

Public Roads
 AJOURNALOFHIGHWAY RESEARCH

UBLISHED BY HEBUREAU OF UBLICROADS ,
. S. DEPARTMENT IFCOMMERCE, VASHINGTON

Drainage and engineering soil maps prepared from aerial photographs aid in the selection of highway locations

A JOURNALOFHIGHWAYRESEARC
Vol. 26, No. 10
October 191

BUREAU OF PUBLIC ROAIS
Washington $25, \mathrm{D}$.
Regional Headquartis 870 Market
San Francisco 2, Ca

DIVISION OFFICES

No. 1. 718 Standard Bldg., Albany 7, N. Y. Connecticut, Maine, Massachusetts, New Han shire, New Jersey, New York, Rhode Isla l. and Vermont.
No. 2. 707 Earles Bldg., Hagerstown, Md.
Delaware, District of Columbia, Maryla Y, Ohio, Pennsylvania, Virginia, and West V. ginia.
No. 3. 50 Seventh St., N. E., Atlanta 5, Ga. Alabama, Florida, Georgia, Mississippi, No Carolina, South Carolina, and Tennessee.
Appraisal of Soil and Terrain Conditions for
Part of the Natchez Trace Parkway193

Freezing and Thawing Tests of Concrete Containing
Oregon and Washington Aggregates 206
Inter-American Highway Film 205

Public Roads

Published Bimontbly

IN THIS ISSUE

BUREAU OF PUBLIC ROPS
U. S. DEPARTMENT OF COMMEICE

Public Roads is sold by the Superintendent of Docum ts,
Government Printing Office, Washington 25 , D. C.. at $\$$ pe Free distribution is limiten $\$ 1.25$) or 20 cents per single in planning or hiphway There are no vacancies in the fre at present.

The printing of this publication has been approved bythe Director of the Bureau of the Budget January

ippraisal of Soil and Terrain Conditions

Ir part of the Natchez Trace Parkway

ported by PRESTON C. SMITH !pervising Highway Physical fiearch Engineer

BY THE PHYSICAL RESEARCH BRANCH buread of public roads

Abstract

Drainage and engineering soil maps are valuable aids in the selection of highway locations between fixed termini. They are also helpful in the location and design of drainage structures, and provide useful information on soils and other construction materials and on terrain conditions, needed by the engineer in the planning of highway design and construction.

Lacking accurate published maps, aerial photographs provide an excellent base for the preparation of the drainage and soil maps. The proper interpretation of landform, airphoto color tone, drainage characteristics, and other physical features of the aerial photographs, when studied stereoscopically, reveals a great deal about the soil and terrain conditions of the area, particularly when correlated with field investigations and study of available information on the geology and soils of the area.

The study reported in this article, of a section of the Natchez Trace Parkway, was undertaken by the Bureau both to provide information on soil and terrain conditions of the particular area, and also to investigate the technique of airphoto interpretation and to develop a symbol system for the designation of geologic material, terrain conditions, and engineering characteristics of soils.

Introduction

ORMALLY, in highway location, either cultural interests or some outstanding ographic features indicate where a highy must be located at specific points in region to be traversed. Considerable ltude may be permitted in location of highway between those points. StandIs of design, esthetics, and economy must considered. Several routes may satisfy design and esthetic requirements besen any two control points, but one route 1 be more economical than the others. lainage and engineering soil maps preed from aerial photographs and other rees of information can be used as aids the selection of that route. The prepaion of strip soil maps for use in deterlation of the most feasible location of a posed highway is not new. In 1925, se^{2} described how such maps could be pared from soil maps published by the reau of Soils, United States Department Agriculture.
lfter the location of the highway has n established, the materials engineer ist obtain information on soils and other istruction materials, and on terrain condons. The engineering soil map should
his report is a condensation of a thesis presented Ornell University in June 1950 in partial fulfillment he requirements for the degree of Master of Civil ineering. Captain Smith is at present on military e, assigned to the Corps of Engineers, Fort Bele, ass
iield. ield methods used in subgrade surveys, by A. C. 1 . Public Roads, vol. 6, No. 5, July 1925.
serve as a guide to determine where field investigations should be concentrated. The collected information will be used in design and construction of the road. The design should be based not only on standardized charts and formulas and the information obtained in the field investigation of this particular area but also on the performance of other roads in areas having similar soil and environmental characteristics.

Although aerial photographs had been used in highway location prior to 1940 , they were not used extensively for determination of soil and terrain conditions of highway and airport sites until the advent of World War II. During the last decade several organizations, including the Bureau of Public Roads, Civil Aeronautics Administration, Army Corps of Engineers, Office of Naval Research, and Purdue University, have sponsored projects wherein airphotos were used in identification of soils for engineering purposes. The Bureau of Public Roads has cooperative projects with the State highway departments of New Jersey and Maine for the preparation of soil maps on an area basis, using airphotos insofar as applicable.

In order to determine further the applicability of airphoto interpretation of soil and terrain conditions to highway location and design, the Bureau undertook an engineering soil study of a portion of the Natchez Trace Parkway.

The Natchez Trace, extending from Nashville, Tenn., to Natchez, Miss., was the overland return route, through some 460 miles of forest wilderness and Indian lands, for the crews of flatboats which floated down to New Orleans and were sold there with their cargoes. Its period of use extended from 1798 until 1817, when steamboats began to dominate the Mississippi River traffic.

Congress approved the construction of the Natchez Trace Parkway, extending along the historic route, in 1934. However, the final location of many sections of the parkway has not been made, even though the highway has been completed in some sections and construction is under way on others.

The Bureau anticipated that with the aid of airphotos a generalized engineering report and soil and drainage maps could be prepared which would (1) aid in establishment of the final location of the highway, (2) aid the materials engineers in making a detailed soil survey and locating construction materials along the established highway location, and (3) either aid in determination of a highway design standard for a particular area or, where the design standard has already been established for the area, indicate where the design might need alteration because of local soil or terrain conditions.

There were two secondary objectives. First, it was desired to obtain information concerning some of the techniques involved in the airphoto interpretation of soil and terrain conditions and the preparation of engineering soil strip maps and reports. Second, it was desired to develop a system of symbols for designation of terrain conditions and engineering characteristics of soils. It was believed that the trial area should contain a variety of soil and terrain conditions, and for that reason the proposed 62 -mile section of parkway between Gravelly Springs, Ala., and U S 45, near Saltillo, Miss., was selected for study. In that region the final location of the highway had been established only at the termini and at the railroad crossing at Cherokee, Alabama.

Figure 1.-Location map of the Natchez Trace Parkway and section 2-D.

While this report discusses the principles involved in preparation of drainage and soil maps from aerial photographs, detailed information is confined to section 2-D, one of the six parkway construction sections involved in the basic investigation. As shown in the inset in figure 1, section 2-D extends from U S 72 at Cherokee southwestward to the Alabama-Mississippi boundary line, a distance of approximately 12 miles. The section traverses an area which has considerable variation in topograpy and geology.

Conclusions

Although the accuracy of delineation of the map unit boundaries and description of some of the engineering characteristics of the units produced by this study will not be determined until a more detailed field investigation is made and actual construction is undertaken, it is believed that the following general statements regarding the use of the maps prepared primarily from aerial photographic information are warranted:

1. Where there are two or more possible alternate routes for the highway, soil and drainage maps will aid in determination of the best route.
2. The engineering soil map will aid the
materials engineer in locating places at which an extensive soil survey should be made, probable sources of borrow, and possible sources of aggregate.
3. When the engineer has limited knowledge concerning construction materials in a region, the soil map and description of soil map units will provide information useful in the design of the highway section and pavement.
4. The drainage map can be used to determine the locations of and the areas to be served by highway drainage structures.
5. The soil map is generalized and, as a consequence, small, isolated areas of map units have not been delineated. A reasonably precise boundary sometimes cannot be established in the transition zone between some map units, particularly when material from a higher unit is washed onto a lower unit.
6. When the ground water condition or internal drainage of a unit is of particular importance to the highway engineer, he should make a field investigation of the condition. Determination of the normal internal drainage potential of a unit is difficult to determine from airphotos, particularly when there has been considerable rainfall just prior to the time the photographs were taken.

The following conclusions were reach in regard to techniques involved in analys: of soil characteristics and terrain conditio and preparation of soil and drainage map

1. The system of symbols proposed Lueder and used with some modification this report satisfactorily portrays the mc important soil profile and environment characteristics of the map units. The sy tem of symbols can readily be mastere, for the symbols are suggestive of particul characteristics of map units.
2. By airphoto interpretation alone, is sometimes impossible to determine which of two similar soil groups the m. unit soil should be placed. For examp, differentiation cannot usually be made 1 . tween A-2 and A-3 or A-6 and A-7 so; without field investigation.
3. While it is sometimes necessary use more than one soil group symbol indicate the variation in the soil profi, the use of the multiple numbers is an ϵ cellent indication of extreme variations the soil strata.
4. The preparation of soil and drainaz maps at airphoto scale by making an aphoto overlay, followed by photographic some other method of reduction to a sired scale, is preferred when a base m, must also be prepared. When a base m is available, however, some other methi of transfer of the airphoto-delineated sl boundaries and drainage lines to the bre map may be preferred.

Drainage Map

A drainage map shows the location streams and their drainage areas, thus a ing the engineer in the determination f the proper location and design for drainge structures. Drainage channels can ready be discovered by stereoscopic examinatin of airphotos. In special cases, the mp aids in determining the extent and charteristics of soils or geologic materials.

For the benefit of the highway engine streams and soil boundaries shown on draage and soil maps should be located wh respect to either adjacent cultural featus or established ground control points. large-scale maps suitable for these p poses have been published which cover 11 of the area under consideration. A bie map was therefore prepared from a photos, having a scale of approximately 3 inches to 1 mile, using contact prints tained from the Production and Marketig Administration of the U. S. Department f Agriculture. These provided stereosco 0 coverage for a 3 -mile width of land citaining the preliminary line of the parkw .

Normally, the successive airphotos ina flight strip overlap more than 50 perce , while adjacent flight strins overlap abit 20 percent. In making the overlay, sire the greatest distortion (perspective oplacement) of features occurs at the mgins of photographs, only the central ption of each photograph was used. Je base map has slight variations in sce

cause distortion increases with distance om the center of the airphoto and the ale at the center of one photograph may it be exactly the same as that of another lotograph. However, if an average scale used and measurements on the maps are ade from the nearest cultural feature, oints or boundaries on the maps can be cated with reasonable accuracy in the

Figure 2.-Drainage map of section 2-D.
field. With a limited amount of field work and identification of cultural features on airphotos, photogrammetric methods could have been used to produce a more accurate base map. However, it was decided that the greater expenditure of effort would not be justified by the limited additional benefit derived.

The preliminary survey line (P-line) hav-
ing been marked on the airphotos, approximately parallel boundary lines for mapping were established by connecting arbitrarily chosen points on each side of, and about one-half mile from the P-line. Although the final bocation of the highway may vary from the P-line in some areas, it will usually be contained within the mapped strip. Hereafter, in this report, when ref-
erence is made to section 2-D, the section is considered to extend across the entire width of the 1 -mile strip, even though the section number was originally assigned only for the parkway width.

A sheet of transparent cellulose acetate was placed on an airphoto and a tracing made of cultural features such as roads, houses, and cemeteries within the 1-mile strip. Adjacent prominent features were also traced. Most of the roads could be traced by use of the base photograph, but to locate some of the buildings it was necessary to use the adjacent photograph (in line of flight) and view the pair stereoscopically. Using United States Geological Survey topographic maps insofar as possible, and soil survey maps of the United States Department of Agriculture or State Highway Planning Survey maps for the remainder of the area, sufficient features on the maps were identified on the airphotos to permit the location of most of the United States public land section lines on the acetate sheet. Some of the field lines on the airphotos coincided with section lines, but "bridging" was necessary in uncultivated areas.

With the acetate sheet still secured to the base photographs, the 1-mile strip was viewed stereoscopically (using pairs of photographs) and the drainage lines traced. A solid or continuous line was used for a permanent stream, while a broken line was used for intermittent drainage. The distinction between permanent and intermittent drainage was based on drainage area, length of stream, channel size, character of soil, and geology.

When the tracings from individual nhotographs were completed for the entire construction section, they were assembled into a strip map and oriented north-south and east-west in conformity with the United States section lines. A finished map was then made from the assembled individual tracings. Figure 2 shows the drainage map for section 2-D.

On a strip drainage map, a watershed can usually be determined only for the small streams, since watersheds for the large streams extend beyond the boundary of the mapped area. However, if the design engineer is interested in a particular watershed which is not completely shown on the strip map, the complete drainage system can be studied stereoscopically on the airphotos.

Buzzard Roost Creek (near the north end of section 2-D) and downstream sections of its major tributaries are on soluble limestone; hence, there is but little surface drainage. However, dendritic drainage patterns have developed near the source of the major southern tributaries of the creek where the soils have developed from either unconsolidated coastal plain material or calcareous shale.

