

A JOURNAL OF HIGHWAY RESEARCH

UNITED STATES DEPARTMENT OF AGRICULTURE BUREAU OF PUBLC ROADS

VOL. 18, NO. 3
MAY 1937

PUBIC ROADS ...n Highway Research

Issued by the
UNITED STATES DEPARTMENT OF AGRICULTURE
BUREAU OF PUBLIC ROADS

Volume 18, No. 3
May 1937

The reports of research published in this magazine are necessarily qualified by the conditions of the tests from which the data are obtained. Whenever it is deemed possible to do so, generalizations are drawn from the results of the tests; and, unless this is done, the conclusions formulated must be considered as specifically pertinent only to described conditions.

In This Issue

The Effect of Curing Conditions on Strength of Concrete Test Specimens Containing Burnt Clay Aggregates 53
The Oliensis Spot Test Improved 59
State Motor-Fuel Consumption and Tax Receipts 63
THE BUREAU OF PUBLIC ROADSWillard Building, Washington, D. C.

DISTRICT OFFICES

DISTRICT No. 1. Oregon, Washington, and Montana.
Post Office Building, Portland, Oreg.
DISTRICT No. 2. California, Arizona, and Nevada.
Federal Building, Civic Center, San Francisco, Calif.
DISTRICT No. 3. Colorado, New Mexico, and Wyoming.
254 New Customhouse, Denver, Colo.
DISTRICT No. 4. Minnesota, North Dakota, South Dakota, and Wisconsin.
907 Post Office Building, St. Paul, Minn.
DISTRICT No. 5. Iowa, Kansas, Missouri, and Nebraska.
Masonic Temple Building, Nineteenth and Douglas Sts., Omaha, Nebr.
DISTRICT No. 6. Arkansas, Louisiana, Oklahoma, and Texas.
Room 502, United States Court House, Fort Worth, Tex.
DISTRICT No. 7. Illinois, Indiana, Kentucky, and Michigan.
South Chicago Post Office Building, Chicago, Ill.

DISTRICT No. 8. Alabama, Georgia, Florida, Mississippi, and Tennessee.
Post Office Building, Montgomery, Ala.
DISTRICT No. 9. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont. 505 Post Office Building, Albany, N. Y.
DISTRICT No. 10. Delaware, Maryland, Ohio, Pennsylvania, and District of Columbia.

Willard Building, Washington, D. C.
DISTRICT No. 11. Alaska.
Room 419, Federal and Territorial Building, Juneau, Alaska. DISTRICT No. 12. Idaho and Utah.

Federal Building. Ogden, Utah.
DISTRICT No. 14. North Carolina, South Carolina, Virginia, and West Virginia.

Montgomery Building, Spartanburg, S. C.

Because of the necessarily limited edition of this publication it is impossible to distribute it free to any person or institution other than State and county officials actually engaged in planning or constructing public highways, instructors in highway engineering, and periodicals upon an exchange basis. At the present time additions to the free mailing list can be made only as vacancies occur. Those desiring to obtain Public Roads can do so by sending $\$ 1$ per year (foreign subscription $\$ 1.50$), or 10 cents per single copy, to the Superintendent of Documents, United States Government Printing Office, Washington, D. C.

THE EFFECT OF CURING CONDITIONS ON STRENGTH OF CONCRETE TEST SPECIMENS CONTAINING BURNT CLAY AGGREGATES

BY THE DIVISION OF TESTS, BUREAU OF PUBLIC ROADS

THE TREND toward increased span lengths on highway bridges has stimulated efforts to decrease the dead load caused by the weight of the bridge floor. Results of a study of the relative strengths of test specimens of concrete bridge floor slabs made of several materials and placed by each of several methods have been published. ${ }^{1}$

Included among the concrete aggregates used was the artificial, lightweight aggregate known as "Haydite." The tests showed that there was a progressive retrogression in flexural strength for the Haydite concrete specimens for ages exceeding 90 days, whereas concrete made with siliceous gravel, crushed limestone, and quartz sand aggregates, cured under presumably the same conditions, continued to gain in strength. In view of the probability that this behavior of the Haydite specimens might be related to the moistureretaining qualities of the aggregate, it was decided to conduct further studies of Haydite concrete specimens. A supplementary series of laboratory tests under controlled curing conditions is discussed in this report.

Two series of concrete specimens, one containing fine and coarse Haydite as total aggregate and the other a natural sand and crushed limestone, were made and tested at various ages up to and including 1 year. In addition, a limited number of specimens made with Haydite aggregates were tested at an age of 428 days, and corresponding specimens made with natural aggregates were tested at 409 days. The mix used with the natural aggregates was $1: 2.1: 3.9$ by dry loose volume ($1: 2: 3.5$ by dry-rodded volume). The mix used with the Haydite aggregates was $1: 1.5: 3$ by dry loose volume, with 3 pounds of "Celite" added per sack of cement.

The latter mix was the same as that used in the bridge slab tests where the retrogression in flexural strength was noted. However, the Haydite used in the previous tests came from Jackson County, Missouri, while that used in these tests came from Erie County, New York. Though the materials were from different sources, both were manufactured by the same process and were submitted by the manufacturer as being representative of the type. The natural sand came from the Potomac River at Washington, the limestone from Martinsburg, W. Va. Physical characteristics of the aggregates are given in table 1, and the mix data are shown in table 2.

MIXING AND TESTING PROCEDURES DESCRIBED
Because dried Haydite aggregate absorbs water rapidly, it was decided to presaturate all aggregates and use them in this condition. The procedure followed was to dry the materials in an oven, weigh out

[^0]the fine and coarse aggregates required for each batch in a watertight container, and immerse them for 48 hours in a measured quantity of water before mixing. By this procedure the total water used was accurately determined, yet thorough presaturation of the aggregates was accomplished. However, the net watercement ratio reported for the Haydite concrete is only approximate, because of the difficulty of determining accurately the amount of water absorbed by the aggregates.

Table 1.-Grading and physical properties of aggregates

	$\begin{aligned} & \text { Haydite } \\ & \text { fine } \\ & \text { aggregate } \end{aligned}$	Potomac River sand	Haydite coarse aggregate	Martinsburg limestone
Retained on:	Percent	Percent	Percent	Percient
1-inch sieve				20
$3 / 4$-inch sieve				49
1/2-inch sieve			17	74
$33 / 8$-inch sieve			60	87
4-mesh sieve		5	98	100
8 -mesh sieve	14	24	100	100
16-mesh sieve.	48	41	100	100
30-mesh sieve_	67	59	100	100
50 -mesh sieve.	78	86	100	100
100 -mesh sieve.	84	97	100	100
Fineness modulus.	2. 91	3. 12	6. 58	7.36
Physical properties:				
Specific gravity ${ }^{1}$	1.63	2.53	1. 42	2. 71
A bsorption ${ }^{2}$ -	11.4	2.1	7.8	0.13
Weight (dry loose) per cubic foot				
	44	36	49	47

Bulk specific gravity, A. S. T. M. definition E 12-27.
${ }^{2} 70^{\circ}$ cone method of Bureau of Public Roads.
Table 2.-Data on mixes used in making concrete specimens

${ }^{1}$ Fifteen $1 / 2$-inch drops in 10 seconds.
2 Proportions by dry-rodded volume 1:2:3.5.
The concrete was mixed with shovels in watertight pans, each batch being of sufficient size to make one flexure specimen (6-by 6 - by 21 -inch beam) or two 6 - by 12- inch cylinders. After 1 day in the molds and 6 days in the moist room, the flexural specimens were subjected to the curing conditions indicated in table 3 , and the compression specimens to the curing conditions shown in table 4. Moist curing was accomplished by storing the
specimens in the moist room under standard conditions of humidity and temperature. The final wet curing consisted of immersion in water at laboratory temperatures prior to test.

Table 3.-Curing conditions for concrete beam specimens

> 1 Oven-dried specimens cooled in air of laboratory for 1 day prior to test. 2 Data for beams having Haydite aggregates. 3 Dried in oven to constant weight prior to test. i Data for beams having natural sand and crushed limestone aggregates.

TABLE 4.-Curing conditions and crushing strengths of cylinders

Group no.	$\left\|\begin{array}{c} \text { Age } \\ \text { at test } \end{array}\right\|$	Curing		Coarse aggregate				Strength ratio, Haydite concrete to limestone concrete
		Moist room	A ir	Haydite		Limestone		
				Crushing strength ${ }^{1}$	Coefficient of variation	Crushing strength ${ }^{1}$	Coefficient of variation	
1. 2. 4 12 13 25	$\begin{array}{r} \text { Days } \\ 7 \\ 28 \\ 28 \\ 180 \\ 180 \\ 360 \\ 360 \end{array}$	$\begin{array}{r} \text { Days } \\ 7 \\ 7 \\ 28 \\ 7 \\ 180 \\ 7 \\ 360 \end{array}$	Days -21 173 353	Lb. per sq. in. 2, 300 3, 460 3, 970 5, 180 6,490 5, 230 6,850	$\begin{array}{r} \text { Percent } \\ 3.5 \\ 6.2 \\ 4.6 \\ 1.4 \\ 5.6 \\ 4.4 \\ 1.9 \end{array}$	Lb. per sq. in. 2, 280 3, 510 4, 040 4, 470 5, 270 4, 250 5, 410	Percent 3.8 2.1 5.4 3.7 1.8 4.4 3.2	$\begin{array}{r} \text { Percent } \\ 101 \\ 99 \\ 98 \\ 116 \\ 123 \\ 123 \\ 127 \end{array}$
Average -				4, 780	3.9	4,180	3.5	114

${ }^{1}$ Each value represents the average of tests on 5 specimens,
Air curing was accomplished by storing the specimens in air in a frame structure which was heated only enough to keep the specimens from freezing. Twenty-four hours before test the air-cured specimens were moved to the laboratory in order to attain laboratory temperatures, and the final day was counted as part of the curing period. Oven-dried specimens were heated in an electric oven maintained at a temperature of 170° $\mathrm{F} . \pm 5^{\circ} \mathrm{F}$. and were brought to the laboratory 24 hours before test in order to cool. Each value given in tables represents the average of tests on five specimens in practically all cases.

