

[DU: 1 |(C) R(O)ADS
 A JOURNAL OF HIGHWAY RESEARCH
 FEDERAL WORKS AGENCY PUBLIC ROADS ADMINISTRATION

ON US 101 NEAR SAN LUIS OBISPO, CALIF

PUBLIC ROADS Highway Research

Issued by the

FEDERAL WORKS AGENCY
 PUBLIC ROADS ADMINISTRATION

Volume 22, No. 4

D. M. BEACH, Editor

June 1941
The reports of research published in this magazine are necessarily qualified by the conditions of the tests from which the data are obtained. Whenever it is deemed possible to do so, generalizations are drawn from the results of the tests; and, unless this is done, the conclusions formulated must be considered as specifically pertinent only to described conditions.

In This Issue

Planning the Interregional Highway System 69
State Motor-Fuel Consumption and Tax Receipts, 1940 97
State Motor-Vehicle Registrations and Receipts, 1940 99

THE PUBLIC ROADS ADMINISTRATION Willard Building, Washington, D. C. REGIONAL HEADQUARTERS Federal Building, Civic Center, San Francisco, Calif.

DISTRICT OFFICES

DISTRICT No. 1. Oregon, Washington, and Montana.
Post Office Building, Portland, Oreg.
DISTRICT No. 2. California, Arizona, and Nevada.
Federal Building, Civic Center, San Francisco, Calif.
DISTRICT No. 3. Colorado, New Mexico, and Wyoming.
254 New Customhouse, Denver, Colo.
DISTRICT No. 4. Minnesota, North Dakota. South Dakota, and Wisconsin.
907 Post Office Building. St. Paul, Minn.
DISTRICT No. 5. Iowa, Kansas, Missouri, and Nebraska.
711 U. S. Courthouse, Kansas City, Mo.
DISTRICT No. 6. Arkansas, Louisiana, Oklahoma, and Texas.
Room 502, United States Courthouse, Fort Worth, Tex.
DISTRICT No. 7. Illinois, Indiana, Kentucky, and Michigan.
South Chicago Post Office Building, Chicago, Ill.

DISTRICT No. 8. Alabama, Georgia, Florida, Mississippi, and Tennessee.
Post Office Building, Montgomery, Ala.
DISTRICT No. 9. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont.

76 State St., Albany, N Y.
DISTRICT No. 10. Delaware, Maryland, Ohio, Penrsylvania, and District of Columbia.

Willard Building. Washington, D. C.
DISTRICT No. 11. Alaska.
Room 419, Federal and Territorial Building, Juneau, Alaska.
DISTRICT No. 12. Idaho and Utah.
Federal Building, Ogden, Utah.
DISTRICT No. 14. North Carolina, South Carolina, Virginia, and West Virginia.

Montgomery Building. Spartanburg, S. C.

Abstract

Because of the necessarily limited edition of this publication it is impossible to distribute it free to any person or institution other than State and county officials actually engaged in planning or constructing public highways, instructors in highway engineering, and periodicals upon an exchange basis. At the present time additions to the free mailing list can be made only as vacancies occur. Those desiring to obtain PUBLIC ROADS can do so by sending $\$ 1$ per year (foreign subscription $\$ 1.50$), or 10 cents per single copy, to the Superintendent of Documents, United States Government Printing Office, Washington, D. C.

PLANNING THE INTERREGIONAL HIGHWAY SYSTEM ${ }^{+}$

BY THE DIVISION OF HIGHWAY TRANSPORT, PUBLIC ROADS ADMINISTRATION

Reported by H. E. HILTS, Assistant Chief, Division of Highway Transport

THE concept of an interregional highway system is no startling innoyation to the highway builders of this country. Since the first settlers landed on American shores, people have been dreaming of it and building it.

The construction of routes that form the basic outline of the interregional system (fig. 1) has been quickened by the advent of gas-driven vehicles whose owners have been farsighted enough to join in reasonable cooperation in financing by public investment the highway plant that is now one of the world's wonders. To those who have lived in this era the highway plant has seemed to grow at an uncommonly leisurely pace largely because Americans are, in the main, a restless, creative people.
Now the main highway network is practically all surfaced and, in order to attain major benefits promptly for both civil and military requirements, it seems logical to plan and carry out a program of betterments and new construction on routes carrying large volumes of swiftly moving traffic between the country's main population centers. This was probably the impelling reason when the Congress included in the Federal Highway Act of 1938 a provision, section 13 , which directed the Chief of the Bureau of Public Roads to investigate and to report to the Congress on the feasibility of building and operating as toll roads six express highways.

The results of the investigation undertaken pursuant to this instruction were published in Toll Roads and Free Roads, House Document No. 272, 76 th Congress, First Session. From the discussion in that report there emerged a general outline of what was called A Master Plan for Free Highway Development. The consummation of this plan calls for the full cooperation of the Federal and State Governments. The program outlined in that report includes the following five points:

1. The construction of a special, tentatively defined system of direct interregional highways, with all necessary connections through and around cities, designed to meet the requirements of the national defense in time of war and the needs of a growing peacetime traffic of longer range.
2. The modernization of the Federal-aid highway system.
3. The elimination of hazards at railroad grade crossings.
4. An improvement of secondary and feeder roads, properly integrated with land-use programs.
5. The creation of a Federal Land Authority empowered to acquire, hold, sell, and lease lands needed for public purposes and to acquire and sell excess lands for the purpose of recoupment.
[^0]This paper deals with the general problems encountered in a tentative study of the first point together with some remarks on an emergency modernization of the tentatively defined interregional system and the elimination of hazards at grade crossings on the system.

29,330 MLES INCLUDED IN INTERREGIONAL SYSTEM

The system shown in figure 1 and tentatively selected after close cooperation with State and Federal agencies includes substantially all of the major interregional lines of travel. The system is 29,330 miles in length, of which 25,554 miles are rural in character and 3,776 miles are in urban territory. Figure 2 shows that it serves substantially all of the major population centers and the belts of heaviest population.

Traffic maps of the routes to be improved, given in figures 3 and 4, show the routes as the most heavily traveled, on the whole, of all the routes in the U. S. numbered system of highways. Improved as a system of largely limitedaccess free roads, it will attract traffic and generate new activities. To show how the traffic builds up in cities, the traffic flow has been plotted vertically in profile form and is shown in figure 5 .

The existing rural routes most nearly conforming to the direct routes of the interregional system (figs. 6 and 7) now serve almost 11 percent of the total vehicle-miles of travel on all rural highways. Although their length represents only about 1 percent of the total rural highway mileage of the country, it is estimated that the completed system would unquestionably accommodate at least 12.5 percent of the total rural vehicle mileage. By providing ample capacity and up-to-date safety devices these free roads would effect a material reduction in the highway accident rate.

In the data submitted in this paper the direct routes follow the alinement and incorporate the improvements of existing highways with deviations from direct routes between population concentrations in limited degree only to accommodate the largest intermediate towns.

The routes are assumed to join facilities that will promote free movement of traffic to and through the centers of the cities. At large cities, wherever necessary, limited-access belt lines will have to be provided. All small communities are assumed to be bypassed. The two conditions cited are premised upon whether the city or town contributes either (1) the larger, or

Figure 1.-Existing Highways Following the Approximate Alinement of the Tentatively Selected Interregional Highway System.

Figure 2.-Population Distribution in Relation to the Location of the Tentatively Selected Interregional Highway System.

Figure 5.-Traffic Flow Profile of the Tentative Interregional Highway System, 1937 Data.
(2), the smaller part of the expected traffic on the route at its boundaries.

In general, the main rural highways of the Nation, beyond the immediate vicinity of the cities, are of sufficient capacity to discharge the flow of present traffic.

If a slight restriction of absolute freedom of movement is accepted, which is to be expected on the rural highways during short periods of maximum hourly traffic volume that occur in the course of a year, an average daily volume of 3,000 vehicles may be considered as within the reasonably convenient discharge capacity of a 2-lane highway.

On this basis, figure 8 shows the portions of the interregional system now having only two lanes which should be widened. Sections now having four or more lanes are also shown in figure 8. To emphasize the contrast, figure 9 has been prepared to show only the existing sections having four or more lanes. These data were obtained by analysis of diagrams that will be discussed later. They have been prepared for the entire tentative interregional system, first, between route intersections, and second, as continuous routes between main city termini. These diagrams show the main physical and operating characteristics of the entire system. An analysis of these diagrams (table 1) shows that on the tentative system, 1,230 miles of more than 2-lane width are within 25 miles of municipalities having populations exceeding 100,000 , of which 500 miles are 3-lane width and 730 miles are 4 -lane width. The traffic data (table 2) show that to provide adequate traffic facilities, 1,770 additional miles of more than 2 -lane width should be constructed within 25 miles of the larger municipalities, and 1,230 additional miles should be constructed on the remaining part of the rural interregional system.

The traffic standards suggested above contemplate the construction of roads greater than two lanes in width when the present average daily traffic volume exceeds 3,000 vehicles. For the purpose of this discussion it is assumed that 4-lane divided highways will be built at locations having present average traffic volumes of from 3,000 to 10,000 vehicles per day. Should the present average volume exceed 10,000 vehicles per day, it might be that special_conditions would
require still wider pavements, but such requirements should be determined by analysis of each case rather than by resort to a general standard.

Table 1.-Present lengths of sections of the tentative interregional highway system having more than 2 lanes, located within 25 miles of cities of more than 100,000 population

Geographic division	Lengths having 3 lanes	Lengths having 4 lanes or more	Total
New England	Miles 80	$\text { Miles }_{90}$	Miles 170
Middle Atlantic.	140	130	270
East North Central	80	150	230
West North Central	30	70	100
South Atlantic.	70	90	160
East South Central.	10	30	40
West South Central	10	60	70
Mountain .-		10	10
Pacific...	80	100	180
United States.	500	730	1,230

Table 2.- A comparison between the length of sections of the tentative interregional highway system requiring widths in excess of 2 lanes and the length of the existing sections having more than 2 lanes ${ }^{1}$

Geographic division	Length of sections requiring more than 2 lanes		Length of sections both requiring and now having more than 2 lanes ${ }^{2}$		Length of sections requiring widening	
	Located within 25 miles of cities	Located beyond 25 miles of cities	Located within 25 miles of cities	Located beyond 25 miles of cities	Lo. cated within 25 miles of cities	Located beyond 25 miles of cities
New England	390	180	170	70	220	110
Middle Atlantic	560	450	260	160	300	290
East North Central	540	280	200	100	340	180
West North Central	210	80	40	80	170	
South Atlantic.	430	240	150	160	280	80
East South Central.	100	30	10		90	30
West South Central	220	190	40	30	180	160
Mountain.	90	60	10	40	80	20
Pacific.	270	610	160	250	110	360
United States_	2,810	2,120	1,040	890	1,770	1,230

[^1]

Figure 8.-Location of Sections of the Tentatively Selected Interregional Highway System Having Four or More Lanes, and Other Sections Where 1937 Traffic Data Indicate the Need of Improvement to Four-Lane Standards.

PEAK TRAFFIC GREATLY EXCEEDS AVERAGE TRAFFIC VOLUME

By correlating the analysis of the complete records of 89 fixed-type automatic traffic counters, selected from a total of some 500 now in operation, with the analysis of speed and passing distance studies made on 28 sections of 2-lane highway in Virginia, Maryland, Massachusetts, New York, Connecticut, and Illinois, and on 8 sections of 4-lane undivided highway and 5 sections of 4-lane divided highway in Massachusetts, New York, and Illinois, the following present general résumé appears reasonable. During certain periods of the year, and particularly on weekends, the daily traffic will far exceed the average. On roads with an average daily volume of 3,000 vehicles it may be expected that on 1 day each year the volume will reach 7,300 vehicles, and that on the 10 days of heaviest traffic the daily volume will exceed 5,700 vehicles. This latter figure corresponds to what might be expected on a normal summer Sunday.

On the average road carrying an average daily volume of 10,000 vehicles, the maximum daily volume will probably reach 18,500 vehicles, and on the tenth highest day, or the summer Sunday condition, the daily volume may be expected to be 15,000 vehicles. That volumes in this range require special analysis is shown by the fact that on one road, a modern 4 -lane divided highway corresponding to the design proposed for the interregional system, an average traffic of 10,000 vehicles per day resulted in a peak day's flow of 24,000 vehicles, and on the 10 days of highest traffic volume, the daily flow exceeded 19,000 vehicles. Either special conditions induced these larger peaks, or the road's design permitted a traffic movement more nearly corresponding to the desires of the traveling public. The latter explanation is quite reasonable
when it is considered that the peaks on this road are in the same proportion to the average daily flow of 10,000 as they are on the other roads with but 3,000 vehicles per day. Undoubtedly, congestion caused by poor alinement, intersections, and other restrictive features deters some travel and tends to lengthen the peak periods and thus to lower the peaks.

The significance of these figures is emphasized by translating them to terms of hourly traffic density and measures of congestion. On the average highway carrying an average daily volume of 3,000 vehicles, it may be expected that during 1 hour of the year the volume will be 750 vehicles, and during the 10 hours of heaviest flow the volume will exceed 550 vehicles per hour. As a result of studies on selected average 4-lane roads it is estimated that with an average traffic of 10,000 vehicles per day, the maximum volume in any 1 hour during the year will be 1,750 vehicles, and for 10 hours the flow will exceed 1,450 vehicles per hour.

On the more modern road with its sharper traffic peaks, the hourly volume will reach 2,500 vehicles, and for 10 hours the flow will exceed 1,800 per hour. Since the 4 -lane roads will be divided, however, the traffic in each direction will be of greater importance than the total. For an entire day the traffic in one direction will nearly equal that in the other. For individual hours, however, as much as 70 percent of the total may be in one direction. Average roads, with average traffic of 10,000 vehicles per day, thus will carry some 1,200 vehicles in one direction during the heaviest hour, while the road permitting free travel will be required to accommodate 1,750 vehicles in one direction during 1 hour of the year. With these traffic standards, vehicles will be able to move with very little

Figure 9.-Location of Sections of the Tentatively Selected Interregional Highway System Having Four or More Lanes.
restriction to speed even during the hour of heaviest flow.
Studies have been made on 12 sections of 2-lane road tangents with only minor restrictions in alinement and grade beyond the limits of the sections under study in Massachusetts, New York, and Illinois. According to records obtained on the best of these sections, vehicle speeds in the periods of lightest traffic will generally average between 42 and 45 miles per hour, with 10 percent of the vehicles traveling at 52 to 54 miles per hour or faster. With an hourly rate of 750 vehicles, the worst condition that may be expected on 2-lane roads, the average speeds will range from 39 to 42 miles per hour, with 10 percent of the vehicles moving at 48 to 50 miles per hour or faster. The average difference in speed between successive vehicles (designated herein as the congestion index), which is a measure of the freedom of movement, decreases from around 8 miles per hour in the lightest traffic to 5 or less at a rate of 750 vehicles per hour. Shifting from a 2 -lane to a 4 -lane divided road at this volume of 750 vehicles per hour, corresponding to 3,000 vehicles per day, the average speed increases to 47 miles per hour or faster, with 10 percent of the vehicles moving at 58 miles per hour or faster; and the congestion index shows a speed difference between vehicles of about 8 miles per hour.

