Public Roads

AJOURNALOFHIGHWAY RESEARCH

PUBLISHED
BIMONTHLYBYTHE BUREAU OF PUBLIC ROADS , U. S. DEPARTMENT OF COMMERCE, WASHINGTON

Northern Circumferential Highway (State Route 128) which skirts the congested areas of Boston, Mass.

A JOURNAL OF HIGHWAY RESEARCH

 Published BimonthlyVol. 29, No. 4
October 1956
C. M. Billingsley, Editor

BUREAU OF PUBLIC ROADS

Washington 25, D. C.

DIVISION OFFICES

No. 1. 718 National Savings Bank Bldg., Albany 7, N. Y.

Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont.

No. 2. 707 Earles Bldg., Hagerstown, Md.
Delaware, District of Columbia, Maryland, Ohio, Pennsylvania, Virginia, and West Virginia.

IN THIS ISSUL

Highway-User Tax Schedules Recommended in
State Highway Finance Studies

United States-Canadian Border Commercial
Traffic 85
New Publication 96

No. 3. 50 Seventh St., NE., Atlanta 23, Ga.
Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, Tennessee, and Puerto Rico.

No. 4. South Chicago Post Office, Chicago 17, Ill. Illinois, Indiana, Kentucky, Michigan, and Wisconsin.

No. 5. Federal Office Bldg., Kansas City 6, Mo. Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, and South Dakota.

No. 6. 502 U. S. Courthouse, Fort Worth 2, Tex. Arkansas, Louisiana, Oklahoma, and Texas.

No. 7. Old Mint Bldg., San Francisco 3, Calif. Arizona, California, Nevada, and Hawaii.
No. 8. 753 Morgan Bldg., Portland 8, Oreg. Idaho, Montana, Oregon, Washington, and Alaska.

No. 9. Denver Federal Center, Bldg. 40, Denver 2, Colo.
Colorado, New Mexico, Utah, and Wyoming.

Public Roads is sold by the Superintendent of Documents, Govern ment Printing Office, Washington 25, D. C., at $\$ 1$ per year (25 cents additional for foreign mailing) or 20 cents per single copy. Free distribution is limited to public officials actually engaged in planning or constructing highways, and to instructors of highway engineering. There are no vacancies in the free list at present.

Use of funds for printing this publication approved by the Director of the Bureau of the Budget, Mar. 17, 1955.

Hiğhway-User Tax Schedules Recommended in State Highhway Finance Studies

BY THE FINANCIAL AND ADMINISTRATIVE RESEARCH BRANCH BUREAU OF PUBLIC ROADS
Reported by G. P. St. CLAIR, Chief of Branch, and HUGO C. DUZAN, Transportation Economist

TTHE findings of highway tax studies made by State personnel or consultants in individual States throw some light on the vexatious question of the relative tax responsibility of vehicles of different sizes and weights. Although studies have been made in numerous States, in only nine of them were the findings expressed in terms such that a comparative analysis could readily be made. These States are California, Colorado, Illinois, Louisiana, Minnesota, New York, Ohio, Utah, and Washington. The tables and charts which follow deal with the study findings in those nine States and with comparative data on actual payments under existing user-tax laws.

Appendix B (p. 83) gives a list of the State highway finance and taxation studies which provided the data for this analysis.

Vehicles Selected for Comparison

In order to run the gamut of motor-vehicle sizes and weights, eight typical vehicles or vehicle combinations shown in silhouette below were selected. These vehicles and their assumed operating conditions are briefly described in table 1.

The maximum gross weights chosen are typical of the weights for which vehicles and combinations of these several types would be registered. Annual mileages also are reasonably close to average. For purposes of State-to-State comparison it is assumed that a vehicle travels its entire mileage in the particular State. It is recognized that over-the-road trucking combinations may divide their actual travel among several States, and also that such vehicles may have much greater total mileages than those used in this comparison. The values chosen, although not averages of those used in the studies, are considered moderate and fair. For uniformity of comparison

Abstract

The findings of highway tax studies made in 9 States are compared in this article in terms of the tax payments that would be required of 8 vehicles or vehicle combinations under the recommended user-tax schedules. Comparative data on the payments that would be made under existing tax laws are also given. The payments are expressed in terms of payments per year, payments per mile of travel, and payments per gross ton-mile.

As might be expected, there is considerable variation from State to State in the recommended user-tax payments for each of the 8 vehicles. Nevertheless, there is a marked central tendency in that the study findings, particularly those for heavy vehicles, tend to group within relatively narrow intervals.

The median or "middle" values of the required tax payments per year are $\$ 40$ for the light passenger car, $\$ 1,229$ for the 4 -axle tractor-semitrailer combination, and $\$ 1,836$ for the $\mathbf{5}$-axle tractor-semitrailer-trailer combination. Expressed as indexes of the passenger-car payment, the values for the three vehicles are 1.0, 30.7, and 45.9.

Median tax payments per mile of travel are 0.43 cents for the passenger car, 3.07 cents for the 4-axle tractor-semitrailer combination and 3.67 cents for the tractor-semitrailer-trailer combination. The indexes are 1.0, 7.15, and 8.54.

The trend of median tax payments per gross ton-mile is downward, dropping from 2.2 mills for the passenger car to 1.2 mills for the 4 -axle tractor-semitrailer combination and 1 mill for the 5 -axle tractor-semitrailer-trailer combination. The median indexes of required tax payments per ton-mile are 1.0, 0.55, and 0.46.

all of the vehicles were taken as gasolinepowered.
In calculating required tax payments for the eight selected vehicles from the schedules recommended by the investigators, the effort was made to render an accurate interpretation of the findings of the tax studies in each of the nine States. Values were calculated by two methods. First, the required tax payments for each vehicle were computed on the basis of the values of vehicle weight, annual mileage, and miles per gallon used in each State study. These values, which are excluded from the body of the report because they are not truly comparable from State to State, are given in Appendix A (pp. 79-82). The second method, which affords direct State-to-State comparisons, utilizes the values of maximum gross weight, annual iravel, and miles per gallon
given in table 1. It is believed that the resulting comparisons are accurate and fair; but it is not unlikely that minor differences in interpretation would occur in similar calculations made by others.

It was desired to present a comparison of the tax-study findings in these nine States with the taxes that would have been paid by the same vehicles under the user-tax rates prevailing in 1955. For this comparison two more States were added to the list: Oregon, which has a tax structure based on the findings of incremental studies; and Idaho, which has a mileage tax similar in coverage to those in Colorado, New York, Ohio, and Oregon.

In each of the tables and charts presented the user-tax payments shown for a given vehicle were obtained by adding (1) the registration fee or weight tax that the vehicle

No. 8 - Tractor-semitrailer-trailer

Table 1.-Characteristics of vehicles selected for tax-study comparisons

${ }^{1}$ All vehicles were gasoline-powered.
2 Six passengers at 150 pounds each assumed.
would pay under the tax-study recommendations (or existing law); (2) the gasoline tax that would be paid under the assumed annual mileage and miles per gallon; and (3) the amount of third-structure tax (such as the New York weight-distance tax or the Ohio axle-mile tax) that would be required. Values are expressed in three ways as follows: (1) Tax payment per year, (2) tax payment per mile of travel, and (3) tax payment per gross ton-mile (obtained by dividing the tax payment by the product of maximum gross weight and annual mileage). The latter is a rather controversial figure, as there is no general agreement that gross ton-miles are a true measure of tax responsibility. Values are also expressed in the form of indexes, the index value for the passenger car being 1.00 in all cases.
Since vehicles do not travel fully loaded all of the time, average operating gross weights might well have been used instead of maximum gross weights to compute the tax payments per ton-mile. Average operating weights, however, are affected by the type of operation and those for vehicles of a given maximum gross weight may vary widely. Maximum gross vehicle weight, which is the registration basis in the majority of States and represents the potential of the vehicle, was therefore chosen.

Median Values of Tax-Study Recommendations

The first question to be asked about these State tax-study findings is, "What is the trend?" As arithmetic averages are likely to be deceptive in such a case, it was decided to compare the median ${ }^{1}$ values, from among the findings in these nine States, of the user-tax payments required of each of the eight selected vehicles. These values, which are given in the upper section (part 1) of table 2 and shown graphically in figure 1, are indicative of the middle ground of tax-study findings.

Running quickly over the top line of table 2, we find the middle values of tax-study findings ranging from $\$ 40$ per year for the passenger car to $\$ 207$ per year for the 2 -axle, 6 -tire truck; $\$ 1,009$ for the bus; $\$ 1,229$ for the

[^0]4-axle, 50,000-pound tractor-semitrailer; and $\$ 1,836$ for the 5 -axle, 72,000 -pound tractor-semitrailer-trailer combination. Expressed in terms of index values the range is from 1.00 for the passenger car to 45.90 for the biggest combination.

Expression of the tax-study findings in terms of required tax payment per mile of travel eliminates the effect of the greater mileages traveled by the heavier vehicles, and thus narrows the range of variation. The median values of recommended tax payments per mile are found to vary from 0.43 cents in the case of the passenger car to 3.67 cents for the biggest combination. In terms of index values the range is from 1.00 to 8.54 .

By the expression of the tax-study findings in terms of recommended tax payments per gross ton-mile, the trend-line is caused to decrease rather than increase with weight of vehicle. Although a number of the tax studies in these nine States were based on the gross ton-mile theory, which holds that user taxes should be paid in proportion to the product of weight and distance traveled, there was a tendency for the investigators to mitigate their theoretical findings somewhat when faced with the task of devising and
recommending an actual schedule of taxation.
The downward trend in payments per tonmile under tax-study recommendations is shown very plainly in the bottom panel of figure 1. If the gross ton-mile concept were fully accepted this trend would be horizontal.

Median User-Tax Payments at 1955 Rates

The lower portion of table 2 gives the median values, for the same nine States plus Idaho and Oregon, of the user-tax payments required of the eight selected vehicles under the tax schedules prevailing in 1955. The actual values are shown graphically in figure 2.

The median values of actual required tax payments show similar trends to those of the tax-study recommendations, the values being higher in some cases and lower in others. Although the existing tax schedules in most of the nine tax-study States impose lower requirements on the heavy truck combinations than those recommended, the median values fail to reflect this tendency. This is largely due to the inclusion of values for Idaho and Oregon, which were not in the tax-study group. Since the tax schedules in these two States are generally on the high side, the median values are definitely higher than they would have been if the two States had not been included. The median values for the 11 States are, however, indicative of the trend of required tax payments in States that have, in recent years, given definite attention to the problem of allocating user-tax responsibility among vehicles of different sizes and weights. The ranges in required values may be expressed briefly as follows:

	From passenger-car payment of -	To tractor-semi-trailer-trailer payment of -
Per yea	\$41	\$2,214.
Per mile	0.44 cent	4.43 cents.
Per ton-mile.	0.23 cents	0.12 cents

Table 2.-Median road-user tax payments for selected vehicles

Basis for payment	No. 1: Passen- ger car	Single-unit trucks		No. 4: Bus	Truck combinations			
		No. 2: Pickup	No. 3 : 2-axle, 6 -tire		Tractor-semitrailer		No. 7: Trucktrailer	No. 8: Tractor-semi-trailertrailer
					No. 5: 3-axle	No. 6: 4-axle		
Part 2.-Total User-Tax Payments under Tax-Study Recommendations in 9 States								
Payments per year:								
Merlian payments.....dollars.- Index	40 1.00	46 1.15	207 5.18	1,009 25.23	965 24.13	1,229 30.73	1,710 42.75	1,836 45.90
Payments per mile:								
Median payments. .-. .-. cents - - Index	0.430 1.00	0.575 1.34	2.070 4.81	2.018 4.69	2.540 5.91	3.073 7.15	3.419 7.95	3.672 8.54
Payments per ton-mile: Median payments.....-cents.--								
	0.222 1.00	0.240 1.08	0.218 0.98	0.149 0.67	0.127 0.57	0.123 0.55	0.100 0.45	0.102 0.46
Part 2.-Total User-Tax Payments at 1955 Rates in 11 States 1								
Payments per year:								
Median payments_....dollars.-	41		182	866	881	1,220	1,860	2,214
Index.	1.00	1.17	4.44	21.12	21.49	29.76	45.37	54.00
Payments per mile: Median paymentscents_-	0.441	0.600	1. 820	1. 732	2. 318	3.050	3. 720	4. 428
Index-.-.-.......--	1.00	1.36	1.820 4.13	1.732	5.26	3.08 6.92	8.44	10.04
Payments per ton-mile: Median payments....cents	0. 227	0.250	0.192					
	1.00	1.10	0.192 0.85	0.128 0.56	0.51	0.122 0.54	0.108 0.48	0.54

${ }^{1}$ The 9 States included in part 1 plus Oregon, which has a tax structure based on the findings of incremental studies, an Idaho, which has a mileage tax similar in coverage to those in Colorado, New York, Ohio, and Oregon.

Figure 1.-Median user-tax payments under tax-study recommendations in nine States.

State-by-State Comparisons of TaxStudy Recommendations

The data on tax-study recommendations for the nine States for which comparable data were available are presented in tables 3,5 , and 6, the values being given respectively in terms of tax payments per year, per mile, and per
ton-mile. In the third column of each table there is given a series of symbols indicating for each State the type of tax study or studies on which the findings in that State were based. As indicated by the symbol " T " the majority of studies were based on the gross ton-mile concept, previously discussed. Of the two studies made in Ohio the one symbolized "S"
was conducted by the standard-cost method which, as applied to motor-vehicle taxation, was a modified ton-mile solution.
The incremental method, denoted by the symbol "I" and used in Louisiana, Minnesota, and Ohio, is based on the concept that successive increments of highway cost are occasioned by vehicle groups of successively

Table 3.-Total user-tax payments per year (in dollars) for selected vehicles under tax-study recommendations

1 Method used to allocate tax responsibility indicated thus: $I=$ Incremental; $I O=$ RecomMethod used to allocate tax responsibility indicated thus: $I=$ Incremental; $10=$ Recom-
mendations based on findings of incremental and cost-function solutions; $\mathrm{S}=$ Standard cost; mendations $\mathrm{b}=$ Ton mile
$\mathrm{T}=$ Ton mile.
${ }^{2}$ Motor-fuel
${ }^{3}$ Motor-fuel tax rate of 8.5 cents per gallon and low registration fees.
PUBLIC ROADS - Vol. 29, No. 4

Figure 2.-Median user-tax payments at 1955 rates in 11 States (includes the 9 States for which tax-study recommendations are reported in figure 1 plus Idaho and Oregon).
greater size and weight. The cost-function method, which was combined with an incremental study to produce the Louisiana findings, divides highway costs into three groups: (1) Those assignable on a per-vehicle basis, (2) those assignable on a per-mile basis, and (3) those assignable on a weight or tonmile basis.

It will be noted that two sets of findings are reported for Colorado and New York, as well as for Ohio. Since the investigators in both Colorado and New York offered several alternatives and expressed no decided preference for any one of them, two proposals were selected to illustrate the findings in each of those States. In the Colorado case two different assumptions were made regarding the relative magnitudes of gasoline-tax rates and registration fees. In New York two different levels of required revenue were postulated.

A glance at each column of table 3 (p .75) will disclose a wide disparity among the States in the study findings for the several selected vehicles. Similar glances along successive lines will reveal no consistent pattern
of upward variation with size of vehicle. Several reasons can be definitely assigned to account for this dispersion. The principal reason, perhaps, lies in the relative magnitudes of the highway programs which the various recommended tax schedules were designed to finance. States differ in the relative extent of their highway needs, and also in the ade-

Table 4.-Comparison of tax-study findings for selected truck combinations indicating the range of required tax payments

Class interval of required tax payment	Number of tax studies		
	No 5: 3-axle tractor-semitrailer	No 6: 4-axle tractor-semitrailer	No 8: 5-axle tractor-semi-trailertrailer
500-749 Dollars	1		
750-999	5		
1,000-1,249	3		--....
1,250-1,499	1	1	4
2,000-2,999	2	1	2
3,000 and over.		1	

quacy of the programs designed to meet those needs. The number of motor vehicles in relation to the required revenues affects the general level of user taxation; and the composition of the vehicle population with respect to size and weight may affect the charges to the several size groups.
The study findings are naturally affected by the particular method (incremental, tonmile, etc.) used for the assignment of tax responsibility. There is a tendency also for investigators, when converting the tax-study results into the form of a recommended schedule of tax rates, to modify, in the interest of simplicity and uniformity, the findings derived from the strict application of theory or formulated procedure.

In spite of the apparent shotgun scatter of study findings, some rudiments of a pattern, or at least a discernible central tendency, begin to emerge when the recommended payments for a given vehicle are grouped by intervals as shown in table 4.

It will be observed that for all three truck combinations the modal class interval (the
interval within and about which the findings cluster) lies in the lower part of the total range of values covered by the study findings.

Turning to the lighter weight vehicles, we find that 6 out of 12 tax studies recommended
annual passenger-car payments lying within the interval $\$ 37.50$ to $\$ 50$. In the case of the pickup truck the central tendency is weak, the recommendations being distributed rather evenly over a range extending from $\$ 26$ to $\$ 65$.

So also with the bus, for which the findings are widely scattered over a range from $\$ 549$ to $\$ 2,063$. By contrast 7 out of 12 tax studies recommend annual payments for the 2 -axle, 6 -tire truck lying between $\$ 200$ and $\$ 300$.

Table 5.-Total user-tax payments per mile (in cents) for seleoted vehicles under tax-study recommendations

State	Year tax study lished	Method ${ }^{1}$	No. 1: Passenger car		Single-unit trucks				No. 4: Bus		Truck combinations									
					No. 2: Pickup		No. 3: 2-axle, 6-tire				Tractor-semitrailer				No. 7: Trucktrailer		No. 8: Tractor-semitrailertrailer			
					No. 5: 3-axle	No. 6: 4-axle														
			Payment	Index			Payment	Index	Pay. ment	Index	Pay. ment	Index	Payment	Index	Payment	Index	Payment	Index	Payment	Index
California	1946			1.00	0. 363								2. 329				3. 344	12.43	3. 694	
Colorado ${ }^{2}$	1950	T	. 591	1. 00	. 638	1. 10	2. 9220	4. 94	3. 498	5. 92	6. 376	10.79	7.780	13. 16	10. 252	17.35	10. 784	18. 25		
Colorado ${ }^{3}$	1950 1948	T	.559 .430	1.00 1.00	. 6138	1.10 1.48	2. 2.820	5.04 6.14	3. 330 1.944	5. 96 4.52	5. 961 3.055	10.67 7.10	7. 3. 103 103	13.06 7.22	9.682 2. 958	17.32 6.88	10.196 3.000	18.24 6.98		
Louisiana	1955	IC	. 495	1.00	. 575	1.16	2. 200	4. 44	2. 018	4.08	2. 458	4.97	3. 043	6.15	3. 360	6. 79	(1)	-....		
Minnesota-	1954	I	. 559	1. 00	. 588	1. 05	2. 070	3. 70	4. 126	7. 38	3. 247	5. 81	4.583	8. 20	(1)		(4)	-		
New York	1950	T	. 505	1. 00	. 813	1.61	2.870	5. 68	2. 510	4.97	4. 053	8.03	6. 598	13. 06	(4)	--...	(4)	------		
New York ${ }^{\text {. }}$	1950	T	. 237	1.00	. 325	1.37	1.060	4.47	1.098	4. 63	1.605	6. 77	2. 525	10.65	(4)	------	(4)			
Ohio-	1951	S	. 409	1.00	. 725	1.77	1. 690	4.13	2. 214	5.41	2. 674	6. 54	3. 378	8.26	3. 302	8.07	4. 620	11.30		
Ohio	1953	I	. 419	1. 00	. 475	1.13	2. 080	4. 96	2. 778	6. 63	2. 621	6. 26	3. 383	8.07	4. 654	11.11	4. 236	10.11		
Utah	1950	T	. 355	1.00	. 450	1. 27	1. 590	4. 48	(7)		2. 200	6. 20	2.890	8.14	3. 478	9.80	3. 650	10. 28		
Washington	1948	T	. 430	1.00	. 450	1.05	1. 770	4. 12	1. 964	4. 57	2. 079	4.83	2.653	6. 17	3. 748	8.72	3. 532	8.21		

