c

# Pubbic Roads I JOURNAL OF HIGHWAY RESEARCH 



DUBLISHED BY THE BUREAU OF DUBLIC ROADS,
J. S. DEPARTMENT JF COMMERCE, NASHINGTON


# Public Roads 

# A JOURNAL OF HIGHWAY RESEARCH 

Vol. 27, No. 6<br>February 1953

Published Bimonthly

BUREAU OF PUBLIC ROADS Washington $25, \mathrm{D} . \mathrm{C}$

Regional Headquarters 870 Market St.
San Francisco 2, Calif.

## DIVISION OFFICES

No. 1. 718 National Savings Bank Bldg., Albany 7, N. Y.

Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont

No. 2. 707 Earles Bldg., Hagerstown, Md.
Delaware, District of Columbia, Maryland, Ohio,
Pennsylvania, Virginia, and West Virginia.
No. 3. 50 Seventh St., N. E., Atlanta 5, Ga.
Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, and Tennessee.

No. 4. South Chicago Post Office, Chicago 17, Ill. Illinois, Indiana, Kentucky, and Michigan.

No. 5. (North). Main Post Office, St. Paul 1, Minn.

Trends in Traffic Volumes,
Vehicle Types, and Weights ..... 111
Road Test One-MD,a motion picture125
New Publications ..... 125

## IN THIS ISSUE

BUREAU OF PUBLIC ROADS U. S. DEPARTMENT OF COMMERCE

Public Roads is sold by the Superintendent of Documents, Government Printing Office, Washington 25, D. C., at $\$ 1$ per year (foreign subscription $\$ 1.25$ ) or 20 cents per single opy. Free distribution is limited to public officials actu ally engaged in planning or constructing highways, and to instructors of highway engineering. There are no vacancies in the free list at present.
The printing of this publication has been approved by the Director of the Bureau of the Budget, January 5, 1952.

# Trends in Traificic Volumes, Vehicle Types and Weights 

## BY THE HIGHW AY TRANSPORT RESEARCH BRANCH

Reported by<br>THOMAS B. DIMMICK,<br>Head, Current Data Analysis Unit

Total travel on all rural roads in 1951 broke all records, exceeding the 1950 previous high by 10 percent. On the 356,000 miles of main rural roads in the United States, travel in 1951 was almost 190 billion vehicle-miles, of which 78 percent was by passenger cars, 1 percent by busses, and 21 percent by freight-carrying vehicles.

Trucks and combinations hauled 4 percent more ton-mileage of freight on main rural roads in 1951 than in 1950. Singleunit truck travel was 2 percent higher than in 1950 while that of combinations increased about 1 percent. The average carried load for all trucks and combinations in 1951 was less than 1 percent above the average in 1950.

In 1951, 5 percent of all trucks and combinations exceeded a State legal weight limit, and 14 percent of the combinations were illegally overloaded in some particular. In comparison with 1950, the percentage of overweight vehicles for 1951 decreased in all regions except New England and the West North Central States.

RURAL MOTOR-VEHICLE TRAVEL broke all previous records in 1951 for the sixth consecutive year. The estimated 1951 traffic on all rural roads was over 10 percent above the 1950 total, 20 percent higher than in 1949, almost 31 percent higher than in 1948 , slightly more than 39 percent higher than in 1947, somewhat more than 52 percent higher than in 1946, and almost 53 percent higher than in 1941. Data collected from January through August indicate that travel on all rural roads in 1952 will continue the same general trend and will be almost 7 percent higher than in 1951.

The variation in average daily travel on rural roads by months in the three main geographical divisions ${ }^{1}$ and in the United

[^0]

Figure 1.-Travel on all rural roads in 1950, 1951, and in the first 10 months of 1952.

States as a whole is illustrated in figure 1 for the years 1950,1951 , and the first 10 months of 1952. Travel in each month of these years in the Eastern and Central regions and in the United States as a whole was well above that of the corresponding month of the earlier year. The Western region showed only slight gains in January and March of 1952 compared to the amount of travel in 1951 but a fairly steady gain in all other months.

For the three Eastern regions, the chart indicates a somewhat greater increase than that shown by continuous counts at fixed locations because of the upward adjustments of the vehicle-mileage following recent surveys and analyses by Georgia and New York, more comprehensive than those previously made. Similar adjustments in other regions, following new surveys and analyses, did not result in changes of appreciable significance.

Approximately the same rate of increase in 1952 over 1951 is indicated by data collected in the first portion of the later year. The partial 1952 information indicated increases of 6 percent in the Central States and 7 percent in the Eastern and Western

States. The largest indicated increase over 1951 in any census region was 10 percent in the East South Central; the smallest increase was 5 percent in the Middle Atlantic region.

Summer travel constituted a smaller portion of the annual travel in 1951 than in any recent year. In the last two prewar years (1940 and 1941), the average daily traffic in July and August was 23 percent above the average traffic for the year. Not until 1949 did the summer travel reach the prewar ratio. In 1950 the average daily summer travel was over 24 percent above the annual average daily amount, but this figure slumped to 22 percent in the 1951 summer season.

Figure 2, showing travel on all rural roads by 12 -month periods ending each month (moving average) and as a percentage of traffic in the calendar year 1941, gives an accurate picture of the effect of wartime restrictions on prewar travel and the steady growth of traffic that has occurred since the end of hostilities. The increase in traffic from the end of 1946 to the present has averaged almost 9 percent, compounded annually. From these data it
is apparent that the general pattern of traffic growth is being maintained with no evidence of its leveling off.

The lower portion of figure 2 , showing the relation of travel by 12 -month periods in each of the main geographical regions of the United States to that in the calendar year 1941, shows clearly how much travel was shifted westward during the war. The spread between the curves for the three regions remained constant during 1947 and 1948, was reduced slightly during 1949 and 1950 , and was greatly reduced in 1951 and the portion of 1952 shown.

## Basis of Estimates

During certain prewar years, generally 1936 or 1937, nearly every State conducted a comprehensive survey of traffic in which all vehicles counted were classified by type. At the same time a large number of trucks and truck combinations were stopped and weighed and information recorded concerning their weight, dimensions, and other important features.

While the large number of automatic recorders operated on the rural roads of


Figure 2.-Travel on all rural roads by 12-month periods ending each month, in vehicle-miles and as a percentage of traffic in the calendar year 1941.
each State give a good indication of the trend of total traffic on these highways, they provide no indication of the classification of vehicles by type, weight, or other characteristics. In order to determine the trends in such factors, brief check surveys were made in the summer of 1942 at certain typical stations in most States. From strictly comparable information gathered in the two surveys, trends were calculated which were used to determine the changes in traffic and vehicle characteristics that had taken place since the comprehensive survey was made. Since 1942, check surveys have been made annually. Most States have participated in these each year and all have participated at some time. ${ }^{2}$ Such surveys were conducted in 45 States in 1951, although two States, Virginia and Washington, were unable to analyze their data in time to be included in this report.

Classification counts made in numerous States, in addition to those made at weight stations, added valuable information concerning vehicle-type proportions. Greatly expanded loadometer surveys made throughout the year in a few States have furnished more reliable data concerning vehicle types and weights than can be obtained from trend data alone. Starting in the summer of 1950, a number of weight stations were selected in 26 States from which data concerning weights and characteristics of truck traffic were to be used in studying loads and their relation to pavement damage. These stations generally are operated 16 or 24 hours a day and at least one day each season. The new data derived from these more extensive operations give more information concerning traffic characteristics in various hours of the day and seasons of the year than has been available at any time since the time of the initial surveys. All of these data wherever available have been used in the estimates.

## 1951 Summer Loadometer Survey

The stations used in the check surveys were selected initially to give a representative cross section of traffic on main rural roads. They were operated for one or more 8 -hour periods on a weekday, generally from either 6 a.m. to 2 p.m. or from 2 p.m. to 10 p.m. All traffic passing through the stations during the period was counted and classified into the following categories: local passenger cars; foreign (out-of-State) passenger cars; panel and pick-up trucks; other two-axle, four-tire trucks; two-axle, six-tire trucks; three-axle trucks; trucktractor and semitrailer combinations; truck and trailer combination or truck-tractor semitrailer and trailer combinations; and busses. The combination-type vehicles were

[^1]further subdivided according to number of axles of each. ${ }^{3}$

[^2]Most of the weight stations were operated during July, August, and September. The survey period, number of stations operated, number of vehicles counted, and the number weighed are shown for each State in table 1. More than 1.7 million vehicles were

Table 1.-Survey period, number of stations operated, number of vehicles counted, and number weighed in each State in the special weight surveys, summer of 1951

| Region and State | Survey period | Numberof stations | Total vehicles counte | Trucks and truck combinations |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Counted | Weighed |
| New England: <br> Connecticut Maine <br> Massarhusetts <br> New Hampshir | Aug. 1-Aug. 24 <br> July 5-Aug. 3 <br> July 23-Aug. 13 No survey <br> July 16-Aug. 9 <br> July 23 -Aug. 9 . | $\begin{gathered} 10 \\ 9 \\ 10 \end{gathered}$ | $\begin{array}{r} 36,695 \\ 46,899 \\ 116,163 \end{array}$ | $\begin{array}{r} 6,820 \\ 8,132 \\ 14,817 \end{array}$ | $\begin{aligned} & 1,665 \\ & \begin{array}{l} 3,334 \\ 4,380 \\ 4,380 \end{array} \end{aligned}$ |
| Rhode Island Vermont |  | 5 | $\begin{aligned} & 37,703 \\ & 22,890 \end{aligned}$ | $\begin{aligned} & 4,921 \\ & 1,834 \end{aligned}$ | $\begin{gathered} 2,145 \\ 1,698 \end{gathered}$ |
| Subtotal. |  | 39 | 260,350 | 36,524 | 13,222 |
| Middle Atlantic: New Jersey New York. | July 30-Aug. 8. <br> July 18-July 30 July 16-Aug. 31 | $\begin{aligned} & 10 \\ & 20 \\ & 13 \\ & \hline \end{aligned}$ | $\begin{aligned} & 96,500 \\ & 34,425 \\ & 70,602 \end{aligned}$ | $\begin{array}{r} 15,205 \\ 8,072 \\ 15,425 \\ \hline \end{array}$ | $\begin{aligned} & 2,069 \\ & \begin{array}{l} 1,522 \\ 3,523 \\ \hline \end{array}, 13 \\ & \hline \end{aligned}$ |
| Subtotal. |  | 43 | 201527 | 38,702 | 6.724 |
| South Atlantic: Delaware. | Aug. 9-Aug. 27 No survey <br> Aug. 20-Sept. 25 <br> June 18-July 17 <br> Sept. 17-Sept. 28 <br> Survey not reported <br> Aug. 14-Aug. 30. | 8 | 28,921 | 6,033 | 1,106 |
| Gleoriza. |  | 15 | 37.116 | 9,663 | ${ }^{4} 4.4889$ |
| Maryland ${ }^{\text {North Caroina }}$ |  | 10 12 | 99,676 31,975 10 | $\begin{array}{r}20,042 \\ 6,946 \\ \hline, 276\end{array}$ | 3,588 <br> 4,153 <br> , 105 |
| South Carolina |  | 10 | 19,783 | 5,276 | 2,095 |
| West Virginia |  | 9 | 14,494 | 3,583 | i,5i3 |
| Subtotal |  | 64 | 231,965 | 51,543 | 16,944 |
| Eastern regions, subtotal |  | 146 | 693,842 | 126,769 | 36,890 |
| East North Central: Illinois. | No survey. Aug. 8-Sept. 6 June 12 -July 18July 10 -July 26 July 2-Sept. 25 |  |  |  |  |
| Indiana...... |  | 20 | 55,770 | 13,171 | 4,724 |
| Michigan <br> Ohio |  | $1{ }^{9}$ | 29,823 29,570 | 6,202 <br> 5 <br> 5 | -2,208 |
| Wisconsin |  | 19 | ${ }_{90}^{29,241}$ | 13,410 | ${ }_{3,181}^{1,181}$ |
| Subtotal. |  | 58 | 205,404 | 38,477 | 11,627 |
| East South Central: Alabama Miesissipp Tennessee | July 17-Aug. 21 <br> July 11-Aug. 17 <br> Aug. 21-Sept. 5 | 10 <br> 10 <br> 15 <br> 10 | $\begin{aligned} & 32,599 \\ & 3,599 \\ & 27,679 \\ & 15,076 \end{aligned}$ | 8,121 <br> 9,287 <br> 6,757 <br> 4,203 | 6,182 <br> 3 <br> 3 <br> 3 <br> 3 <br> 3 <br> 1,734 <br> 1,756 |
| Subtotal |  | 45 | 114,823 | 28,368 | 15,142 |
| West North Central: Iowa. <br> Minnesota Missouri Nebraska North Dakota South Dakota | July 1-Aug. 31 <br> Aug. 10-Sept. 13 <br> June 4-Oct. 18. <br> July 19-Aug. 22. <br> July 10-Aug. 31 <br> July 30-Sept. 17 | $\begin{aligned} & 10 \\ & 10 \\ & 14 \\ & 21 \\ & 20 \\ & 14 \\ & 15 \\ & \hline \end{aligned}$ | 33,348 10,484 59.110 176,641 27 27 2415 24,179 24,174 | $\begin{array}{r} 5,932 \\ 2,260 \\ 10,677 \\ 32,948 \\ 5,664 \\ 5,036 \\ 3,899 \end{array}$ | $\begin{array}{r} 5,220 \\ 3571 \\ 3,671 \\ 11,973 \\ 5,973 \\ 1,871 \\ 3,801 \end{array}$ |
| Subtotal |  | 104 | 354,951 | 66,356 | 32,220 |
| West South Central <br> Arkansas <br> Oklahoma <br> Texas. | July 23-Aug. 3 <br> July 30-Aug. 13 <br> July 11-Aug. 10 June 1-Aug. 31. | $\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 20 \end{aligned}$ | $\begin{array}{r} 17,381 \\ 13 \\ 28.089 \\ 108,115 \\ 109.15 \end{array}$ | $\begin{array}{r} 5,802 \\ 3,620 \\ 6566 \\ 23,583 \end{array}$ | $\begin{aligned} & 1,371 \\ & 1,138 \\ & 5,983 \\ & 5,535 \end{aligned}$ |
| Subtotal. |  | 50 | 167,580 | 39,531 | 14,027 |
| Central regions, subtotal |  | 257 | 842,758 | 172,732 | 73,016 |
| Mountain: J |  |  |  |  |  |
| Arizona. Colorado | July 16-July 27 <br> July 2-Sept. 4. <br> Aug. 7-Sept. 6. <br> July 30-Aug. 31 <br> Aug. 6-Aug. 20 <br> July 16-Aug. 3 <br> July 31-Aug. 20 | 10 13 13 | 10,291 26,226 | $\underset{3}{2.245}$ | $\begin{array}{r}590 \\ 846 \\ \hline\end{array}$ |
| Idaho.... |  | 10 11 | 15,441 | 3,003 5,121 | ${ }_{2}^{1}, 1484$ |
| Nevada.... |  | 10 10 | + 8 8,924 | ${ }_{3}^{1}, 536$ | -708 |
| New Mexico |  | 10 10 | $\begin{array}{r}15,194 \\ 19 \\ \hline 879\end{array}$ | - ${ }_{3}^{3,372}$ | ${ }_{1}^{1,516}$ |
| Wyoming |  | 10 | 12,610 | 2,255 | ${ }^{1} 767$ |
| Subtotal. |  | 84 | 136,063 | 24,892 | 9.121 |
|  |  |  |  |  |  |
|  | June 7-July 18. Aug. 8-Aug. 23 Survey not reported. | 17 8 | $\begin{array}{r}172,180 \\ 19 \\ \hline\end{array}$ | 13,902 3,965 | ${ }_{2,187}^{4,26}$ |
| Subtotal. |  | 25 | 92,032 | 17,867 | 6,413 |
| Western regions, subtotal. |  | 109 | 228,095 | 42,759 | 15,534 |
| United States total. |  | 512 | 1,764,695 | 342,260 | 125.440 |