The compression specimens were standard 6- by 12 inch cylinders; the flexural specimens were 6 - by 6 - by

21-inch beams. Flexure specimens were weighed at the time they were fabricated, when they were removed from the molds, at each time the curing conditions were changed, and at the time of test. Thus it was possible to calculate the percentage of water remaining in each specimen at each change of curing condition and at test.

The flexure specimens were tested as simple beams on an 18 -inch span with a side as molded, in tension. They were loaded at the third points with the apparatus described in Public Roads (vol. 13, no. 11), January 1933. The compression specimens were tested in accordance with standard methods.

The percentage of original mixing water remaining in the flexural specimens at the periods indicated is shown in table 5. Similar data are not available for the cylinders, because it was necessary to cap them, thereby changing the weight as well as the composition of the individual specimens. The average flexural strength for each group tested is given in table 6; table 4 gives similar data as regards crushing strength.

HAYDITE CONCRETE RELATIVELY SLOW IN ABSORBING AND LOSING

 MOISTURETable 5 shows the amounts of water remaining in the beam specimens at various periods, expressed as percentages of the original mixing water. The results show that the Haydite concrete lost approximately 7 percent of its mixing water during the first 24 hours. After 6 days curing in the moist room the specimens had reabsorbed moisture until the water content averaged about 95 percent of the original amount. After 28 days the percentage had increased to about 97 percent, and complete saturation was reached at 180 days. For the limestone concrete the percentage of original mixing water at 24 hours averaged about 91 percent. After curing in the moist room for 6 days the water content was about 95 percent, and complete saturation was attained at 28 days. Complete saturation is considered to have been reached when the water content of the specimen was 100 percent of the original amount of water used.

The amounts of moisture lost by specimens cured in the moist room for 6 days, followed by curing in air for varying periods, are shown for groups 2,4 to 9 inclusive, 13,14 , and 28 in table 5 . It will be observed that for both aggregates the moisture loss reached a maximum after about 6 months' curing in air. Increasing the curing period beyond 6 months (groups 13, 14, and 28) appeared to have negligible effect insofar as drying was concerned.

Data for groups 5 to 9 , inclusive, show the effect of immersing the specimens from 1 to 7 days in water after approximately 6 months curing in air. The initial curing period was 6 days in the moist room in each case. It will be observed that after 7 days of immersion (group 5) the limestone concrete had reabsorbed a considerably larger proportion of its original mixing water than had the Haydite concrete. Moreover, the rate of gain in weight after the first 24 hours in water appeared to be considerably less for the Haydite concrete.

Comparing groups 5 and 14 we find that for the limestone concrete, 7 days' curing in water was sufficient time for the specimens to regain all the moisture lost during the 6 -month or 1 -year curing in air. This was not true of the Haydite concrete, the amount of water reabsorbed after 7 days curing in water being substantially less than the amount present at the time the specimens were subjected to air curing.

Table 5.-Percentages of original mixing water remaining in concrete specimens after curing

CONCRETE BEAM SPECIMENS CONTAINING HAYDITE AGGREGATES

Group no.	Percentage of original mixing water remaining after curing in-											
	Molds for 24 hours	Moist room		Air		Oven		Water		Laboratory air		At
		$\mathrm{Pe}-$ riod	$\begin{aligned} & \text { Wa- } \\ & \text { ter } \\ & \text { con- } \\ & \text { tent } \end{aligned}$	$\underset{\mathrm{Pe}-}{\mathrm{Priod}}$	$\begin{aligned} & \text { Wa- } \\ & \text { ter } \\ & \text { con- } \\ & \text { tent } \end{aligned}$	$\underset{\text { riod }}{\mathrm{Pe}-1}$	$\begin{aligned} & \text { Wa- } \\ & \text { ter } \\ & \text { con- } \\ & \text { tent } \end{aligned}$	$\begin{array}{\|} \mathrm{Pe}- \\ \text { riod } \end{array}$	$\begin{aligned} & \text { Wa- } \\ & \text { ter } \\ & \text { con- } \\ & \text { tent } \end{aligned}$	$\begin{array}{r} \mathrm{Pe}- \\ \text { riod } \end{array}$	Water content	
	Percent 93	Days	Percent 94	Days	Per- cent	Days	$\begin{aligned} & \text { Per- } \\ & \text { cent } \end{aligned}$	Days	Percent	Days	Percent	Per cent 94
2	93	6	96	20	73					1	71	71
	94	${ }_{6} 6$	96	172	62					1	62	${ }_{6}^{96}$
5	93	6	96	166	62			7	82			82
	92		94	169	60			4	81			81
	93	6	95	170	62			3	81			81
	92	6	94	171	59			2	80			80
	94	6	97	172	62			1	81			81
10.	93	172	100	6	95					1	95	95
11.	94	171	100			7	63			1	64	64
	93	179	100									100
13.	93		96	352	61					1	61	61
14	93	6	94	346	60			7	84			84
	94	27	98	331	70					1	70	70
	93	179	100	179	83					1	84	84
17	93	269	100	89	88					1	88	88
18.	93	27	96	325	69			7	87			87
19.	93	179	98	173	83			7	92			92
	93	269	99	83	88			7	95			95
21.	94	352	101	6	97					1		96
22.	96	351	101			7	74			1	75	75
	93	358	100			1	9			1	97 90	97 90
	94	359	101			67	29			1	30	30
	95	427	100									100
28.	93	C	96	352	60					69	58	58

CONCRETE BEAM SPECIMENS CONTAINING NATURAL SAND AND CRUSHED LIMESTONE

Data for groups $13,15,16$, and 17 show the moisture content at 1 year, after the specimens had been subjected to moist curing followed by air curing for periods of various length. As might be expected, the percentage of water remaining at the end of the drying period decreased as the period of air curing increased. This

Table 6.-Curing conditions and flexural strengths of concrete beams

Group no.	Age at test	Curing				Coarse aggregate				Strength ratio, Haydite concrete to limestone concrete
		$\left\|\begin{array}{c} \text { Ini- } \\ \text { tial } \\ \text { moist } \end{array}\right\|$	Oven	Air	Wa-ter	Haydite		Limestone		
						Modulus of rupture	Coefficient of va riation	Modulus of rupture	Coefficient of variation	
			Days	Days	Days	$L b$. per sq. in		Lb. per sq. in		Pct.
1.	Days	Days 7	Days	Days	Days	sq. 386	Pc. 6	sq. 445	Pct.	87
2	28	7		21		357	8.3	442	4. 5	81
3	28	28				533	1. 6	591	12.8	90
4	180	7		173		556	4.3	643	11.2	86
5.	180	7		166	7	550	11.0	586	3.2	94
6.	180	7		169	4	- 544	7.1	573	10.1	95
7.	180	7		170	3	${ }^{1} 572$	14.8	589	12.9	97
8	180	7		171	2	590	8.8	600	4.2	98
9	180	7		172	1	${ }^{1} 607$	14.4	675	4.5	90
10	180	173		7		391	13.2	- 534	19.0	73
11	180	172	7	1		372	15.4	1 560	16.2	66
12.	180	180				629	6. 5	770	5.9	82
13.	360	7		353		512	4.2	623	13.2	82
14	360	7		346	7	483	10.9	535	4.5	90
15	360	28		332		468	16.6	656	8.0	71
16	360	180		180		246	2. 9	657	6. 5	37 45
17	360	270		90		296	11.7	652	8.1	45 105
18.	360	28		325	7	660	3.2	627	11.5	105 72
19.	360	180		173	7	585	4. 4	809	8. 6	72
20	360	270		83	7	540	8. 7	800	5.4	68
21.	360	353		7		422	7.6	589	7.1	72
22	360	352	7	1		305	6. 4	612	5.0	50
23.	360	359		1		476	3.4	577	8.4	82
24.	360	358	1	1		376	6.6	${ }^{1} 631$	17.4	60 92
25	360	360				679	8.2	736	5. 6	92
	$\left\{\begin{array}{l}2 \\ 428 \\ 3\end{array}\right.$	360		1		452	10.4			76
26	$\{3409$	360	48	1				591	14.9	16
	$\int^{2} 428$	428				675	8.2			
	\{3409	409						695	7.8	97
28.	$\left\{\begin{array}{l} 2428 \\ { }^{2} 409 \end{array}\right.$	7 7		$\begin{aligned} & 421 \\ & 402 \end{aligned}$		534	10.7	668	5.8	80
A verage	----	--..-				493	7.7	624	7.8	79

${ }^{1}$ Values represent average of tests on 4 specimens, all other values represent average of tests on 5 specimens.
${ }_{2}^{2}$ Data for beams having Haydite aggregates.
${ }^{3}$ Data for beams having natural sand and crushed limestone aggregates
was true also for groups $14,18,19$, and 20 insofar as the amount of moisture remaining at the end of the air curing period was concerned. However, these specimens were subjected to 7 days of water curing following the air curing period. For the limestone concrete, this final immersion in water resulted in final moisture contents approximately the same as before air curing began. However, the final moisture content of the Haydite concrete specimens varied with the length of the air curing period-the shorter this period the greater the water content at the end of the final 7 days of water curing.

