

A JOURNALOF HIGHWAY RESEARCH
FEDERAL WORKSAGENCY
PUBLICROADSADMINISTRATION

PUBLIC ROADS
 \cdots A Journal of Highway Research

issued by the

FEDERAL WORKS AGENCY
 PUBLIC ROADS ADMINISTRATION

D. M. BEACH, Editor

Volume 22, No. 1
March 1941
The reports of research published in this magazine are necessarily qualified by the conditions of the tests from which the data are obtained. Whenever it is deemed possible to do so, generalizations are drawn from the results of the tests; and, unless this is done, the conclusions formulated must be considered as specifically pertinent only to described conditions.

> In This Issue

Life Characteristics of Surfaces Constructed on Primary Rural Highways . . Page

THE PUBLIC ROADS ADMINISTRATION ~ \quad. \quad. - Willard Building, Washington, D. C. REGIONAL HEADQUARTERS Federal Building, Civic Center, San Francisco, Calif.

DISTRICT OFFICES

> DISTRICT No. 1. Oregon, Washington, and Montana.
> Post Office Building, Portland, Oreg.

DISTRICT No. 2. California, Arizona, and Nevada.
Federal Building, Civic Center, San Francisco, Calif.
DISTRICT No. 3. Colorado, New Mexico, and Wyoming.
254 New Customhouse, Denver, Colo.
DISTRICT No. 4. Minnesota, North Dakota, South Dakota, and Wisconsin.
907 Post Office Building, St. Paul, Minn.
DISTRICT No. 5. Iowa, Kansas, Missouri, and Nebraska.
711 U. S. Courthouse, Kansas City, Mo.
DISTRICT No. 6. Arkansas, Louisiana, Oklahoma, and Texas.
Room 502. United States Court house, Fort Worth. Tex.
DISTRICT No. 7. Illinois, Irdiana, Kentucky, and Michigan.
South Chicago Post Office Building, Chicago, Ill.

DISTRICT No. 8. Alabama, Georgia, Florida, Mississippi, and Tennessee.
Post Office Building, Montgomery, Ala.
DISTRICT No. 9. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont. 76 State St., Albany, N. Y
DISTRICT No. 10. Delaware, Maryland, Ohio, Pennsylvania, and District of Columbia.

Willard Building, Washington, D. C.
DISTRICT No. 11. Alaska.
Room 419, Federal and Territorial Building, Juneau, Alaska, DISTRICT No. 12. Idaho and Utah.

Federal Building, Ogden, Utah.
DISTRICT No. 14. North Carolina, South Carolina, Virginia, and West Virginia

Montgomery Building, Spartanburg, S. C.

Because of the necessarily limited edition of this publication it is impossible to distribute it free to any person or institution other than State and county officials actually engaged in planning or constructing public highways, instructors in highway engineering, and periodicals upon an exchange basis. At the present time additions to the free mailing list can be made only as vacancies occur. Those desiring to obtain Public Roads can do so by sending \$1 per year (foreign subscription $\$ 1.50$), or 10 cents per single copy to the Superintendent of Documents, United States Government Printing Office, Washington, D. C.

LIFE CHARACTERISTICS OF SURFACES CONSTRUCTED ON PRIMARY RURAL HIGHWAYS'

BY THE DIVISION OF CONTROL, PUBLIC ROADS ADMINISTRATION
 Roads Administration

THE large annual increases in usage by the motor vehicle of the highways of the United States during the past few years have brought to the engineer, the legislator, and the general public the realization that there is no permanent type of highway facility. Many structures and roadways which were built to the most modern standards as recently as 10 years ago are rapidly becoming obsolete and in many instances consideration is already being given to their replacement or reconstruction.

In order to realize the maximum service from a highway, the highway engineer is obliged to design for conditions that he estimates will exist 10, 20, 30 , and even 50 years in the future. It is obviously an economic waste to construct a road that will last 30 years from a structural standpoint, only to find that it must be abandoned within 10 years because of poor alinement or grades. Further, it is shortsighted policy to build a surface expected to last 20 years under existing traffic conditions if increases in traffic are anticipated that will immediately result in the structural failure of the road surface.

To evaluate the present status of the highway system and to formulate plans for orderly future development, it is necessary to estimate (1) the extent to which existing alinements and grades will be adequate for anticipated conditions in future years, and (2) how long the various types of surfaces, structures, and other appurtenances will afford satisfactory service before replacement is required.
Analyses of the service lives of roadway surfaces and other highway elements are necessary (1) to make available the facts concerning the service lives of the various types of highway construction and (2) so that estimates of revenue required for highway purposes can be prepared which are consistent with the probable kind and extent of necessary replacements. Studies of this character were first undertaken in 1934 at Iowa

[^0]
Abstract

Life characteristics of various surface types constructed on primary rural highways were determined from the analysis of construction and retirement mileage data obtained by several States in connection with the road-life study phase of the State-wide high-way-planning surveys. Approximately 210,000 miles of construction up to January 1, 1937, of various surface types in 26 States were involved in the analyses of average service lives. In addition, an analysis was made of the disposition of mileage at the time of retirement, involving slightly over 56,000 miles of retired surfacing in 23 of the 26 States. Estimates of average service lives were obtained from statistical analyses involving the use of survivor curves. Data were available for some types as early as 1903 and a continuous record of the miles remaining in service for each year's construction was available up to January 1, 1937. Each year's construction was analyzed separately, where possible. In general it was found that the average service life of the lower types decreased and the higher types increased during the period of 1910 to 1936. The predominating limits of average service lives were as follows: Soil surfaced, 5 to 14 years; gravel or stone, 6 to 13 years; bituminous surface treated, 11 to 21 years; mixed bituminous, 14 to 22 years; bituminous penetration, 15 to 17 years; bituminous concrete, 13 to 20 years; portland cement concrete, 17 to 24 years; and brick or block, 18 to 21 years. Retirement of a road surface is considered as being effected when (1) the wearing surface undergoes a resurfacing operation (other than a routine maintenance operation), (2) the surface is reconstructed, (3) the road is abandoned, (4) the road is transferred to another public authority for continued maintenance and reconstruction, or (5) the surface reverts to a lower type through lack of adequate maintenance. Approximately 12 percent of all retirements involved construction on new location.

State College when a study of the street pavements in Des Moines, Iowa, was started. ${ }^{2}$

In January 1935, the studies of service lives of roadway surfaces were extended to State highway systems and other cities under a cooperative agreement between the Public Roads Administration (then the Bureau of Public Roads) and Iowa State College. Under this agreement, studies ${ }^{3}$ were made in Buffalo, New York; Des Moines, Iowa; Wayne County, Michigan; Massachusetts; Rhode Island; New Hampshire; and Vermont.

Starting in the fall of 1935, these studies, designated as road-life studies, were incorporated as a phase of the State-wide highway-planning surveys inaugurated in the several States under the direction of the Public Roads Administration. Up to December 1940, 46 States had undertaken this phase of planning surveys. ${ }^{4}$

In addition to the compilation of data upon which to base calculations of average service lives of roadway surfaces, the road-life studies include tabulations and investigations of construction costs, salvage values of retired roadway elements, maintenance costs and the service lives of structures, traffic services, grading, right-of-way, etc. This work is being accomplished by State personnel in the individual States under the supervision of the Public Roads Administration. Involved in this phase of the highway planning survey are painstaking search and recording of the maintenance and construction records for each mile of primary State or Federal-Aid highways.

data obtained for 9 road surface types in 26 states

This report is confined to an analysis of the data relative to the service life characteristics of various surface types compiled for the rural portions of the

[^1]

Figure 1.-States for Which Road-Life Mileage Data Are Included.
primary State or Federal-Aid systems of the following 26 States (fig. 1): ${ }^{5}$

Alabama.
Arizona.
California.
Colorado.
Florida.
Idaho.
Indiana.
Kansas.
Louisiana.

Maryland.
 Missouri. Montana.
 Nebraska
 New Mexico.
 North Carolina.
 North Dakota.
 Ohio.
 Oklahoma.

Rhode Island.
South Dakota.
Texas.
Utah.
Vermont.
Virginia.
West Virginia.
Wyoming.

The data compiled for the purposes of this report are those relating to constructed and retired mileages of surfacing from which the following basic summaries were obtained:

1. Miles constructed each year for each surface type (for 26 States).
2. Miles of each year's construction of each surface type remaining in service January 1 each year after construction (for 26 States).
3. Replacement surface types for miles of each surface type retired each year (for 23 States).
4. Method of retirement (resurfaced, reconstructed, abandoned, or transferred) for miles of each surface type retired each year (for 23 States).

Data for Alabama, Ohio, and Vermont were not available for the summaries prepared in connection with items 3 and 4 above.

There are nine major surface types for which individual summaries and analyses are presented:

1. Soil-surfaced roads.
2. Gravel or stone roads.
3. Bituminous surface-treated roads.
4. Mixed bituminous roads.
5. Bituminous penetration roads.
6. Bituminous concrete roads.
7. Portland cement concrete roads.
8. Brick or block roads.
9. Dual-type roads.

The following definitions used in all phases of the planning surveys are followed in determining the general type classification of the surfaces constructed in each individual State:

1. Soil-surfaced road.-A road of natural soil, the surface of which has been treated for purposes of stabilization by the addition of a course of mixed soil such as sand-clay, soft shale or topsoil, or an admixture such as bituminous material, portland cement, sodium chloride, or fine granular material (sand or similar material).
2. Gravel or stone road.-A road, the wearing course of which consists of gravel, broken stone, slag, chert,

[^2]caliche, iron ore, hard shale, chats, disintegrated rock or granite, or other similar fragmental material coarser than sand.
3. Bituminous surface-treated road.-A graded and drained earth road, a soil-surfaced road, or a gravel or stone road, to which has been added by any process a surface mat of bituminous material and mineral aggregate less than 1 inch in compacted thickness.
4. Mixed bituminous road.-A road, the wearing course of which is 1 inch or more in compacted thickness, composed of gravel, stone, sand, or similar material, mixed with bituminous material under partial control as to grading and proportions.
5. Bituminous penetration road.-A road, the wearing course of which is 1 inch or more in compacted thickness, composed of gravel, stone, sand, or similar material, bound with bituminous material introduced by downward or upward penetration.
6. Bituminous concrete road (includes sheet asphalt and rock asphalt).-A road, the wearing course of which consists of gravel, stone, or sand, mixed with bituminous material in accordance with precise specifications defining gradation of the mineral aggregate and proportions of aggregate and bituminous cement 1 inch or more in compacted thickness, and laid on a base course of either rigid or nonrigid type.
7. Portland cement concrete road.-A road, the wearing course of which consists of portland cement concrete, with or without a bituminous mat less than 1 inch in compacted thickness.
8. Brick or block road. ${ }^{6}$ - A road, the wearing course of which consists of vitrified paving brick, stone block, wood block, asphalt block, or other form of block, with or without a bituminous mat less than 1 inch in compacted thickness.
9. Dual-type road.-A road, the wearing course of which consists of two individual types constructed at the same time, ${ }^{7}$ each of which has a width of at least 8 feet which may be in contiguous or divided strips, both individual types being of such character as to be classed logically as a part of the traffic-bearing road surface rather than as surfaced shoulders.

5 METHODS OF RETIRING ROAD SURFACES

Retirement of a road surface is considered as being effected when (1) the wearing surface undergoes a resurfacing operation (other than a routine maintenance operation), (2) the surface is reconstructed, (3) the road is abandoned, (4) the road is transferred to another public authority for continued maintenance and reconstruction, or (5) the surface reverts to a lower type through lack of adequate maintenance. With the exception of reversions, which are so few as not to warrant further consideration, retirements are generally considered as resulting from operations classified as construction. It is an accepted fact that a significant amount of construction work is done by maintenance forces in many States, and in the recording of the original data summarized in this report an attempt was made in each State to segregate construction from maintenance in a uniform manner regardless of the accounting classifications in effect in a particular State. The

[^3]classifications of construction and maintenance operations generally followed in the road-life study are those included in the Tentative Draft of the Report to the 1938 Association Meeting by the Subcommittee on Accounting of the American Association of State Highway Officials. ${ }^{8}$

Mileage transferred off the State or Federal-Aid highway systems to the county or other local authority is classified throughout all mileage tables as a retirement. A transfer is not a retirement in the sense that the road has rendered its total service to the public from a structural standpoint, although quite frequently this is the case. A transfer is, however, a retirement in the sense that the road has rendered its complete service as a State or Federal-Aid highway. Retirements by transfer are generally the result of functional obsolescence involving alinements and grades which are unsatisfactory for existing traffic conditions. A new road is built on new alinement and improved grades, and the old road remains in service usually because of the necessity of providing for local traffic usage. After the new road is placed in service on the State or FederalAid highway system, the State frequently will no longer assume responsibility for the continued maintenance and reconstruction of the old road, and the county or other local authority generally takes over this responsibility; otherwise the old road may be entirely discontinued from service, in which case it is considered as an abandonment.