: Method used to allocate tax responsibility indicated thus: $I=$ Incremental; $I C=$ Recommendations based on findings of incremental and cost-function solutions; $S=$ Standard cost; $T=$ Ton mile
cost; Motor-fuel tax rate of 8.5 cents per gallon and low registration fees.
${ }_{5}$ Vehicle combination not permitted by State size and weight regulations.
${ }^{5}$ Maximum expenditure program with motor-fuel tax rate of 4 cents per gallon.
BContinuation of "current" (1949) expenditure level with motor-fuel tax rate of 3 cents ${ }^{3}$ Motor-fuel tax rate of 6.5 cents per gallon and high registration fees.
${ }_{7}$ No recommendation.
Table 6.-Total user-tax payments per ton-mile (in cents) for selected vehicles under tax-study recommendations

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{State} \& \multirow{4}{*}{$$
\begin{aligned}
& \text { Year } \\
& \text { tax } \\
& \text { study } \\
& \text { pub- } \\
& \text { lished }
\end{aligned}
$$} \& \multirow{4}{*}{Method ${ }^{\text {d }}$} \& \multicolumn{2}{|l|}{\multirow{3}{*}{No. 1: Passenger car}} \& \multicolumn{4}{|c|}{Single-unit trucks} \& \multicolumn{2}{|l|}{\multirow{3}{*}{No. 4: Bus}} \& \multicolumn{8}{|c|}{Truck combinations}

\hline \& \& \& \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{No. 2: Pickup}} \& \multicolumn{2}{|l|}{\multirow{2}{*}{$$
\begin{aligned}
& \text { No. 3: } 2 \text {-axle, } \\
& 6 \text {-tire }
\end{aligned}
$$}} \& \& \& \multicolumn{4}{|c|}{Tractor-semitrailer} \& \multicolumn{2}{|l|}{\multirow{2}{*}{No. 7: Trucktrailer}} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{No. 8: Tractor-semitrailertrailer}}

\hline \& \& \& \& \& \& \& \& \& \& \& \multicolumn{2}{|l|}{No. 5: 3-axle} \& \multicolumn{2}{|l|}{No. 6: 4-axle} \& \& \& \&

\hline \& \& \& Pay- \& Index \& Payment \& Index \& Payment \& Index \& Payment \& Index \& Pay. ment \& Index \& Payment \& Index \& Payment \& Index \& Pay. ment \& Index

\hline California \& 1946 \& T \& 0. 139 \& 1.00 \& 0. 151 \& 1. 097 \& 0. 135 \& 0.97 \& 0. 129 \& 0.93 \& 0.116 \& 0.83 \& 0. 114 \& 0.82 \& 0. 098 \& 0. 71 \& 0. 103 \& 0.74

\hline Colorado ${ }^{2}$
Colorado

3 \& 1950
1950 \& T \& . 304 \& 1.00
1.00 \& . 266 \& .87 \& .307
.297 \& 1.01
1.03 \& . 2249 \& . 85 \& .319
.298 \& 1.05
1.03 \& . 311 \& 1.02
1.01 \& . 302 \& .99
.99 \& . 299 \& . 988

\hline Illinois .-- \& 1948 \& T \& . 222 \& 1.00 \& . 266 \& 1. 20 \& . 278 \& 1.25 \& . 144 \& . 65 \& . 153 \& . 69 \& . 124 \& - 56 \& . 087 \& . 39 \& . 083 \& . 37

\hline Louisiana \& 1955 \& IC \& . 255 \& 1.00 \& . 240 \& . 94 \& . 232 \& . 91 \& . 149 \& . 58 \& .123 \& . 48 \& . 122 \& . 48 \& . 099 \& . 39 \& (1) \& --..

\hline Minnesota \& 1954 \& T \& . 288 \& 1.00 \& . 2345 \& \& .218
.302 \& 1. 76 \& . 306 \& 1.06
.72 \& . 203 \& . 78 \& . 264 \& .64
1.02 \& (4) \& -... \& (4) \& ----

\hline New York ${ }^{\text {b }}$ \& 1950 \& T \& . 122 \& 1.00 \& . 135 \& 1.11 \& . 112 \& . 92 \& . 081 \& . 66 \& . 080 \& . 66 \& .101 \& . 83 \& (4) \& \& (4) \& ----

\hline Ohio \& 1951 \& S \& . 211 \& 1.00 \& . 302 \& 1.43 \& . 178 \& 84 \& . 164 \& . 78 \& . 134 \& . 64 \& . 135 \& . 64 \& . 097 \& . 46 \& 128 \& 61

\hline Obio \& 1953 \& I \& . 216 \& 1.00 \& . 198 \& . 92 \& . 219 \& 1.01 \& . 206 \& . 95 \& . 131 \& . 61 \& . 135 \& . 62 \& . 137 \& . 63 \& . 118 \& . 55

\hline Utah \& 1950 \& T \& . 183 \& 1.00 \& . 187 \& 1.02 \& . 167 \& . 91 \& ${ }^{(7)}$ \& \& . 110 \& . 60 \& . 116 \& . 63 \& . 1102 \& . 56 \& 101 \& 55

\hline Washington \& 1948 \& T \& . 222 \& 1.00 \& . 187 \& . 84 \& . 186 \& . 84 \& . 145 \& . 65 \& . 104 \& . 47 \& . 106 \& . 48 \& . 110 \& . 50 \& 098 \& 44

\hline
\end{tabular}

${ }^{1}$ Method used to allocate tax responsibility indicated thus: $\mathrm{I}=\mathrm{Incremental}$; $\mathrm{IC}=$ Recommendations based on findings of incremental and cost-function solutions; $\mathrm{S}=\mathrm{S}$ tandard cost; $T=T o n$ mile.
${ }_{2}$ Motor-fuel tax rate of 8.5 cents per gallon and low registration fees.
Motor-fuel tax rate of 6.5 cents per gallon and high registration fees.

4 Vehicle combination not permitted by State size and weight regulations,

- Maximum expenditure program with motor-fuel tax rate of 4 cents per gallon.
${ }^{6}$ Continuation of "current" (1949) expenditure level with motor-fuel tax rate of 3 cents per gallon.

Table 7.-Total user-tax payments per year (in dollars) for selected vehicles at 1955 tax rates in selected States

State	No. 1: Passenger car		Single-unit trucks				No.4: Bus		Truck combinations									
			No. 2: Pickup		No. 3: 2-axle,				Tractor-semitrailer				No. 7: Trucktrailer		No. 8: Tractor-semitrailertrailer			
			No. 5: 3-axle	No. 6: 4-axle														
	Payment	Index			Payment	Index	Pay: ment	Index	Pay. ment	Index	Pay. ment	Index	Payment	Index	Payment	Index	Payment	Index
California	41 39	1. 1.00	53 40	1.29 1.03			152 168	3.71 4.31	734 1,668	17.90 42.77	650 1,211	15.85 31.05	806 1,529	19. 66 39.21	1,232 2,505	30.05 64.23	1,230 2,627	30.00 67.36
Colorado	51	1.00	48	. 1.94	191	3. 75	1,979	19.20	1,082	21.22	1,415	27.75	2,359	46.25	2, 491	48.84		
Illinols	38	1.00	46	1. 21	223	5.87	866	22.79	1,036	27.26	1,265	33.29	1,860	48.95	1,937	50.97		
Louisiana -	42	1.00	46	1. 10	190	4. 52	917	21. 83	834	19.86	1,007	23.98	1,440	34.29	(1)	-----		
Minnesota.	51	1. 00	51	1. 00	154	3. 02	1,748	34. 27	756	${ }^{14.82}$	986 1.220	19.33	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$	-----	(1)	--.--		
New York Ohio	37 38	1.00 1.00	46 62	1.24 1.63	182	4.92 5.47	468	${ }_{22 .}^{12.62}$	1,057	17.81 27.82	1,467	38.61	2,632	69.26	2,542	66.89		
Oregon.	43	1.00	53	1. 23	216	5. 02	1,187	27.60	1,304	30.33	1,765	41.05	3, 050	70,93	3,225			
Utah...	33	1.00	33	1. 00	124	3. 76	812	24.61	546	16. 55	691	20. 94	1,219	36. 94	1,165	35.30		
Washington	41	1.00	48	1.17	158	3.85	743	18.12	675	16. 46	944	23.02	1,594	38.88	1,446	35. 27		

${ }^{1}$ Vehicle combination not permitted by State size and weight regulations.

Table 8.-Comparison of tax payments per year required of a 50,000 -pound, 4 -axle tractor-semitrailer (No. 6) under taxstudy recommendations and under 1955 rates in nine States

State	Tax payments per year		Excess of tax-study recom-mendations over 1955 payments
	Taxstudy recommenda tions	Required tax payments at 1955 rates	
Californta	\$1, 135	\$806	\$329
Colorado ${ }^{\text {Colorado }}$	- ${ }_{2,921}$	\} 1,529	$\left\{\begin{array}{l}1,583 \\ 1,392\end{array}\right.$
Illinois.-	1,241	1,265	-24
Louisiana	1,217	1,007	210
Minnesota	1,833		847
New York ${ }^{3}$	2,639 1,010	1,220	$\left\{\begin{array}{r}1,419 \\ -210\end{array}\right.$
New York ${ }^{4}$	1,010		(-210
Ohio ${ }^{5}$.	1,351		$\left\{\begin{array}{l}-116 \\ -114\end{array}\right.$
Ohio ${ }^{6}$ -	1,353 1,156		$\left(\begin{array}{r}-114 \\ 465\end{array}\right.$
Washington	1,061	944	117

${ }^{1}$ Motor-fuel tax rate of 8.5 cents per gallon and low regis-
tration fees.
2 Motor-fuel tax rate of 6.5 cents per gallon and high registration fees.
${ }^{3}$ Maximum expenditure program with motor-fuel tax rate of 4 cents per gallon.
"Continuation of "current" (1949) expenditure level with motor-fuel tax rate of 3 cents per gallon.
© Standard-cost method used to allocate tax responsibility. - Incremental method used to allocate tax responsibility.

In table 5 (p. 77) the study findings are expressed in required user-tax payments per mile. The range of variation among the several vehicle classes is narrowed by the
elimination of the mileage factor. From State to State the pattern is unchanged by this conversion, and comparisons would reveal the same central tendency.

Recommended payments per ton-mile are shown in table 6 (p. 77). The ton-miles used in computing this table are the products of assumed annual mileage and maximum gross weight. Had average operating weights been used instead of maximum gross weights, the payments for the heavier vehicles would have been higher and the indexes relative to the passenger-car value would generally have been nearer to unity.

There is a general, although by no means entirely consistent, tendency for the recommended payments per ton-mile to decline as the size of vehicle increases. This trend is evidenced even in those States where a gross ton-mile solution was used. An exception occurs in the case of Colorado, where the values hover about 3 mills per ton-mile throughout the range of vehicle siza.

Although size and weight as well as miles traveled are important considerations in motor-vehicle taxation, there is no scientific basis for the contention that such taxes should be made directly proportional to gross tonmiles. For example, the required thickness of a slab or beam varies as the square root of the load, rather than directly with the load itself. Numerous students of the subject
have rejected the ton-mile theory and have resorted to the incremental solution, which attempts to assign tax responsibility in proportion to the costs occasioned by the traffic of vehicles of different sizes.

State-by-State Comparisons of Tax Payments at 1955 Rates

Tables 7 (p. 77), 9, and 10 give corresponding values of actual required tax payments at 1955 rates, per year, per mile, and per tonmile, respectively. Values for Idaho and Oregon are given in addition to those for the nine tax-study States.

The appearance and general import of these tables are not unlike what is found in the taxstudy tables, 3,5 , and 6 . It is of interest nonetheless to compare the actual required tax payments in 1955 with the recommendations of the several tax studies. A single example, that of the 50,000 -pound, 4 -axle tractor-semitrailer-a widely used type of combination-will suffice. The comparison is given in table 8 for the required tax payments per year.

Quite evidently the general trend is for the tax laws enacted by the State legislatures to fall short of the tax-study recommendations. In 8 of the 12 comparisons shown the required payments are less than those recommended. In Illinois and Ohio the required payments somewhat exceed the tax-study recommen-

Table 9.-Total user-tax payments per mile (in cents) for selected vehicles at 1955 tax rates in selected States

State	No. 1: Passenger car		Single-unit trucks				No. 4: Bus		Truck cembinations									
			No. 2: Pickup		No. 3: 2-axie, 6 -tire				Tractor-semitrailer				No. 7: Trucktrailer		No. 8: Tractor-semitrallertraller			
			No. 5: 3-axle	No. 6: 4-axle														
	Pryment	Index			Payment	Index	Payment	Index	Pay- ment	Index	Payment	Index	Payment	Index	Payment	Index	Payment	Index
California	0.441 .419	1. 00	0.663 .500	1.50 1.19			1.520 1.680	3.45 4.01	1. 468 3. 336	3. 33	1.711 ${ }^{\text {3. } 187}$	3. 88 7. 61	2. 2.015	4. 57	2. 2464 5.010	5.59 11. 96	2. 5.460	5.58
Idaho..	. 548	1.00	. 6000	1.09	1. 910	3. 49	1. 1.958 1.738	3. 57	2. 8477	5. 20	3. 5388	6.46	5. 4.718 4.718	${ }_{8.61}^{11.96}$	5. 4.984	12.54 9.09		
Illinois	. 409	1. 00	. 575	1.41	2. 230	5. 45	1. 732	4. 23	2. 726	6. 66	3. 163	7. 73	3. 720	9.10	3. 874	9.47		
Louisiana	. 452	1.00	. 575	1. 27	1. 900	4. 20	1.834	4.06	2. 195	4.86	2. 518	5. 57	2. 880	6.37	(1)	...		
										3. 63								
New York	. 398	1.00	. 575	1.44	1. 820	4.57	-. 934	2.35	2. 318	5. 82	3. 050	7. 66		-..--		---		
Ohio.-	. 409	1.00	. 775	1.89	2. 080	5. 09	1.730	4. 23	2. 782	6. 80	3.668	8.97	5. 264	12.87	5. 084	12. 43		
Oregon.	. 462	1. 00	. 663	1. 44	2. 160	4. 68	2. 374	5. 14	3. 432	7.43	4. 413	9. 55	6. 100	13. 20	6. 450	13. 96		
Wah	.355 .441	1. 00 1.00	.413 .600	1. 16 1.36	1. 240 1.580	3. 3. 49 3.58	1. 624 1.486	4. 57 3. 37		4. 05 4. 03	1. 728 2.360	4. 87 5.35	2. 2438 3.188	6.87 7.23	2. 2330 2.892	6. 56 6. 56		

Vehicle combination not permitted by State size and weight regulations.
Table 10.-Total user-tax payments per ton-mile (in cents) for selected vehicles at 1955 tax rates in selected States

State	No. 1: Passenger car		Single-unit trucks				No. 4: Bus		Truck combinations									
			No. 2: Pickup		No. 3: 2-axle, 6 -tire				Tractor-semitrailer				No. 7: Trucktrailer		No. 8: Tractor -semitrailertrailer			
			No. 5: 3-axle	No. 6: 4-axle														
	Payment	Index			Payment	Index	Pay. ment	Index	Pay. ment	Index	Payment	Index	Payment	Index	Payment	Index	Pay ment	Index
Californla	0.227	1. 00	0. 276	1. 22			0.160	0. 70	0. 109	0.48	0.086	0.38	0.081	0.36	0.072	0.32	0.068	0.30
Colorado	. 216	1. 00	. 208	. 96	. 177	. 81	. 247	1. 14	. 159	. 74	. 153	. 71	. 147	. 68	. 146	. 68		
Idaho.-	. 211	1.00 1.00	250 .240	1.89 1.14	. 2301	.71 1.11	. 128	. 51	. 142	. 60	.142 .127	. .60	.139 .109	.49 .52	.138 .108	. 49		
Loulsiana	. 233	1.00	. 240	1.03	. 200	. 86	. 136	. 58	. 110	. 47	. 101	. 43	085	. 36	(1)			
									. 099	. 35	. 099	. 35	(1)	-...-	(1)	---		
New York	. 205	1.00	. 240	1.17	. 192	. 94	. .069	. 34	. 116	. 57	. 122	-60	(1)	-....-	(1)			
Obio...	. 211	1.00	. 323	1. 53	. 219	1.04	. 128	. 61	. 139	. 66	. 147	. 70	. 155	. 73	. 141	. 67		
Oregon.	. 238	1.00																
Utah	. 183	1.00	. 172	. 94	. 131	. 72	. 120	. 66	. 072	. 39	. 069	. 38	. 072	. 39	. 065	. 36		
Washington.	. 227	1.00	. 250	1.10	. 166	. 73	. 110	. 48	. 089	. 39	. 094	. 41	. 094	. 41	. 080	. 35		

[^1]dations. In New York the tax-study findings based on continuation of the current expenditure level are lower than the required tax payments at 1955 rates; but the findings based on highway needs (the "maximum expenditure program") are much greater than the actual required payments. The Louisiana report was released only recently and there has been insufficient time for the legislature to deal with its recommendations. In Minnesota no legislative action had been taken subsequent to the tax-study findings.

State-by-State comparisons of required tax payments per mile are set forth in table 9. The comparisons on a ton-mile basis are given in table 10. The downward trend in payments per ton-mile is notable. There is, however, a tendency, in States where weightdistance or similar taxes have been enacted, for the rates per ton-mile on truck combinations to hold steady, or even to increase slightly with increasing size. This trend may be observed in the amounts for Colorado, Idaho, New York, Ohio, and Oregon.

Summary

The results of this brief review of State taxstudy recommendations regarding the rates of user-tax payments by vehicles of different sizes and weights are summarized in the following numbered paragraphs:

1. Median values of tax-study findings range from $\$ 40$ per year for a light passenger car to $\$ 1,836$ per year for a 5 -axle tractor semi-trailer-trailer combination; and from 0.43 to 3.67 cents per mile of travel.
2. With respect to the rate of recommended tax payments per gross ton-mile, the trend of median tax-study values is downward. The variation among the vehicles selected for study extends from 2.2 mills per ton-mile for the light passenger car to 1.2 mills for the 4 -axle tractor-semitrailer and 1.0 mill for the 5 -axle tractor-semitrailer-trailer.
3. There is a wide variation from State to State in the recommended user-tax payments for each of the eight vehicles selected for comparison. In spite of this dispersion there is a marked central tendency, particularly among
the heavy vehicle combinations, in that the study findings tend to group within relatively narrow intervals. Thus, for the 3 -axle tractorsemitrailer, 5 out of 12 studies recommend annual tax payments within the range $\$ 750$ to $\$ 1,000$. In 6 out of 12 studies the recommended payment for the 4 -axle tractorsemitrailer lies between $\$ 1,000$ and $\$ 1,250$ per year. For the largest combination in the group, the 5 -axle tractor-semitrailer-taailer, 4 out of 8 studies recommended annual tax payments lying between $\$ 1,500$ and $\$ 2,000$.
4. Comparison of the tax-study findings with the payments required under 1955 tax rates reveals a general tendency (with exceptions) for the tax laws enacted by State legislatures to fall short of tax-study recommendations in the payments required of heary motor vehicles and combinations. For example, 8 out of 12 tax-study findings recommended greater user-tax payments for the $4-$ axle tractor-semitrailer than were imposed under the corresponding 1955 tax laws in the nine States in which the studies were made.

Appendix A

Tables 11-18 give the results of this analysis in full. Each table presents the data for one of the eight selected vehicles, beginning with the passenger car in table 11 and ending with the 5 -axle tractor-semitrailer-trailer combination in table 18.

Part 1 of each table gives, for the particular vehicle, the recommended tax payments as derived from the tax studies in all of the nine States. Part 1 is again divided into two sections. That on the left gives the tax-study findings according to the values of annual mileage and miles per gallon used for the given vehicle in each study. In the case of those States where registered gross weight
was used as a basis of vehicle grouping, the required tax payments were evaluated directly for the given vehicle group. In States where a different vehicle grouping was used (Ohio, for example, registers vehicles by empty weight), it was necessary to determine into what group according to the State's classification the vehicle, as described in table 1, would properly fall. The information obtained and tabulated in this manner was omitted from the main body of the report because of the defectiveness of State-to-State comparisons.

The right-hand section of part 1 in tables 11-18 gives the tax-study findings as computed on a uniform basis by the use of the values of
gross weight, annual mileage, and miles per gallon listed in table 1. Part 2 gives the usertax payments as required under tax rates prevailing in 1955. In all three sections of these tables values are given in terms of required tax payment per year, per mile, and per ton-mile.

The most pertinent comparisons among vehicles and among States are discussed in the text. The inclusion of tables 11-18 in the appendix provides the opportunity for more detailed comparisons, with particular reference to the tax-study findings on the bases established in the individual studies made in nine States.