Data for groups 10 and 21 show for both types of concrete that the moisture loss after 7 days in air curing was approximately the same for specimens that were cured initially for 1 year in the moist room as it was for specimens cured for 6 months. On the other hand, 7 days of oven curing at $170^{\circ} \mathrm{F}$. for specimens previously cured for 6 months in the moist room reduced their water contents by 43 percent, as compared with a reduction of only 33 percent for specimens cured for 1 year (groups 11 and 22 , respectively). Data for groups 23 and 24 show that for specimens cured initially 1 year in the moist room, drying in the oven for 1 day drove off three or four times as much water as drying for 1 day in air.

In order to determine how much water could be driven off at a temperature of $170^{\circ} \mathrm{F}$., a group of both Haydite and limestone specimens were kept in the oven until they had reached constant weight. The results show (group 26) that a slightly greater percentage of

Figure 1.-Relations Between Age and Flexural Strength of Haydite and Limestone Concrete Specimens.
water was lost by the Haydite concrete than by the limestone concrete, the percentages of water retained being 29 and 32, respectively. However, 67 days were required for the Haydite concrete to reach constant weight, as compared with 48 days for the limestone concrete.

Results of the absorption tests are of interest principally as indicating the effect of type of aggregate on rate of change in moisture content resulting from drying or absorption. In general, Haydite concrete both lost and gained moisture at a slower rate than did limestone concrete. In this connection it should be remembered that the concrete made with Haydite aggregates contained 7.2 sacks of cement per cubic yard, while concrete made with natural aggregates contained but 5.7 sacks per cubic yard.

NONUNIFORM MOISTURE DISTRIBUTION FOUND TO AFFECT FLEXURAL STRENGTH

The results of tests for flexural strength at various ages and for the several conditions of curing investigated are given in table 6 and are shown graphically in figures 1 to 6 , inclusive. The relations between flexural strength and age under continuous moist and continuous air curing conditions for both types of aggregate are shown in figure 1. It will be observed that under moist curing the Haydite concrete increased in strength up to 360 days, and specimens tested at the age of 428 days gave practically the same results as those tested at 1 year.

For limestone concrete under moist curing there was a distinct decrease in strength at 360 days as compared with strength at 180 days, with still further retrogression at 409 days. The retrogression in strength after 6 months for the limestone concrete is quite surprising in view of the fact that standard moist curing conditions obtained throughout the curing period.

In the case of specimens cured in air after 7 days of initial moist curing, we find little change in strength after 180 days for both types of aggregate. The maximum strength attained by the Haydite concrete specimens cured in air was about the same as the 28-day strength after moist curing. For the limestone concrete specimens cured in air the maximum strength was slightly higher than the 28 -day strength after moist curing. Also, the 28-day strengths (after curing in air for 21 days) were about the same as the strengths of the 7-day, moist-cured specimens. In this case the normal gain in strength between 7 and 28 days was probably neutralized by the fact that specimens air dried for 21 days were only partially dry when tested; that is, while the outer shell of the specimen was fairly dry the core

Figure 2.-Effect of Variations in Period of Resaturation on Flexural Strength of Concrete Specimens After Curing 180 Days as Indicated.
was still wet. The drying shell produced tensile stresses in the extreme fibers of the beam.

These initial stresses of course tended to reduce the load required to produce failure in bending, resulting in an observed modulus of rupture considerably lower than would have been obtained if the moisture content of the specimens when tested had been the same throughout. The fact that the strengths after 180 days in air curing increased materially probably resulted from the fact that during this period the specimens had an opportunity to dry uniformly, thus relieving these moisture stresses. That this so-called "shell" effect is of greatimportance in influencing the observed modulus of rupture will be evident from consideration of the results for specimens cured for 6 months and for 1 year, a discussion of which follows.

The results of flexure tests on specimens cured for 180 days under various curing and moisture conditions are shown in figure 2. Values in all cases have been expressed as percentages of the strength developed under continuous moist curing. It will be noted that specimens taken from the moist room at 173 days and cured in air for 7 days before testing attained only about twothirds of the strength of specimens tested immediately upon removal from the moist room (groups 12 and 10). This decrease no doubt resulted from the partial drying of the specimens during the final 7 -day period, as explained above. The effect was somewhat more marked in the Haydite concrete, the decrease in strength being 38 percent as compared with 31 percent for the limestone concrete.

The effect of partial drying is further illustrated by comparing the strengths of specimens cured in the moist room for 173 days, followed by 7 days in air, with those cured for 7 days in the moist room, followed by 173 days in air (groups 10 and 4). The air-cured specimens had much higher strengths, probably as a result of the absence of internal shrinkage stress in the concrete.

The effect of curing in water from 1 to 7 days just prior to testing the air-cured specimens is also shown in figure 2 (groups 5 to 9 , inclusive). It will be observed that immersing the specimens for 1 day increased the strength, but that further immersion tended to lower the strength. This applied to both the Haydite and the limestone concretes. Here we have a condition where the dry specimen was absorbing water from the outside, resulting in an effect just the reverse of that previously described in which the wet specimen was

Figure 3.-Effect of Variations in Periods of Moist Room and Air Curing on Flexural Strength of Concrete Specimens After Curing 1 Year as Indicated.
drying. In this case the effect of moisture in the outer shell was to produce compressive stresses in the extreme fibers of the beam, thereby raising, instead of lowering, the observed modulus of rupture. That this is true is evidenced by the fact that specimens immersed for only 1 day in water had higher strengths than the specimens tested dry, but the strengths decreased as the period of immersion increased.

The strength of Haydite concrete after 4 days of immersion was practically the same as that of the airdry specimens, indicating that moisture equilibrium had been established. For limestone concrete, the strengths after 2 days of immersion and longer were all somewhat lower than those of the air-dried specimens. For immersion periods of 3 days and longer there was little difference in strength. The results indicate that when curing has been in air, a 24 -hour water immersion period prior to testing may not give true results because of incomplete moisture penetration.

EFFECT OF PERIOD AND TYPE OF CURING ON FLEXURAI STRENGTH STUDIED
The effect of variations in the relative amounts of moist and air curing on the flexural strength of specimens tested at the age of 1 year is shown in figure 3. It will be observed that, for Haydite concrete, increasing the period of air curing prior to test caused a progressive reduction in flexural strength up to and including 180 days of air curing. For this condition, the specimens developed only 36 percent of the strength of the continuously moist-cured concrete. However, further increasing the period of air curing up to 353 days resulted in increasing the strength progressively. An increase in the drying period up to 421 days still further increased the strength. It is believed, however, that the increase was caused more by the change in moisture condition than by the additional curing that the specimens received between 360 and 428 days.

The very peculiar behavior of the Haydite concrete here indicated is believed also to be caused by internal moisture stresses, as discussed above. There seems to be no other explanation that will cover the facts. In this connection it is interesting to note that, although the limestone concrete exhibited the same tendency, the maximum decrease in strength was not as great, and also that it occurred after only 1 day of drying. The moisture distribution appeared to be equalized, at least insofar as effect on internal stress was concerned, somewhere between 7 and 90 days of air curing, whereas in

Figure 4.-Effect on Flexural Strength of Resaturation for 7 Days Prior to Testing for Concrete Specimens After Curing 360 Days as Indicated.
the Haydite concrete it did not occur until certainly well beyond the 180-day period.

By comparing the results of the strength tests with the corresponding moisture losses at the time of test as shown in table 5 it will be noted also that the measured moisture loss appeared to bear no relation to variation in strength caused by moisture. For instance, groups 13, 15, 16, and 17 for limestone concrete showed practically the same strength although the percentage of total moisture retained varied from 67 to 85 .

In order to study the effect of resaturation on the strength of the concrete cured for various periods in air, certain of the specimens cured as indicated in figure 3 were removed from air curing and immersed in water for 7 days prior to testing. The results are shown in figure 4, together with values for the corresponding airdried specimens. In studying these results it should be noted that, insofar as curing is concerned, each pair of values (for instance, groups 16 and 19) represent tests on specimens subjected, except for the final 7 -day period, to identical curing conditions. Therefore, the variations noted must have been caused by some other factor, presumably the shell effect previously discussed.

