & 38 \end{aligned}$
$\begin{aligned} & 34 \\ & 41 \\ & 36 \\ & 34 \\ & 33 \\ & 34 \end{aligned}$	44 36 37 36 35 38	39 38 40 37 348 41	$\begin{array}{r}40 \\ 35 \\ 40 \\ 36 \\ 38 \\ 38 \\ \hline 8\end{array}$	$\begin{aligned} & 40 \\ & 38 \\ & 38 \\ & 41 \\ & 39 \\ & 40 \end{aligned}$
$\begin{aligned} & 35 \\ & 33 \\ & 39 \\ & 33 \\ & 35 \\ & 36 \end{aligned}$	$\begin{aligned} & 41 \\ & 37 \\ & 42 \\ & 33 \\ & 36 \\ & 34 \end{aligned}$	36 36 40 40 36 36 36	$\begin{aligned} & 40 \\ & 38 \\ & 38 \\ & 38 \\ & 43 \\ & 39 \end{aligned}$	$\begin{aligned} & 41 \\ & 37 \\ & 42 \\ & 39 \\ & 37 \\ & 38 \end{aligned}$
$\begin{array}{r} 31 \\ 351 \\ 37 \\ 30 \\ 30 \\ 38 \end{array}$	39 37 37 42 34 38 41	36 35 345 34 34 34 34	34 40 38 347 38 38	$\begin{aligned} & 43 \\ & 43 \\ & 47 \\ & 37 \\ & 37 \\ & 44 \end{aligned}$
$\begin{aligned} & 33 \\ & 35 \\ & 37 \\ & 31 \\ & 36 \\ & 40 \end{aligned}$	34 34 37 38 36 39	37 38 37 ------- $---\quad$	$\begin{array}{r} 348 \\ 35 \\ 42 \\ \hdashline-\quad . \end{array}$	$\begin{aligned} & 45 \\ & 38 \\ & 39 \end{aligned}$
				(40.1)
Compressive Strengit ${ }^{4}$ (p. s. i.)				
$\begin{gathered} (4,640) \\ 3,700 \\ 825 \end{gathered}$	$(5,280)$ 4,100 829	$(5,040)$ 4,600 810	$(5,260)$ 4,600 614	$(5,720)$ 4,700 822

[^9]

Figure 8.-Relation between flexural strengths and rebound readings on 6- by 6-by 21inch concrete beams prepared with two types of aggregate.
testing the specimens. It is apparent that the curve given in figure 2 should be used with reservations. For the best determinations, a curve should be prepared showing the relation between strength and rebound reading for concrete of the same type and composition as that to be inspected.

Considerable wear was found on the face of the striking rod of the Swiss Hammer after making the tests described in this article. Check tests made in the laboratory showed little effect on the indicated reading from this wear. However, for extended use it would be desirable to have a harder wearing surface on the face of the hammer.

Factors Affecting Results of Tests Using Swiss Hammer

In using the Swiss Hammer, there are a number of factors whioh affect the readings. The following conditions should be considered in interpreting the results:

Condition of the surface of the concrete.Readings taken on a polished surface are high, whereas readings taken on a rough surface (such as a broomed surface) are low.

Moisture condition on the concrete.-Concrete in a moist condition gives a lower reading than concrete in a dry condition.

Type of coarse aggregate. -The type of coarse aggregate used and possibly the com-
position of the concrete affect the amount of rebound.

Value of the Swiss Hammer

The Swiss Hammer provides a quick and inexpensive method for checking the uniformity and estimating the strength of hardened concrete. It is not intended as a substitute for control test cylinders, nor is it intended to give an accurate measure of the compressive strength of the concrete. It is valuable for use in the field for "trouble shooting" to determine whether test cores are needed and where they should be drilled. It may be used to determine the rate of increase in strength of concrete and to determine when forms can be removed or loads applied. It may also be used to estimate the extent of damage to structures caused by freezing or fire, and to judge the quality of the concrete in old structures.

REFERENCES

A non-destructive concrete tester, by Ernst Schmidt. Concrete, vol. 59, No. 8, Aug. 1951, pp. 34-35; also Indian Concrete Journal, vol. 25, No. 11, Nov. 1951, pp. 243-244.

Novel concrete lester. South African Municipal Magazine, vol. 35, No. 419, July 1952, p. 68.