Table 11.-Tax payments under tax-study recommendations and at 1955 tax rates in selected States on a lightweight passenger car (No. 1)

State	Part 1.-Tax study recommendations										Part 2.-Total 1955 user-tax payments based on unifuel usage ${ }^{3}$		
	Year tax study published	Method 1	State's own basis					Total user-tax payments based on uniform amount of travel and fuel usage ${ }^{2}$					
			Annual travel	Fuel consumption rate	Total user-tax payments								
					Per year	Per mile	$\begin{gathered} \text { Per } \\ \text { ton-mile } \end{gathered}$	Per year	$\begin{aligned} & \text { Per } \\ & \text { mile } \end{aligned}$	$\begin{gathered} \text { Per } \\ \text { ton-mile } \end{gathered}$	Per year	$\begin{aligned} & \text { Per } \\ & \text { mile } \end{aligned}$	$\begin{gathered} \text { Per } \\ \text { ton-mile } \end{gathered}$
California Colorado ${ }^{2}$ Colorado	$\begin{aligned} & 1946 \\ & 1950 \\ & 1950 \end{aligned}$	TTT	Miles 8, 554 9,200 9,200	Miles/gal. 15.5 16.3 16.3	$\begin{gathered} \text { Dollars } \\ 25 \\ 56 \\ 53 \end{gathered}$	$\begin{gathered} \text { Cents } \\ 0.292 \\ .609 \\ .576 \end{gathered}$	$\begin{aligned} & \text { Cents } \\ & 0.150 \\ & .314 \\ & .297 \end{aligned}$	$\begin{gathered} \text { Dollars } \\ 25 \\ 55 \\ 52 \end{gathered}$	$\begin{gathered} \text { Cents } \\ 0.269 \\ .591 \\ .559 \end{gathered}$	$\begin{gathered} \text { Cents } \\ 0.139 \\ .304 \\ .288 \end{gathered}$	$\begin{gathered} \text { Dollars } \\ 41 \\ 39 \\ \cdots \\ \hline 51 \end{gathered}$	$\begin{aligned} & \text { Cents } \\ & 0.441 \\ & .419 \end{aligned}$	$\begin{gathered} \text { Cents } \\ 0.227 \\ .216 \end{gathered}$
Idaho 548	. 282
nlinois...	1948	T	9,250	15.5	42	. 454	. 234	40 46	.430 .495	.222 .255	38	.409 .452	. 211
Louisiana	1955	${ }_{1}^{10}$	10,143 8,935	14.8 14.9	55 55	. 642	. 2717	46 52	. 4959	. 285	42 51 5	. 4543	. 2382
New York	1950	T	8,500	15.7	47	. 543	. 285	47 22	. 505	. 260	37	. 398	. 205
New York --	1950	T	8, 500	15.7	21	. 247	. 127	22	. 237	. 122		--...	
Ohio-	1951	8	9,230	15.9	39	. 423	. 218	38 39	. 409	. 211	38	. 400	. 211
Ohio	1953	I	9,235	15.0	42	. 455	234	39	. 419	. 216	43		
Oregon	1950	T---	-10,000	15. 5	37	. 370	. 191	$3{ }^{-1}$. 355	.-183	33	. 355	. 183
W ashington.	1948	T	8,085	16.2	36	. 445	229	40	. 430	222	41	. 441	. 227

Method used to allocate tax responsibility indicated thus: $I=$ Incremental; $I C=$ Recommendations
$\mathrm{T}=$ Ton-mile
${ }^{2}$ Travel, 9,300 miles per year; fuel consumption rate, 16.7 miles per gallon. tax of 8.5 cents per gallon and low registration fees.

Table 12. -Tax payments under tax-study recommendations and at 1955 tax rates in selected States on a pickup truck (No. 2)

State	Part 1.-Tax study recommendations										Part 2.-Total 1955 user-tax payments based on uniform amount of travel and fuel usage ${ }^{\text {? }}$		
	Year tax study published	Method	State's own basis					Total user-tax payments based on uniform amount of travel and fuel usage ${ }^{2}$					
			Annual travel	Fuel consumption rate	Total user-tax payments								
					Per year	Per mile	$\begin{gathered} \text { Per } \\ \text { ton-mile } \end{gathered}$	Per year	Per mile	$\begin{aligned} & \text { Per } \\ & \text { ton-mile } \end{aligned}$	Per year	Per mile	Per ton-mile
California	$\begin{aligned} & 1946 \\ & 1950 \\ & 1950 \end{aligned}$	TTT	Miles 11, 400 8, 500 8,500	Miles/gal. 15. 5 14.5 14.5	$\begin{gathered} \text { Dollars } \\ 37 \\ 57 \\ 54 \end{gathered}$	$\begin{gathered} \text { Cents } \\ 0.325 \\ .671 \\ .635 \end{gathered}$	$\begin{gathered} \text { Cents } \\ 0.135 \\ .280 \\ .265 \end{gathered}$	$\begin{gathered} \text { Dollars } \\ 29 \\ 51 \\ 49 \end{gathered}$	$\begin{array}{r} \text { Cents } \\ 0.363 \\ .638 \\ .613 \end{array}$	$\begin{gathered} \text { Cents } \\ 0.151 \\ .266 \\ .255 \end{gathered}$	Dollars 53 40	Cents 0.663 . 500	$\begin{array}{r} \text { Cents } \\ 0.276 \\ .208 \end{array}$
Colorado ${ }^{3}$													
Colorado ${ }_{\text {Idaho }}$											----	---600	--250
Illinois. -	1948	$\begin{gathered} \mathrm{T} \\ \mathrm{rC} \\ \mathrm{I} \\ \mathrm{~T} \\ \mathrm{~T} \end{gathered}$	$\begin{array}{r} 10,000 \\ 7,305 \\ 5,064 \\ 8,500 \\ 8,500 \end{array}$	$\begin{aligned} & 14.3 \\ & 13.0 \\ & 13.3 \\ & 12.8 \\ & 12.8 \end{aligned}$	$\begin{aligned} & 60 \\ & 49 \\ & 38 \\ & 71 \\ & 30 \end{aligned}$	$\begin{aligned} & .600 \\ & .671 \\ & .750 \\ & .835 \\ & .353 \end{aligned}$	$\begin{array}{r} .250 \\ .280 \\ .312 \\ .348 \\ .147 \end{array}$	$\begin{aligned} & 51 \\ & 46 \\ & 47 \\ & 65 \\ & 26 \end{aligned}$	$\begin{aligned} & .638 \\ & .575 \\ & .588 \\ & .813 \\ & .325 \end{aligned}$	$\begin{aligned} & .266 \\ & .240 \\ & .245 \\ & .339 \\ & .135 \end{aligned}$	$\begin{aligned} & 46 \\ & 46 \\ & 51 \\ & 46 \end{aligned}$	$\begin{aligned} & .575 \\ & .575 \\ & .638 \\ & .575 \end{aligned}$	$\begin{array}{r} .240 \\ .240 \\ .266 \\ .240 \end{array}$
Louisiana.	1955												
Minnesota	1954												
Vew York	1950												
New York ${ }^{\text {b }}$	1950											-----	
Ohio	$\begin{aligned} & 1951 \\ & 1953 \end{aligned}$	S	$\begin{aligned} & 12,214 \\ & 10,700 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 13.0 \end{aligned}$	8153	$\begin{array}{r} .663 \\ .495 \end{array}$	$\begin{aligned} & .276 \\ & .206 \end{aligned}$	5838	.725.475	.302.198	62	. 775	. 323
Ohio													
Oregon	$\begin{gathered} 1950 \\ 1948 \end{gathered}$	$\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$	$\begin{aligned} & 8,600 \\ & 8,068 \end{aligned}$	$\begin{aligned} & 15.17 \\ & 12.75 \end{aligned}$	$\begin{aligned} & 38 \\ & 44 \end{aligned}$	$\begin{array}{r} . .742 \\ .545 \end{array}$	$\begin{aligned} & .184 \\ & .227 \end{aligned}$	$\begin{aligned} & 36 \\ & 36 \end{aligned}$	$\begin{array}{r} .450 \\ .450 \end{array}$	$\begin{aligned} & .187 \\ & .187 \end{aligned}$	533348	$\begin{aligned} & .663 \\ & .413 \\ & .600 \end{aligned}$	$\begin{array}{r} .276 \\ .172 \\ .250 \end{array}$
Washington.													

Method used to allocate tax responsibility indicated thus: $I=$ Incremental; $I O=$ Recommendations based on findings of incremental and cost-function solutions; $\mathrm{S}=\mathrm{Standard}$ cost; $\mathrm{T}=\mathrm{T}$ on-mile.
: Travel, 8,000 miles per year; fuel consumption rate, 15.6 miles per gallon.
3 Motor-fuel tax rate of 8.5 cents per gallon and low registration fees.
${ }^{4}$ Motor-fuel tax rate of 6.5 cents per gallon and high registration fees.
5 Maximum expenditure program with fuel-tax rate of 4 cents per galion.
Continuation of "current" (1949) expenditure level with fuel-tax rate of 3 cents per gallon.

Table 13.-Tax payments under tax-study recommendations and at 1955 tax rates in selected States on a 2-axle, 6-tire truck (No. 3)

State	Part 1.-Tax study recommendations										Part 2.-Total 1955 user-tax payments based on uniform amount of travel and fuel usage ${ }^{2}$		
	Year tax study published	Method 1	State's own basis					Total user-tax payments based on uniform amount of travel and fuel usage?					
			Annual travel	Fuel consumption rate	Total user-tax payments								
					Per year	Per mile	$\begin{gathered} \text { Per } \\ \text { ton-mile } \end{gathered}$	Per year	Per mile	$\begin{aligned} & \mathrm{Per} \\ & \text { ton-mile } \end{aligned}$	Per year	Per mile	$\begin{gathered} \text { Per } \\ \text { ton-mile } \end{gathered}$
California.	1946	T	$\begin{gathered} \text { Miles } \\ 17,500 \end{gathered}$	$\begin{gathered} \text { Mileslgal. } \\ 8.83 \end{gathered}$	$\begin{gathered} \text { Dollars } \\ 212 \end{gathered}$	$\begin{aligned} & \text { Cents } \\ & 1.211 \end{aligned}$	$\begin{aligned} & \text { Cents } \\ & 0.127 \end{aligned}$	$\begin{gathered} \text { Dollars } \\ 128 \end{gathered}$	$\begin{aligned} & \text { Cents } \\ & 1.280 \end{aligned}$	$\begin{aligned} & \text { Cents } \\ & 0.135 \end{aligned}$	$\begin{gathered} \text { Dollars } \\ 152 \end{gathered}$	$\begin{aligned} & \text { Cents } \\ & 1.520 \end{aligned}$	$\begin{aligned} & \text { Cents } \\ & 0.160 \end{aligned}$
Colorado ${ }^{3}$	1950	T	13, 900	7.4	343	2. 468	. 260	292	2. 920	. 307	168	1. 680	. 177
Colorado :-	1950		13, 900	7.4	321	2. 309	. 243	282	2. 820	. 297	-	1.680	.
Idaho - .-.					-...-				2.820		191	1.910	. 201
Illinois...	1948	T	23,500	7.8	351	1. 494	. 157	264	2. 640	. 278	223	2. 230	. 235
Loulsiana	1955	IC	25,344	5.8	436	1. 723	. 181	220	2. 200	. 232	190	1. 900	. 200
Vinnesota.	1954	T	15,000	8.1	247	1.647	. 173	207	2. 070	. 218	154	1. 540	. 162
New York New York	1950	T	15,000 15,000	8. 0	311	2. 073	. 218	287	2. 870	. 302	182	1.820	. 192
New York ${ }^{6}$.	1950	T	15, 000	8.0	123	. 820	. 086	106	1. 060	. 112			
Ohio	1951	S	17, 593	7.6	221	1. 256	. 132	169	1. 690	. 178	208	2. 080	. 219
Ohio	1953	I	19,800	7.3	279	1.409	. 148	208	2. 080	. 219			
Oregon Utah											216	2.160	. 227
Washington.	1948	T	11, 483	8.88 7.0	176	1. 1.750	.130 .184	159 177	1. 1.790	.167 .186	124 158	1. 240 1. 580	. 131

[^2][^3]Table 14.-Tax payments under tax-study recommendations and at 1955 tax rates in selected States on a 41 -passenger bus (No. 4)

State	Part 1.-Tax study recommendations										Part 2.-Total 1955 user-tas payments based on uniform amount of travel and fuel usage ${ }^{2}$		
	Year tax study published	Method ${ }^{1}$	State's own hasis					Total user-tax payments based on uniform amount of travel and fuel usage?					
			Annual travel	Fuel consumption ratc	Total user-tax payments						$\begin{aligned} & \text { Per } \\ & \text { year } \end{aligned}$	Per mile	$\begin{gathered} \text { Per } \\ \text { ton-mile, } \end{gathered}$
					$\begin{aligned} & \text { Per } \\ & \text { year } \end{aligned}$	$\begin{aligned} & \text { Per } \\ & \text { mile } \end{aligned}$	$\underset{\text { Per }}{\text { ton-mile }}$	$\begin{aligned} & \text { Per } \\ & \text { year } \end{aligned}$	Per mile	$\begin{aligned} & \text { Per } \\ & \text { ton-mile } \end{aligned}$			
California-	1946	T	$\begin{gathered} \text { Miles } \\ 39,300 \end{gathered}$	Miles/gal. 4. 5	Dollars 737	$\begin{aligned} & \text { Cents } \\ & 1.875 \end{aligned}$	$\begin{aligned} & \text { Cents } \\ & 0.139 \end{aligned}$	Dollars	$\begin{aligned} & \text { Cents } \\ & 1.740 \end{aligned}$	$\begin{aligned} & \text { Cents } \\ & 0.129 \end{aligned}$	Dollars	Cents 1. 468 S	Cents 0.109
Colorado ${ }^{\text {a }}$	1950	T		5.1	1,780	3. 560	. 264	1,749	3. 498	. 259	1,668	3. 336	. 247
Colorado ${ }^{\text {a }}$ -	1950	T	50, 000	5.1	1.689	3. 378	250	1,665	3. 330	247			
Illinois.	1948	T	30, 000		813	2. 710	201	972	1. 944	. 144	868	1. 732	128
Iouisiana	195.5	IC	(65, 0100	4.8	1,303	2. 1005	149	1,019	2. 1118	. 149	917	1. 834	136
Minnesota.	1954	I	100, mm	6.1	3,944	3. 944	292	2,063	4. 126	. 3141	1,748	3. 496	253
New York ${ }^{5}$ -	1950	T	27, 500	5. 2	1. 1189	3. 980	. 213	1, 255	2. 510	. 186	467		0 n 9
New York ${ }^{6}$ -	1950	T	27, 500	5. 2	424	1. 542	. 114	549	1. 0198	. 181			.-..-.
Ohin	1951	S	50, кюп	5.0	1, 13:36	2. 272	. 118	1. 107	2. 214	1144	865	1. 730	128
Ohio	1953	I	57, (1)10)	7.0	1,323	2. 321	.172	1. 389	2. 778	216			
Oregon Utah ${ }^{7}$.-.			1, 187	2. 1374 1.624 1.486	176 120 1180
Washington	1948	T	48.182	4.5	1,065	2.210	. 164	982	1. 964	145	743	1. 486	110

${ }^{1}$ Method used to allocate tax responsibility indicated thus: $I=$ Incremental; $I C=$ Recommendations based on findings of incremental and cost-function solutions; $\mathrm{S}=$ Standard cost: $T=$ Ton-mile.
es per year; fuel consumption rate, 5.3 miles per gallon.
${ }^{3}$ Motor-fuel tax rate of 8.5 cents per gallon and low registration fees.

- Motor-fuel tax rate of 6.5 cents per gallon and high registration fees.
${ }^{5}$ Maximum expenditure program with fuel-tax rate of 4 cents per gallon.
${ }^{6}$ Continuation of "current" (1949) expenditure level with fucl-tax rate of 3 cents pet gallon.

Table 15.-Tax payments under tax-study recommendations and at 1955 tax rates in selected States on a 3-axle tractor-semitrailer (No. 5)

State	Part 1.-Tax study recommendations										Part 2.-Total 1955 user-tax payments based on uniform amount of travel and fuel usage ${ }^{2}$		
	$\begin{aligned} & \text { Year tax } \\ & \text { study pub- } \\ & \text { lished } \end{aligned}$	Method ${ }^{\text {I }}$	State's own basis					Total user-tax payments hased on uniform amount of travel and fuel usage ${ }^{2}$					
			Annual travel	Fuel consumption rate	Total user-tax payments								
					Per year	Per mile	$\begin{gathered} \text { Per } \\ \text { ton-mile } \end{gathered}$	Per year	$\begin{aligned} & \text { Per } \\ & \text { mile } \end{aligned}$	$\begin{gathered} \text { Per } \\ \text { ton-mile } \end{gathered}$	$\begin{aligned} & \text { Per } \\ & \text { year } \end{aligned}$	$\begin{aligned} & \text { Per } \\ & \text { mile } \end{aligned}$	$\begin{gathered} \text { Per } \\ \text { ton-mile } \end{gathered}$
California	$\begin{aligned} & 1946 \\ & 1950 \\ & 1950 \end{aligned}$	TT	$\begin{gathered} \text { Miles } \\ 17,500 \\ 38,000 \\ 38,000 \end{gathered}$	$\begin{aligned} & \text { Milesigal. } \\ & 4.41 \\ & 5.1 \\ & 5.1 \end{aligned}$	$\begin{gathered} \text { Dollars } \\ 424 \\ 2,383 \\ 2,234 \end{gathered}$	$\begin{aligned} & \text { Cents } \\ & \text { 2.423 } \\ & 6.271 \\ & 5.879 \end{aligned}$	$\begin{gathered} \text { Cents } \\ 0.121 \\ .314 \\ .294 \end{gathered}$	$\begin{gathered} \text { Dollars } \\ 885 \\ 2,423 \\ 2,265 \end{gathered}$	$\begin{aligned} & \text { Cents } \\ & \text { 2. } 329 \\ & 6.376 \\ & 5.961 \end{aligned}$	$\begin{array}{r} \text { Cents } \\ 0.116 \\ .319 \\ .298 \end{array}$	$\begin{gathered} \text { Dollars } \\ 6551 \\ 1,211 \end{gathered}$	$\begin{aligned} & \text { Cents } \\ & 1.711 \\ & 3.187 \end{aligned}$	$\begin{array}{r} \text { Cents } \\ 0.086 \\ .159 \end{array}$
Colorado ${ }^{3}$													
Colorado ${ }^{\text {a }}$ Idaho....											1,082	2. 847	. 142
Illinois	$\begin{aligned} & 1948 \\ & 1955 \\ & 1954 \\ & 1950 \\ & 19.50 \end{aligned}$	TICITT	$\begin{aligned} & 36,500 \\ & 32,500 \\ & 47,002 \\ & 30,500 \\ & 30,500 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 3.7 \\ & 4.9 \\ & 4.3 \\ & 4.3 \end{aligned}$	1,1891,0411,4471,507586	$\begin{aligned} & \text { 3. } 258 \\ & \text { 3. } 080 \\ & \text { 3. } 079 \\ & \text { 4. } 491 \\ & \text { 1. } 921 \end{aligned}$.163.154.154.247.096	$\begin{aligned} & 1,161 \\ & 934 \\ & 1,234 \\ & 1,540 \end{aligned}$	$\begin{aligned} & 3.055 \\ & 2.458 \\ & 3.247 \\ & 4.053 \end{aligned}$	$\begin{aligned} & .153 \\ & .123 \\ & .162 \\ & .203 \\ & .080 \end{aligned}$	$\begin{array}{r} 1,036 \\ 834 \\ 756 \\ 881 \end{array}$	$\begin{aligned} & \text { 2. } 726 \\ & \text { 2.195 } \\ & \text { 1. } 989 \\ & \text { 2. } 318 \end{aligned}$	$\begin{aligned} & .136 \\ & .110 \\ & .099 \\ & .116 \end{aligned}$
Louisiana.													
Minnesota													
New York ${ }^{5}$													
New York ${ }^{6}$											-.---	-...-	
Ohio	$\begin{aligned} & 1951 \\ & 1953 \end{aligned}$	S	44, 500 41, 500	4.0	$\begin{aligned} & 1,181 \\ & 1,114 \end{aligned}$	$\begin{aligned} & 2.654 \\ & 2.684 \end{aligned}$	$\begin{array}{r}133 \\ .134 \\ \hline\end{array}$	$\begin{aligned} & 1,016 \\ & 996 \end{aligned}$	$\begin{aligned} & \text { 2. } 674 \\ & \text { 2. } 621 \end{aligned}$.134.131	1,057	2. 782	. 139
Ohio													
Oregon		T	$\begin{aligned} & \begin{array}{l} 4,109 \\ 25,035 \end{array} \end{aligned}$	$\begin{aligned} & 4.81 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 794 \\ & 647 \end{aligned}$	$\begin{aligned} & 2.328 \\ & 2.584 \end{aligned}$	$\begin{array}{r} .116 \\ .129 \end{array}$	$\begin{aligned} & 836 \\ & 790 \end{aligned}$	$\begin{aligned} & \text { 2. } 200 \\ & 2.079 \end{aligned}$.110.104	$\begin{array}{r} 1,304 \\ 546 \\ 675 \end{array}$	$\begin{aligned} & 3.432 \\ & \text { 1. } 437 \\ & \text { 1. } 776 \end{aligned}$.072.089
Washington.	1948	T											

[^4]${ }^{3}$ Motor-fuel tax rate of 8.5 cents per gallon and low registration fees.
4 Motor-fuel tax rate of 6.5 cents per gallon and high registration fees.
${ }^{5}$ Maximum expenditure program with fuel-tax rate of 4 cents per gallon.