For most of the 26 States, the mileage data are for the primary rural State highway system. In two or three States, the data are for the rural Federal-Aid system. In general, all mileages in incorporated places having a population greater than 1,000 persons are excluded from the summaries. The data for all States are summarized only to January 1, 1937, since the information for more recent dates is complete for only a few States.

There are many miles of surfaces, primarily of the lower types, for which the date of retirement is known but for which there is no record of the date of initial construction or for which the date of initial construction cannot be closely estimated. The partial data in these cases are not included in the summaries for mileages constructed and remaining in service during the various years.

In general, the data for construction since 1920 are relatively complete for the 26 States. Prior to 1920, however, it is evident that the construction volume recorded in the tables is only a portion of that actually completed on roads which later became a part of the State or Federal-Aid highway systems. This results, primarily, from difficulty in locating records of early construction. In a few cases, the records were found in various field offices, but more frequently, records of such early construction could not be located.
Table 1 is a summary of the mileages involved in the analysis of the average service lives included in this report.
MILEAGES BUILT AND REMAINING IN SERVICE GIVEN FOR VARIOUS SURFACE TYPES
In tables 2,3 , and 4 are listed for each surface type the miles constructed each year, the miles retired each year, and the miles remaining in service on January 1 each year.

[^4]Table 1.-Total mileages in the 26 States used in the calculation of probable average service life ${ }^{1}$

No.	Surface type	Miles constructed	Miles remaining in service on 1-1-37
1	Soil surfaced	8,907	4. 321
2	Gravel or stone	79,110	37, 187
3	Bituminous surface treated	30,949	25, 139
4	Mixed bituminous	30,581	28,351
5	Bituminous penetration	14, 301	11,901
6	Bituminous concrete.	10, 283	8,481
7	Portland cement concrete	32, 775	30,602
8	Brick or block	2,799	1,927
9	Dual type.	274	249

: Involves only mileage of each type for which: (1) Both the original construction date and the retirement date are known if the mileage was retired; and (2) the original construction date is known if the mileage is still in service.

The form in which the mileage data for each surface type were prepared by each State is similar to the arrangement of tables 5 to 13 . The two left-hand columns show the year and mileage constructed, whereas the entries in the balance of the table indicate the mileage of each year's construction that remained in service on January 1 of each year after construction. Table 5, for example, records 450 miles of soil-surfaced roads constructed in 1929 by the 26 . States included in these summaries. Of these 450 miles built in 1929, there were 435 miles remaining in service on January 1, 1930; 408 miles on January 1, 1931; 356 miles on January 1, 1932; and so forth up to January 1, 1937, when there were 289 miles remaining in service. The totals at the bottom of each year column of tables 5 to 13 represent the total miles in service on January 1 of each calendar year.

Table 2.-Mileage of each surface type constructed each year
[Compiled from data submitted by 26 States for rural State or Federal-Aid systems]

Year of construction	$\begin{gathered} \text { Soil } \\ \text { sur- } \\ \text { faced } \end{gathered}$	$\begin{array}{\|c} \text { Gravel } \\ \text { or } \\ \text { stone } \end{array}$	Bi -tumi- nous sur- face treated	Mixed bi-tuminous	Bi-tuminous pene-tration	Bi - tumi- nous con- crete	Portland cement concrete	$\begin{gathered} \text { Brick } \\ \text { or } \\ \text { block } \end{gathered}$	Dual type
	Miles								
1904		18							
1905		20							
1906		39							
1907		47	12					7	
1908	12	71	16		5			9	
1909	11	103	45	1	2			8	
1910	19	159	60	3	40		1	27	
1911	40	161	40		47			24	
1912	129	212	122	24	56		29	48	
1913	139	267	82	18	65	71	42	40	
1914	111	331	136		72	115	261	99	
1915	189	534	289	2	76	290	279	239	
1916	129	316	330	19	213	132	505	127	
1917	103	275	136	8	104	53	236	120	
1918	74	405	214	10	122	122	322	128	-
1919	128	577	168	12	213	52	475	129	
1920	279	1, 273	260	136	312	213	561	143	
1921	334	2,506	329	472	416	377	888	220	9
1922	499	3, 485	176	81	519	346	1, 113	261	41
1923	387	3,657	438	182	555	545	1,124	226	27
1924	421	4,958	486	67	898	623	1,922	112	3
1925	418	5, 659	996	77	794	471	1,690	161	17
1926	200	5,634	1,567	197	546	476	2, 087	125	20
1927	218	4, 689	1, 770	375	458	718	1,942	61	14
1928	279	5, 884	2, 108	1,016	664	501	2, 238	78	8
1929	450	5, 168	2, 056	1,162	873	682	1,891	27	11
1930	532	5, 899	3, 747	2, 860	1,184	514	3, 855	92	16
1931	475	6, 304	2, 631	3, 747	1,411	606	3,518	71	31
1932	498	5, 318	2, 169	5, 551	1,096	590	2,825	69	16
1933	548	4,244	2, 444	3, 132	981	484	2,039	28	6
1934	1,021	4,071	3,042	5, 007	685	735	1,110	57	22
1935	613	2,856	2, 060	2, 686	944	- 514	828	35	20
1936	651	3,959	3, 020	3,736	950	1,053	994	28	13
Total	8,907	79,110	30,949	30,581	14,301	10, 283	32, 775	2,799	274

Table 3.- Mileage of each surface type retired each year ${ }^{1}$ [Compiled from data submitted by 26 States for rural State or Federal-Aid systems]

${ }^{1}$ Includes mileages which are retired as the result of being transferred from the rural State or Federal-Aid systems to the county or other authority for continued maintenance and reconstruction.
TABLE 4.- Mileage of each surface type remaining in service on January 1 each year
[Compiled from data submitted by 26 States for rural State or Federal-Aid systems]

Year remaining in service	$\begin{gathered} \text { Soil } \\ \text { sur- } \\ \text { faced } \end{gathered}$		$\begin{gathered} \text { Bitu- } \\ \text { mi- } \\ \text { nous } \\ \text { surface } \\ \text { treated } \end{gathered}$	Mixed bitu-minous	Bitu. minous penetration	Bitu- mi- nous con- crete	Portland cement concrete	Brick or block	Dual type
	Miles	Mites							
190		29							
1906		49							
1907		88							
1908		135	12					7	
1909	12	206	28		5			16	
1910	23	309	73	1	7			24	
1911	42	468	133	4	47		1	51	
1912	82	628	173	4	94		1	75	
18	211	833	292	28	150		30	122	
1914	350	1,098	367	45	215	71	72	162	
1915	457	1,416	478	45	286	185	333	261	
1916	646	1,920	754	47	357	475	604	496	
1917	775	2, 147	1,068	66	570	602	1,103	623	
1918	874	2, 383	1,190	74	667	649	1,332	743	
1919	939	2,679	1,373	84	784	768	1,633	864	
1920	1,022	3,199	1,498	96	996	811	2,090	987	
1921	1,271	4, 283	1,721	228	1,300	997	2,627	1,124	
1922	1,590	6,151	1,940	692	1,694	1,362	3, 458	1,337	9
1923	2, 077	9,401	2, 067	768	2, 185	1,608	4,536	1,595	50
1924	2,419	12, 687	2,454	950	2, 704	2,094	5,607	1,813	77
192	2, 686	17, 244	2, 881	1,005	3,564	2,685	7,513	1,912	80
1926	2, 828	22, 330	3, 848	1,079	4,313	3, 116	9,165	2, 032	97
1927	2, 649	27, 181	5,332	1,266	4,822	3, 531	11, 181	2,140	117
1928	2, 432	31, 064	7,031	1,624	5,237	4,168	13, 038	2,175	131
192	2,361	34,737	9,010	2, 606	5,829	4, 609	15, 196	2, 202	139
1930	2, 426	37, 966	10,909	3, 723	6,569	5, 174	16, 944	2, 176	149
1931	2,565	39, 129	14, 217	6,486	7,528	5,155	20,597	2,193	164
1932	2, 645	40, 620	16,053	10,061	8,675	6, 049	23, 970	2, 153	193
1933	2,890	40, 149	17, 400	15, 390	9,508	6, 461	26,561	2,108	207
1934	3, 066	39, 961	19,317	18, 251	10, 266	6,773	28, 395	2,097	204
193	3,799	38, 999	21, 440	22, 922	10,749	7, 319	29,314	2,074	222
193	4,084	38,518	22, 892	25, 167	11, 474	7,725	29,979	2,052	242
1937	4,321	37, 187	25, 139	28,351	11,901	8,481	30,602	1,927	249

For the purpose of calculating the average service lives, all mileages constructed during a given calendar year are considered to have been placed in service on July 1 of that year. Mileages remaining in service are thus $1 / 2$ year of age on January 1 of the calendar year following the year of construction, $1 \frac{1}{2}$ years of age on January 1 of the second year after construction, etc. By the use of these ages and the mileages remaining in

Figure 2.-Survivor Curve for 159 Miles of Gravel or Stone Roads Constructed in 1910.
service as shown in tables 5 to 13 the probable average life of the construction for each year was calculated.
The mileages that remained in service on January 1 of each year after construction are expressed as percentages of the original construction mileage. These percentages at ages $0,1 / 2,1 \frac{1}{2}, 2 \frac{1}{2}$, etc., years were plotted, using the percentage remaining in service as the ordinate, and the age in years as the abscissa. The plotted points were then connected with straight lines to form original survivor curves, illustrative examples of which are given in figures 2 to 9 .

In the event that all mileage of a given surface type constructed during a particular year was retired prior to January 1, 1937, the survivor curve extends to zero percent remaining in service. In such cases (fig. 2) the construction rendered its complete service, the extent of which is measured by the area on the graph below the survivor curve.

AVERAGE SERVICE LIVES CALCULATED

In most instances (figs. 3 to 9), however, a portion of the mileage of a given surface type constructed during a particular year remained in service on January 1, 1937. Such a condition results in a "stub" survivor curve, the end point of which indicates the percentage of the original mileage remaining in service on January 1, 1937. In these cases the area below the stub survivor curve to the left of the ordinate erected at the end point represents the service realized prior to January 1, 1937, and it is necessary to extend the curve to zero percent surviving in order to estimate the average life of the entire original mileage.

Table 5．－Soil－surfaced road mileage remaining in service；mileage constructed each year and mileage remaining in service on January 1 of each year

	¢	¢゙¢	－
	\％		\％
	\％		容
	世	※：	\％
	皆	边	8 \％ －
	馬		$\begin{aligned} & \text { N/ } \\ & \text { oे } \end{aligned}$
	癸	華	浞
	ॠ		\％ ¢ ल
			－
	$\stackrel{\sim}{\circ}$	รี	$\begin{aligned} & \text { ®్ఞ } \\ & \text { बे } \end{aligned}$
	骨	呂	$\left\lvert\, \begin{aligned} & 9 \\ & 0 \\ & 0 \\ & 08 \end{aligned}\right.$
	¢		｜l
			｜r
	芯		\％ $\begin{aligned} & \text { a } \\ & \text { a } \\ & \end{aligned}$
	¢		－
	®		－
	馬		$\xrightarrow{\text {－}}$
	㒲		（\％
	®		\％
	$\stackrel{\infty}{ \pm}$		艾
	$\stackrel{\text {－}}{\text {－}}$		只
	$\stackrel{\oplus}{\text { ® }}$		융
	$\stackrel{\square}{\square}$		菏
	$\underset{\sim}{\underset{\sim}{\mid}}$		品
	$\stackrel{\text { ® }}{\text { ¢ }}$		－
	$\stackrel{\text { ®ี }}{\square}$		） ® $^{\circ}$
	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\infty}{\stackrel{\circ}{4}} \underset{\sim}{2}=9$	－
	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{D}} \\ & \stackrel{1}{2} \end{aligned}$		๕
	$\stackrel{\otimes}{y}$		会
	$\begin{aligned} & \text { H్ } \\ & \stackrel{\gamma}{2} \end{aligned}$	 	1 － （1） －

[^5]TABLE 6.-Gravel or stone road mileage remaining in service; mileage constructed each year and mileage remaining in service on January 1 of each year

295646-41--2

No retirement of 1908-09 construction in earlier years.
Table 9.-Bituminous penctration road mileage remaining in service; mileage constructed each year and mileage remaining in service on January 1 of each year

Table 12.-Brick or block road mileage remaining in service; mileage constructed each year and mileage remaining in service on January 1 of each year