Except for areas along Bear Creek (near the south end of the section) and near the mouths of its major tributaries, the dendritic pattern is continued through the south-
western two-thirds of section 2-D. Surface drainage is not well developed on alluvial areas. Also, only a few tributary streams have developed where bedrock is exposed in the lower portions of valley walls.

Engineering Soil Map

Knowledge of the physical properties of soils alone is not sufficient for the solution of many engineering problems involving soils. Hence, in order to be of maximum value to the highway engineer, a soil map is needed that not only shows the character of the soil but also indicates its environmental characteristics. Such information can usually be obtained by stereoscopic study of airphotos and interpretation of airphoto patterns.

A number of authors ${ }^{3}$ have described the significant factors involved in interpretation of airphoto patterns which reflect soil characteristics and terrain conditions, and the details are therefore not presented here. In accordance with the procedure usually recommended, the interpretation of airphoto patterns on the Natchez Trace section started with the fundamental concept that, when subjected to the same climatic conditions, similar landforms have similar airphoto patterns. The airphoto patterns were analyzed in order to subdivide the landforms into units which would be significant to the highway engineer. Drainage, erosion, topography, airphoto color tone, vegetation, and cultural features were considered.

The landform of a geologic formation is influenced by climatic and biotic factors, relief, time, and inherent properties of the material. The climate is relatively uniform in the area under investigation; hence, little difference in weathering of similar materials having similar topography should occur. The mean annual rainfall at Tuscumbia, Colbert County, Ala., is 49.4 inches. October is the driest month, with an average rainfall of 2.8 inches, while March, the wettest month, has 5.8 inches. The mean annual temperature at Tuscumbia is 61° F., and the mean temperature for the coldest month, January, is $42^{\circ} \mathrm{F}$.

Interplay of the other factors in varying amounts on each parent formation has resulted in various landforms within the mapped area.

Symbols Characterize Map Units

The term "map unit" is used to describe an area in which landform, parent material, soil profile, topography, and drainage are relatively uniform. Soil mapping, then,

[^0]involves obtaining information concernir those elements and delineating boundari, of areas in which they are uniform.

The map symbols used should readi convey the desired information to the eng. neer. Lueder ${ }^{4}$ has presented a system map-unit symbols developed during prep. ration of engineering soil maps of areas : New Jersey. His basic system was a plied in the Natchez Trace mapping, wit some modifications; the principal modific tion being the use of a dash to separa factors pertaining to landform and geolog material from factors pertaining to sc profile and topographic conditions. A syr bol was also introduced to describe grour slope, which is of value for location, exc vation, and run-off determinations. T] symbols used to describe map-unit cha acteristics in Natchez Trace mapping a as follows:
Parent formation:
S . . . Sedimentary (consolidated)

h. . . Shale

l . . . Limestone
s . . . Sandstone
A . . . Alluvial
T... Terrace
R . . . Recent
O . . . Old
W . . . Windblown
M :... Marine (coastal plain)
V... Variation (in thickness, densit, or composition of strata; us. only on the left side of the dash.
Internal drainage:
e ... Excellent (granular materiz ground water table at such dep that it is not significant).
$g \ldots$ Good (permits traffic or excav. tion soon after rain; position ground water table rarely signicant).
i . . . Imperfect (trafficability usua) poor and excavation impractical dving significant periods; has occasioal high ground water table, particlarly in alluvium; raised grade lie usually desirable in lowlands; arficial drainage and placement $\&$ either subbase or heavy base coure may be required for flexible parments in cut sections).
$p \ldots$ Poor (ground water table usua) near ground surface; raised gra line necessary in lowlands; articial drainage may be required al placement of either subbase or hea base course is usually required if flexible pavements in cut sectior; excavation difficult during the wint season and for a considerable peril after a rain).

Ground slope:

l. . Level (range in slope from 0 o 3 percent).
$u \ldots$ Undulating (usually between ${ }^{3}$ and 10 percent but may have sole

[^1]

Figure 3.-Geologic map of area traversed by section 2-D.
combination $l s$ on the left side of the dash indicates alternate beds of limestone and sandstone, neither of which has been separated into an individual map unit. If the limestone overlies the sandstone, the combination should be l / s.
The internal drainage symbol indicates the drainage potential of the soil due, primarily, to its textural and structural properties. However, in landforms for which the ground water table is a factor in highway location, design, or construction, the symbol also reflects the approximate depth to the water table during prolonged wet periods. By reference to the other symbols of the map unit, it is usually possible to determine if a particular internal drainage symbol denotes a drainage condition which is due primarily to soil properties. By use of airphotos, without field investigation, it is impossible to estimate the precise depth to the ground water table for most of the map units, since an area may have been photographed after a considerable dry period when the water table is low.
An important advantage of the developed system is that the symbols are applicable to certain engineering factors which may be ascertained from geologic reports, topographic maps, and agricultural soil bulletins. Thus, published material can be used to supplement the information obtained from aerial photographs. The type of parent material and some idea concerning the
flatter or steeper slopes; steeper slopes are short).
s . . . Steep (most of slopes steeper than 10 percent, but may have small areas with flatter slopes).

Fighway Research Board soil classificaion. ${ }^{5}$ Group number is indicated by a umeral, 1 to 7. Only predominant groups, eferring to material within significant lepth, are shown in map unit designation. fighway Research Board subgroup numlers, such as 7-6, are not used. Combined umerals, such as 24 , indicate that the soils if the map unit vary, either laterally or ertically, but are principally in A-2 and 1-4 groups.
Horizon: The Symbol C indicates significant lifference between B and C horizons and is laced on the right side of the dash since t is a soil profile symbol.

When the mapping is so generalized that me symbol will not adequately describe a jarticular characteristic of the map unit, a :ombination of symbols may be used. For example, us on the right side of the dash ndicates that ground slopes of the map init vary from undulating to steep. The

[^2]Figure 4 (at right).—Approximate geologic columnar section through highlands southwest of Cherokee, Ala.

Feet

Tuscaloosa formation. Irregularly bedded gravels, sands and clays. Chert predominates in gravel. Same grovel is indurated.

Bangor limestone. Argillaceous, shaly limestone.

Hartselte sandstone. Thick bedded, medium grained.

Golcondo formation. Interbedded limestone and marly shale.
Cypress sandstone
Gosper formation. 20-foot bed of oolitic limestone at top; 10-to 25-foot bed of asphaltic oolite in base. Intermediate section is greenish blue marly shale containing a 20-foot bed of soft, fossiliferous sandstone.

Bethel sandstone.

Ste. Genevieve formation. Thin-bedded, soft, calcareous shale. 2-foot bed of limestone ot bose

Warsow limestone. Light to dork groy, thick-bedded, sometimes cross-bedded, coarsely crystalline, highly fossiliferous. Weathered sections contain chert.

Figure 5.-Engineering soil map of section 2-D.
lerived soils can be determined from geologic reports and maps. Ground slopes and major drainage channels are shown on topographic maps. The agricultural soil oulletins give a description of soil profile, :opography, internal drainage, and genralized geology. Some of the engineering sharacteristics indicated by other basic inurces of information may be precisely dejermined by the use of aerial photographs. The remainder of the factors can be inierred by study of airphoto patterns. Use if geologic and agricultural reference maerial reduces the amount of field work lecessary to verify the inferences.

Mapping Procedure

The initial office study consisted of two arts. First, geologic and soil ${ }^{5}$ reports conerning the area to be traversed by the ?arkway were studied. Second, a prelimilary stereoscopic study of airphotos for he area was made, including a generalized orrelation of airphoto patterns with variparent materials, soils, and terrain onditions likely to be encountered in parkyay construction. Road cuts and other exlosures in the vicinity of the proposed parkway where a soil profile for a typical airhoto pattern or parent material could be bserved were marked on the airphotos.
Following the office study, the areas narked on the airphotos were inspected in he field. If the soil profile or ground conlition was that anticipated from airphoto tudy, or was in conformity with that whibited for a similar airphoto pattern Iready investigated in another area, no further study of that area was necesiary. However, if a soil profile or :ondition differed from that anticipated from the airphoto pattern, further study vas undertaken in order to determine the eatures of the airphoto pattern which yould depict the soil profile and ground ondition. The field reconnaissance reulted in correlation of airphoto patterns yith profile and other ground conditions 0 such an extent that a tentative definition If soil map units for the entire section ould be made.
Using a red China-marking pencil, boundries of soil map units were marked on he same photographs from which the base hap was prepared. Each soil area was ndicated by a number which corresponded o a definite map unit. An area in which here was some question about either the nap unit or its boundaries was marked on he adjacent photograph, in order that it ould be given further office or field study. $3 y$ additional study of geologic and soil eports, the map unit boundaries were esablished for some of the questionable areas.
Fach of the remaining unmapped areas ras studied in the field. Soil profiles were xamined in road cuts where possible. therwise, borings were made. Boundaries rere either marked on the airphotos at that sioil survey, Colbert County, Alabama. U. S. Deartment of Agriculture, Bureau of Chemistry an
oils. Series 1933 . Number 22, issued February 1939.
time or sufficient information was obtained to permit office delineation.

Typical map unit locations were also examined in the field. For map units having appreciable depth of soil, a sample was usually taken from each significant soil stratum below the A-horizon. Samples were also taken to show the variations in physical properties of soils within the map unit. If borings or field observations showed that map unit boundaries or descriptions were inaccurate, corrections were made on the airphotos in the field or in the office.

A final definition of map units was made after the soils had been tested in the laboratory. The soil map was then prepared as described below. Work was done on the detailed report concurrently with soil testing and map drafting.

Geology of the Area

The topography of the area traversed by section 2-D is quite variable. The ground surface ranges from relatively narrow ridges with steep slopes, some elevations in excess of 700 feet, and local relief of as much as 300 feet, to low rounded hills separated by relatively broad valleys. Consequently, a variety of geologic formations of Mississippian and Upper Cretaceous age are exposed in the area. ${ }^{7}$ Figure 3 is a geologic map of section 2-D, and a columnar section through the formations is shown in figure 4.

Preparation of Soil Map

After field investigation and laboratory testing of soils verified that the airphotodelineated map units were correct, a soil map was prepared. A tracing was made of cultural features and principal streams from the drainage map already completed. Locations of borings from which soil samples were taken were also shown on the tracing. The marked airphotos were then properly positioned beneath the tracing and the soil map unit boundaries traced. The completed map for section 2-D is shown in figure 5.

On the soil map a number and a conventional map pattern are used to identify each delineated map unit. The numbers have no inherent significance. They merely serve as a quick means for identifying the map patterns, as will be seen from the soil legend in figure 5.

The scale of the map depends upon the use to be made of it and the complexity of the mapped area. If map units are large and only a few units are encountered, relatively small-scale maps-even less than an inch equals 1 mile or smaller-may suffice. Maps having a scale of at least 2 inches to 1 mile are usually preferred by

[^3]the field engineer in order that he may record reconnaissance notes on the map. However, since the detail on the map cannot be greater than that of the airphotos, the maximum practical scale is that of the latter (approximately 3 inches to 1 mile for this study).

Characteristics of Map Enits

It is understood, of course, that on a soil map prepared primarily by airphoto interpretation the information is generalized. While the map and description of map units for section 2-D may be sufficiently detailed for use in preliminary location and estimates, some portions of the final location will require more detailed information. The soil map will usually indicate where the field investigation of soil and ground conditions must be concentrated.

The engineering soil map units delineated in section 2-D differ in some characteristics which are of importance to the highway engineer. Even though some of the landforms were divided into several maps units, it was revealed by borings, field observation of soil profiles in road cuts, and laboratory soil test results that considerable variation both laterally and vertically exists within some units. Some of the variations are described in the discussion of the map units which follows. More detailed information concerning the variations in soil profiles within the map units may be obtained by reference to the summary of soil test results shown in table 1 . Since the original mapping was for a 62 -mile portion of the parkway and soil samples were taken which would be representative of map units within that length, some mapunit soils were not sampled in section 2-D. Hence, table 1 shows some soil test results for map units occurring in section 2-D but for which the representative soil samples were taken from another construction section.

The probable Highway Research Board group number was used in the description of the soil for those map units having appreciable soil mantle. This was considered permissible in such highly generalized mapping; even though the stated soil groups were based on a limited number of laboratory tests and field observations. The test data given in table 1 support the estimates.
The map unit descriptions do not indicate whether materials may be suitable for use as aggregates in bituminous mixtures or in portland cement concrete. The determination of quality, availability, and extent of aggregates must be made in a detailed survey by the materials engineer.

Although some of the engineering characteristics of map units may be ascertained by direct stereoscopic observation of airphotos, other characteristics are deduced from features of the airphoto pattern. Figgures 6-14 show the airphoto patterns of the most extensive map units in section 2-D.

Table 1.-Representative soil test data for section 2-D map units

Approximate locations of borings are shown on figure 5 . Borings Nos. $2,8,11$, and 34 were made in other sections of the parkway.

In the following descriptions of the map units encountered in section 2-D, some units are grouped on the basis of geologic material while others are grouped according to landform.