Studies made on the best of four sections of road in two States indicate that as the average volume increases to 10,000 vehicles per day on an undivided 4-lane road on which the traffic is not retarded by intersections and roadside establishments, the maximum anticipated hourly volume of 1,200 vehicles in one direction would move at an average speed of 40 miles per hour, with 10 percent exceeding 54 miles per hour and the congestion index
would become about 7 miles per hour. On modern 4-lane divided highways on which the sharper peaks will be expected, the maximum hourly rate in one direction may reach 1,750 vehicles per hour, but it is likely that the speeds will equal or exceed the values listed above for 1,200 vehicles per hour.

CHARTS SHOW PHYSICAL CONDITION OF SYSTEM

Figure 10 shows a portion of the interregional system from near Los Angeles to Sacramento, California, Distance on the diagram is represented by a very small scale. Beginning at the top, 1937 traffic density for the route is shown in terms of annual average 24 -hour volume classified as total traffic, total trucks and busses, and that portion of the total that is classified as foreign (carrying out-of-State registration tags). Below traffic are shown the number of fatal accidents per mile and their location to the nearest mile. Bclow fatal accidents the number of restricted sight distances are given per individual mile classified as permanent or temporary. The number of sight distances shown are those in each individual mile that are shorter than desirable limits of 1,000 feet and 650 feet in non-mountainous and mountainous areas, respectively. Below sight distance data are shown the number of grades longer than 500 feet in each individual mile exceeding 5 percent in nonmountainous areas and 8 percent in mountainous areas, considered generally as desirable maximum limits.

Below grade data are represented to the indicated scale the number of curves in each individual mile of the highway that in 1937 were sharper than certain indicated desirable standards, generally 6 degrees in non-mountainous areas and 14 degrees in mountainous areas.

Figure 10.--Traffic Profiles, Limiting Physical Components of the Road, and Limiting Features of Bridges for a Section of the Tentatively Selected Interregional Highway System.

Below the curve data are shown pavement and right-of-way widths in feet. The character of the highway surface is represented by the shading or hatching within the broad bands extending across the diagram. The width of the pavement or surface on each mile is represented to the indicated scale by the width of the hatched band. The right-of-way width is shown to the same scale.

Below pavement and right-of-way width follow data on the number per mile of bridges having rated capacities of less than 30,000 pounds, and the rated capacity of the weakest bridge in each mile; the number per mile
of restricted vertical clearances less than 18 feet, and the minimum vertical clearance in the mile; the number of restricted horizontal clearances per mile, and the minimum horizontal clearances per mile expressed as the number of feet less than the specified base width of 30 feet for 2 lanes, 42 feet for 3 lanes, and 54 feet for 4 lanes. The lowest data on the diagram show the maximum gross loads in pounds for the sections involved, based on the data for the loadometer stations located as shown by the circles on the lowest line. The maximum gross loads are shown for 1-day frequency by a solid line and for frequency in the number of days as

Figure 11.-Summary of Physical Conditions on Rural Sections of the Tentatively Selected Interregional Hightif System Arranged in Traffic Volume Groups.
indicated by the number within the circle by a broken line.

Below the diagram are shown the rural mileage, the urban mileage, a mileage scale, the U. S. route number, and the classification of the route into mountainous and non-mountainous.

Figure 11 is a summary of all the physical conditions on the existing mileage of rural sections of the tentative interregional system arranged in traffic-volume groups. This chart shows that 9.9 percent of the total rural mileage carries less than 500 vehicles per day, 25.1 percent carries between 500 to 999 vehicles per day, etc. The horizontal width of the space for showing features within each of the various density groups is proportional to these percentages.

In the lowest space of the chart the average number of vehicles per day for all sections falling within each traffic-density group is plotted. Next above this is plotted the average width of right-of-way for all sections falling within each group. Other conditions are shown graphically in the same manner in the other spaces.

On those sections carrying less than 500 vehicles per day are found the widest right-of-way, a relatively wide pavement, the lowest percentage of concrete or brick pavement, the fewest restricted sight distances per mile, relatively few excessive grades per mile, the fewest excessive curves per mile, and a relatively low rate of occurrence of fatal accidents. In sharp contrast are those sections carrying from 1,000 to 1,499
vehicles per day where there are found a relatively narrow right-of-way, the narrowest pavement, slightly more than 50 percent of the concrete or brick pavement, a relatively large number of restricted sight distances, the greatest number of excessive grades per mile, the greatest number of excessive curves per mile, and the most frequent rate of occurrence of fatal accidents.

Many significant relationships are shown in figure 11. The narrowest right-of-way is found to exist for highway sections carrying 2,000 to 2,999 vehicles per day, the narrowest pavement for sections carrying 1,000 to 1,499 vehicles per day, the greatest percentage of concrete or brick pavement for sections carrying 5,000 to 9,999 vehicles per day, the greatest number of restricted sight distances for sections carrying more than 10,000 vehicles per day, the greatest number of excessive grades per mile for sections carrying 1,000 to 1,499 vehicles per day (but only slightly more than the number occurring on sections carrying more than 10,000 vehicles per day), the greatest number of excessive curves per mile for sections carrying 1,000 to 1,499 vehicles per day, and the greatest number of fatal accidents per hundred million vehicle-miles for sections carrying 1,000 to 1,499 vehicles per day. The safest sections are those carrying more than 10,000 vehicles per day. They are by far the most congested, carrying 340 vehicles per day per foot of width. The sections which rank second in safety are those carrying less than 500 vehicles per day, or only 18 vehicles per day per foot of width.

Charts of similar form have been prepared for each of the 20 longer routes of the system. Their comparison with the summary chart for the entire system indicates, in general, that routes in the southern part of the country are more dangerous than northern routes.

From available data, it is not possible to compare the accident rate on the rural interregional system with that for all rural highways. The accident figures shown have been expressed in terms of the number of fatal accidents per 100 million vehicle-miles of travel on the system in 1937. On the rural interregional system there were 16.04 fatal accidents per 100 million vehiclemiles. It has been estimated that about 1.2 persons were killed in each fatal rural highway accident in 1937. Assuming that this rate applies to the rural interregional system, it implies a death rate of about 19.2 per 100 million vehicle-miles during 1937. The National Safety Council reports that in 1937 there were 15.8 deaths per 100 million vehicle-miles on all rural roads and urban streets.

PAVEMENT AND RIGHT-OF-WAY WIDTHS INADEQUATE

Figure 12 is a summary chart showing the accumulative distribution of right-of-way widths by traffic density groups. From it there can be read directly the percentage of the aggregate length of all rural sections which carry less than any chosen number of vehicles per day and which have right-of-way widths less than any chosen width. For example, if it is assumed that a right-of-way width of 160 feet is desired for all rural sections of the system carrying less than 3,000 vehicles per day, the length of the system requiring additional right-of-way is shown to be 79.5 percent of the aggregate length of all rural sections.

Similarly, figure 13 shows the cumulative distribution of pavement widths. If it is assumed that a pavement
width of 22 feet is desired for all rural sections of the system carrying less than 1,000 vehicles per day (this is a liberal assumption for those roads that now carry less than 600 vehicles per day), the length of the system requiring additional pavement width is shown to be 30.1 percent of the aggregate length of all rural sections. If it is assumed that a pavement width of 24 feet is desired for all rural sections carrying less than 3,000 but more than 1,000 vehicles per day, the length requiring additional pavement width may be obtained by reading, on the vertical bar representing 24 feet, the intercept between the lines representing 1,000 and 3,000 vehicles per day. The length is shown to be 44.8 percent of the aggregate rural length.
A less direct use of figures 12 and 13 is the determination of the deficiency in the area of right-of-way or pavement for any desirable width for any traffic volume group. The area between the limits of the traffic volume group and to the left of the desired width is the deficient area which may easily be converted to acres or square yards.

There is no doubt that, as measured by the diagrams, unsatisfactory conditions with respect to sight distance, curvature, and gradient, are common. There is no doubt that present rights-of-way are largely inadequate. There seems to be generally a reasonable accord between traffic volume and the number of pavement lanes, the amount and character of the traffic, and the kind of pavement or surface in place, but there is inadequate width of pavement lanes on a considerable mileage, usually near cities. These inadequacies are the concomitant of construction operations carried on for more than 20 years, during which period top vehicle speeds have increased from 30 to well above 60 miles per hour. Then, too, when the oldest of the existing pavements were built there were only 2 or 3 million motor vehicles and there was a strong demand for hard surfaced roads to get the traffic through.

These conditions account for the present need for correction of sharp curvature, steep grades, and narrow surfaces and rights-of-way by reconstruction or by abandonment of such obsolete sections and relocating the highway.

The present need is to bring all of these interregional routes gradually up to a higher degree of usefulness by the reduction of excessive curvature, the easing of steep grades, the opening up of longer sight distances, the general widening of pavement lanes and the construction of additional lanes, the separation of opposing traffic on heavily traveled sections, arrangements for the accommodation of slow-moving traffic on steep grades, the separation of grades at railroad grade crossings and important highway intersections and the installation of protective cross traffic controls at others, the abatement of dangerous roadside conditions of all sorts, relocations for directness of travel between important objectives for serving the movements of longer range, and finally, the acquisition of new right-of-way of sufficient width to make all of these improvements possible.

During the next 20 years planning technique will be greatly improved. The determination of the required number of traffic lanes will probably not be determined on the basis of traffic density, but on the basis of some measures of traffic congestion, which will take into account the magnitude, duration, and frequency of occurrence of peak traffic loads, differences in speed of

Figure 12.-Cumulative Distribution of Lengths of Rural Sections of the Tentatively Selected Interregional Highway System Having Variots Right-of-Way Widths and Traffic Densities.

Figure 13.-Cumulative Distribution of Lengths of Rural Sections of the Tentatively Selected Interregional Highway System Having Various Pavement Widths and Traffic Densities.
travel, etc. Until uses of these measures of traffic congestion are perfected, the best basis for classification applicable to present available information is traffic density.

SECTIONS CLASSIFIED BY DAILY TRAFFIC VOLUME
For immediate planning purposes, all rural sections of the interregional system are classified into six groups as follows:

Group I-Sections carrying less than 1,000 vehicles per day.
Group II-Sections carrying 1,000 to 1,999 vehicles per day.
Group III--Sections carrying 2,000 to 2,999 vehicles per day.
Group IV-Sections carrying 3,000 to 4,999 vehicles per day.
Group V-Sections carrying 5,000 to 9,999 vehicles per day.
Group VI-Sections carrying 10,000 or more vehicles per day.

Design standards considered in this study of the interregional system are shown in table 3, and are based on the above classification of rural sections. The "present average daily traffic density" is considered to be the volume of traffic which follows the existing road immediately before the improvement is undertaken, plus the existing traffic then following other routes which would logically be diverted to the interregional road if the improvement were made. It does not include "generated traffic" which is generally defined as that traffic which results from a new desire for travel on the part of certain people who would not care to perform the same travel in the absence of the improved facility.

Groups I and II (traffic density $0-1,999$) contain sections which cannot be expected to carry sufficient traffic to warrant construction to more than 2 lanes during the life of the new surface. The only difference in standards for sections in group I and those in group II is that a wider right-of-way is specified for the latter group. This additional right-of-way is justified by the
improved protection to traffic and by the fact that high right-of-way costs can be aroided on those sections which will become inadequate from the standpoint of service in the shortest time, thus placing them in line for widening when the new surface must be replaced.

Practically all of the sections in group III (traffic density $2,000-2,999$) will be due for construction as 4-lane divided highways when the life of the new surface has expired. Some of them will be ready for this higher type of construction before that time. The same right-of-way widths are specified for this group of sections as are specified for sections in group II.

All of the sections in group IV (traffic density 3,0004,999) are assumed to carry sufficient traffic to warrant their construction as 4-lane divided highways.

Four-lane divided highway construction is also specified for sections in group V (traffic density 5,000-9,999), but greater cost allowances are provided for the attainment of the desirable standards, and more rigid limits are specified for the permissible standards. Many of these sections may require widening before the new surface needs replacement.

Sections in group VI (traffic density in excess of 10,000) are assumed to require special design, usually requiring more than a 4 -lane divided highway.

The design standards marked "desirable" in table 3 apply wherever the average cost per mile for a section of any considerable length, exclusive of the costs of right-of-way, property damage, large bridges, and railroad and highway grade separation structures, does not exceed the amounts shown in column 4 headed "cost limitation, desirable standards." In order to provide flexibility in these standards, three subclassifications, based on topography of the terrain traversed, are

Table 3.-Interregional highway standards

 the right-of-way for the purpose of eliminating objectionable features without necessarily preventing cultivation of arable land.

Number and width of individual 2-lane pavements. All multiple parallel 2-lane pavernents shall be separated by a median or dividing strip of land
${ }^{3}$ Design of shoulders and median or dividing strips shall be consistent with recommendations contained in A Policy on Highway Types, 1940 .

- Exclusive of widening for guardrail.

 foundation and stabilized surface for all shoulders.
- Vertical curves are to be designed as specified in the apnendix.
${ }^{7}$ In relatively level and rolling terrain, 100 feet of this width should run continuously on 1 side of centerline.
- Special design.
- Not specified.
introduced, each carrying a specific cost limitation. These are designated "relatively level," "rolling," and "mountainous."
Wherever construction to desirable standards would exceed these amounts, the standards to be applied are relaxed, but not further than indicated in the columns headed "maximum" or "minimum," except in rare instances.

DESIGN STANDARDS DESCRIBED IN DETAIL

Right-of-way widths.-The desirable width of right-of-way for all rural sections is shown to be 300 feet, except where the principles of border control can be employed. Border control consists of State control of development of a strip of land adjacent to the right-of-way for the purpose of eliminating objectionable features without necessarily preventing cultivation of arable land. Agreements for such control may even include an option to buy the adjacent strips at some future time. Where border control can be obtained, the sum of the right-of-way width and the controlled width should be equal to the right-of-way widths shown in the columns headed "without border control." It should be noted that for 2 -lane highways, the border control principle will permit reductions in required right-of-way widths to as little as one-third to one-half the width otherwise required, and on such highways, where old alinements are followed, the additional right-of-way width required would often be small.

Where right-of-way costs are abnormally high and border control principles cannot be employed, minimum widths are specified, consisting of 200 feet for 2-lane highways, and 240 feet for 4 -lane divided highways.

Pavement widths.-Pavement widths are shown to be 22 feet for traffic densities of less than 1,000 vehicles per day, and 24 feet for traffic densities of 1,000 to 2,999 . Divided highways having two roadways each 24 feet in width are specified for traffic densities of 3,000 to 9,999 vehicles per day.

Shoulder and median strip widths.-Shoulder widths of 8 feet in cut and 10 feet in fill are generally specified as desirable. Minimum requirements permit widths of 8 feet in terrain classified as relatively level, and 4 feet in terrain classified as rolling or mountainous.

The design of shoulders and median strips is to be consistent with recommendations contained in A Policy on Highway Types, published by the American Association of State Highway Officials.