${ }^{1}$ Passenger cars not counted; figure given is an estimate based on data from other reporta.
counted at all stations during the period of the survey. Almost one-fifth of these were freight-carrying vehicles, of which almost 37 percent were weighed.

Wherever traffic volume permitted, each truck and truck combination was stopped and weighed. Where this procedure was impracticable, all of the less common types were weighed and the common vehicle types were weighed in sufficient numbers to establish their characteristics from the sample. The type of vehicle, whether loaded or empty, the number of axles, and the weight of each axle were recorded. The axle-spacing and the total wheelbase length of the heavier vehicles ${ }^{4}$ were measured. Passenger cars and busses were counted but not stopped for weighing.

## Prewar Traffic Trend Increased

Figure 3 shows in chart form the vehiclemileage of travel on all rural roads, by vehicle types, for each year from 1936 to 1951, inclusive. It is apparent that the effect of the drastic restrictions on travel during the war period, 1942-45, caused but a temporary dip in traffic growth and that the 1951 vehicle-mileage was as high as would have been estimated by any rational projection of the prewar trend. A straight line from the top of the bar for 1936 to the top of the bar for 1951 passes through the top of the bar for 1937 and for 1941 and falls well above the tops of the bars for all other years. This line indicates an average (simple) increase over the 15 years of almost 7.4 percent a year. This is equivalent to a rate of 5.1 percent compounded annually. The period 1936 to 1941 has much in common with the period 1946 to 1951, inclusive. During both periods the trend was quite uniform for the first 4 years but there was an upsurge of traffic in the fifth year. Traffic levels were considerably higher in the 1946 to 1951 period than in the earlier one, and the rate of increase was greater. During the earlier 5 -year period the total increase was 38 percent, while during the later 5 -year period it was

[^3]

Figure 3.-Travel on all rural roads, 1936-51, by classes of vehicles.

52 percent, or an average of 8.7 percent a year, compounded annually.
Travel by trucks and truck combinations increased in a manner very similar to that observed for all vehicles. For truck combinations alone, the 1936-51 line lies above the tops of all bars from 1937 to 1949, inclusive, thus showing an accelerating up-
ward trend in the travel by these heavier vehicles. This trend is emphasized by other data given in other portions of this report.

As previously stated, the traffic data collected at automatic traffic-recorder stations in the first half of 1952 indicate that travel by all types of vehicles has continued to increase over that in the same months of

Table 2.-Ratio of 1951 traffic on main rural roads to corresponding traffic in $195 \mathbf{0}^{1}$

| Vehicle type | Eastern regions |  |  |  | Central regions |  |  |  |  | Western regions |  |  | United States average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | New England | Middle Atlantic | South Atlantic | Average | East North Central | East South Central | West North Central | West South Central | Average | $\begin{aligned} & \text { Moun- } \\ & \text { tain } \end{aligned}$ | Pacific | Average |  |
| Passenger cars: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Local. | 1.19 .98 | 1.08 .92 | 1.22 1.18 | 1.15 | 1.07 1.05 | 1.17 | 1.16 1.07 | 1.15 1.07 | 1.12 | 1.15 | 1.06 | 1.08 | 1.13 |
| All passenger cars | 1.13 | 1.04 | 1.21 | 1.13 | 1.06 | 1.17 | 1.14 | 1.13 | 1.11 | 1. 06 | 1.07 | 1.07 | 1.11 |
| Trucks and combinations: Single-unit trucks | . 83 | 1.01 | 1.04 | 1.00 | 1.00 | 98 | 97 | 1.08 | 1.01 | 99 | 1.21 | 1.10 | 1.02 |
| Truck combinations... | . 92 | 1.00 | . 94 | . 96 | 1.00 | 1.05 | 1.04 | 1.10 | 1.03 | . 92 | 1.10 | 1.04 | 1.01 |
| All trucke and combinations. | . 85 | 1.01 | 1.01 | . 99 | 1.00 | 1.00 | . 99 | 1.09 | 1.02 | . 97 | 1.17 | 1.08 | 1.02 |
| Busses. | 1.09 | 1.22 | 1.00 | 1.08 | . 96 | . 95 | . 95 | 1.00 | . 97 | . 87 | 1.00 | . 95 | 1.00 |
| All vehicles. | 1.07 | 1.04 | 1.16 | 1.10 | 1.05 | 1.11 | 1.10 | 1.12 | 1.09 | 1.04 | 1.09 | 1.07 | 1.09 |

${ }^{1}$ The ratios for "all vehicles" are based on year-around automatic recorder data, while those for the individual vehicle types are based principally on summer counts.

Table 3.-Percentage distribution of travel, by vehicle type, on main rural roads in the summer of 1951

${ }^{1}$ Less than 0.005 percent.
1951. Available information indicates that travel on rural roads in 1952 will exceed the 1951 total by about 7 percent.

## Travel Increases

The State system of highways in most States is composed of the main rural roads, or those on a connected system carrying the heaviest traffic. In such States as North Carolina, Pennsylvania, and Virginia, where all or a large part of the rural mileage is under State control, only the primary roads are included in this report as a part of the "main" system of highways of the country. These main roads, comprising
about 356,000 miles, include less than 12 percent of the total rural mileage but carry over 73 percent of the total rural traffic. Because of the greater importance of these highways, from a traffic standpoint; most of the current traffic data were collected at points on them, and the remainder of this report will be concerned only with information concerning this portion of the road mileage.

The ratio of traffic volumes on main rural roads in 1951 to corresponding volumes in the previous year is shown in table 2. Although travel in 1951 on the main highways was higher in every region than in 1950, and the general increase for the United

States as a whole was the same as in the previous year, the increase in travel of single-unit trucks, truck combinations, and foreign (out-of-State) passenger cars was considerably less than in the previous year and travel in these categories decreased in several regions. For instance, the table indicates that in 1951 travel by trucks was less in New England, East South Central, West North Central, and Mountain regions than in 1950 while truck combination traffic was less in New England, South Atlantic, and Mountain regions than in 1950. Likewise, travel by foreign passenger cars was less in the New England, Middle Atlantic, and Mountain regions while bus traffic in-


Figure 4.-Average weights of loaded and empty trucks and truck combinations in the summers of 1942-51 and a prewar year.

Table 4.-Average weight (in pounds) of loaded and empty trucks and truck combinations, by vehicle iypes, in the summer of 1951

| Vehicle type | Eastern regions |  |  |  | Central regions |  |  |  |  | Western regions |  |  | United States average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | New England | Middle Atlantic | South Atlantic | $\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$ | East North Central | East South Central | West North Central | West South Central | Average | Mountain | Pacific | $\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$ |  |
| Average Weights of Loaded Vehicles |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Single-unit trucks: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Other 2-axle, 4-tire | -6,522 | 5,312 | 4,876 | 5,0817 6,717 | 5,239 6,623 | 5,336 6,734 | 5,159 7,233 | 6,162 | 5,898 6,898 | 6,154 | - 5 , 674 | 4,910 | 2,498 6,522 |
| Other 2-axle, 6-tire | 14.776 | 15, 813 | 13,007 | 14,411 | 13,572 | 14,163 | 14,755 | 13,693 | 14,031 | 14,378 | 12,899 | 13,430 | 14,069 |
| 3-axle ...... | 31,746 | 37,544 | 27,268 | 32,397 | 27,449 | 26,764 | 28,378 | 28,217 | 27,700 | 32,186 | 29,302 | 29,717 | 29,924 |
| Truck combinations: |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Truck-tractor and semitrailer | 40,212 | 42,705 | 39,128 | 40,771 53,856 | 39,730 66,785 | 35,052 | 41,548 | 39,135 | 39,399 | 46,153 | 50, 656 | 49,445 | 41, 373 |
| Truck and trailer Average. . . . | 40,199 | 42.810 | 39,005 | 53,856 40,814 | 66,785 41,315 | $35^{(1)}, 061$ | 32,343 41,115 | 59,364 39,912 | 58,778 40,143 | 65,143 48,785 | 57,397 52,297 | 58,601 51,439 | 58,599 42,501 |
| Average, all trucks and combinations. | 21,014 | 24,572 | 22,060 | 23,062 | 25,821 | 18,190 | 20,469 | 20,955 | 22,254 | 22,151 | 29,213 | 26,992 | 23,376 |
|  | Average Weights of Empty Vehicles |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Panel and pick-up. | 4,082 4,997 | 4,109 4,652 | 3,822 5,309 | 3,927 4,894 | 4,065 4,907 | 4,120 4,629 | 4,119 5,162 | 5,010 5,232 | 4,425 5,032 | 4,026 5,223 | 3,861 4,523 | 3,959 4,770 | 4,210 4,924 |
| Other 2-axle, 6-tire | 8,858 | 8,865 | 7,359 | 8,160 | 8,131 | 7,926 | 8,275 | 8,151 | 8,120 | 8 , 031 | 8,292 | 8,153 | 8,137 |
| 3-axle. | 14,707 | 17,174 | 13,705 | 15,297 | 12,896 | 15,169 | 12,819 | 18,959 | 14,257 | 16,696 | 16,231 | 16,356 | 15,187 |
| Average | 6,599 | 6,738 | 5,276 | 5,930 | 5,990 | 5,806 | 6,081 | 6,063 | 5,622 | 5,442 | 6,080 | 5,730 | 5,937 |
| Truck combinations: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Truck-tractor and semitrailer Truck and trailer. | 21,838 (1) | 21,033 | 19,423 | 20,360 19,763 | 19,719 26,442 | 18,991 | 21,256 | 19,343 52,760 | 19,770 28,648 | 24,742 30,734 | 23,509 27,668 | 24,179 28,414 | 20,282 |
| Average..... | 21,777 | 21,037 | 19,417 | 19,357 | 20,529 | 18,992 | 21,114 | 20,402 | 18,770 20,360 | 36,033 26,033 | 25,605 | - 25,789 | 20,911 |
| Average, all trucks and combinations. | 9,559 | 10,607 | 8,069 | 9,167 | 10,555 | 7,933 | 9,024 | 8,944 | 8,910 | 8,407 | 10,252 | 9,280 | 9,197 |

1 Data omitted because of insufficient sample.
creased in New England and Middle Atlantic, decreased in East North Central, East South Central, West North Central, and Mountain regions and remained about the same in other regions.

The increase in travel by all types of passenger vehicles amounted to 11 percent compared to only 2 percent for freightcarrying vehicles. This small increase in truck and truck combination traffic is particularly noteworthy when it is noted that
there was an extremely large increase in that traffic in 1950 compared to the previous year. The increase in travel by passenger cars was 7 percent while the increase in travel by all types of freight-carrying vehicles amounted to 18 percent, the increase being 12 percent for single-unit trucks and 33 percent for truck combinations. Thus the 1951 figures show that the extremely rapid rate of increase in truck traffic which occurred from 1949 to 1950 was not con-
tinued into 1951. However, such data as are available for 1952 indicate that this leveling off may have been temporary, and that truck traffic may again be increasing faster than passenger car traffic. ${ }^{5}$

The percentage of travel by vehicle types on main rural roads in 1951 is given in table

[^4]

Figure 5.-Travel on main rural roads, 1936-51, by loaded and by empty trucks and truck combinations.

Table 5.-Comparison of estimated vehicle-miles of travel on main rural roads in 1936, 1941, 1946, 1950, and 1951

${ }^{1}$ Percentages of total 1951 travel by passenger cars and by busses are reported separately in table 3 .

made by vehicle types between the old and the new classifications, or between data collected in 1946 and earlier years with such data collected in 1947 and thereafter, but the convenience and advantages of the new system outweigh the disadvantages caused by the change.