Construction		$1910{ }^{1}$	1911	1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937
Year	Miles																												
		Miles																											
1907 1908	7						6	3	(3		1					1		1		${ }^{\text {M }}$	1	1	1	Mres	1	M 1			
1909	8	8	8	8	8	8	8	8	8	8	8	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 7 \\ & 6 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	4	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	3	
1910	27		27	27	27	27	27	27	27	27	27	23	23	21	18	17	17	17	14	14	14	14	9	$\begin{aligned} & 4 \\ & 8 \end{aligned}$	7	${ }_{7}^{2}$	${ }_{7}^{2}$	6	$\begin{aligned} & 1 \\ & 5 \end{aligned}$
1911	24			24	24	24	24	24	24	24	24	24	22	22	22	21	19	19	19	19	19	19	18	16	16	16	13	13	13
1912	48				48	48	48	48	48	48	45	43	41	41	41	40	37	37	34	34	30	27	18	17	13	11	11	10	10
1913	40					40	40	40	40	40	40	40	40	40	40	35	35	34	34	31	26	24	23	23	22	21	21	19	16
1914	$\begin{array}{r}99 \\ 29 \\ \hline\end{array}$						99	$\begin{array}{r}99 \\ \hline 298 \\ \hline\end{array}$	99 239	$\begin{array}{r}99 \\ \hline 9 \\ \hline\end{array}$	99 239	99 239	99 239	988	988	$\begin{array}{r}98 \\ \hline\end{array}$	988	98	98	98	96	96	-91	71	-67	62	55	47	37
1916	127							239	239 127	239	1239	239	239	238	238	238	236	233	233	229	210	200	197	187	179	173	141	137	112
1917	120									120	119	127	127	127	127	127	127	114	114	114	109	108	102	100	80	74	71	69	61
1918	128										119	119	118	118	118	118 127	118	118	116	106	104	103	98	94	89	86	78	75	71
1919	129											129	129	127	127	127	124	124	122	122	122	122	114 100	99 98	87	87 88	85 87	84 84 84	73 70
1920.	143						-...						143	143	143	143	142	125	120	120	120	102	${ }_{98}$	85	81	78	75	84	70
1921	220									...				220	220	220	220	219	217	211	208	204	201	199	174	171	171	168	$\begin{array}{r}69 \\ 157 \\ \hline 1\end{array}$
1922	261			--			.								261	261	261	261	261	261	261	257	252	233	218	215	204	192	157 169
1923	226								-							226	226	225	225	225	225	220	218	204	203	200	198	191	169
1924	112			--	-				-	--	---	---	-..	-		220	112	112	112	112	111	111	111	111	111	109	103	99	87
1925	161						-	...	-	--	-	-----	---	--	-	---	-...-	161	161	161	157	157	157	152	150	150	149	149	138
1927	61																	-		125	122	122	120	120	119	119	119	119	114
1928	78									..											61 78	61 78	61 77	60 77	60 77	60 77	$\begin{aligned} & 60 \\ & 77 \end{aligned}$	60 77	17 76
1930	92																						92	92	91	91	91	91	91
1931	71 69															-	-						71	71	71	71	71	71
1933	28																								69	69 28	69 28	69 28	69 28
1935.	35 28																											35	35
Total	2,799	24	51	75	122	162	261	496	623	743	864	987	1,124	1,337	1,595	1,813	1,912	2,032	2, 140	2,175	2, 202	2,176	2, 193	2, 153	2, 108	2,097	2,074	2,052	1,927

TABte 13.-Dual-type road mileage remaining in service; mileage constructed each year, and mileage remaining in service on January 1 of each year
[Compiled from data submitted by 26 States for rural State or Federal-A id systems]

Average service lives were determined in accordance with the particular conditions pertaining to each survivor curve. For the older construction, particularly for the lower types of surface, survivor curves that reach zero percent remaining in service were obtained in many instances, and hence the average service life is equal to the area below the survivor curve divided by 100. For the stub survivor curves generally obtained for the higher types of surface and for the more recent construction, it is necessary to estimate the future trend of the curves from the end point of the actual experience to zero percent remaining in order to obtain approximations of the total service to be expected from the mileage constructed. These future trends of stub survivor curves were estimated by one of the following two methods:
A. By projecting the stub survivor curve to zero percent remaining in accordance with the retirement trend reflected by the stub survivor curve as judged by visual inspection. This method was applied only to stub survivor curves of lengths sufficient to afford a reasonable and definite indication of the probable trend for the mileages remaining in service.
B. By matching the stub survivor curve with one of the 18 type survivor curves described in Bulletin 125 of the Lowa State College Engineering Experiment Station. ${ }^{9}$ These 18 basic type survivor curves were developed as a result of a study of retirement trends for various types of industrial properties. The matching of a particular type curve with the stub survivor curve permits an estimate to be made of the probable future trend of mileages remaining in service.

For a survivor curve that reaches zero percent remaining for the reason that all the mileage was retired or that was extended to zero percent remaining in accordance with method A above, the probable average life was determined by dividing the area below the survivor curve by 100 percent. The total area below the survivor curve was obtained from a summation of the areas under the curve for each of the age intervals 0 to $\frac{1}{2}$ year, $1 / 2$ to $1^{1 / 2}$ years, $1 \frac{1}{2}$ to $2^{1 / 2}$ years, etc., to zero percent remaining. The area for each of these intervals is equal to the average percent surviving during the interval multiplied by the length of the interval which is 0.5 year for the 0 to $1 / 2$ year age interval and 1.0 year for each succeeding interval (from $3 / 2$ to $1 \frac{1}{2}$ years, $1 \frac{1}{2}$

[^6]to $2 \frac{1}{2}$ years, etc.). The average percent surviving during a given interval is assumed to be the arithmetic average of the percents surviving at the beginning and end of the interval.

For cases in which the type survivor curves were utilized as in method B, an estimate of the average service life was obtained directly by matching the stub survivor curve with the type survivor curve affording the best fit. When matching stub survivor curves with the type survivor curves in Bulletin 125 of the Iowa Engineering Experiment Station, it is obvious that the longer stub curves enable more reliable estimates to be made of the average service life. For short stub curves for which more than one type curve and average life satisfactorily match the stub curve, the type curve and average live selected were those consistent with indicated trends for other years of construction.

The general methods employed in determining the probable average service lives from survivor curves of various lengths are briefly described as follows:
Percent remaining at end
point of survivor curve
Usual method of determining probable average service life 0 point of survior curve From the area under the survivor curve.
15 or less_...... From the area under the stub survivor curve and its projection to zero percent remaining by judgment based on the indicated trend.
15-40_......- Stub survivor curve matched with a type survivor curve from Bulletin 125 if a reasonable fit could be obtained; otherwise from the area under the stub survivor curve and its projection to zero percent remaining by judgment based on the indicated trend.
40-100_...... Stub survivor curve matched with a type survivor curve from Bulletin 125. In some cases construction for 2 or more consecutive years was combined into like age groups if the stub survivor curves for each of the individual years follows approximately the same trend.

SURVIVOR CURVES PLOTTED FOR VARIOUS SURFACE TYPES
Figures 2 to 9 represent examples of survivor curves from which the average service lives were determined in accordance with the foregoing methods for various surface types and years of construction. Figure 2 illustrates construction for which the survivor curve reaches zero percent remaining in service. The gravel or stone roads constructed in 1910 reached zero percent remaining on January 1, 1933, at an age of $22 \frac{1}{2}$ years. The average service life of 11.4 years was calculated from the area below the survivor curve.

Figure 3.--Survivor Curve for 129 Miles of Soil-Surfaced Roads Constructed in 1916.

In figure 3 the stub survivor curve for soil-surfaced roads constructed in 1916 is shown as reaching 9 percent remaining in service at age $20 \frac{1}{2}$ years. In this instance the stub survivor curve was projected to zero percent remaining in service in accordance with judgment and the past trend. The probable average service life of 12.3 years was determined from the area below the stub curve and its projection to zero percent remaining in service.

Figures 4 and 5 illustrate alternate procedures used when the end points of the stub survivor curves are between 15 and 40 percent remaining in service. Figure 4 shows the stub survivor curve obtained for portland cement concrete surfaces built in 1914. The end point of the stub curve is 34 percent remaining at $22 \frac{1}{2}$ years of age. The trend of the stub survivor curve is such that the average service life of 20 years can be estimated by matching the stub curve with the type survivor curves. An S_{2} type ${ }^{10}$ survivor curve of 20 years average life was selected as the curve giving the best fit. Beyond the age represented by the end point of the stub survivor curve the percentages remaining in service in future years are presumed to follow the trend of the type survivor curve.

When matching type survivor curves with stub curves, no attempt was made to obtain type survivor curves that match the stub curve with the minimum

[^7]

Figure 4.-Survivor Curve for 261 Miles of Portland Cement Concrete Roads Constructed in 1914.
mathematical deviation. When more than one type survivor curve and average life could be considered as satisfactorily matching the stub, care was taken to select the type curve and average life that were consistent with other years of construction. It was found through experience that undue refinement in matching is unwarranted in most cases. Approximate matching by visual methods in superimposing the stub curves on the various type survivor curves (drawn to the same scale) yields results as satisfactory from the standpoint of reliability as those obtained from more refined procedures involving precise mathematical adjustments. For purposes of comparison, figure 4 shows both the stub survivor curve for portland cement concrete roads constructed in 1914 and the S_{2} type survivor curve visually selected as being the best matching curve.

On figure 5 is represented the stub survivor curve obtained for bituminous concrete roads constructed in 1916. At the end point ($201 / 2$ years) of the stub curve, 33.3 percent remained in service. Because the trend of the stub curve is such that it cannot be satisfactorily matched with any of the type survivor curves, it was projected to zero percent remaining in service in accordance with the trend reflected by the stub curve with consideration being given both to the trends of the type survivor curves that most nearly match the

Figure 5.-Survivor Curve for 132 Miles of Bituminous Concrete Roads Constructed in 1916.
stub curve and to the trends for other years of construction. The probable average service life of 15.5 years was determined from the area below the stub curve and its projection to zero percent remaining in service.

Figure 6 shows the stub survivor curve obtained for bituminous penetration roads built in 1924. The end point of the stub curve is 75 percent remaining in service at $12 \frac{1}{2}$ years. The trend of the stub survivor curve is such that the probable average service life of 15 years can be estimated satisfactorily by matching the stub curve with the type survivor curves. An R_{3} type curve of 15 years average life was selected by visual inspection as the curve giving the best fit. For purposes of comparison, figure 6 shows both the stub survivor curve and the type survivor curve.

Figure 7 illustrates an instance where type survivor curves from Bulletin 125 were matched with a stub curve whose end point is higher than 90 percent. The stub curve for portland cement concrete roads constructed in 1924 extends only to 95 percent remaining in service, and the matching type curve selected is an R_{3} curve of 27 years average life.

On figure 8 are plotted the stub survivor curves for bituminous surface-treated roads built during 1919-23. It is apparent that the stub curves for the individual years follow approximately the same trend. When difficulty is experienced in obtaining satisfactory estimates for individual years of construction and the successive years of construction show close agreement with respect to survivor characteristics, the data for the individual years may be combined into like-age groups for purposes of analysis. This was done for the bituminous surface-treated roads constructed during 1919-23 and the composite stub survivor curve obtained from the grouping is shown in figure 9.

Figure 6.-Survivor Curve for 898 Miles of Bituminous Penetration Roads Constructed in 1924.

Table 14 shows the procedure for grouping the data for the individual years of construction in order to obtain a composite curve. The trend of the composite stub survivor curve thus obtained is such that the average service life of 15.5 years can be estimated by matching the stub curve with the type survivor curves. Type S_{1} at 15.5 years average life was selected by visual inspection as the curve giving the best fit. For purposes of comparison, figure 9 shows both the composite stub survivor curve for these bituminous surface-treated roads and the S_{1} type survivor curve.

Tables 15, 16, and 17 give in summarized form the probable average lives for the nine surface types and indicate the method used in arriving at the estimate. The estimates of average lives for the earlier years of construction of each type should be more reliable than those for the more recent years of construction. The reason for this is that the greater percentage of retirements from the early construction leaves less future life to be estimated. On the other hand the mileages of early construction are so limited that the resulting

Figure 7.-Survivor Curve for 1,922 Miles of Portland Cement Concrete Roads Constructed in 1924.

Table 14.-Calculation of composite stub survivor curve for the 1919 to 1923 construction of bituminous surface-treated roads
[Mileage data obtained from table 7]

Age, years	Remaining in service								
	Year of construction					$\begin{gathered} \text { A } 1 \\ \text { Total } \end{gathered}$	B 1	C 1	1) 1
	1919	1920	1921	1922	1923				
	Miles	Miles	Miles	Miles	Miles	Miles	Percent	Miles	Percent
0	168	260	329	176	438	1,371	100.0		
$1 / 2$	168	260	329	176	438	1,371	100.0	----	
$11 / 2$	168	258	329	174	438	1,367	99.7		
$21 / 2$	167	252	325	174	438	1,356	98.9		
$31 / 2$	164	252	325	173	438	1,352	98.6		
41.	164	251	320	173	438	1,346	98.2		
$51 / 2$	161	251	315	173	419	1,319	96.2		
$61 / 2$	161	228	305	165	408	1,267	92.4		
$71 /$	148	228	297	163	390	1,226	89.4		
$81 / 2$	147	225	285	150	369	1,176	85.8		
$91 / 2$	143	223	270	132	356	1,124	82.0		
101	142	212	240	124	350	1,068	77.9		
1112	122	173	215	117	344	971	70.8		
121	111	166	210	114	328	929	67.8		
131	101	137	192	114	284	828	60.4		
$141 / 2$	101	135	187	87		510	56.6	544	93.8
$151 / 2$	94	135	187			416	55.6	423	98.3
161/2	81	133				214	51.9	229	93.4
171/2-........	63					63	40.4	81	77.8

[^8]

Figure 8.-Survivor Curves for 1,371 Miles of Bituminous Surface-Treated Roads Constructed in 191923.
survivor curves frequently follow erratic trends, as compared to the generally smooth curves obtained for the larger mileages of construction of later years. Estimates of average lives are given in tables 15,16 , and 17 only when the retirements were sufficient and the trend definite enough to warrant making the estimate. It will be noticed that generally no estimate is made unless the end point of the survivor curve is below 90 percent, and even for stub curves having end points between 85 and 95 percent, the probable error in the prediction may be large. An added degree of reliability is afforded, however, by giving consideration to the trend of probable average lives for the prior years.