FLEXURAL STRENGTH OF HAYDITE CONCRETE FOUND MOST

 SUSCEPTIBLE TO MOISTURE CHANGE.It is difficult to explain satisfactorily all of the trends observed in figure 4. This applies particularly to the results obtained on the specimens immersed in water for 7 days prior to test. This period would certainly seem sufficient to eliminate the shell effect. However, if we assume this to be true, then variations in strength of the resaturated specimens must be caused by variations in curing only. This would not explain the relative strengths shown by the Haydite concrete in groups 18, 19, and 20 . It would certainly be reasonable to expect the strength to decrease with decrease in the length of the initial moist curing period, whereas, with the single exception of the specimens cured for 7 days in the moist room (group 14), just the reverse is true.
In the limestone concrete the relative values are as would be expected, except for the high strengths shown for groups 19 and 20. It is possible that in these groups the reabsorption of water actually produced compression

HAYDITE CONCRETE

MOIST ROOM 360359353358352360

OVEN	0	0	0	1	7	67
AIR	-	1	7	1	1	1
GROUP	25	23	21	24	22	26

LIMESTONE CONCRETE

Figure 5.-Effect of Drying Prior to Test on Flexural Strength of Concrete Specimens After Curing Approximately 1 Year in Moist Room.
in the extreme fibers which, combined with the relatively long inital period of moist air curing, produced the exceptionally high strengths observed. In any event, it is obvious that, in the determination of the flexural strength of concrete, great care should be exercised to insure that the specimens are truly in equilibrium, insofar as internal moisture stresses are concerned, when they are tested.

In the discussion so far presented the specimens cured in air were partially dried by storing in an unheated room adjacent to the laboratory. When the outside temperature went below freezing, a window leading to the laboratory was opened so that with the exception of short periods the temperature in the curing room was kept above freezing.

Tests were made to determine the effect of rapid drying and also to determine what effect drying to constant weight would have on the flexural strength. A number of specimens were dried in an electric oven at a temperature of approximately $170^{\circ} \mathrm{F}$. for periods of 1 and 7 days. Others were dried to constant weight, the time required varying for the individual specimens in each group. The 48 days noted for the limestone concrete and the 67 days noted for the Haydite concrete represent the average of five separate tests in each case. After removal from the oven the specimens were allowed to cool for 1 day in the laboratory before being tested. The results are shown in figure 5.

Referring first to the results for Haydite concrete, it will be observed that the strengths progressively decreased as the amount of drying increased up to 7 days of oven curing. Haydite specimens subjected to this treatment developed only 45 percent of the strength of moist-cured specimens of the same age, as compared with 83 percent for the limestone specimens. It will be noted also that, with the limestone concrete, the greatest decrease in strength occurred after 1 day of air drying, as against 7 days of oven and 1 day of air drying for the Haydite concrete. These results again point to the greater susceptibility of the Haydite concrete to moisture change and show also the effect of the slower drying action in concrete containing Haydite.

RECOMMENDATION MADE THAT FLEXURE SPECIMENS BE IMMERSED IN WATER FOR 48 HOURS BEFORE TESTING

Comparison of the flexural strengths of the Haydite and the limestone concrete specimens subjected to similar curing conditions shows that the average for all Haydite specimens tested wet was about 90 percent of the strength of the limestone concrete. On the other hand, the average strength of all Haydite specimens tested in various degrees of dryness was only about 70 percent of the strength of the limestone concrete cured and tested in like manner. This indicates that the strength of the Haydite concrete was affected to a greater degree by air curing than was the limestone concrete.

The degree to which the Haydite specimens were adversely affected varied over a wide range. For instance, the strength of Haydite specimens cured for 173 days in air after 7 days of moist curing was 86 percent of that of limestone specimens, or nearly equal to the 90 percent for the continuously moist-cured specimens. On the other hand, the Haydite specimens cured for 180 days in air after 180 days of moist curing had but 37 percent of the strength of limestone concrete similarly cured. It is apparent, therefore, that the time at which dry curing began had a marked effect on the ratio of the strength of the Haydite to the strength of the limestone concrete.

The previous discussion has been confined to the effect of the several variables on the flexural strength of the concrete tested. Additional tests were made to determine the effect on crushing strength of air curing as compared with moist curing. Tests were made at 7, 28, 180, and 360 days, on specimens cured the entire time in the moist room and on specimens cured in air after an initial moist curing of 7 days. No tests were made on specimens cured dry and tested wet or on specimens cured wet and tested dry as was done with the beam specimens. In other words, all of the compression specimens were probably in a stabilized moisture condition when tested.

The results for the Haydite concrete (fig. 6) indicate a progressive increase in strength for moist curing up to 180 days, with a small increase over the 180-day strength at 360 days. The same general trend is found for the specimens cured in air; that is, the strength at 360 days was approximately the same as that at 180 days. At each curing period the air-cured specimens had lower strengths than the moist-cured specimens, the difference becoming greater as the age at test increased. The results are in agreement with those found in the flexure tests; that is, the specimens cured in air and tested dry had lower strengths than those cured in moist air and tested wet.

The right-hand panel of figure 6 gives similar results for the limestone concrete. The results obtained are in general agreement with those found for the Haydite concrete; therefore they will not be discussed in detail. They are also in agreement with the flexure test results where the specimens were subjected to like curing treatments.

These tests indicate that the flexural strength of concrete containing aggregates of the type represented by Haydite is affected considerably more by variations in curing and moisture content at time of test than is concrete containing naturally occurring aggregates of average quality.
(Continued on p. 61)

THE OLIENSIS SPOT TEST IMPROVED

Reported by R. H. LEWIS, Associate Chemist, and J. Y. WELBORN, Junior Highway Engineer, Division of Tests, Bureau of Public Roads

SINCE the publication in 1933 of Mr. Oliensis' paper "A Qualitative Test for Determining the Degree of Heterogeneity of Asphalts", ${ }^{1}$ the Bureau of Public Roads has devoted considerable time to the study of this test, which has proven to be a very useful one. The results of these studies corroborate the author's conclusions with respect to the scope and limitations of the test.

In tests by the Bureau on a large number of asphaltic materials from all producing centers, heterogeneity is found to be far more prevalent among the more fluid materials than among the refined, semisolid, paving asphalts, and the quantitative method recently developed by Mr. Oliensis should be of great value in comparing the degree of heterogeneity of various asphaltic materials. The paper ${ }^{2}$ describing this new method of test has been studied and the data obtained are presented in this report.
Clifford Richardson has stated: ${ }^{3}$
In residual pitches, at times some of the bitumen is found which is insoluble in cold carbon tetrachloride, and this is evidently due to the severe treatment which the material has suffered in the course of its production at very high temperatures. A determination of the amount is only valuable as an indication of the care which has been used in the preparation of such pitches.

For years, therefore, asphalt specifications, have required a high solubility in carbon tetrachloride as a protection against overheating in the refining process.

However, examination of fluid and semisolid asphalts from numerous sources has shown that many of the products that have been subjected to temperatures much higher than those used in normal steam refining have relatively high solubility in carbon tetrachloride. Many materials that are definitely cracking-coil residues produce a positive stain with both naphtha and xylene, while the majority of those that apparently have been inadvertently overheated in a steam or vacuum process, and some blends of cracked and uncracked residuals, give a positive stain with naphtha and a negative stain with xylene. In spite of their high solubility in carbon tetrachloride, these asphaltic materials are heterogeneous. It is apparent, therefore, as has been pointed out by Mr. Oliensis, that a high solubility in carbon tetrachloride does not indicate definitely that the material has not been overheated in the refining process.

The Bureau is now engaged in a detailed investigation of commercial grades of semisolid asphalts from the refineries of the major producers. This study involves among other things the exposure of the asphalts in films one-eighth inch thick to the action of sun and light for 15 weeks (approximately 900 sunlight hours).

Thirty-nine samples of $85-100$ penetration asphalt have been studied, of which 16 samples gave negative stains both before and after exposure. Nine gave negative stains before exposure and showed varying degrees of heterogeneity after exposure. Twelve gave positive stains before and after exposure; and two ma-

[^1]terials that showed slight heterogeneity before exposure produced negative stains after 15 weeks of exposure. Perhaps these two are examples of the fugitive type which has been observed by Mr. Oliensis.

For the 23 samples that gave positive stains either before or after exposure, table 1 gives the base petroleum and the refining process as reported by the manufacturers. Results of the Oliensis spot test before and after exposure, the gilsonite and xylene equivalents before exposure, and the xylene equivalent after exposure are also listed.

METHOD OF DETERMINING GILSONITE AND XYLENE EQUIVAI,ENTS DESCRIBED
In considering the data in table 1, and later in table 2 , the heterogeneity of the materials is expressed quantitatively by limits representing the highest percentage of gilsonite or xylene that would produce a positive stain and the lowest percentage of gilsonite or xylene that would produce a negative stain. The true xylene or gilsonite equivalent (the exact percentage of homogeniser necessary to produce a negative stain) is within these limits. Thus, a xylene equivalent of 12-16 means that with 12 percent or less of xylene in the standard naphtha the material developed a positive stain and that with 16 percent or more of xylene, a negative stain was obtained. A gilsonite equivalent of $50-60$ means that when 50 percent of gilsonite was blended with the material under test and the blend tested with standard naphtha a positive stain was produced; when the blend of gilsonite and asphaltic material contained 60 percent of gilsonite a negative stain was obtained. The term "xylene insoluble" indicates that a positive stain was obtained with 100 percent of xylene and the material is beyond the range of the test, i. e., the heterogeneity of the material is indeterminable with this solvent.
Table 1 shows that only 2 of the 39 materials produced a positive stain with xylene, either before or after exposure. Eight of the 14 original materials that were heterogeneous had xylene equivalents of 8 or less, and gilsonite equivalents of 10 or less. Of the heterogeneous exposure residues of the nine materials that were originally homogeneous, seven had xylene equivalents of eight or less. For those materials that were heterogeneous originally, the increase in xylene equivalent in the exposed residues was quite variable.