Table 6.-Rebound readings obtained with a Swiss Hammer in field testing of bridge piers

${ }^{1}$ The respective average rebound readings and estimated compressive strengths of concrete cylinders were as follows: west pier, 41.6 and 6,030 p. S. i.; center pier (east side), 40.8 and 5,870 p. s. i.; center pier (west side), 39.3 and $5,550 \mathrm{p} . \mathrm{s} . \mathrm{i}$ and east pier, 37.7 and 5,200 p. s. 1 .

Figure 9.-Swiss Hammer being used in field testing.

Non-destructive testing of hardened concrete. Indian Concrete Journal, vol. 27, No. 6, June 1953, p. 235.

Rebound test for strength of concrete. National Sand and Gravel Association Technical Information Letter No. 106, Oct. 15, 1954, pp. 5-7.

Test hammer provides new method of evaluating hardened concrete, by Gordon W. Greene. American Concrete Institute Journal, vol. 26, No. 3, Nov. 1954, pp. 249-256.

Concrete acts up. Engineering News-Record, vol. 154, No. 8, Feb. 24, 1955, p. 25.

Relation of rebound-hammer test results to sonic modulus and compressive-strength data, by Perry H. Petersen and Ulrich W. Stoll. Proceedings of the Highway Research Board, vol. 34, 1955, pp. 387-399.

Wind Tumnel for Aerodynamic Testinǵ of Section Models of Suspension Bridgées

3Y THE DIVISION OF PHYSICAL RESEARCH 3UREAU OF PUBLIC ROADS

IWIND TUNNEL for aerodynamic testing of section models of suspension ridges has been constructed at the Bureau of ublic Roads Research Station near Langley, a. It was designed by personnel of the sureau of Public Roads after consulting with fficials of the Aeronautics Section of the Tational Bureau of Standards. Much of the perating equipment and instrumentation was lso built in the Bureau's shops. A few astruments are yet to be provided.
The failure of the Tacoma Narrows Bridge n November 7, 1940, in a wind of moderate elocity made it evident to engineers conerned with the design of suspension bridges at it would be necessary to make a thorough ivestigation of the performance of bridges of is type when subjected to wind action, if iture bridges were to be designed with ssurance that they would be safe from atastrophic motion. Upon the request of a epresentative group of these engineers, the 'ommissioner of Public Roads organized the dvisory Board on the Investigation of Susension Bridges for the purpose of initiating nd correlating such investigations. Followig the recommendation of the Advisory toard, the Bureau engaged in several investiations in cooperation with the Washington oll Bridge Authority, the University of Tashington, the Golden Gate Bridge and [ighway District, the American Institute of teel Construction, and the Oregon State lighway Department.

Previous Studies

The studies that were made in cooperation ith the Washington Toll Bridge Authority ad the University of Washington accomlished the objectives of determining quite atisfactorily the nature of the wind action thich caused the failure of the original girdertiffened Tacoma Narrows Bridge and indiating the design provisions needed to insure he stability of the new truss-stiffened strucure which has replaced it. These studies also howed how a scaled section model, representig a limited length of a suspension bridge and rounted in the wind tunnel on properly esigned springs, may be used to show the erodynamic characteristics of the bridge ithout the necessity of testing a complete cale model.
The studies were extended to cover a numer of other girder- and truss-stiffened bridges acluding the Golden Gate Bridge as originally uilt. The cooperative observations on the

Golden Gate Bridge provided the opportunity to correlate the behavior of a bridge in the field and its model in the wind tunnel. Analytical studies by the late Dr. Friedrich Bleich, ${ }^{1}$ made possible through the cooperation with the American Institute of Steel Construction, provided rational correlation with both the laboratory tests and the field observations.

Major design features which provide aerodynamic stability in the new Tacoma Narrows Bridge are (1) the bottom lateral system which materially increases the torsional stiffness of the structure and raises the frequency of any torsional oscillation which might occur, and (2) the grated slots in the roadway which break up the action of wind forces tending to excite "flutter," a form of coupled oscillation of bending and torsional motions. The studies have shown these design features to be effective in stabilizing other truss-stiffened suspension bridge sections but the nature and degree of the benefit varies. For this reason, tests and studies on a specific design are considered advisable in order to establish the effectiveness and optimum proportions of the stabilizing features. Brief studies on means for stabilizing girder-stiffened sections have not as yet yielded full solutions, and additional data on this factor are needed.