Units on cherty limestone

Sl-Ciglu ${ }^{6}$.-The unit has level to undulating topography underlain primarily by slightly friable A-6 soil to a depth greater than 15 feet and containing angular chert, which ranges up to 8 inches in size and to 25 percent of total material, in the subsoil. Soil from the B-horizon, which extends to a depth of 3 to 8 feet, is more plastic than from the C -horizon and soils from both horizons may be A-7. Much of the surface water is collected in depressions or sinkholes and removed through subterranean channels. In undisturbed condition the soil has good internal drainage; remolding destroys the soil structure and decreases the permeability. Bedrock occurs at such great depth that it is not a source of aggregate. Airphotos show the mottled sinkhole pattern and general lack of surface drainage development. The unit is usually cultivated.
SlV-piu 6.—The airphoto pattern of this unit is illustrated in figure 6. The topography is generally undulating, with some short steep slopes, some limestone depressions, and underlain by bouldery, plastic A-6 soil; bedrock normally occurs at a depth of less than 10 feet. Limestone boulders on or near the ground surface will interfere with earth work. Depressed
areas have a high ground-water table during substantial periods. Much of the surface water is collected in depressions and discharged through subterranean channels; hence, some faintly discernible gullies disappear at the edge of depressions. Although limestone might be quarried from this unit and used for road surfacing, the quarry opening will normally be made in the adjacent unit, $S l V-s$. The airphoto color tone is medium gray mottled with darker gray. On nearly level areas the dark areas are connected to form a phantom drainage pattern.

SlV-pis 6.-The airphoto pattern of this unit is also shown in figure 6. The topography is rolling and underlain by bouldery,
plastic A-6 soil, with limestone bedroc normally at a depth of less than 10 fee Limestone boulders, exposed in some area: will interfere with earthwork. Althoug the internal drainage is poor to imperfec surface drainage is good. Extensive sul. face drainage channels have been forme because of the steep ground slopes.

SIV-s.-The unit is composed of valle walls in which limestone is either expose or near the ground surface; slopes var from 10 percent in shallow soil areas 1 nearly vertical in rock exposures. Whei there is a soil mantle it is shallow and col tains angular chert or cherty limestone fras ments. Bedrock exposures may be sourci of aggregate. On airphotos the identity ,

Figure 6.-Airphoto stereo-pair illustrating map units SIV-piu 6 and SIV-pis 6. Boulders are exposed in some areas as at B.

Figure 7.-Airphoto illustrating map units SsV-els 234 and ShV-pius 67.
s unit is established by determination it adjacent units are derived from limene.
its on sandstone, calcareous shale, and interbedded sandstone, shale, and limestone.
万s V-els 234 . -The airphoto pattern of s unit is illustrated in figure 7. The it occupies tops of hills and ridges, usuy wooded; ridge tops may be more than) yards wide and are nearly flat, but e slopes are steep. Normally, weakly nented, weathered sandstone occurs at lepth of 2 to 4 feet, the C-horizon soil A-2 or A-3, and the B-horizon soil is able A-4. However, some hills and ges of this unit are capped with coastal in soils, and weathered bedrock may : be encountered within a depth of 10 t. The A-2 or A-3 soil and weathered 1dstone may be used in a subbase but the adstone is usually not of such quality it it can be used for base course or suring material. However, if an exposure asphaltic sandstone is located, its suit-
ability as aggregate should be investigated. Neither internal nor external drainage should be a problem in this unit. Watersheds are small and most of the rainfall is absorbed by the porous soil; hence drainage channels, are not well developed. A landscape view is shown in figure 8.

ShV-pius 67.-The airphoto pattern of this unit is also shown in figure 7. The unit is either woodland or pasture. It occupies 5 - to 20 -percent slopes and normaily has a mantle of elastic A-6 or A-7 soil, 2 to 10 feet in depth, with poor or imperfect internal drainage. Erosion has exposed the weathered shale in some areas. Within the usual depth of cuts the weathered shale is easily excavated; blasting will be required in deep cuts. Some areas of this unit are underlain by interbedded shale and limestone and excavation in the limestone will require blasting. The limestone, particularly that containing asphalt, may be suitable base course or surfacing material.
Slhs-s.-The airphoto pattern of this unit is shown in figure 9. The unit has slopes
which usually range from 20 to 90 percent and are underlain by undifferentiated limestone, shale, or sandstone formations. The materials are exposed as nearly vertical cliffs in valley walls or occur on such steep slopes that bedrock will be encountered in shallow cuts. The flatter slopes probably have some soil mantle as well as a variable depth of weathered rock; delineation of each material cannot be made on the airphoto. Well-defined stream channels have been cut in the rock slopes, while the small tributary streams at higher elevation have no well-defined channels where there are porous, coastal-plain soils. Unweathered sandstone or limestone, particularly asphaltic limestone, may be suitable base course or surfacing material. Most of the areas are wooded.

Units on coastal plain deposits
MV-Ces 12\%. - The airphoto pattern of this unit is shown in figure 10. The unit occupies dissected upland areas underlain by stratified A-1, A-2, and occasional A-4 or even A-6 soil. Chert gravel predominates and usually occurs in strata having a thickness of 5 to 20 feet or more, with maximum particle size of about 4 inches. The unit contains the most extensive deposits of possible base course gravel in the region, although excessive clay, induration of gravel, and poor gradation precludes the use of many exposed deposits. Both surface and internal drainage of the unit are usually good but seepage may occur at the top of plastic soil strata. The ridge tops have undulating topography but the side slopes are steep and relatively straight. Local roads and trails on the ridges are quite circuitous. Gullies and minor tributary streams pursue relatively straight courses.

MV-igus 24 .-The airphoto pattern of this unit is also shown in figure 10. The unit occurs downslope from MV-Ces 124, and consists of material washed from the

Figure 9.-Airphoto illustrating map unit Slhs-s.
3ure 8. - Easily weathered calcareous shales are usually exposed below a more resistant formation. Here, the steep area in the distance is map unit SsV-els 2.34 (soil formed from sandstone) while the flatter slope in the foreground has developed on the shale unit ShV-pius 67.

Figure 10.-Airphoto illustrating map units MV-Ces 124 and MV-igus 246.

Figure 11.-Airphoto illustrating map unit AR-il 46.
tions less frequently; all portions have high ground-water table during other si. nificant periods. Soils are plastic A-4 A- 6 but the profile may contain some stra of fine silty sand. Some areas have aba doned channels which contain organic clé. Airphoto color tone is dull gray mottli with darker gray, indicating silt or sil clay.
$A R-p l$ 庥. The unit may be flooded eat year and has a permanent high grour water table. The soil is normally a plas A-4 or A-6 soil but may have strata silty sand. Depressed, wooded areas atlm? abandoned channels contain organic clal The airphoto color tone is medium to da gray mottled with darker gray or black
$A R-g l$ 2.-The airphoto pattern of ts unit is shown in figure 12. The unit curs primarily as a natural levee adjaci to a stream and has a high water tae only during flood stages, but is normaw well-drained. Although the material usually A-2 soil, there may be considerat variation in texture both horizontally ad vertically, and some strata may contin gravelly sand or sandy gravel. The top raphy is nearly level but may have soe shallow stream markings.
$A R-i l$ 2.-The unit occurs in either a na. ral levee of a stream or on the flatter port of the flood plain, may be flooded more tl n once each year, and has a relatively $h \mathrm{~h}$ ground-water table during significant p ${ }^{\prime \prime}$ tions of each year. In general, the is A-2, but there may be thin strata bf either A-4 or A-6 soil. Some areas hie abandoned channels which may contain ganic clay. Higher areas of the unit hie a light gray to white airphoto color tee.
higher unit onto residual soil derived from limestone, shale, or sandstone. Slopes usually range from 10 to 30 percent. The wash material varies from a few feet to about 12 feet in depth and may be A-2, A-4, or A-6 soil. Underlying the wash material is usually A-6 soil but it may be A-7. Internal drainage is usually good in the wash material, but downward movement of ground water will be retarded by the plastic residual soil. In some areas the unit is deeply dissected. Deep cuts involve some excavation in the plastic residual soil.

Units on recent alluvium

$A R$-gl 4 6. .-This inextensive unit occupies flood plains which are rarely actually flooded. The soils are well-drained, friable, A-4 or A-6, and may contain some sand or gravel, particularly along existing or abandoned stream channels. The airphoto color tone is uniform dull gray.
$A R-i l$ 46.-The airphoto pattern of this unit is shown in figure 11. The unit occupies flood plains of which portions are normally flooded each year and other por-

Figure 12.-Airphoto illustrating map unit AR-gl 2.

Figure 13.-Airphoto illustrating map unit AT-gel 12.

its on alluvial terraces

4 T-gel 10.-The airphoto pattern of this it is shown in figure 13. The unit ocoies slightly elevated positions along ijor streams and is rarely flooded; its ound surface varies from flat to gently dulating. There is little surface draine; the outer terrace wall is steep, disted by short, steep-walled gullies. The horizon soil may be A-4 or A-6 with some avel, but the underlying soil is usually 1 or A-2 with considerable clay and silt the upper portion. Extreme vertical riation in textural gradation should be ticipated. Use as base course material questionable, but some deposits should good sources of borrow for use in adjait embankments crossing poorly drained uvial soils. The over-all medium gray or tone indicates that the surface soil y be gravelly clay, while the gray ttled areas have a thicker surfacing of yey soil.
4T-gl 24.-The airphoto pattern of this it is shown in figure 14. The unit ocpies a position about 15 to 30 feet higher in the adjacent flood plain and the soils usually friable, well-drained A-2 or A-4. reams from the upland continue across unit but surface drainage does not dally develop on the terrace. The light ay color tone with only minor mottling licates that the material is sand. It may a good source of borrow.
4T-il 6.-The unit occupies level to gently dulating areas 20 to 75 feet above the jacent flood plain. The soil is usually 6 but in some areas the B-horizon has 7 soil and substrata are A-4. Internal ainage is imperfect and extensive surface ainage channels have developed in some eas. It may have a hardpan at a depth 2 to 5 feet. In addition to the foregoing atures, airphotos show the terrace has a ntly sloping outer terrace wall (except lere there has been recent stream cutting) d the color tone is dull gray mottled with rker gray.

Adequacy of Symbol System

It is believed that the system of map it symbols proposed by Lueder and modid in this report adequately describe the ist important soil profile and environintal characteristics of the area investited, and that the coding system can adily be mastered since most of the symIs are suggestive of particular characteries of map units. In preliminary locain work the highway engineer is primarily terested in topographic details, with less nsideration being given to soil conditions. design and construction phases, the engier is interested in topographic details, t soil characteristics, geology, and drainle conditions are also of primary imrtance. The symbols denote these charteristies in a generalized manner, while e detailed descriptions of map units enrge upon the characteristics.

Figure 14.-Airphoto illustrating map unit AT-g1 21.

Adequacy of the mapping for the Natchez Trace Parkway will only be determined when the maps are used. If it is determined that more generalized mapping will suffice for future projects, the generalization can be done either by combining two or more symbols used to describe a particular characteristic of a unit or by eliminating one or more of the characteristics from the map unit designation. More detailed mapping could be accomplished by delineating smaller areas as map units and by using additional symbols to describe other characteristics of the map unit.

Geologic and agricultural soil survey units corresponding to the engineering soil map units delineated in section 2-D are listed in table 2. In general, the engineering map is more detailed than the geologic map. In agricultural soil mapping, the surface soil is usually of the greatest importance, whereas the engineer is also interested in lower soil horizons. An engineering map unit may be either a subdivision or combination of agricultural soil types.

Design and Construction Problems

Many problems of highway design and construction can only be solved by field study or application of previously obtained knowledge concerning a similar problem. Information relating to problems which are characteristic of individual map units has
been noted in the descriptions of the engineering characteristics of the units. Engineeding information concerning characteristics common to several map units is presented in table 3.
Frost does not penetrate the soils to a great depth, and below-freezing periods are of relatively short duration, in the area under consideration; hence, frozen soil is not a major deterrent to earthwork. However, there is considerable rainfall during winter and early spring months, which delays construction in granular soils and prevents grading operations in fine-grained soils for substantial periods.
In some map units, particularly in limestone areas, the depth to ground-water table at any time varies considerably over relatively small areas. When the water table is deep it usually has no influence on highway construction, and when at a moderate depth it is of consequence only in deep cuts. The designation "shallow" in table 3 indicates that the water table may be at or near the ground surface for signicant periods; "high" indicates those areas which may be inundated for significant periods, with the water table near the ground surface during the remainder of the year.
In any map unit the road surface should be at such an elevation that the pavement will not be adversely affected by the ground water table. In alluvial map units, the

Table 2.-Correlation of engineering map units with geologic materials and agricultural so:ls

Engineering map unit	Geologic material	Agricuitural soil type
St-Ciglu 6	Cherty limestone	Dewey loam.
SlV-piu 6	do	Do.
SV-pis 5	do	Rough stony land.
ShV-pius 67	Limestone, calcareous shale, and sandstone	Colbert clay or silt loati.
Sths-s		Colbert clay.
Ss V-els $234-$	Sandstone	Atwood gravelly loam and hiekson silt luatin.
Mv-Ces 124 MV-igus 246		Ciuin undifferentiated
A R-gl 45	Recent alluvium	Ochlockonee fine sandy loan.
$A R$-il 45.	do	Ochlockonee fine sandy loam or silt loam and Iluntington silt loam.
4 R -pl 46	do	Huntington silt loam.
$A R$-al 2	do	Ochlockonce fine sandy loam. Do.
	do	Cahaba gravelly fine sandy loam.
AT-al 24	do	Kalmia fine sandy loam.
A T-il 6 -	do.	Kulmia loamy fine sand.