Samples 7 and 8 are of special interest. Both were produced from the same Venezuelan crude, the first by the continuous vacuum steam distillation and the latter by batch steam distillation. After exposure sample 8, which gave a positive stain initially, had a higher xylene equivalent than sample 7 , which gave a negative stain initially.

In table 1 of Mr. Oliensis' report, ${ }^{2}$ he shows that the xylene equivalent for sample 13, representing a waxbearing residual, crude K , was greater than the gilsonite equivalent. Sample 23 of the materials tested by the Bureau was a wax-bearing residual, produced from a crude that tested positive in the spot test. Tests made on other semisolid products from this same refinery and on residues reduced in the laboratory with a high

Table 1.-Oliensis spot test results and gilsonite and xylene equivalents for samples of 85-100 penetration asphalt

Xylene insoluble
steam ratio from the crude oils used as base petroleum by this refinery, showed that they required approximately 35 percent of gilsonite to produce a negative stain. Although the other samples from this source were not tested for xylene equivalent, it is noted that the xylene equivalent for sample 23 was considerably lower than the gilsonite equivalent. This is not in agreement with the conclusion by Mr. Oliensis that gilsonite is more efficient than xylene in correcting heterogeneity caused by waxy bodies.

The spot test results for these representative asphalts show that 23 out of 39 samples, or about 60 percent, were homogeneous, and that 16 , or about 40 percent, remained homogeneous after 15 weeks of exposure. All of the homogeneous materials that became heterogeneous upon exposure had xylene equivalents of 16 or less. Under the climatic conditions existing during the winter months at Madison, Ill., it is possible that heterogeneity might not have developed in these samples.

NEW METHOD USEFUL IN TESTING BOTH ORIGINAL MATERIALS AND RESXDUES FROM EXPOSURE

Under the same summer conditions to which the 85100 penetration asphalts were subjected, all fluid materials that were studied in this investigation developed heterogeneous residues within 5 weeks. In a previous report covering a study of the spot test on liquid asphalts, mentioned in Mr Oliensis' paper, the following statement was made: ${ }^{4}$

[^2]The use of the xylene equivalent gives promise of overcoming past difficulties in the proper interpretation of the spot test results and appears to offer a ready means of determining the comparative degree of heterogeneity and the rate of its development in materials exposed to weathering.

In a report presented at the January 1936 meeting of the Association of Asphalt Paving Technologists ${ }^{5}$ the behavior of five materials-three steam-distilled residuals (Mexican, midcontinent, and California), and two cracking coil residuals under exposure conditions-was described. The results of the spot tests, determined on these materials after exposure in films 1/8, $1 / 16$, and $1 / 32$ inch thick for 5,10 , and 15 weeks, may help to show the possibilities of the quantitative method of determining heterogeneity suggested by Mr. Oliensis.
The two cracking coil residues gave positive spots with xylene, and the development of heterogeneity in these materials under exposure could only be detected by the steady development of organic matter insoluble in CS_{2} and CCl_{4}. The other three materials and their distillation residues gave negative stains. The xylene equivalents of the residues after various periods of exposure are shown in table 2.

It will be seen that, at each test period, the thinner the film thickness the greater the xylene equivalent. For each thickness of film, except the $1 / 8-$ and $1 / 16$-inch films of the Mexican residual, the xylene equivalent increased with the time of exposure. The reason that the $1 / 8-$ and $1 / 16$-inch films of the Mexican residual after 10 weeks of exposure had lower xylene equivalents than the corresponding films after 5 weeks of exposure is not known.

Data on the solubilities of some of these residues are of interest (table 3). It will be seen that the $1 / 32$-inch film of sample 2 after 15 weeks of exposure had more matter insoluble in CS_{2} than two of the other residues, and more matter insoluble in CCl_{4} than three of the other residues. However, it was readily dispersed in 68-72 percent xylene-naphtha solution, while the other samples all contained material insoluble in 100 percent xylene. This would seem to indicate a difference in the

[^3]Table 2.- Xylene equivalents of residues of slow-curing liquid asphaltic materials (grade SC-2) after exposure

${ }^{1}$ Xylene insoluble.
character of the insoluble materials in the several residues that affects their dispersion in the solvents used for determining heterogeneity.

The stain obtained in the original Oliensis spot test indicates only that the material is homogeneous or heterogeneous. The degree of heterogeneity is not determinable by this test and, as indicated in table 1 , it automatically classes materials that have heen only slightly overheated with products that have been subjected to excessive heat. This quantitative method, therefore, should prove extremely valuable in future studies of asphaltic materials.
(Continued from p. 58)

Figure 6.-Relations Between Age and Crushing Strength of Concrete Specimens Cured in Various Ways.

Table 3.- Comparison of solubilities of exposed samples with xillene equivalents

The wide variations in flexural strength of the Haydite concrete appear to result primarily from its tendency to absorb and to give ofl moisture at a slower rate than concrete containing normal aggregates, thus delaying the even distribution of moisture which is necessary in order to eliminate internal stresses.
The results emphasize the importance of controlling: testing procedure so as to insure that specimens under test are free from stresses induced by an uneven distribution of moisture. They indicate that, where curing has been in air, immersion in water prior to test for more than the customary 24 hours may be necessary and that, when the specimens have been subjected to continuous moist curing until test, care should be exercised to prevent any drying prior to test.
Drying to constant weight in order to eliminate moisture stresses is not practicable because of the length of time required. For this reason it is recommended that all flexure testing be performed on saturated specimens, and that in cases where specimens have been subjected to drying prior to test they be immersed in water for at least 48 hours immediately before testing.

SLIPPERINESS OF ROAD SURFACES STUDIED BY ENGLISH INVESTIGATORS

Apparatus for accurately measuring the slipperiness of various road surfaces has been developed at the Road Research Laboratory of the Department of Scientific and Industrial Research in. England. The machine used consists of a motorcycle and sidecar in which the sidecar wheel can be set at an angle to the direction of travel.

The horizontal reaction of the road, developed by the wheel because of its position, and the load on the wheel, are measured. From data obtained with instruments carried in the sidecar, the ratio of these forces is obtained and expressed as a coefficient which is high for nonskid surfaces and low for slippery ones. The construction and operation of the motorcycle and sidecar and of the measuring apparatus are described in a bulletin ${ }^{1}$ recently issued jointly by the Department of Scientific and Industrial Research and the Ministry of Transport. The apparatus, which has been in regular use for several years, is estimated to cost $£ 475$ (approximately $\$ 2,350$).

A bulletin ${ }^{2}$ reporting results of the first of a series of studies of road friction has also been published recently. This bulletin summarizes the results of numerous measurements made on various types of road surfaces under different climatic conditions and at different

[^4]speeds. Deductions and conclusions are drawn from the results obtained.

The skidding coefficient was found to be high for dry road surfaces free from loose material, and such surfaces can be considered as nonskid. On wet surfaces, the coefficient decreases as the speed increases. A value of 0.5 at 30 miles per hour may be regarded as reasonably safe; a value of 0.2 indicates that the surface affords insufficient resistance to skidding. Values of 0.2 or less are found most frequently on city streets.

The most slippery condition of a road is probably during a silver thaw, when the coefficient is as low as 0.1 at all speeds. Measurements taken on a snowcovered road showed values ranging from 0.5 to 0.2 , the latter being found after the snow had become packed. The values for snow-covered roads were no lower than those found on some smooth, wet surfaces, but on snow-covered roads the lower values may persist down to speeds of 5 miles per hour.

On concrete surfaces the coefficient varied but little at different seasons of the year. Practically all other surfaces, when wet, were more slippery in summer than in winter. Tests made on wood- and rubber-block pavements showed them to have low coefficients.

The apparatus is now being improved to enable tests to be made at speeds higher than 30 miles per hour.

MOTOR-FUEL CONSUMPTION, 1936

[Compiled for calendar year from reports of State authorities!