[^9]

Figure 9.-Composite Survivor Curve for 1,371 Miles of Bituminous Surface-Treated Roads Constructed $1919-$ 23.

AVERAGE LIFE OF HIGH-TYPE SURFACES INCREASING
Figures 10 and 11 indicate the trends and show the irregularities of changes in average lives. Administrative policy has played a predominating part in the retirement of some types of surfacing. For example, the probable average service life of gravel or stone roads (the most extensive type of construction) has gradually been reduced to approximately 5 years for more recent construction, primarily as the result of a continually increasing practice of placing a bituminous surface on the gravel or stone within a limited time after construction. The conditions causing retirements of high-type surfaces are less influenced by changes of administrative policy than are those of low-type surfaces. Of interest, therefore, is the decrease in probable average service life of portland cement concrete constructed during the period 1916-20. This decrease prohably results from the deteriorating effect of increases in volume and weight of traffic during and immediately following the World War period on those roads built under unfavorable conditions at that time.

Figure 10.-Probable Average Lives for Several Types of Road Surfaces Constructed in Various Years.

For the purpose of obtaining definite indications, if any, of average service life trends, table 18 was prepared from tables 15,16 , and 17 by combining the individual construction years into six arbitrary con-struction-year groupings: 1903-10, 1911-15, 1916-20, 1921-25, 1926-30, and 1931-36. The averages were obtained by weighting the estimated average service life for a particular type during a given year with the mileage constructed during that year. The table indicates that the average service life of the lower types is decreasing, probably because of the administrative policy of keeping the lower type roads in serviceable condition by periodic resurfacing and reconstruction as well as by their gradual improvement to a higher type through stage construction. For the higher types, there is evidence that the average service life is increasing, probably because of substantial advances made in design standards, specifications, and construction methods.

In table 19 is recorded for each type of surface the average age of the miles remaining in service on January 1 of each year from 1920 to 1937. To calculate this average age each individual entry on tables 5 to 13 was multiplied by its particular age. Vertical totals of age-miles for each year were then divided by the corresponding miles remaining in service on January 1 to get the average ages. In general, the average ages increase from 1920 to 1937. Very heavy construction of a given type during a particular year either reduces the average age or slows up the increase during the same year for that type.

Tables 20 to 28 indicate the percentage distribution of retired mileages of each surface type according to

Table 15.-Probable average service lives of each year's construction of soil-surfaced, gravel or stone, and bituminous surface-tiented roads
[Compiled from data submitted by 26 States for rural State or Federal-A id systems]

Year of construction	Soil-surfaced roads				Gravel or stone roads				Bituminous surface-treated raads			
	Miles built	Percent remaining in service on 1-1-37	Estimated average life in years 1	Method of deter-mination ${ }^{2}$	Miles built	Pereent remaining in service on 1-1-37	Esti- mated a verage service years !	Method of deter-minat10n ${ }^{2}$	Miles built	I'ercent remaining in service on 1-1-31	Fstimated avorage service life in vears	Methous of deter tion ${ }^{2}$
1903					11	0	14.4					
1904					18		14.4	I				
1905.					20	0	13.1	I				
1906					39	0	12.7	I				
1908	12	0	21.0		71)	12.8	I	16	0	8.3	I
1909	11	0	22.0	I	103	6	14.0	11	4.5	0	14.8	I
1910	19		17.5	I	159	0	11.4	1	60	7	11.8	11
1911	40	0	16.9	I	161	0	9.7	I	40	10	11.3	11
1912	129	0	14.1	1	${ }_{212}$	0	11.0	1	122	39	20. 0	$1 / 1$
1913	134	3	15.0	II	267	0	10.8	1	82	7	11.2	11
1914	111	0	13.8	I	331	11.	11.4	11	136	9	12.9	II
1915	189 129	4	11.4	11	534	10	9.9	II	239	43	20.0	L
1917	129	9 4	12.3 12.8	11	316 275	6 10	12.11 9.6	1	330 136	36 42	16.0	S_{0}
1918	74	5	11.2	II	405	13	11.3	11	214	55	19.0	L_{2}
1919	128	35	14.0	S_{0}	577	5	10.1	11	168	38		
1920)	279	25	10.2	11	1,273	18	11.3	II	260	51		
1921	334	${ }_{8}^{9}$	7.8	II	2, 506	15	10.6	11	329	57	15.5	S_{1}
1922	${ }_{39}^{499}$	8	6. ${ }^{4}$	II	3. 385	13	9.5	11	176	49		
1924	421	21	5.3 7.3	II	3,657 4,958	$\stackrel{21}{24}$	9.8 9.1	II	438 486	65 82		
1925	418	46	8.7	II	5,659	37	9.5	11	996	84	24.0	L_{1}
1926	200	30	7.3	11	5, 634	35	9.1	11	1. 567	75	17.0	R_{1}
1927.	218	70	11.0	R_{2}	4,689	42	8.5	L_{1}	1, 7.70	$8 \pm$	20.5	K_{1}
1928	279	76		R_{2}	5,884	46	8.0	$1 /$	2, 108	77	12.5	R_{1}
1929	450	64	8. 5	R_{1}	5, 168	46	7.5	L_{0}	2,056	83	14.5	R,
1930.	53.2	45 59	5. 2	II	5, 899	59 60	8.5	L 0_{0}	3. 747	69	9.5	1.
1931	448	59 56	5.9 5	II	6,304 5,318	66	7.0	L_{0}	2, 631 2.169	\% 8	9.0	s_{0}
1933	548	70	6. 0	L_{0}	4, 244	67	5.5	L_{0}	2, 444	y_{3}	14.0	K_{1}
1934	1,021	72	5.0	Lo	4,071	77	5.0	L L_{0}	3.142	94	13.0	R_{1}
1935.	613	91			2, 856	80	4.0	Lo	2. 1061	99		
1936	651	96			3,959	95			3,020	100		

${ }^{1}$ The last entry in this column is the estimate for the most recent year for which the retirement experience is sufficient to enable a reasonable estimate of the average life be made.
${ }^{2}$ Method I.-A verage service life calculated from the area under the original survivor curve.
Method II.-Average service life calculated from the area under the stub survivor curve and its projection to 0 percent remaining by extension of past trend.
Method $\mathrm{S}_{0}, \mathrm{R}_{2}$, etc.-These designations indicate that an estimate of the average service life was obtained by matching the stub survivor curve with the type survivor curves in Bulletin 125.

Table 16.-Probable average service lives of each year's construction of mixed bituminous, bituminous penetration, and bituminous concrete roads
[Compiled from data submitted by 26 States for rural State or Federal-Aid systems]

Year of construction	Mixed bituminous roads				Bituminous penctration roads				Bituminous concrete roads			
	Miles built	Percent remaining in service on 1-1-37	Estimated average service life in years ${ }^{1}$	Method of deter. mina- tion?	Miles built	Percent remaining in service on 1-1-37	Esti- mated a verage service life in years ${ }^{1}$	Method of determion^{2}	Miles built	Percent remaining in service on 1-1-37	Esti- mated average service life in years	Methol of deter-mination
1908					5	0	7.0	1				
1909	1	0			2	0	21.0	I				
1910	3	67			40	33	23.5	$1[$				
1912	24	17			56	14	17.7	II				
1913.	18	11			65	9	15.8	II	71	10	13.1	11
1914			18.1	II	72	25	15.8	II	115	20	14.8	11
1915	2	100			76	33	16.4	II	2411	7	12.6	11
1916.	19	58			213	28	14.8	II	13.2	33	15.5	11
1917.	8	25			104	42	16.0	R_{2}	53	55	18.5	S
1918	10	100			122	53	18.0 16.5	R_{2}	1222	23	13.4	11
1919	12	109			213	51 44	16.5	R_{2}	${ }^{52}$	44	17.0	8
1920	136 472	80			312 416	44 51	14.0 14.5	R_{2}	${ }_{3} 217$	48 51	16.5 15.0	S_{5}
1922.	81	8.3	23.5	S 1	519	60	14.5	R_{3}	346	63	16.0	S_{1}
1923	182	86			555	70	15.0	R_{3}	545	76	15.0	St
1924	67	52			898	75	15.0	R_{3}	623	in	21.0	Sil
1925	77	75	12.0	R_{4}	794	83	16.5	R_{3}	471	st	21.1	L/2
1926	197	38	9.5	L 0_{0}	546	92	1.5	${ }^{3}$	476	91	20.0	L_{2}
1927	375	78	15.0	R	45	88	17.5	K_{2}	718	88		
1928	1,016	67	11.5	So	664	85	19.0	R_{1}	501	9.3		
1929	1,162	83	14.5	S_{0}	873	86	14.0	K_{2}	$68: 2$	91		
1930.	2,860	87	15.5	R_{1}	1,184	89	18.11	R_{1}	514	92		
1931	3,747	91	16.0	L	1,411	95			606	94		
1932	5,551	94			1,096	98			590	99		
1933	3, 132	98			981	97			484	97		
1934	5,007	98			68.5	96			735	99		
1935	2, 686	100			944	99			514	48		
1936	3, 736	100			950	99			1,053	95		

[^10]TABLE 17.-Probable average sevvice lives of each year's construction of ponlland cement concrete, brick or block, and dual-type roads
[Compiled from data submitted by 26 States for rural State or Federal-Aid systems]

Year of construction	Portland cement concrete roads				Brick or block roads				Dual-type roads			
	Miles built	Percent remaining in service on 1-1-37	Estimated average service life in years :	Method of deter-mination ${ }^{2}$	Miles built	Percent remaining in service on 1-1-37	Estimated average service life in years ${ }^{1}$	Method of deter-mination ${ }^{2}$	Miles built	Percent remaining in service on 1-1-37	Estimated average service life in years	Method of detertion ${ }^{2}$
190)					7	0	11.3	I				
1914.					9 8	11	20.4 21.1	II				
1910	1	100	27.0	(3)	27	19	18.5	II				
1911					24	54	25.5	S_{1}				
1912	29	45	20.0	S_{2}	48	21	17.8	II				
1913	42	55	22.5	S_{1}	40	40	21.3	II				
1914.	279	34 42	19.0	S_{0}	239	47	21.0	S_{3}				
19175	505	36	16.5	R_{1}	127	48	19.5	S_{3}				
1917	236	44	16.5	R_{3}	120	59	21.5	S_{1}				
1918.	322	43	16.5	R_{2}	128	57	19.5	S_{3}				
1919	475	45	16.5	S_{1}	129	54	19.0	S_{1}				
1920	561	67	17.5	R_{3}	143	48	15.5	So				
$19: 1$	888	75	20.0	S_{2}	220	71	20.0	S_{1}	9	78	16.5	
1922	1.113	85	23.0	R_{3}	261	65	17.0	S_{2}	41	73	15.5	R,
1923	1,124	93	25.0	R_{3}	226	82	17.5	R_{3}	27	59	14.0	S_{3}
1924	1. 922	95	27.0	R_{3}	112	78	14.5 21.0	S_{4}	3	100		
1925 1926	1,690 2	97 99			161	86 91	21.0	R_{2}	17	100		
1927	1,942	98			61	94			14	100		
1928	2,238	99			78	98			8	100		
1929	1,891	100			27	96			11	100		
1930.	3. 855	100			92	99			16	94		
1931	3,518	100			71	100			31	100		
1932.	2, 825	99			69	100			16	100		
1933	2, 039	100			28	100			6	100		
1934.	1,110	100			57	100			22	100		
1936.	994	100			28	100			13	100		

${ }^{1}$ The last entry in this column is the estimate for the most recent year for which the retirement experience is sufficient to enable a reasonable estimate of the average life to be made.
${ }^{2}$ Method I.-A verage service life calculated from the area under the original survivor curve
Method II.-Average service life calculated from the area under the stub survivor curve and its projection to 0 percent remaining by extension of past trend.
Method $\mathrm{S}_{0}, \mathrm{R}_{2}$, etc.-These designations indicate that an estimate of the average service life was obtained by matching the stub survivor curve with the type survivor curves in Bulletin 125.

Assumed.