Curvature and grades.- Curves of 3 degrees and grades of 3 percent are specified as desirable for all topography and all groups of highway sections and should control the design wherever the estimated cost is less than the limitations appearing in column 4 of table 3. In topography classified as relatively level, no departure from this requirement is permitted, even though the cost should exceed the limitation. For sections carrying less than 1,000 vehicles per day and located in mountainous country, 10 -degree curves and 6 -percent grades are specified. The standards become increasingly severe for more heavily traveled routes, reaching limits of 5 degrees and 5 percent for mountainous sections carrying more than 5,000 vehicles per day.

Sight distances.-The main controllable features of the highway which restriet sight distances may be classified as cut banks on horizontal curves, and hill crests. At night, sight distance is also limited by the rate of change of the profile elevations in sars, which affects the point at which headlamp rays strike the road surface. At the present time, specifications for lengths of vertical curves in sags are incomplete.

The limiting degree of horizontal curvature must usually be selected on the hasis of a number of economic considerations, only one of which is the extent to which desirable sight distances can be provided. Once the specifications for horizontal alinement and cross sections are settled, the sight distances limited by cut banks on horizontal curves are fixed. Obviously, no advantage to the traveling public can be gained by increasing lengths of vertical curves occurring on horizontal curves beyond those lengths required to provide sight distance equal to that afforded by the horizontal curve. There is, therefore, no justification for construction expenditures for this purpose. For sections of the highway located on tangent and short horizontal curves where sight distance is not restricted by cut banks but by hill crests, vertical curves should be designed as described in the Appendix, page 95.

INTERREGIONAL STANDARDS COMPARED WITH EMERGENCY MILITARY STANDARDS

Highway grade separations are to be designed to conform with the recommendations contained in A Policy on Highway Types published by the American Association of State Highway Officials in 1940. For sections of the interregional highway carrying less than 3,000 vehicles per day and designed with two traffic lanes, grade separations are specified for all intersecting highways carrying more than 500 vehicles per day. Grade separations are also to be used at all railroad crossings. Intersecting roads carrying between 200 and 500 vehicles per day at the time the interregional improvement is constructed will cross at grade employing the design principles contained in A Policy on Highway Types and A Policy on Intersections at Grade.
For sections of the interregional system carrying between 3,000 and 10,000 vehicles per day and where a 4 -lane divided highway is specified, grade separations are specified at all railroad intersections and at all intersecting highways carrying more than 200 vehicles per day. Intersecting roads carrying less than 200 vehicles per day will cross the interregional road at grade by means of special designs conforming to the recommendations contained in A Policy on Highway Types. For sections of the interregional system carrying more than 10,000 vehicles per day, grade separations are assumed for all railroad intersections and all intersecting highways left open for public use. Minor intersecting roads are to be closed to public use unless more than 200 vehicle-miles per day of additional travel are required for existing traffic to use an adjacent grade separation structure.

The foregoing discussion relates entirely to design standards for complete modernization of the interregional system. It will be interesting to compare these standards with the standards recently specified for emergency conditioning of principal routes of military importance. In these recent emergency standards provision is made for strengthening of weak bridges having ratings of less than $\bar{I}-15$, widening of the narrowest bridges having horizontal clearance of less than 18 feet, increasing the vertical clearances of structures now having less than $12 \frac{13}{2}$ feet vertical clearance, widening pavements having surfaces less than 18 feet wide, widening shoulders to 8 - or 10 -foot wilths wherever practical and improving surfaces which are not allweather, dustless, or designed in accordance with present practice of individual States for repeated application of the 9,000 -pound pneumatic wheel load.
The emergency standards provide for the improve-
ment of all weak bridges to withstand $\mathrm{H}-15$ loadings in rural areas and $\mathrm{H}-20$ loadings in metropolitan areas. They provide for the increase of all vertical clearances less than $12 \frac{1}{2}$ feet to a minimum of 14 feet. Where pavement widening is necessary, specified new pavement widths are 20 feet for sections carrying less than 600 vehicles per day, 22 feet for sections carrying 1,600 to 1,799 vehicles per day, and 24 feet for sections carrying more than 1,800 vehicles per day. Where horizontal clearances on bridges are less than 18 feet, the standards specify their widening to a minimum of 4 feet in excess of the pavement widths specified, and preferably 6 feet in excess of these widths. Where horizontal clearances at underpasses are less than 18 feet, the standards specify their widening to a minimum of 30 feet, and preferably to a width equal to the new pavement widths specified plus shoulder widths.

Except in mountainous terrain where heavy grading is encountered, the standards specify the widening of all shoulders that are now less than 8 feet to a minimum width of 8 feet, and preferably to a width of 10 feet, wherever widening of shoulders can be undertaken economically. Where such widening is financially impractical or where sufficient right-of-way cannot be obtained without difficulty, the standards specify as a minimum requirement that 8 - to 10 -foot shoulders about 2,000 feet long be provided at 4 -mile intervals on the same side of the highway. It is recommended in the standards that such intermittent shoulders be staggered on both sides in order to make emergency parking spaces available in one direction or the other at 2-mile intervals.

COST ESTIMATE BASED ON CLASSIFICATION OF SECTIONS IN ACCORDANCE WITH 1937 TRAFFIC DENSITY

For economic development, the improvement of the system must extend over a period of many years. Many existing sections improved to modern standards provide reasonably adequate service. The wisest course to follow is to improve each section to the interregional standards at the time when it can no longer continue to provide reasonably adequate service. On this basis, the worst sections will be improved first; therefore, sections in low traffic density groups as well as those in high traffic density groups will be placed under construction during the same year.

As the traffic density increases from year to year,

Figure 14.-Census Regions of the United States.
the sections will progress from one traffic density group to another. An estimate of cost, therefore, based on a classification of sections in accordance with presentday traffic densities would be low as compared with one which must be developed to represent the actual expenditures required over a period of years. Nevertheless, for planning purposes, an estimate based upon traffic density classifications for a selected year has considerable value in that it can be subdivided by economic regions to show the relative cost, by regions (fig. 14), of the development proposed. These regional costs can be compared with various economic indices to test the soundness of the proposal, and particularly the distribution of the proposed work among the various regions.
The cost of improving the rural sections of the interregional system to the design standards recommended, based upon a classification of sections in accordance with 1937 traffic densities, is shown in table 4. Grouped together are all rural sections in each geographic division for which the same number of traffic lanes are recommended. The estimated length of 2-lane sections is $21,237.3$ miles, and the estimated construction cost is $\$ 1,149,404,000$, or $\$ 54,100$ per mile. The estimated length of 4 -lane sections is $4,048.3$ miles, and the estimated construction cost is $\$ 741,447,000$, or $\$ 183,100$ per mile. The estimated length of sections requiring special designs with more than 4 lanes is 268.6 miles, and the estimated construction cost is $\$ 117,887,000$, or $\$ 438,900$ per mile. Right-of-way

Table 4.-Estimated cost of improving rural sections of the interregional system

Tabise 5.. - Estimated cost of improving urban sections of the interregional system

Geographie nivision	Length	Construction cost per mile	$\begin{aligned} & \text { Estimated } \\ & \text { construction } \\ & \text { cost } \end{aligned}$	15 percent al lowance for engineering and contingencies	25 percent allowance for right-of-way	Total cost	Total enst per mile
New England.	Miles	1,000 dollars	1.000 dollars				
Middle Atlantic.	227.0 407.1	1, 80.5	183,189 429.269	27, 47x	45,797 107 067	254, 464.4	1. 130
Fast North Central	628.4	1, 53.3	337, 451	54, 4118	14, 363	472, 43.3	1. $\begin{array}{r}473 \\ 752\end{array}$
West North Central.	452.5	38.5	174,212	26, 132	43,553	243, $\times 97$	$5: 39$
South Atlantic .-.	5.49.9	3×5	211, 712	31, 757	52, 9288	296t, 397	533!
Fast South Central	320.9	36.5	117. 128	17, 569	29, 242	163, 979	511
West South Central.	437.6	319	139.594	20, 9339	34, x 1×11	193, 4831	417
Mountain.-	371.5	275	102, 162	15, 324	25, 541	143. 027	38.5
Pacific.....-	381.6	548	209, 117	31, 368	52. 279	292, 764	767
United States	3.776.5	504	1,902, 834	285.425	475.708	2, 663,967	705

costs for rural sections are estimated to be 7.5 percent of the construction costs, and an allowance for engineering and contingencies equal to 15 percent of the construction cost is made.

The estimated cost of improving urban sections is shown in table 5. There are $3,776.5$ miles of urban sections, representing 12.9 percent of the total length of the system The estimated construction cost is $\$ 1,902,834,000$, or $\$ 503,900$ per mile. Right-of-way costs are estimated to be 25 percent of this amount, and a further allowance of 15 percent of the construction cost is made for engineering and contingencies.

The estimated costs of urban sections are not sufficient to permit construction to theoretically ideal standards, but they are thought to be reasonable estimates of probable costs which would result from a general program aimed toward providing facilities as nearly approaching the ideal standards as practical, after reasonable compromises had been made. As one test of the consistency of the estimates for individual cities, the costs were reduced to a per capita basis. The estimates showed that per capita costs in large cities were lower than those in small cities. That this should be so is obvous when it is considered that the service rendered to a city by merely projecting the routes of the interregional system through it varies inversely with the population. This condition implies that attention should be directed to the need for extensive city development, which can be accomplished only in small part by the construction of the transcity connections of the interregional system. It emphasizes the fact that the larger the area of local congestion, the less is the amount of relief to be obtained merely by development of the system.

Even though the urban cost, including an allowance for right-of-way, exceeds the rural cost, this urban cost is estimated to be only about one-fifth of the expenditure which must be made to modernize completely all the main connecting thoroughfares in the cities traversed. Unless these additional and greater expenditures are made, the investment in the interregional route is threatened by the rapid obsolescence of urban portions of improved interregional routes which may be anticipated as a result of their attracting a disproportionately large share of traffic. This would probably lead to the outward development of the city further than would prove most ceonomical to its interests. Only by construction of comparable facilities in other directions can the economic growth of cities, and the success of the interregional system itself, be assured.

In sharp contrast to the cost estimates for the improvement of the interregional system to recommended standards is the cost estimate for its improvement to
the standards recently specified for the emergeney improvement of principal routes of military importance. Table 6 shows that the estimated cost of improving rural sections to recommended standards is about six times the cost of improvement to emergency standards. Although a cost estimate on the latter basis was not prepared for urban sections, it would not seem unreasonable to assume that the same relationship would exist between estimates prepared for the urban sections as is shown for the rural sections.

DISTRIBUTION OF SYSTEM COMPARED WITH VARIOUS ECONOMIC indICES

The report Toll Roads and Free Roads suggests that the routes of the system be selected "without specific limitation in each State." Although the system described in this paper was selected on the basis of present traffic service to population concentrations and with particular reference to interregional coverage, it may be well to present certain cconomic facts and see how the selected tentative system measures up to these facts.

Table 6.- A comparison of the estimated cost of emergency work with the estimated cost of improvement to recommended long-range, standards for rural sections of the interregional system

Geographie division	Length of rural sections	Estimated construction cost of improving interregional system		Ratio of cost of emergency work to the cost hasel on long-range standards
		Úsing recommended long-range standards	Using standards recommended for emergency work	
New England	Miles 1,069.	$\begin{array}{r} 1,000 \text { dollars } \\ 143,715 \end{array}$	$\begin{aligned} & 1,000 \text { dollars } \\ & 21,799 \end{aligned}$	Percent 15. 2
Midide Atlantic	1.185. 2	271, 106	18,548	6.4
East North Central	2, 797.3	2.51, 772	25.5.9()	10.2
West North Central	3, 754.3	212.148	52, 206	24.6
South Atlantic.	3.029.2	237, (\%)1	57, 170	24.0
East South Central	2.012.1)	114, 4108	33, 23x	29.0
West South Central	3, 445.0	206, 055	54, 351	26.4
Mountain	5, 709.9	2,47, 364	6if. 116	22.2
Pacific	2. 561.6	275. 26\%	36, 5.57	13.3
United Stat	25.554.2	2, 1008,738	365, 657	18.2

Table 7 shows the population, area, national wealth, national income, cash farm income, value of manufactures, and value of mineral production, distributed by geographic divisions. Table 8 shows these same values expressed in terms of the percentage falling in each of the geographic divisions. Columns are included showing the portion of the length and the cost of the interregional system within each geographic division. The distribution is made on the basis of the rural sections, the urban sections, and also on the

Table 7.-Selected economic data by geographic divisions

Geographic division	$\begin{aligned} & \text { Population } \\ & 1940 \text { : } \end{aligned}$	$\begin{gathered} \text { Area } \\ 19302 \end{gathered}$ 1930^{2}	National wealth $1936{ }^{3}$	National income $1937{ }^{\circ}$	$\begin{aligned} & \text { Cash farm } \\ & \text { income } \\ & 19394 \end{aligned}$	$\begin{aligned} & \text { Value of } \\ & \text { manufactures } \\ & 1937 \text { : } \end{aligned}$	Value of mineral production 1937
New Encland	8,426,566	Square miles	1,000 dollars 22, 615,000	$\begin{aligned} & 1,000 \text { dollars } \\ & 5,459,000 \end{aligned}$	$\begin{aligned} & \text { 1,000 dollars } \\ & 246,500 \end{aligned}$	$\begin{aligned} & 1,000 \text { dollars } \\ & 5,109,927 \end{aligned}$	1,000 dollars 24,757
Middle Atlantic.	27, 419,893	100, 000	87, 613,000	19, 209, 000	672, 600	16,596, 004	708, 931
East North Central	26, 550, 823	245, 564	f4, 841, 000	15, 978, 000	1,540,900	19,971, 022	453,74.5
West North Central	13, 490, 492	510, 804	29, 341, 000	6, 071,000	1, 841,000	$\text { 4, 091. } 727$ $5,403,450$	
South Atlantic.	17, 771, 099	269, 073	27, 049,000	6, 2, 8798, , ,	4891, 800	5, 403, 450	
East South Central. West South Central.	$10,762,967$ $13,052,218$	179, 429,746	17, 363,000	$4,569,000$	847, 200	2, 693, 027	1, 388,412
Mountaio........	4, 128, 042	859, 009	10, 663.000	1. 974.000	506, 300	928,951	543.091
Pacific ...-	$9,682,781$	318, 095	23, 517, 000	6,322, 000	795, 100	3, 938,627	510, 243
United States	131, 409, 881	2, 973, 776	294, 481, 000	69, 419,000	7,711,000	60, 710, 053	4, 672,996

1 Preliminary ficures issued by the United States Bureau of the Census, total includes 125,000 undistributed.
${ }^{2}$ Figures issued by the United States Bureau of the Census.
${ }^{3}$ National Industrial Conference Board Studies in Enterprise and Social Progress, pp. 62, 117.
© Crons and Markets, January 1940.

- TVited States Department of Commerce, report dated Jan. 31, 1940.