State	Tax rate per gallon-		1)ate of rate change	$\begin{gathered} \text { Net total } \\ \text { consump) } \\ \text { tion in } \\ \text { State } \end{gathered}$	Amounts exempted from payment of tax ${ }^{2}$				Gross amount assessed for taxation	Amount subject to refund of entire tax	$\begin{aligned} & \text { Net } \\ & \text { nmount } \\ & \text { taxed } \end{aligned}$	Amount taxed at full rate	Amount taxed at reduced rates		Approximate amount taxedfor highway use s		
	$\begin{gathered} \text { On } \\ \mathrm{Jan} . \\ 1 \end{gathered}$	$\begin{gathered} \text { On } \\ \text { Dee. } \\ 31 \end{gathered}$			$\begin{gathered} \text { Federal } \\ \text { and } \\ \text { other } \\ \text { public } \\ \text { use } \end{gathered}$	$\begin{aligned} & \text { Non- } \\ & \text { high- } \\ & \text { way } \\ & \text { use } \end{aligned}$	Allow: ance for ration and other losses	Total					$\left\{\begin{array}{c} \text { Rate } \\ \text { per } \\ \text { g.llon } \end{array}\right.$	Amount	1936	1935	$\begin{gathered} \text { Per- } \\ \text { cent- } \\ \text { age } \\ \text { change } \end{gathered}$
Alabama	$\begin{gathered} \text { Cents } \\ 6 \end{gathered}$	Cents		$\begin{aligned} & 1,000 \\ & \text { gillons } \\ & 199,040 \end{aligned}$	1.000 gallons	$\begin{aligned} & 1,000 \\ & \text { gallons } \end{aligned}$	$\begin{aligned} & 1.00 n \\ & \text { gallons } \end{aligned}$	$\begin{aligned} & \text { 1,000 } \\ & \text { gillons } \end{aligned}$	gallons. 194,040	$\begin{aligned} & \text { 1,000 } \\ & \text { gallons } \end{aligned}$	$\begin{gathered} 1,000 \\ \text { gaillons } \\ \text { 199, 040 } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { gallons } \end{gathered}$	Cents	$\begin{aligned} & \text { 1,000 } \\ & \text { gallons } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { gallon } \\ & * 199,040 \end{aligned}$	$\begin{gathered} 1,000 \\ \text { gallons } \end{gathered}$	
Arizona--	61/5			96, 543	5,475			5, 475	91, 068	11,559	79,509	79,509			-79,509	67,323	18.1
Arkansas	${ }_{3}^{61 / 2}$			154, 208	4,472		1, 460	5, 932	148, 276		148, 276	133, 884	(${ }^{1}$)	14,392	*148, 276	*131, 7×4	12.5
Colorado	3	3		1, 6551,837	27, 824		16, 240	44, 064	1, 607, 773	147,780	1, 459,993	1, 459, 993			1,459,993	1,340, 137	8.9
Connectici	3	3		208,897 299,405	7,188 3,024	615	4,145 2,957	13,948	194, 949	22, 288	172,661	172, 661			172, fif1	152, 324	13.3
Delaware	4	4		50, 766	81,024			1, 024	-49,742	6, 206 2,675	47,067	47, 0667			47,067	263,781 42,948	8.9 9.6
Florida -	7	7		300, 192	7, 642	1,993	2, 478	12,113	288, 079		288, 079	288, 079			*288, 079	*256, 609	12.3
Georgia	6	6		303, 968	3,809		1,486	5,295	298, 673		298, 673	298, 673			*298, 673	*264, 617	12.9
Idaho	5	5		87, 848	4,331	478		4, 809	83, 039	8,135	74, 904	74, 701	$2^{1.2}$	- 203	74, 701	63, 743	17.2
Jllinois.	3	3		1, 191, 915					1, 191, 915	68, 583	1, 123, 332	1,123, 332			1, 123, 332	1,015,019	10.7
Indiana	4	4		564, 073	2,364			2,364	561, 709	35, 800 .	-525,909	525,909			525,909	472, 010	11.4
Iowa--	3	3		460, 298					460, 298	48, 754	411,544	411,544			411, 544	386, 489	6.5
Kansas --	3	3		450, 331		${ }^{\text {111] }}$ 24,886	9, 007	133.893	316, 438		316, 438	316, 438			316, 438	295, 308	7.2
Kentucky	5	5		228, 333					228, 333		228, 333	228,333			*228, 333	*201, 324	13.4
Louisian	5	7	July 28	223, 093	3, 853		6, 693	10,546	212, 547		212, 547	${ }^{11}$ 212, 547			*212, 547	*186, 201	14.1
Maine Maryland.	4	4		134, 521	1,412			1.412	133, 109		133, 109	127, 513	1	12 5, 596	127, 513	114, 532	11.3
Maryland.	4	4		245, 231.	3,731			3,731	241, 500	14,964	226, 536	224, 319	3	${ }^{13} 2,217$	226, 536	204, 8.50	10.) 6
Massachusetts	3	3		654, 3091					654. 309	29,379	624.930	624,930			624, 930	54. 233	7.0
Michican	3	3		995, 581	4,971	49,925	28.027	82, 923	912, 6.58	39,682	872,976	872, 976		(14)	${ }^{15} 871.512$	767.987	13.5
Minnesota	3	3		483, 844	3, 768	1,881	15. 510	21, 1.59	462. 685	58, 259	404, 426	404. 426			404, 426	374. 701	7.9
Mississippi Missouri.		${ }_{6}$		169.945	4, 496		3, 305	7,801	162. 144		162, 144	151, 880	1	16 10, 264	151, 8×8	123. 291	23.2
Missouri...	-	2		567, 750					567, 750	19,539	548, 211	548, 211			548, 214	498, 3.50	10.0
Montana	5	5		111, 743	3, 813		2,116	5,929	105. 814	15, 367	90, 447	90, 447			90, 447	77,393	16.9
Nebraska	4	5		231, 581	1,274		7,085	8, 359	223, 222		223, 222	223, 222			*223, 222	*219, 165	1.8
Nevada-....	4	4		32, 839	1,633	1,189	601	3, 423	29, 416	1,996	27, 420	27, 420			27, 420	24,046	14.0
New Hampshire.	4	3		80, 898					80, 898	2,150	78, 748	$\begin{array}{r}78,748 \\ 657 \\ \hline\end{array}$			78,748 657,854	71, 992	9.4
New Mexico	5	5		81, 858	4,622		1,165	12, 787	710, 86.071	52,977	607, 6954	657,854 69			657, 5464	594, 432	10.7
New York.	4	3	July 1	1,721, 830	${ }^{13} 59,681$	4,010		63, 691	1, 658, 139	39,017	1,619,122	1v1,619, 122			1, 619, 122	1,495, 863	19.9 8.2
North Carolina	6	6		350, 380	3,750	638.	2,315	6,703	1343,677		1, 343,677	335, 097	1	188,580	1, 330̄, 0971	305, 579	9.
North Dakota	3	3		103, 697	877				102, 820	25,799	77,021	77, 021			77, 021	78,877	-2.4
Ohio--	4	4		$201,201,445$	4, 216	29, 893	33, 985	68, 094	1, 133, 351	9.998	1, 123, 353	1, 078, 255	1	2045,098	1,078, 255	965, 240	11.7
Oklahoma	4	4		365, 737	3, 666		7, 222	10,888	354, 849	22, 606	332, 213	332, 243			332, 243	299, 593	10.9
Oregon.	5	5		216,578,	4,663			4, 663	211, 915	25, 050	186, 865	186, 092	1	21773	186, 092	160, 434	16.0
Pennsylvania	4	4		1, 283, 280	6, 055			6,055	1, 277, 225		1, 277, 225	1, 277, 225			*1, 277, 225	*1, 171, 439	9.0
Rhode Island	2	$\stackrel{2}{6}$		123, 298	1,009			1,009	122, 289	7,889	114, 400	114, 400			114,400	106, 133	7.8
South Carolina	6	6		163, 474	2,341			2,341	161, 133		161, 133	161, 133			22 *160, 810	*143, 014	12.4
South Dakota	4	4		116, 043	1,970		4, 563	6, 533	109, 510		109, 510	98, 447	2	${ }^{23} 11,063$	98, 447	${ }^{24} 996,531$	2.0
Tennessee	7	7		266, 315	${ }^{25} 11,122$		2, 528	13, 550	252, 665		252, 665	252, 665			*252, 665	*216, 386	16.8
Texas	4	4		1, 108, 063	12,453		10, 956	23, 409	1, 084, 654	125, 697	958,957	958, 957			958, 957	835, 942	14.7
Utah.	4	4		83, 358	2,758		2,417	5,175	78, 183		78, 183	78, 183			28 *77, 912	*69, 396	12.3
Vermont.	4	4		60, 026	2,329			2,329	57, 697		57,697	57,697			*57, 697	*51, 388	12.3
Virginia.	5	5		316, 556					316, 556	17, 454	299, 102	299, 102			299, 102	272, 169	9.9
W ashington	5	5		319, 302	5,563			5,563	313, 739	25,518	288, 221	288, 221			288, 221	252, 601	14.1
West Virginia	4	4		181, 039	${ }^{27} 457$			457	180, 588	5,952	174, 630	174, 630			174, 630	153, 105	14. 1
Wisconsin	4	4		503, 969	3, 161		12,521	15, 682	488, 2×7	35, 778	452, 509	452, 509			452, 509	405, 909	11.5
W yoming.	4	4		58, 044	1,748			1,748	56, 295		56, 296	56i, 296			28 *55, 482	*47, 44.5	16.9
Dist. Columbia-	2	2		126, 837	${ }^{29} 4,299$		293	4, 592	122, 245	620	123, 625	121, 62.5			121, 625	111,983	8. 6
Total.....	Weighted average rate 3.85 cents.			19,653, 142	247, 037	215, 508	179, 075	641, 620	19, 011, 522	933, 996	18, 077,526	17, 979, 340		98, 186	17, 993, 077	16, 264, 077	10.6

[^5]${ }^{13} 1$ cent per gallon refunded on motor fuel tised in vehicles licensed to onerate exclusively in cities
$141 \frac{1}{2}$ cents per gallon refunded on motor fuel used in interstate aviation. Amount not reported.
${ }^{15}$ Excludes 1,464,000 gallons of aviation fuel taxed at 3 cents per gallon.
165 cents per gallon refunded on nonhighway uses
17 Federal use, $3,335,000$ gallons; State, county, and municipal use, $8,858,000$ gallons. 18 Federal use, $11,880,000$ gallons; State, county, and municipal use, 47,801,000 gal lons.
19 Includes 705,520,000 gallons taxed at 4 cents per gallon and $913,602,000$ gallons taxed at 3 cents per gallon.
${ }_{20}$ Does not include $69,510,000$ gallons of liquid fuel (kerosene, fuel oil, etc.) taxerl at 1 cent per gallon but not subject to the 3-cent tax on motor-vehicle fuel.