Table 16. Tax payments under tax-study recommendations and at 1955 tax rates in selected States on a 4-axle tractor-semitrailer (No. 6)

Stat.e.	Part 1.-Tax study recommendations										Part 2.-Total 1955 user-tax payments based on uniform amount of travel and fuel usare ${ }^{2}$		
	$\begin{aligned} & \text { Ynar tax } \\ & \text { study pimb- } \\ & \text { lished } \end{aligned}$	Method ${ }^{\text {a }}$	State's own basis					Total user-tax payments hased on uniform amount of travel and fuel usage ${ }^{2}$					
			Annual travel	Fuel consumption rate	Total user-tax payments								
					$\begin{aligned} & \text { Per } \\ & \text { year } \end{aligned}$	$\begin{aligned} & \text { Per } \\ & \text { mile } \end{aligned}$	$\begin{aligned} & \text { Per } \\ & \text { ton-mile } \end{aligned}$	Per year	$\begin{aligned} & \text { Per } \\ & \text { mile } \end{aligned}$	$\begin{gathered} \text { Per } \\ \text { ton-mile } \end{gathered}$	Per year	$\begin{aligned} & \text { Per } \\ & \text { mile } \end{aligned}$	$\begin{gathered} \text { Per } \\ \text { ton-mile } \end{gathered}$
California Coloradin ${ }^{3}$ Colorado ${ }^{4}$.	$\begin{aligned} & 1946 \\ & 1950 \\ & 1950 \end{aligned}$	$\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$	Miles 23,500 40,000 40,000	Miles/aal. 3. 86 5. 1 5.1	$\begin{gathered} \text { Dollars } \\ 689 \\ 2,969 \\ 2,812 \end{gathered}$	$\begin{aligned} & \text { Cents } \\ & 2.932 \\ & 7.423 \\ & 7.030 \end{aligned}$	$\begin{array}{r} \text { Cents } \\ 0.117 \\ .297 \\ .281 \end{array}$	$\begin{aligned} & \text { Dollars } \\ & 1,135 \\ & -3,112 \\ & 2,921 \end{aligned}$	$\begin{aligned} & \text { Cents } \\ & \text { 2. } 838 \\ & 7.780 \\ & \text { 7. } 803 \end{aligned}$	$\begin{gathered} \text { Cents } \\ 0.114 \\ .311 \\ .292 \end{gathered}$	$\begin{gathered} \text { Dollars } \\ 806 \\ 1,529 \end{gathered}$	$\begin{aligned} & \text { Cents } \\ & 2.015 \\ & 3.823 \end{aligned}$	$\begin{gathered} \text { Cents } \\ 0.081 \\ .153 \end{gathered}$
Idano.		$\begin{gathered} \mathrm{T} \\ \mathrm{IC} \\ \mathrm{I} \\ \mathrm{~T} \\ \mathrm{~T} \end{gathered}$		$\begin{aligned} & 4.3 \\ & 3.3 \\ & 4.4 \\ & 3.5 \\ & 3.5 \end{aligned}$						$\begin{aligned} & .124 \\ & .122 \\ & .183 \\ & .264 \\ & .101 \end{aligned}$	$\begin{array}{r} 1,265 \\ 1,007 \\ 986 \\ 1,220 \end{array}$		$\begin{aligned} & .127 \\ & .101 \\ & .099 \\ & .122 \end{aligned}$
nlinnis Louisiana			$\begin{aligned} & 36,500 \\ & 32,500 \\ & 47,002 \\ & 36,500 \\ & 36,500 \end{aligned}$		$\begin{aligned} & 1,189 \\ & 1,233 \\ & 2,118 \\ & 2,675 \\ & 1,037 \end{aligned}$	$\begin{aligned} & 3,258 \\ & 3.794 \\ & 4.506 \\ & 7.329 \\ & 2.841 \end{aligned}$	$\begin{aligned} & .130 \\ & .152 \\ & .180 \\ & .293 \\ & .114 \end{aligned}$	1,2411,2171,8332,6391,010	3. 103 3. 043 4. 58.3 6. 598			$\begin{aligned} & 3.163 \\ & 2.518 \\ & 2.465 \\ & 3.050 \end{aligned}$	
Minnesota	1955												
New York ${ }^{\text {b }}$	1950												
New York ${ }^{\text {B }}$	1950												
Ohio.-	1951	S	$\begin{aligned} & 46,700 \\ & 46,300 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 1,553 \\ & 1,484 \end{aligned}$	$\begin{aligned} & 3.325 \\ & 3.205 \end{aligned}$	$\begin{aligned} & .13 .3 \\ & .128 \end{aligned}$	$\begin{aligned} & 1,351 \\ & 1,353 \end{aligned}$	$\begin{aligned} & 3.378 \\ & \text { 3. } 383 \end{aligned}$.135.135	1,467	3. 668	. 147
Ohio													
Oregon -	$\begin{aligned} & 1950 \\ & 1948 \end{aligned}$	T	$\begin{gathered} 39,600 \\ 19,805 \end{gathered}$	$\begin{aligned} & -4.57 \\ & 4.0 \\ & \hline \end{aligned}$	1,113	$\begin{aligned} & 2.811 \\ & 3.848 \end{aligned}$	$.112$	$\begin{aligned} & 1,156 \\ & 1,061 \end{aligned}$		$\begin{array}{r} .116 \\ .106 \end{array}$	$\begin{array}{r} 1,765 \\ 691 \\ 944 \end{array}$	$\begin{aligned} & \text { 4. } 413 \\ & 1.728 \\ & \text { 2. } 360 \end{aligned}$	$\begin{array}{r} .177 \\ .069 \\ .094 \end{array}$
Washington.									$\begin{aligned} & \text { 2. } 890 \\ & 2.653 \end{aligned}$				

${ }^{1}$ Method used to allocate tax responsibility indicated thus: $I=$ Incremental; $I C=$ Recommendations based on findings of incremental and cost-function solutions; $\mathrm{S}=$ Standard cost; $\mathrm{T}=$ Ton mile.
${ }^{2}$ Travel, 40,000 miles per year; fuel consumption rate, 4.2 miles per gallon.
${ }^{3}$ Motor-fuel tax rate of 8.5 cents per gallon and low registration fees.

Table 17. -Tax payments under tax-study recommendations and at 19.5.5 tax rates in selected States on a truck-trailer combination (No. 7)

State	Part 1.-Tax study recommendations										Part 2.-Total 1955 user-tax payments based on uniform amount of travel and fuel usage ${ }^{2}$		
	Year tax study published	Method ${ }^{1}$	State's own basis					Total user-tax payments hased on uniform amount of travel and fuel usage ${ }^{2}$					
			Annual travel	Fuel consumption rate	Total user-tax payments								
					Per year	Per mile	Per ton-mile	Per year	Per mile	Per ton-mile	Per year	Per mile	$\begin{gathered} \text { Per } \\ \text { ton-mile } \end{gathered}$
California	1946	T	Miles $39,300$	Miles/gal. 2.98	$\begin{gathered} \text { Dollars } \\ 1,394 \end{gathered}$	Cents 3.547	Cents 0.104	$\begin{gathered} \text { Dollars } \\ 1,672 \end{gathered}$	Cents 3.344	Cents 0.098	Dollars 1,232	Cents 2. 464	$\begin{aligned} & \text { Cents } \\ & 0.072 \end{aligned}$
Colorado ${ }^{3}$	1950	T	50, 000	5. 1	1,394	9. 490	0. .	5,126	10.252	.302 .	2,505	5. 010	. 147
Coloradn 1	1950	T	50,000	5.1	4,549	9. 098	. 268	4,841	9.682	. 285			--130
Idaho. - -					-...-				-----		2, 359	4.718	. 139
Illinois	1948	T	36,500	4. 3	1,189	3. 258	. 096	1,479	2. 958	. 087	1,860	3. 720	. 109
I Louisiana	1955	IC	37, 000	2. 7	1,626	4. 395	. 129	1,680	3. 360	. 099	1,440	2. 880	. 085
Minnesota ${ }^{5}$ New York	--.-------		37,		1,	-------		,	--------	---------	,	-------	-----.-
Ohin.	1951				1,314	6.822	. 201	1,651	3. 302	. 097	2,632	5. 264	. 155
Ohio..	1953	I	$55,500$	2.8	2,597	4.679	. 138	2,327	4. 654	. 137			-179
Oregon TTtah.							. 105			. 102	3,050 1,219	6. 100 2. 438 3.	179 .072
Washington	1948	T	42,000 26,333	4. 46 3.2	1,496 1,485	3. 562 5. 639	.105 .166	1,739 1,874	3. 478 3.	. 102	1, 219 1,594	2. 438 3.188	.072 .094

- Method used to allocate tax responsibility indicated thus: $I=$ Ineremental; IC = Recommendations based on findings of incremental and cost-function solutions; $\mathrm{S}=$ Standard ${ }_{2}$ Travel, 50,000

3 Motor-fuel tax rate of 8.5 cents per gallon and low registration fees.
4 Motor-fuel tax rate of 6.5 cents per gallon and high registration fees.
5 This vehicle combination not permitted by State size and weight regulations.

Table 18. -Tax payments under tax-study recommendations and at 1955 tax rates in selected States on a tractor-semitrailer-trailer combination (No. 8)

State	Part 1.-Tax study recommendations										Part 2.-Total 1955 user-tax payments based on uniform amount of travel and fisel usage ?		
	Year tax study published	Method '	State's own basis					Total user-tax payments based on uniform amount of travel and fuel usage ${ }^{2}$					
			Annual travel	Fuel consumption rate	Total user-tax payments								
					Per year	Per mile	$\begin{gathered} \text { Per } \\ \text { ton-mile } \end{gathered}$	Per year	Per mile	Per ton-mile	Per year	Per mile	$\begin{gathered} \text { Per } \\ \text { ton-mile } \end{gathered}$
California Colorado ${ }^{3}$ Colorado :	$\begin{aligned} & 1946 \\ & 1950 \\ & 1950 \end{aligned}$	T T T	Miles 26, 000 50, 100 50, 000	Milesigal. 2. 58 5. 1 5.1	$\begin{gathered} \text { Dollars } \\ 1,062 \\ 4,975 \\ 4,779 \end{gathered}$	Cents 4. 085 9. 950 9. 558	Cents 0.113 .276 .265	$\begin{gathered} \text { Dollars } \\ 1,847 \\ 5,392 \\ 5,098 \end{gathered}$	$\begin{array}{r} \text { Cents } \\ 3.694 \\ 10.784 \\ 10.196 \end{array}$	$\begin{array}{r} \text { Cents } \\ 0.103 \\ .299 \\ .283 \end{array}$	Dollars 1, 230 2. 627	Cents 2. 460 5. 254 $-m-\infty-$	$\begin{gathered} \text { Cents } \\ 0.068 \\ .146 \end{gathered}$
İaho. -											2,491	4.882	. 138
nlinois. . Louisianes	1948	T	36, 500	4. 3	1,189	3. 249	. 090	1,500	3. 000	. 083	1,937	3.874	. 108
Minnesota : New York ${ }^{6}$			--------..										
Ohio Ohio	$\begin{aligned} & 1951 \\ & 1953 \end{aligned}$	S	$\begin{aligned} & 45,500 \\ & 47,900 \end{aligned}$	2. 3	$\begin{aligned} & 2,568 \\ & 2,303 \end{aligned}$	5.644 4.808	.157 .134	$\begin{aligned} & 2,310 \\ & 2,118 \end{aligned}$	4. 620 4. 236	.128 .118	2,542	5. 084	. 141
Oregon Utah....... Washington.	$\begin{aligned} & 1950 \\ & 1948 \end{aligned}$	$\stackrel{\text { T }}{\text { T }}$	42, 000 26, 333	$\begin{aligned} & 4.45 \\ & 3.1 \end{aligned}$	2,303 1,562 1,354	3. -719 5.142	.103 .143	1, 1, 1,766	3. -650 3. 532	.-. 101	3, 225 1,165 1,446	$\begin{aligned} & 6.450 \\ & 2.330 \\ & 2.892 \end{aligned}$	$\begin{aligned} & .179 \\ & .065 \\ & .080 \end{aligned}$

1 Method used to allocate tar responsibility indieated thus: $I=$ Incremental; $S=$ Standard
cost; $T=$ T'on mile.
2 Travel, 50,000 miles per year; fuel consumption rate, 3.4 miles per gallon.

[^5]
Appendix B

Following is a reference list of the reports of State highway finance and taxation studies that were consulted in the preparation of this article. Eleven studies in nine States are included. In Ohio the study made by H. D. Simpson was based on the gross ton-mile
concept; that by D. F. Pancoast was a solution by the incremental method. In Washington there was only one study, utilizing the gross ton-mile method; but two reports were prepared successively by James C. Nelson.

Of the numerous other State highway fi-
ana, by William D. Ross. A financial analysis for the Legislative Council. Louisiana State University, Baton Rouge, 1955.

Minnesota

Financing a proposed highway program in Minnesota, by the Public Administration Service. A report to the Minnesota Highway Study Commission. St. Paul, Oct. 1954.

New York

Highway finance and taxation in New York, prepared by Griffenhagen and Associates for the Citizens Public Expenditure Survey, Inc., of New York State. New York, Feb. 1950.

Оніо

Highway finance, by Herbert D. Simpson. A study prepared for the Ohio Program Commission of the Ohio Department of Highways. Columbus, Sept. 1951. Allocation of highway costs in Ohio by the incremental method, by
nance studies available, some were too far removed in time, and others afforded no clear-cut basis for comparison. Studies now in progress, notably the incremental studies in Washington, Kentucky, and Montana, should provide further comparative data.

California

A proposed system of highway financing for the State of California, by Bertram H. Lindman. A report submitted to the Joint FactFinding Committee of the California Legislature on Highways, Streets and Bridges. Sacramento, Nov. 1946.

Colorado

Colorado's highway needs and highuay financing. Preliminary report of the Colorado Highway Planning Committee. Denver, Oct. 1950.

Illinois

A highway improvement program for Illinois, prepared by Griffenhagen and Associates for the Illinois Division of Highways. Springfield, Nov. 1948.

Louisiana

Financing highway improvements in Louisi-
D. F. Pancoast, Ohio Department of Highways. Columbus, Dec. 1953.

Utah

Financing needs and allocaling costs of highways among highway users in Utah, by the Bureau of Economics and Business Research, Utah University. Prepared for the Legislative Council of Utah. Salt Lake City, 1950 .

Washington

Financing Washington's highways, roads, and streets, by Dr. James C. Nelson. A report submitted to the Joint Fact-Finding Committee on Highways, Streets and Bridges of the State of Washington. Olympia, Oct. 1948. Taxing Washington's motor vehicles equitably for highway services, by Dr. James C. Nelson. A report submitted to the Joint Fact. Finding Committee on Highways, Streets and Bridges of the State of Washington. Olympia, Sept. 1950

United States-Canadian Border Commercial Trafific

BY THE HIGHII AY TRANSPORT RESEARCII BRINCII BUREAU OF PUBLIC ROADS

Reported by DANIEL O'FLAHERTY Head, Traffic and Travel Studies Unit

A^{4}T the request of the Department of State and in cooperation with that Department and other agencies of the Federal Gorernment, the Bureau of Public Roads undertook a study of the commercial traffic crossing the United States-Canadian border. The field work was done by the highway departments of 8 of the 12 States bordering on Canada as a part of the cooperative highway planning survey program carried out jointly by the States and the Bureau of Public Roads.
Information was obtained regarding truck and bus travel on a typical summer weekday at 16 stations located along the border. Roadside interviews were made at these locations on a weekday in July or August 1954. The drivers of all commercial vehicles passing the interview stations during a 24 -hour period were interviewed except in Maine where only 76 percent of the drivers at the 3 stations in the State were interviewed. The analysis of the border traffic was limited to the actual sample. It would be necessary, therefore, to increase the Maine figures about 32 percent if it were desired to compare the number of crossings on the Maine border with the number of crossings at other border States.

Information Obtained at Border Stations

Operators of commercial vehicles were questioned concerning the origin and destination of trip, the commodity hauled (when not obvious), the trip distance in the United States and Canada separately, the States and/or Provinces of vehicle registration, the classification of trip ("private" or "for hire"), the frequency of trips across the border, and the licensing authority of the driving permit.

In the study there were 3,093 vehicle records obtained of which 222 were for buses and 2,871 for trucks. This number amounted to more than three-fourths of the daily commercial traffic crossing the border at all points for the summer period and for the whole year on the basis of Canadian ports of entry data.

The average daily commercial traffic crossing the border during the summer months of July and August 1954 combined, hased on reports published by the Dominion Bureau of Statistics of Canada, ${ }^{1}$ was about the same as

[^6]In this article, the results of a study made of commercial vehicless crossing the United States-Canadian border on an average weckday in July or August of 19.51 are reported. Vehicle operators intervieued at 16 stations along the border supplied the following information: origin and destination of trips, arerage distances traveled in each of the tuo countries, frequency of trips, classification of trip (private or for hire), commodity being hauled, state and/or Protince of vehicle registration, and licensing authority of the operator's permit.

The weekday commercial travel at the 16 stations approximated three-fourths of the annual average daily commercial traffic crossing the border on all highways connecting the two countries. The average daily commercial traffic for July and August was found to be about the same as the annual average daily volume.

Approximately two-thirds of the commercial vehicles crossing the border were registered in Canada, whereas two-thirds of the mileage traveled was in the United Stutes. The majority of these vehicles were traveling betueen Provinces and States adjacent to the border. At some border stations many of the trips were very short, being less than 5 miles in length (one way). There were, however, nearly 200 trips which were over 1,000 miles in length and at least 68 which were over 2,000 miles. Four trips of the latter group uere estimated to be more than 3,000 miles. The average trip distance for all commercial vehicles crossing the border was 251 miles of which 169 miles involved travel in the United States and 82 miles in Canada.

Single-unit trucks accounted for 56 percent of the trips and 25 percent of the mileage traveled, and truck combinations with 37 percent of the trips accounted for 69 percent of the travel. The remaining 7 percent of trips and 6 percent of travel uas by buses.

About one-third of the travel was by vehicles classed as private carriers and two-thirds by vehicles classed as for-hire carriers. A comparison of truck body types indicates that stake or platform bodies were the most numerous, closely followed by van and box-type bodies.

Approximately one-eighth of the trips across the border uere nonrepetitive or very infrequent, whereas over half were repeated more often than once a week, and about a fifth were more of ten than once a day.

About half of all trucks were carrying loads. Two-thirds of the loaded vehicles carried manufactured and miscellaneous products. No other single classification of products was hauled by as many as 10 percent of the vehicles, although vehicles hauling agricultural and animal products each approached that figure.
Less than 200 operators of the 3,093 intervieved in this study reported that they were licensed to drive by both State and Province authorities.
for an average day of the year; that is, 3,950 , and 4,028 , respectively. To arrive at these amounts, the data included in the Canadian report were converted from monthly and annual figures to average daily traffic volumes and multiplied by two in order to account for vehicles leaving Canada as well as thosic entering.
The fact that more than three-fourths of the average daily traffic at all points was intercepted at 16 locations on weckdays indicates that an adequate sample was obtained for the border as a whole. That is true, notwithstanding that the number of wehicles crossing the border for eertain Provinces as
shown in the Canadian report vary considerably in volume from that reported in this; article. The travel between individual Provinces and States having many minor roads: crossing the border was not as well represented in the sample as the travel for the whole border, which was the subject of this study.