6 Minerals Yearbook, 1939, p. 9.
Table 8.-Geographical distribution of the length and cstimated cost of the interregional system in relation to various economic indices

Feographic division	Population 1940 :	Area 1930^{2}	$\begin{gathered} \text { Nation- } \\ \text { al } \\ \text { wealth } \\ 1936^{3} \end{gathered}$	Nation al income 1937^{3}	Cash farm 1939 income	$\begin{gathered} \text { Value } \\ \text { of } \\ \text { manu- } \\ \text { factures } \\ 1937 \text { o } \end{gathered}$	Value of mineral production 1937^{6}	Length of interregional system			Estimated cost of interregional system			Estimated cost of improving rural sections of system to "emergency" standards
								Rural sections	Urban sections	All sections	Rural sections	Urban sections	All sections	
	Percent													
Middle Atlantic		3.4	29.7		8.7	27.3	15. 2	4. 6	10.8	5. 4	13.5	22.5	18.2	5. 1
East North Central	20.2	8.2	22.0	23.0	20.0	32.9	9.7	11.0	16.6	11.7	12.5	17.7	15. 2	7.0
West North Central	10.3	17.2	10.0	8.7	23.9	6.8	8.9	14.7	12.0	14.4	10.6	9.2	9.8	14.3
South Atlantic.-	13.5	9.0	9.2	10.1	10.2	8.9	8.7	11.9	14.6	12.2	11.8	11.1	11.5	15.6
East South Central	8.2	6.0	3. 9	4.1	6. 1	3.3	4.7	7.8	8.5	7.9	5. 7	6.2	5. 9	9.1
West South Central.	9.9	14.5	5. 9	6. 6	11.0	4.4	29.7	13.5	11.6	13. 2	10. 3	7.3	8.7	14.9
Mountain	3.2	28.9	3.6	2.8	6.6	1.5	11.6	22.3	9.8	20.7	14.8	5.4	9. 9	18.1
Pacific...	7.4	10.7	8.0	9.1	10.3	6. 5	10.9	10.0	10.1	10.1	13.7	11.0	12.3	10.0
United States	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

[^2]basis of the rural and urban sections combined. For purposes of comparing the cost of the work that would be done in each region following the long-range reeommended standards with the cost of the work that would be done following the emergency standards, the column on the extreme right has also been added which shows the distribution of the costs of the emergency work

Figure 15 shows this same comparison graphically. To the left of the group of plotted values for each geographic division, the general cconomic indices are grouped. The value plotted to the extreme left is the percentage of the United States population that falls within the geographic division; next is the percentage of the area; third, the percentage of the national wealth; fourth, the percentage of the national income; fifth, the percentage of the national cash farm income; sixth, the pereentage of the national value of manufactures, and finally, the percentage of the national value of mineral production. The next group of plotted values shows the percentage of the length of the interregional system falling within the geographic division. In this group, the ralue to the left represents the percentage of the length of all rural sections, and the one on the right represents the percentage of the total length including both rural and urban sections, and the mid-section represents the percentage of all urban sections. The third group of plottings shows the percentage of the estimated cost of the interregional system falling within
the geographic division. The value to the left shows the percentage of the cost of all rural sections, and one on the right shows the percentage of the total cost including both rural and urban sections. The single value plotted on the extreme right for each geographic division represents the percentage of the estimated total cost of improvement of rural sections to emergency standards.

It will be noted that the distribution of mileage does not always compare favorably with the various economic indices. However, the distribution of costs of construction to long-range standards in all such cases tends to correct this condition. The level of the plotted values for rural costs alone is usually nearer the level of the cconomic indices, and the level of the plotted values for total costs is still nearer. The conclusion may be drawn that the system selected on the basis of present traffic service to population concentrations is well distributed on a general cconomic basis.

The levels of the plotted values representing the percentage distribution of the estimated cost of improvement of rural sections to emergency standards, when compared with the levels of the economic indices, is not so favorable. This is caused by the fact that in working to emergency standards, the same degree of improved service cannot be afforded throughout the country. Only the worst conditions can be remedied.

Table 9 shows the distribution to geographic divisions

ITEM 1 = PERCENTAGE OF POPULATION
ITEM 2 : PERCENTAGE OF NATIONAL AREA
ITEM 3 = PERCENTAGE OF NATIONAL WEALTH
ITEM 4 = PERCENTAGE OF NATIONAL INCOME
ITEM 5 = PERCENTAGE OF CASH FARM INCOME ITEM 6 = PERCENTAGE OF VALUE OF MANUFACTURES ITEM 7 = PERCENTAGE OF VALUE OF MINERAL PRODUCTION

ITEM 8 = PERCENTAGE OF INTERREGIONAL SYSTEM RURAL MILEAGE ITEM 9 = PERCENTAGE OF INTERREGIONAL SYSTEM URBAN MILEAGE ITEM $10=$ PERCENTAGE OF INTERREGIONAL SYSTEM TOTAL MILEAGE
ITEM \| = PERCENTAGE OF INTERREGIONAL SYSTEM RURAL COSTS
ITEM 12 : PERCENTAGE OF INTERREGIONAL SYSTEM URBAN COSTS
ITEM 13 = PERCENTAGE OF INTERREGIONAL SYSTEM TOTAL COSTS
ITEM 14 = PERCENTAGE OF COST OF IMPROVING RURAL SECTIONS O. INTERREGIONAL SYSTEM (EMERGENCY STANDARDS)

Figure 15.-Geographical Distribution of the Length and Estimated Cost of the Tentatively Selected Interregional Highway System in Relation to Various Economic Indices.

Table 9.-Pertinent highway facts and figures by geographic divisions

Geographic division	Federal-aid anportionments 1941	Mileage of rural highways ${ }^{1}$	Mileage of urban streets and alleys	Total mileage of roads, streets and alleys	Motor-vehicle registrations $1939{ }^{3}$	State highway income 1939 4
New England	1,000 dollars 7, 134	Miles $82,364$	Miles 14, 591	Miles	Vehicles	1,000 dollars
Middle Atlantic.	17,781	187, 494	47, 802	235, 296	$\begin{aligned} & 1,944,810 \\ & 5,813,487 \end{aligned}$	$\begin{array}{r} 91,450 \\ 187,911 \end{array}$
East North Central	25, 364	438, 311	67. 033	505, 344	7, 078.336	195, 464
West North Central	25, 390	765, 604	49, 706	815, 310	3, 862, 461	115, 000
South Atlantic.....	19, 754	333, 472	33, 288	366, 760	3, 275,027	185,365
East South Central.	12,190 18,486	238,832 380,273 3	16,758 34,128 1	255,590 414,401	$1,458,731$ $2,800,053$	94,041
Mountain...........	18, 17.253	380,273 333,050	34,128 14,178	414,401 347,228	$2,800,053$ $1,210,838$	118,164 66,260
Pacific.	11,010	194, 967	26, 336	221, 303	$3,565,177$	
United States	154, 362	2, 954, 367	303, 820	3, 258, 187	31, 007,620	1, 144, 064

[^3]T'able 10.--Gcographical distribution of the length and estimated cost of the interregional system in relation to various highway factors

Geograyhic division	Foder-al-aid appor-tionments 1941	Mileage of rural highways ${ }^{1}$	Mileage of urhan streets and alleys ${ }^{2}$	Total mileage of roads, streets and alleys	Motorvehicle registrations $1939{ }^{3}$	state highway income 19394	Length of interregional system			Estimated cost of interregional system			Estimated cost of improving rural sections of systern to "emergency" standards
							Rural sections	Urban sections	All sections	Rural sections	Urban sections	All sections	
	Percent												
Nidedle Atlantic	4. 6 11.5	2. 8	4.8	3.0	6. 3	8.0	4.2	6.0	4. 4	7.1 13	9. 6	8. 5	5.9 5.1
Erast North Central	16. 4	14.8	22. 0	15. 5	22.8	17.1	11.0	16.6	11. 7	12. 5	17. 7	15. 2	5. ${ }^{\text {5. }}$
West North Central	16.5	25.9	16. 4	25.0	12.5	10.1	14.7	12.0	14.4	10.6	9.2	9.8	14.3
South Atlantic	12.8	11.3	11.0	11.3	10.6	16.2	11.9	14.6	12.2	11.8	11.1	11.5	15. 6
East South Central	7.9	8. 1	5.5	7.8	4. 7	8. 2	7.8	8.5	7.9	5.7	6. 2	5. 9	9.1
West south Central	12.0	12.9	11.2	12.7	9.0	10.3	13.5	11. 6	13.2	10.3	7.3	8.7	14.9
Mountain.	11.2	11.3	4. 7	10.7	3.9	5.8	22.3	9.8	21. 7	14.8	5. 4	9.9	18.1
Pacific..-	7.1	6.6	8. 7	6.8	11.5	7.9	10.0	10.1	10.1	13.7	11.0	12.3	10.0
Inited States	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

[^4]of highway factors. These items include the 1941 Federal-aid apportionments, the total rural highway mileage, the mileage of urban streets and alleys, the 1otal mileage of roads, streets, and alleys, the 1939 motor vehicle registrations, and the State highway departments' income in 1939. In table 10 these items are expressed in terms of the percentage which falls in each weographic division, and are compared with the portions of the length and the cost of the interregional system falling within each division. Figure 16 shows these same relationships graphically.
BOTH FREIGHT AND PASSENGER VEHICLES MAKE EXTENSIVE USE OF SYSTEM
Freight vehicles.-Close estimates of the use of the rural interregional highways by commercial freight vehicles and the tonnage hauled may be obtained for mach state from the average daily commercial traffic per mile, the mileage of the system, the average load carried by commercial vehicles, and the percentage of total commercial vehicles that were loaded. All of these data are produced by the highway planning survers.

Table 11 shows the mileage of rural interregional highways and the average daily ton-mileage of goods carried by commercial vehicles for each region. The commeretial vehicle-mileage of loaded vehicles by States multiplied by average carried load is the basis of these estimates.

The relative use of rural interregional highways varies widely between regions of the country. In the Mountain Region average daily ton-miles per mile of highway are 314 , as compared with 840 ton-miles per mile for the country as a whole. Vehicle loadings in the Mountain Region are not below average, but the number of commerical vehicles per mile is lower than in any other region.

In the Whest South Central Region (Arkansas, Lomisiana, Oklahoma, and Texas) the average vehicle load is less than in the Mountan Region, but because the average number of commerical vehicles using the highways in the West South Central Region is higher, the average daily ton-miles per mile is larger than in the I_{om} (ain Regrion.

Ton-miles per mile are greatest in the East North Central Region (Ohio, Indiana, Illinois, Michigan, and Wisconsin). In this region the average number of commercial vehicles is high, and the average carried load per vehicle exceeds that in any other region.

The average daily ton-miles for the country carried by motor vehicles on the tentative rural interregional system totals $21,456,000$; on an annual basis the system is estimated to carry $7,831,000,000$ ton-miles. Total truck ton-miles of carried load for all rural highways, exclusive of purely local haulage, are estimated at approximately 57 billion in $1939 .^{2}$ Thus, the rural interregional highway system, comprising 25,554 miles or less than 1 percent of the rural highway mileage of the United States, carries approximately 14 percent of the total truck ton-miles of carried load generated upon all rural highways.

Passenger cars.-Estimates of the use of the rural interregional highways by passenger cars are obtained from the highway planning surveys. These data are presented in table 12, together with a compilation of the passenger-car miles per mile.

As in the case of freight vehicles, the use of the tentative rural interregional system by passenger cars varies widely by regions; in fact, the variation between regions is much wider than in the case of freight vehicles. In the South Atlantic Region, for example, freight-

[^5]

ITEM 1 = PERCENTAGE OF TOTAL AREA
ITEM $2=$ PERCENTAGE OF TOTAL MILEAGE OF RURAL ROADS
ITEM 3 = PERCENTAGE OF TOTAL MILEAGE OF URBAN STREETS AND ALLEYS
ITEM 4 = PERCENTAGE OF TOTAL MILEAGE OF ROADS, STREETS AND ALLEYS
ITEM 5 = PERCENTAGE OF TOTAL MOTOR-VEHICLE REGISTRATION
ITEM 6 : PERGENTAGE OF STATE HIGHWAY INCOMES

ITEM 7 = PERCENTAGE OF INTERREGIONAL SYSTEM RURAL MILEAGE
ITEM 8 = PERCENTAGE OF INTERREGIONAL SYSTEM URBAN MILEAGE
ITEM 9 = PERCENTAGE OF INTERREGIONAL SYSTEM TOTAL MILEAGE
ITEM 10 = PERCENTAGE OF INTERREGIONAL SYSTEM RURAL COSTS
ITEM $\|$ = PERCENTAGE OF INTERREGIONAL SYSTEM URBAN COSTS
ITEM 12 = PERGENTAGE OF INTERREGIONAL SYSTEM TOTAL COSTS
ITEM 13 = PERCENTAGE OF COST OF IMPROVING RURAL SECTIONS OF INTERREGIONAL SYSTEM (EMERGENCY STANDARDS)

Figure 16.-Geographical Distribution of the Length and Estimated Cost of the Tentatively Selected Interregional Highivay System in Relation to the Geographical Distribution of Various Highway Factors.
vehicle use per mile of the interregional system is 45 percent more than the average for the United States, while passenger-car use per mile in the South Atlantic Region is but 13 percent more than the average for the United States.
Again, in the Middle Atlantic Region the passengercar use per mile exceeds the average for the Nation by 154 percent, while freight-vehicle use per mile exceeds the average for the Nation by but 51 percent.
Thus, the road use by freight vehicles, although the range is considerable, tends to be much more uniformly distributed by regions than is the case in passengercar use.