The data in table 3 indicate that truck and truck combination travel in 1951 was more than 20 percent of the total travel in all but the New England and Pacific regions. It was between 20 and 25 percent in all remaining regions except the East South Central region where it was over 28 percent.

A comparison with the same table in the 1950 report shows that the proportion of trucks was lower in 1951 than in 1950 in every region except the Pacific region where the proportion of freight-carrying vehicles increased slightly.

Table 3 indicates also that the usage of certain types of freight-carrying vehicles varies in different sections. For instance, the truck and trailer combinations with six or more axles and the truck-tractor and semitrailer with five or more axles are used far more frequently in the Pacific region than in any other area. Truck and trailer combinations are used much less in the East South Central region and in the three eastern regions than in other sections. The percentage of combination-type vehicles, nation-wide, was 6.71 percent, a slight decrease from the 1950 figure of 7.21 percent but exceeding the percentage figures of 5.95 in 1949, 5.84 in 1948, 5.73 in 1947, and 5.26 in 1946.

The average weights of loaded and empty trucks and truck combinations, separately and combined, are shown graphically in figure 4 for each year from 1942 to 1951, inclusive, and for a prewar year, generally 1936 or 1937. The weights of single-unit trucks, both loaded and empty, increased each year from the 1936-37 period through 1945, then decreased slightly and leveled off around 11,000 pounds for loaded vehicles and slightly less than 6,000 pounds for empty vehicles. At the same time weights of truck combinations, both loaded and empty, have increased each year during the

Figure 6.-Average load carried by trucks and truck combinations on main rural roads, 1936-51.
3. In this table all single-unit trucks are divided into classification types based on the axle and tire arrangements, while the truck combinations are classified according to the total number of axles of the combination. The classification of vehicles into these types has been used in the last five annual surveys. It has several advantages over the original "light, medium, and heavy" grouping, particularly in that it provides more homogeneous groupings and more positive identification of the types. It is regrettable that no direct comparison can be

Table 6.-Comparison of estimated percentage of trucks and truck combinations loaded, average carried load, and ton-miles carried on main rural roads in 1936, 1941, 1946, 1950, and 1951

| Year | All trucks and truck combinations |  |  | Single-unit trucks |  |  | Truck combinations |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { Per- } \\ & \text { centage } \\ & \text { loaded } \end{aligned}$ | Average weight of carried load | Tonmiles carried | Percentage loaded | Average weight of carried load | Tonmiles carried | Percentage loaded | Average weight of carried load | Tonmiles carried |
|  | 62.8 | Tons | Millions | 60.7 | Tons ${ }^{1.86}$ | Millions | 72.2 | Tons | $\begin{aligned} & \text { Millions } \\ & 13,747 \end{aligned}$ |
| 1941 | 66.7 | 3.64 | 58,737 | 65.4 | 2.29 | 28,487 | 71.6 | 8.23 | 30,250 |
| 1341:1986 ratio | 1.06 | 1.26 | 2. 10 | 1.08 | 1.23 | 2.00 | . 9.9 | 1.19 | 2.20 |
| 1946 .... | 51.7 | 4.84 | 60,892 | 46.4 | 2.31 | 19,101 | 66.2 | 9.70 | 41,791 |
| 1946:1941 ratio | . 78 | 1.38 | 1.04 | . 71 | 1.01 | . 67 | . 92 | 1.18 | 1.88 |
| 1946:1986 ratio. | . 82 | 1.67 | 2.17 | . 76 | 1.24 | 1.34 | . 68.92 | 1.41 | 3.04 91.446 |
| $1950$ | 53.9 | 5.64 | 121,091 | 47.2 | 2.31 | 29,645 | 68.5 | 10.62 10.83 | 91,446 95.006 |
| 1951. | 55.1 | 5.66 | 126,402 | 48.8 | 2.31 | 31,396 | 68.9 | 10.83 | 95.006 |
| 1951:1950 ratio. | 1.02 | 1.00 | 1.04 | 1.03 | 1.00 | 1.06 | 1.01 | 1.02 1.82 | $1.04$ |
| 1951:1941 ratio. | . 88 | 1.55 | 2.15 | .75 .80 | 1.01 1.24 | 1.10 2.20 | .96 .95 | 1.32 | 3.14 6.91 |
| 1951:1996 ratio. | . 88 | 1.95 | 4.51 | . 80 | 1.24 | 2.20 | . 95 | 1.57 | 6.91 |



Figure 7.-Ton-miles carried by trucks and truck combinations on main reral roads, 1936-51.
period shown. The increase in average weight of loaded combinations from the 1936-37 period to 1951 was over 58 percent, compared to 12 percent for single-unit trucks.

The increase for all loaded trucks and truck combinations combined was slightly more than 80 percent. It will be noted that the average weight of the loaded singleunit trucks was somewhat less than twice the average weight of the empty vehicles of this type, while the average weight of the loaded combinations was just about twice the average weight of the empty combinations. In the case of the vehicles of both types combined, the loaded vehicles included a higher proportion of combinations than the empty vehicles, since combinations are more often loaded and the average weight of the loaded trucks and combinations was therefore considerably more than twice the average weight of the empty vehicles of both types.

The average weights of the various types of loaded and empty trucks and truck combinations in the summer of 1951 are shown in table 4 for the different regions. This
table brings out clearly the important differences that exist in the weight characteristics of the vehicles in the different groups. It will be noted, for example, that for the United States as a whole, the loaded three-axle, single-unit trucks weighed a little more than twice as much as the twoaxle, six-tire trucks. The latter, in turn, weighed a little more than twice as much as the two-axle, four-tire trucks. Similar differences existed throughout the various classifications. On the other hand, the regional differences in average weight for each of the vehicle types that are common throughout the country are surprisingly small. The rather low weights of truck and trailer combinations in certain sections of the country, particularly the West North Central region, indicate a predominance of small home-made trailers of low capacity

Seasonal loadometer data for 1952 and a corresponding period in 1951, received from 9 States as previously referred to, indicate that in 1952 the loaded single-unit trucks were about 4 percent lighter, and the empty trucks about 8 percent lighter, on the average, than in 1951. The loaded tractor-semitrailer combinations were less than 1 percent heavier than in 1951 and the empty combinations about 3 percent heavier. These data indicated no change in the percentage of loaded single-unit trucks, but an appreciable increase in the percentage of truck combinations loaded.

## Truck Travel Increases

Figure 5 shows the estimated vehiclemileage of travel by loaded and empty single-unit trucks and truck combinations, separately and combined, on main rural roads for each year 1936 to 1951, inclusive. This chart demonstrates graphically the steady growth of truck traffic during the prewar years 1936-41, the temporary effect of wartime restrictions in the period 194245 , and the remarkable increases in truck transportation that have occurred since the end of hostilities in 1945.
Table 5 gives comparisons of the estimated vehicle-mileage of travel by vehicles of different types on all main rural roads

Table 7.-Percentage of vehicle-miles of travel, percentage loaded, average carried lead, and percentage of total ton-miles carried by various types of trucks and truck combinations on main rural roads in 1951 compared to that in corresponding months of 1950

| Vehicle type | Percentage of ve-hicle-miles of travel |  | Percentage loaded |  | Average carried load |  | Percentage of ton-miles carried |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1951 | 1950 | 1951 | 1950 | 1951 | 1950 | 1951 | 1950 |
|  |  |  |  |  | Tons | Tons |  |  |
| Panel and pick-up. | 32.76 | 31.35 | 39.0 | 37.4 | 0.70 | 0.69 | 2.86 | 2.65 |
| Other 2-axle, 4 -tire | 2.90 | 2.79 | 54.6 | 52.4 | . 91 | . 93 | . 46 | . .45 |
| Other 2-axle, 6-tire | 30.94 | 32.63 | 58.0 | 55.9 | 3.23 | 3.20 | 18.57 | 19.06 |
| 3-axle ........... | 2.00 | 1.68 | 60.9 | 58.3 | 7.53 | 7.23 | 2.95 | 2.32 |
| All single-unit trucks | 68.60 | 68.45 | 48.8 | 47.2 | 2.31 | 2.31 | 24.84 | 24.48 |
| Truck combinations: |  |  |  |  |  |  |  |  |
| Truck-tractor and semitrailer | 29.22 | 29.43 | 69.2 | 68.9 | 10.48 | 10.32 | 67.96 | 68.87 |
| Truck and trailer, ......... | 2.18 | 2.12 | 65.0 | 62.3 | 15.48 | 15.32 | -7.20 | ${ }^{6} .65$ |
| All truck combinations. | 31.40 | 31.55 | 68.9 | 68.5 | 10.83 | 10.62 | 75.16 | 75.52 |
| All trucks and combinations. | 100.00 | 100.00 | 55.1 | 53.9 | 5.66 | 5.64 | 100.00 | 100.00 |



Figure 8.-Number of heavy gross weights per 1,000 trucks and truck combinations (empties included) in the summers of 1942-51 and a prewar year.

Figure 7 shows for each year from 1936 through 1951, the ton-mileage of freight carried by trucks and truck-combinations on main rural roads. The chart demonstrates clearly that truck combinations are transporting each year a larger proportion of the total amount of highway freight. In 1936 the truck combinations hauled slightly less ton-mileage than the single-unit trucks, while in 1950 they hauled more than triple the amount transported by the larger number of lighter vehicles. The rapid rate of annual increase in total freight carried, which took place in 1946 and 1947, was reduced somewhat in 1948 and 1949 to a rate more nearly comparable with that of prewar years. In 1950, however, there was a startling increase in freight ton-mileage somewhat similar to a rise that occurred in 1941. In 1951 the rate of increase was again reduced to one closely comparable with the prewar trend.

In table 6 are shown comparisons of the percentage of vehicles carrying loads, the average carried load, and the ton-mileage carried for single-unit trucks and for truck combinations, separately and combined, in 1951 with corresponding items for other years as in table 5. The trend from 1936 to 1951 of average weight carried, shown graphically in figure 6, and that of the ton-mileage transported during the same period, shown in figure 7, has already been discussed.

The percentage of trucks and truck combinations carrying loads increased notice-
in 1936, the earliest year for which comprehensive travel and weight data are available; in 1941, the peak prewar year, 5 years after the beginning of the surveys; in 1946, 10 years after the beginning of the surveys; and in 1950 and 1951 which completes 16 full years of estimates. The ratios of 1951 travel to that of the preceding years indicate that increases for trucks and truck combinations generally were greater than for passenger cars and busses, and that increases for truck combinations were greater than for single-unit trucks. In the 15 years from 1936 to 1951, passenger-car and bus travel combined increased 104 percent, travel by all trucks and combinations increased 163 percent, and travel by truck combinations (considered separately) more than quadrupled, increasing 362 percent.

## Volume of Highway Freight

Figure 6 gives a comparison of the average load carried by single-unit trucks and truck combinations, separately and combined, in the 16 years that the planning surveys have been operating. The general trend of load weights was upward throughout the period. The slight decline in the weights of loads carried by single-unit trucks since 1945 has been more than offset by the increased use of combinations and the increased weights of loads carried by vehicles of this type.


Figure 9.-Number of heavy axle loads per 1,000 trucks and truck combinations (empties included) in the summers of $1942-51$ and a prewar vear.

Table 8.-Heavy gross weights per 1,000 loaded and empty trucks and truck combinations on main rural roads, summer of 1951

| Vehicle type | Eastern regions |  |  |  | Central regions |  |  |  |  | Western regions |  |  | United <br> States average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | New England | Middle <br> Atlantic | South Atlantic | A verage | East North Central | East South Central | West North Central | West South Central | Average | $\begin{aligned} & \text { Moun- } \\ & \text { tain } \end{aligned}$ | Pacific | A verage |  |
| Number per 1,000 Weighing 30,000 Pounds or More |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2-axle, 6-tire . . | 15 295 | 26 522 | ${ }_{246}^{1}$ | 13 374 | 0 232 | 1 220 | ${ }^{(1)} 325$ | 5 339 | 1 269 | 5 356 | 1 319 | 3 ${ }^{3}$ | 5 323 |
| Average..... | 16 16 | ${ }_{3}$ | 8 | 18 | 2.6 | 2 | 325 6 | 5 | - 5 | 11 | 30 | 22 | 12 |
| Truck combinations: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Truck-tractor and semitrailer. Truck and trailer.......... | 541 | ${ }_{\text {(2) }} 631$ | (2) 53.3 | 577 516 | 586 679 | ${ }_{(2)} 881$ | 600 317 |  | 557 506 | 645 818 | 712 | 691 735 | 580 6.37 |
| Truck and trailer............ | $\stackrel{(2)}{540}_{5}$ | ${ }^{(2)} 631$ | ${ }^{(2)} 532$ | 516 576 | 679 594 | ${ }^{(2)} 481$ | 317 586 | ${ }^{(2)} 493$ | [506 | 818 673 | 717 | 735 | 683 584 |
|  |  | 234 | 164 | 191 | 255 | 109 | 158 | 143 | 178 | 164 | 289 | 240 | 192 |
|  |  | 221 | 177 | 189 | 251 | 102 | 142 | 146 | 170 | 160 | 289 | 233 | 187 |
|  |  | 191 | 130 | 153 | 208 | 87 | 139 | 107 | 144 | 118 | 176 | 147 | 148 |
| Number per 1,000 Weighing 40,000 Pounds or More |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Single-unit trucks:2-axle, 6-tire |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2-axle, 6-tire. <br> 3-axle | 132 | 292 | $7{ }^{0}$ | ${ }_{177}^{2}$ | 0 46 | ${ }^{(1)} 31$ | 0 30 | 0 89 | ${ }^{(1)} 45$ | 0 119 | 0 52 | 0 64 | 1 |
| Average. | 5 | 13 | 2 | 7 | 1 | 1 | 1 | 1 | 1 | 3 | 5 | 4 | 3 |
| Truck combinations: |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Average, all trucks and combinations. <br> Comparative average, 1950 . . . . . . . . . . . . . . . . . . . . . . $\quad 98$ <br> Comparative average, 1949............................. . . 66 |  | 152 |  | 120 |  |  |  |  |  | 103 |  |  |  |
|  |  | 135 | 95 | 109 | 140 | 4.5 | 82 | 79 | 95 | 106 | 214 | 167 | 110 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Number per 1,000 Weighing 50,000 Peunds or Mord |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }_{3}^{2 \text {-axle, }}$ - 6 -tire | $\stackrel{0}{29}$ | 2 49 | 0 0 | ${ }^{1}$ | 0 9 |  | 0 | 0 3 |  | 0 69 | 0 0 | 0 | ${ }_{14}$ |
| Average | 1 | 3 |  | , |  |  | 0 | (1) |  | 2 | 0 | 1 | 1 |
| Truck combinations: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Truck-tractor and semitrailer. |  |  |  |  |  |  |  |  | 150 |  |  | 411 |  |
| Truck and trailer. Average. | ${ }_{116}^{(2)}$ | ${ }^{(2)}$ <br> 210 | ${ }^{(2)} 123$ | 452 160 | 510 204 | ${ }^{(2)} 25$ | 208 | ${ }^{(2)} 120$ | 374 162 | 506 +330 | 482 | 486 430 | 440 204 |
| A verage, all trucks and combinations. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Comparative average, 1950......... | 24 | 63 | 28 | 41 | 78 | $\frac{6}{7}$ | 44 | 34 | 47 | 76 | 176 | 133 | 64 58 |
| Comparative average, 1949........ | 15 | 52 | 21 | 33 | 48 | 6 | 32 | 18 | 29 | 51 | 99 | 75 | 36 |