214 cents per gallon refunded on motor fuel used in aviation.
${ }^{22}$ Excludes 323,000 gallons of aviation fuel.
${ }^{23} 2$ cents per gallon refunded on nonhighway uses.
${ }_{23}$ Revised figure.
${ }^{23}$ Federal use, $7,634,000$ gallons; county and municipal use, 3,488,000 gallons
${ }^{26}$ Excludes 271,000 gallons of aviation fuel.
${ }^{27}$ Public use not, reported in full; amount includes 32,000 gallons Federal use and 425,000 gallons, State, county, and municipal use, on which refunds were paid.
${ }^{28}$ Excludes 814,000 galions of aviation fuel.
50 Includes both Federal and District Government use.

STATE MOTOR-FUEL TAX RECEIPTS, 1936

State	Tax rate per gallon-		Date of rate change	Receipts from taxation of motor fuel			Other receipts in connection with motor-fuel tax :					Net total receipts
	On Jan. 1	On Dec. 31		Gross receipts	Refunds paid	Net receipts	Distributors' and dealers' licenses	Inspection fees ${ }^{2}$	Fines and penalties	Miscellaneous receipts ${ }^{3}$	Total	
Alabama	Cents	Cents 6		$\begin{aligned} & 1,000 \text { dollars } \\ & 11,754 \end{aligned}$	$\begin{aligned} & \text { 1,000 } \\ & \text { dollars } \end{aligned}$	$\begin{aligned} & 1,000 \text { dollars } \\ & 11,754 \end{aligned}$	1,000 dollars	$\begin{array}{r} 1,000 \text { dollars } \\ 49 \end{array}$	$\begin{aligned} & \text { 1,0000 } \\ & \text { dollars } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { dellars } \end{aligned}$	$1,000 \text { dollars } 49$	$\begin{array}{r} 1,000 \text { dollar, } \\ 11,80 \end{array}$
Arizona	5	5		4,483	642	3, 841			2		${ }^{2}$	3,843
Arkansas	61,3 3	${ }_{3}^{61 / 2}$		9, 155 47,429	4,433	9, 42,495		80			80 12	9,235 43,008
Colorado-	4	4		7,855	1,022	6, 833						6, 833
Connecticat	3	3		8. 967	185	8,782	53				E3	8,835
Delaware	4 7	4		19,962	109	1,853 19 19	3 33	359			3	1, 855
Georgia.	6	6		17, 493		17, 493					392	20, 17,493
Idaho --	5	5		4,094	402	3,692	1			3	4	3,696
Illinois.	3	3		35,398	1,940	33, 458		359	2		361	33, 819
Indiana	4	4		22, 127	1,432	20,695		458		1	459	21, 154
lowa	3 3 3	3 3 3		- 9 9,372		$\begin{array}{r}12,196 \\ 9 \\ \hline 172\end{array}$	6	100		42	148	12,196 9,520
Kentucky	5	5		11, 273		11, 273			3	,	4	11, 277
Louisiana	5	7	July 28	12, 121		12, 121		86			86	12, 207
Maine ${ }^{\text {Maryland }}$	4	4		5, 9 9	168	8, 8,921						5, 8102
Massachusetts	3	3		19,348	900	18, 448						18,448
Michigan	3	3		26, 925	1, 190	25, 735	3		1		4	25, 738
Minnesota.	3	3		13,994	1, 861	12, 133		194	1		196	12, 329
Mississippi	6	6		9. 577	51.5	9, 062	*			(4)		9, 062
Montana	5	5		-5,249	794	4,455						4,455
Nehraska	5	5		11, 443	225	11, 218		102			102	11, 320
Nevada	4	4		1,166	86	1,080						1,080
New Hampshire	4	4		3,266	816	3, 180				1	1	3, 181
New Jersey	3	3		21,304 3,715	2, 217	19,087 3,389				3	19 21 1	19,106 3,410
New York.	4	3	July 1	57, 221	1,587	55, 634	59			16	75	55, 709
North Carolina	6			20,423	429	19,994		962		5	967	20,961
North Dakot	3	3 4 4		3, 088	84.3	2,245	*	56			56	2,301
Oklahoma.	4	4		14,094	883	13, 211			5		5	13, 216
Oregon-..	5	5		10, 492	1.284	9, 208			1	9	10	9, 218
Pennsylvania	4	4		49,364		49,364			12	7	19	49, 383
Rhode Isiand.	2	2		2,396	170	2, 226	4				4	2, 230
South Carolina	6	6		9,650	155	9,495		200			200	9,695
South Dakota	4				252	4. 068		118			118	4,186
Texas	4	4		43, 495	5, 028	38, 467				4		38, 471
Vtah.	4	4		3, 087		3, 087	1				1	3,088
Vermont	4	4		2, 277		2, 277						2,277
Virginia--	5	5		15,576	873	14, 703			11		11	14,714
Washington	5	5		15, 612	1,276	14, 336				9	9	14, 34.5
West Mirconsin	4	4		19,299	1, 468	17,803	7	197				6,810
Wroming	4	4		2, 252		2, 252	2				2	18,028 2,254
District of Columbia	2	2		2, 395	13	2, 382	11				11	2, 393
Total	$\left\{\begin{array}{c} \text { Weighted } \\ \text { cents. } \end{array}\right.$	average	rate 3.85	723, 735	37, 104	686, 631	233	4,417	38	101	4,789	691, 420

[^6][^7]STATUS OF FEDERAL-AID HIGHWAY PROJECTS

PUBLICATIONS of the BUREAU OF PUBLIC ROADS

Any of the following publications may be purchased from the Superintendent of Documents, Government Printing Office, Washington, D. C. As his office is not connected with the Department and as the Department does not sell publications, please send no remittance to the United States Department of Agriculture.

ANNUAL REPORTS

Report of the Chief of the Bureau of Public Roads, 1924. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1927. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1928. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1929. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1931. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1933. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1934. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1935. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1936. 10 cents.

DEPARTMENT BULLETINS

No. 583D .. Reports on Experimental Convict Road Camp, Fulton County, Ga. 25 cents.
No. 1279D. Rural Highway Mileage, Income, and Expenditures, 1921 and 1922. 15 cents.

TECHNICAL BULLETINS

No. 265T...Electrical Equipment on Movable Bridges. 35 cents.

MISCELLANEOUS PUBLICATIONS

No. 76MP. . The Results of Physical Tests of Road-Building Rock. 25 cents.
Federal Legislation and Rules and Regulations Relating to Highway Construction. 15 cents.
No. 191.... Roadside Improvement. 10 cents.
The Taxation of Motor Vehicles in 1932. 35 cents.

An Economic and Statistical Analysis of Highway-Construction Expenditures. 15 cents.
Highway Bond Calculations. 10 cents.

Single copies of the following publications may be obtained from the Bureau of Public Roads upon request. They cannot be purchased from the Superintendent of Documents.

SEPARATE REPRINT FROM THE YEARBOOK

No. 1036Y..Road Work on Farm Outlets Needs Skill and Right Equipment.

TRANSPORTATION SURVEY REPORTS

Report of a Survey of Transportation on the State Highway System of Ohio (1927).
Report of a Survey of Transportation on the State Highways of Vermont (1927).
Report of a Survey of Transportation on the State Highways of New Hampshire (1927).
Report of a Plan of Highway Improvement in the Regional Area of Cleveland, Ohio (1928).
Report of a Survey of Transportation on the State Highways of Pennsylvania (1928).

Report of a Survey of Traffic on the Federal-Aid Highway Systems of Eleven Western States (1930).

UNIFORM VEHICLE CODE

Act I.-Uniform Motor Vehicle Administration, Registration, Certificate of Title, and Antitheft Act.
Act II.- Uniform Motor Vehicle Operators' and Chauffeurs' License Act.
Act III.--Uniform Motor Vehicle Civil Liability Act.
Act IV.-Uniform Motor Vehicle Safety Responsibility Act.
Act V.-Uniform Act Regulating Traffic on Highways.
Model Traffic Ordinances.

A complete list of the publications of the Bureau of Public Roads, classified according to subject and including the more important articles in Public Roads, may be obtained upon request addressed to the U. S. Bureau of Public Roads, Willard Building, Washington, D. C.