Total passenger-car miles in 1938 for all rural roads in the United States, derived from the road-use surveys, are estimated at 146 billion. Passenger-car use of the interregional system, from table 12, is 14,948 million
passenger-car miles, or approximately 10 percent of passenger-car use of all rural roads of the country.
Table 12.-Estimated average daily passenger-car miles and passenger-car miles per mile on the tentative rural interregional highway system in 1938

Geographic division	Miles	Average daily passen-ger-car miles	Passengercar miles per milo ${ }^{1}$
New England	1,070	3, 024, 787	2,827
Middle Atlantic.	1,185	4, 833, 445	4,079
East North Central	2. 797	$5,655,758$	2,022
West North Central	3. 754	4. 594,484	1,224
South Atlantic.	3, 029	5. 485,726	1,811
East South Central	2,002	2,461, 876	1, 230
West South Central	3. 445	4,844, 882	1. 408
Mountain. -	5,710	4, 073, 109	713
Pacific	2,562	$5,979,161$	2, 334
United States	25, 554	40, 953, 228	1,603

Table 13.-Motor-vehicle taxes and other highway-user costs, 1934-99 1

	Year	Net total motor-fuel tax receipts?	Motorvehicle registration receipts ${ }^{3}$	Motorcarrier tax receipts	Federal excise taxes paid by highway users ${ }^{\circ}$	Bridge and tunnel tolls ${ }^{0}$	Ferry tolls *	Total *
$\begin{aligned} & 1934 \\ & 1035 \\ & 1936 \\ & 1937 \\ & 1938 \\ & 1139 \end{aligned}$		$\begin{array}{r} 1,000 \text { dollars } \\ 566,642 \\ 619,677 \\ 691,420 \\ 761,998 \\ 711,764 \\ 821,656 \end{array}$	$\begin{array}{r} 1,000 \text { dollars } \\ 307,260 \\ 32,974 \\ 359,783 \\ 399,613 \\ 388,825 \\ 412,494 \end{array}$	$\begin{array}{r} 1,000 \text { dollars } \\ 9,402 \\ 12,421 \\ 15,137 \\ 16,216 \\ 16,421 \\ 18,055 \end{array}$	1,000 dollars 235,743 256,671 297,142 326,515 267,959 320,373	$\begin{array}{r} 1,000 \text { dollars } \\ 46,693 \\ 49.375 \\ 53,600 \\ 57,082 \\ 57,424 \\ 60,621 \end{array}$	$\begin{array}{r} 1,000 \text { dollars } \\ 15,151 \\ 16,021 \\ 17,392 \\ 18,522 \\ 18,633 \\ 19,670 \end{array}$	$\begin{array}{r} 1,000 \text { dollars } \\ 1,180,841 \\ 1,277,139 \\ 1,434,474 \\ 1,579,946 \\ 1,521,026 \\ 1,652,869 \end{array}$

[^6]Table 14.-Percentage of motor-vehicle taxes and other highway user costs for 1934 to 1939 from each source ${ }^{1}$

Year	Net total motor-fuel tax receipts ${ }^{2}$	Motorvehicle registration receipts ${ }^{3}$	Motorcarrier tax receipts ${ }^{4}$	Federal excise taxes paid by highway users ${ }^{5}$	Bridge and tunnel tolls ${ }^{6}$	Ferry tolls ${ }^{6}$	Total ${ }^{7}$
1934	Percent 48.0	Percent 26. 0	Pereent 0.8	Percent 20.0	Percent 4.0	Percent 1.2	Percent 100.0
193.5	48.5	25.3	1.0	20.0	3.9	1. 3	100.0
1936	48.2	25. 1	1.1	20.7	3.7	1.2	100.0
1937	48.2	25.3	1. 0	20.7	3. 6	1. 2	100.0
1938	50.7	25.6	1.1	17.6	3.8	1.2	100.0
1939	49.7	24.9	1.1	19.4	3.7	1.2	100.0
A verage.-	49.0	25.3	1.0	19.7	3.8	1.2	100.0

[^7]
MOTOR-VEHICLE TAXES AMOUNT TO 0.582 CENTS PER VEHICLEMILE

A highway, like an automobile, carns nothing except when used for transportation service. The more the road is used, the greater are its earnings. These carnings come from various highway-user charges, the more important of which are the motor-fuel taxes, registration fees, and Federal excise taxes. Motor-carrier taxes and tolls comprise a small portion of the cost of operating motor wehicles over the highways. Tables 13 and 14 show these data for the years 1934 to 1939, inclusive.

While the data contained in these two tables are ussful for the country as a whole, there is no published information showing the carning power of individual roads. Such information must be calculated from various data such as the vehicle-miles of travel on the road, gallons of gasoline consumed, the rate of gasoline taxes, and the relation between gasoline taxes and other motor-velhicle taxes.

The Public Roads Administration has estimated that in 1939 there was a total of $287,747.5$ million vehiclemiles of travel by all kinds of motor vehicles, and that the gasoline consumed amounted to $22,685,056,000$ gallons, of which motor vehicles utilized 91.40 percent, or $20,735,120,000$ gallons. On this basis a motor vehicle traveled on the average $1: 3.88$ miles while consuming 1 gallon of gasoline. This mileage figure repre-
sents a weighted average of gasoline consumption by all kinds of motor vehicles used on city streets and on highways.
From table 14 it is shown that the average of the gasoline tax during the 6 years, 1934-39, constituted 49.0 percent of all motor-vehicle taxes for those years. The Public Roads Administration has also calculated that the weighted average State gasoline tax for the country in 1939 was 3.96 cents per gallon. On this basis the total motor-vehicle taxes collected on a motor vehicle while consuming 1 gallon of gasoline amount to 8.08 cents. By dividing the total taxes collected on a motor vehicle while consuming 1 gallon of gasoline by the total distance traveled, the total tax burden on a motor vehicle per mile is ohtained. This amounts to 0.582 cent.

Table 15 shows the annual carnings of rural sections of the tentative interregional system grouped in accordance with geographic divisions and 1937 traffic densities, based upon this rate of 0.582 cent per ve-hicle-mile. A more detailed study of tax rates by regions would make possible some refinement of the regional earnings.

The earnings have been reduced to a per mile basis in order to compare later the annual cost of each section with its earning capacity.

The annual earnings during the lifetime of an im-

Table 15.-Approximate earnings ${ }^{1}$ of rural sections of the interregional highway system for the year 1937

Geographic division	Sections carrying less than 3,000 vehicles per day				Sections carrying more than 3,000 vehicles but less than 10,000 vehicles per day				Sections carrying 10.000 or more vehicles per day				All sections			
	Length	Daily traffic	Annual earnings		Length	Daily traflic	Annual earnings		Length	Daily traffic	Annual earnings		Length	Daily traffic	Annual earnings	
			Total	Per mile			Total	$\begin{aligned} & \text { Per } \\ & \text { mile } \end{aligned}$			Total	Per mile			Total	Per mile
		$1,000$ vehicle-	1,000			1,000 vehicle-	1,000			$1,000$ vehicle-	1,000			1.000 vehicle-	1,000	
New England -	$\begin{aligned} & \text { Miles } \\ & 662.2 \end{aligned}$	miles	dollars	Dollars 2. 210	Miles	miles	dollars	Dollars	$\begin{gathered} \text { Miles } \\ 703 \end{gathered}$	miles	dollars	Dollars	Miles	miles	dollars	Dollars
Middle Atlantic	383.0	808	1,716	4,480	699.6	3,682	7,822	11, 180	102.6	1,205	2, 560	24,950	1,185. 2	5, 6995	12,098	10, 210
East North Central	2, 072.8	3,915	8, 317	4,010	720.4	3, 193	6,783	9,420	4.1	45	96	23, 410	2,797.3	7,153	15, 196	5,430
West North Central	3,516. 6	4,761	10,114	2,880	233.4	1,047	2,224	9,530	4.3	53	113	26, 280	3, 754. 3	5, 861	12,451	3, 320
South Atlantic	2,442.3	3, 848	8,174	3,350	541.7	2,579	5,479	10,110	45.2	630	1,338	29,600	3,029. 2	7,057	14,991	4,950
East South Central.	1,873.1	2, 729	5,797	3,090	128.9	541	1,149	8,910					2,002.0	3, 270	6,946	3, 470
West South Central	3, 035.6	4,489	9, 536	3,140	403.2	1,667	3, 541	8,780	6. 2	66	140	22, 580	3, 445.0	6, 222	13,217	3, 840
Mountain	5, 566.9	4, 494	9,547	1,710	143.0	600	1,275	8,920					5,709.9	5, 094	10,822	1,900
Pacific...	1,684.8	2,334	4,958	2,940	840.9	4,344	9, 223	10,970	35.9	396	841	23, 430	2, 561.6	7,074	15,027	5,870
United States	21, 237.3	28, 068	59, 625	2,810	4, 048.3	19,691	41,830	10,330	268.6	3, 498	7,431	27,670	25, 554. 2	51, 257	108, 886	4, 260

1 The earnings are based on a rate of 0.582 cent per vehicle-mile, which is the estimated rate for the period 1934-39.
provement greatly exceed the present earnings of an existing highway because of diverted traffic, generated traffic, and the normal rate of increase in traffic. The extent of the influence of each of these three factors will vary considerably with the region, the proximity to urban areas, the type of service rendered, etc. Such variations must be ignored in this paper, and general assumptions must be made for the country as a whole. It seems conservative to estimate that at the time an average rural section is improved to rural standards, the increase in traffic resulting from diversion would be approximately 10 percent, and generated traffic would be approximately 5 percent of the existing traffic. During the lifetime of the improvement, assuming an average life of 30 years, the normal rate of increase in traffic should be such that the average traffic during the entire period should be at least 50 percent greater than the traffic using it during the first year the improved facility is in operation. The average traffic during the lifetime of the improvement would, on the basis of these assumptions, be equal to 150 percent times 110 percent times 105 percent of the traffic using the existing highway, or approximately 173 percent.

The design standards to be applied are controlled by the traffic density of the particular section, adjusted to include traffic which will be diverted to the improvement. The improvements on the system are to extend over a period of years, and the distribution of the rural sections among the various traffic-density groups will shift materially by the time reconstruction of all sections has taken place. Some of the sections constructed in later years would still have earnings comparable with improvement costs after the life of some of the first sections had expired. For these reasons, the total earning capacity of the system would have to be estimated on a very complicated basis, requiring many assumptions. However, the total carning capacity of the system need not be known in comparing the costs with the earnings. If it can be shown that there is a favorable ratio of carnings to costs for any section regardless of which traffic density group it may happen to fall in at the time of its improvement, the ratio of earnings to costs for the system would also have to be favorable.

For a section falling within any one of three major traffic density groups, when classified on the basis of its traffic density, adjusted to include diverted traffic, the average annual earnings per mile and per vehiclemile during the lifetime of the improvement are shown in table 16 , it being assumed that the influence of generated traffic and the normal rate of increase combined would be equal to 105 percent times 150 percent or 157 percent. In this same table there is also shown the amount to which these earnings would accumulate during a period of 30 years, which is assumed to be the average life of the improvements. These earnings per mile would, of course, shift to higher or lower levels if the improvement program were carried on in such a manner that the average adjusted initial traffic density of all sections selected for improvement within any density group were allowed to depart from the 1937 determined average traffic density of that group. An increase can hardly be avoided for the lower traffic density group, but, theoretically, the levels for the intermediate and high traffic density groups could be maintained. Difficulties arising from shifts in levels can be avoided by confining appraisals of earnings to a vehicle-mile basis. The vehicle-mile basis also applies just as well to one geographic division as to another, whereas the earnings per mile within any density group for a geographic division and for the 30-year period following improvement cannot be estimated reliably without exhaustive study.

Table 16.- Average earnings of rural sections of the tentative interregional high way system ${ }^{1}$

Initial traffic density adjusted to include traffic which would be attracted by the improvement	Annual earnings for adjusted initial traffic density		Average annual earnings for 30 year period after improvement		Total earnings for 30-year period after improvement	
	Per mile	Per 1,000 vehiclemiles	Per mile	Per 1,000 vehiclemiles	Per mile	Per 1,000 vehiclemiles
Less than 3,000	\$2, 810	\$5. 82	\$4,410	\$5. 82	\$132, 300	\$5. 82
3,000-9,999	10,330	5. 82	16, 220	5.82	486, 600	5. 82
10,000 and over.	27, 870	5. 82	43, 410	5. 82	1,303,200	5. 82

[^8]

Figure 17.-Average Maintenance Costs Per Mile for Various Traffic Densities.

IMPROVEMENT, MAINTENANCE, AND OPERATION COSTS DISCUSSED

The estimated cost of improving and operating the system must include suitable allowances for administration, maintenance, operation, and policing, in addition to the cost of the improvements. The cost of improvements actually includes the initial cost, the cost of emergency reconstruction caused by floods, slides, etc., the cost of widening some of the sections where the rate of traffic increase is abnormally high, etc. Allowances for these various classes of construction may be made either in a direct manner or they may be made by considering the average life of the improvements to be a little shorter than the anticipated life of those sections not requiring any reconstruction. The latter basis is preferred, and it is assumed that an average life of 30 years for sections built to the recommended standards is reasonable for the shortened life.

Estimated maintenance costs are based on the unit costs shown in figures 17 and 18. These curves were drawn through the field of points obtained by plotting the maintenance cost data reported in Public Aids to

Transportation, Volume IV. ${ }^{3}$ The curves for the inter-mediate-type roads were carried no further than the 3,000 average traffic density ordinate, because it is assumed that any intermediate type surfaces would not be placed on sections carrying more than this number of vehicles. The portion of the curves for the hightype surfaces shown by means of dashed lines was projected for high-traffic densities beyond the range of the plotted points.
The curves should not be considered applicable to 4 -lane highways but merely as indicative of the extent to which maintenance costs on 2-lane highways vary with traffic densities up to 5,500 vehicles per day. Beyond this traffic density the dashed curves should be regarded as theoretical projections of the trend in the maintenance costs which might logically be used as a measure of the rate of change in maintenance costs on 4 -lane divided highways. The 4 -lane highway maintenance costs would obviously be at some higher level. Considering the fact that most of the heavier traveled sections requiring 4-lane treatment will be located where more than usual attention must be paid

Figure 18.-Average Maintenance Costs Per Vehicle-Mile for Various Traffic Densities.
to landscaping, it has been assumed that the amounts indicated by the curves based on 2-lane maintenance costs should be doubled. For highway sections carrying more than 10,000 vebicles per day where special design is recommended, amounts equal to two and onehalf times those indicated by curves based on 2-lane maintenance costs have been assumed.

In selecting from the curves a value that is applicable for the life of an improvement, it is necessary to select the value corresponding with the average traffic density during the period of service and not the value for the traffic density at the time of the improvement. In accordance with assumptions made in the calculation of the earning power of the system, the traffic density controlling the selection of the maintenance cost should be 157 percent of the initial traffic density adjusted to include divertable traffic. For values selected for traffic densities of less than 3,000 , a point lying somewhere between the two curves should be selected.

Table 17 shows the estimated maintenance and opera-
tion cost during the life of the improvement based upon values obtained from the curves shown in figures 17 and 18. An allowance for policing equal to 15 percent of the maintenance and operation cost is made and an allowance of 5 percent of the total construction and maintenance expenditures is made for administration and overhead.

For a section falling within any one of three major traffic density groups, when classified on the basis of its traffic density adjusted to include diverted traffic, the cost per 1,000 vehicle-miles and the average annual and total costs per mile during the lifetime of the improvement are shown in table 18. As in the case of the earnings similarly shown in a previous table, the costs per vehicle-mile would shift to higher or lower levels if the improvement program were carried on in such a manner that the average initial traffic density of all sections selected for improvement within any density group were to depart from the 1937 determined average traffic density of that group. However, in contrast to the tendency for the earnings per mile to increase, a
decrease can hardly be avoided in the costs per vehiclemile for the lower traffic density groups, but it would be possible to maintain the levels in the other groups. The effect of any probable change of levels will always be to improve the relationship between earnings and costs, as can be shown by comparison of the estimated earnings and the estimated costs shown in this paper.