Table 18.-Weighted probable average service life for various construction year groupings for each surface type
[Compiled from data submitted by 26 States for rural State or Federal-Aid systems]

${ }^{1}$ Weighted in accordance with the constructed mileage and the estimates of average service life.
${ }^{2}$ Average service life computations based upon the experience of a very limited mileage of original construction.

A verage for 1921-21. ${ }^{5} 1926$ only. $\quad{ }^{7}$ Average for 1931-35.
A verage for 1921-23. © A verage for 1931-34. 1931 only.
method of retirement and replacement type. Retirements are summarized into year groupings as follows:

1. 1927 and prior.
2. 1928-30.
3. 1931-33.
4. 1934-36.
5. Total through 1936.

The methods of retirement are as follows:

1. Resurfaced.-Roads which are resurfaced or used as a base for the replacement type are so classified when the old surface is utilized more or less intact (with the exception of necessary scarifying, reshaping, or partial reworking of the surface) in the new construction which retires the old surface. Examples of this method are the retirement of a soil-surfaced road by surface treating, or the retirement of a gravel or stone road by utilizing it as a base or foundation for a mixed bituminous road or a bituminous penetration road, etc. For surfaces which are retired by this method, it is obvious that the new or replacement construction must

Table 19.- Average age of surfaces existing on January 1 of each year, 1920-37
[Compiled from data submitted by 26 States for rural State or Federal-Aid systems]

Surface type	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937
	Years																	
Sravel or stone	4.6 4.4	4.5 3.8 8	3.8	4.2	4.4	4.6	4.8	5.4	5.9	6.0	5.6	5.0	4.9	5.0	5.2	4.5	4.9	5.1
Bituminous surface treated	3.9	4.2	4.3	4.8	4.8	4.8	4.4	3. ${ }^{3}$	3. 5	3.7 3.8	4. 1	4. 3	4. 5	4.7	5.1	5. 4	6.0	6. 3
Mixed bituminous.	4.6	2.6	1.5	2.2	2.7	3.4	4.1	4. 3	3.8	3.8	4. 0	3. 7	3.9	4.4	4.7	5. 0	5.5	5.
Bitumineus penetration	3.6	3.6	3. 6	3.6	3.7	3. 6	4. 8	4.3	4.2	3. ${ }_{5}$	3. 2	2. 5	2. 4	2. 5	2.8	3.1	3. 7	4.
Bituminous concrete	3.8	3.9	3.6	3.6	3.5	3. 5	3.8	4.1	4.3	4.7	5. 4	5. 3	5. 7	5.5	5.9	6.4	6.8	7.0
Portland cement concrete	2.8	3.2	3.2	3.3	3. 5	3.5	3.7	3.9	4.2	4.5	4.9	5. 3	5.7	6. 0	6.5	6.7	7.2	7.
Brick or block	3.9	4.3	4.5	4.7	5. 0	5. 6	6. 1	6.7	${ }_{7}{ }_{5}$	8.1	4.9	4.8	5.0	5.4	5. 9	6.6	7.3	8.0
Dual type.			. 6	. 7	1.3	2.2	2.8	3. 2	3.8	4.6	5. 2	9.5 5.6	10.0 5.7	10.5	11.3	11.7	12.4	13.0
Total (weighted average)	3.9	3.8	3.3	3.3	3.3	3.4	3.5	3.7	4.0	4.2	4.5	4.5						
													4.	4.7	5.1	5.4	6.0	6.3

Figure 11.-Probable Average Lives for Several Types of Road Surfaces Constructed in Various Years.

Figure 12.- Methods of Retirement of Various Types of Road Surfaces for Four Groups of Years.
necessarily be along the same alinement and practically the same grade.
2. Reconstructed-When surfaces are retired by reconstruction there is little or no salvage of the old surface and base, if any, into the new type constructed.

TABLE 20.-Soil-surfaced road retirements; percentage distribution of retired mileages of soil surfaced roads according to method of retirement and replacement type
[Compiled from data submitted by 23 States for rural State or Federal-Aid systems]

Replacement type ${ }^{1}$	1927 and prior, 1,295 miles retired					1928-30, 978 miles retired					1931-33, 1,012 miles retired					1934-36, 1,000 miles retired					Total through 1936, 4,285 miles retired				
			$\begin{aligned} & \text { B } \\ & \text { Zy } \\ & \text { B } \\ & \text { W } \\ & 0 \end{aligned}$		$\begin{aligned} & \text { ت̃ } \\ & \stackrel{\rightharpoonup}{c} \end{aligned}$		J 0 0 0 0 0 0 0 0 0	$\begin{aligned} & \text { I } \\ & \text { D } \\ & 0 \\ & \text { む } \\ & \text { E } \end{aligned}$		E ¢ $=1$				$\begin{aligned} & \text { g } \\ & \frac{0}{c} \\ & \text { n } \\ & \text { ci } \\ & \text { E } \end{aligned}$	E		Z 0 0 0 0 0 0 0	$\begin{aligned} & \text { ơ } \\ & \text { d } \\ & \text { o } \\ & \text { 르 } \\ & \text { < } \end{aligned}$	"®	\%			$\begin{aligned} & \text { D } \\ & \text { E } \\ & \text { O } \\ & \text { E } \\ & \text { E } \end{aligned}$		\#
None ${ }^{2}$	Percent	Percent	Percent	Percent	Percent	Percent	Per- cent	Percent	Percent	Percent	Per- cent	Per- cent	Per- cent	Per- cent	Percent 2.3	Percent 2. 3	Percent	Percent	Per- cent	Per- cent 0.5	Per- cent cent 0.5				
Graded and drained		3.0		0.2	3. 2		3. 5		2.5	6. 0		1. 1	3.4	3.3	7.8.		2. 3		5. 2	7.5		2. 5	0.8	2. 6	5. 9
Soil surfaced...........	3. 6	1.6	0.2	. 9	6. 3	3. 3	2. 2			5. 5	27. 4	5.5			32.9	44. 6	2.7		1.3	48.6	18.7	2. 9	.1	. 6	22.3
Gravel or stone...-.-....-	2. 5	1.8	. 4		4. 7	3. 0	1.8	0.9		5.7.	5. 4				5.4	5.8	1.2	1. 0		8.0	4.0	1. 2	. 6		5.8 33.3
Bituminous surface treated	27.3	4.8	. 3	1.4	33.8	44. 4	9.1	1.7		55.2	20.1	4.2	, 6		25.0	12.2	5. 7	. 8	. 7	19.4	26.0	5. 9	. 8	. 6	33.3
Mixed bituminous..	2				. 2	5. 4	. 6			6.0	7. 5	7.0	4.6		19.1.	7.7	2.9	1.5	. 3	12.4	4.9	2. 5	1. 4	. 1	8.9
Bituminous penetration.	. 5		. 5		1. 0	1.3				1.3	2. 1	. 4			2.5	. 5	9	1		1.5	1. 0	4.3	. 2		1. 5
Bituminous concrete......-	1.2	10.5			11.7	1.9	1. 2			3.1	2.4	2. 8			3. 2			. 1		-	14.9	4. 1			5. 0
Portland cement concrete ${ }^{3}$	34.7	4. 2		2	39.1	14.8	2. 2		2	17.2	2. 0	1.3		8	4.11	. 1			1	. 2	14.4,	2.1		3	16.8
Total	70.0	25.9	1.4	2. 7	100.0	74.1	20.6	2.6	2. 7	100.0	64.9	22.3	8. 7	4. 1	100.0	70.9	15. 7	3.5	9.9	100. 0	69.9	21.5	3.9	4. 7	100.0

[^11]Table 21．－Gravel or stone road retirements；percentage distribution of retired mileages of gravel or stone roads according to method of retirement and replacement type
［Compiled from data submitted by 23 states for rural state or Federal－Aid systems］

Replacement type	1927 and $\underset{\text { nrior，}}{\text { retired }} 4,2 \times 2$ miles					1928－30，7，725 miles retired					1931－33，15，346 miles retired					1934－36，13，609 miles retired					Total through 1936，40，962 miles retired				
					$\begin{aligned} & \text { ⿹\zh26灬 } \\ & \text { B } \end{aligned}$					픙					－			$\begin{aligned} & \text { J } \\ & \text { 苛 } \\ & \text { O} \end{aligned}$		W			碳		
None ${ }^{2}$－${ }^{\text {araded and drained ear }}$	Per－ cent	Per－ cent $1 . \overline{3}$	Per－ cent \qquad	Per－ cent 0.2	Per－ cent 0.2	$\begin{aligned} & \text { Per- } \\ & \text { cent } \end{aligned}$	Per－ cent -2.3	Per－ cent 0.1	Per－ cent 0.2 1.4	$\begin{gathered} \text { Per- } \\ \text { cent } \\ 0.3 \end{gathered}$ $\text { 4. } 1$	Per－ cent	Per－ cent 2.6	$\begin{gathered} \text { Per- } \\ \text { cent } \\ 0.1 \\ 1.1 \end{gathered}$	Per－ cent 0.9 1.8 1.8	$\begin{array}{\|c} \text { Per- } \\ \text { cent } \\ 1.0 \\ 5.5 \end{array}$	Per－ cent	Per－ cent 4.3	$\begin{gathered} \text { Per- } \\ \text { cent } \\ 0.2 \\ 1.2 \end{gathered}$	Per－ cent 1． 2 4.1	$\begin{gathered} \text { Per- } \\ \text { cent } \\ 1.4 \\ 9.6 \end{gathered}$	Per－ cent	Per－ cent 3． 0	$\begin{aligned} & \text { Per- } \\ & \text { cent } \\ & 0.1 \end{aligned}$	$\begin{gathered} \text { Per- } \\ \text { cent } \\ 11.8 \\ 2.3 \end{gathered}$	Per－ cent 0.9 6.2
Graded and drained earth							2.3					． 1		1.8	－ 1	0.3				． 4	0.1				． 2
（irsvel or stone	14.1	5． 4	7	1． 2	21．4	11.6	1． 6	7	1.3	15． 2	5． 4	1.4	1.5	9	9． 2	5．7	2． 98	1．1）	9	10.5	7.6	2.4	1.1	1.0	12.1
Bituminous surface treated	17．4	． 6		1	17.8	26．8	1． 1	5	2	28.6	43.0	1． 9	8	6	46.3	${ }^{23 .} 6$	4.8	1.7	7	42.0	35．7	2．${ }^{-1}$	1． 0	5	18.4 39.5
Bituminous penetration	7.2	1.1	1	2	8． 6	7.5	． 2	1	1	7.9	5.6	． 2	． 3		6.1	3.9	1	3		4.3	5． 6	2	． 2	1	6.1
Biturninous concrete．．．	5． 5	2． 2			7.9	3.2				3.2	． 8				． 9	1.5	． 1	． 1		1.7	2.0	3	1		2.4
Portland cement conerete ${ }^{3}$	1.7	11.7	4	9	14.7	1.5	16． 2	3	1.8	19.8	． 6	15.1	． 5	3.0	19.2	． 3	3． 6	3	1.1	5.3	． 8	11.1	4	1.9	1.4
Brick or block．																									
Total	72.3	23． 0	1.9	2.8	100.0	71.3	21.6	2.1	5.0	100.0	66.9	21.5	4.4	7.2	100.0	71.0	16．0	4.9	8.1	100.0	69．6	19.8	3.9	6.7	100． 2

[^12] according to method of retirement and replacement type
［Compiled from data submitted by 23 States for rural State or Federal－Aid systems］