Trip Origins and Destinations

A basic fact developed from this study is the division of registration and travel for commercial vehicles between the two countries. This is illustrated in figure 1 which shows that almost two-thirds of the home country registration is ('anadian, yet slightly more than

Figure 1.-Percentage distribution of commercial vehicles crossing the border on an average summer weekday in 1954, according to country of registration and area of travel.
two-thirds of the travel is in the United States.

Travel between the United States and Canada involved trips with origin or destination in 35 States, Alaska, and 9 Provinces. Most of the trips were between adjacent States and Provinces; there were, however, some very long trips of which at least four exceeded 3,000 miles in length.

Table 1 shows the origin and destination of all trips recorded in this study. Ontario was the origin or destination of more trips $(1,585)$ than any other Province or State, and 13 of these trips had both origin and destination in Ontario. Michigan was the origin or destination of more trips than any other State with 1,079 trips, followed by New York and Maine with 620 and 536 trips, respectively. Approximately 88 percent of the trips across the border originated or terminated in a border State.

The 886 vehicles recorded as traveling between Ontario and Michigan are the highest number between any specific State and Province. There were 413 vehicles traveling between New Brunswick and Maine, 334 between Ontario and New York, 143 between Ontario and Minnesota, 134 between Quebec and Vermont, and 133 between British Columbia and Washington.

By studying table 2 in conjunction with 86
table 1, it is found that there were 218 trips with both origins and destinations within the United States of which 158 were between Michigan and New York. These vehicles passed through Canada and since the more important Michigan and New York border crossings were in operation in this study, it is probable that most of the 158 vehicles were duplicated in the reporting at stations 6,7 , or 8 and at stations 9,10 , or 11 .

There were 190 trips with both origin and destination in Canada. Had all the stations on the border been operated, these trips would need to be divided by two since they would have crossed the border twice. However, an analysis of the detailed origin and destination as well as the mileage traveled in the United States and Canada definitely established that a considerable number of these trips were not duplicated.

Of the 3,093 trips across the border, no more than $204[(218+190) \div 2=204]$ could be duplicated trips and, as stated, many of these were not. Five of the United States-toUnited States trips were between Alaska and the States, and four were between the mainland of Washington and Point Roberts, Wash., on the tip of a peninsula that can be reached by highway from the United States only by passing through Canada. The five Alaska trips would involve only one crossing and it is
known that the four Washington trips were recorded but once. Therefore, the relatively few duplicated trips included in this study have not been eliminated or adjusted because they involved so small a percentage of the sample and lacking complete information on crossings at all border stations, it could not be definitely determined which trips should be eliminated.

Distribution of Travel by Border Stations

The number of commercial vehicles crossing the border at each of the 16 stations is show in table 2 and figure 2. For example, 18? vehicles crossed at station 1 in Washingtor of which 83 were registered in the Unitec States and 106 were registered in Canada

Figures $3-8$ show origins and destination of trips between States and Provinces by stations. Code numbers beside the line to : State or Province show the termini of trip with the number of trips indicated at the enc of the line. For example, the codes 04-62 in figure 3 along with the numeral 5 at each enc of the line indicate that there were fiv California-British Columbia trips recorder at station 1.

Travel data between States and Province at station 1 and at stations 9 and 10 combine are shown in figure 3. For instance, ther were 133 trips between Washington anı British Columbia at station 1, and 333 trip between New York and Ontario at station 9 and 10. Note the two very long trips be tween California and Ontario, the four trip between Michigan and British Columbia, an also the seven trips between Ontario an British Columbia via the United States.

Trips involving crossings at station 2 an at stations 12 and 13 combined are shown i figure 4. A long trip between Texas an Quebec was recorded at the border static in Vermont, and three vehicles traveling b tween Texas and Alberta crossed at tl Montana border station. Other long trip through station 2 were between Alaska ar Montana, Illinois, and Wisconsin. Here a: found 22 Canada-to-Canada trips betwef Ontario and Alberta via the United States.

Trips across the border at station 3 North Dakota and at station 11 in New Yo: are shown in figure 5 (p.90). Traffic at the locations is of relatively low volume. An u usually long trip between California as Quebec was recorded at station 11.

Trips recorded at stations 4 and 5 in Minrsota and 14 and 15 in Maine are presented figure 6 (p. 90). Except for station 4, most : the trips at these locations were between ajacent States and Provinces. Although 1 i trips (table 2) were recorded at station 5 a:l only 110 trips at station 4 , the termini distbution was more varied at station 4 .

Trips recorded at stations 6 and 16 shown in figure 7 (p. 91). At station $6, \mathrm{P}(5$ Huron, Mich., there were 36 trips betwel Michigan and New York via Canada. The? were also six trips between Alberta and Onta, and eight trips between Manitaba and $(-$ tario by way of the United States. Sin

Table 1．－Origin and destination and number of trips made by commercial vehicles crossing the Canadian－United States border on ant average summer weekday in 1954

Origin of trip	Destination of trip																												
	Province										Border States													Nonborder States， by regions					
	$\begin{array}{\|l\|l} \text { 䔍 } \\ \stackrel{2}{4} \end{array}$	$\underset{\text { bia }}{\substack{\text { British Colum- }}}$				$\begin{aligned} & \text { 을 } \\ & \text { I. } \\ & 0 \end{aligned}$				$\begin{aligned} & \text { ت゙ } \\ & \text { ※̈ } \\ & \hline \end{aligned}$					$\begin{aligned} & \text { 界 } \\ & \text { \#̈ } \\ & \text { B } \end{aligned}$				$\frac{\stackrel{1}{\circ}}{\circ}$			$\begin{aligned} & \text { ⿸ㅡㄹ } \\ & \text { 品 } \\ & 0.4 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 쯩 } \\ & \text { : } \end{aligned}$			$\left\|\begin{array}{c} A_{0}^{4} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & \text { J } \\ & \stackrel{\text { an }}{2} \end{aligned}$		
Province：																													
Alberta British Columbia		6	4	－－－	－－	19	－－－	1	\cdots	26	－－	－．－	1		52	－－－	4	－－	－－	－－	1	2	60	1	3	6	10	－－－	96
Manitoba	3	3	－．	－－－	－－	28	－－－	1	－－	38	．－	…	1	27	1	－－－	\cdots	7	－－	－－		－	75	－－	1		8	－－．	117
New Brunswick．	－－	－	－	3	－	－－．	－－－－	1	－－	4	－－	224	－－－	2	－－	－－．	－－－	－－	－－	－－	－－	－	224	8	4	－－	8	－－－	236
Nova Scotia－．					－－							10						－－		－－			10	9	－－		9	－－－	19
Ontario ．－．．－－－－	22	4	23	－	－－	13	．．．	－－－	12	74	－	－－－	447	78	－－	－．．－	188	－－	12	－－	2	$\overline{2}$	729	13	6	1	20	－－－	823
Prince Edward Island	1	\cdots	2	4	－－		．－．	1	\cdots	1	－－	50	－	－－－	－－	\cdots	52	－－	－－	$\overline{8} 6$	．．	－	－－19\％	2	$\stackrel{7}{2}$	－－	2	－－－	${ }^{3}$
Saskatchewan．	1	1	2		－－	5	－－－－	－－．	－．	6	－－	50	1	－－－	－	－	52	17	－－	86	－－	－	192 18	25	1	．．		－－－	226 25
Total．	42	16	31	7	－－	73	－．－	8	13	190	－－	284	450	106	54	3	245	24	12	86	75	4	1，343	58	17	14	89	－－－	1，622
Border States：																													
Idaho．－．－－－－－－－－－－	－－	－－	－－			1	－－－		－－	1	－－			－－－	－－	－－－	－－－	－－	－－	－－	－－	－		\cdots	－－	－－	－－－	－－－	
Maine．－－ Michigan	1	3	－－	189	4	439	－－．	4	\bigcirc	447	－－	17	2	－－－－	－－	－－－	98	－－	－－	－－	－－	－	${ }_{98}^{19}$	10	\because	\because	10	－－－	252 555
Minnesota		－－	17	－－－－	\cdots	65	－－－－	－－－	1	83	－－	－－－	－－．．	－－－－	－－	－．	8	－－	－－	－－	－－	－		－－	－－	－－	10	－－－	553
Montana．	40	－－	－－	－－－	－－	－	－－．	－	－－	40	－－	－．．．	－．．．	－－．	－－	－．．．	－．．．	－－	－－	－－	－．	－		－－	－－	－－－	－－．	\cdots	42
New Hampshire	－－	－－	－－	－－．	－－	1	－－－	3	－－	4	－－	－－．	－	－－．	－－	－．．．	…	－－	－－	－－	－．	－		－－	1	－－	\cdots		5
New York．－．	1			－－－	－－	146	－．．	64	\because	210	－－	－－－	60	－．．	－－	－－－	…	－－	－－	－－	－－	－	60	－－	5	－－	5	－－－	275
North Dakota	1	1	7	－－－	－－	16	－－－	－－－	8	18	－－	－－．	－－－	－－－	－－	－－．	－－．	－－	－－	－－	－－	－		－－	－－	－－	…	－．．	18
Vermont．	－－	－－	－－	－－－	－－	．．．	…	48	－－	48	－－	－－－	…	－－－	\cdots	－－－	…	－－	－－	－－	\cdots	：		－－	－－－	－－	－．．．	－－－	48
Washington	－－	61	－	－－．	－－	1	－－－	－．．	－－	62	－	－－．	－－．	－．．．	－－	－－－	－．．	－－	－－	－－	4	．	4	－－	－．	－．	．．．		66
Wisconsin．			1		－－	1	－－－		－－	2	－－			－．．	－－			－－	－－	－．	．－	－		－－	－．	－－		1	3
Total	42	55	25	189	4	671	－－－	158	10	1，164	－－	17	62	－－．	－－	－－－	98	－－	－－	－．	4	－	181	10	6	－－	16	3	1，364
Nonborder States，by re－																													
gions： Eastern States 1				7	9	16	4						12									1							
Central States ${ }^{2}$	2		3	－－－	－	12	－－－	2	5	24	－－	－－－	－－	…	－－	－－．	－	－－	－－	－－	－－	1	1	－－	－	－－	．	1	26
Western States ${ }^{3}$－	4	3	－－	－－－	－－	3	－－－	1	－．	11	－－	－－－	－－．	－－－	－－	－－－	1	－－	－－	－－	－－	－	1	－－	－－	．－			12
Total	6	3	3	7	9	31	4	21	5	89	－－	－－－	12	－－－	－－	－－－	2	－－	－－	－－	－－	1	15	－－	1	－－	1	1	106
Territory of Alaska．	－－	－－	－－	－－－	－－	－－－	－．．－	－－－	－－	－－	－－	－－－	－－－	－．．．	1	－．－	－－－	－－	－－	－－	－－	－	1	－－	－－	－－	－．．．	－．．－	1
Total，all trips	90	84	59	203	13	775	4	187	28	1，443	－－	301	524	106	55	3	345	24	12	86	79	5	1，540	68	24	14	106	4	3，093

${ }^{1}$ Includes the following States：Connecticut，Maryland，Massachusetts，New Jersey， Pennsylvania，Rhode Island，South Carolina，and Virginia． ${ }^{2}$ Includes the following States：Alabama，Arkansas，Illinois，Indiana，Iowa，Kentucky，

Missouri，Nebraska，Oklahoma，and Texas．
${ }_{3}$ Includes the following States：California，Colorado，Nevada，Oregon，and Wyoming．
trips between Oklahoma and Ontario and South Carolina and Ontario were also re－ corded．At station 16 in Maine， 183 trips were recorded between Maine and New Bruns－ wick．Only three States other than Maine were involved in trips at station 16 ．
The greatest number of trips across the border at any one general location were re－
corded at Detroit（stations 7－8）．Travel data for the two stations are combined in figure 8 （p．91）．Of the 938 vehicle operators interviewed at Detroit， 784 were traveling between Michigan and Ontario．Including crossings at Port Huron（station 6；fig．7）， there were 886 trips between Michigan and Ontario．The total United States－to－United

States and Canada－to－Canada trips recorded at stations 7－8 exceeded that of any other border area．Here there were 51 Canada－to－ Canada trips of which 22 were between Mani－ toba and Ontario，and 56 United States－to－ United States trips of which 39 involved travel between Michigan and New York．At stations 9－10 combined（fig．3）there were 98 United

Table 2．－Number of commercial vehicles crossing the border at 16 stations on an average summer weekday in 1954 ，classified by country of vehicle registration and country of origin and destination

Station num－	Location of station	Origin and destination of travel of United States registered vehicles					Origin and destination of travel of Canadian registered vehicles					Origin and destination of travel of all vehicles				
		$\left.\begin{gathered} \text { Canada } \\ \text { to } \\ \text { Canada } \end{gathered} \right\rvert\,$	Canada to United States	United States to Canada	United States to United States	Total	$\begin{aligned} & \text { Canada } \\ & \text { to } \\ & \text { Canada } \end{aligned}$	$\begin{gathered} \text { Canada } \\ \text { to } \\ \text { United } \\ \text { States } \end{gathered}$	United States to Canada	United States to United States	Total	$\begin{aligned} & \text { Canada } \\ & \text { to } \\ & \text { Canada } \end{aligned}$	Canada United States	$\begin{gathered} \text { United } \\ \text { States } \\ \text { to } \\ \text { Canada } \end{gathered}$	United States to United States	Total
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Blaine，Wash Sweetgrass，Mont \qquad Portland，N．Dak Noyes，Minn． International Falls，Minn	1 --	$\begin{aligned} & 35 \\ & 21 \\ & 11 \\ & 18 \\ & 14 \end{aligned}$	$\begin{array}{r} 43 \\ 15 \\ 11 \\ 15 \\ 7 \end{array}$	4 6 \cdots - －－－	$\begin{aligned} & 83 \\ & 41 \\ & 22 \\ & 39 \\ & 21 \end{aligned}$	32 29 4 36 4	49 49 8 20 62	25 33 2 15 15 58	－．．．－	$\begin{array}{r} 106 \\ 111 \\ 14 \\ 71 \\ 124 \end{array}$	$\begin{array}{r} 33 \\ 29 \\ 4 \\ 42 \\ 4 \end{array}$	$\begin{aligned} & 84 \\ & 70 \\ & 19 \\ & 38 \\ & 76 \end{aligned}$	68 48 13 30 65	4 5 $\cdots---1$ $-\cdots$	189 152 36 110 145
$\begin{aligned} & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	Port Huron，Mich Detroit Tunnel，Mich Detroit Bridge，Mich Buffalo，N．Y	2 -1 1 1	$\begin{aligned} & 21 \\ & 43 \\ & 52 \\ & 28 \end{aligned}$	$\begin{aligned} & 23 \\ & 42 \\ & 56 \\ & 59 \end{aligned}$	36 5 46 86	$\begin{array}{r} 82 \\ 90 \\ 155 \\ 174 \end{array}$	14 4 46 1	41 138 179 128	28 164 157 155 85	1 --5	$\begin{array}{r} 84 \\ 306 \\ 387 \\ 214 \end{array}$	$\begin{array}{r} 16 \\ 4 \\ 47 \\ 2 \end{array}$	$\begin{array}{r} 62 \\ 181 \\ 231 \\ 156 \end{array}$	$\begin{array}{r} 51 \\ 206 \\ 213 \\ 144 \end{array}$	$\begin{array}{r} 37 \\ 5 \\ 51 \\ 86 \end{array}$	$\begin{aligned} & 166 \\ & 396 \\ & 542 \\ & 388 \end{aligned}$
10	Rainbow Bridge，Niagara Falls，N．Y Champlain， $\mathrm{N} . \mathrm{Y}$	．．．－－－	3 26	9 3	9 1	$\begin{aligned} & 21 \\ & 60 \end{aligned}$		$\begin{aligned} & 42 \\ & 37 \end{aligned}$	$\begin{aligned} & 20 \\ & 33 \end{aligned}$	3	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	－－－－－－	$\begin{aligned} & 45 \\ & 63 \end{aligned}$	$\begin{aligned} & 29 \\ & 66 \end{aligned}$	12	$\begin{array}{r} 86 \\ 130 \end{array}$
$\begin{aligned} & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \end{aligned}$	Swanton，Vt Derby Line，Vt． Jackman，Maine Madawaska，Maine Calais，Maine．		$\begin{array}{r} 21 \\ 26 \\ 6 \\ 67 \\ 40 \end{array}$	$\begin{array}{r} 25 \\ 19 \\ 4 \\ 63 \\ 33 \end{array}$	－．．．． $-\ldots$ $-\ldots$.	$\begin{array}{r} 46 \\ 45 \\ 27 \\ 130 \\ 77 \end{array}$	$\begin{gathered} \cdots \\ \cdots \\ \cdots-\cdots \end{gathered}$	$\begin{aligned} & 18 \\ & 38 \\ & 42 \\ & 60 \\ & 89 \end{aligned}$	$\begin{aligned} & 15 \\ & 9 \\ & 30 \\ & 48 \\ & 74 \end{aligned}$		$\begin{array}{r} 33 \\ 48 \\ 72 \\ 108 \\ 167 \end{array}$	$\begin{gathered} -1 \\ \cdots--. \end{gathered}$	$\begin{array}{r} 39 \\ 64 \\ 48 \\ 127 \\ 129 \end{array}$	$\begin{array}{r} 40 \\ 28 \\ 34 \\ 311 \\ 107 \end{array}$	－－．．．	$\begin{array}{r} 79 \\ 93 \\ 99 \\ 238 \\ 244 \end{array}$
	Total	15	432	457	209	1，113	175	1，000	796	9	1，980	190	1，432	1，253	218	3，093

Figure 2.- Vumber of commercial vehicles crossing the border at 16 stations on an average summer weekday in 1954, according to country of registration.

States-to-United States trips of which 82 were between Michigan and New York, but only 2 trips with origin and destination in Canada were recorded.

The 39 Michigan-New York trips recorded al stations $7-8$ plus the 36 such trips at station 6 (fig. 7) nearly equal the 82 trips having the same termini recorded at New York stations 9-10 (fig. 3). This of course is a duplication of sampling.

Major Portion of Travel in the United
 States

The average lengths of trips for major classes of commercial vehicles, according to country of wehicle registration and area of travel, are shown in figure ! (p. 92). Except for Canadian registered buses, the average distance traveled in the United States substantially exceeds that in Canada. This is true regardless of country of vehicle registration. The average length of trip in the linited States for all truck combinations was considerably more than twiee the distance traveled in Canada. For all vehicles, the portion of the trip in the United States averaged 169 miles ass compared with 82 miles in Canada.

Identical information to that shown in figure ! is provided in table 3 (p. 93), but the latter contains more detailed data on average trip
distances for the various types of vehicles as well as average trip distances according to class of operation.

The term "class of operation" indicates whether a commercial vehicle is operated as a "private" or "for-hire" carrier. Actually, three classes-private, contract carrier, and ${ }^{\prime}$ common carrier-were recorded in the study, but distinction between the latter two classes is difficult to obtain from the driver during the limited time available at roadside interview stations. The three terms may be briefly defined as follows:

A private vehicle is one which is owned by an individual or company and its use is limited to the transportation of his or its own goods or products.

A contract carrier enters into a specific contract, written or otherwise, for the transportation of property or goods owned by another. The owner of the vehicle does not haul for the public generally and he may refuse to accept a job.

A common carrier hauls for the public without diserimination. His rates are published and he must accept any job that his equipment is capable of handling within the area and terms of the certificate issued.

There were so few contract-carrier vehicles recorded in this study that it was concluded that a term covering both contract- and
common-carrier vehicles would better serve the purpose of this survey. Therefore, only the two major classes of private and for hire are reported here.
Table 3 shows that average distances traveled in the United States exceed those in Canada, except for a small percentage of single-unit for-hire trucks, 19 truck and trailer combinations of United States registry, and 124 Canadian registered buses.

The distribution of travel by private and for-hire classes of vehicle operation is similar regardless of country of vehicle registration. Privately operated vehicles accounted for 34.8 percent of the travel, and the for-hire class, 65.2 percent. When the major types of vehicles are considered separately, it is found that the relation of travel for private and for-hire classes is as follows: single-unit trucks, 88.1 and 11.9 percent; truck combinations, 17.4 and 82.6 percent; and buses, 11.5 and 88.5 percent, respectively.