Table 17.- Average costs of improving and operating rural sections of the tentative interregional system

Intial traffic density adjusted to include traffic which would be attracted by the improvement	Initial cost ${ }^{1}$ of of the im-provement per 1,000 ve-biclemiles of travel during the 30 year period	Maintenance and operation costs, including policing, per 1,000 vehiclemiles of travel during the 30year period	Adminstration costs per 1,000 ve^{-} hiclemiles of travel during the $30-$ year period	A verage annual cost of improvement and operation during the 30 -year period		Total cost of improvement and operation during the $30-$ year period	
				Per mile	Per 1,000 vebiclemiles	Per mile	$\begin{array}{\|c} \text { Per } \\ 1,000 \\ \text { vehicle- } \\ \text { miles } \end{array}$
$\begin{aligned} & \text { Less than } 3,000 \ldots \\ & 3,000-9,999 \ldots \\ & 10,000 \text { and over... } \end{aligned}$	$\$ 2.92$ 2.68 2.40	$\$ 0.55$.55 .39	$\$ 0.17$.16 .14	$\$ 2,760$ 9,460 21,900	$\$ 3.64$ 3.39 2.93	$\begin{aligned} & \$ 82,800 \\ & 283,800 \\ & 657,000 \end{aligned}$	$\$ 3.64$ 3.39 2.93

${ }^{1}$ Includes allowances for right-of-way engineering, and contingencies.
Table 18.-Estimated maintenance and operation costs for rural sections of the tentative interregional system ${ }^{1}$

Initial traffic density adjusted to include traffic which would be attracted by the improvement	Annual costs for adjusted initial traffic density		A verage annual costs during 30 year period after improvement		Total costs during 30-year period after improvement	
	Per mile	Per 1,000 vehiclemiles	Per mile	Per 1,000 vehiclemiles	Per mile	Per 1,000 vehiclemiles
Less than 3,000 3,000-9,999..... 10,000 and over	$\begin{gathered} \text { Dollars } \\ 320 \\ 1.040 \\ 2,150 \end{gathered}$	Cents 66. 336 58. 580 45. 227	$\begin{array}{r} \text { Dollars } \\ 362 \\ 1,330 \\ 2,550 \end{array}$	Cents 47.798 47.716 34. 167	Dollars 10,860 39, 900 76, 500	Cents 47. 798 47.716 34. 167

1 It is assumed that the average traffic density for the 30 -year period will be 157 percent of the initial traffic density adjusted to include traffic which would be at) tracted by the improvement.

SUMMARY
Table 19 shows a comparison of the estimated earnings during a 30 -year period with the total estimated costs during a 30 -year period, which is assumed to be the average life of a section improved to the recommended standards. This is the picture that is obtained when improvements are financed on a "pay as you go" basis, from current revenues, and are undertaken after the present improvement has paid for itself and is due for reconstruction. Obviously, other relationships would exist if new improvements were to be financed by other methods or if new improvements were to be undertaken before the present improvements had served their economic life. If the whole program were to be undertaken at once, financing charges would have to be included in the costs, and earnings required to liquidate the unretired balance of the investments in existing improvements would have to be subtracted from the carnings. These two operations would narrow or possibly wipe out the excess earnings of the system.

Before these excess earnings, shown in table 19, excite too much enthusiasm for the interregional highway system proposal, and before they invite false conclusions as to the advisability of proceeding immediately with a great portion of the work financed by
borrowed money, careful consideration must be given to their true meaning.

Table 19.-Comparison of costs and earnings of rural sections of the tentative interregional system

Lnitial traffic density adjustod to include traffic which would be attracted by the improvement	Total cost of improvement and operation during the $30-$ year period		Total earnings during the 30 -year period		Excess of earnings over costs during the $30-$ year period		Ratio of costs to earnings during the 30 year period
	$\begin{aligned} & \text { Per } \\ & \text { mile } \end{aligned}$	Per 1,000 vehicle miles	Per mile	$\begin{gathered} \text { Per } \\ \text { 1,000 } \\ \text { vehicle } \\ \text { miles } \end{gathered}$	Per mile	$\begin{gathered} \text { Per } \\ 1,000 \\ \text { vehicle } \\ \text { miles } \end{gathered}$	
Less than 3,000 3,000-9,999.... 10,000 and over.	$\begin{aligned} & \$ 82,800 \\ & 283,800 \\ & 657,000 \end{aligned}$	$\begin{array}{r} \$ 3.64 \\ 3.39 \\ 2.93 \end{array}$	$\begin{array}{r} \$ 132,300 \\ 486,600 \\ 1,303,200 \end{array}$	$\$ 5.89$ 5.89 5.89	$\begin{aligned} & \$ 49,500 \\ & 202,800 \\ & 646,200 \end{aligned}$	$\begin{array}{r} \$ 2.25 \\ 2.50 \\ 2.96 \end{array}$	Percent 63 58 50

Present practice does not consist of financing highways of a single class with funds earned by that class. If costs and earnings were balanced for each class of highways, lightly traveled routes could seldom be improved with available funds to the minimum standard satisfactory to the highway users. The construction of lightly traveled secondary and local roads must be subsidized from excess earnings of heavily traveled routes. Unless this practice were followed, lightly traveled routes could not be developed unless additional funds from a new source were made available. Unless lightly traveled or feeder routes, which provide access to widely scattered points, were developed, the main highways would be less heavily traveled and the earning capacity of the main traveled routes would be reduced.
The interregional highway system tentatively selected is the most heavily traveled integrated national system that it has been possible to select. The routes in each State are invariably the greatest, or at least among the greatest, revenue producing routes. It would seem that even a lower percentage of their total earnings should be applied to the development and operation of the system than is applied to the remaining heavily traveled routes of the State highway systems, if equilibrium is to be maintained amongst the various systems.
It is interesting to note that even within the interregional system, table 19 shows that the total earnings during the 30 -year period following improvement would exceed the total costs during the 30 -year period by greater amounts for the more heavily traveled sections than for the more lightly traveled sections. The percentage of the earnings required for expenses over a 30 -year period on sections having adjusted initial traffic densities of less than 3,000 vehicles is shown to be 63 percent. For sections falling within the intermediate traffic density group where 4 -lane highway design is recommended, the percentage of the earnings required for expenses drops to 58 ; and for sections falling within the highest traffic density group, the percentage drops to 50 .
These relationships are only preliminary indications. The main problem still lies ahead in refining the analysis by substituting facts and field determinations for present assumptions and estimates. The present analysis must be extended to include various methods of financing and complete studies must be made by regions and by States. Coincident with these studies, studies must be made of the amount that local roads must be subsidized from excess earnings of the more heavily traveled systems. In fact, analyses similar to this interregional
system analysis must be applied to all systems. Standards for all systems must be adjusted to levels that can be afforded. These refinements and extensions of the analysis of the rural sections will require at great deal of work, but the larger and more significant job ahead is planning the improvement of urban sections.

The best preliminary estimate shows that the cost of urban sections of the tentative interregional system is only about one-fifth of the expenditure that must be made to modernize highway and street facilities in the cities traversed. The modernization of only the interregional system in the vincinity of cities would be but a palliative because the system would soon be overloaded by traffic attracted to its superior facilities. Only by construction of comparable facilities in other directions on the cities' street networks can the economic growth of cities and the success of the interregional system itself be assured.

APPENDIX

In the discussion of design standards it was stated that:

The limiting degree of horizontal curvature must usually be selected on the basis of a number of economic considerations, only one of which is the extent to which desirable sight distances can be provided. Once the specifications for horizontal alinement and cross sections are settled, the sight distances limited by cut banks on horizontal curves are fixed. Obviously, no advantage to the traveling public can be gained by increasing lengths of vertical curves occurring on horizontal curves beyond those lengths required to provide sight distance equal to that afforded by the horizontal curve. There is, therefore, no justification for construction expenditures for this purpose.

On horizontal curves having sufficient length for the view between vehicles on the curve to be restricted by the cut bank, there is a constant, for any distance between the centerline of the highway and the cut bank, which, when divided by the degree of curvature may be multiplied by the algebraic difference in grades to give the length of vertical curve whose crest will limit sight distance to the same extent as the cut bank will limit it. Such a constant is specified for the interregional system and its value for the interregional highway cross section is 700 .

For sections of the highway located on tangent, and on short horizontal curves where sight distance is not restricted by cut banks but by crests in vertical alinement, constants shown in table A are specified. These constants, when multiplied by the algebraic difference in grades, give lengths of vertical curves which will provide sight distances as great as can be afforded and yet maintain equilibrium between this feature of design and the other features. It will be noted that shorter vertical curves, and correspondingly shorter sight distances, are specified for 4 -lane divided highways than are specified for 2 -lane highways. This is done because the chief advantage in increasing the sight distance on 4-lane divided highways is that safe stopping distances for higher speeds of travel are provided; but on 2-lane highways, the further advantage is gained that vehicles traveling in the same direction may pass one another at higher speeds without increasing the hazard of meeting an oncoming car before completing the passing maneuver. This hazard obviously does not exist on 4-lane divided highways.

For the various classifications of 4-lane highway sections, the speeds for which adequate sight distances on vertical curves are provided are related to the speeds
at which horizontal curves of the maximum degree may be negotiated safely, because the economic limits of both the degree of horizontal curvature and the length of vertical curve for various classification of highways are determined by the type of topography and the traffic service. Also, in terrain where drivers are required to reduce their speeds in order to negotiate the horizontal curves, relatively short vertical curves should not be found as objectionable as they are in flatter terrain. Careful consideration of the rate that excavation quantities increase with lengths of vertical curves has led to the conclusion that the greatest speed for which sight distances on crests in vertical alinement can be made equal to safe stopping distances, without excessive expenditures, is the maximum speed that can be trareled around horizontal.curves of one-half the maximum degree (twice the minimum radius) specified for the particular classification of the highway section. This criterion has been selected because (1) most of the horizontal curves occurring on any section have shorter radii than the radius of a curve of half the maximum specified degree, which means that drivers of vehicles will generally be accustomed to reducing speeds below this critical speed on most of the horizontal curves, and (2) an examination of resulting speeds indicates that they are reasonable in relation to other factors.

Table A.-Values of K^{1} for computing length of vertical curves on horizontal tangents and short horizontal curves ${ }^{2}$

Classification of section	Present average daily traffic density	Type of topography	Values of K^{-}	
			Minimum permissible	Maximum desirable
I	Less than 1,000......	\{Relatively level	1,070	1,070
		Rolling	550	550
		Mountainous	260	260
II	1,000-1,999.	Relatively level	1, 070	1, 070
		Rolling--..	550	550
		Mountainous	260	260
III	2,000-2,999	Relatively level.	1,070	1,070
		Rolling-......	550 260	550 260
		Mountainous	260	260
IV	3,000-4,999	Relatively level	465	46.5
		$\{$ Rolling	233	465
		Mountainous .-	175	465
VV I	5,000-9,999	Relatively level	465	465
		Rolling	350	465
		Mountainous.-	280	465
	10,000 or more........		465	465
		R Rolling	350	465
V I		Mountainous.	280	465

${ }^{1}$ Length of vertical curve $=$ algebraic difference of grades $\times K$. For use only where sight distance is restricted by vertical curve.
${ }^{2}$ For computing lengths of vertical curves occurring on long horizontal curves where sight distance is restricted by cut bank, use formula $K=\frac{700}{D}$ in all traffic
classifications and on all horizontal curves whose lengths are in excess of the following values:

	Fert		Feet
1° curve	1,060	6° curve.	440
2° curve	750	7° curve	410
3° curve	620	8° curve.	380
$4^{\circ}{ }^{\circ}$ curve	630	9° curve.	35
5° curve	480	10° curve	350

Maximum lengths of vertical curves in relatively level topography shali be 4,000 feet, in roliing topography 3,000 feet, and in mountainous topography 2,000 feet.

Values of the constants for computing lengths of vertical curves occurring at crests on 2-lane highways are based on providing sight distances permitting passing mancuvers (1) in relatively level topography when the passing and oncoming vehicles travel 60 miles per hour and the passed vehicle travels 50 miles per hour, (2) in rolling topography when the passing and oncoming vehicles travel 50 miles per hour and the passed vehicle travels 40 miles per hour, and (3) in mountainous topography when the passing and oncoming vehicles travel 40 miles per hour and the passed vehicle travels 30 miles per hour. Actually, passings can probably take
place safely at higher speeds than these because the calculations are based on existing passing maneuver theory which appears to be on the conservative side. In cases where maximum algebraic differences in grades are approached, the standards specify reduced lengths of vertical curves below the values obtained by the use of the constants. These reduced lengths are necessary
because of topographical difficulties and should be accepted even though the speeds at which passing maneuvers may take place are lowered by about 10 percent.

The maximum safe speeds of travel at any point where the sight distance is limited by any feature of the design are shown in table B.

Table B.-Maximum safe speeds permitted by limiting vertical curves ${ }^{1}$ suggested for interregional highways

Classification of section	Present average daily traffic density	Type of topography	Speeds permitted on vertical curves occurring on long horizontal curves when sight distance is restricted by cut bank				Speeds permitted on vertical curves occurring on horizontal tangents or short horizontal curves			
			Minimum permissible length of vertical curve		Minimum desirable length of vertical curve		Minimum permissible length of vertical curve		Minimum desirable length of vertical curve	
			$\begin{aligned} & \text { Lowest } \\ & \text { maximum } \\ & \text { safe } \\ & \text { speed 2 } \end{aligned}$	Lowest maximum passing speed ${ }^{3}$ speed	$\begin{aligned} & \text { Lowest } \\ & \text { maximum } \\ & \text { safe } \\ & \text { speed } 2 \end{aligned}$		$\begin{aligned} & \text { Lowest } \\ & \text { maximum } \\ & \text { safe } \\ & \text { speed 2 } \end{aligned}$	Lowest maximum passing speed	Lowest maximum safe speed ?	Lowest maximum passing speed ${ }^{3}$
I	Less than 1,000.	$\left\{\begin{array}{l} \text { Relatively level. } \\ \text { Rulling } \\ \text { Mountainous....... } \end{array}\right.$	M. p. h. 53 47 4	$\begin{aligned} & \text { M. p. } \text {. } \\ & 28 \\ & 20 \\ & 17 \end{aligned}$	$\begin{array}{r} \text { M. p. } h . \\ 68 \\ 68 \\ 68 \end{array}$	$\begin{gathered} \text { M. p. } h_{28} \\ 28 \\ 28 \\ 28 \end{gathered}$	$\begin{gathered} \text { M. p. } h . \\ 80+ \\ 46-80+ \\ 61-70 \end{gathered}$	M. p. h. 44-50 $135-40$	M. p. h. $80+$ $80+$ $80+$ $80+$	M. p. h. $43-60$ 50 40
II	1,000-1,999	$\left\{\begin{array}{l}\text { Relatively level } \\ \text { Rolling. } \\ \text { Mountainous..... }\end{array}\right.$	$\begin{aligned} & 68 \\ & 53 \\ & 47 \end{aligned}$	$\begin{aligned} & 28 \\ & 20 \\ & 17 \end{aligned}$	$\begin{aligned} & 68 \\ & 68 \\ & 68 \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \\ & 28 \end{aligned}$	$\begin{array}{r} 80+ \\ 46-80+ \\ 41-70 \end{array}$	$\begin{array}{r} 453-60 \\ 444-50 \\ 445-40 \end{array}$	$\begin{aligned} & 80+ \\ & 80+ \\ & 80+ \end{aligned}$	$\begin{array}{r} \text { } 53-60 \\ 50 \\ 40 \end{array}$
III	2,000-2,999	$\left\{\begin{array}{l} \text { Relatively level } \\ \text { Rolling } \\ \text { Mountainous } . . . \end{array}\right.$	$\begin{aligned} & 68 \\ & 56 \\ & 52 \end{aligned}$	$\begin{aligned} & 28 \\ & 20 \\ & 18 \end{aligned}$	$\begin{aligned} & 68 \\ & 68 \\ & 68 \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \\ & 28 \end{aligned}$	$\begin{array}{r} 80+ \\ 49-80+ \\ 464-70 \end{array}$	$\begin{aligned} & 453-60 \\ & 444-50 \\ & 435-40 \end{aligned}$	$\begin{aligned} & 80+ \\ & 80+ \\ & 80+ \end{aligned}$	$\begin{array}{r} 53-60 \\ 50 \\ 40 \end{array}$
IV	3,000-4,999	$\left\{\begin{array}{l}\text { Relatively level. } \\ \text { Rolling } \\ \text { Mountainous }\end{array}\right.$	$\begin{aligned} & 68 \\ & 56 \\ & 52 \end{aligned}$	$\begin{aligned} & 68 \\ & 56 \\ & 52 \end{aligned}$	$\begin{aligned} & 68 \\ & 68 \\ & 68 \end{aligned}$	$\begin{aligned} & 68 \\ & 68 \\ & 68 \end{aligned}$	$\begin{aligned} & 80+ \\ & 70 \\ & 64 \end{aligned}$	$\begin{aligned} & 80+ \\ & 70 \\ & 64 \end{aligned}$	$\begin{aligned} & 80+ \\ & 80+ \\ & 80+ \end{aligned}$	$\begin{aligned} & 80+ \\ & 80+ \\ & 80+ \end{aligned}$
V	5,000-9,999	$\left\{\begin{array}{l}\text { Relatively level. } \\ \text { Rolling } \\ \text { Mountainous.... }\end{array}\right.$	$\begin{aligned} & 68 \\ & 63 \\ & 59 \end{aligned}$	$\begin{aligned} & 68 \\ & 63 \\ & 59 \end{aligned}$	$\begin{aligned} & 68 \\ & 68 \\ & 68 \end{aligned}$	$\begin{aligned} & 68 \\ & 68 \\ & 68 \end{aligned}$	$\begin{aligned} & 80+ \\ & 78 \\ & 73 \end{aligned}$	$\begin{aligned} & 80+ \\ & 78 \\ & 73 \end{aligned}$	$\begin{aligned} & 80+ \\ & 80+ \\ & 80+ \end{aligned}$	$\begin{aligned} & 80+ \\ & 80+ \\ & 80+ \end{aligned}$
VJ	10,000 or more.		$\begin{aligned} & 68 \\ & 63 \\ & 59 \end{aligned}$	$\begin{aligned} & 68 \\ & 63 \\ & 59 \end{aligned}$	$\begin{aligned} & 68 \\ & 68 \\ & 68 \end{aligned}$	$\begin{aligned} & 68 \\ & 68 \\ & 68 \end{aligned}$	$\begin{aligned} & 80+ \\ & 78 \\ & 73 \end{aligned}$	$\begin{aligned} & 80+ \\ & 78 \\ & 73 \end{aligned}$	$\begin{aligned} & 80+ \\ & 80+ \\ & 80+ \end{aligned}$	$\begin{aligned} & 80+ \\ & 80+ \\ & 80 \div \end{aligned}$