$\therefore$ Less than 5 per 10,000.
a Data omitted because of insufficient sample.
ably from 1950 to 1951 in all regions except the New England region where a slight decrease of this factor was found. In the country as a whole, the percentage loaded increased from 53.9 percent in 1950 to 55.1 percent in 1951. Both for single-unit trucks and for truck combinations, the percentage loaded was higher in 1951 than in 1950 or any year since 1945. However, the loaded proportion continued to be considerably less for the single-unit vehicles and slightly less for the truck combinations than in the prewar surveys.

Table 7 gives a detailed comparison of the percentage of vehicle-miles of travel, percentage of vehicles loaded, average carried load, and percentage of total ton-miles of freight carried by the various types of trucks and truck combinations traveling on main roads in 1950 and 1951. Many interesting comparisons can be made from this table showing the relative importance from a freight-carrying standpoint of different portions of the traffic stream. In 1951, for instance, while panel and pick-up trucks traveled almost 33 percent of the vehicle-mileage, they accounted for less than 3 percent of the ton-mileage. The truck-
tractor and semitrailers, on the other hand, traveled about 29 percent of the vehiclemileage but carried almost 68 percent of the ton-mileage.

From the column in table 7, showing percentage loaded by types, it can be observed that the percentage of vehicles carrying loads tends to increase directly as the size of the vehicle type, extending from light panel and pick-up trucks that are loaded 39 percent of the time to the heavy combinations that are loaded about 69 percent of the time.

## Gross Weights Increase

Figure 8 shows by years, from the prewar years (generally 1936 or 1937) to 1951, for the United States as a whole, the frequency of gross weights of 30,000 pounds or more, of 40,000 pounds or more, and 50,000 pounds or more. The chart shows strikingly how the frequency of heavy loads has increased year after year, reaching amounts in 1951 considerably above any previous level. In this upward climb the 1951 frequencies surpassed even the astonishing maximum levels established for
each weight group in the previous year. For instance, the frequency of the loads of 30,000 pounds or more was 3 percent higher than in 1950 and 30 percent higher than in 1949. The loads of 40,000 pounds or more was 8 percent higher than in 1950 and 45 percent higher than in 1949. The increase in loads of 50,000 pounds or more, however, was even more startling, the frequency being 10 percent above the 1950 figure and almost 78 percent above the 1949 figure. The 30,000 -pound loads were over 4 times as frequent as in the prewar year; loads of 40,000 pounds or more were 11 times as frequent; while those of 50,000 pounds or more were almost 22 times as frequent as in the 1936-37 period.

The 1951 gross-weight frequency data by vehicle type and region are presented in table 8. No panels, pick-ups, or other twoaxle, four-tire, single-unit trucks were found in the survey weighing as much as 30,000 pounds, so there is no entry for these vehicles in the table, though they are included in the total number of vehicles weighed in computing the frequencies for all trucks and combinations. Heavy gross weights are much more frequent in the Pacific region

Table 9.-Heavy axle loads per 1,000 loaded and empty trucks a nd truck combinations on main rural roads, summer of 1951

| Vehicle type | Eastern regions |  |  |  | Central regions |  |  |  |  | Western regions |  |  | United States average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { New } \\ \text { England } \end{gathered}$ | Middle Atlantic | South Atlantic | $\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$ | East North Central | East South Central | West North Central | West South Central | $\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$ | $\begin{gathered} \text { Moun- } \\ \text { tain } \end{gathered}$ | Pacific | $\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$ |  |
| Number per 1,000 Weighing 18,000 Pounds or More |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Single-unit trucks: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\underset{\text { a-axle, }}{\text { 2-axle }}$ - -tire. . . . | 45 172 | 67 332 | 21 58 | 43 191 | 15 | 22 53 | 20 40 | 23 64 | 19 33 | 31 189 | $\stackrel{21}{29}$ | 25 | 28 |
| Average..... . | 29 | 48 | 11 | ${ }_{27}$ | 8 | 11 | 11 | 8 | 9 | 16 | 11 | 13 | 15 |
| Truck combinations: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Truck-tractor and semitrailer | (1) 500 | (1) 523 | ${ }_{(1)}^{278}$ | 405 339 | 180 | 166 | 168 | 197 | 180 | 186 | 106 | 131 | 246 |
| Truck and trailer...... Average......... | (1) 499 | (1) 522 | ${ }_{2}^{1)}$ | 339 405 | 397 197 | ${ }_{168}$ | 171 | (1) 190 | 303 187 | 191 | 84 99 | 104 124 | 189 242 |
| Average all trucks and combinations. | 151 | 207 | 90 | 144 | 88 | 46 | 53 | 60 |  |  |  |  |  |
| Comparative average, 1950 | 137 | 208 | 100 | 147 | 98 | 63 | 45 | 67 | 72 | 83 | 69 | 75 | 96 |
| Comparative average, 1949 | 124 | 19.5 | 99 | 140 | 89 | 50 | 50 | 51 | 63 |  |  |  |  |
| Number per 1,000 Weighing 20,000 Pounds or More |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Single-unit trucks: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3-axie, 6-tire.. | 104 | $\begin{array}{r}49 \\ 157 \\ \hline\end{array}$ | 7 2 | $\stackrel{27}{81}$ | 10 | ${ }_{0}^{6}$ | 4 0 | 12 | 6 6 | 123 | 3 0 | ${ }_{2}^{6}$ | 13 37 |
| Average. . | 18 | 32 | 3 | 16 | 2 | 3 | 2 | 4 | 3 | 7 | 1 | 4 | 7 |
| Truck combinations: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Truck-tractor and semitrailer | ${ }_{\text {(1) }} 321$ | ${ }_{\text {(1) }} 322$ | ${ }_{(1)}^{110}$ | 221 85 | 35 | (1) 39 | 43 | ${ }^{11} 67$ | 45 | 56 | 12 | 26 | 99 |
| Truck and trailer............ Average. . . . . . . . . . |  | 320 | 109 | 220 | 34 | ${ }^{\text {(1) }} 39$ |  | ${ }_{64}$ | 43 | 49 | 13 | 23 | 93 |
| Average, all trucks and combinations | 97 | 129 |  | 79 | 16 | 11 | 12 | 21 | 16 |  | 5 | 10 | 34 |
| Comparative average, 1950. | 82 | 131 | 38 | 80 | 22 | 19 | 12 | 23 | 19 | 35 | 16 | 24 | 39 |
| Comparative average, 1949... | 73 | 118 | 46 | 78 | 27 | 18 | 12 | 18 | 20 | 26 | 6 | 16 | 38 |
| Number per 1,000 Weighing 22,000 Pounds or More |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Single-unit trucks: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 2-axie, 6-tire. | 173 | 31 76 | 3 0 | 16 37 | $\stackrel{2}{10}^{1}$ | ${ }_{0}^{2}$ | ${ }_{0}^{1}$ | ${ }_{0}^{4}$ | ${ }_{4}^{2}$ | 44 | ${ }_{0}^{1}$ | $\stackrel{2}{8}$ | 7 16 |
| Truck combinations: |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Truck-tractor and semitrailer.. | 148 | 182 | 31 | 107 | 10 | (1) 9 | 10 | (1) 10 | 10 | 14 | 5 | 7 | 41 |
| Truck and traller Average | ${ }_{148}^{11}$ | ${ }^{(180}$ | ${ }^{(1)} 31$ | ${ }_{107}^{10}$ | 11 10 | ${ }^{(1)} 9$ | 0 10 | ${ }^{(1)} 9$ | 7 10 | 12 | 2 4 | 2 6 | 4 38 |
| Average, all trucks and combinations . |  |  |  |  |  |  |  |  |  | 5 |  |  |  |
| Comparative average, 1950 ........ | 39 | 80 | 13 | 42 | 7 | 5 | 3 | 9 | 6 | 16 | 3 | 9 | 18 |
| Comparative average, 1949 | 33 | 65 | 18 | 39 | 9 | 5 | 3 | 6 | 6 | 11 | 2 | 6 | 17 |

${ }^{1}$ Data omitted because of insufficient sample.
${ }^{2}$ Lese than 5 per 10.000 .
than in other parts of the country. In this region 178 of each 1,000 trucks and truck combinations on the main rural highways in 1951, empties included, weighed 50,000 pounds or more and 289 of each 1,000 weighed 30,000 pounds or more. In the East North Central region, 255 of each 1,000 trucks and truck combinations weighed 30,000 pounds or more, almost as many as in the Pacific region, but only 87 of each 1,000 vehicles weighed 50,000 pounds or more, a frequency less than half of that in the Pacific region for this heavy class of vehicle. The lowest frequency of heavy gross loads was found in the East South Central region where only 6 of each 1,000 weighed 50,000 pounds or more, and only 109 of each 1,000 weighed 30,000 pounds or more.

As was pointed out in the discussion of figure 8 , the frequencies of heavy gross loads have increased noticeably in the Nation as a whole. This increase is not limited to any certain area but is distributed throughout the entire country. Comparing the frequencies of gross weights in 1951 with those in the previous year, slight decreases were found in the frequencies of gross
weights of 30,000 pounds or more in the South Atlantic region and in the West South Central region; in the frequency of gross weights of 40,000 pounds or more in the East South Central and in the Mountain regions; and in the frequency of gross weights of 50,000 pounds or more in the East South Central region. The frequency of gross weights, 50,000 pounds or more, in the West South Central region did not change nor did the frequency of gross weights of 30,000 pounds or more in the Pacific region. The largest increases were found in the New England region where the frequency of loads of 30,000 pounds or more increased from 137 per 1,000 vehicles in 1950 to 153 in 1951. Also in that region, loads of 40,000 pounds or more increased from 78 in 1950 to 95 in 1951, and those of 50,000 pounds or more increased from 24 in 1950 to 31 in 1951 for each 1,000 vehicles.

Seasonal data collected in 1952 and in a corresponding period in 1951 from the 9 States previously listed, indicate that the frequency of the heavier loads is higher in 1952 than in 1951. This increase is particularly noticeable in the frequency of
vehicles weighing 50,000 pounds or more which, in the sample received, were 20 percent more frequent in 1952 than in the earlier year. On the other hand, vehicles weighing 40,000 pounds or more were only slightly more frequent in 1952, while the frequency of those weighing 30,000 pounds or more had not changed appreciably.

## Frequency of Heavy Axle Loads

Figure 9 shows the frequency of axle loads of 18,000 pounds or more, 20,000 pounds or more, and of 22,000 pounds or more for the prewar years (1936-37) and by years from 1942 to 1951. The frequency of these heavy axle loads increased year by year from the prewar period through 1948. Since 1948, however, the trend apparently has been reversed for, with the exception of 1950 , the data seem to indicate a downward trend or at least a leveling off. Such a leveling off in the frequency of the heavier axle loads, though heavy gross loads have increased in the past year, may indicate that more attention is being given to proper load distribution, due perhaps to better enforcement of legal limits.