The wind tunnel at the University of Washington, which was specially designed for testing suspension bridge models, was of temporary construction and will not be available for continued studies. The Advisory Board on the Investigation of Suspension Bridges recommended that the Bureau of Public Roads provide facilities to continue the testing of section models. A nationwide survey indicated that it would cost less to provide and operate a special wind tunnel in the laboratory of the Bureau than to make the testsection adaptations and other modifications required to equip an ordinary wind tunnel for this special type of testing. The use of an ordinary wind tunnel would result in an intermittent test program because of the necessity of fitting the program into an already crowded working schedule.

Mr. George S. Vincent, who for 11 years represented the Bureau of Public Roads at the University of Washington while the cooperative wind-tunnel studies were being made there, will be in charge of the Bureau's research program on bridge section models. Mr.

[^10]Vincent is a coauthor of the report Aerodynamic Stability of Suspension Bridges with Special Reference to the Tacoma Narrows Bridge, which was published as a result of the studies made at the University of Washington.

Description of Wind Tunnel

The type of testing required for bridge section models utilizes only relatively low wind velocities but demands fine control of the wind and more than ordinary precision in the measurement of wind velocity. Provision for varying the direction of the wind in the vertical plane is also required. The test section of the new tunnel is open and has a nozzle 6 feet square. Control of the vertical angle of the wind is accomplished by rotating the nozzle about the cylindrical pressure chamber. The model, mounted on springs designed to reproduce the proper scaled frequency of oscillation, can be moved vertically and longitudinally on its supporting mechanism in order to place it in the desired position in the windstream.

Wind velocities up to about 50 feet per second are provided by a 60 -inch double inlet fan driven by a 50 -horsepower direct current motor which can be controlled continuously from creep to a maximum speed of about 500 r. p. m. The airstream from the fan passes through a series of 40 -mesh, stainless steel diffusing screens in a duct which diverges vertically and laterally and leads to a 13 - by 13 -foot pressure chamber, the size being restricted by the headroom available. This produces a very uniform flow of air at the nozzle. A double screen, pivoted at the center of the pressure chamber, can be rotated as may be required to correct the flow when the vertical angle of the windstream is varied. Finely controlled relief or bypass openings just downstream from the fan afford additional control of the wind velocity.

The features described are shown in figure 1. Figure 2 is a photograph showing a section model of the new Tacoma Narrows Bridge mounted on springs in front of the nozzle of the wind tunnel. The carriage for the model, rolling on the tracks which support its ends, can be moved longitudinally with respect to the axis of the windstream, and the entire assembly can be fixed at any desired elevation on the four supporting tubular columns. At the far left, on a concrete pedestal, can be seen one of the axle bearings on which the nozzle may be rotated vertically by raising or lowering its outlet end.

Figure 1.-Side elevation giving shape and principal dimensions of wind tunnel.

Figure 2 also shows two pitot-static tubes mounted at the sides of the nozzle. These can be moved to cover any part of the airstream at the nozzle and for some distance downstream. They are connected to the manometer at the left which is read by a micrometermounted telescope. The console in the foreground carries the controls for the fan motor and for the bypass shutter mechanism as well as meters indicating the rate of rotation of the fan, the amperage of the drive motor, and the amperage of the motor-generator converter. Space is also provided for other meters and instruments to be used in the tests.

Following tests of the characteristics and control of the windstream itself, the tunnel will be used to repeat tests on section models previously tested in the wind tunnel at the University of Washington in order to determine whether they are influenced by individual "tunnel effects" such as are commonly observed in aeronautical research. High on the list of subsequent testing will be studies to discover means for stabilizing girderstiffened suspension bridges.

The wind tunnel can be used to study a variety of problems involving wind-excited vibration of structures such as overhead signs on expressways, for example. For tests requiring wind velocities exceeding 50 feet per second, the nozzle can be choked with false walls, provided the dimensions of the model permit reducing the height or width of the test section.

Figure 2.-Nozzle of wind tunnel with a bridge section mounted in front. The console i the foreground provides controls for the operation of the wind tunnel.

Power Shovel Productivity: A Motion Picture

The Bureau of Public Roads, U. S. Department of Commerce, recently announced the release of a new motion picture, Power Shovel Productivity. The film, based on extensive studies conducted by Public Roads, highlights the job conditions that determine the yardage output of power shovels on highway grading work, and demonstrates how production is affected by the speed of dipper cycle, size of dipper load, and frequency and duration of minor delays.

The motion picture is a $16-\mathrm{mm}$. sound and color film with a running time of 30 minutes. Prints may be borrowed for showings by any responsible organization by request addressed to Visual Education, Bureau of Public Roads, Washington 25, D. C. There is no charge except for the express or postage fees. At the present time, bookings are solid through the summer months. Requests for the film should be sent well in advance of the desired showing and alternate dates for showing
should be given if possible. Immediate retu after each showing is necessary, so that ε requested bookings may be fulfilled.