Forty percent of the trucks and 19 percent of the buses crossing the border traveled less than 10 miles in each country (total trip distance less than 20 miles). Nine percent of the trucks and 7 percent of the buses traveled between 10 and 99 miles in each country. More than two-thirds of all trucks traveled less than 100 miles in each country, or stated another way, the trip distance was

Figure 3.-Origin and destination and number of trips made by commercial vehicles crossing the border at station 1 and stations 9 and 10 (combined) on an average summer weekday in 1954.

Figure 4.-Origin and destination and number of trips made by commercial vehicles crossing the border at station 2 and stations 12 and 13 (combined) on an average summer weekday in 1954.

Figure 5.-Origin and destination and number of trips made by commercial vehicles crossing the border at stations 3 and 11 on an average summer weekday in 1954.

Figure 6.-Origin and destination and number of trips made by commercial vehicles crossing the border at stations 4, 5, 14, and 15 on an average summer weekday in 1954.

Figure 7.-Origin and destination and number of trips made by commercial vehicles crossing the border at stations 6 and 16 on an average summer weekday in 1954.

Figure 8.-Origin and destination and number of trips made by commercial vehicles crossing the border at stations 7 and 8 combined on an average summer weekday in 1954.

Figure 9.-Average length of trips made by commercial vehicles crossing the border on añaverage summer weekday in 1954, according to type of vehicle, country ${ }_{\mathbf{L}}$ of registration, and area of travel.
less than 200 miles in both countries. About half (46 percent) of the buses fell in this category

About 6 percent of the trucks and less than 1 percent of the buses traveled 1,000 miles or more in the United States. Less than 1 percent of the trucks and no buses traveled as much as 1,000 miles in Canada.

For most of the very long trips the major portion of travel was in the United States and some of these trips had both origins and destinations in Canada. One of the longest trips of the latter type was between Toronto, Ontario, and Vancouver, British Columbia, and was made by a vehicle of Canadian registration. The total length of trip was reported as 3,000 miles -300 miles in Canada and 2,700 miles in the United States. The vehicle was a 4 -axle tractor-semitrailer combination hauling paper. A number of other vehicles moving from Canada to Canada traveled
more than 1,000 miles in the United States. A trip of 3,032 miles between Vancouver, British Columbia, and Oklahoma City, Okla., involved 3,000 miles of travel in the United States. This vehicle was a pickup truck carrying personal luggage and was registered in Texas.

Majority of Heavy Vehicles in ForHire Class

The percentage distribution of the number of commercial vehicles crossing the border, classified according to vehicle type, country of registration, and class of operation, is shown in table 4.

Single-unit trucks were largely operated as private carriers. Only 4.2 percent of the 2 axle, 4 -tire trucks were operated as for-hire carriers, and only 17.4 percent of the 2 -axle, 6 -tire vehicles were reported in this category.

In contrast, 64.6 percent of the 3 -axle tractorsemitrailer combinations and 81.1 percent of the 4 -axle tractor-semitrailer combinations were reported in the for-hire classification. Of the few truck-trailer combinations recorded in the study, 56.6 percent were in the for-hire class. For-hire operated buses accounted for 94.1 percent of the total. Of the 222 buses reported, 13 were private carriers and only 25 had a seating capacity of less than 30 passengers.

The relation of the number of private and for-hire vehicles is almost the opposite of their respective travel when all vehicles are considered as a group. This cannot be said, however, for the individual types of vehicles when they are compared separately.

The percentages of United States registered vehicles in the private and for-hire categories were 55.5 and 44.5 percent, respectively; Canadian registered vehicles in the two classes were 63.6 and 36.4 percent. For all vehicles the percentage in the privately operated class was 60.7 percent, and the for-hire class, 39.3 percent.

Truck Combinations Travel Greater Distances

In table 5, the number of vehicles and mileage traveled are shown for single-unit trucks, truck combinations, and buses. Although single-unit trucks represented 56 percent of the vehicles recorded, this type of vehicle accounted for only 25 percent of the travel.

Truck combinations amounted to less than 37 percent of the total vehicles recorded, yet these vehicles accounted for almost 69 percent of the total travel. This indicates that trip lengths are much greater for the heavier type vehicles than for the lighter types. Buses accounted for slightly more than 7 percent of the vehicles recorded and 6 percent of the travel.

The percentage of vehicles registered in the United States and Canada is compared with the percentage of travel in each country by type of vehicle in table 6. For each type of vehicle the greater proportion are registered in Canada and the greater proportion of the travel is in the United States.

This table indicates that 2 -axle, 4 -tire single-unit trucks, mostly panels and pickups, have a larger proportion of Canadian registration than any other type of vehicle. However, the travel by these vehicles, although greater in the United States than in Canada, accounted for a smaller percentage of total travel in the United States than any other vehicle. Only 32 percent of these vehicles were registered in the United States, yet 57 percent of the travel occurred in the United States.

Of the total number of single-unit trucks recorded, approximately 34 percent wert registered in the United States and 66 percent in Canada, whereas 58 percent of the trave was in the United States and 42 percent was in Canada.

About 40 percent of the number of 4 -axli tractor-semitrailer combinations crossing the border were registered in the United States but nearly three-fourths (73 percent) of thi travel by vehicles of this type was in the United States.

Table 3.-Number of commercial vehicles crossing the border on an average summer weekday in 195l, aceording to type of vehicle and class of operation, country of registration, and average length of trip

Type of vehicle and class of operation	United States registered vehicles				Canadian registered vehicles				All vehicles			
	Numberofvehicles	A verage length of trip (in miles) traveled in-			Number of vehicles	A verage length of trip (in miles) traveled in-			$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { vehicles } \end{aligned}$	Average length of trip (in miles) traveled in-		
		United States	Canada	Total		United States	Canada	Total		United States	Canada	Tutal
Single-unit trucks: 2-axle, 4-tire:												
Private-......	277	83	47	130	605	58	48	106	882	6.5	48	11.3
$\underset{\text { 2-axle, } 6 \text {-tire: }}{\text { For hire }}$	18	78	92	170	21	34	49	83	39	54	$6: 9$	123
Private-. For hire.	239	${ }^{61}$	39 68	100	434	66	44	110	673	64	42	1116
All single-unit trucks:	50	114	68	182	92			101	142	73	56	129
Private-.-.-........	516	72						107	1,555	65	4.5	110
For hire.	$\begin{array}{r}68 \\ 584 \\ \hline 8\end{array}$	104 (76)	$\begin{gathered} 44 \\ 74 \\ (47) \end{gathered}$	$\begin{gathered} 178 \\ 178 \\ (123) \end{gathered}$	$\begin{array}{r} 1,039 \\ 113 \\ 1,152 \end{array}$	$\begin{gathered} 47 \\ (60) \end{gathered}$	$\begin{array}{r} 40 \\ 50 \\ (47) \end{array}$	$\begin{gathered} 107 \\ 97 \\ (107) \end{gathered}$	$\begin{array}{r} 1,553 \\ 181 \\ 1,736 \end{array}$	$\begin{gathered} 69 \\ (65) \end{gathered}$	59 (4i)	(128
Truck-tractor and semitrailer combinations: 3-axle:												
Private--.-................	47	293	122	415	128	108	55	163	175	158	73	231
For hire	131	212	190	402	188	428	134	562	319	339	157	496
4-axle or more:												
For hire.	193	394	155	549	284	448	150	598	477	426	152	$5 \% 8$
For hire --......	13	33	132	165	17	259	61	320	30	161	92	2.3
All combinations:												
For hire ${ }_{\text {Total }}$	$\begin{array}{r} 94 \\ 337 \\ 431 \end{array}$	$\begin{gathered} 298 \\ 309 \\ (307) \end{gathered}$	$\begin{gathered} 141 \\ 168 \\ (169) \end{gathered}$	$\begin{aligned} & 439 \\ & 477 \end{aligned}$	215 489 704	$\begin{array}{r} 164 \\ 434 \\ \hline \end{array}$	$\begin{gathered} 780 \\ 140 \\ \hline \end{gathered}$	$\begin{gathered} 242 \\ 574 \\ (472) \end{gathered}$	$\begin{array}{r} 309 \\ 826 \\ \hline \end{array}$	$\begin{aligned} & 205 \\ & 383 \end{aligned}$	97 152 (137)	302 535 (471)
Buses:												
Private.	${ }_{90}^{8}$	583	70 80	653	5	3	33	36	13	360		416
Total	98	(249)			124	$\stackrel{34}{(33)}$			222	$\begin{gathered} 114 \\ (128) \end{gathered}$	86 (84)	$\begin{gathered} 2010 \\ (212) \end{gathered}$
All vehicles:												
$\xrightarrow{\text { Private- }}$ For hire	618 495	113 265	59 139	172 404	1, 259			130 425	1,877 1 1 316	90 290	$\begin{array}{r}54 \\ 127 \\ \hline\end{array}$	144 417
Total	1,113	(181)	(94)	(275)	1,980	(162)	(76)	(238)	3,093	(169)	(82)	(251)

${ }^{1}$ Numbers in parentheses are averages.

For all truck combinations, United States registration amounted to 38 percent and Canadian registration, 62 percent. Combinations traveled 71 percent of their mileage in the United States and 29 percent in Canada.

Vehicles Registered in Both Countries

Of the 1,113 vehicles with home registration in the United States as reported in table 7, 268 vehicles or 24.1 percent were also registered in one or more Canadian Provinces. Registrations in two Provinces accounted for 0.7 percent of the vehicles and in three Provinces, 0.8 percent.

There were 1,980 vehicles with home registration in Canada of which 841 or 42.5 percent were also registered in at least one State. Of this total 709 vehicles, or more than onethird, were registered in one State, 54 in two States, 49 in three States, 19 in four States, and 7 in five States. The remaining three vehicles were registered in six, seven, and nine States, respectively. In total, there were 1,109 or 36 percent of all vehicles that were registered in both countries.

Truck Body Types

Classification of vehicles according to vehicle and body types and country of registration is shown in table 8. The leading bodytype classification was stake or platform with 752 vehicles. Vehicles with van or covered and box-type bodies followed closely with 664 and 626 , respectively.

All but one of the panel body-type vehicles recorded were single-unit trucks. Sixty-one percent of the stake and platform body types and 92 percent of the box-body types were
single-unit trucks. Slightly more than 93 percent of the refrigerator body types and about 72 percent of the vehicles with tankbody types were truck combinations. Ninetytwo percent of the dump bodies and 63 percent of the cattle-rack body types were single-unit trucks. Eight percent of the dump-type bodies and 37 percent of the cat-tle-rack bodies were mounted on combinations.

Buses were included in the "other" classification along with 188 trucks of miscellaneous body types. Generally the distribution of vehicles by body type was found to be similar regardless of country of registration.

Trip Frequencies

The frequency of trips across the border between the same origins and destinations,

Table 4.-Percentage distribution of commercial vehicles crossing the border on an average summer weekday in 1954, according to type of vehicle, country of registration, and class of operation

Type of vehicle	United States registered vehicles			Canadian registered vehicles			All vehicles		
	Private	For hire	Total	Private	For hire	Total	Private	For hire	Total
Single-unit trucks:									
2-axle, 4-tire..	93.9	${ }^{6.1}$	100.0	96.6	3.4 5	100.0	85.8	1-2	100.0
All single-unit trucks	88.4	11.6	100.0	90.2	9.8	100.0	89.6	10.4	100.0
Truck-tractor and semitrailer combinations:									
3-axle	26.4	73.6	100.0	40.5	59.5	100.0	35.4	64.6	100.0
4-axle or more	17.5	82.5	100.0	19.8	80.2	100.0	18.9	81.1	100.0
Truck and trailer combinations.	31.6	68.4	100.0	50.0	50.0	100.0	43.4	54.6	100.0
All combinations	21.8	78.2	100.0	30.5	69.5	100.0	27.2	72.3	100.0
Buses.	8. 2	91.8	100.0	4.0	96.0	100.0	5.9	94.1	100.0
All commercial vehicles.	55. 5	44.5	100.0	63.6	36.4	100.0	60.7	39.3	100.0

Table 5.-Number and percentage distribution of commercial vehicles crossing the border on an average summer weekday in 1954, according to type of vehicle and mileage of travel

Type of vehicle	Vehicles		Travel	
	Number	Percent	Miles	Percent
Single-unit trucks Truck combinations Buses	$\begin{array}{r} 1,736 \\ 1,135 \\ 222 \end{array}$	$\begin{array}{r} 56.1 \\ 36.7 \\ 7.2 \end{array}$	$\begin{array}{r} 194,856 \\ 534.890 \\ 47,155 \end{array}$	$\begin{gathered} 25.1 \\ 68.8 \\ 6.1 \end{gathered}$
Total...	$\overline{3,093}$	100.0	776, 811	100.0

Table 6.-Percentage distribution of commercial vehicles crossing the border on an average summer weekday in 1954 , according to type of vehicle, country of registration, and area of travel

Type of vehicle	Porcent registered in-			Percent of travel in-		
	United States	Canada	Total	United States	Canada	Total
Single-unit trucks:						
2-exlo, 4 tire...	32.0	68.0	100.0	57.2	42.8	100.0
2-axle, 6 tire	35.5	64. 5	100.0 100.0	59.4 58.2	40.6 41.8	100.0 100.0
Truck-tractor and semitrailer com	33.6	66.4	100.0		41.8	100.0
3-axle...-...	36.0	64.0	100.0	68.4	31.6	100.0
4 -axle or more	39.8	60.2	100.0	73.1	26.9	100.0
Truck and trailer combinations	35.8	64.2	100.0	58.3	41.7	100.0
All combinations.	38.0	62.0	100.0	71.0	29.0	100.0
Buses.	44.1	55.9	100.0	60.4	39.6	100.0
All commercial vehicles	36.0	64.0	100.0	67.1	32.9	100.0

Table 7.-Number of commercial vehicles crossing the border on an average summer weekday in 1954, according to country of home registration, number registered in more than one place, and class of truck operation

| Place of registration | | |
| :---: | :---: | :---: | :---: | :---: | :---: |

classified according to country of registration and major vehicle types, is shown in table 9.

Trips made no oftener than once a year constituted 11.4 percent of the total. At the other extreme, trips made oftener than once a day amounted to 19.1 percent. More than
half of the trips, 56.0 percent, were repeated more often than once a week, on the average. There was no consistent difference in trip frequency with respect to United States and Canadian registered vehicles.

The trips made very frequently were, of
course, short trips. One trip was reported to have been made as frequently as 6,000 times per year and was only $1 \frac{1}{2}$ miles long-onehalf mile of travel in the United States and one mile in Canada. The vehicle was registered in the United States and hauled coal from Canada and returned empty. The very long trips were mostly nonrepetitive or very infrequent.

Trip Length Varies with Commodity Hauled

The commodities hauled by commercial vehicles are classified in tables 10 and 11 according to the 1954 edition of the Freight Commodity Statistics Classification published by the Association of American Railroads.

Of the 3,093 vehicles recorded, as shown in table 10,222 or 7.2 percent were buses, 1,432 or 46.3 percent were empty trucks, and 1,439 or 46.5 percent were loaded trucks. That is, 92.8 percent of the commercial vehicles were trucks and about half were empty. The average length of trip by empty trucks was 155 miles compared with 353 miles for loaded trucks. However, the proportion of travel by empty and loaded trucks in the United States and Canada was about the same, being 66 and 34 percent for empty trucks and 68 and 32 percent for loaded trucks, respectively.

Agricultural products

Trucks hauling agricultural products accounted for 4.5 percent of all commercial vehicles and 4.2 percent of the mileage traveled. Over 61 percent of the mileage traveled was in the United States. The average length of trip was 231 miles: 142 miles in the United States and 89 miles in Canada. The largest movement of agricultural products occurred at Detroit, stations 7-8, with the next heaviest movements at Champlain, N. Y., station 11 ,

Table 8.-Number of commercial vehicles crossing the border on an average summer weekday in 1954, according to type of vehicle, country of registration, and truck body type

Type of vehicle and country of registration	Truck body type								Other truck boly types and buses	$\begin{aligned} & \text { All ve- } \\ & \text { hicles } \end{aligned}$		
	Panel	Tank	Stike or platform	Refrigerator	Van or covered	Dump	Box	$\begin{aligned} & \text { Cattle } \\ & \text { rack } \end{aligned}$				
Single-unit trucks:												
U-axited States.	88	1	20	1	10			3				
Canada	225	1	60		16	1	305	3	18	626		
2-axle, 6 tire:												
United States	8 2	${ }_{11}^{6}$	$\begin{aligned} & 116 \\ & 262 \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	$\begin{aligned} & 35 \\ & 87 \end{aligned}$	$\begin{aligned} & 81 \\ & 43 \end{aligned}$	$\begin{aligned} & 15 \\ & 98 \end{aligned}$	11	24 8	289 526		
All single-unit trucks:												
United States-	96	7	136	2	45	81	170	6	41	584		
Canada ${ }_{\text {Total }}$	227 323	12 19	322 458	4	148	-4485	403 573	11 17	26 67	1,152		
Truck-tractor and semitrailer combinations: 3 -axle:												
Canada	1	5 12	37	4	65		5	$\frac{2}{3}$	59	178		
4 -axle or more:		12	130				5					
United States..	-...--	8	42	24	120	----	32	1	7	234		
Truck and trailer combinations:												
Canada --.....		9	10	1	11	1	1		2	34		
All combinations:												
United States	1	18 30	85 209	28 53	190	10	37 16	3 7	68 53			
Buses:												
Canada		---						-----	98	98		
Total									${ }_{222}^{124}$	${ }_{222}^{124}$		
All vehicles: United States												
$\begin{aligned} & \text { Canada } \\ & \text { Total } \end{aligned}$	227	42	531	57	429	54	419	18	203	1,980		
	324	67	752	87	664	136	626	27	410	3,093		

and Sweetgrass, Mont., station 2. About 60 percent of the movement was from Canada to the United States. More than three-fourths of the trucks moving agricultural products were registered in Canada and two-thirds of these vehicles were hauling from Canada to the United States.

Animals and animal products

Approximately the same number and percentage of trucks were hauling animals or animal products as were hauling agricultural products, namely, 142 trucks or 4.6 percent of all vehicles. However, the mileage traveled by trucks hauling animals and animal products was quite different-almost three times that for agricultural products. The average trip length was 650 miles: 456 miles in the United States and 194 miles in Canada. Seventy percent of the travel was in the United States.
About two-thirds of the movement of animals and animal products was from Canada
to the United States and the major portion of the vehicles were registered in Canada. More trucks hauling animal products were recorded
at the Detroit, Buffalo, and Calais, Maine stations than at other stations. The most frequent item at Calais was fish and lobsters.
Table 9.-Frequency of identical trips made by commercial vehicles crossing the border on an average summer weekday in 1954, according to country of registration and type of vehicle

Country of registration and type of vehicle	Frequency of identical trips						$\underset{\text { trips }}{\text { All }}$
	Trip made no oftener than-					$\begin{aligned} & \text { Oftener } \\ & \text { than } \\ & \text { twice } \\ & \text { I day } \end{aligned}$	
	$\begin{gathered} \text { Once a } \\ \text { year } \end{gathered}$	Once a month	$\begin{aligned} & \text { Once a } \\ & \text { weelk } \end{aligned}$	$\begin{aligned} & \text { Once a } \\ & \text { day } \end{aligned}$	$\begin{gathered} \text { Twice a } \\ \text { day } \end{gathered}$		
United States registered vehicles: Single-unit trucks Truck combinations BusesTotal	885416158	87101108195	$\begin{aligned} & 67 \\ & 106 \\ & 106 \\ & 177 \end{aligned}$	$\begin{aligned} & 200 \\ & 116 \\ & 6.6 \\ & 411 \end{aligned}$	$\begin{array}{r} 27 \\ 9 \\ 4 \\ 40 \end{array}$	$\begin{gathered} 115 \\ 15 \\ 2 \\ 23 \end{gathered}$	584431981,1131,158
Canadian registered vehicles: Single-unit trucks	$\begin{array}{r} 1343 \\ 53 \\ 9 \\ 196 \end{array}$	$\begin{gathered} 172 \\ \hline 66 \\ \hline \\ \hline \end{gathered}$	$\begin{aligned} & 210 \\ & 176 \\ & 49 \\ & 390 \end{aligned}$	$\begin{aligned} & 438 \\ & 298 \\ & 744 \\ & 731 \end{aligned}$			$\begin{aligned} & 1,152 \\ & 104 \\ & 1,94 \\ & 1,950 \end{aligned}$
Single-unit trucks........					$\begin{gathered} 97 \\ 102 \\ 10 \\ 209 \end{gathered}$	$\begin{gathered} 101 \\ 88 \\ 20 \\ 209 \end{gathered}$	
Buses							
Total---.							
All commercial Vehicles: Single-unit trucks	$\begin{aligned} & 2222 \\ & 107 \\ & 25 \\ & 354 \end{aligned}$	$\begin{aligned} & 259 \\ & 167 \\ & 14 \\ & 146 \end{aligned}$	$\begin{aligned} & 277 \\ & 282 \\ & 288 \\ & 567 \end{aligned}$	($\begin{array}{r}638 \\ 365 \\ 139 \\ 1,142\end{array}$	12411114249	21610322341	1.7361,1352223,0933, 293
Single-unit trucks....							
Buses ${ }_{\text {Total- }}$							
Total.							