Replacement type	1927 and prior， 148 miles retired					1928－30， 352 miles retired					1931－33，1，085 miles retired					1934－36，1，625 miles retired					Total through 1936，3，210 miles retired				
			$\begin{aligned} & \text { ag } \\ & \text { a } \\ & \text { do } \\ & \text { co } \end{aligned}$	$\begin{aligned} & \text { is } \\ & \text { a } \\ & \text { a } \\ & \text { at } \\ & \text { a } \end{aligned}$	$\begin{aligned} & \text { ت } \\ & \stackrel{y}{6} \end{aligned}$			$\begin{aligned} & \text { ag } \\ & \text { a } \\ & \text { og } \\ & \text { o } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { is } \\ & \text { so } \\ & \text { a } \\ & \text { th } \\ & \text { and } \end{aligned}\right.$	$\begin{aligned} & \text { 玉 } \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$			$\begin{aligned} & \text { aंg } \\ & \text { ag } \\ & \text { e. } \\ & 4 \end{aligned}$	$\begin{aligned} & \text { is } \\ & \text { i } \\ & \text { ot it } \\ & \text { in } \end{aligned}$	\％					픙			$\begin{aligned} & 10 \\ & \text { a } \\ & \text { o } 0 \\ & \text { a } \\ & 4 \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { is } \\ & \text { a } \\ & \text { o } \\ & \text { ow } \\ & \text { k } \end{aligned}\right.$	－
None ${ }^{1}$	Per－ cent	Per－ cent	$\begin{aligned} & \text { Per- } \\ & \text { cent } \end{aligned}$	Per－ cent	$\begin{aligned} & \text { Per- } \\ & \text { cent } \end{aligned}$	Per－ cent	Per－ cent	Per－ cent	$\begin{gathered} \text { Per- } \\ \text { cent } \\ 0.1 \end{gathered}$	$\begin{gathered} \text { Per- } \\ \text { cent } \\ 0.1 \end{gathered}$	$\begin{aligned} & \text { Per- } \\ & \text { cent } \end{aligned}$	Per－ cent	$\begin{gathered} \text { Per- } \\ \text { cent } \\ 0.2 \end{gathered}$	Per－ cert 2.6	$\begin{gathered} \text { Per- } \\ \text { cent } \\ 2.8 \end{gathered}$	Per． cent	Per－ cent	Per－ cent	$\begin{array}{r} \text { Per- } \\ \text { cent } \\ 3.5 \end{array}$	$\begin{gathered} \text { Per- } \\ \text { cent } \\ 3.5 \end{gathered}$	Per- cent	Per－ cent	$\begin{array}{\|} \text { Per- } \\ \text { cent } \\ 0.1 \end{array}$	$\begin{array}{r} \text { Per- } \\ \text { cent } \\ 2.6 \end{array}$	$\begin{aligned} & \text { Per- } \\ & \text { cent } \\ & 2.7 \end{aligned}$
Graded and drained earth							2.6	0.5		3.1		5.6	3.4	7.9	16.9		2.6	3.8	5.1	11.5		3.5	3.1	5.3	11.9
Soil surfaced．．．		0.4			0.4												1			． 3		7.2			． 2
Gravel or stone．．．．				0.5			8.7 4.4	${ }^{3}$	5	9．0		4． 2		2	4.2		9． 1.	． 4	1.0	10.5 28.4		7.0 2.3		7	7.8 26.9
Mixed bituminous．－	5． 5				5．5	8.4	＋ 4.	3． 3	3	12.5	15．2	2． 3	2.3	．	19.8	19.1	3.9	．	1.1	23.1	16． 0	2． 8	1． 1	1	26.9 20.0
Bituminous penetration	9． 2	10.6			19.8	9.1	5． 3	1.4		15.8	5.6	2． 0	，		7.8	8.2	． 6	． 6		9.4	7.5	2.1	，		10.1
Bituminous concrete	4． 8	2． 2	4.3	7． 0	18.3	7． 0	3． 3			10.3	4． 9	5			6.1	6.9				7.3	6． 1		4	3	7． 6
Portland cement concrete	3.0	10.7	． 9	3.1	17．7	3.8	13.6	1.6		19.0	2.7	13.8	1.8	2.0	20.3		4.2	． 1	1.6	5． 9	1.5	8.8	9	1． 6	12.8
Brick or block	． 1																								
Dual type																	． 1			． 1					
Total．	59.4	24.8	5.2	10.6	100.0	53.0	38.4	7.7	9	100.0	47.8	30.3	9.2	12.7	100.0	58． 7	23.5	5.4	12.4	100.0	54． 5	27.5	6.8	11.2	100.0

[^13]This classification includes old surfaces and bases that are torn up and not reused．Usually，for types that are retired by this method，the replacement type is built along the same general alinement involving only minor improvements in horizontal curvature and sight distance．Substantial improvements are usually made with respect to grades and vertical curves，however．
3．Abandoned．－For roads that are abandoned，the new construction is on new location．Sometimes， however，a road is dropped entirely from the system and there is no new construction that may be considered as replacing the mileage abandoned．In such cases， the replacement type is indicated as＂none．＂

4．Transferred．－Retirement by transfer is similar to abandonment except that the road is continued in
service after being dropped from the State or Federal－ Aid system by being maintained and resurfaced or reconstructed，when necessary，by the county or other local authority．

It is obvious that a fine distinction between the various methods of retirement cannot be made．The classifications are general in character and should be so interpreted．

TYPES OF SURFACES BUILT TO REPLACE OLD SURFACES LISTED
The replacement type indicated on tables 20 to 28 is the surface type of the new road constructed to replace the surface of the old road．It is to be noted that the replacement type may be upon entirely new location or there may be no replacement type as men－

Table 23．－Mixed bituminous road retirements；percentage distribution of retired mileages of mixed bituminous roads according to method of retirement and replacement type
［Compiled from data submitted by 23 States for rural State or Federal－Aid systems］

Replacement type ${ }^{1}$	1927 and prior， 64 miles retired					1928－30， 159 miles retired					1931－33， 617 miles retired					193¢－36，1，30ч miles retired					Total through 1936，2，144 miles retired				
			$\begin{aligned} & \text { a } \\ & \text { a } \\ & \text { o } \\ & \text { e } \end{aligned}$	$\begin{aligned} & \text { ng } \\ & \text { a } \\ & \text { ot it } \\ & \text { en } \end{aligned}$	$\begin{aligned} & \text { J } \\ & \stackrel{0}{0} \\ & \text { an } \end{aligned}$			$\begin{aligned} & \text { a } 0 \\ & \text { a } \\ & \text { of } \\ & \text { a } \end{aligned}$	$\begin{aligned} & \text { in } \\ & \text { a } \\ & \text { ate } \\ & \text { En } \end{aligned}$	$$			$\begin{aligned} & \text { a } \\ & \text { a } \\ & \text { a } \\ & \text { ot } \\ & 4 \end{aligned}$	$\begin{aligned} & \text { s. } \\ & \text { a } \\ & \text { s. } 0_{0}^{2} \\ & \xi \end{aligned}$	$\begin{aligned} & \text { تु } \\ & \stackrel{0}{0} \end{aligned}$			$\begin{aligned} & \text { ä } \\ & \text { ä } \\ & \text { ö } \\ & \text { a } \end{aligned}$		픙		洔	$\begin{aligned} & \dot{a}=\overrightarrow{0} \\ & \text { at } \\ & \text { aj } \end{aligned}$		－
None ${ }^{2}$	$\begin{aligned} & \text { Per- } \\ & \text { cent } \end{aligned}$	Per- cent	$\begin{aligned} & \text { Per- } \\ & \text { cent } \end{aligned}$	Per－ cent	Per- cent	$\begin{aligned} & \text { Per- } \\ & \text { cent } \end{aligned}$	Per- cent	Per－ cent	$\begin{gathered} \text { Per- } \\ \text { cent } \\ 0.1 \end{gathered}$	Per cent 0.1	$\begin{aligned} & \text { Per- } \\ & \text { cent } \end{aligned}$	Per－ cent	$\begin{gathered} \text { Per- } \\ \text { cent } \\ 0.3 \end{gathered}$	$\begin{gathered} \text { Per- } \\ \text { cent } \\ 0.8 \end{gathered}$	$\begin{gathered} \text { Per- } \\ \text { cent } \\ 1.1 \end{gathered}$	Per． cent	Per－ cent	Per－ cent 0.2	$\begin{gathered} \text { Per- } \\ \text { cent } \\ 0.5 \end{gathered}$	Per－ cent 0.7					
Soil surfaced．．．－．		6.6			6.6							1.3	0.4	1	1.8				2.4 .2					1.5 .1	2.
Gravel or stone．		2.3			2.3		11.5					1.8	1.6	2	3.6		2． 8	2.2	1． 2	6． 2		3． 1	1.8	． 8	5.
Bituminous surface treate Mixed bituminous		1.1			1.1		5． 2	0.1		5.3		1． 1		8	1．1		4． 5			5． 5		3． 5			4.
Mituminous penetration	19.8	8.6	．	1．	1.3	37.9	8． 9	1.3		48.1	27.8	2.2	1.5	6.8	38． 3	41.4	7.9	3.2	3.6	56.1	36． 0	6． 1	2.	4.2	48.8
Bituminous concrete．	9.1	33.7			42．8	1.9	1.6			2.3	3.9 10.5	1.2	6		11． 6	1． 8	1.8			1．${ }^{6}$					． 8
Portland cement concrete		16． 1	． 3		16.4	16． 2	7.0	2	1.6	25.0	4.4	20.5	4	12.5	37.8	． 1								8.0	25．2
Dual type						1				．						，				． 3					． 2
Total	30.0	68.4	5	1.1	100.0	62.2	34.6	1.6	1.6	100.0	46.6	28.9	4.5	20.0	100.0	46.6	30.9	7.3	15.2	100.0	47.1	31.8	5.9	15．2	100.0

${ }_{2}^{1}$ No brick or block roads were encountered which replaced mixed bituminous roads．
${ }^{2}$＂None＂indicates the mileage is dropped from the system and there is no new construction which may be considered as replacing the mileage which is abandoned or ansferred．
${ }^{3}$ The use of the term＂resurfaced＂in lieu of＂reconstructed＂as a method of retirement in the case of mixed bituminous roads which are replaced by portland cement concrete is not precise．An attempt，however，is made in the case of＂resurfaced＂to indicate the extent to which the retired mixed bituminous road is utilized as a base for the portland cement concrete．（This same qualification applies，in a lesser degree，to replacements by other types．）

Table 24．－Bituminous penetration road retirements；percentage distribution of retired mileages of bituminous penetration roads according to method of retirement and replacement type
［Compiled from data submitted by 23 States for rural State or Federal－Aid systems］

Replacement type	1927 and prior， 158 miles retired					1928－30， 299 miles retired					1931－33， 533 miles retired					1934－36， 878 miles retired					Total through 1936， miles retired				1，868
	$$		$\begin{aligned} & 1 \\ & \text { a } \\ & \text { d } \\ & 0 \\ & \text { a } \\ & 4 \end{aligned}$		玉		$\left\|\begin{array}{l} 1 \\ a \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ a_{4} \\ a \end{array}\right\|$		$\begin{aligned} & i \\ & i \\ & \text { i } \\ & \text { at } \\ & \text { a } \\ & \text { E } \end{aligned}$	E		$\begin{aligned} & \text { a } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \end{aligned}$			可	$\begin{aligned} & \therefore \\ & \Rightarrow \\ & =0 \\ & \text { in } \\ & 0 \\ & \approx \end{aligned}$	$\begin{aligned} & \text { ag } \\ & \text { a } \\ & 0 \text { U } \\ & 0 \text { 岕 } \\ & \text { an } \end{aligned}$		$\begin{aligned} & \text { is } \\ & \text { a } \\ & \text { es } \\ & 4 \end{aligned}$	䂞			ロ क ค ＜	$\begin{aligned} & 1 \\ & \text { is } \\ & \text { m } \\ & \infty \\ & \text { is } \\ & \text { is } \\ & \hline \end{aligned}$	－
None ${ }^{1}$	Pct．	Pct．	Pct．	$\begin{gathered} \text { Pct. } \\ 1.2 \end{gathered}$	$\begin{gathered} \text { Pct. } \\ 1.2 \end{gathered}$	Pct． 0.2	Pct． 0.4	Pct.	Pct．	Pct．	$\begin{gathered} P c t . \\ 0.2 \end{gathered}$	$\begin{gathered} P c t . \\ 0.3 \end{gathered}$	$\begin{array}{r} \text { Pct. } \\ 0.5 \end{array}$	Pct．	Pct．	$\begin{array}{r} P c t . \\ 0.2 \end{array}$	$\begin{gathered} P c t . \\ 0.4 \end{gathered}$	$\begin{gathered} P c t . \\ 0.6 \end{gathered}$							
Graded and drained e							0.2	1.0		1.2		0.5	2.6	10．2	13.3		1.5	5.4	11.5	18． 4		0.9	3.4	8.3	12.6
Soil surfaced．																	＋3 3			－31		． 1			． 1
Gravel or stone		2.5		． 4	2.9		2． 7	1． 3		4.0		4． 8	． 4	1.0	6． 2		3.3	3． 0	． 8	7． 1		3． 61	1.7	7	6． 0
Bituminous surface treated							6.3	1． 7		8.0		2． 4	． 3	． 9	3． 6		4． 8	． 1	2.5	7.4		3.9	． 4	1.4	5.7
Mixed bituminous	4．0				4.0	7.8			0.4	8.3	5． 4	2． 6	5． 5	1.8	15.3	9．5	3． 2			12.7	7.6	2． 2	1． 6	． 6	12.0
Bituminous penetration	30.2	6． 6	0.4	1.3	38.5	34.4	3． 1	5.2	． 1	42.8	18．5	1．7	1． 6	5.3	27.1	16． 0	12.8	3.6	1.8	34.2	20.9	7.5	3． 0	2． 4	33.8
Bituminous concrete．	20.1	2． 6			22.7	9．5	3.1	． 9	． 5	14.0	3.8	3.3			7．1	9.1	． 71		． 1	9． 9	8． 6	2． 0	8	． 2	11.0
Portland cement concrete ${ }^{2}$	9.1	13.7	． 9		23.7	10． 4	8.0		3.1	21.5	1.6	11.2	1.4	12.4	26． 6	． 9	4． 0	． 6	3.4	8． 9	3.3	7． 5	8	5.6	17． 2
Brick or block		7.0			7.0							11			． 1		． 2			.2		2			． 7
Dual type．						2				2	1				． 1		． 4.			． 4	． 1	． 2			． 3
Total	63.4	32.4	1.3	2.9	100.0	62.3	23.5	10.1	4.1	100.0	29．4．	26.6	12.0	32.0	100.0	35． 5	31.2	12.9	20.4	100.0	40． 5	28．6	11.3	19.6	100.0