 Therefore, lengthening of vertical curves would not inake higher safe speeds possible.
 mitted for the indicated classification of highway.
 is traveling IU miles per hour slower on the shortest vertical curve permitted for the indicated classification of highway.
 two-thirds of the maximum allowable.

state	$\begin{aligned} & \text { TAX } \\ & \text { RATE } \\ & \text { PER } \\ & \text { CALON } \\ & \text { CON } \\ & \text { OCCMER } \\ & 31 \\ & 31 \end{aligned}$	GROSSAROUNTREPORTED 3/	MOTOR-FUEL CONSUMPTION-I940										table c-2, 1940 ISSUED MAY "194?
			$\begin{gathered} \text { AMYU:T } \\ \text { EXCMPTED } \\ \text { FROM } \\ \text { PAMMENT } \\ \text { OF } \\ \text { TAX } \\ 2 \\ \hline \end{gathered}$		AMOUNT SUBJECT TO REFLND ENTIRE taX	net amount taxed				AMOUNTTAXEDATPREVAILINGRATEOURING1939	I NCREASE OURING 1940		State
						total	$\begin{gathered} \text { ATEVATLINN } \\ \text { RATE } \end{gathered}$	AT OtMER RATES					
								$\begin{gathered} \text { RATE } \\ \text { PER } \\ \text { GALLON } \end{gathered}$	amest		amount	PER-CENTAGE	
	Cents	$\begin{aligned} & \text { 1,000 } \\ & \text { GALLONS } \end{aligned}$	$\begin{aligned} & \text { 1,000 } \\ & \text { GALLONS } \end{aligned}$	$1,000$ GALLONS	$\begin{aligned} & \text { 1,000 } \\ & \text { GALLONS } \end{aligned}$	$\begin{gathered} 1,000 \\ \text { CalLous } \end{gathered}$	$\begin{aligned} & \text { 1,000 } \\ & \text { SALLONS } \end{aligned}$	cese	$\begin{aligned} & \text { 1,000 } \\ & \text { GALLONS } \end{aligned}$	$\begin{gathered} \text { 1,000 } \\ \text { CxLLOLS } \end{gathered}$	$\begin{aligned} & \text { 1,000 } \\ & \text { GALLONS } \end{aligned}$		
alabama arizona CALIFORNIA	$\begin{aligned} & 6 \\ & 5 \\ & 6.5 \\ & 3 \\ & \hline \end{aligned}$	$\begin{array}{r} 259,915 \\ 11,435 \\ 191,421 \\ 1,948,880 \\ \hline \end{array}$	$\begin{array}{r} - \\ 4,575 \\ 7,520 \\ -37,198 \\ \hline \end{array}$	$\begin{array}{r} 259,915 \\ 106,860 \\ 189,801 \\ 1,911,682 \\ \hline \end{array}$	$\begin{array}{r} - \\ 13,+53 \\ 153,356 \end{array}$	$\begin{array}{r} 259,915 \\ 95,707 \\ 183,801 \\ 1,758,326 \\ \hline \end{array}$	$\begin{array}{r} 259,915 \\ 99,707 \\ 10,328 \\ 1,758,326 \\ \hline \end{array}$	\bar{i}	$\overline{\text { E1,473 }}$	$\begin{array}{r} 241,375 \\ 89,939 \\ 15,709 \\ 1,673,780 \\ \hline \end{array}$	$\begin{aligned} & 18,540 \\ & 5,778 \\ & 6,619 \\ & 84,546 \end{aligned}$	$\begin{aligned} & 7.7 \\ & 6.4 \\ & 4.3 \\ & 5.1 \end{aligned}$	alabama ARIZONA arkansas california
colorado CONNECTICUT oelamare FLORIDA	$\begin{aligned} & 4 \\ & 3 \\ & 4 \\ & 7 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 251,877 \\ 380,375 \\ 63,920 \\ \hline 08,120 \end{array} \end{aligned}$	$\begin{aligned} & \varepsilon, 045 \\ & 7,507 \\ & 1,400 \\ & 19,407 \end{aligned}$	$\begin{aligned} & 243,232 \\ & 372,808 \\ & 6,422 \\ & 388,717 \end{aligned}$	$\begin{aligned} & 36,40 \\ & 8,214 \\ & 4,025 \end{aligned}$	$\begin{aligned} & 206,742 \\ & 364,594 \\ & 58,397 \\ & 388,717 \end{aligned}$	$\begin{aligned} & 206,742 \\ & 364,594 \\ & 58,397 \\ & 388,717 \end{aligned}$	$:$:	$\begin{aligned} & 106,147 \\ & 335,146 \\ & 54,410 \\ & 350,489 \end{aligned}$		$\begin{array}{r} 5.4 \\ 8.8 \\ 7.3 \\ 71.0 \\ \hline \end{array}$	colorado Connecticut delaware ft.ortod
$\begin{aligned} & \text { GEORGIA } \\ & \text { IOAHO } \\ & \text { ILLINOIS } \\ & \text { INDIANA } \end{aligned}$	$\begin{aligned} & 6 \\ & 5.1 \\ & 3.1 \\ & 4 \\ & \hline \end{aligned}$	$\begin{array}{r} 400,296 \\ 107,044 \\ 1,540,441 \\ 700,300 \\ \hline \end{array}$	$\begin{array}{r} 13,4,49 \\ 3,677 \\ 2,263 \\ \hline \end{array}$	$\begin{array}{r} 386,947 \\ 103,967 \\ 1,540,441 \\ 698,097 \end{array}$	$\begin{array}{r} 129-4744 \\ 56,933 \\ \hline \end{array}$	$\begin{array}{r} 386,847 \\ 13,967 \\ 1,410,97 \\ 641,164 \end{array}$	$\begin{array}{r} 386,847 \\ 94,565 \\ 1,410,967 \\ 641,164 \end{array}$	(2)	9,402	$\begin{array}{r} 352,862 \\ 6888,44 \\ 1,33,233 \\ 598,734 \\ \hline 593 \end{array}$	$\begin{aligned} & 3,, 245 \\ & 0,1,1 \\ & 7,7,74 \\ & 42,430 \end{aligned}$	9.6 6.9 5.6 7.1	$\begin{array}{\|l\|} \hline \text { GEORGIAA } \\ \text { IDAHO } \\ \text { ILLINOIS } \\ \text { INOIANA } \\ \hline \end{array}$
IOWA KANSAS KENTUCKY LOUISIANA	$\begin{aligned} & 3 \\ & 3 \\ & 5 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 572,720 \\ & 503,586 \\ & 305,334 \\ & 278,083 \end{aligned}$	$\begin{array}{r} 156,866 \\ 10,129 \\ 5,855 \end{array}$	$\begin{aligned} & 572,720 \\ & 346,720 \\ & 295,205 \\ & 272,228 \\ & \hline \end{aligned}$	30,725 \vdots	$\begin{aligned} & 485,995 \\ & 346,720 \\ & 295,205 \\ & 272,224 \end{aligned}$	$\begin{array}{r} 45,925 \\ 46,720 \\ 295,255 \\ 304,057 \end{array}$:		$\begin{aligned} & 469,102 \\ & 334,577 \\ & 275,107 \\ & .247,419 \end{aligned}$	$\begin{aligned} & 16,893 \\ & 12,143 \\ & 20,0,98 \\ & 16,938 \end{aligned}$	3.6 3.6 7.3 8.7 8.7	IOWA KANSAS KENTUCKY LOUISIANA
MAINE MARYLANO MAMSACHUSETTS MICHIGAN	$\begin{aligned} & 4 \\ & 4 \\ & 3 \\ & 9 \\ & \hline \end{aligned}$	$\begin{array}{r} 157,361 \\ 34,606 \\ 74,204 \\ 1,253,535 \\ \hline \end{array}$	$\begin{array}{r} 957 \\ 4,954 \\ 2,941 \\ 116,933 \\ \hline \end{array}$	$\begin{array}{r} 156,404 \\ 309,752 \\ 7,44,263 \\ 1,137,202 \\ \hline \end{array}$	$\begin{aligned} & 20, \\ & 20,07 \\ & 30,905 \\ & 54,819 \end{aligned}$	$\begin{array}{r} 156,404 \\ 289,645 \\ 713,358 \\ 1,082,383 \\ \hline \end{array}$	$\begin{array}{r} 149,130 \\ 286,666 \\ 713,358 \\ \hline, 768 \end{array}$	1 3 1.5		$\begin{aligned} & \begin{array}{l} 141,850 \\ 265,548 \\ 683,733 \\ 694,058 \end{array} \end{aligned}$	$\begin{aligned} & 7,280 \\ & 2,1,08 \\ & 29,625 \\ & 89,248 \end{aligned}$	$\begin{array}{r} 5.1 \\ 7.9 \\ 10.4 \\ 8.0 \end{array}$	MaINE MARYLAND MASSACHUSETTS MICHICAN
MINNESOTA MISSISSIPPI MISSOURI mISSOUR MONTANA	$\begin{array}{r}11 \\ \hline\end{array}$	$\begin{aligned} & 593,842 \\ & 214,538 \\ & 697,545 \\ & 137,639 \end{aligned}$	$\begin{aligned} & 29,563 \\ & 9,771 \\ & 7,061 . \end{aligned}$	$\begin{aligned} & 564,279 \\ & 205,367 \\ & 697,545 \\ & 130,578 \end{aligned}$	$\begin{aligned} & 60,723 \\ & -\quad, 23,24 \\ & 20,127 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 207,556 \\ 205,367 \\ 658,321 \\ 104,451 \end{array} \end{aligned}$	$\begin{aligned} & \begin{array}{l} 47,556 \\ 1,77,50 \\ 658,32 \\ 104,451 \end{array} \\ & \hline \end{aligned}$	-	12. -998 -	$\begin{array}{r} \begin{array}{r} 44,578 \\ 469,578 \\ 180,426 \\ 620,791 \\ 98,919 \end{array} \end{array}$	$\begin{aligned} & 27,778 \\ & 9,44 \\ & 37,550 \\ & 3,5592 \\ & \hline \end{aligned}$	0.0 4.9 6.0 5.6 .6	MINNESOTA MISSISSIPPI MISSOUR MONTANA
NEBRASKA NEVADA NEW HAMPSHIRE NEW JERSEY	$\begin{aligned} & 5 \\ & 4 \\ & 4 \\ & 3 \end{aligned}$	$\begin{array}{r} 244,354 \\ 42,784 \\ 95,827 \\ 9.85,627 \end{array}$	$\begin{array}{r} 10,697 \\ 2,663 \\ 2,53 \\ 2,978 \\ \hline \end{array}$	$\begin{aligned} & 233,657 \\ & 40,125 \\ & 95,174 \\ & 895,704 \end{aligned}$	$\begin{array}{r} 4 \\ 2,602 \\ 4,352 \\ 73,280 \\ \hline \end{array}$	$\begin{aligned} & 233,653 \\ & 37,523 \\ & 90,822 \\ & 822,426 \end{aligned}$	$\begin{array}{r} 233,438 \\ 35,717 \\ 90,822 \\ 822,426 \end{array}$!	${ }^{14^{13},{ }^{13}, 296}$	$\begin{array}{r} 232,119 \\ 33,618 \\ 88,448 \\ 773,346 \\ \hline \end{array}$	$\begin{aligned} & 1,19 \\ & 2,199 \\ & 2,3,74 \\ & 40,080 \\ & \hline \end{aligned}$	0.6 0.2 2.7 6.3	NEGRASKA NEVADA NEW HAMPSH ! RE NEW JERSEY
new Mexico NEW YORK NORTH CAROLINA NORTH DAKOTA	$\begin{aligned} & 5 \\ & 4 \\ & 6 \end{aligned}$	$1,970,555$ 403,498 1, 147,246	$\begin{array}{r} 5,569 \\ \begin{array}{r} 6,0.02 \\ 9,76 \\ 61,886 \end{array} \end{array}$	$\begin{array}{r} 1,89,394 \\ 1,89,394 \\ 45,712 \\ 85,780 \end{array}$	11,152 56,957	$\begin{array}{r} 94,196 \\ 1,83,977 \\ 453,772 \\ 85,780 \end{array}$	$\begin{array}{r} 94,196 \\ 1,83,97 \\ 44,978 \\ 85,780 \end{array}$	-	12. ${ }_{\text {13 }}$	$\begin{array}{r} 86,374 \\ 1,758,288 \\ 410,340 \\ 15 / 82,694 \end{array}$	$\begin{array}{r} 7,822 \\ 70,029 \\ 30,208 \\ 3,886 \end{array}$	7.7 3.1 3.9 7.4 3.7	NEW MEXICO NEW YORK NORTH CAROLINA NORTH DAKOTA
OHIO $16 /$ oregon PENNSYLVANIA	$\begin{aligned} & 4 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$	$\begin{array}{r} 1,473,856 \\ 41,161 \\ 246,61 \\ 1,541,972 \\ \hline \end{array}$	$\begin{aligned} & 73,094 \\ & 62,136 \\ & 5,017 \\ & 6,897 \\ & \hline \end{aligned}$	$\begin{array}{r} 1,400,762 \\ 378,845 \\ 259,55 \\ 1,595,5078 \\ \hline \end{array}$	$\begin{aligned} & 12,958 \\ & 550 \\ & 29,816 \end{aligned}$	$\begin{array}{r} 1,387,804 \\ 37,275 \\ 229,899 \\ 1,575,5078 \\ \hline \end{array}$	$\begin{array}{r} 1,320,885 \\ 378,275 \\ 228,396 \\ 1,575,5078 \\ \hline \end{array}$;	$\left.\begin{array}{cc} 8 & 00,219 \\ 12 & 1,443 \end{array} \right\rvert\,$	$\begin{array}{r} 1,231,223 \\ 365,735 \\ 212,609 \\ 1,476,077 \\ \hline \end{array}$	$\begin{aligned} & 37,063 \\ & 12,540 \\ & 15,778 \\ & 99,001 \\ & \hline \end{aligned}$	7.3 .4 7.4 6.7 6.7	OHIO 16/ oklahoma oregon PENNSYLVANIA
RHODF. I SLANO SOUTH CAROLINA SOUTH DAKOTA tennessee	3 4 4	$\begin{aligned} & 133,963 \\ & 234,307 \\ & 145,713 \\ & 327,055 \end{aligned}$	$\begin{gathered} 1,271 \\ \mathbf{2}, 37 \\ 21,330 \end{gathered}$	$\begin{aligned} & 132,692 \\ & 234,307 \\ & 142,877 \\ & 305,854 \end{aligned}$	$\begin{gathered} 1,134 \\ 4,99 \\ 29,218 \\ 1,812 \end{gathered}$	$\begin{aligned} & 131,558 \\ & 229,398 \\ & 113,659 \\ & 304,042 \end{aligned}$	$\begin{aligned} & 131,558 \\ & 229,398 \\ & 113,659 \\ & 304,042 \end{aligned}$	$:$:	$\begin{array}{r} 126,095 \\ 206,953 \\ 103,987 \\ \hline 1270,222 \\ \hline \end{array}$	$\begin{array}{r} 4,603 \\ 22,4,45 \\ 9,072 \\ 33,20 \\ \hline \end{array}$	$\begin{array}{r}3.8 \\ 10.8 \\ 9.3 \\ 9.3 \\ 12.5 \\ \hline\end{array}$	$\begin{aligned} & \text { RHOOE ISLANO } \\ & \text { SOUTH CAROL INA } \\ & \text { SOUTH DAOOTA } \\ & \text { TENNESSEEE } \end{aligned}$
TEXAS UTAH VERMONT VIRCINIA	4 4 4 4	$\begin{array}{r} 1,414,932 \\ 107,194 \\ 70,806 \\ 417,599 \end{array}$	$\begin{array}{r} 18,024 \\ 4,769 \\ 880 \end{array}$	$\begin{array}{r} 1,396,908 \\ 10,425 \\ 69,926 \\ 417,599 \end{array}$	$\begin{gathered} 201,214 \\ \vdots \\ 24,069 \end{gathered}$	$\begin{array}{r} 1,195,094 \\ 12,425 \\ 69,926 \\ 392,930 \end{array}$	$\begin{array}{r} 1,195,694 \\ 12,425 \\ 69,926 \\ 392,386 \end{array}$	-		$1,140,442$ 94,349 $67 ; 137$ 358,547	$\begin{array}{r} 55,152 \\ 8,770 \\ 2,799 \\ 3,8,45 \end{array}$	4.8 8.6 4.2 .4	$\begin{array}{\|l\|} \hline \text { TEXAS } \\ \text { UTAA } \\ \text { VERMONT } \\ \text { VIRGINIA } \end{array}$
WASHINGTON WEST VIRGINIA Wisconsin wroming DISTRICT OF COLUMBIA		$\begin{aligned} & 386,348 \\ & 221,005 \\ & 589,789 \\ & 70,753 \\ & 169,512 \end{aligned}$	$\begin{gathered} 10,776 \\ 17,670 \\ 1,544 \\ 7,441 \\ \hline \end{gathered}$	$\begin{aligned} & 375,572 \\ & 221,005 \\ & 572,119 \\ & 68,999 \\ & 162,071 \end{aligned}$	$\begin{array}{r} 27,702 \\ 6,022 \\ 42,386 \\ - \\ 1,117 \end{array}$	$\begin{aligned} & 347,872 \\ & 214,983 \\ & 52,733 \\ & 68,999 \\ & 160,954 \end{aligned}$	$\begin{gathered} 347,872 \\ 214,983 \\ 529,739 \\ 68,999 \\ 160,954 \end{gathered}$	-	-	$\begin{array}{r} 320,941 \\ 201,460 \\ 507,770 \\ 65,673 \\ 142,776 \end{array}$	$\begin{array}{r} 26,911 \\ 13,43 \\ 21,457 \\ 3.326 \\ 18,178 \end{array}$	8.4 6.6 4.6 4.3 5.1 12.7	WASHINGTON WEST VIRGINIA WISCONSIN WYOMING DISTRICT OF COLUMBIA
total.	20/3.96	24, 107, 190	854,008	23,313,182	1,258,151	22,055,03:	21,913,441	-	14, 590	20,629,979	1,283,462	6.	total.
11 an analysis or motor-fuel usage will be given in table g-21, to be publisheo later. ELIMINATED AS FAR AS POSSIBLE. IN CASES WHERE STATES FAILEO TO REPORT AMOUNTS EXEMPTEB from taxation, The gross amount taxeo is shown in this column. USE, $3 /$ incluoes allowances for evaporation and other losses, federal use, other public IJ WITHIN 300 FEEET OE BORDER, TAX IS REOUGED TO THAT OF ADJACENT STATE. GALLONS TAXED AT 2 CENTS, $5,366,000$; AT 4 CENTS, 16, 107,000 (s cents aviation fuel taxto at 2.5 Cents, 349,000 Gallons; motor fuel taxed at 0.1 cent ENTS REFUUNEED ON NONHH CHWAY USE), $9,053,000$ CALLONS. $6 /$ GALLONS TAXEO AT 5 OENTS, $3,003,500$ AT 5.1 CENTS, $85,441,000$. REPRESENTS ENAPORATI ON OR LOSS ALLOWANCE UNOER 5 -CENT TAX NOT A AOOITIONAL TIONAL 2-CENT TAX, HHICH IS ADMINISTERED UNDER A SEPARATE $8 /$ THEE CETTS PCR GALLON REFUNOED ON NONHIGHWAY USES. 9/ ONE CENT PER GALLON REFUNOED ON MOTOR FUEL USED IN VEHICLES LICENSED TO OPERATE							exclusively in cities. antor. rate ghangeo from 4 cents to 3 cents septemeer 1. five cents per gallon refundeo on nonhighyay uses. aviation fuel useo in flying instruction. DIESEL FUEL, $1,749,000$ GALLONS; ANO BUTANE, 57,000 GALLONS. GALLONS TAXED AT 3 CENTS, $35,693,000$; AT 4 CENTS, $47,001,000$. AMOUNTS GIVEN DO NOT INCLUDE $05,204,000$ GALLONS OF LIQUID FUEL (KEROSENE, FUEL OIL, ETC.) TAXEO AT 1 CENT PER GALLON BUT NOT SUBJECT TO THE 3-CENT TAX ON METOR-VEHICLE FUEL. $\frac{17}{18}$ four dents per gallon refunded on motor fuel useo in aviation. $\frac{18 / \text { REVISEO SINCE PUBLICATION OF TABLE G-2, } 1939 .}{19}$ 19/ two cents per gallon refunded on motor fuel useo in intrastate aviation. 20) Weighted average rate.						