Table 3.-Engineering data and recommendations for map units

Man unit designation	$\begin{aligned} & \text { Adapted } \\ & \text { to } \\ & \text { inter } \\ & \text { grading } \end{aligned}$	Normal position of water tabl	Location of urade line with respect to ground surface	Erosion resistance	Possible source of-		
					Borrow	Granular subbase material	Base course material
Sl-Cighl 6		Variable	Shallow cuts in ground swells; fills in depressions.	Good	Limited -	No	No
SIF-mu	$\begin{gathered} \text { No } \\ \text { No } \end{gathered}$	Shallow Variable	Influenced by bedrock		No		No
SlV-s	Limited	Deep		do	No	No	Yes
Ss 「-els 234	Yes.	- do	Anywhere	do	les	Limited	No
Sh1'-pius 67	No - .-.	Variable	Infuenced by bedrock	Fair to poor	No		No
M1-Ces 124	Yes ...	Deep	Anywhere...-.----	Good	les.	les	les
M「-igus 245	Limited	Variable		Fair	Yes	Limited	N0
$A R-g l 46$	N0.	Moderate	Above higla water		Lu Limite -		No
$4 R-17$ $4 R-m 6$ 4	No	High .	do		No	No	No
$A R-g l$?	Yes	Moderate	do		Yes	Yes	No
AR-il ${ }^{\text {d }}$	No	Shallow-	Anvere if above		Linited	Limited	No
AT-uel 12	yos	Moderate to	Anywhere, if above	Go		Yes..--	Yes
			Anywhere			Limited	No
AT-2l 6	No						No

grade line should be sufficiently above high water elevation to prevent damage to the pavement.

In those units designated as limited sources of borrow or subbase material, the soil is either of such poor quality that it should be used only when better material cannot be obtained, or it is difficult to excavate because of high ground-water table during significant periods.

Since there are extensive sources of gravel in the mapped area, it is probable that a pavement section composed of gravel base course and bituminous concrete surface course will be adopted for section 2-D. Howevex, the normal base course thickness might be reduced in those areas where the subgrade is composed of granular soils, whereas an above-normal thickness of pavement may be required in areas where the subgrade is composed of very plastic soils. In some areas the necessity for a thicker base course may be alleviated by topping the subgrade with one of the materials designated as granular subbase material in table 3.

Parent formations, as well as unconsolidated materials, are represented in table 3 as sources of base course material, although it is probable that gravel will be used exclusively. Map unit MV-Ces $12!$ will probably be the principal source of gravel for section 2-D, but considerable exploration may be required in order to find a deposit of gravel suitable for a base course. The terrace deposit AT-gel 1 ? may have some suitable gravel, but it is limited in extent.

Time Required for Preparation of Report

So that the information obtained on the Natchez Trace study may be used in planning other mapping projects, the estimated time required, in 8 -hour man-days per square mile of mapped area, for various phases of the investigation of section 2-D is given in table 4. The table does not show the amount of time required for map
drafting, stenographic work, and preparation of the report, because each of those items will depend upon the use to be made of the report.

It is believed that the developed system of map-unit symbols is adequate for describing the major soil and terrain characteristics of an area; hence, any future mapping will not require any time for that phase of the investigation.

The time required for the office study of published material, correlation of airphoto patterns with soils and geology, and airphoto delineation of map unit boundaries depends upon (1) the amount of published material which must be read in order to obtain the basic information on soils and geology, (2) complexity of mapping, and (3) ability of the airphoto interpreter. Complexity of mapping depends not only upon the variations in geologic materials and environmental factors but also the purpose of the mapping. A highly generalized map may suffice for the initial highway reconnaissance survey, whereas a more detailed map will be required in a later stage of highway location.

The skill of the airphoto interpreter depends not only upon his ability to associate various features of airphoto patterns but also his experience in mapping similar areas. After the airphoto pattern for a particular map unit has been defined, airphoto delineation of the boundary between an area of that map unit and adjacent map units is usually not difficult. Mapping of a strip adjacent to a previously mapped area might require only half as much time per unit of area, because most of the map units would be repeated in the second strip.

The time required for the field survey and soil testing depends upon (1) number of map units, (2) stratification of the parent material, (3) topography, (4) amount of information previously obtained for the same map units, and (5) ability of the surveyor to select sampling sites which are representative of the particular map unit. Ordinarily, for any coastal plain map unit several strata will be encountered within
the normal depth of highway excavati hence several samples will be required order to determine the characteristics the various soils. On the other hand, a residual soil map unit, the parent m terial is not usually stratified, and l sampling will be required. Borings in th areas having steep slopes or irregular tope raphy must usually be deeper than in f areas; hence, more time will be requir in the field soil survey of the steep are It is probable that, because of the varis of parent materials encountered both lat ally and vertically and the irregular topi raphy, the 35 samples obtained in sect $2-\mathrm{D}$ are more than would normally be quired in an area of that size. If the ors tests required are those for the Highwy Research Board classification, the time quired for soil testing will be less than 1.0 man-day per square mile estimated section 2-D.

Frequently, the information regardis map units in one area can be applied either the same or similar map units another area, thus reducing the amount field work in the second area.

The time required for airphoto delin. tion of drainage lines varies according the intricacy of dissection of the area, it is probable that less than 0.05 man-cy would be required to delineate the draince in a square mile of a slightly or moderat dissected area. A highly trained airphic interpreter is not required for airph delineation of drainage lines.

The primary aim of the engineering port is to present information which be used bv the highway engineer; hencela considerable portion of the total time quirement should be allotted for map uit description and engineering recommen tions. The engineer who makes the x ommendations should have a broad knol edge of the factors involved in highw. location, design, and construction. should be familiar with construction pr tices in either adjacent areas or other ar s having similar soil and environmen characteristics. For each map unit he m consider the possible uses to be made of mapping, and then present engineering

Table 4.-Time required for preparation'f engineering report

Phase of investigation	Time recquired, ma days per square mi	
	Engineerinterpreter	Othe persons
Office study of soil bulletins and geologic reports..	0.15	0.
Development of system of map symbols	0.05	0.
Preliminary study of airphotos and correlation of airphoto patterns with soils and geology	0.25	0
Airphoto delineation of map		
unit boundaries..	0.20	
Field survey Soil testing	0.15 0.00	1
Drainage.	0.05	0.
Map unit description and engineering recommendations.	0.15	0
Toial	1.0 ()	1.

rmation which will be of value to the user. The total of 2.25 man-days per square ile required for the mapping and reportig of section 2-D, as shown in table 4, is reater than for adjacent construction secons of the parkway because section 2-D as a greater variation in geologic formaons and topography. Complexity of geogic formations and irregular topography
require the expenditure of a great amount of time for mapping, particularly when the mapped strip is alined approximately in the direction of dip, as it is for section $2-\mathrm{D}$. It is probable that not more than 1.5 man-days per square mile would be required to map a mile-wide strip in a slightly to moderately dissected area having extensive exposures of relatively uniform geo-
logic formations, and that time might be considerably reduced if the airphoto interpreter had mapped other areas having the same or similar airphoto patterns. The time would be about equally divided between the engineer-interpreter and other personnel. For a wider strip the average time required for mapping a square mile might be reduced to 1.0 man-day.

Inter-American Highway Film

Inter-American Highway Report-Part I, lexico, a motion picture produced by the tureau of Public Roads, is now available n loan to interested organizations. The 6 -millimeter sound and color film, with a unning time of 55 minutes, shows the resent condition of the Mexican portion f the Inter-American Highway from Lare0 , Texas, to the Guatemalan border, 700 miles of excellent roads built by the iepublic of Mexico with its own funds and ersonnel.

The scenes picture a realm of contrasts in a setting of magnificent scenery. There are thriving cities and relics of antiquity, primitive and modern means of transportation, native handicraft and up-to-date industrial plants, antiquated and scientifically operated farms, and many other colorful and interesting sights to capture the attention of the traveller. Typical hotel, garage, and filling-station services are shown. Animated maps represent the locations of many of the scenes depicted.

Inter-American Highway Report-Part I, Mexico may be borrowed by any responsible organization, without cost except for nominal transportation charges, by writing to the Visual Education Branch, Bureau of Public Roads, Washington 25, D. C.

Work on a companion film is now in progress. This second installment will show the condition of the continuation of the Inter-American Highway through the six Central American republics, terminating at Panama City.

Freezing and Thawing Tests of Concrete Containing Oregon and Washington Agoiregates

Reported by A. G. TIMN;
Senior Materials Enginer

BY THE PHYSICAL RESEARCH BRANCH
bureau of public roads

Table 1.-Properties of the cements

				Cement	

${ }^{1}$ A.S.T.M. method C $185-44 \mathrm{~T}$
${ }^{3}$ The compound compositions given are in "shorthand" form.
and the Potomac River sand and gravel. Under these conditions (180 days of curing), air entrainment did not appreciably improve the resistance of combinations containing the other aggregates. In general, improvement due to air entrainment was much less marked after 180 days of curing than after 28 days.

In general, the tests indicated that the durability of air-entrained concrete may be adversely affected by conditions which involve long-continued exposure to moisture. The results of freezing and thawing tests made after 28 days of curing in moist air may not be sufficient to evaluate properly the durability of concrete containing certain cement-aggregate combinations.

Sources of Materials

Five portland cements were used in this investigation, three from the West Coast and two from the Southeast. One of the southeastern cements was selected for its low total alkali content, the other because it contained a relatively high percentage of alkali, mostly potash. The physical properties, chemical analyses, and computed compound compositions are given in table 1. All cements complied with the standard
3. Both non-air-entrained and air-enrained concrete containing the sand and rravel from Umatilla, Oreg., and the sand ind gravel from the Willamette River, Jreg., had good resistance to alternate treezing and thawing with the same three cements as were used with the Mt. HebronKlamath Falls aggregate combination.
4. Non-air-entrained concrete made with Potomac River sand and gravel had very poor resistance to freezing and thawing with all five cements, but there was no apparent indication of an alkali-aggregate reaction.
5. In the case of the non-air-entrained concrete, increasing the time of initial curing improved resistance to freezing and thawing for all combinations except that involving the Rock Island aggregates and the cement with the highest alkali content. In the case of the air-entrained concrete, increasing the curing time did not in general increase resistance to alternate freezing and thawing and in many cases the additional curing was harmful. However, in only one case (the Rock Island aggregate with cement 5) was the resistance of air-entrained concrete, cured for 180 days, less than that of the comparable non-air-entrained concrete cured for 28 days. 6. In all cases, for concrete cured 28 days, the use of an air-entraining agent was beneficial in producing concrete with greater resistance to freezing and thawing than was developed by the corresponding concrete without air entrainment. For concrete cured 180 days, air entrainment was definitely beneficial only in the case of combinations involving the Mt. Hebron sand with the Klamath Falls coarse aggregate

Table 2.-Properties of the fine aggregates

	Mt. Hebron, Calif.	Umatilla, Oreg.	Willamette River, Oreg.	Potomac River, Md.	Rock Island. Wash.
Grading: percentage passing-					
No. 4 sieve No. 8 sieve	96 77	95 86	$\begin{aligned} & 91 \\ & 71 \end{aligned}$	$\begin{aligned} & 98 \\ & 85 \end{aligned}$	$\begin{aligned} & 98 \\ & 84 \end{aligned}$
No. 16 sieve --.	60	79	59	71	67
No. 30 sieve -	47	50	42	49	41
No. 50 sieve-	30	10	14	18	10
No. 100 sieve-	10	${ }_{0}^{2} 8$			
No. 200 sieve	3.3	0.8	0.6	1.8	0.6
Fineness modulus.	2.80	2.78	3.21	2.75	2.98
Bulk specific gravity:					
Dry --......-.--	2.42	${ }_{2}^{2.67}$	2.51	2.59	2.63
Saturated surface-dry	2.51	2.73	2.58	2.63	2.68
24-hour absorption_-.........percent.-	3.9	2.2	2.9		
Sodium sulfate test: loss at 5 cycles percent.	10.5	5.2	$6^{6} 5$		4.1
Compressive strength ratio: 1					
At 7 days	1.18	1.04	87	1.13	9.8
At 28 days-.......-	. 98	1.09	1.01	1.16	
Tensile strength ratio: At 7 days.	. 97	1.13	1.09	1.17	
At 28 days-	88	1.15	1.04	1.14	1.21

${ }^{1}$ A.A.S.H.O. T 35-35.