[^14]tioned above under the classifications of abandoned and transferred．Table 20，for example，indicates that during the period 1931－33，there were 1,012 miles of soil－surfaced roads retired in the 23 States for which this series of tables is prepared．The entries indicate that 64.9 percent of the soil－surfaced roads retired from 1931 to 1933 were resurfaced， 22.3 percent were recon－ structed， 8.7 percent were abandoned，and 4.1 percent were transferred to other authorities for continued maintenance and reconstruction．The distribution of each of these percentages according to the replacement type is also indicated．Of all retirements of soil－ surfaced roads during 1931 to 1933，the maximum individual retirement entry is the 27.4 percent for soil－ surfaced roads retired by being resurf aced with a soil－ surface，and the next largest entry is 20.1 percent retired by being resurfaced by the addition of a bituminous mat less than 1 inch in compacted thickness：
Table 20 also indicates that for soil－surfaced roads
retired during the years 1931 to 1933， 4.1 percent were replaced by portland cement concrete surfaces．The distribution of the 4.1 percent is as follows： 2.0 percent were resurfaced along the same line and grade， 1.3 percent were reconstructed along the same general alinement，and 0.8 percent were transferred to other authorities for continued maintenance and reconstruc－ tion．The new portland cement concrete roads which replaced the old soil－surfaced roads transferred were on new alinements．

Table 29 and figure 12 summarize the percentages retired by each method for each group of years for each surface type．Most of the indicated trends are not particularly significant，and there is considerable variation among the different types with respect to method of retirement．Resurfacing is an especially sig． nificant method of retirement since it affords an ap－ proximate measure of the relative extent to which the various types of surfacing construction are salvaged when they are retired．
 to method of retirement and replacement type
[Compiled from data submitted by 23 States for rural State or Federal-Aid systems]

Replacement type ${ }^{1}$	1927 and prior, 434 miles retired					1928-30, 305 miles retired					1931-33, 387 miles retired					1934-36, 549 miles retired					Total through 1936, 1,675 retired				
								$\begin{aligned} & \text { चロ } \\ & \text { ö } \\ & 0 \text { on } \end{aligned}$	E	$\begin{aligned} & \text { त्ञ } \\ & \stackrel{0}{6} \end{aligned}$			$\begin{aligned} & =0 \\ & =0 \\ & \text { a } \\ & 0.0 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \dot{n} \\ & a \\ & a \\ & a t \\ & 2 \\ & i \\ & k \end{aligned}$	-	$\begin{aligned} & 1 \\ & \text { y } \\ & =0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { y } \end{aligned}$		$\begin{aligned} & \text { E } \\ & \text { o } \\ & 0 . \\ & 0 \\ & 4 \end{aligned}$	E	\%	$\begin{aligned} & \text { za } \\ & \text { zo } \\ & \text { ñ } \\ & \text { on } \end{aligned}$	$\begin{aligned} & \text { a } \\ & 0.0 \\ & 0 \\ & 0 . む \\ & \text { o } \\ & z \end{aligned}$	$\begin{aligned} & \text { a } \\ & \text { क } \\ & \text { oo } \end{aligned}$ $<$		W
	Pct.	Pst.	Pct.	Pct.	Pct.	Pct.																			
Graded and drained		0.3			0.3		4.9		0.1	5.0		0.4	2.3	1.6	4.3		1.1	2.9	7.7	11.7		1.4	1.5	2.9	1.8
Gravel or stone.		. 3			. 3		4.5			5.0		1. 2	. 1		1.3		3. 2			3. 2		1.5			1.5
Bituminous surface treated							.1	0.5		. 6		1.5	. 4		1.9		4. 4	. 1	.1	4. 6		1.8	2		2. 0
Mixed bituminous .-.......						1. 3	.	. 3		1. 6	1. 8	. 3	.		2.1	11. 3	2. 0	. 7	. 4	14.4	4.4	. 7		1	5. 5
Bituminous penetration	5. 6		0.6		6.7	2.6	.1	4.0		6. 7	1.0	. 1	. 6	. 1	1.8	3. 3		--.-		4.1	3. 2	. 4	1.0		4. 6
Bituminous concrete.-	45.0	5. 8		2.4	53.2	49.1	5. 2		3.2	57. 5	71.0	1.1	.1	2.4	74.6	38.9	2.5	. 7	1.3	43. 4	49.8	3. 5	. 3	2. 2	55.8
Portland cement concret	30.4	3.4	. 8		34.6	7.0	14.3	. 5	5.1	26.9	1.3	8. 2	2. 2.	2.2	13.9	. 3	6.1	2.6	3.2	12.2	9.6	7.4	1.7	2.5	21.2
Dual type....	4.9				4.9	1.1	. 1			1.2					.	4	6			1.0	1.6	2			1.8
Total.	85.9	10.3	1.4		100.0	61.1	25.2	5.3	8.4	100.0	75.1	12.9	5. 7	6.3	100.0	54.2	20.7	7.1	18.0	100.0	68.6	16.9	5.0	9.5	100.0

[^15]Table 26.-Portland cement concrete road retirements; percentage distribution of retired mileages of portland cement concrete roads according to method of retirement and replacement type
[Compiled from data submitted by 23 States for rural State or Federal-Aid systems]

 transferred.
 replacement type.

Table 30 was prepared to illustrate the approximate extent to which right-of-way was reused at the time the surfacing was retired. The mileages resurfaced or reconstructed were used as a measure of the extent to which right-of-way was salvaged at the time of retirement. The mileages of rights-of-way that were not salvaged insofar as the rural State or Federal-Aid systems were concerned were those that were abandoned or transferred. This table indicates a rather definite trend, both by surface types and years. In general, when the surfaces on roadways involving the higher types of surfaces are retired, there is less utilization of the original alinements than for roadways involving the lower types of surfaces. The yearly trend for all types is consistently toward less mileage resurfaced or reconstructed on existing alinement. This is evidenced by the decrease from 95 percent to 84 percent in utilizing in the replacement construction the alinements existing at the time of retirement for the periods of 1927 and prior and 1934 to 1936, respectively.

SUMMARY

The preparation of programs, particularly of long range estimates, of finance and construction for highway systems must involve consideration of the probable average life of existing construction.

While it is possible to determine the exact average life of construction already retired from service, the average life of existing construction cannot be determined with absolute certainty until it is retired. It follows then that the only analytical method of approach is to analyze the retirements to date to determine the average life of past construction. The facts and trends brought to light by such an analysis may then be used as a basis for arriving at reasonable estimates of the average lives of existing or future construction.

For certain studies in engineering and economics it would be most helpful to know the true average life of the recently completed construction, but because of

Table 27．－Brick or block road retirements；percentage distribution of retired mileages of brick or block roacls，according to method of retirement and replacement type
［Compiled from data submitted by 23 States for rural State or Federal－A id systems］

Replacement type ${ }^{1}$	1927 and prior， 61 miles retired				1928－30， 62 miles retired					1931－33， 109 miles retired					1934－36， 68 miles retired					Total through 193h， 300 miles retired				
				$$			$\begin{aligned} & \text { I } \\ & \text { D } \\ & \text { E } \\ & \text { E } \\ & \text { En } \end{aligned}$		$\begin{aligned} & \text { 픙 } \\ & \text { F } \end{aligned}$					砏					？					－
None ${ }^{2}$	Pct．	Pct.	Pct.	Pct．	Pct．	Pct．	Pct．	${ }_{\text {Pct }}$ ．																
Graded and drained earth																1.9	1.0	7.1	10.0		0.4	0.2	1． 6	2.2
Gravel or stone．．．．．．．．．．－								0.2	0.2			0.9		0.9				． 4	.4			，	． 1	
Bituminous surface treated		21.3		21.3 3		20.2			20.2		0． 9	－．－－		． 9		4		． 7	1．1		8.9		． 2	9.1
Mituminous penetration	4． 4	2． 6		3.5 6.7						1.9	2.5			4.4	23.7			${ }^{3} 3$	24．01	6． 8	－ 9		1	7.8 1.4
Bituminous concrete．．．	13.9	3． 0		16.9	19.8	10.1			29.9	16.3	4.6			20.9	7． 2	6.5		1． 0	14．7	14.5	5． 8		． 2	20.5
Portland cement concrete ${ }^{3}$	2.1	33． 5.	5.7	41．3	1.8	34.0	0.6	5.0	41． 4	12.9	29.3	4.4	25． 0	71.6	3． 2	13．4		16． 9	33.5	6． 2	27.5	1． 8	15． 2	
Brick or block ${ }^{3}$ Dual type	2.1	8． 2		10.3		8． 3			8． 3		． 4		． 4	$\begin{array}{r}.8 \\ .5 \\ \hline\end{array}$	2.2	6． 3		1.6	1.9 9.1	4	3.6 1.6		． 5	4.5 2.3
Total	25． 7	68． 6	5． 7	100.0	21.6	72.6	6	5.2	100.0	31.6	37． 7	5.3	25.4	100.0	36.3	29.4	1.0	33.3	100.0	29.4	49．2	2． 3	19.1	100.0

${ }_{2}^{1}$ No soil－surfaced roads were encountered which replaced brick or block roads．
＂＂None＂indicates the mileage is dropped from the system and there is no new construction which may be considered as replacing the mileage which is transferred．
${ }^{3}$ Brick or block roads upon which have been placed a＂second story＂of portland cement concrete or brick or block are indicated as＂resurfaced＂opposite the entries for the portland cement concrete or brick or block replacement types．

Table 28．－－Dual type road retirements；percentage distribution of retired mileages of dual type roads according to method of retire－ ment and replacement type
［Compiled from data submitted by 23 States for rural State or Federal－Aid systems

Replacement type ${ }^{1}$	Total ${ }^{2}$ through 1936， 26 miles retired				
	Resur－ faced	Recon－ structed	Aban－ doned	Trans－ ferred	Total
Mixed bituminous	Percent 21.2	Percent 2.3	Percent	Percent	Percent 23.5
Bituminous penetration	18． 1	1.2			19.3
Bituminous concrete．	29．0	－． 4		5． 0	34.4
Portland cement concrete．	3． 9	7.0	4.6	2.7	18.2
Dual type	1.5			3.1	4.6
Total	73.7	10.9	4.6	10.8	160.0

1 The replacement types not listed were not encountered as replacing dual－type oads
ears is totals are shown for dual－type roads．The mileage retired during various years is too small to warrant distribution by year groups．
very few retirements，particularly from the higher types of surfaces，it becomes necessary to estimate these average lives on a basis of the trend of average life of
prior construction．Such estimates will become fact or approach fact only as those forces that caused retirement in the past continue to act in the sume relative magnitudes or continue to change at the same general rates．Standards of design and construction and traffic conditions have not changed materially enough in any short interval of time in the past to have caused any abrupt change in the trend of average lives of road surfaces，nor are they likely to do so in the future．The changes have been gradual in the past and are likely to continue to be gradual，but over a long period of years they have caused，and may again cause， significant changes in the average lives of roadway surfaces．

For other types of physical properties the survivor curve method of determining probable average lives is being used with increasing frequency and it should be equally advantageous when applied to highways．For human lives it has been successfully used for a hundred years．In contrast to human lives，however，physical properties are subjected to wide fluctuation in condi－

Table 29．－Summary of retirements；percentages of retired mileages of each surface type according to method of retirement during various years
［Compiled from data submitted by 23 States for rural State or Federal Aid systems］