				$\begin{aligned} & 680 \\ & \hdashline-9 \\ & -\quad 8 \end{aligned}$		¢ั¢			ลోํํ쿠 ทำก	$\begin{aligned} & \overline{0} \\ & \stackrel{m}{N} \\ & \mathrm{~m} \end{aligned}$		$\begin{aligned} & \text { onn } \\ & \text { on } \\ & \text { iñ } \end{aligned}$		$\begin{aligned} & \overline{0} き \\ & \text { nim } \end{aligned}$				躴	® \sim $\sim \sim$ \sim \sim
			$\begin{aligned} & \text { 垥 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Oix } \\ & \text { No } \\ & \text { min } \end{aligned}$	$\Longrightarrow \underset{\sim}{\hbar}$				$\stackrel{\text { \％}}{\text { ® }}$								$\xrightarrow{8}$	－
		$\stackrel{\sim}{\sim}-\sigma$		\bigcirc			¢ู่	－\ddagger	ษ		～		$\stackrel{\sim}{=}$	$\stackrel{\sim}{\infty}$	カin	\square	F．		$\stackrel{\text { ¢ }}{\stackrel{\text { ® }}{ }}$
				$$					$\begin{aligned} & \overline{0} \\ & \text { I } \end{aligned}$	$\stackrel{\circ}{0}$									N
				\％ $\stackrel{\text { \％}}{\sim}$ $\stackrel{1}{2}$		志			$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{\mathrm{m}} \end{aligned}$		กั๊		$\begin{aligned} & 880 \\ & \text { Bo } \\ & \text { nio } \end{aligned}$	$\begin{aligned} & \text { 8에N } \\ & \text { ovin } \end{aligned}$		$\underset{\sim}{6}$			\％ \％ \＃
z0000000000$\frac{4}{0}$00	$\frac{\text { 弚 }}{\frac{2}{2}}$	ヘٌ ${ }_{\text {®n }}$	－	かu	-Mn		$\stackrel{\text { n.t }}{ } \stackrel{n}{=}$	$\stackrel{\sim}{\sim}$	$\underset{\sim}{ \pm}$	$\xrightarrow{\sim}$	$\bar{\Xi} \overline{\mathrm{m}}$	$\stackrel{\sim}{n} \underset{\sim}{n} \underset{\sim}{\circ}$	$\pm \infty$	$\stackrel{\sim}{\sim}$	$\stackrel{n}{n}$ in	$\bar{\sim}$	¢ ¢	$\overline{7}$	$\stackrel{\text { ® }}{\text { ¢ }}$
			$\begin{aligned} & \tilde{N} \\ & \underset{\Xi}{ \pm} \end{aligned}$				$\begin{aligned} & \text { nom } \\ & \text { sif } \\ & \text { nion } \end{aligned}$	$$								$\begin{aligned} & \text { me } \\ & \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & \sin _{3} \\ & \text { div } \end{aligned}$	$\begin{aligned} & m \\ & \underset{\sim}{N} \\ & \stackrel{N}{N} \end{aligned}$	
			$\begin{aligned} & \infty \\ & \stackrel{0}{\dot{o}} \\ & \dot{n} \end{aligned}$		fex		$\begin{aligned} & \text { \& } \\ & \stackrel{1}{n} \end{aligned}$	$\frac{\circ}{\stackrel{\circ}{\circ}}$	$\begin{aligned} & \stackrel{8}{\AA} \\ & \stackrel{1}{£} \end{aligned}$	$\begin{aligned} & \text { w } \\ & \underline{0} \end{aligned}$	$\begin{aligned} & \overline{\bar{N}} \underset{\sim}{0} \\ & \stackrel{\sim}{\sim} \\ & \text { N } \end{aligned}$		$\begin{aligned} & \tilde{9}, \\ & \stackrel{y}{\approx} \end{aligned}$	$\begin{aligned} & \text { 等 } \\ & 0 \end{aligned}$	$\stackrel{\tilde{\omega}}{\stackrel{\omega}{i}}$	$\begin{aligned} & \text { 玉 } \\ & \text { m } \end{aligned}$			
									$\begin{aligned} & \text { ose } \\ & \text { od } \\ & \text { ion } \\ & =0 \end{aligned}$	$\begin{aligned} & \text { ond } \\ & 0.0 \\ & \text { oñ } \end{aligned}$		$\begin{aligned} & \text { 5ow } \\ & \text { nin } \\ & \text { ninn } \end{aligned}$			$\begin{aligned} & \text { oit } \\ & 0 \\ & \\ & \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \text { ne } \\ & \text { No } \end{aligned}$		\％	
			$\begin{aligned} & \text { のyo } \\ & \text { nimin } \end{aligned}$	$\begin{aligned} & \text { omo } \\ & \text { i.s. } \\ & \text { in } \end{aligned}$	Fmn													Mix	$\stackrel{\sim}{\sim}$
		$\begin{aligned} & \text { ano } \\ & \text { ano } \\ & \text { mo } \\ & \text { mon } \\ & \text { min } \\ & \text { nin } \end{aligned}$													\＆ٌBR－ min デニ～			$\begin{aligned} & \text { Non } \\ & \text { Won } \\ & \text { Boy } \end{aligned}$	
		に追 후룽 ∞ nic	志웅与亳皆 ベャ～			영웅 นiఃํํ 우		$\stackrel{\infty}{\approx}$ 충 웅웅 ジ ํ．						：ơo － \sin in					
				గింగ్రం ํํํㅋㅋ ～お			$\begin{aligned} & n \approx す \\ & \text { No } \\ & \text { no } \\ & \text { ann } \end{aligned}$							$\begin{aligned} & \text { gige } \\ & \text { on } \\ & \text { on } \\ & \text { mion } \end{aligned}$					
												ます응 ま ※～							8 8 8 8 8 8
		$\begin{aligned} & \text { mon } \\ & \text { on } \\ & \text { on }=0 \\ & \text { on } \\ & \text { n } \end{aligned}$												$\begin{aligned} & \text { eno } \\ & 0.0 \\ & 0.5 \\ & 0.0 \\ & \text { on } \\ & =0 \end{aligned}$	－ず等誛ま －${ }^{\circ}$				
																			N

[^0]: 1 The Effect of Materials and Methods of Placing on the Strength and Other Properties of Concrete Bridge Floor Slabs, by L. W. Teller and G. W. Davis. Public Roads, vol. 12, no. 10, December 1931.

[^1]: ${ }^{1}$ Proceedings, American Society for Testing Materials, vol. 33, pt. II.
 ${ }^{2}$ A Further Study of the Heterogeneity of Asphalt-A Quantitative Method, by G. L. Oliensis. Proceedings, American Society for Testing Materials, vol. 36, pt. li. ${ }^{3}$ The Modern Asphalt Pavement, by Clifford Richardson. John Wiley \& Sons, New York, 1905, 1 ed., p. 120.

[^2]: Since the results of the tests were based upon the appearance of the stain as interpreted by the observer, it is difficult if not impossible to distinguish between border-line materials or to express clearly the apparent degree of heterogeneity that may be indicated by the varying degrees of nonuniformity in the stain. The classification given should be understood to mean that, in the judgment of the observers, the materials and their residues gave stains that appeared either entirely uniform throughout or were only slightly nonuniform, having a slightly darker, more pronounced center, or else they had a definite dark to black center surrounded by a uniformly lighter colored stain, and were consequently classified as homogeneous, slightly heterogeneous, and heterogeneous respectively.

 4 Further Studies of Liquid Asphaltic Road Materials, by R. H. Lewis and W. O'B Hillman. Public Roads, vol. 16, no. 6, August 1935, p. 108.

[^3]: 5 A Report on the Weather-Resistant Properties of Certain Slow-Curing Liquid Asphaltic Materials. Proceedings of the Association of Asphalt Paving Technologists, Jan. 23, 1936.

[^4]: Inoad Research Bulletin No. 1. Measurement of the Non-Skid Properties of Road Surfaces, H. M. Stationery Office, 9 (1 net.
 ${ }^{2}$ Road Research Technical Paper No. 1, Studies in Road Friction. 1. Road Surface Resistance in skidding. Published by H. M. Stationery Office, is. 6d. net.

[^5]: ${ }_{1}{ }^{1}$ Export sales and other amounts not representing consumption in State have been eliminated as far as possible. Exemptions and refunds in a few States include small amounts of such deductible items not reported separately. In cases where States failed to report amounts exempted from taxation the gross amount taxed is shown in this column
 ${ }^{2}$ In cases where refunds were made for Federal and other public uses, or for losses, the amounts have been included with the exemptions listed below, rather than with the refund gallonage

 Federal use except as otherwise noted.
 1 In Kansas exemptions rather than refunds are made for all nonhighway uses. Other States, as shown, make hoth exemptions and refunds. Florida exempts motor fuel used in aviation but not other nonhighway uses
 ${ }^{5} 13$ States do not provide for exemptions or refunds for nonhighway use. The amounts entered for these States, indicated by stars, include both highway and nonhighway uses.
 6 Within 300 feet of horder tax rate is reduced to that of adjacent State. Gallons taxed at 2 cents, $2,739,000$; at 4 cents, $11,534,000$; at 5 cents, 119,000 .

 Federal use, $5,415,000$ gallons; State, county, and municipal use, $3,773,000$ gallons
 Federal use, 414,000 gallons; State use, 610,000 gallons
 Motor fuel used in aviation.
 ${ }^{16}$ Includes Federal use.
 it Includes $113,859,000$ gallons taxed at 5 cents per gallon and $08,688,000$ gallons taxed at 7 cents per gallon.
 ${ }_{12} 3$ cents per gallon refunded on nonhighway uses.

[^6]: Stars indicate amounts less than $\$ 500$
 Fees for insplection of motor-vehicle fuel. Wherever possible fees for inspection of kerosene and other non-motor-vehicle fuels have been eliminated.

 Includes fees for motor-fuel carrier permits, refund or exemption permits, interest on deposits, and miscellaneous unclassified receipts
 A spectal Harrison county is imposed for sea-wall protection. The receipts front these taxe

[^7]: 5 Ohio imposes a 3 -cent tax on motor-vehicle fuel and a 1 -cent tax on all liquid fuels. The receipts from the 1 -cent tax applicable to non-motor-vehicle fuels (kerosene fuel oil, etc.) were $\$ 689,000$. These receipts have been eliminated from the total given, which represents a 4-cent tax on motor-vehicle fuel.