Table 10.-Number of trucks and truck combinations, per 1,000 loaded and empty vehicles, that exceeded the permissible axle, axle-group, or gross-weight legal limits in effect in the States by various percentages (maximum) of overload, summer of 1951

| Region and type of vehicle | $\begin{gathered} \text { Num- } \\ \text { ber } \\ \text { per } \\ 1,000 \\ \text { over- } \\ \text { loaded } \end{gathered}$ | Number per 1,000 overloaded more than- |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} 5 \\ \text { per- } \\ \text { cent } \end{gathered}$ | $\begin{gathered} 10 \\ \text { per- } \\ \text { cent } \end{gathered}$ | 20 percent | 30 percent | 50 percent |
| New England: |  |  |  |  |  |  |
| 2-axle, 6-tire | 13 | 9 | ${ }_{6}^{6}$ | 4 | 2 | (1) |
| 3-axle..... | 72 | 65 | 5.3 | 15 | 2 |  |
| Average, single-unit trucks. | 9 | 7 | 5 | 3 | 1 | (1) |
| Truck-tractor and semitrailer. | 114 | 73 | 46 | 16 | 4 | 1 |
| Truck and trailer. |  |  |  |  |  |  |
| A verage, truck combinations. | 114 | 73 | 46 | 16 | 4 | 1 |
| Average, all trucks and combinations Middle Atlantic: | Middle Atlantic: |  |  |  |  |  |
| 2-axle, 6-tire... | 29 | 24 | 19 | 8 | 4 | 1 |
| 3-axle... | 187 | 152 | 46 | 2 |  |  |
| Average, single-unit trucks | 22 | 18 | 12 | 4 | 2 | 1 |
| Truck-tiactor and semitrailer | 175 | 134 | 89 | 43 | 16 | 2 |
| Truck and trailer | 267 | 69 | 62 | 56 |  |  |
| Average, truck combinations | 176 | 133 | 89 | 43 | 16 | 2 |
| Average, all trucks and combinations. | 74 | 57 | 38 | 17 | 7 | 1 |
| South Atlantic: |  |  |  |  |  |  |
| 2 -axle, 6-tire. | 9 | 6 | 3 | 1 |  |  |
| 3-axle. . | 38 | 13 | 6 | 2 | 2 |  |
| Average, single-unit trucks | 5 | 3 | 2 | 1 | (1) |  |
| Truck-tractor and semitrailer | 101 | 71 | 50 | 18 | 6 | (1) |
| Truck and trailer................... ..... ........................ |  |  |  |  |  |  |
| Average, truck combinations....... Average, all trucks and combinations | 101 34 | 71 23 | 50 16 | 18 6 | 6 2 | (1) |
| East North Central: |  |  |  |  |  |  |
| 2-axle, 6-tire. . . . | 8 | 3 | 2 | 1 |  |  |
| 3 -axle. | 34 | 19 | 9 |  |  |  |
| A verage, single-unit trucks | 5 | 2 | 1 | 1 |  |  |
| Truck-tractor and semitrailer. | 125 | 65 | 25 | 5 | 1 | 1. |
| Truck and trailer. | 221 | 123 | 38 | 8 | (1) | ( ${ }^{\text {d }}$ |
| Average, truck combinations | 132 | 69 | 26 | 5 | 1 | 1 |
| Average, all trucks and combinations. | 59 | 30 | 12 | 3 | (1) | (1) |
| East South Central: |  |  |  |  |  |  |
| 2-axle, 6-tire | 15 | 10 | 7 | 3 | 1 | $\left.{ }^{1}\right)$ |
| 3 -axle | 50 | 37 | 18 | 7 | 3 | 1 |
| Average, single-unit trucks | 8 | 5 | 4 | 2 | 1 | (3) |
| Truck-iractor and semitrailer | 129 | 79 | 42 | 15 | 4 | (1) |
| Truck and ${ }^{3}$ trailer . . . . . . |  |  |  |  |  |  |
| Average, truck combinations..... . | 129 | 79 | 42 | 15 | 4 | (1) |
| Average, all trucks and combinations | 35 | 21 | 12 | 5 | 2 | (1) |
| West North Central: |  |  |  |  |  |  |
| 2-axle, 6-tire. | 11 | 6 | 4 | 1 | (1) |  |
| 3-axie | 63 | 21 | 16 | 5 |  |  |
| Average, single-unit trucks | 7 | 3 | 2 | 1 | (1) |  |
| Truck-tractor and semitrailer | 201 | 118 | 67 | 23 | 11 | 3 |
| Truck and trailer. . | 79 | 56 | 19 |  |  |  |
| Average, truck combinations. | 195 | 115 | 65 | 22 | 10 | 3 |
| Average, all trucks and combinations. | 56 | 32 | 19 | 7 | 3 | 1 |
| West South Central: |  |  |  |  |  |  |
| 2-axle, 6-tire.... | 24 | 19 | 14 | 8 | 5 | 3 |
| 3-axle. | 63 | 33 | 17 | 8 |  |  |
| Aversge, single-unit trucks | 9 | 7 | 5 | 3 | 2 | 1 |
| Truck-tractor and semitrailer | 176 | 121 | 78 | 32 | 13 | 2 |
|  |  |  |  |  |  |  |
| Average truck combinations. | 173 | 117 | 75 | 31 | 13 | 2 |
| Average, all trucks and combinations . | 54 | 38 | 25 | 11 | 5 | 1 |
| Mountain: |  |  |  |  |  |  |
| 2-axle, 6-tire | 24 | 15 | 9 | 4 | 2 | (1) |
| 3 -axle | 136 | 104 | 80 | 63 | 38 | 12 |
| A verage, single-unit trucks. | 12 | 8 | 5 | 3 | 2 | (1) |
| Truck-tractor and semitrailer | 168 | 116 | 74 | 27 | 9 | 2 |
| Truck arid trasler. | 25.1 | 130 | 74 | 11 | 2 |  |
| Average, truck combinations..... | 182 | 118 | 74 | 24 | $\delta$ | 2 |
| Average, all trucks and combinations | 51 | 33 | 21 | 8 | 3 | ${ }^{(1)}$ |
| Pacific: |  |  |  |  |  |  |
| 2-axle, 6-tire. | 6 | 3 | 2 | 1 | 1 |  |
| 3-axle. | 37 | 18 | 2 |  |  |  |
| Average, single-unit trucks. . | 6 | 3 | 1 | (1) | (1) |  |
| Truck-tractor and semitrailer | 65 | 33 | 13 | 5 | (1) |  |
| Truck and trailer. | 132 | 56 | 26 | 7 | 1 |  |
| Average, truck combinations | 84 | 40 | 17 | 6 | (1) |  |
| Average, all trucks and combinations. | 36 | 17 | 7 | 2 | (1) |  |
| United States average: |  |  |  |  |  |  |
| 2-axle, 6-tire. | 15 | 19 | 7 | 3 | 2 | (1) |
| 3 -axle. | 71 | 45 | 19 | 6 | 3 | 1 |
| Average, single-unit trucks. | 9 | 6 | 4 | 2 | 1 | (1) |
| Truck-tractor and semitrailer. | 139 | 89 | 52 | 20 | 7 | 1 |
| Truck and trailer. | 157 | 78 | 32 | 7 | 1 | (1) |
| Average, truck combinations. . . . . . | 140 | 88 | 51 | 19 | 7 | 1 |
| Average, all trucks and combinations. | 50 | 32 | 19 | 7 | 3 | (1) |
| Comparative average, 1950 | 67 | 44 | 27 | 11 | 5 | 1 |
| Comparative average, 1949 | 51 | 35 | 23 | 10 | 4 | 1 |

Less than 5 per 10,000

Table 11.-Number of trucks and truck combinations, per 1,000 loaded and empty vehicles, that exceeded any of the permissible load limits recommended by the A.A.S.H.O. by various percentages (maximum) of overload in the summer of 1951

| Region and type of vehicie | Num-berper1,000over-loaded | Number per 1,000 overloaded more than- |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} 5 \\ \text { per- } \\ \text { cent } \end{gathered}$ | $\begin{gathered} 10 \\ \text { per- } \\ \text { cent } \end{gathered}$ | $\begin{gathered} 20 \\ \text { per- } \\ \text { cent } \end{gathered}$ | $\begin{aligned} & 30 \\ & \text { per- } \\ & \text { cent } \end{aligned}$ | $\begin{gathered} 50 \\ \text { per- } \\ \text { cent } \end{gathered}$ |
| New England: |  |  |  |  |  |  |
| 2-axle, 6-tire | 43 | 35 | 29 | 18 | 10 | 4 |
| 3 -axle. | 89 | 76 | 58 | 33 | 17 | 10 |
| Average, single-unit trucks | 25 | 21 | 17 | 10 | 6 | 2 |
| Truck-tractor and semitraile. | 269 | 232 | 194 | 112 | 48 | 9 |
|  |  |  |  |  |  |  |
| Average, truck combinations | 268 | 231 | 194 | 112 | 48 | 9 |
| Average, all trucks and combinations . Middle Atlantic: | 88 | 76 | 63 | 37 | 17 | 4 |
| 2-axle, 6-tite. . . . . . . . . . . . . . . . . . . . . | 55 | 52 | 47 | 31 | 19 | 7 |
| 3-axle... | 243 | 201 | 141 | 38 | 13 |  |
| Average, single-unit trucks | 38 | 35 | 30 | 18 | 11 | 4 |
| Truck-tractor and semitrailer. | 302 | 255 | 203 | 125 | 71 | 16 |
| Truck and trailer. . | 342 | 191 | 130 | 7 |  |  |
| Average, truck combinations. | 302 | 255 | 202 | 124 | 70 | 16 |
| Average, all trucks and combinations | 127 | 109 | 88 | 54 | 31 | 8 |
| South Atlantic: |  |  |  |  |  |  |
| 2-axle, 6-tire. | 16 | 13 | 8 | 2 | (1) |  |
| 3-axle.. | 83 | 54 | 30 | 4 | 2 |  |
| Average, single-unit trucks | 10 | 7 | 4 | 1 | (1) |  |
| Truck-tractor and semitrailer | 180 | 133 | 94 | 37 | 10 | 1 |
| Truck and trailer. |  |  |  |  |  |  |
| Average, truck combinations. | 180 | 133 | 94 | 37 | 10 | 1 |
| East North Central: |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 2-axle, 6-tire | 10 | 5 | 3 | 2 |  |  |
| 3 -axle . | 19 | 6 |  |  |  |  |
| Average, single-unit trucks | 6 | 3 | 2 | 1 |  |  |
| Truck-tractor and semitrailer | 211 | 136 | 72 | 15 | 5 | 1 |
| Truck and trailer. | 406 | 374 | 308 | 171 | 33 | 4 |
| Average, truck combinations. | 226 | 154 | 90 | 27 | 7 | 1 |
| Average, all trucks and combinations | 99 | 67 | 39 | 12 | 3 | (1) |
| East South Ceritral: |  |  |  |  |  |  |
| 2-axle, 6-tire | 15 | 10 | 7 | 3 | 1 | (1) |
| 3-axle. | 44 | 30 | 12 |  |  |  |
| Average, single-unit trucks | 8 | 5 | 4 | 1 | (1) | (1) |
| Truck-tractor and semitrailer | 113 | 70 | 34 | 12 | 3 | ${ }^{1}$ |
|  |  |  |  |  |  |  |
| Average, truck combinations | 113 | 70 | 34 | 12 | 3 | (1) |
| West North Central: |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 2-axle, 6-tire. . . . . . . . . . . . . . . . . . . . . . | 11 | 6 | 4 | 1 | ( ${ }^{1}$ |  |
| 3-axle. | 38 | 8 | 5 | 3 |  |  |
| Average, single-unit trucks. | 6 | 3 | 2 | 1 | (1) |  |
| Truck-tractor and semitrailer | 173 | 106 | 63 | 18 | 8 | 2 |
| Truck and trailer. | 58 | 56 | 19 |  |  |  |
| Average, truck combinations. | 167 | 103 | 61 | 17 | 8 | 2 |
| Average, all trucks and combinations. | 48 | 29 | 17 | 5 | 2 | 1 |
| West South Central: ${ }_{\text {W }}$ |  |  |  |  |  |  |
| 2-axle, 6-tire . . . . . . . . . . . . | 24 | 19 | 15 | 8 | 5 | 3 |
| 3 -axle | 72 | 33 | 25 | 17 | 8 |  |
| A verage, single-unit trucks | 9 | 7 | 5 | 3 | 2 | 1 |
| Truck-tractor and semitrailer | 165 | 113 | 68 | 27 | 11 | 1 |
|  |  |  |  |  |  |  |
| A verage, truck combinations | 159 | 109 | 66 | 26 | 11 | 1 |
| Mountain: |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 2-axle, 6-tire . . . . . . . . | 24 | 15 | 9 | 4 | 2 | (1) |
| 3-axle..... | 137 | 109 | 74 | 56 | 38 | 12 |
| Average, single-unit trucks | 12 | 8 | 5 | 3 | 2 | (1) |
| Truck-tractor and semitrailer | 199 | 149 | 103 | 46 | 13 | 2 |
| Truck and trailer. | 314 | 211 | 123 | 29 | 2 |  |
| Average, truck combinations . . . . | 218 | 159 | 106 | 43 | 11 | 2 |
| Average, ali trucks and combinations. | 59 | 43 | 28 | 12 | 1 | (1) |
| Pacifie: ${ }^{\text {P }}$ |  |  |  |  |  |  |
| 2-axle, 6-tire . . . . . . . . . . . . . . . . . . . . | 6 | 3 | 2 | 1 | 1 |  |
| 3-axle. | 41 | 18 | 2 |  |  |  |
| A verage, single-unit trucks. | 6 | 3 | 1 | (1) | (1) |  |
| Truck-tractor and semitrailer. | 154 | 112 | 71 | 18 | 5 | (1) |
| Truck and trailer.. | 278 | 173 | 85 | 10 | 3 | 1 |
| Average, truck combinations. | 189 | 129 | 75 | 16 | 4 | (1) |
| Average, all trucks and combinations | 75 | 51 | 29 | 6 | 2 | (1) |
| United States average: |  |  |  |  |  |  |
| 2-axle, 6-tire... | 21 | 17 | 13 | 7 | 4 | 1 |
| 3-axle. | 83 | 57 | 35 | 12 | 5 | 1 |
| Average, single-unit trucks | 12 | 9 | 7 | 4 | 2 | (1) |
| Truck-tractor and semitrailer | 198 | 142 | 94 | 40 | 17 | 3 |
| Truck and trailer. | 282 | 211 | 139 | 54 | 10 | 2 |
| Average, truck combinations. | 204 | 147 | 97 | 41 | 17 | 3 |
| Average, all trucks and combinations. | 72 | 52 | 35 | 16 | 7 | 1 |
| Comparative average, 1950 | 91 | 68 | 46 | 21 | 10 | 3 |
| Comparative average, 1949 | 6.8 | 53 | 38 | 19 | 10 | 2 |

' Lees than 5 per 10.000 .