Type retired	1927 and prior					1928－30					1931－33					1934－36					Total through 1936				
					증					$\begin{aligned} & \text { W } \\ & \stackrel{\circ}{6} \end{aligned}$				Z u 䔍 U H	$\frac{\text { 픙 }}{5}$		$\begin{aligned} & \text { च } \\ & \text { U } \\ & \text { U } \\ & \text { w. } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$							急	玉
	Pct．		Pct．		Pct． 00.0																				
Soil surfaced	70.0	25． 9	1.4	${ }_{2} 2.7$	100.0	74． 1	20.6	2.6			64． 9		8． 4			71.0	16． 0	4．9	8.1	100.0	69.6	19.8	${ }_{3.9}{ }^{\text {3 }}$		100.0
Gravel or stone．	72.3	23． 0	1． 9	2.8	100.0	71.3	21． 6	2.1	5.0	100.0	66.9 47.8	21.5 30.3	4． 4		100.0 100	71． 7	16.0 23.5	5． 4	12． 4	100.0	54.5	127.5	6．8	11.2	100.0
Bituminous surface treated	59．4	24．8	5． 2	10.6	100.0	53.0 62.2	38.4 34.6	7.7 1.6		100.0 100.0	47.8 46.6	31.3 28.9	4． 5		100.0	46． 6	30.9	7． 3	15． 2	100.0	47.1	31.8	5． 9	15． 2	100.0
Mixed bituminous．${ }^{\text {a }}$ ．										100.0	29．4	26.6	12.0			35． 5	31.2	12.9	20.4	100． 0	40.5	28.6	11.3	19.6	100.0
Bituminous penetration	63.4 8.9	32．4 10.3	1.3		100.0 100.0	62.3 61.1	25． 2	10．1	4． 8.4	100.0	75． 1	12.9	5． 7		100.0	54．2	20.7	7.1	18.0	100.0	68.6	16． 9	5． 0	9．5	100.0
Bituminous concrete－．－	85.9 85.5	10.3 6.5	1． 2.4		100.0 100.0	71.4	18．5	4． 6	6． 5	100.0	50.8	25． 4	10.9	12．9	100.0	56． 6	19.0	7.6	16.8	100.0	64.3	17.8	6．7	11.2	100.0
Brick or block．．．．．．．．．．	25.7	68.6		5．7	100.0	21.6	72.6	． 6	5.2	100.0	31.6	37.7	5.3	25.4	100.0	36.3	29.4	1.0	33.3	100.0	29.4	49．2	2． 3	19.1	100.0
Dual type ${ }^{\text {1 }}$ ．．．																					73.7	10.9	4.6	10.8	100.0
Total．	72． 2	22.8	1.9	3.1	100.0	69． 9	22.6	2． 7	4.8	100.0	63.7	22.4	5.2	8． 7	100.0	65.8	18.5	5.5	10.2	100.0	66.6	21． 1^{1}	4.5	7.8	100.0

[^16]TABLE 30 .-Salvage of right-of-way at time of retirement of surfacing; percentages of surfaced mileage retired by resurfacing or reconstruction ${ }^{1}$ used as a measure of the extent to which the right-of-way is utilized in the replacement construction
[Compiled from data submitted by 23 States for rural State or Federal-Aid systems]

Type retired	1927 and prior			1928-30			1931-33			1934-36			Total through 1936		
	Total surfaced mileage retired	A mount resurfaced or reconstructed (right-of-way reused)		Total surfaced mileage retired	Amount resurfaced or reconstructed (right-of-way reused)		Total surfaced mileage retired	Amount resurfaced or reconstructed (right-of-way reused)		Total surfaced mileage retired	Amount resurfaced or reconstructed (right-of-way reused)		Total surfaced mileage retired	Amount resurfaced or reconstructed (right-of-way reused)	
	$\begin{gathered} \text { Miles } \\ 1,295 \end{gathered}$	$\begin{array}{r} \text { Miles } \\ 1,242 \end{array}$	$\begin{array}{r} \text { Percent } \\ 96 \end{array}$	Miles 978	$\begin{array}{r} \text { Miles } \\ 926 \end{array}$	Percent 95	Miles 1, 012	$\begin{gathered} \text { Miles } \\ 883 \end{gathered}$	$\begin{array}{\|r} \text { Percent } \\ 87 \end{array}$	Miles $1,000$	$\begin{array}{r} \text { Miles } \\ 866 \end{array}$	$\begin{array}{\|r} \text { Percent } \\ 87 \end{array}$	Miles 4, 285	$\begin{gathered} \text { Miles } \\ 3,917 \end{gathered}$	Percent
Gravel or stone	4,282	4,077	95	7,725	7,169	93	15,346	13,564	88	13,609	11,829	87	40,962	36, 639	89
Bituminous surface treated	148	125	84	352	322	91	1,085	848	78	1,625	1,337	82	3, 210	2,632	82
Mixed bituminous.	64	63	98	159	154	97	617	465	75	1,304	1,010	77	2,144	1,692	79
Bituminous penetration.	158	152	96	299	256	86	533	299	56	878	585	67	1,868	1,292	69
Bituminous concrete.	434	417	96	305	263	86	387	340	88	549	412	75	1,675	1,432	85
Portland cement concrete	418	384	92	365	324	89	484	369	76	595	450	76	1, 862	1,527	82
Brick or block.	61	58	95	62	58	94	109	75	69	68	45	66	300		79
Dual type..				3	2	67	14	11	79	9	9	100	26	22	85
Total (approximate) ${ }^{2}$	6,860	6, 518	95	10, 248	9, 474	92	19,587	16, 854	86	19,637	16,543	84	56, 332	49,389	88

[^17] may reasonably be expected between the lower and higher types of surfacing.
tions of service, in standards of design and construction, in economic and social forces surrounding their use, and in the policies of management. All of these combine to complicate the problem and to cast shadows of uncertainty upon predicted average lives of highway surfaces as well as upon other similar predictions. In spite of these uncertainties, much is to be gained by the type of analyses presented herein when the results are used within their limitations.

The estimated average lives shown in tables 15,16 , and 17 are probably within 10 percent of the ultimate values for the curves having end points of less than 70 percent surviving when the mileage constructed is 100 or more miles. For the shorter survivor curves, the amount of error is more uncertain, but where estimates of average lives are given for such short curves the mileage tables, 5 to 13 , afford positive evidence upon which the estimates are based. Although many of the average life estimates are recorded to the nearest one-half year and still others to the nearest one-tenth year, it should not be assumed that they are accurate to this extent. These apparently precise estimates merely result from the method of calculation which permits relatively close determinations to be made on the basis of experience to date.

Closely related to the analysis of the probable average lives of roadway surfaces, but not considered in this report, are salvage value and economic life. Average lives presented herein relate solely to the period of time between the date of completion of the surface
construction and the date of retirement without regard to the value or condition of the surface at the time it was retired. Salvage value, of course, is an important consideration when determining total life cost of a particular improvement or when making comparisons of the economics of two or more types of construction. Future annual maintenance cost, future salvage value, and the value of the services rendered are factors to consider when the economic life is sought. It is expected that future studies will include analyses of both salvage value and economic life in order that the full economic picture of roadway surfacings will be available for use in selection of design standards and for longrange planning.

While this report is restricted to road surfacing, the additional problems in connection with right-of-way, grading, and structures are being studied in the highwayplanning surveys. The road-life studies also include roadway and bridge construction and maintenance cost studies. Eventually, data will be available for many specific analyses of highway costs, economic selection of projects, and other administrative and engineering problems, which in some way depend upon service lives for their solutions. The knowledge will be extended as additional States complete the compilations outlined in the original road-life studies and as they are continued and extended. Further, analyses by individual States will afford results of more specific application to the individual highway systems than can be obtained wholly by this analysis of the combined data from 26 States
STATUS OF FEDERAL-AID HIGHWAY PROJECTS

STATUS OF FEDERAL-AID SECONDARY OR FEEDER ROAD PROJECTS
AS OF FEBRUARY 28, 1941

[^0]: ${ }^{1}$ Paper presented at the Twentieth Annual Meeting of the Highway Research Board, December 1940.

[^1]: ${ }^{2}$ A Mortality Curve Study of the Actual Service Lives of Brick-on-Concrete Pavements, Des Moines, Iowa, 1909-1928, by Anson Marston. Proceedings Highway Research Board, Vol. 14, Pt. I, pp. 49-58. 1934
 ${ }^{3}$ Preliminary Studies of the Actual Service Lives of Pavements, by Robley Winfrey. Proceedings Highway Research Board, Vol. 15, Pt. I, pp. 47-60. 1935. ${ }^{4}$ Some of the States have published or have available certain results and applications of the road-life studies, and other States are in the process of completing reports, Such information and reports, if available, may be obtained directly from the State highway department.

[^2]: ${ }^{5}$ Acknowledgment is made to the personnel who compiled and reported the information in these States.

[^3]: ${ }^{6}$ In the highway planning surveys, vitrified paving brick roads are reported separately from other types of brick or block roads. Because of the small mileages involved, these two types are combined. Approximately 97 percent of the construction of these two types included in this report is vitrified paving brick
 ${ }^{7}$ The qualification that both types comprising the dual-type road must be constructed at the same time does not apply to other phases of the highway planning survey. It is adopted in the road-life study because of the statistical procedures followed in analyzing construction having similar ages.

[^4]: ${ }^{8}$ Copies of this Tentative Draft were transmitted to all State highway departments under date of June 2, 1938, by E. E. Hall, Secretary, Subcommittee on Accounting, American Association of State Highway Officials.

[^5]: ${ }^{1}$ No retirement of 1908－09 construction in earlier years．

[^6]: - Statistical Analysis of Industrial Property Retirements, by Robley Winfrey, December 1935. See also Proc. Highway Research Board, Vol, 15, I't. I, jp, 47 to fio, or a description of the matching process.

[^7]: 10 The 18 type curves presented in Bulletin 125 are designated by their shape as indicated by hoth the modal age and modal frequency. The letters L, S, and R are given, respectively, to the types having their year of greatest retirement to the left of, coincident with, and to the right of the age corresponding to average life. Subscript numbers are added to the letters to show the relative percentage of retirement at the modal age, the larger number being used for the larger retirements or steeper survivor curves.

[^8]: ${ }^{1}$ The entries in columns A, B, C, and D for ages from $14 \frac{1}{2}$ years to $17 \frac{1}{2}$ years are obtained as follows:
 Column A : The entry of 510 miles at the age of $141 / 2$ years is the summation of th mileages remaining for only 4 years of construction (1919 to 1922). The experience of the 1923 construction extends only to January 1, 1937, at 131/2 years of age and must necessarily be omitted. Similarly, the entries in column A at ages of $151,2,161 / 2$, and $171 / 2$ years include 3,2, and 1 year of construction, respectively.

 Column C: The mileage entries in this column for ages from $141 / 2$ years to $17 \frac{1}{2}$ years represent the mileages existing I year prior to the corresponding mileage entries in column A. Thus, the entry of 544 miles at $141 / 2$ years of age is the sum of the mileages of 1919 to 1922 construction which existed at $13 \frac{1}{2}$ y years of age.

 Column D: The entries in this column represent the percentage of the mileage which remained in service throughout the preceding year, obtained by dividing the entries in column A by the entries in column C. Thus, of the mileage existing at $131 / 2$ years of age, there was 93.8 percent still in service at $14 \frac{1}{2}$ years of age (510 divided by 544).

[^9]: Column B: Of the original construction of 1,371 miles there was 60.4 percent remaining in service at an age of $131 / 2$ years (828 divided by 1,371). Column I) (for 4 of the 5 years of construction) indicates that 93.8 percent of mileage in service at an age of $131 / 2$ years was still in service at $141 / 2$ years of age. Thus, 0.604×0.938 or 56.6 perceut of the original 100 percent may be considered as still in service at $141 / 2$ years of age Similarly, 98.3 percent (from column D) of the mileage in service (or 56.6 percent) at an age of $14 \frac{1}{2}$ years was still in service at $15^{1 / 2}$ years of age. Therefore, 0.566×0.983 or 55.6 percent of the original 100 percent may be considered as still in service at $151 / 2$ years of age. This same procedure is followed for obtainingl the stub survivor curve entries at $16^{1 / 2}$ and $171 / 2$ Jears of age in column B.

[^10]: to be made
 ${ }_{2}$ Method I.-A verage service life calculated from the area under the original survivor curve.
 Method IL.-Average service life calculated from the area under the stub survivor curve and its projection to o percent remaining by extension of past trend.
 curves in Bulletin 125.

[^11]: No brick or block roads or dual-type roads were encountered which replaced soil-surfaced roads.
 "None" indicates the mileage is dropped from the system and there is no new construction which may be considered as replacing the mileage which is transferred.

 cement concrete. (This same qualification applies, in a lesser degree, to replacements by other types.)

[^12]: No dual－type roads were encountered which replaced gravel or stone roads．
 transferred．

 cement concrete．（This same qualification applies，in a lesser degree，to replacements by other types．）

[^13]: 1 ＂None＂indicates the mileage is dropped from the system and there is no new construction which may be considered as replacing the mileage which is abandoned or transferred．
 ${ }^{3}$ Because of the difficulties involved in the determination of the thickness of bituminous mats，it is probable that a portion of the large percentages of bituminous surface－ treated roads which are resurfaced and indicated as being replaced by bituminous surface treated roads should in reality be indicated as being replaced by mixed bituminous roads．The data，however，are recorded as submitted．
 ${ }^{3}$ The use of the term＂resurfaced＂in lieu of＂reconstructed＂as a method of retirement in the case of bituminous surface－treated roads which are replaced by portland cement concrete is not precise．An attempt，however，is made in the case of＂resurfaced＂to indicate the extent to which the retired bituminous surface－treated road is utilized as a base for the portland cement concrete．（This same qualification applies，in a lesser degree，to replacements by other types．）

[^14]: cement concrete is not precise．An attempt，however，is made in the case of＂resurfaced＂to indicate the extent to which the retire

[^15]: ronsferred.

 concrete is not precise. An attempt, however, is made, in the case of "resurfaced" to indicate the extent to which
 the portland cement concrete. (This qualification applies, in a lesser degree, to replacements by other types.)

[^16]: Only the totals are shown for dual－type roads．The mileage retired during various years is too small to warrant percentage distributions by year groups．

[^17]:
 retirement