Prints of the film may be purchased $\$ 111.88$ per copy, the price including film, ref can, and shipping container, and postal within the United States. Inquiries shou be addressed to Visual Education, Bureau Public Roads, Washington 25, D. C. Pa ment should not be sent with the inquiry.

The following publications are sold by the Superintendent of Documents, (vernment Printing Office, Washington 25, D. C. Orders should be st direct to the Superintendent of Documents. Prepayment is required.

NNUAL REPORTS

ork of the Public Roads Administration:
1941, 15 cents. 1948,20 cents.
1942, 10 cents. 1949, 25 cents.
1blic Roads Administration Annual Reports:
$1943 ; 1944 ; 1945 ; 1946 ; 1947$.
(Free from Bureau of Public Roads)
inual Reports of the Bureau of Public Roads:
$\begin{array}{lll}1950,25 \text { cents. } & 1953 \text { (out of print). } & 1956,25 \text { cents. } \\ 1951,35 \text { cents. } & 1954 \text { (out of print). } & 1957,30 \text { cents. } \\ 1952,25 \text { cents. } & 1955,25 \text { cents. } & \end{array}$

JBLICATIONS

Report of Factors for Use in Apportioning Funds for the National System of Interstate and Defense Highways, House Document No. 300 (1958). 15 cents.
bliography of Highway Planning Reports (1950). 30 cents. aking Performance of Motor Vehicles (1954). Out of print. onsideration for Reimbursement for Certain Highways on the Interstate System, House Document No. 301 (1958). 15 cents. onstruction of Private Driveways, No. 272 MP (1937). 15 cents. fiteria for Prestressed Concrete Bridges (1954). 15 cents.
esign Capacity Charts for Signalized Street and Highway Intersections (reprint from Public Roads, Feb. 1951). 25 cents.
ectrical Equipment on Movable Bridges, No. 265T (1931). 40 cents.
hctual Discussion of Motortruck Operation, Regulation, and Taxation (1951). 30 cents.
nancing of Highways by Counties and Local Rural Governments: 1931-41, 45 cents; 1942-51, 75 cents.
rst Progress Report of the Highway Cost Allocation Study, House Document No. 106 (1957). 35 cents.
eneral Location of the National System of Interstate Highways, Including All Additional Routes at Urban Areas Designated in September 1955. 55 cents.
ghway Bond Calculations (1936). 10 cents.
ghway Capacity Manual (1950). $\$ 1.00$.
ghway Needs of the National Defense, House Document No. 249 (1949). 50 cents.
ghway Practice in the United States of America (1949). 75 cents.
ghway Statistics (annual):

1945 (out of print).	1949,55 cents.	$1953, \$ 1.00$.
1946 (out of print).	1950 (out of print).	1954,75 cents.
1947 (out of print).	1951,60 cents.	$1955, \$ 1.00$.

1947 (out of print).
1948, 65 cents.
1951, 60 cents.
ghway Statistics, Summary to 1955 . \$1.00.
ghways in the United States, nontechnical (1954). 20 cents.
ghways of History (1939). 25 cents.
entification of Rock Types (reprint from Public Roads, June 1950). 15 cents.
terregional Highways, House Iocument No. 379 (1944). 75 cents.

PUBLICATIONS (Continued)

Legal Aspects of Controlling Highway Access (1945). 15 cents. Local Rural Road Problem (1950). 20 cents.
Manual on Uniform Traffic Control Devices for Streets and Highways (1948) (including 1954 revisions supplement). $\$ 1.25$.

Revisions to the Manual on Uniform Traffic Control Devices for Streets and Highways (1954). Separate, 15 cents.
Mathematical Theory of Vibration in Suspension Bridges (1950) $\$ 1.25$.
Needs of the Highway Systems, 1955-84, House Document No. 120 (1955). 15 cents.
Opportunities in the Bureau of Publio Roads for Young Engineers (1958). 20 cents.

Parking Guide for Cities (1956). 55 cents.
Principles of Highway Construction as Applied to Airports, Flight Strips, and Other Landing Areas for Aircraft (1943). \$2.00.
Progress and Feasibility of Toll Roads and Their Relation to the Federal-Aid Program, House Document No. 139 (1955). 15 cents.
Public Control of Highway Access and Roadside Development (1947). 35 cents.