Table 9 gives data concerning the number of heavy axle loads per 1,000 loaded and empty trucks and truck combinations of various types on the main rural roads by regions in 1951. Since no panel or pick-up trucks were found with axles weighing 18,000 pounds or more there is no entry for these in the table though they are included
in figuring the frequencies for all trucks and truck combinations.

Though the greatest frequency of heavy gross weights was in the Pacific region, as shown in table 8, the lowest frequency of heavy axle loads was in that region. Frequencies almost as low were found in the West North Central and the East South

Central regions. In the Pacific region, only 2 axles of 22,000 pounds or more were found in 1951 for each 1,000 vehicles while in each of the two Central regions mentioned, only 3 such axles were found for each 1,000 vehicles weighed. By far the greatest frequency of heavy axle loads was in the Middle Atlantic region and the next.

Table 12. -Number of trucks and truck combinations, per 1,000 loaded and empty vehicles, that exceeded the permissible axle-group loads recommended by the A.A.S.H.O. by various percentages of overload in the summer of 1951

| Region and type of vehicle | $\begin{aligned} & \text { Num- } \\ & \text { ber } \\ & \text { per } \\ & 1,000 \\ & \text { over- } \\ & \text { loade } \end{aligned}$ | Number per 1,000 overloaded more than- |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\stackrel{5}{\text { percent }}$ | $\begin{aligned} & 10 \\ & \text { percent } \end{aligned}$ | $\stackrel{20}{\text { percent }}$ | $\stackrel{30}{\text { percent }}$ | $\stackrel{50}{\text { percent }}$ |
| New England: <br> 2-axle, 6-tire |  |  |  |  |  |  |
| 2-axle, 6-tire 3 -axle. | ${ }^{(1)} 75$ |  |  |  |  |  |
| Average, single-unit trucks | 75 2 | 60 2 | 49 1 | 27 1 | (1) 15 |  |
| Truck-tractor and semitrailer | 64 | 40 | 26 |  | 2 | 1 |
| Truck and trailer <br> Average, truck combinations | 64 | 40 |  |  |  |  |
| Average, all trucks and combinations. | 18 | 12 | 8 | 3 | 1 | (1) |
| Middle Atlantic: |  |  |  |  |  |  |
| 2-axle, 6-tire | 4 | 3 | 3 | 1 | 1 |  |
| 3-axle <br> Average, single-unit trucks | 232 | 186 | 141 | 35 | 13 |  |
| Truck-tractor and semitrailer | 134 | 105 | $7{ }^{7}$ | 29 | 19 | 4 |
| Truck and trailer. | 260 | 62 | 62 | 7 |  | 4 |
| Average, truck combinations | 135 | 105 | 72 | 29 | 19 | 4 |
| Average, all trucks and combinations. | 53 | 41 | 29 | 11 | 7 | 1 |
| South Atlantic:2-axle, 6-tire |  |  |  |  |  |  |
| 2-axle, 6-tire <br> 3-axle | ${ }^{(1)} 67$ | ${ }^{(1)}{ }_{40}$ | ${ }^{(1)} 25$ |  |  |  |
| Average, single-unit trucks | $\stackrel{6}{2}$ | 1 | 25 | (1) |  |  |
| Truck-tractor and semitrailer | 68 | 48 | 34 | 16 | 4 | (1) |
| Truck and trailer. |  |  |  |  |  |  |
| Average, truck combinations....... | 68 | 48 | 34 | 16 | 4 | (1) |
| Average, all trucks and combinations. | 22 | 15 | 11 | 5 | 1 | (1) |
| East North Central: <br> 2-axle, 6 -tire. |  |  |  |  |  |  |
| 3 -axle. | 9 | 3 |  |  |  |  |
| Average, single-unit trucks | (1) | (1) |  |  |  |  |
| Truck-tractor and semitrailer | 137 | 84 | 45 | 7 |  | (1) |
| Truck and trailer. | 384 | 359 | 294 | 164 | 33 | 4 |
| Average, truck combinations. | 156 | 105 | 64 | 19 | 4 | (1) |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 3-axle....... | 10 | 10 |  | () | () |  |
| A verage, single-unit trucks | (1) | (1) | (1) | (1) | (1) |  |
| Truck-tractor and semitrailer | 11 | 6 | 2 | 1 | (1) |  |
| Truck and trailer. |  |  |  |  |  |  |
| Average, truck combinations. | 11 | 6 | 2 | 1 | (1) |  |
| West North Central: |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 3 -axle ....... | 27 | 5 | (1) 5 | 3 |  |  |
| Average, single-unit trucks | 1 | ${ }^{(1)}$ | (1) | (1) |  |  |
| Truck-tractor and semitrailer | 116 | 74 | 43 | 12 | 4 | 1 |
| Truck and trailer.. | 58 | 19 | 12 |  |  |  |
| Average, truck combinations. | 113 | 71 | 41 | 11 | 4 | 1 |
| West South Central: |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| ${ }^{2}$-axle, 6 -tire. | (1) |  |  |  |  |  |
| 3-axle | 46 | 25 | 25 | 17 | 8 | 8 |
| Average, single-unit trucks Truck-tractor and semitrailer | ${ }^{(1)} 84$ | ${ }^{(1)} 56$ | ${ }^{(1)} 29$ | (1) 9 | ${ }^{(1)} 5$ | ${ }^{(1)}$ |
| Truck-tractor and semitrailer <br> Truck and trailer. | 84 | 56 |  |  | 5 |  |
| Average, truck combinations | 81 | 54 | 28 |  |  | 1 |
| Average, all trucks and combinations | 23 | 15 | 8 |  | 1 | (1) |
| Mountain:2-axle, 6 -tire |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  | 130 3 | 103 | $\begin{array}{r}74 \\ 2 \\ \hline\end{array}$ | 1 | 1 |  |
| Truck-tractor and semitrailer | 151 | 117 | 87 | 39 | 11 | 1 |
| Truck and trailer. | 254 | 176 | 114 | 25 | 2 |  |
| Average, truck combinations | 168 | 127 | 91 | 37 | 10 | 1 |
| Average, all trucks and combinations | 41 | 32 | 23 | 9 | 3 | (1) |
| Pacific: |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 3 -axle................... | 35 | 9 | 2 |  |  |  |
| Average, single-unit trucks | 3 | 1 |  |  |  |  |
| Truck-tractor and semitrailer | 142 | 107 | 69 74 | 17 | 5 3 | ${ }^{(1)} 1$ |
| Average, truck combinations | 174 | 122 | 70 | 14 | 4 | (1) |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| Truck and trailer........... | 156 | 191 | 127 | 50 | 10 | ${ }_{2}^{1}$ |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Comparative average, 1949. | 28 | 21 | 14 | 7 | 3 | 1 |

${ }^{1}$ Less than 5 per 10,000.
greatest in New England. In these two regions the relatively high frequency is attributable mainly to the large number of two-axle truck-tractors pulling one-axle or two-axle semitrailers. The relative infrequency of heavy axles in the Pacific region, in the presence of a large proportion of heavy gross loads, indicates a better distribution of the loads over a larger number of axles.

Although the frequency of heavy gross loads has increased somewhat in all regions, as stated in connection with the discussion of table 8, the trend in frequency of heavy axle loads followed a different pattern. This is demonstrated by comparing the frequency of heavy axle loads in 1951 with those of 1950, as shown for each region in table 9 , and noting that the frequency of heavy axle loads decreased in every region ex-
cept the New England and West North Central regions, whereas table 8 shows that the frequency of gross loads increased somewhat in most regions.

Seasonal information collected in 1952 and in a corresponding period in 1951, reported by the 9 States previously mentioned, indicates that the frequency of the heavier axle loads may generally be higher in 1952 than in the previous year. However, the data so far available are not sufficient to conclude that the leveling off in the trend of heavy axle load frequencies noted during the preceding few years is temporary only.

## Loads Above Legal Limits

Table 10 shows the number of trucks and truck combinations of each type, per 1,000 such vehicles counted, empties included, that exceeded the legal axle, axle-group, or grossweight limits in effect in the individual States in the summer of 1951, and the number per 1,000 that exceeded these limits by various percentages. Comparative figures are given at the bottom of the table for the Nation as a whole, for 1949 and 1950. It shows that, on the whole, there was much better compliance with legal limitations in 1951 than in 1950 and somewhat better than in 1949. Only three-quarters as many vehicles were overloaded in 1951 as in the previous year, and only two-thirds as many exceeded the State weight limits by 20 percent or more.

Loads in excess of State law were, in 1951, most frequent in the Middle Atlantic States, although even in this region, compared to that of 1950, a slight reduction in the frequency of overloaded vehicles was found. Slight increases in the frequency of overloaded vehicles were found in the New England and in the West North Central regions, but substantial decreases were recorded in all other areas. In the East South Central region, where in 1950 extraordinary conditions in one State caused the highest regional frequency (115 per 1,000 ) of overloading to be recorded, the 1951 data indicated a frequency of only 35 overloaded vehicles per 1,000 counted. This 1951 frequency in the East South Central region was next to the lowest figure recorded in that year, it being bettered only by the South Atlantic region with a frequency of only 34 excessively loaded vehicles for each 1,000. After the Middle Atlantic region where, of all loaded and empty trucks and truck combinations weighed in 1951, 74 exceeded one or more of the State weight limits, the East North Central region had the second highest rate of overloads (59) and in descending order of rates of violation were the West North Central (56), the West South Central (54), the Mountain (51), the New England (36), the Pacific (36), the East South Central (35), and the South Atlantic (34).

No panel or pick-up truck or other 2 axle, 4 -tired truck was weighed that ex-
ceeded any of the State weight regulations and these classifications are omitted from tables 10-12 although the number of such vehicles counted is included in the calculations.

## Recommended Weight Limits

Uniform regulations concerning maximum allowable gross weights, axle weights, and axle-group weights have been adopted as a policy by the American Association of State Highway Officials and recommended to the State governments for adoption. ${ }^{\text {b }}$ This policy recommends that no axle shall carry a load in excess of 18,000 pounds and no group of axles shall carry a load in excess of amounts specified in a table of permissible weights based on the distance between the extremes of any group of axles.

The frequencies of axle loads of 18,000 pounds or more, 20,000 pounds or more, and 22,000 pounds or more have already been discussed in connection with table 9 and will not be discussed further here.

As might be expected, many vehicles were so loaded that they exceeded more than one recommended weight limit, and some vehicles had more than one axle loaded in excess of the recommended limit. Counting each vehicle only once, regardless of the number of ways in which it exceeded any of the A.A.S.H.O. recommended limits, table 11 was prepared to show the number of vehicles per 1,000 of each type, both loaded and empty, that exceeded the limits by various percentages. Those vehicles which exceeded more than one provision of the recommended restrictions were tabulated only in the column showing the highest percentage excess of any item.

In the various regions of the United States, the number of vehicles out of every 1,000 that exceeded the recommendations in 1951 was lower in each region except in the West North Central where the frequency of all excessive loads remained the same as in 1950. As might be expected, due to the high frequency of excessively heavy axles in the Middle Atlantic region, as in-

[^5]dicated in table 9, that region led all others in the number of vehicles out of every 1,000 that exceeded any of the A.A.S.H.O. recommendations ( 127 for each 1,000 vehicles counted), while in descending order were the East North Central (99), New England (88), Pacific (75), South Atlantic (61), Mountain (59), West South Central (51), West North Central (48), and East South Central (31).
In the United States as a whole, 72 vehicles out of every 1,000 were overloaded to some degree according to the A.A.S.H.O. standards and 16 out of every 1,000 exceeded some one of the recommended provisions by more than 20 percent. The frequency of vehicles exceeding the recommendations by any amount in 1951 was 21 percent less than in 1950. The 1 requency exceeding the recommendations by more than 20 percent in 1951 was almost 24 percent less than in the previous year.

Table 12 shows the number of vehicles of various types, per 1,000 vehicles with an axle-group load in excess of the limits recommended by the A.A.S.H.O. and in excess of the limits by various percentages. For the United States as a whole, the frequency of axle-group loads in 1951 was lower than in 1950 though somewhat higher than in 1949. When it is considered that the average weight of all trucks and combinations in 1951 exceeded the average weight of these vehicles in 1950 and that, at the same time, the frequency of axle-group loads in excess of the A.A.S.H.O. recommendations decreased materially, it appears that some effort is being made to reduce load concentrations. The 1951 frequency of excessive axle-group loads in the United States as a whole decreased from the frequencies of 1950 in all regions except in the South Atlantic and the West North Central regions. As in the previous year, the highest frequency of excessive axle-group loads was found in the Pacific region ( 68 per 1,000 vehicles), while the regions in descending order of the number of vehicles with excessive axle-group loads were East North Central (66), Middle Atlantic (53), Mountain (41), West North Central (30), West South Central (23), South Atlantic (22), New England (18), and East South Central (2).

It will be noted that a higher proportion
of the vehicles have excessive axle-grour loads in the Pacific region than elsewhere whereas table 9 shows that this region has the lowest frequency of heavy axle loads This is because of the widespread use of multiple-axle vehicles in California and neighboring States.

In the United States as a whole, the number of vehicles with excessive axle-group loads per 1,000 counted in 1951 was about 11 percent less than the frequency found in the previous year, and the frequency of those exceeding the recommended amounts by 20 percent or more was about one-third less.