Table 10.-Number and percentage distribution of commercial vehicles (loaded and empty) crossing the border on an average summer weekday in 1954, according to commodity hauled, mileage traveled, and average length of trip

Commodity or vehicle classification	Vehicles crossing border			Total distance traveled			A verage distance traveled in-					
	Number of vehicles	Percent of all vehicles	$\begin{gathered} \text { Percent } \\ \text { hauling } \\ \text { commodi- } \\ \text { ties } \end{gathered}$	Miles	Percent of all mileage	$\begin{array}{\|c} \text { Percent } \\ \text { hauling } \\ \text { commodi- } \\ \text { ties } \end{array}$	United States		Canada		Total	
							Miles	Percent	Miles	Percent	Mues	Percent
Trucks Hauling Commodities												
Products of agriculture	141	4.5	9.8	32,636	4.2	6.4	142	61.5	89	38.5	231	100.0
Animals and animal products.	142	4.6	9.9	92, 300	11.9	18.2	456	70.2	194	29.8	650	100.0
Products of mines	76	2.5	5.3	2, 293	. 3	. 4	15	50.0	15	50.0	30	100.0
Products of forests . .------........-	111	3.6	7.7	9,583	1.2	1.9	47	54.7	39	45.3	86	100.0
	969	31.3	67.3	370,898	47.7	73.1	264	68.9	119	31.1	383	100.0
	1,439	46.5	100.0	507, 710	65.3	100.0	241	68.3	112	31.7	353	100.0
Buses and Empty Trucks												
Empty trucks Buses.	1,432 222	46.3 7.2	-----.-.	222,046 47,155	23.6 6	-...-...	102 128	65.8 60.4	53 84	34.2 39.6	155	100.0 100.0
All Commercial Vehicles												
All commercial vehicles.	3,093	100.0	-------	776, 911	100.0	-------	169	67.3	82	32.7	251	100.0

Table 11.-Number of commercial vehicles (loaded and empty) crossing the border on an average summer weekday in 1951, according to country of registration, origin and destination of trip, and commodity hauled

	Origin and destination of travel of United States registered vehicles					Origin and destination of travel of Canadian registered vehicles					Origin and destination of travel of all vehicles				
Commodity or vebicle classification	$\begin{gathered} \text { Canada } \\ \text { to } \\ \text { Canada } \end{gathered}$	$\begin{gathered} \text { Canada } \\ \text { to } \\ \text { United } \\ \text { States } \end{gathered}$	United States to Canada	United States t') United States	Total	Canada to tanada	Canada to United States	United States to Canada	United States United States	Total	$\begin{gathered} \text { Canada } \\ \text { to } \\ \text { Canada } \end{gathered}$	Canada to United States	United States Canada	United States to United States	Total
Trucrs Hauling Commodities															
Products of agriculture Animals and animal products Products of mines Products of forests	$-\cdots$ $-\cdots$ -----	14 34 39 13	18 19 13 21	2 4 $-\quad 7$	34 59 52 41	4 14 -1	71 59 18 41	32 10 6 28 \cdots $\cdots-. .--$	$\begin{array}{r} 107 \\ 83 \\ 24 \\ 70 \end{array}$	4 16 $-\quad 1$	$\begin{aligned} & 85 \\ & 93 \\ & 57 \\ & 54 \end{aligned}$	50 29 19 49	2 4 $-\quad 7$	$\begin{gathered} 141 \\ 142 \\ 76 \\ 111 \end{gathered}$
Manufactured and miscellaneous products.	7	89	131	135	362	108	178	319	2	607	115	267	450	137	969
All commodities.	9	189	202	148	548	127	367	395	2	891	136	556	597	150	1,439
Buses and Empty Trucks															
Empty trucks Buses.	$\stackrel{2}{4}$	207 36	204 51	54	467 98	47 1	555 78	362 39	$\frac{1}{6}$	$\begin{aligned} & 965 \\ & 124 \end{aligned}$	49 5	$\begin{aligned} & 762 \\ & 114 \end{aligned}$	$\begin{array}{r} 566 \\ 90 \end{array}$	$\begin{aligned} & 55 \\ & 13 \end{aligned}$	1,432 222
All Commercial Vehicles															
All commercial vehicles.-	15	432	457	209	1,113	175	1,000	796	9	1,980	190	1,432	1,253	218	3,093

Mine products

The smallest number of trips, 76 or only 2.5 percent of the total, were made by vehicles carrying mine products. Mileage traveled by these vehicles was only 0.3 percent of the total. The trip length was the shortest for any commodity hauled and amounted to only 30 miles, equally divided between the United States and Canada. This is the only product hauled where the portion of travel in C'anada equaled that in the United States.

Of the 76 vehicles hauling mine products, 52 were registered in the United States and 39 of these vehicles were moving from Canada to the United States. Nearly half of the vehicles hauling mine products were recorded at the Madawaska, Maine, station.

Forest products

Vehicles transporting forest products accounted for 3.6 percent of all vehicles, but their travel amounted to only 1.2 percent of the total. The average length of trip was 86 miles: 47 miles in the United States and 30 miles in Canada.

The heavier movements in this category occurred at Jackman, Maine, and International Falls, Minn. Almost 50 percent of the vehicles hauling forest products were recorded at these two stations. It is somewhat surprising to find
that the movement of forest products from the United States to Canada almost equaled that from Canada to the United States being 44 and 49 percent, respectively. The remaining 7 percent was made up of trips with both origins and destinations in the same country.

Of the five vehicles hauling pulpwood, all were traveling from Canada to the United States and the vehicles were registered in the United States.
Manufactured and miscellaneous products
Almost a third of the total vehicles crossing the border carried manufactured products and accounted for almost one-half (47.7 percent) of the total travel. Two-thirds of all loaded vehicles carried these products. With the exception of animals and animal products, trip lengths of vehicles carrying manufactured products were the longest, 383 miles. Travel was divided as follows: 264 miles in the United States and 119 miles in Canada. Sixty-three percent of the vehicles hauling manufactured products were registered in Canada and 37 percent in the United States. Previously it was noted that there were more trips to the United States than to Canada by trucks hauling products of agriculture, animal products, and products of mines and forests. However, there were more trips to Canada than to the United States by vehicles loaded with manufactured and miscellaneous products.

Nearly half (45 percent) of the vehicles hauling manufactured products crossed the border at Port Huron and Detroit, Mich. A large number of trucks hauling this type of commodity were also recorded at Buffalo, N. Y. In fact, more vehicles hauling manufactured products crossed the border at Buffalo than at any other station except the bridge at Detroit. Seventeen vehicles were transporting gasoline and 16 of these were registered in Canada. All trips but one were from the Lnited States to Canada.

Of the 47 vehicles loaded with manufactured iron and steel items, 35 were registered in Canada. There were 28 such vehicles traveling from the United States to Canada.

Vehicles hauling automobiles, trucks, and parts pertaining to the motor industry totaled 211. Of these, 143 were registered in Canada and 68 in the United States. There were 119 such vehicles traveling from the United States to Canada, 25 from Canada to the United States, 40 with both origins and destinations in the United States, and 27 with both origins and destinations in Canada. New autos and trucks were usually being moved between points in the same country, but a portion of the trip was made in the other country.

Of the 12 vehicles hauling newsprint paper, 8 were moving from the United States to Canada, 2 from Canada to the United States, and 2 had origins and destinations within Canada.

New Publication

A new publication entitled Specificaitions for Aerial Surveys and Mapping by Photogrammetric Methods for Highways, 1956: a reference guide outline is available from the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C., at 55 cents a copy.

This reference guide outline was prepared by the Photogrammetry for Highways Committee with active participation by the

Bureau of Public Roads. The Photogrammetry for Highways Committee is jointly sponsored by The American Society of Photogrammetry and The American Congress on Surveying and Mapping.

The purpose of this publication is to aid highway officials in establishing specifications for the procurement by contract of photogrammetric and aerial survey services. Under
the provisions of the Federal-Aid Highway Act of 1956, the Secretary of Commerce may authorize the use of photogrammetric methods in mapping, and the utilization of commercial enterprise for such services.

The specifications are a reference guide outline, and should be modified to fulfill special requirements not discussed in detail in this publication.

The following publications are sold by the Superintendent of Documents, Government Printing Office, Washington 25, D. C. Orders should be sent direct to the Superintendent of Documents. Prepayment is required.

ANNUAL REPORTS

Work of the Public Roads Administration: $\begin{array}{ll}1941,15 & \text { cents. } \\ 1942,10 & \text { cents. } \\ 1949,20 & \text { cents. } \\ \text { 19 }\end{array}$
Public Roads Administration Annual Reports: $1943 ; 1944 ; 1945 ; 1946 ; 1947$.
(Free from Bureau of Public Roads)
Annual Reports of the Bureau of Public Roads: $\begin{array}{lll}1950,25 \text { cents. } & 1952,25 \text { cents. } & 1954 \text { (out of print). } \\ 1951,35 \text { cents. } & 1953,25 \text { cents. } & 1955,25 \text { cents. }\end{array}$

PUBLICATIONS

Bibliography of Highway Planning Reports (1950). 30 cents. Braking Performance of Motor Vehicles (1954). 55 cents. Construction of Private Driveways, No. 272MP (1937). 15 cents. Criteria for Prestressed Concrete Bridges (1954). 15 cents.
Design Capacity Charts for Signalized Street and Highway Intersections (reprint from Public Roads, Feb. 1951). 25 cents.
Electrical Equipment on Movable Bridges, No. 265T (1931). 40 cents.
Factual Discussion of Motortruck Operation, Regulation, and Taxation (1951). 30 cents.
Federal Legislation and Regulations Relating to Highway Construction (1948). Out of print.
Financing of Highways by Counties and Local Rural Governments: 1931-41, 45 cents; 1942-51, 75 cents.
General Location of the National System of Interstate Highways, Including All Additional Routes at Urban Areas Designated in September 1955. 55 cents.
Highway Bond Calculations (1936). 10 cents.
Highway Bridge Location No. 1486D (1927). 15 cents.
Highway Capacity Manual (1950). $\$ 1.00$.
Highway Needs of the National Defense, House Document No. 249 (1949). 50 cents.
Highway Practice in the United States of America (1949). 75 cents.
Highway Statistics (annual) :
1945 (out of print). 1949, 55 cents. 1953, $\$ 1.00$. 1946, 50 cents. 1950 (out of print). 1954, 75 cents. 1947, 45 cents. 1951, 60 cents. 1948, 65 cents. 1952, 75 cents.
Highway Statistics, Summary to 1945. 40 cents.
Highways in the United States, nontechnical (1954). 20 cents.
Highways of History (1939). 25 cents.
Identification of Rock Types (reprint from Public Roads, June 1950). 15 cents.

Interregional Highways, House Document No. 379 (1944). 75 cents.
Legal Aspects of Controlling Highway Access (1945). 15 cents. Local Rural Road Problem (1950). 20 cents.
Manual on Uniform Traffic Control Devices for Streets and Highways (1948) (including 1954 revisions supplement). $\$ 1.00$.

Revisions to the Manual on Uniform Traffic Control Devices for Streets and Highways (1954). Separate, 15 cents.

PUBLICATIONS (Continued)

Mathematical Theory of Vibration in Suspension Bridges (1950). $\$ 1.25$.
Model Traffic Ordinance (revised 1953). Out of print.
Needs of the Highway Systems, 1955-84, House Document No. 120 (1955). 15 cents.
Opportunities in the Bureau of Public Roads for Young Engineers (1955). 25 cents.

Principles of Highway Construction as Applied to Airports, Flight Strips, and Other Landing Areas for Aircraft (1943). \$2.00.
Progress and Feasibility of Toll Roads and Their Relation to the Federal-Aid Program, House Document No. 139 (1955). 15 cents.
Public Control of Highway Access and Roadside Development (1947). 35 cents.

Public Land Acquisition for Highway Purposes (1943). 10 cents.
Public Utility Relocation Incident to Highway Improvement, House Document No. 127 (1955). 25 cents.
Results of Physical Tests of Road-Building Aggregate (1953). $\$ 1.00$.
Roadside Improvement, No. 191 MP (1934). 10 cents.
Selected Bibliography on Highway Finance (1951). 60 cents.
Specifications for Aerial Surveys and Mapping by Photograinmetric Methods for Highways, 1956: a reference guide outline. 55 cents.
Specifications for Construction of Roads and Bridges in National Forests and National Parks, FP-41 (1948). \$1.50.
Standard Plans for Highway Bridge Superstructures (1953). $\$ 1.25$.
Taxation of Motor Vehicles in 1932. 35 cents.
Tire Wear and Tire Failures on Various Road Surfaces (1943). 10 cents.
Transition Curves for Highways (1940). \$1.75.

MAPS

State Transportation Map series (available for 39 States). Uniform sheets 26 by 36 inches, scale 1 inch equals 4 miles. Shows in colors Federal-aid and State highways with surface types, principal connecting roads, railroads, airports, waterways, National and State forests, parks, and other reservations. Prices and number of sheets for each State vary-see Superintendent of Documents price list 53.
United States System of Numbered Highways. 28 by 42 inches, scale 1 inch equals 78 miles. 20 cents.

Single copies of the following publications are available to highway engineers and administrators for official use, and may be obtained by those so qualified upon request addressed to the Bureau of Public Roads. They are not sold by the Superintendent of Documents.

Bibliography on Automobile Parking in the United States (1946). Bibliography on Highway Lighting (1937). Bibliography on Highway Safety (1938). Bibliography on Land Acquisition for Public Roads (1947). Bibliography on Roadside Control (1949). Express Highways in the United States: a Bibliography (1945). Indexes to Public Roads, volumes $17-19$ and 23.
Title Sheets for Public Roads, volumes 24-28.

United States
Government Printing Office
division of public documents
WASHINGTON 25, D. C.
OFFICIAL BUSINESS

If you do not desire to continue to receive this publication, please check here \square; tear off this label and return it to the above address. Your name will then be promptly removed from the appropriate mailing list.