Public Land Acquisition for Highway Purposes (1943). 10 cents.
Public Utility Relocation Incident to Highway Improvement, House Document No. 127 (1955). 25 cents.
Results of Physical Tests of Road-Building Aggregate (1953). $\$ 1.00$.
Roadside Improvement, No. 191MP (1934). 10 cents.
Selected Bibliography on Highway Finance (1951). 60 cents.
Specifications for Aerial Surveys and Mapping by Photogrammetric Methods for Highways, 1956: a reference guide outline. 55 cents.
Standard Specifications for Construction of Roads and Bridges on Federal Highway Projects, FP-57 (1957). \$2.00.
Standard Plans for Highway Bridge Superstructures (1956). $\$ 1.75$.
Taxation of Motor Vehicles in 1932. 35 cents.
Tire Wear and Tire Failures on Various Road Surfaces (1943). 10 cents.
Transition Curves for Highways (1940). \$1.75.

[^11]UNITED StATES
Government Printing Office division of public documents WASHINGTON 25, D. C. OFFICIAL BUSINESS

If you do not desire to continue to receive this publication, please CHECK HERE \square; tear off this label and return it to the above address. Your name will then be promptly removed from the appropriate mailing list.

1/ Includes additional funds authorised by Federal~A1d Highvay Act of 1958 ,
apportioned April 16,1958 .

[^0]: ${ }^{1}$ This article was presented at the 36th Annual Meeting of the Highway Research Board, Washington, D. C., January 1957. Mr. O. K. Normann was appointed Deputy Assistant Commissioner, Office of Research, effective September 8, 1957.

[^1]: ${ }^{2}$ Italic numbers in parentheses refer to the list of references on $p .44$.

[^2]: 1 As determined prior to the passage of the Federal-Aid Highway Act of 1956.
 2 On new construttion or recostruction , ,2-foot tanes should be used with voiumes above 1, ,200 vehicles per day when truck traffic is more than 5 percent.
 3 All 4 -lane highways shall be divided. Whenever possible the median shall be at least 20 feet wide, and in no case less than the 4 -foot barrier type. Percentage feasible.
 Not applicable.

[^3]:

[^4]: ${ }^{1}$ Based on 5 -percent truck traffic during 30th highest hour (12 percent of ADT).
 2 Percentage of 1,500 -foot passing sight distance is used for all operating speeds except those below 45 miles per hour. The $1,000-\mathrm{foot}$ values are applicable to all operating speeds.

[^5]: ${ }^{3}$ Studies have not been conducted at locations with more than 20 percent dual-tired trucks and have been confined principally to locations with less than 10 percent of these vehicles during the periods of peak tlow. Further studies may indicate that for certain conditions the truck factor does change with a change in the percentage of trucks, bat as yet there is no evidence to indicate whether it mcreases or decreases with an increase in the number or percentage of trucks.

[^6]: This article was presented at the 37th Annual Meeting of the Highway Research Board, Washington, D. C., January 1958.

[^7]: : This article was presented at the 3rth Annual Meeting the Highway Research Board, Washington, D. C., Janry 1958.

[^8]: ${ }^{1}$ Each rebound value on side is an average of 12 readings; values on top and bottom are averages of 5 readings.
 Estimated values taken from curve in figure 2.

[^9]: ${ }_{1}$ Readings taken after beam had been stressed. ${ }_{2}$ Figures in parentheses are averages of all rebound readings.
 ${ }^{3}$ Readings not included in averages.

 - Figures in parentheses represent estimated compressive strengths of concrete, whereas figures immediately below are the actual compressive strengths of the control cylinders. \& Percentage that estimated compressive strength exceeded actual compressive strength of control cylinders.

[^10]: ${ }^{1}$ The mathematicul theory of vibration in suspension bridges, by Bleich, McCullough, Rosecrans, and Vincent. Chapters 3-8. Bureau of Public Roads, 1950.

[^11]: Single copies of the following publications are available to highway engineers and administrators for official use, and may be obtained by those so qualified upon request addressed to the Bureau of Public Roads. They are not sold by the Superintendent of Documents.

 Bibliography on Automobile Parking in the United States (1946)
 Bibliography on Highway Lighting (1937).
 Bibliography on Highway Safety (1938).
 Bibliography on Land Acquisition for Public Roads (1947).
 Bibliography on Roadside Control (1949).
 Express Highways in the United States: a Bibliography (1945).
 Indexes to Public Roads, volumes 17-19 and 23.
 Title Sheets for Public Roads, volumes 24-29.