## State Limits Higher

In considering the data concerning the frequencies of vehicles exceeding the State legal limits and the A.A.S.H.O. recommendations, especially the frequencies in the Middle Atlantic and New England regions, the fact should be recognized that higher limits generally are permitted under State laws in these areas than are recommended by the Association. Axles exceeding the recommended limits by as much as 25 percent may be within the ${ }^{s}$ legal limits of certain States, particularly in these two regions. Some States have no axle-group limits and one State has no prescribed axle-load limit in their motor-vehicle restrictions, a fact that further complicates direct comparison of excess weights based on law and those based on the recommendations. Comparison of the frequency data for New England and the Middle Atlantic regions given in table 11 with those in table 10 shows that only about one-third to one-half of the vehicles exceeding one or more of the Association recommendations actually exceeded a State legal limit. Due to more stringent weight laws in the East South Central, the West North Central, and the West South Central regions, the frequency of vehicles exceeding the State weight limits in the States of these regions is slightly greater than the frequency of those exceeding the Association recommendations. For the United States as a whole, over two-thirds of the vehicles exceeding one or more of the Association recommendations also exceeded a State legal limit.

## Road Test One-MD

# A Motion Picture 

Road Test One-MD, a motion picture produced by the Bureau of Public Roads, is now available for lending to interested organizations. The 16 -millimeter color and sound film, in three reels, has a running time of about an hour and a quarter. It depicts the operation of and explains the conclusions drawn from the test conducted in 1950 at La Plata, Md., under the direction of the Highway Research Board on behalf of 11 Eastern States and with the cooperation of the Bureau of Public Roads. The final report of the study was recently published by the Board.

In the test, a 1.1 -mile section of typical concrete pavement, which had withstood 10 years of weathering and moderate traffic with very slight distress, was subjected to 6 months of continuous controlled truck traffic. On each of four test lanes, pairs of trucks were operated-single-axle trucks with 18,000 - and 22,400 -pound rear-axle loads, and tandem-axle trucks with 32,000 and 44,800 pounds on the tandem rear axles. Pumping, cracking, deflections and strains,
and other evidences of distress and failure were carefully recorded and analyzed in conjunction with data on soils, rainfall, etc.

Part I of the motion picture illustrates the nature and scope of the field operations. Evidence of the effect of the various loadings is shown in a chronological series of scenes focused on typical slabs.

Part II, by means of working models and animated charts, illustrates the data collected and the conclusions derived therefrom. The causes and effects of the phenomena observed are clearly and simply explained in layman's language.

The nature and distribution of the types of soils underlying the pavement, and their relation to pavement failure, are portrayed. The effects of typical rainfalls in the gradual increase of pumping and cracking are demonstrated, followed by a comparison of cracking under the various axle loadings on the uniform basis of lineal feet of cracking per slab on a single type (the predominant A-6) of soil.

A model pavement, supported first by

## New Publications

The Annual Report of the Bureau of Public Roads for the fiscal year ended June 30,1952 , is now available from the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C., at 25 cents a copy.

This 81-page publication discusses the progress that was made during the fiscal year in Federal-aid highway planning, programing, and construction, as well as other functions of the Bureau relating to highways.

Accomplishments of the Bureau of Public Roads during the past fiscal year may be summarized in three main categories: the Federal-aid highway construction program, assistance to foreign countries in highway matters, and the research program in fields relating to highway improvement.

During the year the construction program was carried forward with the $\$ 500$ million Federal-aid authorization together with State and local government matching
funds. Work completed involved the improvement of 5,628 miles of principal intercity routes which carry the predominant portion of all rural traffic, the elimination of traffic-congested arteries in many of our populous cities by constructing 772 miles of modern high-speed expressways and other high-type facilities, and the improvement of 11,109 miles of the more important secondary roads serving the rural population. In addition to the regular Federal-aid program, emergency flood relief projects and improvements in National parks and forests totaled 601 miles. The total length of construction projects completed during the fiscal year ending June 30, 1952, at a cost of $\$ 846$ million was 18,110 miles.

A second phase of the Bureau's activity provided for aid to foreign countries which involved supervising the equipping, training, and organizing of highway departments, and assisting in the planning and restoring of highway systems. Such as-
granular soil and then by fine-grained soil, shows how pumping occurs and what are its effects. The model slab, undermined by pumping, is actually broken by a miniature loaded truck. The nature and causes of stresses are demonstrated, and comparisons are made of the magnitudes and locations of stresses caused by single-axle and tandem-axle trucks, on both fully supported and pumped-out subgrades. The cause of longitudinal cracking is demonstrated.
The film ends with a summary of the conclusions drawn from the test, and brief comment on their significance.

Road Test One-MD may be borrowed by any responsible organization, without charge except for the nominal shipping costs, by writing to the Visual Education Section, Bureau of Public Roads, Washington 25, D. C. It is anticipated that there will be considerable demand for this film, and the number of available prints will be limited. In requesting loan of the picture, several alternate dates should be proposed. Loans can be made only for short periods of time.
sistance was made available to Turkey, Ethiopia, Liberia, and the Philippines. During the year, over 220 engineers from more than 54 countries came to the Bureau for assistance in studying American highway practice.

A third phase of the work of the Bureau related to research in the fields of highway finance and administration, highway transport, hydraulies, and physical studies of the properties of highway materials and soils, and the design of pavements and structures.

## REPRINTS

Also available from the Superintendent of Documents are reprints of the articles Highway Transportation Economics by Richard M. Zettel, appearing in the August 1952 issue of Public Roads, vol. 27, No. 3 (10 cents), and Recent Trends in Highway Bond Financing by Messrs. Duzan, McCallum, and Todd, appearing in the October 1952 issue, vol. 27, No. 4 ( 20 cents).

The following publications are sold by the Superintendent of Documents, Government Printing Office, Washington 25, D. C. Orders should be sent direct to the Superintendent of Documents. Prepayment is required.

## ANNUAL REPORTS

Work of the Public Roads Administration:

| 1941,15 | cents. |
| :--- | :--- |
| 1942,10 | cents. |
| 1946,20 | cents. |
| 190 | cents. |
| 1948,20 | cents. |
| 1949 | 25 |
| cents. |  |

Public Roads Administration Annual Reports: 1943; 1944; 1945. (Frce from Bureau of Public Roads)

Annual Reports of the Bureau of Public Roads: 1950, 25 cents. 1951,35 cents. 1952, 25 cents.

## HOUSE DOCUMENT NO. 462

Part 1.-Nonuniformity of State Motor-Vehicle Traffic Laws. 15 cents.
Part 2.-Skilled Investigation at the Scene of the Accident Needed to Develop Causes. 10 cents.
Part 3.-Inadequacy of State Motor-Vehicle Accident Reporting. 10 cents.
Part 4.-Official Inspection of Vehicles. 10 cents.
Part 5.-Case Histories of Fatal Highway Accidents. 10 cents. Part 6.-The Accident-Prone Driver. 10 cents.

## UNIFORM VEHICLE CODE

Act I.-Uniform Motor-Vehicle Administration, Registration, Certificate of Title, and Antitheft Act. 10 cents.
Act II.-Uniform Motor-Vehicle Operators' and Chauffeurs' License Act. 15 cents. (revised 1952)
Act III.-Uniform Motor-Vehicle Civil Liability Act. 10 cents. Act IV.-Uniform Motor-Vehicle Safety Responsibility Act. 15 cents. (revised 1952)
Act V.-Uniform Act Regulating Traffic on Highways. 20 cents.
Model Traffic Ordinance. 15 cents. (revised 1952)

## MAPS

State Transportation Map series (available for 39 States). Uniform sheets 26 by 36 inches, scale 1 inch equals 4 miles. Shows in colors Federal-aid and State highways with surface types, principal connecting roads, railroads, airports, waterways, National and State forests, parks, and other reservations. Prices and number of sheets for each State vary-see Superintendent of Documents price list 53.
United States System of Numbered Highways together with the Federal-Aid Highway System (also shows in color National forests, parks, and other reservations). 5 by 7 feet (in 2 sheets), scale 1 inch equals 37 miles. $\$ 1.25$.
United States System of Numbered Highways. 28 by 42 inches, scale 1 inch equals 78 miles. 20 cents.

## MISCELLANEOUS PUBLICATIONS

Bibliography of Highway Planning Reports. 30 cents.
Construction of Private Driveways (No. 272MP). 10 cents.
Economic and Statistical Analysis of Highway Construction Expenditures. 15 cents.
Electrical Equipment on Movable Bridges (No. 265T). 40 cents.
Factual Discussion of Motortruck Operation, Regulation, and Taxation. 30 cents.
Federal Legislation and Regulations Relating to Highway Construction. 40 cents.
Financing of Highways by Counties and Local Rural Governments, 1931-41. 45 cents.
Guides to Traffic Safety. 10 cents.
Highway Accidents. 10 cents.
Highway Bond Calculations. 10 cents.
Highway Bridge Location. (No. 1486D). 15 cents.
Highway Capacity Manual. 65 cents.
Highway Needs of the National Defense (House Document No. 249). 50 cents.

Highway Practice in the United States of America. 75 cents.
Highway Statistics (annual) :
1945,35 cents. 1947,45 cents. 1949,55 cents.
1946,50 cents. 1948,65 cents. 1950,60 cents.

Highway Statistics, Summary to 1945. 40 cents.
Highways in the United States (nontechnical). 15 cents.
Highways of History. 25 cents.
Identification of Rock Types. 10 cents.
Interregional Highways (House Document No. 379). 75 cents.
Legal Aspects of Controlling Highway Access. 15 cents.
Local Rural Road Problem. 20 cents.
Manual on Uniform Traffic Control Devices for Streets and Highways. 75 cents.
Mathematical Theory of Vibration in Suspension Bridges. \$1.25.
Principles of Highway Construction as Applied to Airports,
Flight Strips, and Other Landing Areas for Aircraft. \$1.75.
Public Control of Highway Access and Roadside Development. 35 cents.
Public Land Acquisition for Highway Purposes. 10 cents.
Roadside Improvement (No. 191MP). 10 cents.
Selected Bibliography on Highway Finance. 55 cents.
Specifications for Construction of Roads and Bridges in Na tional Forests and National Parks (FP-41). $\$ 1.50$.
Taxation of Motor Vehicles in 1932. 35 cents.
Tire Wear and Tire Failures on Various Road Surfaces. 10 cents.
Transition Curves for Highways. \$1.25.

[^6]
## STATUS OF FEDERAL－AID HIGHWAY PROGRAM

AS OF DECEMBER 31， 1952
（Thousand Dollars）

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{state} \& \multirow{3}{*}{\(\underbrace{\substack{\text { a }}}_{\substack{\text { UNprogrammed } \\ \text { Balances }}}\)} \& \multicolumn{12}{|c|}{active progran} \\
\hline \& \& \multicolumn{3}{|c|}{rrocrammed only} \& \multicolumn{3}{|r|}{} \& \multicolumn{3}{|l|}{construction tnorr way} \& \multicolumn{3}{|c|}{тоtal} \\
\hline \& \& \(\xrightarrow{\text { Toats }}\) cost \& fecters \& mise \& \({ }_{\text {cosem }}^{\text {Tocat }}\) \& \(\substack{\text { Fexaral } \\ \text { frums }}\) \& mils \& Toct \& \({ }_{\substack{\text { Fuceral } \\ \text { frums }}}\) \& miles \&  \&  \& mile \\
\hline Alabama
Arizona \& \begin{tabular}{l}
\(\$ 14,266\) \\
7，367
\end{tabular} \& \[
\begin{gathered}
\$ 26,072 \\
2,160 \\
\hline 120
\end{gathered}
\] \& \[
\begin{aligned}
\& \$ 13,454 \\
\& 1,490
\end{aligned}
\] \& \[
\begin{aligned}
\& 470.7 \\
\& 35.7 \\
\& 320.5
\end{aligned}
\] \& \＄8，142 \& \[
\begin{gathered}
\$ 4,072 \\
544 \\
583 \\
542 \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
200.2 \\
16.9 \\
57.9
\end{gathered}
\] \& \[
\begin{gathered}
\$ 26,293 \\
\hline, 555 \\
12,585
\end{gathered}
\] \& \[
\begin{gathered}
\$ 13,420 \\
3.881 \\
\hline \\
\hline .892
\end{gathered}
\] \& \begin{tabular}{l}
299.5 \\
296．6
\end{tabular} \& \(\$ 60,507\) 25，896 \& \[
\begin{aligned}
\& \$ 30,946 \\
\& \hline \\
\& \hline, 995 \\
\& \hline 3.460
\end{aligned}
\] \& \begin{tabular}{l}
970.4 \\
174．4 \\
688.0 \\
\hline
\end{tabular} \\
\hline \& 20，549 \& 22，824 \& 11，469 \& 110.6 \& 8，763 \& 4，517 \& 53.2 \& \({ }_{95,319}\) \& 46，063 \& 211.4 \& 126，906 \& 62，049 \& \({ }_{375} 67.1\) \\
\hline coick \& 9,588
8,180 \& 6,568
4,500 \& 3，622
2，300 \& 107.8
20.3 \& － 2 2，097 \& 1，095 \& 51.9
2.4 \& \(8,9,94\)
10,886 \& \begin{tabular}{l}
4,358 \\
5.557 \\
\hline 15
\end{tabular} \& 113.7
17.0
1 \& \begin{tabular}{l}
127,533 \\
16,083 \\
\hline
\end{tabular} \& 9，075 \& 277.4
39.7 \\
\hline \& \begin{tabular}{l}
3,471 \\
3,830 \\
\hline
\end{tabular} \& 679 \& 30 \& \& 1，001 \& \& \({ }^{3.3}\) \& 6，703 \& 3，389 \& 33．9 \& 8，\({ }^{\text {8，443 }}\) \& 4，259 \& 33.0 \\
\hline  \& 15，577 \& \[
\begin{aligned}
\& 13,375 \\
\& 11,958
\end{aligned}
\] \& 6，719 \& 177.9
300.6 \& 11，226 \& ¢， 5,021 \&  \&  \& － \(\begin{array}{r}6,983 \\ 16,202 \\ \hline\end{array}\) \& 230.1
512.7 \&  \& － \(\begin{aligned} \& 19,523 \\ \& 26,270\end{aligned}\) \& 539.8
907.6 \\
\hline Iatho \&  \& le， \(\begin{aligned} \& 10,220 \\ \& 32,962\end{aligned}\) \&  \& 281.8
309.9 \& （1， \(\begin{aligned} \& 1,889 \\ \& 19,69\end{aligned}\) \&  \& 47．7