DEPARTMENT OF COMMERCE-BUREAU OF PUBLIC ROADS
STATUS OF FEDERAL-AID HIGHWAY PROGRAM
AS OF AUG. 31, 1956

State	Unpro- gramed balances (Thousand dollars)	Active program											
		Programed only			Plans approved, construction not started			Construction under way			Total		
		Thousand dollars		Miles									
		$\begin{aligned} & \text { Total } \\ & \text { cost } \end{aligned}$	Federal funds		Total cost	Federal funds		Total cost	Federal funds		Total cost	Federal funds	
Alabama Arizona. Arkansas	$\begin{array}{r} \$ 69,025 \\ 41,540 \\ 57,840 \end{array}$	$\begin{array}{r} \$ 20,878 \\ 6,127 \\ 16,190 \\ \hline \end{array}$	$\begin{array}{r} \$ 12,944 \\ 3,958 \\ 8,127 \\ \hline \end{array}$	$\begin{array}{r} 312.0 \\ 55.4 \\ 506.9 \\ \hline \end{array}$	$\begin{array}{r} \begin{array}{r} 3,887 \\ , 655 \\ 3,044 \end{array} \\ \hline \end{array}$	$\begin{array}{r} \begin{array}{r} 2,050 \\ 2,644 \\ 2,644 \\ 3,709 \end{array} \end{array}$	$\begin{aligned} & 41.0 \\ & 40.0 \\ & 56.3 \\ & \hline \end{aligned}$	$\begin{array}{r} \$ 50,011 \\ 11,419 \\ 21,530 \end{array}$	$\begin{array}{r} \$ 27,010 \\ 8,608 \\ 11,284 \end{array}$	$\begin{array}{r} 649.2 \\ 123.2 \\ 388.2 \\ \hline \end{array}$	$\begin{array}{r} \$ 74,726 \\ 21,201 \\ 44,764 \end{array}$	$\begin{gathered} \$ 42,004 \\ 15,210 \\ 23,120 \end{gathered}$	$\begin{array}{r} 1,002.2 \\ 218.6 \\ 951.4 \end{array}$
California Colorado Connecticut	$\begin{array}{r} 183.965 \\ 56,019 \\ 54,668 \end{array}$	$\begin{array}{r} 46,445 \\ 11,359 \\ 2,876 \end{array}$	$\begin{array}{r} 31,356 \\ 6,964 \\ 1,438 \end{array}$	$\begin{array}{r} 230.0 \\ 135.6 \\ 2.6 \end{array}$	$\begin{aligned} & 9,868 \\ & 1,266 \\ & 990 \end{aligned}$	$\begin{array}{r} 5,004 \\ 464 \\ 600 \end{array}$	$\begin{array}{r} 14.2 \\ 5.6 \\ .8 \end{array}$	$\begin{gathered} 142,142 \\ 28,210 \\ 11,437 \end{gathered}$	$\begin{array}{r} 73,616 \\ 16,950 \\ 5,812 \\ \hline \end{array}$	$\begin{array}{r} 229.6 \\ 240.2 \\ 24.2 \end{array}$	$\begin{array}{r} 198,455 \\ 40,835 \\ 15,303 \end{array}$	$\begin{array}{r} 109,976 \\ 24,378 \\ 7,850 \\ \hline \end{array}$	$\begin{array}{r} 523.8 \\ 381.4 \\ 27.6 \\ \hline \end{array}$
Delaware Florida Georgia	$\begin{aligned} & \begin{array}{l} 4,660 \\ 60,868 \\ 90,086 \end{array} \end{aligned}$	$\begin{array}{r} 1,260 \\ 18,844 \\ 36,612 \end{array}$	$\begin{array}{r} 630 \\ 9,481 \\ 19,050 \\ \hline \end{array}$	$\begin{array}{r} 22.3 \\ 340.7 \\ 633.1 \end{array}$	$\begin{aligned} & 3,264 \\ & 8,622 \\ & 6,602 \end{aligned}$	$\begin{aligned} & 1,652 \\ & 4,859 \\ & 3,135 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.9 \\ & 32.6 \\ & 31.8 \\ & \hline \end{aligned}$	$\begin{array}{r} 5,936 \\ 42,063 \\ 58,821 \end{array}$	$\begin{array}{r} 2,952 \\ 21,713 \\ 28,638 \end{array}$	$\begin{array}{r} 50.4 \\ 328.8 \\ 875.9 \end{array}$	$\begin{array}{r} 10,460 \\ 69,529 \\ 102,035 \end{array}$	$\begin{array}{r} 5,234 \\ 36,053 \\ 50,823 \\ \hline \end{array}$	$\begin{array}{r} 90.6 \\ 702.1 \\ 1,540.8 \end{array}$
Idaho Illinois Indiana	$\begin{array}{r} 36,833 \\ 160,702 \\ 107,701 \end{array}$	$\begin{aligned} & 10,801 \\ & 42,061 \\ & 20,77 \\ & \hline \end{aligned}$	$\begin{array}{r} 7,561 \\ 25,669 \\ 11,295 \\ \hline \end{array}$	$\begin{array}{r} 69.7 \\ 502.2 \\ 79.9 \end{array}$	$\begin{array}{r} 2,662 \\ 16,077 \\ 11,631 \\ \hline \end{array}$	$\begin{aligned} & 1,750 \\ & 9,006 \\ & 6,205 \\ & \hline \end{aligned}$	$\begin{array}{r} 74.0 \\ 55.1 \\ 113.2 \\ \hline \end{array}$	$\begin{array}{r} 13,412 \\ 110,740 \\ 40,459 \\ \hline \end{array}$	$\begin{array}{r} 8,552 \\ 61,921 \\ 22,301 \\ \hline \end{array}$	$\begin{aligned} & 203.1 \\ & 776.6 \\ & 261.0 \end{aligned}$	$\begin{array}{r} 26,875 \\ 168,878 \\ 72,867 \\ \hline \end{array}$	$\begin{aligned} & 17,863 \\ & 96,596 \\ & 39,801 \\ & \hline \end{aligned}$	$\begin{array}{r} 346.8 \\ 1,333.9 \\ 454.1 \\ \hline \end{array}$
Iowa Kansas Kentucky	$\begin{aligned} & 60,879 \\ & 65,044 \\ & 75,069 \end{aligned}$	$\begin{array}{r} 34,848 \\ 16,126 \\ 4,282 \end{array}$	$\begin{array}{r} 24,996 \\ 8,939 \\ 2,164 \\ \hline \end{array}$	$\begin{array}{r} 496.0 \\ 841.8 \\ 43.8 \end{array}$	$\begin{aligned} & 3,966 \\ & 5,834 \\ & 2,434 \\ & \hline \end{aligned}$	$\begin{aligned} & 2,302 \\ & 3,282 \\ & 1,226 \end{aligned}$	$\begin{aligned} & 38.6 \\ & 63.7 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 34,083 \\ & 38,717 \\ & 44,319 \end{aligned}$	$\begin{aligned} & 19,349 \\ & 20,169 \\ & 23,820 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,064.1 \\ & 1,189.0 \\ & 616.6 \end{aligned}$	$\begin{aligned} & 72,897 \\ & 60,677 \\ & 51,035 \end{aligned}$	$\begin{aligned} & 46,647 \\ & 32,390 \\ & 27,210 \end{aligned}$	$\begin{array}{r} 1,598.7 \\ 2,094.5 \\ 670.9 \end{array}$
Louisiana. Maine Maryland	$\begin{aligned} & 62,468 \\ & 31,436 \\ & 35,527 \end{aligned}$	$\begin{array}{r} 16,032 \\ 8,042 \\ 82,838 \\ \hline \end{array}$	$\begin{array}{r} 8,267 \\ 4,190 \\ 14,439 \end{array}$	$\begin{array}{r} 75.3 \\ 66.7 \\ 119.9 \end{array}$	$\begin{array}{r} 9,550 \\ 1,966 \\ 15,249 \\ \hline \end{array}$	$\begin{aligned} & 4,782 \\ & 1,067 \\ & 8,393 \end{aligned}$	$\begin{array}{r} 2.8 \\ 12.5 \\ 23.3 \\ \hline \end{array}$	$\begin{aligned} & 40,212 \\ & 15,428 \\ & 29,672 \end{aligned}$	$\begin{array}{r} 19,793 \\ 7,946 \\ 15,644 \end{array}$	$\begin{aligned} & 338.4 \\ & 108.3 \\ & 121.3 \end{aligned}$	$\begin{aligned} & 65,794 \\ & 25,436 \\ & 67,759 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 3,842 \\ 13,203 \\ 38,476 \end{array} \end{aligned}$	$\begin{aligned} & 416.5 \\ & 187.5 \\ & 264.5 \end{aligned}$
Massachusetts Michigan Minnesota	$\begin{array}{r} 73,769 \\ 120,786 \\ 73,997 \\ \hline \end{array}$	$\begin{aligned} & 28,414 \\ & 41,696 \\ & 12,390 \end{aligned}$	$\begin{array}{r} 15,023 \\ 27,358 \\ 7,794 \\ \hline \end{array}$	$\begin{array}{r} 29.7 \\ 493.6 \\ 340.8 \end{array}$	$\begin{aligned} & 16,188 \\ & 13,530 \\ & 10,994 \\ & \hline \end{aligned}$	$\begin{array}{r} 11,067 \\ 6,891 \\ 5,291 \\ \hline \end{array}$	$\begin{array}{r} 8.7 \\ 67.9 \\ 124.4 \\ \hline \end{array}$	$\begin{aligned} & 46,330 \\ & 65,109 \\ & 56,659 \\ & \hline \end{aligned}$	$\begin{aligned} & 22,839 \\ & 34,264 \\ & 31,452 \end{aligned}$	$\begin{array}{r} 59.5 \\ 655.7 \\ 1,535.8 \\ \hline \end{array}$	$\begin{array}{r} 90,932 \\ 120,335 \\ \varepsilon 0,083 \end{array}$	$\begin{aligned} & 48,929 \\ & 68,513 \\ & 44,53 \\ & \hline \end{aligned}$	$\begin{array}{r} 97.9 \\ 1.217 .2 \\ 2,001.0 \end{array}$
Mississippi Missouri Montana	$\begin{aligned} & 63,539 \\ & 92,121 \\ & 62,860 \end{aligned}$	$\begin{array}{r} 11,282 \\ 28,212 \\ 8,542 \end{array}$	$\begin{array}{r} 5,783 \\ 16,423 \\ 5,183 \end{array}$	$\begin{array}{r} 425.9 \\ 1,105.8 \\ 171.1 \end{array}$	$\begin{array}{r} 6,927 \\ 11,058 \\ 4,567 \end{array}$	$\begin{aligned} & 3,939 \\ & 7,046 \\ & 2,977 \end{aligned}$	$\begin{aligned} & 66.0 \\ & 44.4 \\ & 39.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 22,792 \\ & 70,234 \\ & 31,229 \end{aligned}$	$\begin{aligned} & 11,537 \\ & 36,524 \\ & 19,343 \end{aligned}$	$\begin{array}{r} 678.5 \\ 1,184.5 \\ 528.6 \end{array}$	$\begin{array}{r} 41,001 \\ 109,504 \\ 44,338 \end{array}$	$\begin{gathered} 21,259 \\ 59,993 \\ 27,503 \end{gathered}$	$\begin{array}{r} 1,170.4 \\ 2.334 .7 \\ 739.0 \end{array}$
Nebraska.......... Nevada........ New Hampshire	$\begin{aligned} & 66,223 \\ & 40,180 \\ & 24,485 \end{aligned}$	$\begin{aligned} & 6,661 \\ & 9,699 \\ & 3,523 \\ & \hline \end{aligned}$	$\begin{aligned} & 3,600 \\ & 8,129 \\ & 2,195 \\ & \hline \end{aligned}$	$\begin{array}{r} 202.9 \\ 117.7 \\ 16.5 \end{array}$	$\begin{array}{r} 2,998 \\ 92 \\ 884 \end{array}$	$\begin{array}{r} 1,503 \\ 77 \\ 433 \\ \hline \end{array}$	$\begin{array}{r} 35.2 \\ 4.7 \\ \hline \end{array}$	$\begin{aligned} & 34,638 \\ & 10,904 \\ & 10,173 \end{aligned}$	$\begin{array}{r} 17,884 \\ 9,213 \\ 5,420 \\ \hline \end{array}$	$\begin{array}{r} 1,131.1 \\ 193.8 \\ 56.2 \end{array}$	$\begin{aligned} & 44,297 \\ & 20,695 \\ & 14,580 \\ & \hline \end{aligned}$	$\begin{array}{r} 22,987 \\ 17,419 \\ 8,048 \end{array}$	$\begin{array}{r} 1,369.2 \\ 311.5 \\ 77.4 \\ \hline \end{array}$
New Jersey New Mexico New York	$\begin{array}{r} 92,416 \\ 44,298 \\ 270,447 \\ \hline \end{array}$	$\begin{array}{r} 6,526 \\ 2,805 \\ 23,126 \\ \hline \end{array}$	$\begin{array}{r} 3,263 \\ 1,787 \\ 12,948 \\ \hline \end{array}$	$\begin{aligned} & 51.1 \\ & 25.4 \\ & 56.8 \\ & \hline \end{aligned}$	$\begin{array}{r} 9,791 \\ 5,985 \\ 30,703 \\ \hline \end{array}$	$\begin{array}{r} 4,723 \\ 4,309 \\ 15,556 \\ \hline \end{array}$	$\begin{array}{r} 9.6 \\ 87.0 \\ 49.8 \\ \hline \end{array}$	$\begin{array}{r} 32,197 \\ 12,883 \\ 267,763 \end{array}$	$\begin{array}{r} 15,826 \\ 8,230 \\ 127,650 \end{array}$	$\begin{array}{r} 47.5 \\ 168.8 \\ 445.4 \end{array}$	$\begin{array}{r} 48,514 \\ 21,673 \\ 321,592 \end{array}$	$\begin{array}{r} 23,812 \\ 14,326 \\ 156,154 \end{array}$	$\begin{aligned} & 108.2 \\ & 281.2 \\ & 552.0 \end{aligned}$
North Carolina North Dakota Ohio -	$\begin{array}{r} 96,188 \\ 43,969 \\ 151,327 \end{array}$	$\begin{array}{r} 17,672 \\ 5,785 \\ 61,592 \end{array}$	$\begin{array}{r} 8,610 \\ 2,948 \\ 36,375 \end{array}$	$\begin{aligned} & 254.4 \\ & 812.9 \\ & 177.4 \\ & \hline \end{aligned}$	$\begin{array}{r} 3,426 \\ 7,398 \\ 13,585 \\ \hline \end{array}$	$\begin{aligned} & 1,667 \\ & 3,912 \\ & 8,955 \\ & \hline \end{aligned}$	$\begin{array}{r} 48.3 \\ 491.8 \\ 53.6 \\ \hline \end{array}$	$\begin{aligned} & 59,688 \\ & 13,642 \\ & 91,989 \end{aligned}$	$\begin{array}{r} 29,272 \\ 6,897 \\ 45,999 \end{array}$	$\begin{aligned} & 747.7 \\ & 821.7 \\ & 147.0 \end{aligned}$	$\begin{array}{r} 80,786 \\ 26,825 \\ 167,166 \\ \hline \end{array}$	$\begin{aligned} & 39,549 \\ & 13,757 \\ & 91,329 \end{aligned}$	$\begin{array}{r} 1,050.4 \\ 2,5126.4 \\ 378.0 \end{array}$
$\begin{aligned} & \text { Oklahoma.... } \\ & \text { Oregon } \\ & \text { Pennsylvania } \end{aligned}$	$\begin{array}{r} 55,681 \\ 40,004 \\ 203,532 \\ \hline \end{array}$	$\begin{aligned} & 33,523 \\ & 12,033 \\ & 36,937 \end{aligned}$	$\begin{array}{r} 22,206 \\ 9,702 \\ 19,254 \end{array}$	$\begin{array}{r} 389.1 \\ 75.1 \\ 127.9 \end{array}$	$\begin{array}{r} 19,500 \\ 1,810 \\ 18,677 \end{array}$	$\begin{array}{r} 10,120 \\ 1,117 \\ 9,844 \end{array}$	$\begin{array}{r} 273.0 \\ 24.5 \\ 46.7 \end{array}$	$\begin{array}{r} 39,228 \\ 32,042 \\ 131,989 \end{array}$	$\begin{aligned} & 20,591 \\ & 20,976 \\ & 66,069 \\ & \hline \end{aligned}$	$\begin{aligned} & 355.9 \\ & 261.9 \\ & 382.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 92,251 \\ 45,885 \\ 187,603 \end{array}$	$\begin{aligned} & 52,917 \\ & 31,795 \\ & 95,167 \end{aligned}$	$\begin{array}{r} 1,018.0 \\ 361.5 \\ 556.6 \end{array}$
Rhode Island South Carolina. South Dakota	$\begin{aligned} & 23,138 \\ & 51,792 \\ & 42,619 \end{aligned}$	$\begin{gathered} 2,762 \\ 17,236 \\ 12,906 \end{gathered}$	$\begin{aligned} & 1,381 \\ & 9,480 \\ & 7,406 \\ & \hline \end{aligned}$	$\begin{array}{r} 5.0 \\ 353.2 \\ 499.3 \end{array}$	$\begin{array}{r} 223 \\ 4,827 \\ 3,730 \end{array}$	$\begin{array}{r} 117 \\ 2,604 \\ 2,167 \end{array}$	$\begin{array}{r} 24.0 \\ 118.6 \end{array}$	$\begin{aligned} & 20,090 \\ & 22,210 \\ & 19,541 \end{aligned}$	$\begin{aligned} & 10,359 \\ & 12,062 \\ & 11,332 \end{aligned}$	$\begin{aligned} & 23.1 \\ & 495.9 \\ & 605.0 \end{aligned}$	23, 075 44,323 36, 177	$\begin{aligned} & 11,857 \\ & 24,146 \\ & 20,905 \end{aligned}$	$\begin{array}{r} 33.1 \\ 873.1 \\ 1,222.9 \end{array}$
Tennessee Texas Utah.	$\begin{array}{r} 87,116 \\ 198,425 \\ 35,564 \\ \hline \end{array}$	$\begin{gathered} 20,610 \\ 16,078 \\ 5,556 \\ 5, \end{gathered}$	$\begin{aligned} & 9,733 \\ & 9,002 \\ & 4,038 \\ & \hline \end{aligned}$	$\begin{array}{r} 398.9 \\ 448.5 \\ 88.6 \\ \hline \end{array}$	$\begin{array}{r} 9,037 \\ 36,888 \\ 1,576 \end{array}$	$\begin{array}{r} 4,520 \\ 24,645 \\ 1,168 \\ \hline \end{array}$	$\begin{array}{r} 30.9 \\ 219.0 \\ 8.3 \\ \hline \end{array}$	$\begin{array}{r} 46,041 \\ 118,724 \\ 12,469 \\ \hline \end{array}$	$\begin{array}{r} \begin{array}{r} 1,285 \\ 62,651 \\ 9,457 \end{array} \end{array}$	$\begin{array}{r} 432.3 \\ 1,536.2 \\ 168.3 \end{array}$	$\begin{array}{r} 75,688 \\ 171,690 \\ 19,601 \end{array}$	$\begin{aligned} & 35,538 \\ & 96,293 \\ & 14,663 \end{aligned}$	$\begin{array}{r} 862.1 \\ 2,203.7 \\ 265.2 \end{array}$
Vermont Virginia W ashington	$\begin{aligned} & \begin{array}{l} 4,640 \\ 78,117 \\ 56,776 \end{array} \end{aligned}$	$\begin{array}{r} 774 \\ 17,714 \\ 14,092 \end{array}$	$\begin{array}{r} 387 \\ 9,483 \\ 8,847 \\ \hline \end{array}$	$\begin{array}{r} 15.3 \\ 260.0 \\ 119.4 \end{array}$	$\begin{array}{r} 308 \\ 6,037 \\ 7,610 \\ \hline \end{array}$	$\begin{array}{r} 154 \\ 3,211 \\ 4,338 \\ \hline \end{array}$	$\begin{array}{r} 1.4 \\ 87.8 \\ 99.4 \end{array}$	$\begin{aligned} & 11,016 \\ & 33,888 \\ & 31,315 \end{aligned}$	$\begin{array}{r} 5,668 \\ 17,271 \\ 16,970 \end{array}$	$\begin{array}{r} 86.9 \\ 330.9 \\ 259.6 \end{array}$	$\begin{aligned} & 12,098 \\ & 57,639 \\ & 53,017 \end{aligned}$	$\begin{array}{r} 6,209 \\ 29,965 \\ 30,155 \end{array}$	$\begin{aligned} & 103.6 \\ & 678.7 \\ & 478.4 \end{aligned}$
$\begin{aligned} & \text { West Virginia } \\ & \text { W isconsin. } \\ & \text { W yoming...... } \\ & \hline \end{aligned}$	$\begin{aligned} & 52,941 \\ & 86,525 \\ & 35,854 \\ & \hline \end{aligned}$	$\begin{array}{r} 11,999 \\ 18,235 \\ 5,237 \\ \hline \end{array}$	$\begin{aligned} & 6,204 \\ & 9,271 \\ & 3,634 \\ & \hline \end{aligned}$	$\begin{array}{r} 49.2 \\ 218.2 \\ 70.6 \\ \hline \end{array}$	$\begin{aligned} & 6,249 \\ & 5,958 \\ & 3,080 \\ & \hline \end{aligned}$	$\begin{aligned} & 3,142 \\ & 3,321 \\ & 1,994 \\ & \hline \end{aligned}$	$\begin{aligned} & 38.9 \\ & 17.5 \\ & 47.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 18,083 \\ & 48,428 \\ & 17,268 \end{aligned}$	$\begin{array}{r} 9,166 \\ 23,919 \\ 11,417 \end{array}$	$\begin{array}{r} 38.2 \\ 470.3 \\ 292.6 \end{array}$	$\begin{aligned} & 36,331 \\ & 72,671 \\ & 25,585 \\ & \hline \end{aligned}$	$\begin{aligned} & 18,512 \\ & 36,511 \\ & 17,045 \end{aligned}$	$\begin{aligned} & 126.3 \\ & 706.0 \\ & 410.3 \\ & \hline \end{aligned}$
Hawaii District of Columbia Puerto Rico	$\begin{array}{r} 7,502 \\ 24,966 \\ 12,997 \\ \hline \end{array}$	$\begin{array}{r} 2,117 \\ 11,801 \\ 5,554 \\ \hline \end{array}$	$\begin{aligned} & 1,043 \\ & 6,931 \\ & 2,259 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.5 \\ 3.7 \\ 18.0 \\ \hline \end{array}$	$\begin{aligned} & 4,532 \\ & 1,007 \\ & 3,301 \end{aligned}$	$\begin{array}{r} 2,215 \\ 496 \\ 1,515 \\ \hline \end{array}$	$\begin{aligned} & \begin{array}{r} 5 \\ .1 \\ 1.4 \end{array} \end{aligned}$	$\begin{array}{r} 1,839 \\ 9,211 \\ 18,362 \end{array}$	$\begin{array}{r} 892 \\ 4,579 \\ 8,538 \end{array}$	$\begin{array}{r} 2.9 \\ 1.9 \\ 63.3 \end{array}$	$\begin{array}{r} 8,488 \\ 22,019 \\ 27,217 \end{array}$	$\begin{aligned} & 4,150 \\ & 12,006 \\ & 12,312 \end{aligned}$	$\begin{array}{r}14.9 \\ 5.7 \\ 82.7 \\ \hline\end{array}$
Alaska	15, 074	--....	-......	----1.-	-....-	--.....	---*-	---*----	-	--->.-.	-........	--7.-..-	-----7.
Total.	3, 724, 196	849, 587	499, 148	12, 010.4	386, 993	217, 164	2,810.7	2, 196, 585	1, 151,630	21, 802.1	3, 433, 165	1,867, 942	36,623.2

${ }^{1}$ Includes funds for fiscal year 1958, apportioned Aug. 1, 1956.

[^0]: - The median is the middle value of a series arranged in order of magnitude; for example, in the series of numbers, 27 , $36,40,51,63$, the median is 40 . In the case of an even numbered series the average of the two middle values is taken.

[^1]: 1 Vehicle combination not permitted by State size and weight regulations.

[^2]: ${ }^{1}$ Method used to allocate tax responsibility indicated thus: $I=$ Incremental; $\mathbf{I C}=$ Recnmmeadations based on findings of incremental and cost-function solutions; $\mathrm{S}=\mathrm{Standard}$ cost $; T=$ Ton-mile.
 : Travel, 10,000 miles per year; fuel consumption rate, 7.8 miles per gallon
 3 Motor-fnel tax rate of 8.5 cents per gallon and low registration fees.

[^3]: 4 Motor-fuel tax rate of 6.5 cents per gallon and high registration fees.
 \checkmark Maximum expenditure program with fuel-tax rate of 4 cents per gallon.
 "Continuation of "current" (1949) expenditure level with fuel-tax rate of 3 cents per
 gallon.

[^4]: ${ }^{1}$ Method used to allocate tax responsibility indicated thus: $I=$ Incremental; $I C=$ Recommendations based on findings of incremental and cost-function solutions; $\mathrm{S}=$ Standard cost; $\mathrm{T}=$ Ton mile.
 ${ }_{2}$ Travel, 38 ,000 miles per year; fuel consumption rate, 4.8 miles per gallon.

[^5]: ${ }^{3}$ Motor-fuel tax rate of 8.5 cents per gallon and low registration fees.

 - This Fehicle combination not permitted by State size and weight regulations

[^6]: ${ }^{1}$ Travel between Canada and other countries 1954, by the Dominion Bureau of Statistics, International Trade Division, Balance of Payments Seetion. Ottawa, 1955. Tahles 13 and $17, \mathrm{pp}, 40$ and 45.