STATE MOTOR-VEHICLE RECEIPTS-1940

AS OF MAY 31, 1941

PUBLICATIONS of the PUBLIC ROADS ADMINISTRATION

Any of the following publications may be purchased from the Superintendent of Documents, Government Printing Office, Washington, D. C. As his office is not connected with the Agency and as the Agency does not sell publications, please send no remittance to the Federal Works Agency.

ANNUAL REPORTS

Report of the Chief of the Bureau of Public Roads, 1931. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1933. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1934. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1935. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1936. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1937. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1938. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1939. 10 cents.

HOUSE DOCUMENT NO. 462

Part 1.. Nonuniformity of State Motor-Vehicle Traffic Laws. 15 cents.
Part 2. . Skilled Investigation at the Scene of the Accident Needed to Develop Causes. 10 cents.
Part 3...Inadequacy of State Motor-Vehicle Accident Reporting. 10 cents.
Part 4 . . Official Inspection of Vehicles. 10 cents.
Part 5 . . Case Histories of Fatal Highway Accidents. 10 cents.
Part 6 . . The Accident-Prone Driver. 10 cents.

MISCELLANEOUS PUBLICATIONS

No. 76MP . . The Results of Physical Tests of Road-Building Rock. 25 cents.
No. 191MP. Roadside Improvement. 10 cents.
No. 272MP. Construction of Private Driveways. 10 cents.
No. 279MP. Bibliography on Highway Lighting. 5 cents.
Highway Accidents. 10 cents.
The Taxation of Motor Vehicles in 1932. 35 cents.
Guides to Traffic Safety. 10 cents.
An Economic and Statistical Analysis of Highway-Construction Expenditures. 15 cents.
Highway Bond Calculations. 10 cents.
Transition Curves for Highways. 60 cents.
Highways of History. 25 cents.

DEPARTMENT BULLETINS

No. 1279D . . Rural Highway Mileage, Income, and Expenditures, 1921 and 1922. 15 cents.
No. 1486D . Highway Bridge Location. 15 cents.

TECHNICAL BULLETINS

No. 55 T . . Highway Bridge Surveys. 20 cents.
No. 265T. . Electrical Equipment on Movable Bridges. 35 cents.

Single copies of the following publications may be obtained from the Public Roads Administration upon request. They cannot be purchased from the Superintendent of Documents.

MISCELLANEOUS PUBLICATIONS

No. 296MP. . Bibliography on Highway Safety.

House Document No. 272 . . . Toll Roads and Free Roads. Indexes to PUBLIC ROADS, volumes 6-8 and $10-20$, inclusive.
SEPARATE REPRINT FROM THE YEARBOOK
No. 1036 Y . . Road Work on Farm Outlets Needs Skill and Right Equipment.

TRANSPORTATION SURVEY REPORTS

Report of a Survey of Transportation on the State Highway System of Ohio (1927).
Report of a Survey of Transportation on the State Highways of Vermont (1927).
Report of a Survey of Transportation on the State Highways of New Hampshire (1927).
Report of a Plan of Highway Improvement in the Regional Area of Cleveland, Ohio (1928).
Report of a Survey of Transportation on the State Highways of Pennsylvania (1928).
Report of a Survey of Traffic on the Federal-Aid Highway Systems of Eleven Western States (1930).

UNIFORM VEHICLE CODE

Act I.-Uniform Motor Vehicle Administration, Registration, Certificate of Title, and Antitheft Act.
Act II.-Uniform Motor Vehicle Operators' and Chauffeurs' License Act.
Act III.-Uniform Motor Vehicle Civil Liability Act.
Act IV.-Uniform Motor Vehicle Safety Responsibility Act.
Act V.-Uniform Act Regulating Traffic on Highways. Model Traffic Ordinances.

A complete list of the publications of the Public Roads Administration, classified according to subject and including the more important articles in PUBLIC ROADS, may be obtained upon request addressed to Public Roads Administration, Willard Bldg., Washington, D. C.

[^0]: ${ }^{1}$ Paper presented at the Twentieth Annual Meeting of the Highway Research Board, December 1940 .

[^1]: 1 The determination of need is based on the assumption that routes carrying in excess of 3,000 vehicles per day should be wider than 2 lanes.
 ${ }^{2}$ Length of sections now having more than 2 lanes and carrying more than 3,000 vehicles per day.

[^2]: Preliminary figures issued by the United States Bureau of the Census.
 2 Figures issued by the United States Bureau of the Census.
 ${ }^{3}$ National Industrial Conference Board Studies in Enterprise and Social Progress, pp. 62, 117.

 - Crops and Markets, January 1940.
 - United States Department of Commerce, report dated Jan. 31, 1940.

 Minerals Yearbook, 1939, p. 9.

[^3]: ${ }^{1}$ Figures compiled in January 1941 by Public Roads Administration and based on latest inventory data or estimates furnished by the State-wide Highway Planning Surveys.
 ${ }_{2}^{2}$ Estimates compiled in January 1941 by Public Roads Administration from fiscal data collected by the State-wide Highway lllanning Surveys.
 ${ }^{3}$ Figures include publicly owned, private and commercial motor vehicles. Figures do not include trailers, semitrailers, or motorcycles, nor 2,250 motor vehicles publicly owned and not registered in any state, compiled from reports of State authorities.
 and Figures include transactions relating to delit service, operations of special bridge and grade separation authorities, expenditures of local authorities on State highways, and similar transactions.

[^4]: surveys.
 ${ }_{2}$ Fstimates compiled in January 1941 by Public Roads Administration from fiscal data collected by the State-wide Highway Planning Surveys.
 ${ }^{3}$ Ficures include publicly owned, private, and commercial motor vehicles. Figures do not include trailers, semitrailers, motorcyeles, or 2,250 motor vehicles publicly owned and not registered in any State, compiled from reports of State authorities.
 and similar transactions.

[^5]: ${ }^{2}$ Estimated from data furnished by the highway planning surveys.

[^6]: : Compiled hy Public Roads Administration.
 ${ }_{2}$ Figures include distributors' and dealers' licenses, Inspection fees, fines and penalties, and other similar miscellaneous receipts.
 fers or registration fees, and other similar miscellaneous receirts.
 and other similar miscellaneous receipts.
 users (58.0 percent) and the taxes collected on tires, tubes, automobiles, motorcycles, trucks, parts, and accessories
 for these years.
 figures were not available.

[^7]: 1 Compiled by Public Roads Administration
 ${ }_{3}$ Figures include distributors' and dealers' licenses, inspection fees, fines, and penalties, and other similar miscellaneous receipts
 fers or recistration fees, and other similar miscellaneous receipts,
 and other similar miscellaneous receipts.
 58.0 percent) and the taxes collected on tires, tubes, automobiles, motorcycles, truck, parts, and accessories.
 tion for these years

 7 Totals do not include road tolls, municipal or county fees or licenses applicable to motor vehicles, or personal property taxes on motor vehicles. Reliable estimates of these figures were not available.

[^8]: 1 It is assumed that the average traffic density for the 30 -year period will be 157 percent of the initial tratic density adjusted to include traffic which would be atpercent of the initial tratic d
 tracted by the improvement.