109.1 \&  \& 1， 4,556
27，876 \& 88.3

405.9 \& $\begin{array}{r}199,180 \\ 106,401 \\ \hline\end{array}$ \& $\underset{\substack{112,894 \\ 56,131}}{ }$ \& | 416.6 |
| :--- |
| 824.9 | <br>

\hline  \& 29，902 \& \& 18，820 \& | 309.9 |
| :--- |
| 135.3 |
| 18. | \& ${ }_{\substack{19,679 \\ 8,320}}$ \& （10，272 \& | 129.1 |
| :--- |
| 126.4 | \&  \&  \& －451．9 \& $\xrightarrow{1062,614}$ \& \& 824.9

393.2 <br>
\hline $\underbrace{}_{\substack{\text { Iown } \\ \text { Komas }}}$ \& 15,336
15,311

$\substack{\text { c，}}$ \& cole $\begin{gathered}\text { 10，912 } \\ 7,327\end{gathered}$ \& | 5,850 |
| :--- |
| 3,581 | \& 212.5

776.4 \& ${ }_{5} 71288$ \& 2，572 \& 28.7
466.1 \&  \& $\underset{\substack{5,347 \\ 6,159}}{12,06}$ \& 459.5
54.5 \& 22，217
24，019 \& 112，569
12,316 \& 1，7906．7 <br>

\hline ${ }_{\substack{\text { Kinases } \\ \text { Kentucky }}}$ \& 11，200 \& 12，868 \& li，022 \& | 193.4 |
| :--- |
|  |
| 9.9 | \& ci， 6,56 \& cole 3,224 \& ${ }^{230.3}$ \& （13，270 \& 6，551 \& 206．2 \& \& 16，797 \& <br>


\hline Louisiana \& 4，9115 \&  \& \％ $\begin{aligned} & \text { 7，191 } \\ & 3,592\end{aligned}$ \& | 111.5 |
| :--- |
| 25.3 | \& ${ }^{4,872}$ \& － \& $\begin{array}{r}33.0 \\ .3 \\ \hline\end{array}$ \& 22，922 \& $\xrightarrow[\substack{\text { ne，} \\ 5,317}]{\text { 11，06 }}$ \& | 137.5 |
| :--- |
| 82.1 | \& 42,180

18,122 \& $\xrightarrow{20,619} 9$ \& $\xrightarrow{282.0} 1$ <br>

\hline \& 10， 13.274 \& \&  \& ${ }_{\text {S7 }}$ \& $\xrightarrow{1,584} 1$ \& \& | 15.9 |
| :--- |
| 3.1 | \& 4， 4,248 \&  \& 35.2

35.1 \& 28，880 \& 2， 2,3094 \& 108 <br>

\hline  \& $$
\begin{aligned}
& 13,2947 \\
& 16,2072 \\
& 16,233
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 4,2,422 \\
& 2,42, \\
& 8,538
\end{aligned}
$$

\] \& 边 \&  \& cole \& 2，9838 \& | 64．3 |
| :--- |
| 6.6 |
| .6 | \& 56，056 \& 24，154 \& 33.7

24.7
235 \& 82， 491 \& 37，521 \& 668.4 <br>
\hline \& 10，930 \& 13，174 \& 6，693 \& 470.9 \& 3，185 \& \& 103.5 \& 15，444 \& 8，237 \& 444.9 \& 31，803 \& 16，509 \& 979．3 <br>
\hline  \& 17,358

14,688 \& （ 3 3，501 \& | 17， 139 |
| :--- |
| 5,058 | \& 895.3

252.9 \& $$
\begin{aligned}
& 3,1,050 \\
& 1,050 \\
& 1,306
\end{aligned}
$$ \& 3，525 \& 103.0

16.9 \&  \& －19，399． \& 354.9
38.6
321.9 \& cock \& ＋10， \& 1，386．9 <br>
\hline \& 19，266 \& 8，771 \& 4，752 \& ${ }^{418.4}$ \& 3，934 \& \& 44.2 \& 9，868 \& 4，889 \& ${ }^{264.2}$ \& 22，573 \& \& ${ }^{726.8}$ <br>

\hline  \& $$
\begin{aligned}
& 6,661 \\
& \hline, 3831 \\
& \hline, 381
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 6,1766 \\
& 4,278
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4,068 \\
& 2,269 \\
& 2,239
\end{aligned}
$$
\] \& 191.6

25.8 \& $$
\begin{array}{r}
755 \\
\\
553
\end{array}
$$ \& \[

$$
\begin{array}{r}
606 \\
\\
273
\end{array}
$$
\] \& 2.5

4.4 \& 4,007
4,373 \& 3， $\begin{aligned} & 3,000 \\ & 2,316\end{aligned}$ \& 120.7

25.7 \& \[
$$
\begin{aligned}
& 1,9,988 \\
& 9,404 \\
& 9,404
\end{aligned}
$$

\] \& | 8,474 |
| :--- |
| 4,228 | \& 314.8 <br>

\hline New Jerey \& 6，590
8,376 \& $\xrightarrow[\substack{12,074 \\ 1,682}]{ }$ \& 1，076 \& 40.4

40.6 \& li， | 14,775 |
| :--- |
| 1,858 | \& 6，855

1,189 \& 54.3
54.4 \& 28， $\begin{gathered}\text { 2，734 } \\ 6,728\end{gathered}$ \& 14，098 \& 32.2
172.7 \&  \& $\underset{\substack{26,844 \\ 6,569}}{ }$ \& <br>
\hline New Yoric \& 46， 238 \& \& 44,622 \& 1486.6 \& 25，904 \& （12，283 \& \& 121，244 \& 55， 5 ， 58 \& 120.1
4
426.0 \& ${ }^{231,867}$ \& 12，52， \& ${ }_{586.1}^{588.1}$ <br>
\hline North Carolina
North pabocau \& 15,130
8,779 \&  \& 8,913
2,433 \& 299.7

697.8 \& －7，590 \& 3，023 \& 102．4 \& | 25,534 |
| :--- |
| 5,833 | \& 12，322 \& ${ }_{5}^{4217.7}$ \&  \& $\xrightarrow{24,287} 5$ \&  <br>

\hline \& 27， 140
14,413 \& 16，916
10,056 \&  \& 1201.5 \& 6，902 \& 3,751
2，800 \& 20.9
130.4 \& 84,113

20,176 \& － 41,728 \& \begin{tabular}{l}
144.7 <br>
<br>
245 <br>
\hline

 \& ${ }_{\text {107，}}^{1081}$ \& 

54,292 <br>
18,989 <br>
\hline
\end{tabular} \& ${ }_{525.1}^{265.1}$ <br>

\hline  \& cis， \& $$
\begin{aligned}
& 10,546 \\
& 6,340 \\
& 41,580
\end{aligned}
$$ \& 3，725 \& － 1.5 \&  \& \[

$$
\begin{aligned}
& 2,800 \\
& 6,951 \\
& 6.560
\end{aligned}
$$
\] \& 10.4

10.5

40.6 \&  \& coll \&  \& 19， 226 \& cile \& | 3237． |
| :--- |
| 23 |
| 274.5 | <br>

\hline \& 3，354 \& 4，793 \& \& 29.5 \& \& \& 2.7 \& 18，258 \& \& ${ }^{166.7}$ \& 22，820 \& 11，788 \& <br>
\hline South Carolina

South Dakota \& $$
\begin{aligned}
& 8,733 \\
& 7,826
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1,0,234 \\
& 4,268
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5,477 \\
& 5,437 \\
& 2,374
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 155.45 \\
& 365.1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2,079 \\
& 2,899
\end{aligned}
$$

\] \& \[

1,12451
\] \& 125.3

142.7 \& cis， \& 7,843
3,876 \&  \& 27，800
13,275 \& $\xrightarrow{14,545}$ \& ． 4 <br>
\hline \& 14，224 \& \& \& ${ }^{320.8}$ \& \& \& ${ }^{1216.3}$ \& 28，832 \& 13，174 \& ${ }^{2921.1}$ \& 44,827 \& ${ }^{21,150}$ \& 728.2 <br>

\hline Text \& cock \& \％ | 7,851 |
| :--- |
| 4,741 | \& ${ }_{\text {l }}^{3,951}$ \& 160.0

68.7 \& ce $\begin{gathered}15,672 \\ 2,889\end{gathered}$ \& 8，863

2,102 \& | 376.4 |
| :--- |
| 79.8 |
| 1.8 | \& 54，919 \&  \& 925.8

155.1 \& 78，442 \&  \& 1，403．62 <br>

\hline Vermont \&  \&  \&  \& \& ¢ \& － 4 4999 \& ${ }^{110.5}$ \& －6，075 \& $\xrightarrow{3,1235}$ \& | 15.9 |
| :--- |
| 200.0 |
| 20.0 | \& \％ 9,945 \&  \& 772．5 <br>

\hline  \& l 12,488 \& $\underset{\substack{10,135 \\ 6,877}}{\text { c，}}$ \& 5,030
3,776 \& 128.9

97.2 \& ¢ \& ${ }_{1}^{2,609}$ \& | 10.5 |
| :--- |
| 37.4 | \& 25，844 \& 4，463 \& ${ }^{205.6}$ \& 4，8，303 \& 9，353 \& 439.4

190.2 <br>
\hline West \& $\xrightarrow{6,113}$ \& 6,467

8,849 \& | 3,267 |
| :--- |
| 5,178 | \& 33.6

142.2 \& 6,771
3,507 \& 3， $\begin{aligned} & 3,864 \\ & 1,884\end{aligned}$ \& 41.6

48.4 \& 16，892 \& \begin{tabular}{c}
8,427 <br>
15,158 <br>
\hline

 \& 边 

135.6 <br>
351.0 <br>
\hline
\end{tabular} \& 30,130

43,265 \& 15,158
22,220 \& ${ }_{5}^{210.8}$ <br>
\hline Wyoming \& $\underset{\substack{16,554 \\ 5,818}}{\text { ciel }}$ \& 8，849 \& 5,178
4
423 \& 142.2
18.6 \& 3，507 \& ${ }_{\text {1，884 }}^{1,88}$ \& 48.4
18.6 \& 近30，909 \& 3， $\begin{gathered}15,158 \\ 3,573\end{gathered}$ \& 351.0
96.0 \& 4， \& 22，220 \& $\underset{138.2}{541.6}$ <br>
\hline Heamat \& 2,850
4,330 \& 2,457
13,024 \& ¢ \& 5.4

1.2 \& 1，800 \& 899 \& 7.3 \& 13，483 \& \& 41.9 \& 17，740 \& | 8,203 |
| :--- |
| 8,130 |
| 10 | \& 54.6 <br>

\hline Puerto Rico \& 5，691 \& 9，499 \& 4，640 \& 67.1 \& 1，034 \& 472 \& ． 2 \& 14，195 \& 6，790 \& 53.2 \& 24，728 \& 11，901 \& 123.5 <br>
\hline тотal \& 640，160 \& 609，462 \& 320，928 \& 10，466．1 \& 247，824 \& 127，709 \& 3，617．2 \& 1，214，817 \& 608，813 \& 11，140．4 \& 2，072，103 \& 1，057，450 \& 25，223．7 <br>
\hline
\end{tabular}

United States
Government Printing Office
DIVISION OF PUBLIC DOCUMENTS
WASHINGTON 25，D．C．
PENALTY FOR PRIVATE USE TO AVOIO
PAYMENT OF POSTAGE，$\$ 300$
（GPO）
official business


[^0]:    ${ }^{1}$ The States comprising each census region, and the regions comprising each geographic division, are indicated in table 1.

[^1]:    ${ }^{2}$ See Traffic trends on rural roads, by T. B. Dimmick, Public Roads, vol. 26, No. 11, Dec. 1951 ; vol. 26, No. 5, Dec. 1950 ; vol. 25, No. 12, Feb. 1950 ; vol. 25, No. 7, Mar. 1949 ; vol. 25, No. 3, Mar. 1948 ; vol. 24, No. 10, Oct.-Nov.-Dec. 1946 ; and Amount and characteristics of trucking on rural roads, by J. T. No. 9, July-Aug.-Sept. 1943.

[^2]:    ${ }^{3}$ In this article, the term "truck" is used to indicate a single-unit vehicle ; "truck combination" to indicate truck-tractor semitrailer (with or without full
    trailer) and truck with full trailer; and "truck and truck combinations" or "trucks and combinations" to indicate all of these vehicles together.

[^3]:    ${ }^{4}$ Trucks and truck combinations weighing 13 tons or more, or having an axle weighing 18,000 pounds or more,

[^4]:    ${ }^{5}$ Preliminary data from Alabama, Connecticut, Delaware, Maine, Missouri, Nevada, North Carolina, Oregon, and Vermont show a 13 percent increase in travel by trucks and combinations in 1952 compared to 1951.

[^5]:    ${ }^{6}$ Policy concerning maximum dimensions, weights, and speeds of motor vehicles to be operated over the highwcys of the United States, adopted April 1, 1946, ficials; published by the Association in 1946.

[^6]:    Single copies of the following publications are available to highway engineers and administrators for official use, and may be obtained by those so qualified upon request addressed to the Bureau of Public Roads. They are not sold by the Superintendent of Documents.

    Bibliography on Automobile Parking in the United States.
    Bibliography on Highway Lighting.
    Bibliography on Highway Safety.
    Bibliography on Land Acquisition for Public Roads.
    Bibliography on Roadside Control.
    Express Highways in the United States: a Bibliography.
    Indexes to Public Roads, volumes $17-19,22$, and 23.
    Title Sheets for Public Roads, volumes 24, 25, and 26.