Table 3.-Properties of the coarse aggregates

	Klamsth Falls. Oreg.. crushed basalt	Umatilla Oreg., gravel	Willamette River, Oreg. grave]	Potomar River gravel	Rock Island Wash. gravel
Grading: percentage passing-					
1 -inch sieve...	100	100		100 75	100 69
8, $8 / 4$-inch sieve	50	28	44	40	42
3/8-inch sieve	28	11	13	20	10
No. 4 sieve.	0	1	0	0	0
Fineness modulus .	6.78	7.25	7.04	7.05	7.21
Bulk specific gravity:					
Dry	2.71 2.75	2.72 2.74	2.58	2.56 2.59	${ }_{2}^{2.68}$
24-hour absorption.......-....-percent.-	1.3	0.9			
Sodium sulfate test: loss at 5 cycles					
- percent--	2.5	1.3	8.8	0.9	1.8
Los Angeles abrasion loss 1-..-- percent.--	17.6	104.6	${ }_{105}^{16.4}$	${ }_{107}^{30.3}$	14.6

Grading B.

Table 4.-Expansion of 1:2 mortar bars, arranged in ascending order of values of alkali content of cements

Aggregates	Expansion of mortar bars (in percent) after-									
	Moist storage at $120^{\circ} \mathbf{F}$. for 3 years, using cement-1					Moist storage at $120^{\circ} \mathrm{F}$. for 12 weeks, using cement- ${ }^{1}$ (1 percent ${ }^{2} \mathrm{NaOH}$ added)				
	$\begin{gathered} 3 \\ (0.18) \end{gathered}$	$\begin{gathered} 4 \\ (0.44) \end{gathered}$	$\begin{gathered} 1 \\ (0.46) \end{gathered}$	$\begin{gathered} 2 \\ (0.51) \end{gathered}$	$\begin{gathered} 5 \\ (0.66) \end{gathered}$	$\begin{gathered} 3 \\ (0.18) \end{gathered}$	$\begin{gathered} 4 \\ (0.44) \end{gathered}$	$\begin{gathered} 1 \\ (0.46) \end{gathered}$	$\begin{gathered} 2 \\ (0.51) \end{gathered}$	$\begin{gathered} 5 \\ (0.66) \end{gathered}$
Mt. Hebron sand Klamath Falls basalt	-0.01	---	0.01 .13	0.01 .13	--	0.01 .04	----	0.03 .17	0.04 .13	--.
Umatilla gravel 01	---	. 04	. 03	---	. 03	---	. 09	. 10	
Umatilla sand -	. 01		. 02	05	---	. 02	---	. 07	. 08	
Willamette River gravel	-. 01		. 04	. 02	---	. 00		. 06	. 12	
Willamette River sand	-. 01		. 02	. 01		. 04		. 16	. 12	
Rock Island gravel..-	. 02	0.08	---	-...	0.12	. 04	0.09	.	.	0.10
Rock Island sand.....	. 01	. 05			. 08	. 03	. 19			. 18
Potomace River gravel Potomac River sand	. 01	. 02	. 02	$.03$. 05	. 03	. 05	. 06	. 06	. 09
Potomac River sand.-	. 01	. 02	. 03		. 06	. 02	. 05	. 08	. 10	. 09

${ }_{2}$ Alkali content, indicated in parentheses under the cement numbers, $=$ percentage $\mathrm{Na} \mathrm{O}+0.658 \mathrm{~K}: \mathrm{O}$. ${ }^{2}$ By weight of cement.

Table 5.-Cement-aggregate combinations

Aggregate combination No.	Cements	Fine aggregate source	Coarse aggregate source
$\begin{array}{r} \text { I } \\ \text { II } \\ \text { II } \\ \text { IV } \end{array}$	$\begin{gathered} 1,2,3 \\ 1,2,3 \\ 1,2,3 \\ 1,2,3,4,5 \\ 3,4,5 \end{gathered}$	Mt. Hebron, Calif. Umatilla, Oreg. Willamette River, Oreg Potomac River, Md. Rock Island, Wash.	Klamath Falls, Oreg. Umatilla, Oreg. Willamette River, Oreg. Potomac River, Md. Rock Island, Wash.

Rock Island gravel. - Rounded granit syenite, rhyolite, and basalt.

Rock Island sand. - Angular and sul angular granite, rhyolite, felsite, and bi salt, with some feldspar and quartz.

Potomac River gravel.-Rounded quart quartzite, chert, and sandstone, with som granite, gneiss, and schist.

Potomac River sand.-Subangular quart quartzite, and chert, with some sandston schist, granite, and magnetite.

Mortar-Bar Tests

The results of expansion tests of 1 mortar bars are given in table 4. In ma ing the mortar bars, the coarse aggregati were crushed so that 100 percent passe the No. 4 sieve and 90 percent passed th No. 8 sieve. Only those particles of t sands passing the No. 4 sieve were ust in the test. The coarse aggregates and th sands were each tested separately. Suf cient water was used with the $1: 2$ mortz to give a plastic consistency. The spec mens were 1 - by 1 - by $111 / 2$-inches in size.

One group of specimens was prepare with plain mortar, and a second group wil
specifications for type I portland cement of the American Society for Testing Materials. In addition, cements 4 and 5 also met the requirements of type II cements. Cements 1, 2, and 3, while complying with type II requirements with respect to the percentage of tricalcium aluminate, cannot be classified as type II because, in each case, the amount of tricalcium silicate exceeded 50 percent.

Five fine aggregates and five coarse aggregates were used. Four of each were from the Washington-Oregon area, and Potomac River sand and gravel were used as a basis of comparison. The sources as well as the gradings and other physical properties of the fine and coarse aggregates are given in tables 2 and 3 respectively. Nothing unusual in the properties of the aggregates is apparent from a study of the values in these tables, except that the sand from Mt. Hebron, Calif., appeared to be of relatively poor structural quality, as revealed by the comparatively high sodirm sulfate soundness loss and the low tensile strength of the mortar.

The petrographic composition of the fine and coarse aggregates is as follows:

Mt. Hebron sand. - Rounded rhyolite, basalt, andesite, and felsite with quartz and magnetite.

Klamath Falls basalt.--Olivine basalt.
Llmatilla gravel.-Angular and subangular granite, basalt, rhyolite, quartz, and quartzite.

Umatilla sand.--Angular and subangular basalt, rhyolite, and felsite, with some granite, quartz, and limestone.

Willamette River gravel. - Rounded basalt, andesite, rhyolite, and felsite.

Williamette River sand. - Angular and subangular rhyolite and felsite, with some basalt, granite, and quartz.

Table 6.-Summary of mix data for non-air-entrained concrete ${ }^{1}$

Aggregate combination and cement	Proportions of mix, by oven-dry weight	Cement content	Net water content	Slump	Weight of fresh concrete	Calculated air content
I-1 $\mathrm{I}-2$ $\mathrm{I}-3$	$\begin{aligned} & \text { Pounds } \\ & 94: 212: 241 \\ & 94: 212: 241 \\ & 94: 212: 241 \end{aligned}$	Sacks per cu. yd. $\begin{aligned} & 6.4 \\ & 6.4 \end{aligned}$ 6.4	Gal. per sack 6.4 6.4 6.4	Inches $\begin{array}{r} 3.2 \\ 3.9 \\ 2.3 \end{array}$	Lb. per cu. ft 145.7 145.4 145.3	Percent
$\begin{aligned} & \text { II-1 } \\ & \text { II- } \\ & \text { II }-3 \end{aligned}$	$\begin{aligned} & 94: 188: 300 \\ & 94: 188: 300 \\ & 94: 188: 300 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.4 \\ & 5.4 \end{aligned}$	3.2 .2 .9 2.8	152.9 152.4 152.5	1.4
$\begin{aligned} & \text { III-1 } \\ & \text { III-2 } \\ & \text { III } \end{aligned}$	$\begin{aligned} & 94: 198: 272 \\ & 94: 198: 272 \\ & 94: 198: 272 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.4 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.3 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	148.4 148.1 148.1	0.7 0.8 0.6
IV-1 IV-2 IV-3 IV-4 IV-5	$94: 192: 278$ $94192: 278$ $44: 192: 278$ $94192: 188$ $94: 192: 278$	$\begin{aligned} & 6.4 \\ & 6.4 \\ & 6.4 \\ & 6.4 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.6 \\ & 5.6 \\ & 5.6 \\ & 5.6 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 3.0 \\ & 2.9 \\ & 2.8 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 146.9 \\ & 146.5 \\ & 146.3 \\ & 146.8 \\ & 146.7 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.2 \\ & 1.2 \\ & 1.1 \\ & 1.2 \end{aligned}$
$\begin{aligned} & \mathrm{V}-3 \\ & \mathrm{~V} \\ & \mathrm{~V}-5 \end{aligned}$	$\begin{aligned} & 94: 215: 264 \\ & 94: 215: 264 \\ & 94: 215: 264 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 5.3 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 3.0 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 149.3 \\ & 150.0 \\ & 149.5 \end{aligned}$	2.0 1.4 1.8

${ }^{1}$ Each value is average of three tests.
Table 7.-Summary of mix data for air-entrained concrete ${ }^{1}$

Aggregate combination and cement	Proportions of mix, by oven-dry weight	Vinsol-resin added :	Cement content	Net water content	Slump	Weight of fresh concrete	Calculated air content
$\begin{aligned} & \mathrm{I}-1 \\ & \mathrm{I}-2 \\ & \mathrm{I}-3 \end{aligned}$	$\begin{gathered} \text { Pounds } \\ 94: 198: 241 \\ 94: 198: 241 \\ 94: 198: 241 \end{gathered}$	Percent 0.0087 . 009. 0112	Sactis per cu. y d. 6.5 6.4 6.4	Gal. per sack 6.0 6.0 6.0	$\begin{aligned} & \text { Inches } \\ & \frac{2.9}{3.0} \\ & 3.0 \end{aligned}$	$\begin{array}{r} \text { Lb. per cu. ft. } \\ 142.1 \\ 141.3 \\ 141.5 \end{array}$	Percent
$\begin{aligned} & \text { II-1 } \\ & \text { II- } \\ & \text { II }-3 \end{aligned}$	$\begin{aligned} & 94: 173: 300 \\ & 94: 173: 300 \\ & 94: 173: 300 \end{aligned}$	$\begin{array}{r} .0078 \\ .008 .5 \\ .0103 \end{array}$	$\begin{aligned} & 6.5 \\ & 6.5 \\ & 6.5 \end{aligned}$	$\begin{gathered} 5.0 \\ 5.1 \\ 5.1 \end{gathered}$	$\begin{aligned} & 2.8 \\ & 3.8 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 149.1 \\ & 148.2 \\ & 148.6 \end{aligned}$	4.3 4.3 4.3 4
$\begin{aligned} & \text { III-1 } \\ & \text { III- } \\ & \text { HI }-3 \end{aligned}$	$\begin{aligned} & 94: 184: 272 \\ & 94.184 .272 \\ & 94: 184: 272 \end{aligned}$	$\begin{aligned} & .0080 \\ & .00992 \\ & .0105 \end{aligned}$	$\begin{aligned} & 6 . \overline{3} \\ & 6.5 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 2.8 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 145.3 \\ & 14+.7 \\ & 144.1 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.1 \\ & 3.3 \end{aligned}$
$\begin{aligned} & \text { IV-1 } \\ & \text { IV- } \\ & \text { IV-3 } \\ & \text { IV-4 } \\ & \text { IV- } \end{aligned}$	$\begin{aligned} & 94: 178: 278 \\ & 94178: 278 \\ & 94: 178: 278 \\ & 941788: 278 \\ & 94: 178: 278 \end{aligned}$.0072 .0075 . 0098 . 0097 .0075	$\begin{aligned} & 6.5 \\ & 6.4 \\ & 6.4 \\ & 6.4 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.2 \\ & 5.2 \\ & 5.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.1 \\ & 3.1 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 143.3 \\ & 142.5 \\ & 142.6 \\ & 143.1 \\ & 143.3 \end{aligned}$	4.1 +4 +.3 +11 4.3
$\begin{aligned} & V-3 \\ & V-1 \\ & V-5 \end{aligned}$	$\begin{aligned} & 9+: 201: 264 \\ & 9+2: 201: 264 \\ & 9+: 201: 264 \end{aligned}$	$\begin{array}{r} .0102 \\ .0098 \\ .0012 \end{array}$	$\begin{aligned} & 6.5 \\ & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 3 \cdot 2 \\ & 3.2 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 145.5 \\ & 146.3 \\ & 145.5 \end{aligned}$	4.8 4.4 5.2

[^4]tar to which was added 1 percent of um hydroxide, by weight of cement. addition of sodium hydroxide was for purpose of accelerating the action and ather common practice in work of this e. The first group was stored at 120° or 3 years, and the second group at 120° for 12 weeks. For each aggregate the ansion data are arranged in order of anding values of alkali of the cements, ressed as sodium oxide.
lone of the plain mortar bars developed ansions which would be indicative of a nite alkali-aggregate reaction. Howr, the specimens containing the Klamath is basalt with cements 1 and 2 and se containing the aggregates from Rock ind with cements 4 and 5 developed lewhat higher expansions at 3 years than any of the others. The same general nds were indicated also in the case of specimens containing 1 percent added ium hydroxide and stored 12 weeks. results of these tests would classify Klamath Falls basalt and the Rock and materials as mildly alkali reactive. wever, as will be seen later, freezing I thawing tests on the concrete would icate that the rapid failure of the conte containing the basalt was due pririly to some other factor.

Test Procedures

The materials used in each of the 17 nent-aggregate combinations are shown table 5. The Potomac River sand and avel were the only aggregates used with five cements. In general, each coarse gregate was tested with the fine aggrete from the same general locality. As eviously stated, the combinations involv; Oregon and Washington materials were ected on the basis of recommendations G. S. Paxson, Bridge Engineer of Oregon, d Bailey Tremper, Materials Engineer Washington, respectively; the other comdations were for purposes of comparison. Summaries of the concrete mix data for combinations are given in tables 6 and The nominal cement content was 6.5 cks per cubic yard, and a slump of apoximately 3 inches was obtained. The ater content varied from a low of 4.8 llons per sack of cement in the case of e air-entrained mixes containing Rock land sand and gravel to 6.4 gallons for e three non-air-entrained mixes containg the crushed stone from Klamath Falls. Two initial moist air curing periods at - F., of 28 and 180 days, were employed ior to starting the freezing and thawing sts. In the case of the 28 -day curing riod, the freezing tests were discontinued ter 120 cycles. In the case of the $180-$ iy curing period, they were continued rough 270 cycles. All control specimens r strength determinations were stored ntinuously moist until tested at the same re as the companion specimens which were ibjected to freezing and thawing.
Specimens for the freezing and thawing sts were 3 - by 4 - by 16 -inch beams. They

Table 8.-Decrease in resistance of concrete to freezing and thaving. after initia! moist curing of 28 days, as measured by decrease in

${ }_{3}$ Fiach value is the average of tests on three beams except for II-2 in the non-tir-entrained group, and I-3 and II-3 in the air-entrained group, for which two beams were tested, and III-1 in the air-entrained group, for which one beam was tested.
Method of determination similar to that described in Tests for Air-Entraining Admixtures for Conerete,
A.S.T.M. designation C 233-49T. A.S.T.M. designation C 233-49T.
${ }^{3}$ Final reading at 29 cycles.
$\begin{array}{ll}\text { 4 Final reading at } 21 \text { cyclec. } & \text { Final reading at } 53 \text { cyclec. } \\ \text { - Final reading at } 24 \text { cycles. } & \text { Final reading at } 75 \text { cycles }\end{array}$ Final reading at 32 cycles. Final reading at 24 cycles. \& Final reading at 75 cycles
were frozen in water at approximately 0° F ., followed by thawing in water at $70^{\circ} \mathrm{F}$., using a 24 -hour cycle. Stainless steel gage points were set in the ends of the specimens during molding so that measurements of length change could be made at periodic intervals.

Deterioration of the specimens was measured by the sonic test. ${ }^{2}$ When the average of the three specimens showed a drop in sonic modulus of elasticity of approximately 40 percent, they were tested in flexure and one of each of the broken halves was tested in compression as a modified cube. At the same time the corresponding control specimens were tested in flexure and one of each of the broken halves was tested as a modified cube.

In the sonic test, changes in the elastic properties of the specimen are determined by measuring the change in its natural frequency of vibration. Assuming that the weights and dimensions of the specimens do not change during the test, the decrease in the square of this value, expressed as

[^5]N^{2}, may be used in place of the computed modulus of elasticity to indicate deterioration. This common practice is followed in this report. The values for percentage reduction in N^{2} are shown in tables 8 and 9 .

As a convenience in studying relative durability as measured by the freezing and thawing test, Walker in 1944 proposed the use of a single value called for convenience the. "durability factor." ${ }^{3}$ This value is a function of the area under the curve which results when the dynamic modulus of elasticity N^{2}, expressed as a percentage of the value at zero cycles, is plotted in relation to the number of cycles. Wuerpel has suggested a modification of Walker's formula based on the assumption that this curve is a straight line and that the degree of deterioration at a given end point of time or cycles is a more important factor than the shape of the curve.

The modification proposed by Wuerpel has been adopted by the American Society

[^6]Table 9.-Decrease in resistance of concrete to freezing and thawing, after initial moist curing of 180 days. as measured by decrease in N^{2}

Aggregate combination and cement	Percentage decrease in N^{2} after-cycles of freezing and thawing ${ }^{1}$														Durability factor ${ }^{2}$	
	20	40	60	80	100	120	140	160	180	200	220	240	250	270	$\begin{gathered} \text { At } 120 \\ \text { cycles } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { At } 270 \\ \text { cycles } \end{gathered}\right.$
Non-Air-Entrained Concrete																
$\frac{\mathrm{I}-1}{\mathrm{I}-2} \mathrm{I}-3$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{array}{r} 8 \\ 7 \\ 13 \end{array}$	9 8 15	$\begin{aligned} & 10^{\circ} \\ & 12 \\ & 19 \end{aligned}$	$\begin{aligned} & 15 \\ & 26 \\ & 24 \end{aligned}$	$\begin{aligned} & 19 \\ & 28 \\ & 27 \end{aligned}$	$\begin{aligned} & 26 \\ & 34 \\ & 30 \end{aligned}$	$\begin{aligned} & 31 \\ & 35 \\ & 34 \end{aligned}$	$\begin{aligned} & 37 \\ & 39 \\ & 35 \end{aligned}$	$\begin{array}{r} 340 \\ 340 \\ 35 \end{array}$	37	37	449		$\begin{aligned} & 81 \\ & 72 \\ & 73 \end{aligned}$	$\begin{aligned} & 43 \\ & 43 \\ & 54 \end{aligned}$
$\begin{aligned} & \mathrm{II}-1 \\ & \mathrm{II}-2 \\ & \mathrm{II}-3 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \\ & 5 \end{aligned}$	4 + +	$\begin{aligned} & 5 \\ & 6 \\ & 5 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 5 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 5 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 7 \\ & 8 \\ & 6 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \\ & 5 \end{aligned}$	6 6 5	5 5 4	6 7 5	$\begin{aligned} & 7 \\ & 7 \\ & 5 \end{aligned}$	$\begin{aligned} & 94 \\ & 94 \\ & 95 \end{aligned}$	$\begin{aligned} & 93 \\ & 93 \\ & 95 \end{aligned}$
$\begin{aligned} & \text { III-1 } \\ & \text { III-2 } \\ & \text { III } \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \\ & 5 \end{aligned}$	4 4 4	$\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	7 8 8	$\begin{aligned} & 6 \\ & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & 8 \\ & 6 \\ & 8 \\ & 8 \end{aligned}$	7 8 7	$\begin{aligned} & 6 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 7 \\ & 8 \\ & 7 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 95 \\ & 94 \\ & 94 \end{aligned}$	$\begin{aligned} & 92 \\ & 92 \\ & 92 \end{aligned}$
IV-1 IV-2 IV-3 IV-4 IV-5	$\begin{aligned} & 12 \\ & 14 \\ & 16 \\ & 16 \\ & 10 \end{aligned}$	18 20 21 20 12	21 20 24 24 12	27 21 29 28 14	34 25 3.3 32 15	542 26 35 38 19	$\begin{array}{r}32 \\ 340 \\ i 40 \\ \text { i4 } \\ \hline\end{array}$	35 28	36 -C	340 $-\ldots$. -5	37	39	440		$\begin{aligned} & 58 \\ & 74 \\ & 65 \\ & 62 \\ & 81 \end{aligned}$	$\begin{aligned} & 26 \\ & 43 \\ & 33 \\ & 29 \\ & 57 \end{aligned}$
$\begin{aligned} & \mathrm{V}-3 \\ & \mathrm{~V}-4 \\ & \mathrm{~V}-5 \end{aligned}$	$\begin{aligned} & 4 \\ & 8 \\ & 9 \end{aligned}$	6 10 12	4 10 12	13 13 14	6 15 18	7 18 20	13 20 24	5 24 26	$\begin{array}{r} 5 \\ 26 \\ 30 \end{array}$	$\begin{array}{r} 9 \\ 27 \\ 32 \end{array}$	$\begin{array}{r} 10 \\ 28 \\ \times 40 \end{array}$	$\begin{array}{r} 8 \\ 29 \end{array}$	$\begin{array}{r} 9 \\ 30 \end{array}$	$\frac{12}{12}$	$\begin{aligned} & 95 \\ & 82 \\ & 80 \end{aligned}$	$\begin{aligned} & 88 \\ & 65 \\ & 49 \end{aligned}$
Arr-Entrained Concrete																
$\begin{gathered} \mathrm{I}-1 \\ \mathrm{I}-2 \\ \mathrm{I}-3 \end{gathered}$	4 6 6	4 7 3	7 8 6	6 9 9	$\begin{array}{r} 8 \\ 12 \\ \hline \end{array}$	6 12 7	8 13 7	8 14 8	6 12 6	6 12 7	20 12 6	$\begin{array}{r}19 \\ 14 \\ \hline 9\end{array}$	$\begin{array}{r} 16 \\ 13 \\ 7 \end{array}$	$\begin{aligned} & 22 \\ & 16 \\ & 10 \end{aligned}$	$\begin{aligned} & 94 \\ & 88 \\ & 93 \end{aligned}$	$\begin{aligned} & 78 \\ & 84 \\ & 90 \end{aligned}$
$\begin{aligned} & \text { II-1 } \\ & \text { II-2 } \\ & \text { II }-3 \end{aligned}$	5 6 6	5 6 i	8 8 6	8 9 3	9 11 7	8 10 10	7 8 10 6	$\begin{array}{r}9 \\ 11 \\ 11 \\ \hline\end{array}$	10 11 6	$\begin{array}{r}10 \\ 10 \\ \hline\end{array}$	9 18 6	12 20 8	$\begin{array}{r} 10 \\ 18 \\ 6 \end{array}$	13 29 8	$\begin{aligned} & 92 \\ & 90 \\ & 95 \end{aligned}$	87 71 92
$\begin{aligned} & \mathrm{III}-1 \\ & \mathrm{III}-2 \\ & \text { III-3 } \end{aligned}$	4 4 4	4 4 4 4	4 4 4	4 3 4 4	6 0 0 6	6 3 4 4	6 4 4 6	7 7	8 4 4	8 3 3	6 10 5	8 14 7	8 14 6	11 19 8	$\begin{aligned} & 94 \\ & 97 \\ & 96 \end{aligned}$	89 81 89 92
IV-1 IV-2 IV-3 IV-4 IV-5	10 12 8 11 10	11 13 8 10 10	11 12 8 10 10	11 113 9 10 9	12 12 10 12 10	12 12 9 14 11	14 14 9 14 10	13 13 8 15 12	14 12 8 14 11	13 11 7 14 10	14 13 8 14 10	16 14 10 10 13	$\begin{array}{r} 16 \\ 13 \\ 9 \\ 15 \\ 12 \end{array}$	$\begin{aligned} & 22 \\ & 17 \\ & 13 \\ & 20 \\ & 16 \end{aligned}$	$\begin{aligned} & 88 \\ & 88 \\ & 91 \\ & 86 \\ & 89 \end{aligned}$	78 83 87 80 84
$\begin{aligned} & Y-3 \\ & V-4 \\ & V-5 \end{aligned}$	6 4 4 4	7 10 10	16 8 19	5 12 18	8 14 21	7 14 21	8 16 20	7 15 23	7 16 20	6 15 22	6 16 25	8 20 27	$\begin{array}{r} 8 \\ 19 \\ 27 \end{array}$	$\begin{array}{r} 9 \\ 23 \\ 30 \end{array}$	$\begin{aligned} & 93 \\ & 86 \\ & 79 \end{aligned}$	91 76 70

[^7]for Testing Materials. The durability factors employed in this paper and used in plotting figures $1-5$ were computed from the formula given below, which is similar to that given in the A.S.T.M. publication referred to (the only difference is in the selection of 60 percent of the relative dynamic E as the end point for the freezing: and thawing test)
$$
D F=\frac{P \Lambda^{\top}}{M}
$$
where:
$D F=$ durability factor of the concrete.
$P=$ relative dynamic modulus of elasticity N^{2} in percentage of the dynamic modulus of elasticity at zero cycles (values of P will be 60 or greater).
$M=$ number of cycles at which durability factor is calculated.
$N=$ number of cycles at which P equals 60 percent: If P has not reached 60 percent at the number of cycles M at which the durability factor is calculated, then $N=M$ and $D F=: P$.

For the purpose of this discussion it is assumed that a durability factor $D F$ of 75
"American Society for Testing Materials. Desicnation C 233-49T. Book of A.S.T.M. Standards. Part 3, 1949 . paze 821.
represents the line of demarcation between durable and nondurable concrete. The durability factors for the various aggregate combinations and cements are shown in bar diagram form in figures $1-5$. In each case, values are shown for both the non-air-entrained and the air-entrained concrete at the end of 120 cycles for specimens cured 28 days and at the end of 120 and 270 cycles for specimens cured 180 days.

Effects of Freezing and Thawing

Values for aggregate combinations I, the Mt. Hebron sand and Klamath Falls coarse aggregate, with cements 1,2 , and 3 are shown in figure 1 . It will be noted that with all three cements, the non-air-entrained concrete containing this combination had very low resistance to freezing and thawing after 28 days of curing. Continuous moist curing to 180 days markedly improved resistance with all cements. Even with the additional curing, however, the durability factors at 120 cycles exceeded 75 in only one case (cement 1). When the 180-day cured specimens were subjected to 270 cycles of freezing and thawing, the durability factors were considerably reduced as
compared to the values at 120 cycles further indication of the lack of durabi. of this aggregate combination.

The fact that the long curing period I , of definite assistance in increasing duz. bility would indicate the absence of is noticeable reaction between the aggregr and the alkalies in the cements in spiten the fact that the results of mortar-bar pansion tests with Klamath Falls basli and cements 1 and 2 would indicate possibility of a mild reaction (see table The limited quantities of the aggregars available were insufficient for making teis to determine the contributing effect of Mt. Hebron and the Klamath Falls materils separately to the poor freezing and thaw of resistance encountered. Variations in alkali content of the cements used with tis aggregate combination did not appeario have much effect on resistance to freezg and thawing. Possibly any effect $1 / 3$ masked by the low inherent resistance if the aggregate. These tests indicate t.t the combination of the Mt. Hebron sid and Klamath Falls coarse aggregate in n_{1-}. air-entrained concrete is unsatisfactory use in concrete for outdoor exposure whe alternate freezing and thawing may occr.

The air-entrained concrete containing t. aggregate combination showed, in all cas:, greatly improved resistance as comparedio the corresponding non-air-entrained clcrete. However, the relative increases we much greater for the specimens cured 8 days than when the curing was extencd to 180 days. Extending the freezing sil thawing of the 180 -day cured specimis to 270 cycles decreased the resistance in cases, although the relative decreases wio not nearly so great as for the correspondir concretes without entrained air. The du:bility factors of all of the air-entrair concrete specimens containing this agg gate combination exceeded 75 in all ca: except one (with cement 2, cured 28 day:

From figure 2 it can be seen that agg gate combination II, the Umatilla sand al gravel, with and without air entrainmet gave durability factors greater than ' with two exceptions. These were the cobinations with cement 2 in air-entrainl concrete, cured 180 days and exposed 270 cycles, and cement 3 without air ${ }^{\epsilon}$ trainment, cured 28 days and exposed 120 cycles. In both cases the durabili factor was in excess of 60 . These te: would indicate that the Umatilla sand a! gravel are high-grade aggregates suital for making concrete exposed to severe cmatic conditions.

Durability factors for aggregate coml nation III, the sand and gravel from t Willamette River, are shown in figure The similarity between figures 2 and 3 immediately apparent, indicating that the is no practical difference in the concre making properties of the Umatilla al Willamette aggregates, at least insofar durability is concerned. It is interesti; to note, when comparing figures 2 and that in the case of the non-air-entrain

RELATIVE DURABILITY FACTORS
Figure 1.-Durability of aggregate combination I with cements 1, 2, and 3.
firming the opinion that there is little possibility of reactivity even with high alkali cements

It is of interest to note that increasing the curing period for air-entrained concrete from 28 to 180 days decreased the resistance slightly with all five cements. This suggests the possibility that, after long moist curing periods, some of the minute voids created by air entrainment may eventually fill with water. With minor exceptions, this same trend was noted also in all of the other aggregate combinations except combination I.

Aggregate combination V, the Rock Island sand and gravel, was from the eastern section of the State of Washington and is the same as the aggregate used in the tests by Tremper to which reference has been made. He found that this aggregate in concrete, when used with cements high in alkali and given prolonged moist curing prior to testing, broke down quite rapidly in freezing and thawing. Similar concretes containing the same aggregate but cements of lower alkali content gave fair resistance to the action of freezing and thawing.

As may be seen from figure 5, the Rock Island aggregates in combination with cement 5, having a total alkali content of 0.66 percent (expressed as sodium oxide), showed somewhat lower resistance at the end of 180 days of moist storage than was obtained with cement 4 (0.44 percent al-
crete, cured 28 days, the order of resisce as affected by the cement is the le-concrete containing cement 1 being most resistant and concrete containing rent 3 the least resistant. However, this ation does not hold for the longer curing iod and for this reason it may not be nificant, insofar as ultimate durability izoncerned.
is will be noted from figure 4, non-airrained concrete made with aggregate Inination IV, Potomac River sand and :ivel, developed poor resistance to freezing 1 thawing with all five cements. This yregate gives good service in the relately mild climate in the Washington, D. C., da, but these tests indicate that without entrainment it would not be a suitable regate where freezing and thawing is ere. Potomac River aggregate has a le range in mineral composition and it possible that occasionally it may contain ne reactive particles, but there is little no direct evidence of reactivity. The aparatively poor resistance of concrete de with this aggregate is probably due a combination of low bond strength and tain structural weaknesses of the aggreie particles. The resistance of the non--entrained concrete at 120 cycles was atly improved by extending the curing ciod to 180 days. Resistance was also ratly benefited when air-entrainment was ad, more so than was true for the contes made with other aggregates, con-
\square NON AIR ENTRAINED CONCRETE AIR ENTRAINED CONCRETE

Figure 2.-Durability of aggregate conbination II with cements 1. 2, and 3.

NON AIR ENTRAINED CONCRETE \qquad AIR ENTRAINED CONCRETE

RELATIVE DURABILITY FACTORS
Figure 3.-Durability of aggregate combination III with cements 1, 2, and 3.
kali), and substantially lower resist than was obtained with cement 3 percent alkali). This is particularly nc able at the end of 270 cycles of fref and thawing. On the other hand, the sults at the end of 28 days of moist sto were about the same for cement 5 (alkali) as for cement 3 (low alkali). I results would seem to verify Trem conclusion that the Rock Island aggre is slowly reactive with alkali in the cen The non-air-entrained Rock Island cone with cement 5 are the only ones which a 180 days of moist curing were less sistant than similar concrete cured 28 c This would also seem to verify Trem conclusion. Except for this tendenc: be slowly reactive, the Rock Island as gate in combination with both high low alkali cements had fairly good r tance to alternate freezing and thawir In the field where reactive aggrea ? were suspected, there has been evidenc map cracking of the concrete pavemi Several observers have thought that ts cracks permitted easy entrance of w hence making the concrete more suscep to freezing and thawing action. This \cdot ductive reasoning may be correct, but difficult to simulate this condition in laboratory. Careful observation of the specimens failed to disclose evidenct cracking, but this in itself is not signifiu since small specimens of the size under sideration permit adjustment of the stre

RELATIVE DURABILITY FACTORS
Figure 4.-Durability of aggregate combination IV with cements 1, 2, 3, 4, and 5.

RELATIVE DURABILITY FACTORS
Figure 5.-Durability of aggregate combination V with cements 3 , 4 , and 5.
that cracking occurs only under extreme aditions of volume change.
Length change measurements, shown in oles 10 and 11, were made on all the constes subjected to freezing and thawing, t no significant information was developed at was not brought out by study of the rability factor.

Strength Tests

Tables 12 and 13 show the flexural :engths and the compressive strengths of dified cubes from the beams remaining ter the freezing and thawing test was mplete, as well as from control beams. is customary to make such tests to conm the results indicated by the drop in nic E. For the non-air-entrained conete, however, no direct comparisons can made of the strengths of the concrete ade- of the various combinations of aggre.tes and cements, because of the variable umber of cycles required to produce a 40reent drop in sonic E and the consequent fference in age at time of test, and also cause of the added curing obtained by the ntrol specimens in moist air at $70^{\circ} \mathrm{F}$. hile the freezing tests were in progress.

The frozen specimens do, of course, obtain some additional curing during the thawing phase of the cycle, but these temperatures are not favorable for promoting the curing action. This difference in curing is brought out by the observation that even though some of the frozen air-entrained concrete specimens showed little or no drop in N^{3}, a reduction of 10 to 15 percent in compressive strength of these same specinens was noted with an even greater reduction in the case of flexural strength.

Comparison of Durability Factors

To compensate for the variable number of cycles at which some of the specimens were tested, compressive and flexural strength durability factors somewhat similar to the durability factor calculated from sonic E were evolved. These factors were calculated by taking the ratio of the strength after freezing and thawing to the corresponding strength of the control specimens, multiplying this ratio by the number of cycles at time of test, and dividing the product by 120 in the case of the 28 -day cured specimens or by 270 in the case of the 180-day cured specimens.

In table 14 the durability factors based on sonic determinations, on compressive strength loss, and on flexural strength loss have all been grouped for purposes of comparison. The durability factors for strength of specimens which withstood the maximum number of cycles are, of course, the same numerical values as the strength ratios shown in tables 10 and 11.

A comparison of the three durability factors indicates a reasonably good correlation as regards ability to differentiate between aggregate-cement combinations having poor resistance as measured by the sonic test and those combinations showing good resistance. For example, in all of the non-air-entrained concretes containing aggregate combinations I and IV, with all cements, the sonic test indicates low resistance (less than 75). For all of these combinations the corresponding factors calculated from the flexure test are also comparatively low (less than 50 in all cases). The corresponding compressive strength factors are also, with two exceptions, comparatively low (less than 70). It will be seen, therefore, that from the standpoint of selecting the definitely poor combinations any of the three factors may be used. The same general relations also hold for the three combinations which in general had grood resistance as measured by sonic E. Six of the non-air-entrained combinations showed sonic E values of 75 or more at 120 cycles and seven combinations showed correspondingly high values at 270 cycles. For most of these the corresponding durability values in compression and flexure were also relatively high, although there were some individual exceptions to the trend as, for example, the comparatively low value for aggregate combination II with cement 2 in flexure at 120 cycles as compared to the sonic E and compression values.

It may be concluded that the reduction in sonic E reflects reasonably well the effects of freezing and thawing on both the compressive and flexural strength of the concrete, particularly in those cases where the resistance of the concrete is comparatively low.

It will be noted that the durability factor based on flexure strength is considerably lower than that based on compressive strength. Alternate freezing and thawing is probably more destructive to the outermost fibers than to the specimen as a whole. Since the flexural test is a measure of the bending strength of the outermost fibers it appears reasonable to expect lower relative strengths than indicated by the compression tests on the broken halves remaining after the flexure test.
(Tables 10-14 are on the following pages.)
Table 11.-Decrease in resistance of concrete to freezing and thaving, after initial moist curing of 180 days, as measured by increase in length

Table 10.-Decrease in resistance of concrete to freezing and thawing, after initial

Table 13．－Results of strength tests after initial moist curing of 180 days and

Aggregate combination and cement．	Total age at test	Strength of control specimens		Average cycles of freezing and thawing at test．	Strength of specimens after freezing and thawing		Strength ratio	
		Compres－ sive	Flexural ${ }^{3}$		Compres－ sive 2	Flexural ${ }^{3}$	Compres－ sive	Flexural

 Air－Entrained Concrete

	nno ユーデーシ		：	noo
		$\begin{aligned} & 800 \\ & 00 \% \\ & \text { cion } \\ & \text { NN } \end{aligned}$	우웅웅 Nin	우웅 $\infty \infty$

ir－Entrained Concrete

1 Each value is average of three tests except as indicated．
2 Tested as modified cubes，specimens 3 －by 3 －by 4 －inch denth（halves of flexure specimens remaining ${ }^{3}$ after tests）． 3 －by 4 －by 16 －inch，tested by center－point loading on a 12 －inch span with the bottom（ 4 －inch denth）as molded in tension．
\＆Values indicate percentage of strength of corresponding control specimen．
\＆Average of two tests．

[^8]Table 14.-Comparison of durability factors

Aggregate combination and cemont	Durability factor of specimens after-					
	28 -day curing and maximum of 120 cycles of freezing and thawing			180-day curing and maximum of 270 cycles of freezing and thawing		
	Sonic	Compressive	Flexural	Sonic	Compressive	Flexural
Non-Air-Entrained Concrete						
$\begin{gathered} \mathrm{I}-1 \\ \mathrm{I}-2 \\ \mathrm{I}-3 \end{gathered}$	14 8 9	16 15 15	11 8 8	43 43 54	60 65 77	$\begin{aligned} & 34 \\ & 33 \\ & 30 \end{aligned}$
$\begin{aligned} & \mathrm{II}-1 \\ & \mathrm{II}-2 \\ & \mathrm{II}-3 \end{aligned}$	$\begin{aligned} & 86 \\ & 80 \\ & 61 \end{aligned}$	$\begin{aligned} & 83 \\ & 91 \\ & 84 \end{aligned}$	$\begin{array}{r} 65 \\ +\quad 42 \\ \hline 51 \end{array}$	$\begin{aligned} & 93 \\ & 93 \\ & 95 \end{aligned}$	$\begin{aligned} & 94 \\ & 96 \\ & 87 \end{aligned}$	84 73 67
$\begin{aligned} & \text { III }-1 \\ & \text { III-2 } \\ & \text { III-3 } \end{aligned}$	$\begin{aligned} & 91 \\ & 82 \\ & 67 \end{aligned}$	$\begin{aligned} & 83 \\ & 83 \\ & 75 \end{aligned}$	$\begin{aligned} & 61 \\ & 70 \\ & 50 \end{aligned}$	$\begin{aligned} & 92 \\ & 92 \\ & 92 \end{aligned}$	$\begin{aligned} & 94 \\ & 91 \\ & 90 \end{aligned}$	72 78 77
$\begin{aligned} & \text { IV }-1 \\ & \text { IV-2 } \\ & \text { IV-3 } \\ & \text { IV-4 } \\ & \text { IV } \end{aligned}$	$\begin{aligned} & 26 \\ & 26 \\ & 14 \\ & 12 \\ & 35 \end{aligned}$	$\begin{aligned} & 34 \\ & 31 \\ & 21 \\ & 15 \\ & 48 \end{aligned}$	$\begin{aligned} & 23 \\ & 23 \\ & 11 \\ & 10 \\ & 26 \end{aligned}$	$\begin{aligned} & 26 \\ & 43 \\ & 33 \\ & 29 \\ & 57 \end{aligned}$	$\begin{aligned} & 37 \\ & 55 \\ & 35 \\ & 38 \\ & 78 \end{aligned}$	$\begin{aligned} & 21 \\ & 45 \\ & 27 \\ & 23 \\ & 43 \end{aligned}$
$\begin{aligned} & V-3 \\ & V-4 \\ & V-5 \end{aligned}$	$\begin{aligned} & 86 \\ & 67 \\ & 85 \end{aligned}$	$\begin{aligned} & 79 \\ & 82 \\ & 86 \end{aligned}$	$\begin{aligned} & 67 \\ & 40 \\ & 54 \end{aligned}$	$\begin{aligned} & 88 \\ & 65 \\ & 49 \end{aligned}$	$\begin{aligned} & 90 \\ & 78 \\ & 69 \end{aligned}$	72 44 36
Air-Entrained Concrete						
I-1 $\mathrm{I}-2$ $\mathrm{I}-3$	$\begin{aligned} & 86 \\ & 47 \\ & 91 \end{aligned}$	86 79 87	70 45 50	$\begin{aligned} & 78 \\ & 84 \\ & 90 \end{aligned}$	$\begin{aligned} & 91 \\ & 84 \\ & 87 \end{aligned}$	59 65 73
$\begin{aligned} & \mathrm{II}-1 \\ & \mathrm{II}-2 \\ & \mathrm{II}-3 \end{aligned}$	$\begin{aligned} & 98 \\ & 93 \\ & 96 \end{aligned}$	$\begin{aligned} & 91 \\ & 89 \\ & 86 \end{aligned}$	$\begin{aligned} & 72 \\ & 58 \\ & 65 \end{aligned}$	$\begin{gathered} 87 \\ 71 \\ 92 \end{gathered}$	$\begin{aligned} & 86 \\ & 91 \\ & 91 \end{aligned}$	51 57 58 58
$\begin{aligned} & \text { III-1 } \\ & \text { III-2 } \\ & \text { III-3 } \end{aligned}$	$\begin{array}{r} 100 \\ 94 \\ 97 \end{array}$	$\begin{aligned} & 91 \\ & 85 \\ & 90 \end{aligned}$	$\begin{aligned} & 87 \\ & 77 \\ & 80 \end{aligned}$	$\begin{aligned} & 89 \\ & 81 \\ & 92 \end{aligned}$	$\begin{aligned} & 94 \\ & 86 \\ & 85 \end{aligned}$	68 54 66
$\begin{aligned} & \text { IV-1 } \\ & \text { IV-2 } \\ & \text { IV-3 } \\ & \text { IV-4 } \\ & \text { IV-5 } \end{aligned}$	$\begin{aligned} & 96 \\ & 90 \\ & 97 \\ & 96 \\ & 98 \end{aligned}$	$\begin{aligned} & 88 \\ & 86 \\ & 84 \\ & 95 \\ & 86 \end{aligned}$	$\begin{aligned} & 72 \\ & 71 \\ & 82 \\ & 80 \\ & 70 \end{aligned}$	$\begin{aligned} & 78 \\ & 83 \\ & 87 \\ & 80 \\ & 84 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \\ & 87 \\ & 94 \\ & 84 \end{aligned}$	60 67 65 81 84 64
$\begin{aligned} & V-3 \\ & V-4 \\ & --5 \end{aligned}$	$\begin{aligned} & 99 \\ & 99 \\ & 99 \end{aligned}$	$\begin{aligned} & 9 n \\ & 91 \\ & 91 \end{aligned}$	$\begin{aligned} & 75 \\ & 81 \\ & 67 \end{aligned}$	$\begin{aligned} & 91 \\ & 77 \\ & 70 \end{aligned}$	$\begin{aligned} & 91 \\ & 85 \\ & 79 \end{aligned}$	72 61 52

The following publications are sold by the Superintendent of Documents, Government Prin!ing Office, Washington 25, D. C. Orders should be sent direct to the Superintendent of Documents. Prepayment is required.

ANNUAL REPORTS

(See also adjacent column)
Reports of the Chief of the Bureau of Public Roads: 1937, 10 cents. 1938,10 cents. 1939,10 cents.

Work of the Public Roads Administration:
1940, 10 cents. 1942,10 cents. 1948,20 cents
1941, 15 cents. 1946,20 cents. 1949,25 cents.

$$
1947,20 \text { cents. }
$$

Annual Report, Bureau of Public Roads, 1950. 25 cents.

HOUSE DOCUMENT NO. 462

Part 1 . . . Nonuniformity of State Motor-Vehicle Traffic Laws. 15 cents.
Part 2 ... Skilled Investigation at the Scene of the Accident Needed to Develop Causes. 10 cents.
Part 3. . Inadequacy of State Motor-Vehicle Accident Reporting. 10 cents.
Part 4 . . . Official Inspection of Vehicles. 10 cents.
Part 5 . . . Case Histories of Fatal Highway Accidents. 10 cents.
Part 6 ... The Accident-Prone Driver. 10 cents.

UNIFORM VEHICLE CODE

Act I.-Uniform Motor-Vehicle Administration, Registration, Certificate of Title, and Antitheft Act. 10 cents.
Act II.-Uniform Motor-Vehicle Operators' and Chauffeurs' License Act. 10 cents.
Act III.-Uniform Motor-Vehicle Civil Liability Act. 10 cents.
Act IV-Uniform Motor-Vehicle Safety Responsibility Act. 10 cents.
Act V.-Uniform Act Regulating Traffic on Highways. 20 cents.
Model Traffic Ordinance. 15 cents.

MISCELLANEOUS PUBLICATIONS

Bibliography of Highway Planning Reports. 30 cents.
Construction of Private Driveways (No. 272MP). 10 cents.
Economic and Statistical Analysis of Highway Construction Expenditures. 15 cents.
Electrical Equipment on Movable Bridges (No. 265T). 40 cents.
Factual Discussion of Motortruck Operation, Regulation, and Taxation. 30 cents.
Federal Legislation and Regulations Relating to Highway Construction. 40 cents.
Financing of Highways by Counties and Local Rural Governments, 1931-41. 45 cents.
U.S. GOVERNMENT PRINTING OFFICE: 1951-951455

Guides to Traffic Safety. 10 cents.
Highway Accidents. 10 cents.
Highway Bond Calculations. 10 cents.
Highway Bridge Location (No. 1486D). 15 cents.
Highway Caracity Manual. 65 cents.
Highway Nfeds of the National Defense (House Document No. 249). 50 cents.

Highway Practice in the United States of America. 50 cents.
Highway Statistics, 1945. 35 cents
Highway Statistics, 1946. 50 cents.
Highway Statistics, 1947. 45 cents.
Highway Statistics, 1948. 65 cents.
Highway Statistics, 1949. 55 cents.
Highway Statistics, Summary to 1945. 40 cents.
Highways of History. 25 cents.
Identification of Rock Types. 10 cents.
Interregional Highways (House Document No. 379). 75 cents. Legal Aspects of Controlling Highway Access. 15 cents.
Local Rural Road Problem. 20 cents.
Manual on Uniform Traffic Control Devices for Streets and Highways. 75 cents.
Mathematical Theory of Vibration in Suspension Bridges. $\$ 1.25$.
Principles of Highway Construction as Applied to Airports, Flight Strips and Other Landing Areas for Aircraft. \$1.75.
Public Control of Highway Access and Roadside Development. 35 cents.
Public Land Acquisition for Highway Purposes. 10 cents.
Roadside Improvement (No. 191MP). 10 cents.
Selected Bibliography on Highway Finance. 55 cents.
Specifications for Construction of Roads and Bridges in Na. tional Forests and National Parks (FP-41). \$1.50.
Taxation of Motor Vehicles in 1932. 35 cents.
Tire Wear and Tire Failures on Various Road Surfaces. 10 cents.
Transition Curves for Highways. \$1.25.

Single copies of the following publications are available to highway engineers and administrators for official use, and may be obtained by those so qualified upon request addressed to the Bureau of Public Roads. They are not sold by the Superintendent of Documents.

ANNUAL REPORTS

(Sëe also adjacent column)
Public Roads Administration Annual Reports:
1943.
1944.
1945.

MISCELLANEOUS PUBLICATIONS

Bibliography on Automobile Parking in the United States.
Bibliography on Highway Lighting.
Bibliography on Highway Safety.
Bibliog'raphy on Land Acquisition for Public Roads.
Bibliography on Roadside Control.
Express Highways in the United States: a Bibliography.
Indexes to Public Roads, volumes $17-19,22$, and 23.
Road Work on Farm Outlets Needs Skill and Right Equipment.
Title sheets for Public Roads, volumes 24 and 25.

[^0]: ${ }^{3}$ The engineering significance of soil patterns, by D. J. Belcher. Proceedings of the Highway Research Board, vol. 23, 1943, p. 569. The origin, distribution, and airphoto identification of United States soils, by D. J. Belcher, D. S. Jenkins, L. E. Gregg, and K. B. Woods. Technical Development Report No. 52, Civil Aeronautics Administration, 1946. The engineering significance of landforms, by D. J. Belcher, Bulletin No. 13, Highway Research Board, 1947, p. 9. Aerial photographs: their use and interpretation, by A. J. Eardley. Harper \& Brothers, 1942. Identification of granular deposits by aerial photography, by R. E. Frost. Proceedings of the Highway Research Board, vol. 25, 1945, p. 116. Aerial photographs and their applications, by H. T. U. Smith. D. Appleton-Century
 Company, Inc., 1943.

[^1]: 4A system for designating map-units on engineerg soil-maps, by D. R. Lueder. Bulletin No. 28, Highry Research Board, 1950, p. 17.

[^2]: ${ }^{5}$ Classification of highway subgrade materials, Report If Committee on Classification of Materials for Subfrades and Granular Type Roads, Proceedings of the Gighway Research Board, vol. 25, 1945, p. 375.

[^3]: Information concerning geology of the area traversed by Section $2-\mathrm{D}$ was obtained from Geoloyy of Alabama, by G. I. Adams, C. Butts, L. W. Stephenson, vey of Alahama, 1926. Figures 3 and 4 are based on vey of Alana.

[^4]: ${ }_{2}^{1}$ Each value is average of three tests.
 2 Percentage by weight of cement, added as a sodium hydroxide solution.

[^5]: ${ }^{2}$ Application of sonic method to freezing and thawing
 studies of concrete, by F. B. Hornibrook. American Society for Testing Materials, Bulletin No. 101, December 1939, p. 5.

[^6]: ${ }^{3}$ Freezing and thawing tests of concrete made with different aggregates, by Stanton Walker. Journal of the American Concrete Institute, June 1944, p. 573.
 'Discussion by C. E. Wuerpel of Walker's paper (see footnote 3). Journal of the American Concrete Institute, November 1944, p. 580.

[^7]: ${ }^{1}$ Each value is the average of tests on three beams except for $\mathrm{I}-1$ and II-1 in the air-entrained group,
 for which two beams were tested.
 ${ }^{5}$ Method of determination similal
 A.S.T.M. designation C 233-49T.
 ${ }_{3}$ Final reading at 192 cycles. \&Final reading at 256 cycles. \quad Final reading at 1.23 cycles
 $\begin{array}{ll}\text { Final reading at } 192 \text { cycles, } & \text { Final reading at } 256 \text { cycles. } \\ \text { Final reading at } 147 \text { cycles, Final reading at } 123 \text { cycles. } \\ \text { Final reading at } 131 \text { cycles. Final reading at } 220 \text { cycles }\end{array}$

[^8]: Tested as modified cubes，specimens 3 －by 3 －by 4 －inch depth（halves of flexure specimens
 Tests）． ter tests）．
 3 Specimens 3 －by 4 －by 16 －inch，tested by center－point loading on a 12 －inch span with the bottom（ 4 －inch
 Sth）as molded in tension． th）as molded in tension．
 4．Yalues indicate percentage of strength of corresponding control specimen．
 S Average of two test：．
 －One test．

